# 22-60 46<sup>TH</sup> STREET

# QUEENS, NEW YORK

# SITE MANAGEMENT PLAN

# NYSDEC Site Number: C241244 AKRF Project Number: 190275

# **Prepared for:**

MD45 Developers LLC 48-02 25<sup>th</sup> Avenue, Suite 400 Queens, NY 11103

# Prepared by:



AKRF, Inc. 440 Park Avenue South, 7<sup>th</sup> Floor New York, New York 10016 212-696-0670

# **Revisions to Final Approved Site Management Plan:**

| Revision<br>No. | Date<br>Submitted | Summary of Revision | NYSDEC<br>Approval Date |
|-----------------|-------------------|---------------------|-------------------------|
|                 |                   |                     |                         |
|                 |                   |                     |                         |
|                 |                   |                     |                         |
|                 |                   |                     |                         |

**DECEMBER 2022** 

# **CERTIFICATION STATEMENT**

I, Rebecca Kinal, P.E., certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).



12/22/2022

NYS Professional Engineer #082046-1

Date

Signature

# **TABLE OF CONTENTS**

|                   | E SUMMARY                                                              |    |
|-------------------|------------------------------------------------------------------------|----|
| 1.0 INTR          | ODUCTION                                                               | 3  |
| 1.1 Ge            | neral                                                                  | 3  |
| 1.2 Pu            | pose                                                                   |    |
|                   | visions                                                                |    |
|                   | tifications                                                            |    |
|                   | BACKGROUND                                                             |    |
|                   | e Location and Description                                             |    |
|                   | e History                                                              |    |
|                   | vsical Setting                                                         |    |
| 2.3 Fily<br>2.3.1 | Land Use                                                               |    |
|                   |                                                                        |    |
| 2.3.2             | 65                                                                     |    |
| 2.3.3             | Hydrogeology                                                           |    |
|                   | estigation and Remedial History                                        |    |
|                   | medial Action Objectives                                               |    |
| 2.6 Su            | nmary of Remedial Actions                                              |    |
| 2.6.1             | Soil Excavation and Off-Site Disposal                                  | 16 |
| 2.6.2             | Underground Storage Tank (UST) Removal                                 | 16 |
| 2.6.3             | In-Situ Chemical Oxidation (ISCO)                                      | 16 |
| 2.6.4             | Import                                                                 |    |
| 2.6.5             | Active Sub-Slab Depressurization System (SSDS)                         |    |
| 2.6.6             | Soil Vapor Extraction (SVE) System                                     |    |
|                   | naining Contamination                                                  |    |
| 2.7.1             | Soil                                                                   |    |
| 2.7.1             | Groundwater                                                            |    |
| 2.7.2             | Sub-Slab Soil Vapor                                                    |    |
|                   |                                                                        |    |
|                   | nagement of Remaining Contamination                                    |    |
|                   | TUTIONAL AND ENGINEERING CONTROL PLAN                                  |    |
|                   | neral                                                                  |    |
|                   | titutional Controls                                                    |    |
| •                 | gineering Controls                                                     |    |
| 3.3.1             | SSDS                                                                   |    |
| 3.3.2             | SVE System                                                             | 20 |
| 3.3.3             | Contingent Groundwater Treatment                                       | 21 |
| 3.3.4             | Criteria for Completion of Remediation/Termination of Remedial Systems |    |
| 4.0 MON           | ITORING AND SAMPLING PLAN                                              |    |
| 4.1 Ge            | neral                                                                  |    |
| 4.2 Pu            | pose and Schedule                                                      |    |
|                   | e-Wide Inspection                                                      |    |
|                   | DS Monitoring                                                          |    |
|                   | bundwater Monitoring                                                   |    |
|                   | l Vapor Extraction System Monitoring and Sampling                      |    |
|                   |                                                                        |    |
| 4.6.1             | Confirmatory Soil Vapor Sampling                                       |    |
| 4.6.2             | Sampling Protocol                                                      |    |
|                   | nitoring Quality Assurance/Quality Control                             |    |
|                   | ATION AND MAINTENANCE PLAN                                             |    |
|                   | neral                                                                  |    |
| 5.2 Sco           | ope                                                                    |    |

| 5.3 R   | emedial Systems Performance Criteria                                             | .29 |
|---------|----------------------------------------------------------------------------------|-----|
|         | SDS Operation and Maintenance                                                    |     |
| 5.4.1   | SSDS Start-Up and Testing                                                        | .30 |
| 5.4.2   | SSDS Operation: Routine Operation                                                |     |
| 5.4.3   | SSDS Operation: Routine Inspections                                              | .31 |
| 5.4.4   | SSDS Operation: Routine Equipment Maintenance                                    | .31 |
| 5.4.5   | System Operation: Non-Routine Equipment Maintenance                              | .32 |
| 5.4.6   | Monitoring Devices and Alarms                                                    | .33 |
| 5.5 S   | VE System Operation and Maintenance                                              | .33 |
| 5.5.1   | SVE System Start-Up and Testing                                                  |     |
| 5.5.2   | SVE System Operation: Routine Operation Procedures                               | .34 |
| 5.5.3   | SVE System Operation: Routine Equipment Maintenance                              | .35 |
| 5.5.4   | Routine SVE System Component Maintenance                                         | .36 |
| 5.5.5   | SVE Wellhead and External System Component Maintenance                           |     |
| 5.5.6   | SVE System Operation: Non-Routine Equipment Maintenance                          | .36 |
| 5.6 S   | VE System Sampling Event Protocol                                                |     |
| 5.6.1   | Effluent Vapor Sampling Protocol                                                 |     |
| 5.6.2   | Spent Carbon Sampling Protocol                                                   | .37 |
| 5.6.3   | Condensate Water Sampling                                                        | 38  |
|         | SDS and SVE System Maintenance and Performance Monitoring Reporting Requirements | 38  |
| 5.7.1   | Routine Maintenance Forms                                                        |     |
| 5.7.2   | Non-Routine Maintenance Forms                                                    |     |
|         | ontingency Plan                                                                  |     |
|         | mergency Telephone Numbers                                                       |     |
| 5.10 N  | Iap and Directions to Nearest Health Facility                                    | 39  |
|         | IODIC ASSESSMENTS/EVALUATIONS                                                    |     |
|         | limate Change Vulnerability Assessment                                           |     |
|         | oil Vapor Intrusion Evaluation                                                   |     |
|         | reen Remediation Evaluation                                                      |     |
| 6.3.1   | Remedial Systems                                                                 |     |
| 6.3.2   | Building Operations                                                              |     |
| 6.3.3   | Frequency of System Checks, Sampling and Other Periodic Activities               |     |
|         | emedial System Optimization                                                      |     |
|         | ORTING REQUIREMENTS                                                              |     |
|         | ite Management Reports                                                           |     |
|         | eriodic Review Report (PRR)                                                      |     |
| 7.2.1   | Certification of Institutional and Engineering Controls                          | 46  |
|         | orrective Measures Work Plan                                                     |     |
|         | emedial Site Optimization Report                                                 |     |
| 8.0 REF | ERENCES                                                                          | 48  |

# **IN-TEXT TABLES**

- Table I Site Management Plan Summary
- Table II Notifications
- Table III Site Contact List
- Table IV Monitoring/Inspection Schedule
- Table V SSDS Monitoring Requirements and Schedule
- Table VI Groundwater Monitoring Schedule
- Table VII SVE System Monitoring Requirements and Schedule
- Table VIII SSDS Inspection/Maintenance Schedule
- Table IX SVE System Startup Protocols
- Table X SVE System Inspection/Maintenance Schedule
- Table XI SVE System Alarm Conditions
- Table XII Emergency Contact Numbers
- Table XIII Schedule of Monitoring/Inspection Reports

# **TABLES (ATTACHED)**

- Table 1 Groundwater Elevation Data
- Table 2 –
   Soil Endpoint Analytical Results Volatile Organic Compounds (VOCs)
- Table 3 –
   Soil Endpoint Analytical Results Semivolatile Organic Compounds (SVOCs)
- Table 4 –
   Soil Endpoint Analytical Results Metals
- Table 5 –
   Soil Endpoint Analytical Results Polychlorinated Biphenyls (PCBs)
- Table 6 –
   Soil Endpoint Analytical Results Pesticides
- Table 7 –
   Soil Endpoint Analytical Results Per- and Polyfluoroalkyl Substances (PFAS)
- Table 8 –
   Pre-Remediation Groundwater Analytical Results Chlorinated Volatile Organic Compounds (CVOCs)
- Table 9 –
   Post-Remediation Groundwater Analytical Results Chlorinated Volatile Organic Compounds (CVOCs)

## FIGURES

- Figure 1 BCP Site Location
- Figure 2 BCP Site and Sample Location Plan
- Figure 3 Groundwater Contour Map July 2022
- Figure 4 Extent of Remedial Excavation and UST Locations
- Figure 5 SSDS Layout Plan
- Figure 6 SVE Layout Plan
- Figure 7 Groundwater Treatment Area and Remaining PCE Concentrations

# APPENDICES

- Appendix A Environmental Easement
- Appendix B Site Contact Information
- Appendix C PBS Registration
- Appendix D Import Approvals
- Appendix E Foundation Management Plan
- Appendix F Health and Safety Plan and Community Air Monitoring Plan
- Appendix G SSDS and SVE System As-Builts
- Appendix H Quality Assurance Project Plan
- Appendix I Groundwater and Soil Vapor Sampling Logs
- Appendix J SSDS Component Manuals
- Appendix K SVE Manufacturer's Specifications and Manuals
- Appendix L SSDS Inspection Log
- Appendix M SSDS Shutdown Log
- Appendix N SVE Inspection and Sampling Logs
- Appendix O SVE Shutdown Log
- Appendix P Responsibilities of Owner and Remedial Party and Site Management Inspection Form

| Acronym   | Definition                                               |  |  |
|-----------|----------------------------------------------------------|--|--|
| 1,1-DCE   | 1,1-dichloroethene                                       |  |  |
| 1,1,1-TCA | 1,1,1-trichloroethane                                    |  |  |
| ACM       | Asbestos Containing Material                             |  |  |
| AG        | Air Guide                                                |  |  |
| AGC       | Annual Guideline Concentrations                          |  |  |
| AGV       | Air Guidance Value                                       |  |  |
| ASTM      | American Society for Testing and Materials               |  |  |
| AWQSGV    | Ambient Water Quality Standards and Guidance Values      |  |  |
| BCA       | Brownfield Cleanup Agreement                             |  |  |
| BCP       | Brownfield Cleanup Program                               |  |  |
| bgs       | Below Ground Surface                                     |  |  |
| BTEX      | Benzene, Toluene, Ethylbenzene, and Xylenes              |  |  |
| CAMP      | Community Air Monitoring Plan                            |  |  |
| CFM       | Cubic Feet per Minute                                    |  |  |
| CFR       | Code of Federal Regulations                              |  |  |
| CMWP      | Corrective Measures Work Plan                            |  |  |
| COC       | Certificate of Completion                                |  |  |
| СР        | Commissioner's Policy                                    |  |  |
| CPP       | Citizen Participation Plan                               |  |  |
| CVOC      | Chlorinated Volatile Organic Compound                    |  |  |
| DAR       | Division of Air Resources                                |  |  |
| DD        | Decision Document                                        |  |  |
| DER       | Division of Environmental Remediation                    |  |  |
| DUSR      | Data Usability Summary Report                            |  |  |
| EC        | Engineering Control                                      |  |  |
| ECL       | Environmental Conservation Law                           |  |  |
| EE        | Environmental Easement                                   |  |  |
| ELAP      | New York State Environmental Laboratory Approval Program |  |  |
| EM        | Electromagnetic                                          |  |  |
| EPA       | United States Environmental Protection Agency            |  |  |
| ESA       | Environmental Site Assessment                            |  |  |
| FER       | Final Engineering Report                                 |  |  |
| FMP       | Foundation Management Plan                               |  |  |
| GAC       | Granular Activated Carbon                                |  |  |
| GPA       | Gas Permeable Aggregate                                  |  |  |
| GPR       | Ground Penetrating Radar                                 |  |  |
| HASP      | Health and Safety Plan                                   |  |  |
| IC        | Institutional Control                                    |  |  |
| ISCO      | In-Situ Chemical Oxidation                               |  |  |

| Acronym  | Definition                                                  |  |  |
|----------|-------------------------------------------------------------|--|--|
| LBP      | Lead-Based Paint                                            |  |  |
| MCL      | Maximum Contaminant Level                                   |  |  |
| MEK      | Methyl Ethyl Ketone                                         |  |  |
| mg/kg    | Milligrams per Kilogram                                     |  |  |
| MP       | Monitoring Point                                            |  |  |
| MS/MSD   | Matrix Spike/Matrix Spike Duplicate                         |  |  |
| MW       | Monitoring Well                                             |  |  |
| NYCDOHMH | New York City Department of Health and Mental Hygiene       |  |  |
| NYCRR    | New York Codes, Rules and Regulations                       |  |  |
| NYS      | New York State                                              |  |  |
| NYSDEC   | New York State Department of Environmental Conservation     |  |  |
| NYSDOH   | New York State Department of Health                         |  |  |
| O&M      | Operation and Maintenance                                   |  |  |
| OSHA     | United States Occupational Safety and Health Administration |  |  |
| OSVI     | Off-Site Soil Vapor Intrusion                               |  |  |
| OSVIR    | Off-Site Soil Vapor Intrusion Report                        |  |  |
| OSVIWP   | Off-Site Soil Vapor Intrusion Work Plan                     |  |  |
| P&ID     | Process and Instrumentation Diagram                         |  |  |
| P.E./PE  | Professional Engineer                                       |  |  |
| РАН      | Polycyclic Aromatic Hydrocarbon                             |  |  |
| PBS      | Petroleum Bulk Storage                                      |  |  |
| РСВ      | Polychlorinated Biphenyl                                    |  |  |
| PCE      | Tetrachloroethylene                                         |  |  |
| PFAS     | Per- and Polyfluoroalkyl Substances                         |  |  |
| PFOA     | Perfluorooctanoic Acid                                      |  |  |
| PFOS     | Perfluorooctanesulfonic Acid                                |  |  |
| PID      | Photoionization Detector                                    |  |  |
| ppb      | Parts per Billion                                           |  |  |
| ppm      | Parts per Million                                           |  |  |
| PRR      | Periodic Review Report                                      |  |  |
| PVC      | Polyvinyl Chloride                                          |  |  |
| QA/QC    | Quality Assurance/Quality Control                           |  |  |
| QAPP     | Quality Assurance Project Plan                              |  |  |
| QEP      | Qualified Environmental Professional                        |  |  |
| RAO      | Remedial Action Objective                                   |  |  |
| RAWP     | Remedial Action Work Plan                                   |  |  |
| RCRA     | Resource Conservation and Recovery Act                      |  |  |
| REC      | Recognized Environmental Condition                          |  |  |
| RI       | Remedial Investigation                                      |  |  |
| RIR      | Remedial Investigation Report                               |  |  |
| RIWP     | Remedial Investigation Work Plan                            |  |  |

| Acronym     | Definition                                    |  |
|-------------|-----------------------------------------------|--|
| RMR         | Remedy Modification Request                   |  |
| RP          | Remedial Party                                |  |
| RRSCO       | Restricted Residential Soil Cleanup Objective |  |
| RSO         | Remedial Site Optimization                    |  |
| SB          | Soil Boring                                   |  |
| SCFM        | Standard Cubic Feet per Minute                |  |
| SCG         | Standard, Criteria, And Guidance              |  |
| SCO         | Soil Cleanup Objective                        |  |
| SGC         | Short-term Guideline Concentrations           |  |
| SIM         | Selected Ion Monitoring                       |  |
| SMP         | Site Management Plan                          |  |
| SSDS        | Sub-Slab Depressurization System              |  |
| SV          | Soil Vapor                                    |  |
| SVE         | Soil Vapor Extraction                         |  |
| SVI         | Soil Vapor Intrusion                          |  |
| SVOC        | Semivolatile Organic Compound                 |  |
| TAL         | Target Analyte List                           |  |
| TCE         | Trichloroethylene                             |  |
| TOGS        | Technical Operational and Guidance Series     |  |
| UST         | Underground Storage Tank                      |  |
| UUSCO       | Unrestricted Use Soil Cleanup Objective       |  |
| VFD         | Variable-frequency Drive                      |  |
| VMP         | Vapor Monitoring Point                        |  |
| VOC         | Volatile Organic Compound                     |  |
| μg/L        | Micrograms per Liter                          |  |
| $\mu g/m^3$ | Micrograms per Cubic Meter                    |  |

# **EXECUTIVE SUMMARY**

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance, and reporting activities required by this Site Management Plan (SMP):

|                                                                              | Site Management Plan Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site Identification:                                                         | Site No. C241244<br>22-60 46 <sup>th</sup> Street<br>Queens, New York                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Institutional Controls:                                                      | <ol> <li>The property may be used for restricted residential, commercial, and<br/>industrial use only, as set forth in the Environmental Easement.</li> <li>All Engineering Controls (ECs) must be operated and maintained as<br/>specified in the SMP.</li> <li>All ECs must be inspected at a frequency and in a manner defined in the<br/>SMP.</li> <li>The use of groundwater underlying the property is prohibited without<br/>necessary water quality treatment as determined by the New York State<br/>Department of Health (NYSDOH) or the New York City Department of<br/>Health and Mental Hygiene (NYCDOHMH) to render it safe for use as<br/>drinking water or for industrial purposes, and the user must first notify<br/>and obtain written approval to do so from the Department.</li> <li>Groundwater and other environmental or public health monitoring must<br/>be performed as defined in this SMP.</li> <li>Data and information pertinent to Site management must be reported at<br/>the frequency and in a manner as defined in this SMP.</li> <li>All future activities that will disturb remaining contaminated material<br/>must be conducted in accordance with this SMP.</li> <li>Operation, maintenance, monitoring, inspection, and reporting of the<br/>mechanical or physical components of the remedy shall be performed as<br/>defined in the SMP.</li> <li>Access to the Site must be provided to agents, employees, or other<br/>representatives of the State of New York with reasonable prior notice to<br/>the property owner to assure compliance with the restrictions identified<br/>in the Environmental Easement.</li> <li>The potential for vapor intrusion must be evaluated for any new buildings<br/>developed in the area within the IC boundaries and any potential impacts<br/>that are identified must be monitored or mitigated.</li> <li>Vegetable gardens and farming on the Site are prohibited.</li> </ol> |
| Engineering Controls:                                                        | <ol> <li>Active Sub-Slab Depressurization System (SSDS)</li> <li>Soil Vapor Extraction (SVE) System (SVES)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Inspections:<br>1. Site Inspection<br>2. Active SVE System<br>3. Active SSDS | Annually<br>Monthly (first year), annually (after first year)<br>Quarterly (first year), annually (after first year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

In-Text Table I Site Management Plan Summary

|                                 | Site No. C2412              | 244                                                                         |  |
|---------------------------------|-----------------------------|-----------------------------------------------------------------------------|--|
| Site Identification:            | 22-60 46 <sup>th</sup> Stre | et                                                                          |  |
|                                 | Queens, New                 | York                                                                        |  |
| Monitoring:                     |                             |                                                                             |  |
| 1. Groundwater Mo               | nitoring Wells              | Quarterly for first year, then annually                                     |  |
| 2. SVE Extracted Vapor Sampling |                             | 6 months and 12 months after start-up, annually and as necessary thereafter |  |
| 3. SVE System Monitoring        |                             | Monthly (first year), quarterly (after first year)                          |  |
| 4. SSDS Monitoring              |                             | Quarterly (first year), annually (after first year)                         |  |
| Maintenance:                    |                             |                                                                             |  |
| 1. SVE System                   |                             | Quarterly/As Needed                                                         |  |
| 2. Active SSDS                  |                             | As Needed                                                                   |  |
| Reporting:                      |                             |                                                                             |  |
| 1. Periodic Review              | Report                      | First PRR 16 months after receipt of the Certificate of                     |  |
|                                 | *                           | Completion (COC). Annually thereafter.                                      |  |

Further descriptions of these requirements are provided in detail in the latter sections of this SMP.

# **1.0 INTRODUCTION**

This Site Management Plan (SMP) is a required element of the remedial program for the 22-60 46<sup>th</sup> Street Site located in the Astoria section of Queens, New York (hereinafter referred to as the "Site"), also identified as Tax Block 769, Lots 25 and 42<sup>1</sup> on the New York City Tax Map. The Site is enrolled in the New York State (NYS) Brownfield Cleanup Program (BCP), Site No. C241244, which is administered by NYS Department of Environmental Conservation (NYSDEC). A Site Location map is provided as Figure 1.

MD45 Developers LLC entered into a Brownfield Cleanup Agreement (BCA) (Index No. C241244-09-20) with NYSDEC on September 17, 2020, as a Participant, to remediate the Site. The Site was remediated to Track 2 Restricted Residential Soil Cleanup Objectives (RRSCOs) in accordance with the NYSDEC-approved Remedial Action Work Plan (RAWP), Remedy Modification Request (RMR), Final Engineering Report (FER), and Decision Document (DD), as described in this SMP.

# 1.1 General

The Applicant entered into a BCA to investigate and remediate the approximately 0.689-acre Site. A Site Location Map is provided as Figure 1 and a Site Plan showing the Site boundaries is provided as Figure 2. The boundaries of the Site are more fully described in the metes and bounds that is part of the Environmental Easement (EE) provided in Appendix A.

# 1.2 Purpose

After completion of the remedial work described in the Remedial Action Work Plan (RAWP) and the Remedy Modification Request (RMR), some contamination was left at the Site, which is hereafter referred to as "remaining contamination." Institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination, thereby ensuring protection of public health and the environment. An EE will be granted to NYSDEC and recorded with the Office of the City Register of the City of New York and will require compliance with this SMP and all ECs and ICs placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the EE is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by NYSDEC, and compliance with this plan is required by the grantor of the EE and the grantor's successors and assigns. This SMP may be revised only with the approval of NYSDEC.

It is important to note that:

- 1. This SMP details the site-specific implementation procedures that are required by the EE. Failure to properly implement the SMP is a violation of the EE, which is grounds for revocation of the Certificate of Completion (COC); and
- 2. Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 and the BCA (Index No. C241244-09-20; Site No. C241244) for the Site, and thereby subject to applicable penalties.

<sup>&</sup>lt;sup>1</sup> It should be noted that the BCP Site encompasses the same area indicated in the BCP Application and as set forth in the Brownfield Cleanup Agreement (BCA), however, the lot merger application, which was tentatively approved on April 30, 2020, was never finalized and has been withdrawn. Accordingly, the BCP Site constitutes Queens Borough Tax Block 769, Lots 25 and 42. An amendment to the BCA was executed on November 9, 2021 to reflect the proper tax lots that comprise the BCP Site.

All reports associated with the Site can be viewed by contacting NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the Site is provided in Tables II and III of this SMP.

This SMP was prepared by AKRF, Inc. (AKRF) on behalf of the Participant in accordance with the requirements of NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the ICs and ECs that are required by the EE for the Site.

## 1.3 Revisions

Revisions to this SMP will be proposed in writing to NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or a shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change(s) to the Site conditions. In accordance with the EE for the Site, NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

## 1.4 Notifications

Notifications will be submitted by the property owner to NYSDEC, as needed, in accordance with NYSDEC's DER-10 for the following reasons:

- 60-day advanced notice of any proposed changes in Site use that are required under the terms of the BCA, 6 NYCRR Part 375 and/or Environmental Conservation Law (ECL);
- 7-day advanced notice of any field activity associated with the remedial program other than routine inspection, maintenance, and monitoring;
- 15-day advanced notice of any proposed ground-intrusive activity pursuant to the Foundation Management Plan (FMP). If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- Notice within 48-hours of any damage or defect to the foundation, structures or ECs that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect;
- Notice within 48 hours of any non-routine maintenance activities.
- Verbal notice by noon of the following day of any emergency, such as a fire, flood, or earthquake, that reduces or has the potential to reduce the effectiveness of ECs in place at the Site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public; and
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

• At least 60 days prior to the change, NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA and all approved work plans and reports, including this SMP; and

• Within 15 days after the transfer of all or part of the Site, the new owner's name, contact representative, and contact information will be confirmed in writing to NYSDEC.

Table II includes contact information for these notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in Table III and Appendix B.

| Company/Regulator | <b>Contact Name</b> | <b>Contact Title</b>       | Contact Number |  |
|-------------------|---------------------|----------------------------|----------------|--|
|                   | Meghan Medwid       | Project Manager            | 518-402-8610   |  |
|                   | Jane H.             | Chief, Superfund and       | 718-482-4599   |  |
| NYSDEC            | O'Connell           | Brownfield Cleanup Section | /10-402-4399   |  |
|                   | Kelly               | Chief, Site Control        | 518-402-9553   |  |
|                   | Lewandowski         | Cillei, Site Colitioi      | 516-402-9555   |  |
| NYSDOH            | Sally Rushford      | Project Manager            | (518) 402-5465 |  |

# In-Text Table II Notifications\*

Note: \*Notifications are subject to change and will be updated as necessary.

# In-Text Table III Site Contact List

| Company        | Individual Name      | Title                     | Contact Number        |  |
|----------------|----------------------|---------------------------|-----------------------|--|
|                | Deborah Shapiro, QEP | Principal                 | 646-388-9544 (office) |  |
|                | Rebecca Kinal, P.E.  | Remedial Engineer         | 914-922-2362 (office) |  |
| AKRF           | Adrianna Bosco       | Project Manager           | 646-388-9576 (office) |  |
|                | Ashutosh Sharma      | Deputy Project<br>Manager | 646-388-9865 (office) |  |
| MD45           | Emanuel Kokinakis    | Participant's             | 718-932-6342 (office) |  |
| Developers LLC | Elliandel Kokinakis  | Representative            | /18-932-0342 (0111ce) |  |

# 2.0 SITE BACKGROUND

# 2.1 Site Location and Description

The Site is located in Astoria, Queens County, New York and is identified as Tax Block 769, Lots 25 and 42 on the New York City Tax Map. The Site location is shown on Figure 1. The Site is an approximately 0.689-acre parcel bounded to the north by a parking garage, followed by a multistory residential building; to the east by 46<sup>th</sup> Street, followed by private residences; to the south by private residences and commercial uses; and to the west by 45<sup>th</sup> Street, followed by a shopping center and warehouses. The surrounding area comprises predominantly residential with some commercial and industrial uses. A Site plan is provided as Figure 2. The boundaries of the Site are more fully described in the EE, provided as Appendix A. The owner of the Site at the time of issuance of this SMP is MD45 Developers LLC.

#### 2.2 Site History

A full Site history, including historical Sanborn maps and a summary of previous investigations conducted at the Site, was provided in the RAWP. Historic records indicated that the Site was used for manufacturing and commercial purposes since approximately 1967. Based on the historical Sanborn Fire Insurance Maps and City Directories, Lot 25 was undeveloped until approximately 1967, when it was developed with a warehouse utilized by an electronics manufacturer through approximately 2006. Lot 25 was additionally identified as part of the west-adjacent knitting mill (Lot 42) between approximately 1981 and 1993. Lot 42 was undeveloped until approximately 1967, when it was developed with a knitting mill through approximately 1993, and unspecified manufacturing between 1994 and 2006. All on-site buildings were demolished in January 2022.

#### 2.3 Physical Setting

## 2.3.1 Land Use

To support the proposed redevelopment, the Site was rezoned in February 2020 from M1-1 (manufacturing) to R6A (residential) and C2-3 (commercial). The Site is currently being redeveloped with two 8-story, mixed-use buildings. When completed, the buildings will contain approximately 96 residential units, including 30 permanently affordable units. The first floor will contain approximately 3,721-square feet of commercial space, approximately 11,740-square feet of community facility space, and residential amenities. Floors two through eight will contain residential units. Additionally, the first and second floors between the two buildings will include an exterior courtyard. The two proposed buildings will occupy the entirety of the Site.

#### 2.3.2 Geology

Prior to redevelopment, the stratigraphy of the Site generally consisted of fill material extending from surface grade to approximately 5 to 15 feet below grade comprising sand, silt, and gravel with varying amounts of concrete and brick. The historic fill was underlain by apparent native sand, gravel, and silt to boring termination depths (up to 50 feet below grade). The Site lies at an elevation of approximately 53.7 to 54.4 feet above the North American Vertical Datum of 1988 (NAVD88).

## 2.3.3 Hydrogeology

During the RI, groundwater beneath the Site ranged from elevation 19.79 to elevation 21.07 (NAVD88), or 32.92 to 33.73 feet below grade, across the Site. Groundwater was

determined to flow in a northeasterly direction. A groundwater contour map is shown on Figure 3. Groundwater elevation data is provided in Attached Table 1.

## 2.4 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 - References. Copies of all reports and documents referenced were placed in the Site document repositories.

# Phase I ESA, 22-60 46<sup>th</sup> Street, Queens, New York 11105, Environmental Studies Corporation, Inc., <u>May 2018</u>

Environmental Studies Corporation, Inc. (ESC) prepared a Phase I Environmental Site Assessment (ESA) in May 2018 for Lot 25 only. The Phase I ESA was performed in conformance with the scope and limitations of the American Society for Testing & Materials (ASTM) Standard E1527-13. The assessment identified the following Recognized Environmental Conditions (RECs) in connection with the Site:

The potential for contamination from past electronics manufacturing and knitting mill operations in the Site building;

- The potential for a vapor encroachment condition from past on-site manufacturing operations, and from potential off-site sources of contamination in the immediate vicinity of the Site; and
- The possible presence of asbestos-containing materials (ACM) and lead-based paint (LBP) in the Site building (business environmental risk outside of ASTM E1527-13).

# Phase I ESA, 22-61 45th Street, Queens, New York 11105, CA RICH Consultants, Inc., June 2018

CA RICH Consultants, Inc. (CA RICH) of Plainview, New York completed a Phase I ESA in June 2018 for Lot 42 only. The Phase I ESA was conducted in substantive conformance with the suggested informational requirements, scope and limitations of ASTM E1527-13, Standard Practice for Environmental Site Assessments. CA RICH did not identify any RECs; however, two business environmental risks were identified, as summarized below:

- Based upon the age of the structure, constructed circa 1955, asbestos is likely present in some of the building materials. If the building is to be renovated or demolished, it is recommended that an ACM survey be performed and appropriate measures taken to protect the health and safety of building occupants or workers during activities that may disturb the ACM; and
- Based upon the age of the structure, constructed circa 1955, LBP is likely present in some of the building materials, especially in the lower layers of paint. If the building is to be renovated or demolished, it is recommended that an LBP survey be performed. At the time of the inspection, no peeling paint was observed.

## Phase II ESA, Environmental Studies Corporation, Inc., May 2019

Based on the results of the Phase I ESAs, ESC conducted a Phase II ESA at the Site in May 2019 in accordance with ASTM E1903-97, "Standard Guide for ESAs: Phase II ESA Process."

The scope of work included the following:

- Completion of a geophysical investigation, which included an electromagnetic (EM) survey and GPR survey;
- Advancement of 8 soil borings with the collection and laboratory analysis of 16 soil samples;

- Installation of 2 temporary groundwater monitoring wells with the collection and laboratory analysis of 2 groundwater samples; and
- Installation of 6 temporary soil vapor probes with the collection and laboratory analysis of 6 soil vapor samples.

Two soil samples were collected from each soil boring location. One soil sample was collected from the upper 2 feet beneath the existing pavement and a deeper soil sample was collected from 15 to 17 feet below surface. Two 1-inch-diameter temporary monitoring wells were installed in the eastern and western portions of the Site. Soil and groundwater samples were analyzed for volatile organic compounds (VOCs) by EPA Method 8260, semivolatile organic compounds (SVOCs) by EPA Method 8270, pesticides/polychlorinated biphenyls (PCBs) by EPA Methods 8081/8082, and target analyte list (TAL) Metals.

Six temporary soil vapor probes were installed between approximately 15 and 17 feet below grade. Soil vapor samples were collected via dedicated polyethylene tubing with SUMMA<sup>®</sup> canisters, and analyzed for VOCs using EPA TO-15 method parameters.

## Soil Quality Conditions

Historic fill comprising sand and gravel with varying amounts of brick, concrete, and stone fragments was found throughout the Site to approximately 4 to 6 feet below grade. The fill material was underlain by native materials consisting of sand and silt, with fine gravel. No petroleum-like odors, staining, or elevated PID readings were detected.

The soil samples were compared to the NYSDEC Soil Cleanup Objectives (SCOs) 6 New York Codes, Rules, and Regulations (NYCRR) Subpart 375-6.8 (a): Unrestricted Use SCOs (UUSCOs) and Restricted-Residential Use SCOs (RRSCOs). Soil laboratory analytical results are summarized below:

- No VOCs were identified above laboratory detection limitations or the SCOs in the soil samples collected. Tetrachloroethylene (PCE) was detected at low levels in 7 of the 16 soil samples, below the SCOs.
- One SVOC, indeno[123-cd]pyrene, was detected above the UUSCO and RRSCO in one sample.
- No pesticides or PCBs were identified above laboratory detection limitations or the SCOs.
- Total TAL metals exceeding the UUSCOs included copper [maximum concentration (max.) of 174 milligrams per kilogram (mg/kg)], lead (max. of 315 mg/kg), mercury (max. of 0.4 mg/kg), nickel (max. of 43 mg/kg), and zinc (max. of 772 mg/kg). Copper was additionally detected above the RRSCO in one sample.

## Groundwater Quality Conditions

Groundwater was encountered at approximately 45 feet below grade in the two temporary groundwater monitoring wells installed as part of ESC's May 2019 Phase II ESA. No visual or olfactory evidence of contamination was detected in the purge water from either well.

No VOCs, SVOCs, pesticides, or metals were detected above the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSGVs). One PCB, Aroclor 1260, was detected at a concentration of 0.164 micrograms per liter ( $\mu$ g/L), above the AWQSGV of 0.09  $\mu$ g/L.

# Soil Vapor Quality Conditions

Various petroleum- and solvent-related VOCs were detected in the soil vapor samples at concentrations ranging from 1.1 micrograms per cubic meter ( $\mu g/m^3$ ) to 4,900  $\mu g/m^3$ . PCE was detected in all six samples at concentrations ranging from 37 to 4,900  $\mu g/m^3$ . The greatest concentration (4,900  $\mu g/m^3$ ) was detected in the central portion of the Site on Lot 25. A breakdown product of PCE, trichloroethylene (TCE), was detected in one soil vapor sample collected from the southwestern corner of the Site at a concentration of 1.1  $\mu g/m^3$ .

# Supplemental Subsurface (Phase II) Investigation, AKRF, Inc., August 2019

AKRF conducted a Subsurface (Phase II) Investigation at the Site in August 2019 to supplement the soil and soil vapor data obtained during the May 2019 Phase II ESA. The scope of work for the investigation included the advancement of 12 soil borings with the collection and laboratory analysis of 18 soil samples, and the installation of 1 sub-slab vapor point with the collection and laboratory analysis of 1 sub-slab soil vapor sample. On August 5, 2019, four soil borings were advanced with the collection and laboratory analysis of four soil samples, collected from the interval of greatest contamination or, in the absence of contamination, the upper 2 feet beneath existing pavement. On August 29, 2019, 8 soil borings were advanced with the collection and laboratory analysis of 14 soil samples. Soil samples were collected from the upper 2 feet beneath existing pavement, and a second sample was collected from the interval of greatest contamination or within the historic fill layer. The soil samples were analyzed for VOCs by EPA Method 8260, polycyclic aromatic hydrocarbons (PAHs) by EPA Method 8270, and Resource Conservation and Recovery Act (RCRA) 8 metals by EPA Methods 6020 and 7041 in accordance with Category B deliverables. For QA/QC purposes, one field blank, one trip blank, one blind duplicate, and one matrix spike/matrix spike duplicate (MS/MSD) sample were collected and submitted with the soil samples.

The investigation also included the installation of one temporary sub-slab vapor point (SV-07) installed to a depth of approximately 18 inches below the existing building slab on Lot 42. One soil vapor sample was collected over a two-hour period and analyzed for VOCs by EPA method TO-15.

## Soil Quality Conditions

The soil samples were compared to the NYSDEC Part 375 UUSCOs and RRSCOs. Soil laboratory analytical results are summarized below:

- No VOCs were identified above the SCOs in the soil samples collected. PCE was detected at low levels in 15 of the 18 soil samples, below the UUSCOs and RRSCOs.
- The SVOCs benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and/or indeno[123-cd]pyrene were detected at concentrations above the RRSCOs in up to seven samples. All concentrations ranged from 0.6 mg/kg to 3 mg/kg.
- Total metals exceeding the UUSCOs included barium (max. of 684 mg/kg), lead (max. of 583 mg/kg), and mercury (max. of 0.56 mg/kg). Barium and lead were additionally detected at concentrations above the RRSCOs in up to four samples.

## Sub-Slab Soil Vapor Quality Conditions

The sub-slab soil vapor sample results were similar to the May 2019 Phase II, with comparable detections of petroleum- and chlorinated-related VOCs reported. Chlorinated VOCs, including carbon tetrachloride, PCE, and TCE, were detected in SV-07 at concentrations up to 4,400  $\mu$ g/m<sup>3</sup>.

The concentrations of SVOCs and metals above RRSCOs were believed to be related to the presence of historic fill at the Site. The elevated concentrations of chlorinated solvents in soil vapor were believed to be related to the Site's historical manufacturing usage.

# BCP Application, 22-60 46<sup>th</sup> Street, Queens York, AKRF, Inc., May 2020

AKRF prepared a BCP Application for the Site in May 2020, which discussed soil, groundwater, and soil vapor contamination associated with the Site's former uses. The Site was entered into the BCP in September 2020 (BCA Index No. C241244-09-20).

Citizen Participation Plan (CPP), 22-60 46<sup>th</sup> Street, Queens York, AKRF Inc., October 2020

AKRF prepared a CPP for the Site in October 2020, which provided details on major issues of public concern related to the Site and surrounding areas. The CPP provided this information to the public and encouraged citizen involvement in decisions being made about the Site regarding their health.

# <u>Remedial Investigation Work Plan (RIWP), 22-60 46<sup>th</sup> Street, Queens York, AKRF Inc., November</u> 2020 and RIWP Addendum dated May 2021

AKRF prepared and submitted a RIWP for the Site concurrently with the BCP Application. The RIWP was finalized and approved by NYSDEC in November 2020. The RIWP described the procedures to be used to define the nature and extent of contamination at the Site. A remedial investigation was completed at the Site in December 2020 and the draft remedial investigation report (RIR) was submitted in February 2021. In April 2021, NYSDEC requested the collection of additional soil and groundwater samples as part of the RI to further investigate the source of tetrachloroethylene (PCE) in soil vapor identified. A RIWP Addendum describing the procedures to be used to attempt to identify the potential on-site source of PCE was prepared and submitted to NYSDEC for review and approval.

## Remedial Investigation Report (RIR), 22-60 46<sup>th</sup> Street, Queens York, AKRF Inc., October 2021

The RI was conducted between December 7 and 22, 2020 and between May 5 and 21, 2021, and included the following scope of work:

- The performance of a geophysical survey across accessible portions of the Site and utility markouts.
- The advancement of 15 soil borings with continuous soil sampling and laboratory analysis of 44 soil samples.
- The installation of 11 permanent, 2-inch-diameter groundwater monitoring wells with the collection and laboratory analysis of 11 groundwater samples.
- The installation of 7 temporary sub-slab soil vapor probes and the collection and laboratory analysis of 7 sub-slab soil vapor samples and 3 indoor air samples (co-located with 3 temporary sub-slab soil vapor samples).
- The performance of two groundwater monitoring well elevation and location surveys of the newly installed monitoring wells.
- Summary of Hydrogeological Findings
- The following geologic and hydrogeologic conditions were noted during the RI:
- Based on December 2020 and May 2021 surveys of the Site by Fehringer Surveying, PC, the Site lies at an elevation of 53.70 to 54.38 feet above the North American Vertical Datum of 1988 (NAVD88).

- The stratigraphy of the Site generally consisted of fill material extending from surface grade to approximately 5 to 15 feet below grade comprising sand, silt, and gravel with varying amounts of concrete and brick. The historic fill was underlain by apparent native sand, gravel, and silt to boring termination depths (up to 50 feet below grade). Bedrock was not encountered during the RI.
- Groundwater beneath the Site ranges from elevation 19.79 to elevation 21.07 (NAVD88), or 32.92 to 33.73 feet below grade across the Site.
- Based on the well elevation survey, groundwater flows in a generally northerly direction beneath the Site.

## Summary of Environmental Findings

# <u>Soil</u>

Forty-four soil samples were collected for laboratory analysis of volatile organic compounds (VOCs) by United States Environmental Protection Agency (EPA) Method 8260, semivolatile organic compounds (SVOCs) by EPA Method 8270, pesticides by EPA Method 8081B, polychlorinated biphenyls (PCBs) by EPA Method 8082, target analyte list (TAL) metals by EPA Method 6000/7000 series, hexavalent chromium by EPA Method 7196A, NYSDEC list of 21 per- and polyfluoroalkyl substances (PFAS) by EPA Modified Method 537, and/or 1,4-dioxane by EPA Method 8270D Selective Ion Monitoring (SIM). Soil sample analytical results were compared to the 6 New York Codes, Rules, and Regulations (NYCRR) Unrestricted Use Soil Cleanup Objectives (UUSCOs) and Restricted Residential Soil Cleanup Objectives (RRSCOs), the applicable Soil Cleanup Objectives (SCOs) for the proposed future use of the Site.

No VOCs were detected above UUSCOs and/or RRSCOs. Acetone was detected in nine samples at concentrations up to 0.028 milligrams per kilogram (mg/kg) in sample RI-SB-01\_33-35\_20201208, below the UUSCO of 0.05 mg/kg and RRSCO of 100 mg/kg. Tetrachloroethylene (PCE) was detected in 35 samples at concentrations up to 0.055 mg/kg. Four SVOCs [benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, and indeno(1,2,3-c,d)pyrene] were detected at concentrations up to 1.5 mg/kg in one sample, above their respective UUSCOs and RRSCOs. Total PCBs were not detected above laboratory reporting limits in any soil samples. Two pesticides (P,P'-DDE and P,P'-DDT) were detected at concentrations above their respective UUSCOs, but below their respective RRSCOs in one or more soil samples. Three metals (lead, mercury, and zinc) were detected at concentrations ranging from 0.29 mg/kg to 385 mg/kg, above their respective UUSCOs, but below their respective RRSCOs, in one or more soil samples. Lead was additionally detected above its RRSCO of 400 mg/kg in one sample and at a concentration of 605 mg/kg.

Perfluorooctanesulfonic acid (PFOS) was detected at concentrations below both the NYSDEC Unrestricted Use Guidance Value of 0.88 parts per billion (ppb) and the Restricted Residential Use Guidance Value of 44 ppb. Perfluorooctanoic acid (PFOA) was detected at a concentration of 0.89 ppb in one sample above the Unrestricted Use Guidance Value of 0.66 ppb, but below the Restricted Residential Use Guidance Value of 33 ppb. Total PFAS concentrations ranged from 0.016 ppb to 1.443  $\mu$ g/kg.

## **Groundwater**

Five groundwater samples were collected for laboratory analysis of VOCs by EPA Method 8260, SVOCs by EPA Method 8270, pesticides by EPA Method 8081B and 8151A, PCBs

by EPA Method 8082, total (unfiltered) and dissolved (filtered) TAL metals by EPA Method 6000/7000 series, PFAS by EPA Modified Method 537, and 1,4-dioxane by EPA Method 8270 SIM. Six additional groundwater samples were collected for laboratory analysis of chlorinated VOCs (CVOCs) by EPA Method 8260. Groundwater sample analytical results for VOCs, SVOCs, pesticides, PCBs, and TAL metals were conservatively compared to the NYSDEC Ambient Water Quality Standards and Guidance Values (AWQSGVs). Groundwater analytical results for the 21 compound list of PFAS were compared to the NYSDEC January 2021 guidance value of 10 parts per trillion (ppt). These standards are for drinking water, although groundwater in this portion of Queens is not used as a potable source. Although there is currently no established guidance value or standard for 1,4-dioxane in groundwater, concentrations of 1,4-dioxane were compared to the August 2020 New York State (NYS) Maximum Contaminant Level (MCL) screening level.

Two VOCs (chloroform and PCE) were detected in the groundwater samples at concentrations above their respective AWQSGVs. SVOCs were not detected above laboratory reporting limits in any of the groundwater samples. The pesticide dieldrin was detected above the AWQSGV of 0.004 micrograms per liter ( $\mu$ g/L) in one groundwater sample at a concentration of 0.014  $\mu$ g/L. Pesticides were not detected above laboratory reporting limits in the remaining four groundwater samples. PCBs were not detected above laboratory reporting limits in any of the groundwater samples. Iron, magnesium, and sodium were detected above their respective AWQSGVs in each of the five unfiltered groundwater samples, and magnesium and sodium were detected above the AWQSGVs in each of the five filtered groundwater samples.

PFOS was detected above the NYSDEC January 2021 guidance value of 10 ppt in three of the five groundwater samples at concentrations up to 15.7 ppt. PFOA was detected in each of the five groundwater samples (plus the blind duplicate) at concentrations up to 34.1 ppt, above the guidance value of 10 ppt. No individual PFAS compounds were detected at concentrations above 100 ppt. Total PFAS concentrations were below 500 ppt in each groundwater sample. 1,4-Dioxane was not detected above laboratory reporting limits in the groundwater samples.

## Soil Vapor and Indoor Air

Seven sub-slab soil vapor samples, three with co-located indoor air samples, were collected from the seven temporary sub-slab soil vapor points located across the Site, as well as one ambient air sample. Although there are currently no regulatory or published guidance values for VOCs in soil vapor, soil vapor data was used to assess the potential for exposure to receptors and to help define the nature and extent of contamination at the Site.

The sub-slab soil vapor samples were analyzed for VOCs by EPA Method TO-15. Thirtysix of the 71 VOCs analyzed for were detected in the soil vapor samples. Solvent-related VOCs [including 1,1,1-trichloroethane [1,1,1-TCA), carbon tetrachloride, chlorodifluoromethane, chloromethane, dichlorodifluoromethane, PCE, tetrahydrofuran, trans-1,2-dichloroethene, and trichloroethylene (TCE)] were detected in the sub-slab soil vapor samples at individual concentrations up to 1,200 micrograms per cubic meter (µg/m<sup>3</sup>) from a diluted analysis (PCE in sample RI-SV-07 20201209). Other VOCs, including compounds typically associated with petroleum [such as 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,3-butadiene, 1,3-dichlorobenzene, 2,2,4-trimethylpentane, 2hexanone, 4-ethyltoluene, butane, cymene, isopropanol, isopropylbenzene, methyl ethyl ketone (MEK), n-butylbenzene, n-heptane, n-hexane, n-propylbenzene, trimethylbenzene, and benzene, toluene, ethylbenzene, and m,p and o-xylenes (collectively referred to as BTEX)], were detected in the sub-slab soil vapor samples at individual concentrations up to  $320 \ \mu g/m^3$  from a diluted analysis (toluene in sample RI-SV-06\_20201209).

The indoor air samples were analyzed for VOCs by EPA Method TO-15. Twenty-eight of the 71 VOCs analyzed for were detected in one or more samples. Nineteen VOCs were detected in the ambient air sample (RI-AA-01 20201209). Solvent-related VOCs (including 1,1,2-trichloro-1,2,2-trifluoroethane, acetone, carbon disulfide, carbon tetrachloride, chlorodifluoromethane, chloromethane, dichlorodifluoromethane, and PCE) were detected in the indoor air samples at individual concentrations up to 15  $\mu$ g/m<sup>3</sup> (acetone in sample RI-IA-02 20201222). Other VOCs, including compounds typically associated with petroleum (such as 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 1,3butadiene. 2,2,4-trimethypentane, 4-ethyltoluene, cvclohexane. isopropanol, isopropylbenzene, MEK, n-butylbenzene, n-heptane, n-hexane, n-propylbenzene, and BTEX), were detected in the indoor air samples at individual concentrations up to 100  $\mu$ g/m<sup>3</sup> (m,p-xylenes in sample RI-IA-03 20201209).

Sub-slab soil vapor and co-located indoor air sample analytical results were compared to the Soil Vapor/Indoor Air Matrices included in the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006, updated May 2017. The New York State Department of Health (NYSDOH) developed decision matrices for eight compounds [1,1,1-TCA, 1,1-dichloroethene (1,1-DCE), carbon tetrachloride, cis-1,2-dichloroethylene (cis-1,2-DCE), methylene chloride, PCE, TCE, and vinyl chloride]. Based on an evaluation of the co-located soil vapor and indoor air samples using the applicable matrix for each of these compounds, the recommendation is "no further action." PCE was detected at a concentration of 1,200  $\mu$ g/m<sup>3</sup> in sample RI-SV-07\_20201209, above the NYSDOH threshold for mitigation of 1,000  $\mu$ g/m<sup>3</sup>, regardless of the indoor air concentration.

# Remedial Action Work Plan (RAWP), 22-60 46th Street, Queens, NY, AKRF Inc., January 2022

AKRF prepared a RAWP in January 2022, which outlined the remedial activities and cleanup objectives for the Site. The RAWP proposed excavation and removal of soil/fill to a maximum depth of 15 feet below grade to achieve a Track 2 Cleanup; excavation and removal of three known and any unknown underground storage tanks (USTs) and associated piping encountered during the excavation in accordance with applicable federal, state, and local laws and regulations, as defined by 6 NYCRR Part 375-6.8; and performance of an off-site soil vapor intrusion (SVI) investigation to determine off-site impacts and potential remedial requirements. The remedy also included the installation of ICs/ECs including the installation of an active sub-slab depressurization system (SSDS), a soil vapor extraction (SVE) system, and a groundwater treatment program into the proposed building design as part of construction.

# Off-Site Soil Vapor Intrusion (OSVI) Work Plan (OSVIWP), 22-60 46<sup>th</sup> Street, Queens, AKRF Inc., February 2022

AKRF prepared an *OSVIWP* in February 2022, which described the procedures to be used to collect soil vapor and indoor air data at neighboring, off-site properties. The data compiled from the OSVI was be used to prepare an Off-Site Soil Vapor Intrusion Report (OSVIR).

# Remedy Modification Request, 22-60 46<sup>th</sup> Street, Queens, AKRF Inc., May 2022

AKRF prepared a Remedy Modification Request (RMR) in May 2022 based on the findings of treatability study and an in-situ chemical oxidation (ISCO) pilot test completed at the Site to evaluate the effectiveness of reducing chlorinated VOCs (CVOCs) [primarily tetrachloroethylene

(PCE)] in groundwater, and the findings of a pilot test conducted as part of the SVE system design. Based on the findings, AKRF, on behalf of the Applicant, formally requested the following modifications to the remedy:

- Full-scale treatment of the previously-identified, approximately 20,000-square foot area is no longer necessary and should be modified and limited to completion of one round of ISCO around RI-MW-06 (in addition to already completed ISCO treatment at MW-07).
- As the source of on-site contamination appeared to be soil vapor (as opposed to groundwater as previously indicated in the RAWP and Decision Document), and the elevated concentrations of PCE in soil vapor that would remain post-remedial excavation appear to be limited to the western-central, and southwestern portions of the Site, it is recommended that the Full Scale SVE system be installed biased towards these areas, as opposed to only around the Site perimeter. With these adjustments, the Full Scale SVE system would treat the elevated concentrations of PCE in soil vapor, while still preventing the off-site migration of contaminated soil vapor (if any).

# Off-Site Soil Vapor Intrusion Report (OSVIR), 22-60 46th Street, Queens, AKRF Inc., July 2022

AKRF conducted an off-site SVI and the findings were reported in the OSVIR dated July 2022. The field work associated with the OSVI investigation was completed between February 14 and February 16, 2022, and March 16 and March 18, 2022. The OSVI investigation included: the installation of four temporary sub-slab soil vapor sampling points and four temporary soil vapor sampling points; and the collection of sub-slab soil vapor, soil vapor, indoor air, and ambient (outdoor) air samples for field screening and laboratory analysis.

Based on the findings of the OSVI investigation, AKRF concluded the following:

- Laboratory analytical results for the sub-slab soil vapor and indoor air samples identified up to 38 VOCs, including chlorinated solvents and petroleum related compounds in the samples collected from off-site properties. Of the compounds with established NYSDOH Sub-Slab Soil Vapor/Indoor Air matrices values, matrices for PCE, methylene chloride and carbon tetrachloride were relevant. When comparing the sub-slab soil vapor and indoor air concentrations to the applicable matrix for PCE and carbon tetrachloride the results were "no further action". When comparing the sub-slab soil vapor and indoor air concentrations to the applicable matrix for methylene chloride the results were "identify source(s) and resample or mitigate" for two properties (22-68 46th Street and 45-03 23rd Avenue). Methylene chloride was detected at a concentration of 2.47  $\mu$ g/m<sup>3</sup> in the sub-slab soil vapor sample and at a concentration of 74.3 µg/m<sup>3</sup> in the co-located indoor air sample collected from the 22-68 46<sup>th</sup> Street property; and at a concentration of 7.2  $\mu$ g/m<sup>3</sup> in the sub-slab soil vapor sample and at a concentration of 12 µg/m<sup>3</sup> in the co-located indoor air sample collected from the 45-03 23<sup>rd</sup> Avenue property. Methylene chloride concentrations in the indoor air samples were orders of magnitude higher than the sub-slab soil vapor sample concentrations. Methylene chloride is used in a variety of commercially available products (paint strippers and adhesives) and was also detected in the ambient air samples. Based on the findings, elevated concentrations of methylene chloride in indoor air are likely related to building conditions and are not attributed to any sub-slab soil vapor source or a vapor intrusion condition.
- Eighteen VOCs, including solvents and petroleum-related compounds were detected in one or more of the soil vapor samples collected from the 45<sup>th</sup> Street sidewalk at concentrations ranging from 3.86 µg/m<sup>3</sup> to 1,570 µg/m<sup>3</sup> (PCE at SV-45TH-02\_20220316). PCE was detected in samples SV-45TH-01\_20220316 and SV-45TH-02\_20220316 at a concentration of 854 µg/m<sup>3</sup> and 1,570 µg/m<sup>3</sup>, respectively. TCE was detected in samples SV-45TH-01\_20220316 and SV-

45TH-02\_20220316 at a concentration of 16.9  $\mu$ g/m<sup>3</sup> and 10.5  $\mu$ g/m<sup>3</sup>, respectively. The compound 1,1,1-trichloroethane (TCA) was detected in samples SV-45TH-01\_20220316 and SV-45TH-02\_20220316 at a concentration of 34.1  $\mu$ g/m<sup>3</sup> and 11.7  $\mu$ g/m<sup>3</sup>, respectively.

Fifteen VOCs, including solvents and petroleum-related compounds were detected in one or more of the soil vapor samples collected from the 46<sup>th</sup> Street sidewalk at concentrations ranging from 4.61 μg/m<sup>3</sup> to 2,410 μg/m<sup>3</sup> (trichlorofluoromethane at SV-45TH-02\_20220316). PCE was detected in samples SV-46TH-01\_20220316 and SV-46TH-02\_20220316 at a concentration of 277 μg/m<sup>3</sup> and 86.1 μg/m<sup>3</sup>, respectively. TCA was detected in samples SV-46TH-02\_20220316 at a concentration of 420 μg/m<sup>3</sup> and 64.9 μg/m<sup>3</sup>, respectively.

# 2.5 Remedial Action Objectives

The BCP Remedial Action Objectives (RAOs) established for the Site through the remedy selection process stated in 6 NYCRR Part 375, as listed in the DD dated January 2022, are as follows:

## Groundwater

# RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

# **RAOs for Environmental Protection**

- Restore groundwater aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Remove the source of groundwater contamination.

## Soil

## RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

## RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

## Soil Vapor

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a Site.

## 2.6 Summary of Remedial Actions

Remedial actions were performed at the Site in accordance with the NYSDEC-approved January 2022 RAWP, January 2022 DD, May 2022 RMR, and all applicable federal, state, and local rules and regulations. Remedial activities during the BCP remedy phase began at the Site in March 2022 and were completed in September 2022.

The following is a summary of the Remedial Actions performed at the Site under the BCP:

# 2.6.1 Soil Excavation and Off-Site Disposal

On-site soils that exceeded the RRSCOs, as defined by 6 NYCRR Part 375-6.8, were excavated and transported off-site for proper disposal at approved facilities (refer to Figure 4). A total of 27,940.25 tons of soil were excavated and disposed off-site. During all excavation and ground intrusive activities, AKRF conducted real-time air monitoring for particulates and VOCs, in accordance with a NYSDEC-approved Community Air Monitoring Plan (CAMP), including a Special Requirements CAMP when within 20 feet of any potential exposures.

Post-excavation soil endpoint samples were collected across the Site in accordance with the RAWP to evaluate performance of the remedy and the sample results met the Track 2 RRSCOs. The endpoint sample analytical results are included in Attached Tables 2 through 7. Endpoint sampling locations are shown on Figure 4.

# 2.6.2 Underground Storage Tank (UST) Removal

During soil excavation activities, four USTs including two 1,080-gallon No. 2 fuel oil USTs, one 2,000-gallon #2 fuel oil UST, and one 6,800-gallon No. 4 fuel oil UST were encountered and removed from the Site. The USTs were properly cleaned, removed, and disposed of off-site by Boro Waste Oil LLC of Staten Island, New York (a licensed tank remediation contractor). The USTs were registered in July 2022 and subsequently closed with the NYSDEC PBS Database under Facility ID 2-613355. The PBS registration is provided as Appendix C.

# 2.6.3 In-Situ Chemical Oxidation (ISCO)

As part of the remedial action, in-situ chemical oxidation (ISCO) was completed at two targeted locations with the highest concentrations of PCE identified in groundwater. AKRF retained In-Situ Oxidative Technologies, Inc. (ISOTEC) to conduct an ISCO bench-scale treatability study to identify reagent type and dosage to treat low concentrations of PCE identified in groundwater. Following the Bench Scale study, ISOTEC designed and completed an ISCO treatment targeting an approximately 1,200-square foot area each around monitoring well RI-MW-06 and RI-MW-07 where the highest concentrations of PCE were identified during the remedial investigation.

# 2.6.4 Import

# 2.5.4.1 Stone/Gravel Import

A total of 2,116.13 tons of dense grade aggregate (DGA) were imported to backfill behind subgrade. In addition, 1,084.15 tons of gas permeable aggregate stone (GPA) were imported as part of the SSDS and installed below the concrete slab. Import approvals are provided in Appendix D.

## 2.6.5 Active Sub-Slab Depressurization System (SSDS)

Installation of a vapor barrier/waterproofing membrane and an active SSDS was completed in September 2022 as a mitigation measure against potential soil vapors accumulating within the building. The SSDS layout plan is shown on Figure 5. A vapor barrier, a construction element, was installed beneath the foundation slab (75-mil Aussie Skin<sup>®</sup> 550G) and behind subgrade walls (60-mil Aussie Mate<sup>®</sup> 580-AL).

# 2.6.6 Soil Vapor Extraction (SVE) System

An SVE system was installed to treat residual elevated concentrations of PCE in soil vapor and prevent the off-site migration of contaminated soil vapor (if any). The SVE plan is shown on Figure 6. As-Builts of the SVE system are enclosed as Appendix G.

## 2.7 Remaining Contamination

#### 2.7.1 Soil

Soil quality was characterized during previous investigations prior to entering the BCP, and during the RI investigation conducted as part of the BCP. All soil exceeding the Track 2 RRSCOs within the upper 15 feet was excavated and removed from the Site in accordance with the RAWP and the DD. Soil endpoint samples were collected from the base of the excavation and the results are provided in Attached Tables 2 through 7. All endpoint sample results were below the RRSCOs.

## 2.7.2 Groundwater

Groundwater quality was characterized during previous investigations prior to entering the BCP and during the RI conducted as part of the BCP. The groundwater beneath the Site was found to have concentrations of CVOCs (specifically PCE) above the AWQSGVs and groundwater treatment was included as a component of the Decision Document. A groundwater treatment program was completed at the Site to treat elevated concentrations of PCE (see Figure 7); however, low-level concentrations exceeding the AWQSGVs still remain. The pre-remediation and post-remediation concentrations of CVOCs are provided in Attached Tables 8 and 9, respectively. Residual groundwater PCE concentrations are shown on Figure 7.

Groundwater use at the Site is also subject to the ICs documented within the Environmental Easement and is restricted for use as a source of potable or process water without necessary water quality treatment as determined by NYSDOH.

## 2.7.3 Sub-Slab Soil Vapor

Based on the findings of the RI and additional soil vapor testing completed as part of pilot testing, contaminated soil vapor remains at the Site. The contaminated soil vapor will be treated by the SVE system and the vapor mitigation system, which consists of a vapor barrier membrane and the active SSDS installed below the entire building footprint (see Figures 5 and 6 for details) will prevent vapor intrusion into the new building.

#### 2.8 Management of Remaining Contamination

The remaining contamination was addressed using the NYSDEC-approved Track 2 Restricted Residential Use cleanup remedy, as described in the RAWP, DD, and RMR which included the utilization of ICs and ECs to isolate the remaining contamination, prevent exposure, and be protective of human health and the environment. The IC is in the form of an EE for the Site that requires periodic certification, allows the use and development of the Site for restricted residential use, restricts the use of groundwater as a source of potable or process water without necessary water quality treatment as determined by NYSDOH, and requires compliance with this Department-approved SMP.

The following Section 3.0 (Institutional and Engineering Control Plan) includes descriptions and plans for the ECs, and the requirements for monitoring, inspection, operation and maintenance, and reporting to confirm that remediation goal continue to be met.

# 3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

# 3.1 General

Since remaining contaminated soil vapor and groundwater exists at the Site, and SSDS and SVE were installed, ICs and ECs are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site. The IC/EC Plan is one component of the SMP and is subject to revision by NYSDEC.

This plan provides:

- A description of all ICs/ECs on the Site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the EE;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of ICs/ECs, such as the implementation of the Foundation Management Plan (FMP) (provided in Appendix E) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the ICs/ECs required by the Site remedy, as determined by NYSDEC.

#### **3.2** Institutional Controls

A series of ICs is required by the RAWP to: (1) implement, maintain, and monitor EC systems; (2) prevent future exposure to remaining contamination; and (3) limit the use and development of the Site to Restricted Residential uses only. Adherence to these ICs on the Site is required by the EE and will be implemented under this SMP. ICs identified in the EE may not be discontinued without an amendment to or extinguishment of the EE. The IC boundaries are shown on Figure 2.

The ICs are as follows:

- The Site may be used only for restricted residential, commercial or institutional uses;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs on the Site must be inspected and certified at a frequency and in a manner defined in this SMP;
- The use of groundwater underlying the Site is prohibited without necessary water quality treatment as determined by NYSDOH or the New York City Department of Health and Mental Hygiene (NYCDOHMH) to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from NYSDEC;
- Any soil vapor or groundwater public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;

- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the EE;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on Figure 2, and any potential impacts that are identified must be monitored or mitigated; and
- In-ground vegetable gardens and farming on the Site are prohibited.

# **3.3 Engineering Controls**

# 3.3.1 SSDS

An active SSDS will be operated to mitigate the potential for soil vapor intrusion into the proposed new buildings. The SSDS will induce a negative pressure (i.e., vacuum) beneath the proposed building slab. The underground elements of the SSDS installed under the new building slab include the following components:

- Five SSDS branches consisting of 0.02-inch slotted and solid, 4-inch diameter Schedule 40 polyvinyl chloride (PVC) pipe lengths were installed beneath the building slab with riser legs penetrating the building slab and stubbed out approximately XX inches above the top of slab;
- Communication and pipe sleeves through concrete foundation elements;
- A minimum 6-inch thick gas-permeable aggregate stratum underlain by 6-mil poly sheeting beneath the entire SSDS treatment area;
- Six vacuum monitoring points (VMPs) installed beneath the building slab; and
- A vapor barrier (AVM Aussie Skin 550G) beneath the full extent of the building slab.

During construction of the new building superstructure, the following aboveground elements will be installed to complete the SSDS installation:

- A pipe manifold, which combines the PVC riser legs into a single 6-inch cast iron riser pipe, will extend to the roof of the building following building completion;
- A roof-mounted blower with a shut-off alarm connected to a local alarm panel;
- One 6-inch diameter galvanized steel rooftop exhaust stack fitted with a rain cap, terminating at least 7 feet above the finished roof;
- Accessories, including: cleanouts, sample ports, vacuum indicators/pressure gauges, flow meters, butterfly valves, and differential pressure switches; and
- A control panel equipped with a telemetry system to notify select personnel of alarm conditions.

The SSDS complies with the requirements stated in Section 9.0 of the RAWP. The location and components of the SSDS are shown on Figure 5. As-built drawings for the underground components of the SSDS are included in Appendix G.

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (See Section 5.0 of this SMP) and procedures for monitoring the SSDS are included in the Monitoring Plan (see Section 4.0 of this SMP). The Monitoring Plan also addresses severe condition inspections in the event that a severe condition occurs, which may affect controls at the Site.

# 3.3.2 SVE System

The treatment of residual contaminated soil vapor at the Site will be performed through operation of an SVE system. The SVE system, in combination with the SSDS, also prevents any soil vapor intrusion and off-site migration of contaminated soil vapor. The SVE system installed at the Site is comprised of:

- Six 4-inch diameter PVC SVE wells, which target the vadose zone treatment interval.
- One 15-horsepower SVE blower operating at approximately 50 inH<sub>2</sub>O and 500 standard cubic feet per minute (SCFM);
- One 120-gallon moisture separator tank with high-level alarm, transfer pump, and 55-gallon auxiliary drum with high-level alarm;
- One inline particulate filter;
- One dilution line with particulate filter;
- Two Tetrasolv VR-200 vapor-phase granulated activated carbon (GAC) vessels (piped in series, with influent, intermediate, and effluent sample ports).
- System alarms including one high temperature sensor, and one low vacuum sensor;
- Individual SVE line, and dilution line accessories, including vacuum gauges, pitot tube/differential pressure gauge assemblies for air flow rate measurements, throttling valves, and sampling ports (seven each);
- Additional accessories including pre- and post-blower vacuum/pressure, and temperature gauges, and pre- and post-particulate filter vacuum gauges (one each);
- One control panel equipped with a telemetry system to notify select personnel of alarm conditions;
- One equipment shed (cargo box with electricity and ventilation) located on the southwestern portion of the Site; and
- One 6-inch diameter galvanized steel effluent stack.

The SVE system is designed to operate on a continual basis, 24 hours a day, 7 days a week, and 365 days a year except for periodic shut-downs for maintenance. The SVE system will operate until monitoring (as outlined in Section 4.0 of this SMP) and appropriate consultation with NYSDEC and NYSDOH confirm that the SVE wells and/or carbon treatment are no longer required to treat contaminated soil vapor left in place at the Site. The locations of the SVE wells and SVE system components are shown on Figure 6.

Procedures for operating and maintaining the SVE system are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). The Operation and Maintenance Plan also addresses severe condition inspections in the event that a severe condition, which may affect controls at the Site, occurs.

# 3.3.3 Contingent Groundwater Treatment

In the event that the SVE system is shut down and the CVOC concentrations in on-site groundwater monitoring wells are above the AWQSGVs, contingent groundwater treatment will be performed within the remaining wells around RI-MW-07 (RI-MW-07A, RI-MW-07E, and RI-MW-07W). To reduce CVOC concentrations, slow-release permanganate candles will be installed in the monitoring wells and/or an ISCO injection event will be conducted.

Prior to shutting down the SVE system, groundwater samples will be collected from the monitoring wells around RI-MW-07 and submitted to the laboratory for analysis of CVOCs by EPA Method 8260. If the CVOC concentrations are above the AWQSGVs, a description of the in-situ groundwater treatment program or candle installation and monitoring protocols will be submitted to NYSDEC for review and approval prior to implementation.

# 3.3.4 Criteria for Completion of Remediation/Termination of Remedial Systems

Generally, remedial processes are considered complete when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.6 of NYSDEC DER-10. Unless waived by the NYSDEC, confirmation samples of applicable environmental media are required before terminating any remedial actions at the site. Confirmation samples require Category B deliverables and a Data Usability Summary Report (DUSR).

As discussed below, the NYSDEC may approve termination of a groundwater monitoring program, operation of the SVE System, and/or operation of the SSDS. When a remedial party receives such an approval, the remedial party will decommission all related monitoring points, SVE wells, and/or groundwater monitoring wells, as appropriate. Decommissioning of groundwater monitoring wells will be in accordance with the NYSDEC CP-43 policy.

The remedial party will also conduct any needed Site restoration activities, such as asphalt patching and decommissioning treatment system equipment. In addition, the remedial party will conduct any necessary restoration of vegetation coverage, trees and wetlands, and will comply with NYSDEC and United States Army Corps of Engineers regulations and guidance. Also, the remedial party will ensure that no ongoing erosion is occurring on the Site.

## <u>Active SSDS</u>

The operation of the active SSDS will not be discontinued unless prior written approval is granted by the NYSDEC in consultation with NYSDOH, as they are anticipated to be permanent ECs. In the event that monitoring data collected under the Monitoring Plan (Section 4.0 of this SMP) indicates that the SSDS or one or more of its components is no longer required, a proposal to discontinue or reduce controls associated with the SSDS and/or the applicable components will be submitted by to the NYSDEC and NYSDOH for review and approval.

## <u>SVE System</u>

The SVE system will not be discontinued unless prior written approval is granted by the NYSDEC in consultation with NYSDOH. In the event that monitoring data collected under

the Monitoring Plan (Section 4.0 of this SMP) and/or the Operations and Maintenance Plan (Section 5.0 of this SMP) indicate that the SVE system operation is no longer warranted, a proposal to discontinue the connection and operation of the SVE system will be submitted by the property owner. Conditions that warrant discontinuing the SVE system include contaminant concentrations in soil vapor from the SVE system that: (1) reach levels that are consistently below NYSDOH Matrices Values, (2) have become asymptotic to a low level over an extended period of time as accepted by the NYSDEC, or (3) the NYSDEC has determined that the SVE system has reached the limit of its effectiveness. This assessment will be based in part on post-remediation contaminant levels in soil vapor collected from sampling ports installed on the SVE manifold legs. The SVE system will remain in place and operational until permission to discontinue or reduce controls associated with its use is granted in writing by the NYSDEC.

# 4.0 MONITORING AND SAMPLING PLAN

# 4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of NYSDEC. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the Site are included in the Quality Assurance Project Plan (QAPP) provided in Appendix H.

# 4.2 Purpose and Schedule

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, soil vapor, and indoor air and sub-slab soil vapor);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly NYSDEC AWQSGVs and NYSDOH Matrices Values;
- Assessing achievement of the remedial performance criteria;
- Evaluating Site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for SVE and SSDS components; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP. Monitoring of the performance of the remedy and overall reduction in contamination on-site will be conducted for the periods specified for each matrix listed in Table IV. The frequency thereafter will be determined in consultation with NYSDEC and based on reports submitted showing contaminant trends. Trends in contaminant levels in soil vapor in the affected areas will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in In-Text Table IV and outlined in detail in sections below.

| Monitoring<br>Program                                      | Frequency*                                                                            | Location                                                                                           | Matrix                                                                                            | Analysis                                                        |
|------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| SSDS Routine<br>Component<br>Inspection and<br>Maintenance | Quarterly for the first<br>12 months after COC,<br>annually afterwards                | SSDS riser pipes,<br>manifold, vapor<br>monitoring points, and<br>system components on<br>the roof | System Integrity and<br>Air Flow                                                                  | Visual<br>Inspection of<br>Conditions<br>and System<br>Readings |
| Soil Vapor<br>Extraction System                            | Monthly until<br>December 2023,<br>quarterly afterwards                               | Aboveground piping and<br>SVE equipment shed                                                       | SVE System<br>Mechanics                                                                           | Visual<br>Inspection                                            |
| SVE Extracted<br>Vapor Sampling                            | 6 months and 12<br>months after start-up,<br>annually, and as<br>necessary thereafter | SVE Equipment Shed                                                                                 | Composited SVE<br>system influent,<br>intermediate and<br>effluent collected at<br>carbon vessels | CVOCs by<br>TO-15                                               |
| Groundwater<br>Monitoring                                  | Four quarterly events<br>following the approval<br>of the SMP                         | Existing monitoring wells installed at the Site                                                    | Groundwater                                                                                       | CVOCs by<br>EPA 8260                                            |
| Site-Wide<br>Inspection                                    | Annually                                                                              | Site-Wide                                                                                          | Visual Inspection                                                                                 | N/A                                                             |

 Table IV

 Monitoring/Inspection Schedule

Notes:

\*The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH. CVOCs – Chlorinated Volatile Organic Compounds

# 4.3 Site-Wide Inspection

Site-wide inspections will be performed at a minimum of once per year. These periodic inspections must be conducted when the ground surface is visible (i.e., no snow cover). Site-wide inspections will be performed by a qualified environmental professional (QEP) as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. Modification to the frequency or duration of the inspections will require approval from the NYSDEC project manager. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed, as provided in Appendix P - Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General Site conditions at the time of the inspection;
- Whether stormwater management systems, such as basins and outfalls, are working as designed;
- The Site management activities being conducted, including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.

Inspections of all remedial components installed at the Site will be conducted. A comprehensive Site-wide inspection will be conducted and documented according to the SMP schedule, regardless

of the frequency of the Periodic Review Report (PRR). The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If Site records are complete and up to date.

Reporting requirements are outlined in Section 7 of this SMP.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the Site, verbal notice to the NYSDEC project manager must be given by noon of the following day. In addition, an inspection of the Site will be conducted within 5 days of the event to verify the effectiveness of the ICs/ECs implemented at the Site by a QEP, as defined in 6 NYCRR Part 375. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public

## 4.4 SSDS Monitoring

Monitoring of the active SSDS will be performed on a routine basis, as identified in the Monitoring/Inspection Schedule included as Table V. The monitoring of remedial systems must be conducted by a Qualified Environmental Professional (QEP) as defined in 6 NYCRR Part 375, a P.E. who is licensed and registered in NYS, or a qualified person who directly reports to a P.E. who is licensed and registered in New York State (NYS). Modifications to the frequency or related monitoring requirements will require approval from the NYSDEC Project Manager. An inspection of the complete system and monitoring of system operational parameters will be conducted on a quarterly basis for the first year and then annually thereafter. Unscheduled inspections and/or monitoring may take place when a suspected failure of the SSDS has been reported or a significant event as defined in Section 5.4.5 has occurred that is deemed likely to affect the operation of the system. SSDS components to be monitored are included in Table V, below.

The inspection/monitoring frequency may be modified based on field screening with the approval of NYSDEC. This SMP will be modified to reflect changes in monitoring and sampling plans approved by NYSDEC.

SSDS components to be monitored are summarized below.

| 6 1                              |                             |                                                  |                            |  |  |
|----------------------------------|-----------------------------|--------------------------------------------------|----------------------------|--|--|
| SSDS Component                   | <b>Monitoring Parameter</b> | <b>Operating Range</b>                           | <b>Monitoring Schedule</b> |  |  |
| Vapor Monitoring Points          | Induced Vacuum Reading      | a minimum of 0.005<br>inches of H <sub>2</sub> O | Quarterly (first year),    |  |  |
| Riser Legs                       | Flow Rate                   | 40 to 100 CFM                                    | annually (after first      |  |  |
| Riser Legs                       | Induced Vacuum Reading      | $0.5$ to 5 inches of $H_2O$                      | year)                      |  |  |
| Aboveground System<br>Components | Visual-Intactness           | NA                                               |                            |  |  |

Table VSSDS Monitoring Requirements and Schedule

# 4.5 Groundwater Monitoring

A network of monitoring wells was installed as part of the RI to monitor groundwater conditions at the Site. In addition, two off-site monitoring wells were installed during the remedial action to monitor down-gradient groundwater conditions. The network of on-Site and off-Site wells was installed based on the following criteria:

- Contaminant source area location including soil vapor and groundwater analytical results documented over the course of the RI;
- A generally northeasterly groundwater flow direction; and
- The presence of physical constraints that influenced groundwater flow, including subsurface utilities, building structural elements, and variable fill conditions.

A figure showing the monitoring well locations is provided as Figure 7. The monitoring wells are located within the building footprint and on adjacent sidewalks. PCE was detected in groundwater samples at concentrations above the AWQSGVs in multiple samples collected during the RI and the remedial action.

Four quarterly groundwater sampling events will be completed following approval of this SMP. A groundwater monitoring program schedule is provided below:

| Well ID   | Well Location | Monitoring Frequency | Analytical<br>Parameter(s) |
|-----------|---------------|----------------------|----------------------------|
| RI-MW-03  | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-05A | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-06A | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-07A | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-08A | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-09A | On-Site       | Quarterly            | CVOCs                      |
| RI-MW-10  | On-Site       | Quarterly            | CVOCs                      |

Table VIGroundwater Monitoring Schedule

The sampling will be performed to assess CVOC concentrations on a quarterly basis, as outlined in the table above. The sampling event described above will be reported in a quarterly monitoring report per the requirements of Section 7.0 of this SMP. The sampling will be conducted in accordance with the Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) (Appendix F) and the Quality Assurance Project Plan (QAPP) (Appendix H).

## 4.6 Soil Vapor Extraction System Monitoring and Sampling

Six SVE wells were installed in the vadose zone to address the soil vapor contamination and to prevent the off-site migration of contaminant soil vapor (if any). After the initial month of operation, the SVE system will be inspected at a minimum of once a month for a period of 12 months, and quarterly thereafter to ensure proper operation. Monthly/quarterly checks will consist of individual SVE line gauge readings, blower and carbon inspections, and alarm checks. In addition, extracted vapor samples will be collected at system start-up and during the quarterly inspections, as described in Section 4.7.1, to monitor contaminant removal rates and ensure proper treatment of SVE System effluent. The SVE system monitoring requirements and schedule is summarized in Table VII below.

| SVE System Component             | <b>Monitoring Parameter</b>     | <b>Operating Range</b>         | <b>Monitoring Schedule</b>                               |
|----------------------------------|---------------------------------|--------------------------------|----------------------------------------------------------|
| Soil Vapor Monitoring<br>Points  | Induced Vacuum Reading          | $\geq$ 0.01 inH <sub>2</sub> O | Monthly (first year),<br>quarterly (after first<br>year) |
| Individual SVE Lines             | Flow Rate and Applied<br>Vacuum | Varies - see Log Sheets        | Monthly (first year),<br>quarterly (after first<br>year) |
| SVE Blower Inlet<br>Parameters   | Temperature and Pressure        | Varies - see Log Sheets        | Monthly (first year),<br>quarterly (after first<br>year) |
| Aboveground System<br>Components | Visual Intactness               | NA                             | Monthly (first year),<br>quarterly (after first<br>year) |
| Carbon System Vapor              | VOCs                            | NA                             | Semi-Annually                                            |

 Table VII

 SVE System Monitoring Requirements and Schedule

The SVE system will continue to be maintained and operational until permission to discontinue operation is granted in writing by NYSDEC and NYSDOH. A proposal to discontinue the SVE system may be submitted by the Owner based on SVE system operation history, and effluent vapor sample data.

# 4.6.1 Confirmatory Soil Vapor Sampling

Confirmatory extracted vapor sampling will be conducted following startup to reassess VOC emissions calculations, and to provide baseline VOC concentrations at the onset of SVE system operation. Influent, intermediate, and effluent vapor samples will be collected using 1-Liter Tedlar<sup>®</sup> bags in accordance with the QAPP and analyzed for CVOCs by EPA Method TO-15 by a NYSDOH-ELAP-certified laboratory.

All effluent vapor VOC concentrations will be compared to the NYSDEC Division of Air Resources (DAR-1) publication Air Guide-1 (AG-1): Annual Guideline Concentrations (AGC)/Short-term Guideline Concentrations (SGC) Tables, updated October 18, 2010. The analysis will be performed using NYSDEC DAR-1 Air Guide-1 Policy (Policy DAR-1: Guidelines for the Control of Toxic Ambient Air Contaminants, November 12, 1997), which simulates the atmospheric processes that disperse pollutants from an emissions source to predict concentrations at selected downwind receptor locations. The procedures in the DAR-1 policy are used to model conservative, worst-case annual and short-term concentrations based on the laboratory analytical results and exhaust stack parameters to compare against the NYSDOH AGCs and SGCs.

# 4.6.2 Sampling Protocol

All sampling activities will be recorded by taking applicable notes in a field book and by collecting the readings listed on the sampling logs presented in Appendix I. Pertinent observations or Site conditions at the time of the sampling (e.g., monitoring point integrity, etc.) will also be noted on the sampling logs. One sampling log will be filled out for each monitoring point and will serve as the inspection form associated with the monitoring point network.

## 4.7 Monitoring Quality Assurance/Quality Control

All sampling and analyses will be performed in accordance with the requirements of the Quality QAPP prepared for the Site (Appendix H). Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
  - Samples will be collected into laboratory-supplied containers.
  - Sample holding times will be in accordance with the NYSDEC Analytical Services Protocol (ASP) requirements.
  - Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody;
- Calibration Procedures:
  - All field analytical equipment will be calibrated immediately prior to each day's use and will follow all calibration procedures and schedules as specified in EPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Preparation of a DUSR, which will present the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of precision, accuracy, representativeness, comparability, and completeness for each analytical method.
- Internal QC and Checks;
- QA Performance and System Audits;
- Preventative Maintenance Procedures and Schedules; and
- Corrective Action Measures.

## 5.0 OPERATION AND MAINTENANCE PLAN

#### 5.1 General

This Operation and Maintenance (O&M) Plan describes the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the Site, which include an SSDS and SVE System. This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the Site to operate and maintain the active SSDS and the SVE system;
- Includes an operation and maintenance contingency plan; and,
- Will be updated periodically to reflect changes in Site conditions or the manner in which the active SSDS and SVE are operated and maintained.

A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the Site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP.

## 5.2 Scope

Once completed, the SSDS and SVE system are designed to operate continuously, 24 hours a day, 7 days a week, 365 days a year, without any required adjustments or repairs beyond the routine maintenance items discussed in Sections 5.4.4 and 5.5.4, respectively. Manufacturers' specifications for each of the SSDS and SVE components (included in Appendices J and K, respectively) should be consulted prior to any repairs or adjustments that may become necessary. Regular system inspections, operation parameter documentation, and performance assessment guidelines are detailed in Sections 5.4 and 5.5 of this SMP.

#### 5.3 Remedial Systems Performance Criteria

An SSDS has been installed at the Site to prevent the potential for vapor intrusion into the building and will operate continuously in conjunction with the SVE wells to treat residual petroleumcontaminated soil left in place at the Site. The SVE wells began operating at the Site on September 30, 2022. Details pertaining to the performance monitoring of these ECs are outlined below.

#### 5.4 SSDS Operation and Maintenance

An active SSDS will be operated to mitigate the potential for soil vapor intrusion into the new building by applying negative pressure beneath the concrete slab, minimizing the potential for vapor intrusion. The major components of the SSDS include:

- Five slotted 4-inch PVC horizontal SSDS pipes embedded in a gas permeable aggregate layer (3/4-inch stone) above the soil vapor extraction area; and, six sub-slab vacuum monitoring points throughout the Site building;
- A system manifold connecting the five SSDS branches to an 8-inch diameter cast iron vertical riser leading to the building roof. Magnehelic gauges and flow sensors are installed on the pipe manifold to monitor system performance.
- One appropriately-sized 1.5 HP blower connected to the vertical riser at the building roof to vent soil vapor with a variable-frequency drive (VFD) to throttle blower operation to acceptable conditions;

- A control panel equipped with a remote alarm system to notify on-site personnel of alarm conditions; and
- An exhaust stack consisting of an 8-inch galvanized steel pipe terminating a minimum of 7 feet from any air intakes/vents or off-Site buildings.

As-built drawings for the underground components of the SSDS are included in Appendix G. This SMP will be updated after building construction to include as-built drawings of the aboveground SSDS elements in Appendix G and SSDS component manuals in Appendix J.

Once completed, the SSDS is designed to operate continuously, 24 hours a day, 7 days a week, 365 days a year, without any required adjustments or repairs beyond routine maintenance items discussed in Section 4.2.4.1. Manufacturers' specifications for each of the SSDS components and the troubleshooting guide (included in Appendix J) should be consulted prior to any repairs or adjustments that may become necessary. Regular system inspections, operation parameter documentation, and performance assessment guidelines are detailed in Sections 4.2.3 and 4.2.4 of this SMP.

#### 5.4.1 SSDS Start-Up and Testing

The system will be started up and tested following the completion of the building construction. Testing will also be conducted after any future event that requires system shut-down/restart.

The SSDS start-up inspection will include the following:

- Confirmation of acceptable air flow rate from each SSDS riser by a visual inspection of flow sensors affixed to each of the manifold legs and use of an appropriate manometer or portable vacuum gauging device;
- Confirmation of acceptable vacuum readings from each SSDS riser by a visual inspection of magnehelic gauges affixed to manifold legs; and
- Confirmation of acceptable induced vacuum (a minimum of 0.005 inches of H2O) beneath the entire basement slab from monitoring points MP-1 through MP-6 through the manual access of each point and use of an appropriate manometer or portable vacuum gauging device.

Adjustments to the blower and individual SSDS lines may be necessary at start-up and after any alterations to the overall system. SSDS equipment, including individual valves on SSDS lines will be throttled to rebalance the system, adjusting air flow rates, and vacuum/pressure readings to acceptable values. A copy of the SSDS inspection log is provided in Appendix L. The log will be updated after initial system start-up and balancing to determine acceptable operating ranges for air flow and vacuum.

At a minimum, the findings and conclusions following system start-up/restart activities will be reported in the subsequent quarterly media monitoring report. In addition, depending on the nature of the adjustment to the system, the process and instrumentation diagram (P&ID) and/or Site figures may need to be updated to reflect the work completed. Such revisions shall be completed and submitted to NYSDEC with the media monitoring report.

All further modifications, adjustments, or additions to the SSDS should be completed in accordance with the equipment specifications provided by the manufacturer Manufacturers' specifications for all system components as part of the manuals provided in Appendix J.

### 5.4.2 SSDS Operation: Routine Operation

After start-up, the SSDS is designed to operate continuously without any required adjustments or repairs, beyond routine maintenance items discussed in Section 5.5.3. No adjustments to the operating schedule or other intentional interruptions to operation (other than those required for routine maintenance) shall be permitted without written approval by NYSDEC and NYSDOH.

As described in Section 5.2.6, the system includes a differential pressure switch that will trigger an alarm in the event of blower malfunction (or other condition resulting in low vacuum in the SSDS riser) so that appropriate corrective actions can be taken.

If shutdown of the SSDS is considered, a proposal to discontinue the SSDS will be submitted by the property owner for NYSDEC and NYSDOH approval. The SSDS will remain in place and operational until permission to discontinue use is granted in writing by NYSDEC and NYSDOH.

#### 5.4.3 SSDS Operation: Routine Inspections

The effectiveness of the SSDS components will be confirmed via quarterly system inspections to be conducted by personnel under the supervision of a qualified environmental professional as described in Section 4.4. Monitoring of the SSDS will consist of a visual inspection of the complete system including checking to confirm that the SSDS blower is operating properly, observing all associated air flow and vacuum gauges and alarms to confirm they are within acceptable ranges, identification and repair of any system malfunctions or problems (i.e., leaks, cracks, collection of condensation, etc.), and taking vacuum readings at the six vacuum monitoring points. A copy of the SSDS Routine Inspection Log is provided in Appendix L. The log will be updated after initial system start-up and balancing to determine acceptable operating ranges for air flow and vacuum.

Individual flow rate and vacuum readings will be recorded for the five SSDS pipe branches and sub-slab vacuum will be confirmed in the six vacuum monitoring points. This operational data will be used as needed to adjust controls for individual branches and any faulty gauges will be repaired or replaced as needed. SSDS inspections will be conducted on a quarterly basis for the first year of operation, and annually thereafter.

Care shall be taken during inspections to identify and repair any system malfunctions or problems (i.e., leaks, cracks, collection of condensation, etc.). Manufacturer's specifications and the troubleshooting guide, included as Appendix J, should be consulted prior to any repairs or adjustments that may become necessary.

#### 5.4.4 SSDS Operation: Routine Equipment Maintenance

A schedule for SSDS routine equipment maintenance work is provided in Table VIII:

| <b>Operations Monitoring Tasks</b> | Frequency                        | Maintenance Task     |  |
|------------------------------------|----------------------------------|----------------------|--|
| SSDS Routine Inspection            | Quarterly (first year), annually | Repairs to system    |  |
|                                    | (after first year), and as       | components as needed |  |
| _                                  | necessary                        | based on inspections |  |

Table VIII SSDS Inspection/Maintenance Schedule

#### Routine Maintenance

The routine SSDS inspections will include:

- Confirmation that the blower is operating and air is discharging through the exhaust piping at the roof;
- Confirmation that the pressure gauges and air flow sensors on each SSDS riser leg are clean and readings within normal ranges;
- Confirmation that the vacuum gauge at the blower inlet is clean and reading within the acceptable range; and
- Confirmation that the exterior of the SSDS control panel is clean.

Maintenance to system components (e.g., cleaning/replacement of gauges, adjustments to system balancing) will be scheduled as needed based on findings from the inspection. Some routine maintenance will require intentional interruptions to SSDS operation. Both unexpected and deliberate alterations to and/or shutdowns of the system will be recorded in the field book and documented on SSDS Inspection Log, provided in Appendix L. A cumulative shutdown log, provided in Appendix M, will be maintained separately to track any atypical system activity, including, but not limited to alarm conditions and responses, and to track scheduled shutdowns for system maintenance.

## Detailed SSDS Inspection and System Component Maintenance

The detailed operations check will be performed to identify/rectify operations-based maintenance items, such as malfunctioning SSDS risers, piping runs, and/or other system components. Typical detailed maintenance items that should be addressed during these inspections include:

- Confirm/assess blower performance and integrity;
- Assess blowers and determine need for replacement;
- Confirm/assess the operating condition of vacuum monitoring points MP-1 though MP-6; and

Confirm/assess the structural integrity of concrete floor slabs overlying constructed SSDS manifold and piping runs

The roof-mounted SSDS fan consists of a blower and motor pair. Each piece of equipment requires routine maintenance that is dictated either by runtimes or operating conditions, as defined by manufacturer's specifications. The pertinent material cut sheets and manuals are provided as Appendix J. A binder containing complete paper copies of manufacturer's specifications for all system components will be maintained on-Site.

#### **Reporting**

Barring any unusual findings, the system inspections and maintenance described above will be reported per the requirements of Section 7.0 of this SMP. In the event that an unexpected condition, such as a critical malfunction or extreme weather conditions that may hinder system operation is noted, the NYSDEC will be alerted promptly.

#### 5.4.5 System Operation: Non-Routine Equipment Maintenance

In most instances, non-routine maintenance will be required due to operating conditions that are monitored by the SSDS alarm system. The primary objective of the alarm system

is to notify personnel when operating conditions are likely to reduce or otherwise compromise SSDS efficiency.

An alarm condition may be indicative of damage to, blockage of, and/or deterioration of, the SSDS piping or blower. Damage to the individual SSDS lines may be noticeable only by interpreting unusually high or low vacuum readings or air flow rates, which will be noted in the routine system inspections and remedied upon identification.

#### 5.4.6 Monitoring Devices and Alarms

The SSDS will have a warning alarm system that notifies on-site maintenance personnel if the system is not operating properly (e.g., vacuum blower failure or a low vacuum condition). The alarm will provide both an audible and visual notification for a low vacuum condition from the differential pressure switch. The audible alarm will be an 85 to 95 decibel horn or buzzer with a manual acknowledge off switches.

In the event of an alarm, the on-site maintenance personnel shall investigate the problem by performing a detailed operations check and conducting applicable maintenance and repairs, as specified in this Operation and Maintenance Plan. Testing will be conducted as described in Section 5.2.1. when the system is restarted after an alarm condition. Operational problems will be noted in the quarterly monitoring report and PRR prepared for that reporting period.

#### 5.5 SVE System Operation and Maintenance

An SVE system was installed to remediate residual contaminated soil vapor in the vadose zone beneath the building, and to help prevent the off-Site migration of PCE and any breakdown products in soil vapor. The VOC-contaminated air extracted from the SVE wells will be treated using grounded activated carbon and discharged to the atmosphere in accordance with 6 NYCRR Part 212.

The Site-specific design for the SVE system was developed based on the findings from preliminary SVE pilot testing conducted at the Site. The SVE system collects and treats contaminated vapor, and subsequently discharges the vapor through a dedicated exhaust stack. The major components of the SVE system include:

- Six 4-inch diameter PVC SVE wells, which target the vadose zone treatment interval.
- One 15 HP blower to extract soil vapor, with a variable-frequency drive (VFD) to throttle blower operation to acceptable conditions.
- A control panel equipped with a telemetry system to notify select personnel of alarm conditions.
- Two carbon treatment units connected in series to treat contaminated soil vapor.
- A control panel equipped with a telemetry system to notify select personnel of alarm conditions.
- Effluent stack consisting of an 8-inch steel riser pipe extending from the SVE shed.

#### 5.5.1 SVE System Start-Up and Testing

Initial startup of the SVE system occurred on September 30, 2022. If, in the course of the SVE system lifetime, significant changes are made to the system and the system must be restarted, some or all of the following initial startup testing protocols shall be implemented and documented in addition to ongoing routine maintenance and monitoring activities.

Since initial startup of the SVE system was completed successfully, these procedures need not be followed after routine system restarts, such as those needed after alarm resets or following routine system maintenance.

|                           | Following SVE<br>pit/pipe addition,<br>repair, or<br>replacement | Following SVE<br>blower repair or<br>replacement | Following carbon<br>vessel repair or<br>replacement |  |
|---------------------------|------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|--|
| SVE line pressure testing | Yes                                                              | No                                               | No                                                  |  |
| SVE blower                | Yes                                                              | Yes                                              | Yes                                                 |  |

Table IXSVE System Startup Protocols

Note: Pressure testing and blower inspection procedures are described in full in the QAPP, provided as Appendix H.

As described in the QAPP, SVE blower inspections shall comprise confirmation of:

- VFD operation reading;
- Pre-particulate filter blower vacuum and air flow rate readings;
- Carbon influent, intermediate, and effluent pressure, temperature, and PID readings; and
- Vacuum and air flow rates at each SVE well during active operation in that zone.

Appropriate values for these confirmation readings are outlined in SVE Inspection Log, provided in Appendix N.

Further adjustments to the blower and individual SVE lines may be necessary after any alterations to the overall system. SVE equipment, including individual valves on SVE lines will be throttled to rebalance the system, adjusting air flow rates and vacuum/pressure readings to acceptable values.

At a minimum, the findings and conclusions following system restart activities will be reported in the subsequent quarterly media monitoring report. In addition, depending on the nature of the adjustment to the system, the P&ID and/or Site figures may need to be updated to reflect the work completed. Such revisions shall be completed and submitted to NYSDEC with the quarterly media monitoring report.

All further modifications, adjustments or additions to the SVE system should be completed in accordance with the equipment specifications provided by the manufacturer. This SMP will be maintained on-Site and includes manufacturers' specifications for all system components in Appendix K.

#### 5.5.2 SVE System Operation: Routine Operation Procedures

The SVE system is designed to operate continuously without any required adjustments or repairs, beyond routine maintenance items discussed in Sections 5.5.3 and 5.5.4. No adjustments to the operating schedule or other intentional interruptions to operation (other than those required for routine maintenance) shall be permitted without written approval by NYSDEC and NYSDOH.

The operation of the SVE system components will be confirmed by monthly system inspections (for first year, quarterly afterwards) by an environmental professional. The

check will consist of confirming the blower is operating properly with individual flow rate and vacuum readings for each of the SVE wells within designated ranges, and confirming instantaneous PID readings at the influent, intermediate, and effluent sample ports on the carbon treatment units. The check will also note any unusual conditions (e.g., unusual odors, spills, leaks, blower noise, etc.). A copy of the SVE Inspection Log is provided in Appendix N.

Care shall be taken during inspections to identify and repair any system malfunctions or problems (i.e., leaks, cracks, collection of condensation, etc.). Manufacturer's specifications and the troubleshooting guide, included as Appendix K, should be consulted prior to any repairs or adjustments that may become necessary.

If, in consultation with NYSDEC and NYSDOH, shutdown of the SVE system and/or carbon treatment system is considered, a proposal to discontinue the SVE and/or carbon treatment system will be submitted by the property owner for NYSDEC and NYSDOH approval. The SVE and/or carbon treatment system will remain in place and operational until permission to discontinue use is granted in writing by NYSDEC and NYSDOH.

#### 5.5.3 SVE System Operation: Routine Equipment Maintenance

A tentative schedule for SVE system routine equipment maintenance work is provided in the following table:

| Operations Monitoring Tasks                           | Frequency                                                   |
|-------------------------------------------------------|-------------------------------------------------------------|
| SVE System Inspection                                 | Monthly (first year), quarterly afterwards and as necessary |
| System Component Maintenance                          | Semi-annual and as necessary                                |
| Wellhead and External System Component<br>Maintenance | Annually and as necessary                                   |

 Table X

 SVE System Inspection/Maintenance Schedule

Typical routine maintenance items that should be addressed during monthly inspections are listed in the SVE Inspection Log provided in Appendix N and include:

- Confirmation that the blower is operating and air is discharging through the exhaust piping to the roof;
- Confirmation that the pressure and air flow rate gauges on each manifold leg are clean and within normal ranges;
- Confirmation that the blower effluent PID readings and temperatures are within acceptable ranges; and
- Confirmation that the exterior of the SVE control panel is clean.

Some routine maintenance will require intentional interruptions to SVE system operation. Both unexpected and deliberate alterations to and/or shutdowns of the system will be recorded in the field book and documented on the SVE Inspection Log provided in Appendix N. A shutdown log, provided as Appendix O, will be maintained separately to track any atypical system activity, including, but not limited to, alarm conditions and responses, and scheduled shutdowns for system maintenance.

## 5.5.4 Routine SVE System Component Maintenance

The SVE system consists of one blower and motor pair. Each piece of equipment requires routine maintenance that is dictated either by runtimes or operating conditions, as defined by manufacturer's specifications. However, most maintenance items are required on a quarterly basis, assuming continuous operation. Maintenance frequency will be adjusted as necessary following the transition to monthly pulsed operation. The pertinent material cut sheets and manuals are provided as Appendix K. A binder containing complete manufacturer's specifications for all system components is maintained on-Site.

#### 5.5.5 SVE Wellhead and External System Component Maintenance

Individual wellheads and manholes will be inspected, at a minimum, on an annual basis. All SVE wells are accessible via flush-mount well covers. In the event of a damaged or out-of-service SVE well, the well will be properly decommissioned. Repairs and/or replacement of SVE wells will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of the SVE well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. The decommissioning of SVE wells without replacement will be done only with the prior approval of NYSDEC. SVE well abandonment will be performed in accordance with NYSDEC's CP-43: Groundwater Monitoring Well Decommissioning Policy. If the SVE wells are decommissioned because they have been rendered unusable, replacement SVE wells will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

Wellhead and external system component inspections should be conducted as detailed in the QAPP, provided in Appendix H.

#### 5.5.6 SVE System Operation: Non-Routine Equipment Maintenance

In most instances, non-routine maintenance will be required due to operating conditions that are governed by the SVE alarm system and system telemetry. The primary objective of system telemetry is to notify personnel when operating conditions are likely to reduce or otherwise compromise SVE efficiency, which could lead to the potential uncontrolled migration of volatile soil vapor.

The system telemetry will also notify the current owner's environmental professional when operating conditions may be indicative of damage to the SVE equipment. SVE alarm conditions are detailed in In-Text Table XI. Potential damage to the SVE pipes or carbon units should trigger one of the alarm conditions. Damage to the individual SVE lines may be noticeable only by interpreting unusually high or low vacuum readings or air flow rates, which will be noted in the system inspections and remedied upon identification.

The SVE was also designed with particulate and moisture separators on the blower skid to prevent solids from reaching the blowers. The particulate and moisture separators are shown in the P&ID provided as part of the manual in Appendix K. Procedures for maintaining the particulate separators and all SVE components are provided in the operation and maintenance manuals provided in Appendix K and QAPP provided in Appendix H.

| Alarm Condition                   | Response Measure                           |
|-----------------------------------|--------------------------------------------|
| Moisture Separator High Loval     | Drain/containerize moisture, identify and  |
| Moisture Separator High Level     | address/eliminate cause of moisture influx |
| Diswar Inlat I aw Vacuum          | Identify and address/eliminate cause of    |
| Blower Inlet Low Vacuum           | low pressure condition                     |
| Player Outlet High Terrer anotyre | Identify and address/eliminate cause of    |
| Blower Outlet High Temperature    | high temperature condition                 |

In-Text Table XI SVE System Alarm Conditions

#### 5.6 SVE System Sampling Event Protocol

#### 5.6.1 Effluent Vapor Sampling Protocol

Though theoretical calculations have been made to approximate the anticipated carbon usage rate, carbon replacement frequency will be based on field screening using a PID and laboratory analytical results. Individual lines are not anticipated to be sampled in the routine sampling events; however, there are sampling ports for each line prior to manifolding to facilitate field screening or sampling as necessary at the discretion of the remedial engineer, in consultation with NYSDEC and NYSDOH.

The influent, intermediate, and effluent vapor from the set of SVE system carbon vessels will be field-screened monthly (when the system is cycled on) for the first year and quarterly afterwards, and sampled as described below to provide an estimate of carbon usage. Confirmatory SVE system sampling will be conducted following startup to more accurately assess the VOC concentrations in extracted soil vapor from the entire Site, and the condition and lifespan of the carbon units. Samples of the SVE system air will be collected as part of initial startup and again 6 months and 12 months following start-up. Subsequent SVE system vapor sampling will be performed annually, and as needed to evaluate system operating conditions and support the calculations of contaminant mass removal.

The vapor samples will be collected using a peristaltic pump to fill a one-liter Tedlar bag, in accordance with the sampling procedure detailed in the QAPP provided as Appendix H. All samples for laboratory analysis will be submitted to a NYSDOH ELAP-certified laboratory for analysis of CVOCs by EPA Method TO-15.

All sampling activities will be recorded in a field book and in the SVE Vapor Sampling Log presented in Appendix N. Field observations (e.g., visual observations and PID reading of effluent, etc.) will be noted on the sampling log, which will be subject to the reporting requirements and system checks as discussed in Sections 5.5 and 5.7. Complete effluent vapor sampling procedures are detailed in the QAPP, provided as Appendix H.

#### 5.6.2 Spent Carbon Sampling Protocol

All spent carbon will be disposed of or recycled off-Site in accordance with all applicable local, state, and federal regulations. Based on requirements of the disposal/recycling facility and waste disposal contractor, a carbon sample may need to be collected for facility acceptance purposes. If so, a representative sample of the spent carbon will be collected and submitted for laboratory analysis based on the requirements of the receiving facility, as detailed in the QAPP provided as Appendix H. Spent carbon will be handled as a listed hazardous waste unless a contained-in request is approved by NYSDEC.

All sampling activities will be recorded in a field book. Field observations (e.g., visual observations and PID reading of carbon, etc.) will be noted on the sampling log, which will be subject to the reporting requirements and system checks as discussed in Sections 5.5 and 5.7.

## 5.6.3 Condensate Water Sampling

All condensate water collected from the SVE water knock-out vessel will be transferred to 55-gallon drums and be disposed of off-Site in accordance with all applicable local, state and federal regulations on an as-needed basis. A representative condensate water sample will be collected from each 55-gallon drum to be disposed of and submitted for laboratory analysis as detailed in the QAPP, provided as Appendix H. Condensate water will be handled as a listed hazardous waste unless a contained-in request is approved by NYSDEC. Documentation associated with condensate water disposal will be subject to the reporting requirements and system checks as discussed in Section 5.5 and 5.7.

#### 5.7 SSDS and SVE System Maintenance and Performance Monitoring Reporting Requirements

Barring any unusual findings, the system inspections and maintenance described above will be reported per the requirements of Section 7.0 of this SMP. In the event that an unexpected condition, such as a critical malfunction or extreme weather conditions that may hinder system operation is noted, the NYSDEC will be alerted promptly.

Any unexpected or critical issues identified during the monitoring tasks will be reported via email or phone notification to the NYSDEC Project Manager. Maintenance reports and any other information generated during regular operations at the Site will be kept on-file on-Site. All reports, forms, and other relevant information generated will be available upon request to the NYSDEC and submitted as part of the Periodic Review Report, as specified in the Section 6.0 of this SMP.

## 5.7.1 Routine Maintenance Forms

Checklists or forms (see Appendix P) will be completed during each maintenance event. Checklists/forms will include, but not be limited to the following information:

- Date;
- Name, company, and position of person(s) conducting maintenance activities;
- Maintenance activities conducted;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

#### 5.7.2 Non-Routine Maintenance Forms

During each non-routine maintenance event, a form will be completed which will include, but not be limited to, the following information:

- Date;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;

- Presence of leaks;
- Date of leak repair;
- Other repairs or adjustments made to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

#### 5.8 Contingency Plan

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

The appropriate action for on-site emergencies are detailed in the attached Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP), provided as Appendix F.

#### 5.9 Emergency Telephone Numbers

In the event of any environmentally related situation or unplanned occurrence requiring assistance, the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to AKRF's Project Principal or Project Manager or the current property manager/owner's representative for the Site. Emergency contact lists must be maintained in an easily accessible location at the Site. Table XII includes contact information for the emergency response personnel.

| Medical, Fire, and Police:           | 911                                          |  |  |
|--------------------------------------|----------------------------------------------|--|--|
| One Call Center:                     | (800) 272-4480                               |  |  |
| One Can Center.                      | (3 day notice required for utility mark out) |  |  |
| Poison Control Center:               | (800) 222-1222                               |  |  |
| Pollution Toxic Chemical Oil Spills: | (800) 424-8802                               |  |  |
| NYSDEC Spills Hotline                | (800) 457-7362                               |  |  |

Table XII Emergency Contact Numbers

## 5.10 Map and Directions to Nearest Health Facility

- Site Location: 22-60 46<sup>th</sup> Street
- Nearest Hospital Name: Mount Sinai Queens
- Hospital Location: 3019 Crescent Street at 30<sup>th</sup> Road, Astoria, NY 11102
- Hospital Telephone: (718) 932-1000
- Directions to Hospital:
  - 1. Turn LEFT out of the Site from 45<sup>th</sup> Street, heading southwest toward 23<sup>rd</sup> Avenue.
  - 2. Turn RIGHT onto Astoria Boulevard North.
  - 3. Stay RIGHT to continue onto Hoyt Avenue North.
  - 4. Turn LEFT onto Crescent Street.

- 5. The emergency room will be on the LEFT at the corner of Crescent Street and  $30^{\text{th}}$  Road.
- 6. A map showing the route from the Site to the Hospital is included under the HASP (Appendix F).

## 6.0 PERIODIC ASSESSMENTS/EVALUATIONS

## 6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

This section provides a summary of vulnerability assessments that will be conducted for the Site during periodic assessments, and briefly summarizes the vulnerability of the Site and/or ECs to severe storms/weather events and associated flooding.

- Flood Plain: The Site is not located within a flood plain.
- Site Drainage and Storm Water Management: Stormwater at the Site and the surrounding area flows to the New York City combined sewer system.
- Erosion: As the only areas of the Site not covered with concrete slabs are surrounded by buildings, erosion is not anticipated to be an issue of concern.
- High Wind: All permanent building components are secured against high winds. In the event that high winds are forecasted for the Site, proper precautions will be taken to secure or shelter any Site components that are not protected against high winds.
- Electricity: Electricity to the buildings is supplied via newly installed underground vaults and conduits and is not expected to be affected by severe weather events.
- Spill/Contaminant Release: Storage of large amounts of fuel oil, or other chemicals at the Site is not expected. Nominal amounts of cleaning chemicals are likely to be stored throughout the Site but are not expected to be affected by severe weather conditions.

#### 6.2 Soil Vapor Intrusion Evaluation

In the event that the existing building is modified, requiring subsurface disturbance, or additional buildings are constructed, a soil vapor intrusion evaluation will be conducted in coordination with NYSDEC and NYSDOH.

## 6.3 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program, including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the Site during site management, and as reported in the PRR.

#### 6.3.1 Remedial Systems

Remedial systems will be operated properly considering the current Site conditions to conserve materials and resources to the greatest extent possible. Consideration will be given to operating rates and use of reagents and consumables. Spent materials will be sent for recycling, as appropriate.

## 6.3.2 Building Operations

Structures including buildings and sheds will be operated and maintained to provide for the most efficient operation of the remedy, while minimizing energy, waste generation and water consumption.

#### 6.3.3 Frequency of System Checks, Sampling and Other Periodic Activities

Transportation to and from the Site and use of consumables in relation to visiting the Site to conduct inspections or collect samples and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

#### 6.4 Remedial System Optimization

A Remedial Site Optimization (RSO) study will be conducted any time that NYSDEC or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet RAOs in the time frame estimated in the DD;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the Site management to another remedial party or agency; or
- A new and applicable remedial technology becomes available.

A RSO will provide a critique of a site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the site's cleanup goals, gather additional performance or media specific data and information, and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study will focus on overall site cleanup strategy, process optimization, and management, with the intent of identifying impediments to cleanup and improvements to site operations to increase efficiency, cost effectiveness, and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

## 7.0 **REPORTING REQUIREMENTS**

Inspection logs and maintenance reports and any other information generated during regular operations at the Site will be kept on file on-site. All reports, forms, and other relevant information generated will be available upon request to NYSDEC and submitted as part of the PRR, as specified in Section 4.0 of this SMP. All site management inspection, non-routine maintenance, and monitoring events will be conducted by a qualified environmental professional as defined in 6 NYCRR Part 375, a P.E. who is licensed and registered in New York State, or a qualified person who directly reports to a P.E. who is licensed and registered in New York State. Routine maintenance, such as changing out/cleaning of gauges, may be conducted by the on-site building maintenance personnel as appropriate.

#### 7.1 Site Management Reports

All Site management inspections and maintenance and monitoring events will be recorded on the appropriate Site management form provided in Appendix P. The form is subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data generated for the Site during the reporting period, will be provided in electronic format to NYSDEC in accordance with the requirements of Table XIII and summarized in the PRR.

Table XIII

| Schedule of Monitoring/Inspection Reports |                |  |  |  |
|-------------------------------------------|----------------|--|--|--|
| Task/Report                               | Reporting Free |  |  |  |

| <b>Reporting Frequency*</b>             |
|-----------------------------------------|
| Quarterly                               |
|                                         |
| Annually. First inspection no more than |
| 16 months after COC, then at least      |
| annually thereafter, and PRR due 1      |
| month later.                            |
|                                         |

Note: \* The frequency of events will be conducted as specified until otherwise approved by NYSDEC.

All monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs and/or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., groundwater, sub-slab vapor, indoor air, outdoor air, etc.);
- Copies of all field forms completed (e.g., sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);

- Any observations, conclusions, or recommendations; and
- A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will be provided in the quarterly reports and will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc. (attached to the checklist/form).

Non-routine maintenance event reporting forms will be provided in the quarterly reports and will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuIS<sup>™</sup> database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

#### 7.2 Periodic Review Report (PRR)

The first PRR will be submitted to the NYSDEC 16 months after the COC is issued. After submittal of the initial PRR, the next PRR shall be submitted to the NYSDEC annually or at another frequency as may be required NYSDEC. In the event that the Site is subdivided into separate parcels with different ownership, a single PRR will be prepared that addresses the Site described in the EE (Appendix A). The PRR will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the PRR. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted;

- Identification of any wastes generated during the reporting period, along with waste characterization data, manifests, and disposal documentation;
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These tables and figures will include a presentation of past data as part of an evaluation of contaminant concentration trends, including but not limited to:
- Trend monitoring graphs that present groundwater contaminant levels from before the start of the remedy implementation to the most current sampling data;
- Trend monitoring graphs depicting SVE system influent analytical data on a per event and cumulative basis;
- O&M data summary tables;
- A current plume map for sites with remaining groundwater contamination;
- A groundwater elevation contour map for each gauging event; and
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuIS<sup>™</sup> database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.

A Site evaluation, which includes the following:

- The compliance of the remedy with the requirements of the site-specific RAWP and DD;
- The operation and effectiveness of the ECs, including identification of any needed repairs or modifications;
- Any new conclusions or observations regarding Site contamination based on inspections or data generated;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan; and
- An evaluation of trends in contaminant levels in the affected media to determine if the remedy continues to be effective in achieving remedial goals as specified by the RAWP, and Decision Document; and
- The overall performance and effectiveness of the remedy.

In addition, a performance summary for all treatment systems at the site during the calendar year, including information such as:

- The contaminant mass removed during the certification period and during the life of the treatment system;
- A description of breakdowns and/or repairs along with an explanation for any significant downtime;
- A description of the resolution of performance problems;

- Alarm conditions;
- Trends in equipment failure;
- A summary of the performance, effluent and/or effectiveness monitoring; and
- Comments, conclusions, and recommendations based on data evaluation. Recommendations must address how receptors would be impacted. Recommendations can include:

Proposals to address efficiency such as: instituting remote operation, system changes to decrease maintenance and downtime, and system changes to decrease energy use; and

Proposals to modify or shut down a treatment system due to remediation completion, system performance or changed conditions. System shutdowns are addressed in Section 6.4 of DER-10.

#### 7.2.1 Certification of Institutional and Engineering Controls

Following the last inspection of the reporting period, a Professional Engineer licensed to practice in New York State will prepare, and include in the PRR, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

The inspection of the Site to confirm the effectiveness of the Institutional and Engineering Controls required by the remedial program was performed under my direction;

The Institutional Control and/or Engineering Control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;

Nothing has occurred that would impair the ability of the control to protect the public health and environment;

Nothing has occurred that would constitute a violation or failure to comply with any Site Management Plan for this control;

Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;

Use of the site is compliant with the Environmental Easement;

The Engineering Control systems are performing as designed and are effective;

To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices;

No new information has come to my attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and

The assumptions made in the qualitative exposure assessment remain valid, and the information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner/Remedial Party or Owner's/Remedial Party's Designated Site Representative]."

"I certify that the New York State Education Department has granted a Certificate of Authorization to provide Professional Engineering services to the firm that prepared this Periodic Review Report."

The signed certifications will be included in the PRR.

The PRR will be submitted, in electronic format, to the NYSDEC project manager in which the Site is located and the NYSDOH project manager. The PRR may need to be submitted in hard-copy format, if requested by the NYSDEC project manager.

#### 7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC or EC, a Corrective Measures Work Plan (CMWP) will be submitted to NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the CMWP until it has been approved by NYSDEC.

#### 7.4 Remedial Site Optimization Report

In the event that an RSO is to be performed (see Section 6.4), upon completion of a RSO, a RSO report must be submitted to the NYSDEC for approval. The RSO report will document the research/ investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model, and present recommendations. RSO recommendations are to be implemented upon approval from NYSDEC. Additional work plans, design documents, HASPs, etc., may still be required to implement the recommendations, based upon the actions that need to be taken. An FER and update to the SMP may also be required.

The RSO report will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the Site is located, Site Control and the NYSDOH Bureau of Environmental Exposure Investigation.

## 8.0 **REFERENCES**

- 6 NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.
- NYSDEC DER-10 "Technical Guidance for Site Investigation and Remediation".
- NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).
- Phase I ESA, 22-60 46th Street, Queens, New York 11105, Environmental Studies Corporation, Inc., May 2018
- Phase I ESA, 22-61 45th Street, Queens, New York 11105, CA RICH Consultants, Inc., June 2018
- Phase II ESA, Environmental Studies Corporation, Inc., May 2019
- Supplemental Subsurface (Phase II) Investigation, AKRF, Inc., August 2019
- BCP Application, 22-60 46th Street, Queens York, AKRF, Inc., May 2020
- Citizen Participation Plan, 22-60 46th Street, Queens York, AKRF Inc., October 2020
- Remedial Investigation Work Plan, 22-60 46th Street, Queens York, AKRF Inc., November 2020 and RIWP Addendum dated May 2021
- Remedial Investigation Report, 22-60 46th Street, Queens York, AKRF Inc., October 2021
- Remedial Action Work Plan, 22-60 46th Street, Queens, NY, AKRF Inc., January 2022
- Off-Site Soil Vapor Intrusion Work Plan, 22-60 46th Street, Queens, AKRF Inc., February 2022
- Remedy Modification Request, 22-60 46th Street, Queens, AKRF Inc., May 2022
- Off-Site Soil Vapor Intrusion Report, 22-60 46th Street, Queens, AKRF Inc., July 2022

TABLES

## Table 1 22-60 46th Street Queens, New York Groundwater Elevation Data

| Well ID   | Top of Casing<br>Elevation (feet) |       |       |
|-----------|-----------------------------------|-------|-------|
| RI-MW-01  | 44.5                              | 24.32 | 20.18 |
| RI-MW-03  | 43.3                              | 23.05 | 20.21 |
| RI-MW-04  | 44.5                              | 24.17 | 20.33 |
| RI-MW-05A | 42.4                              | 22.56 | 19.84 |
| RI-MW-06A | 44.04                             | 23.32 | 20.72 |
| RI-MW-07A | 43.63                             | 23.01 | 20.62 |
| RI-MW-08A | 47.3                              | 26.45 | 20.85 |
| RI-MW-09A | 44.45                             | 23.67 | 20.78 |
| RI-MW-10  | 45.36                             | 24.31 | 21.05 |

Notes:

All elevations are referenced to the North American Vertical Datum of 1988 (NAVD88).

TOC = Top of Casing

|                                               |                   |                                     | Volatile Organic Co            | mpounds (VOCs)                |                                |                                |                                |
|-----------------------------------------------|-------------------|-------------------------------------|--------------------------------|-------------------------------|--------------------------------|--------------------------------|--------------------------------|
|                                               | Lab               | AKRF Sample ID<br>oratory Sample ID | EP-01_20220425<br>460-256954-1 | EP-X_20220425<br>460-256954-2 | EP-02_20220425<br>460-256954-3 | EP-03_20220425<br>460-256954-4 | EP-04_20220425<br>460-256954-5 |
|                                               |                   | Date Sampled                        | 4/25/2022                      | 4/25/2022                     | 4/25/2022                      | 4/25/2022                      | 4/25/2022                      |
|                                               |                   | Unit                                | mg/kg                          | mg/kg                         | mg/kg                          | mg/kg                          | mg/kg                          |
|                                               |                   | Dilution Factor                     | 1                              | 1                             | 1                              | 1                              | 1                              |
| Compound                                      | NYSDEC UUSCO      | NYSDEC RRSCO                        | CONC Q                         | CONC Q                        | CONC Q                         | CONC Q                         | CONC Q                         |
| 1,1,1-Trichloroethane                         | 0.68              | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,1,2,2-Tetrachloroethane                     | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane         | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,1,2-Trichloroethane                         | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,1-Dichloroethane                            | 0.27              | 26                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,1-Dichloroethene                            | 0.33              | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2,3-Trichlorobenzene                        | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2,4-Trichlorobenzene                        | NS                | NS                                  | 0.001 UJ                       | 0.0011 UJ                     | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2,4-Trimethylbenzene                        | 3.6               | 52                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2-Dibromo-3-Chloropropane                   | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2-Dibromoethane (Ethylene Dibromide)        | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2-Dichlorobenzene                           | 1.1               | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2-Dichloroethane                            | 0.02              | 3.1                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,2-Dichloropropane                           | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,3,5-Trimethylbenzene (Mesitylene)           | <u>8.4</u><br>2.4 | 52<br>49                            | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene    | 2.4               | 49<br>13                            | 0.001 U<br>0.001 U             | 0.0011 U<br>0.0011 U          | 0.0011 U<br>0.0011 U           | 0.00089 U<br>0.00089 U         | 0.0012 U<br>0.0012 U           |
| 1,4-DIChlorobenzene<br>2-Hexanone             | 1.8<br>NS         | 13<br>NS                            | 0.001 U<br>0.0051 UJ           | 0.0011 0<br>0.0057 UJ         | 0.0011 U<br>0.0053 U           | 0.00089 U<br>0.0044 U          | 0.0012 U<br>0.0058 U           |
| Acetone                                       | 0.05              | 100                                 | 0.0051 0J<br>0.02 J            | 0.0057 UJ<br>0.0068 U         | 0.0053 0                       | 0.0044 0                       | 0.0058 U<br>0.007 U            |
| Benzene                                       | 0.06              | 4.8                                 | 0.02 J<br>0.001 U              | 0.0008 0<br>0.0011 U          | 0.0072<br>0.0011 U             | 0.0095<br>0.00089 U            | 0.007 U                        |
| Bromochloromethane                            | NS                | 4.6<br>NS                           | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Bromodichloromethane                          | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Bromoform                                     | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Bromomethane                                  | NS                | NS                                  | 0.0021 U                       | 0.0023 U                      | 0.0021 U                       | 0.0018 U                       | 0.0023 U                       |
| Carbon Disulfide                              | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Carbon Tetrachloride                          | 0.76              | 2.4                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Chlorobenzene                                 | 1.1               | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Chloroethane                                  | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Chloroform                                    | 0.37              | 49                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Chloromethane                                 | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Cis-1,2-Dichloroethylene                      | 0.25              | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Cis-1,3-Dichloropropene                       | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Cyclohexane                                   | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Dibromochloromethane                          | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Dichlorodifluoromethane                       | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Ethylbenzene                                  | 1                 | 41                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Isopropylbenzene (Cumene)                     | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| M,P-Xylenes                                   | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Methyl Acetate                                | NS                | NS                                  | 0.0051 U                       | 0.0057 U                      | 0.0053 U                       | 0.0044 U                       | 0.0058 U                       |
| Methyl Ethyl Ketone (2-Butanone)              | 0.12              | 100                                 | 0.0051 U                       | 0.0057 U                      | 0.0053 U                       | 0.0044 U                       | 0.0058 U                       |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | NS                | NS                                  | 0.0051 U                       | 0.0057 U                      | 0.0053 U                       | 0.0044 U                       | 0.0058 U                       |
| Methylcyclohexane                             | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Methylene Chloride                            | 0.05              | 100                                 | 0.0021 U                       | 0.0023 U                      | 0.0021 U                       | 0.0018 U                       | 0.0023 U                       |
| N-Butylbenzene                                | 12                | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| N-Propylbenzene                               | 3.9               | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| O-Xylene (1,2-Dimethylbenzene)                | NS                | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Sec-Butylbenzene                              | 11<br>NS          | 100<br>NS                           | 0.001 UJ                       | 0.0011 UJ                     | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Styrene                                       | NS<br>5.9         | NS<br>100                           | 0.001 U                        | 0.0011 U<br>0.0011 U          | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| T-Butylbenzene<br>Tert-Butyl Methyl Ether     | 5.9<br>0.93       | 100<br>100                          | 0.001 U<br>0.001 U             | 0.0011 U<br>0.0011 U          | 0.0011 U<br>0.0011 U           | 0.00089 U<br>0.00089 U         | 0.0012 U<br>0.0012 U           |
| Tetrachloroethylene (PCE)                     | 1.3               | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 0                       | 0.00089 U<br>0.00089 U         | 0.0012 U<br>0.0012 U           |
| Toluene                                       | <u>1.3</u><br>0.7 | 19                                  | 0.001 U                        | 0.0011 U<br>0.0011 U          | 0.0084<br>0.0011 U             | 0.00089 U<br>0.00089 U         | 0.0012 U<br>0.0012 U           |
| Trans-1,2-Dichloroethene                      | 0.7               | 100                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Trans-1,2-Dichloropropene                     | 0.19<br>NS        | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Trichloroethylene (TCE)                       | 0.47              | 21                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Trichlorofluoromethane                        | 0.47<br>NS        | NS                                  | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Vinyl Chloride                                | 0.02              | 0.9                                 | 0.001 U                        | 0.0011 U                      | 0.0011 U                       | 0.00089 U                      | 0.0012 U                       |
| Xylenes, Total                                | 0.02              | 100                                 | 0.0021 U                       | 0.0023 U                      | 0.0021 U                       | 0.0018 U                       | 0.0012 U                       |
| regiones, rotai                               | 0.20              | 100                                 | 0.0021 0                       | 0.0020 0                      | 0.00210                        | 0.0010 0                       | 0.0020 0                       |

|                                                    |              |                   | Volatile Organic Co  | , , ,                |                     |                    |                      |
|----------------------------------------------------|--------------|-------------------|----------------------|----------------------|---------------------|--------------------|----------------------|
|                                                    |              | AKRF Sample ID    | EP-05_20220425       | EP-06_20220425       | EP-07_20220425      | EP-08_20220425     | EP-09_20220425       |
|                                                    | Lab          | oratory Sample ID | 460-256954-6         | 460-256954-7         | 460-256954-8        | 460-256954-9       | 460-256954-11        |
|                                                    |              | Date Sampled      | 4/25/2022            | 4/25/2022            | 4/25/2022           | 4/25/2022          | 4/25/2022            |
|                                                    |              | Unit              | mg/kg                | mg/kg                | mg/kg               | mg/kg              | mg/kg                |
|                                                    |              | Dilution Factor   | 1                    | 1                    | 1                   | 1                  | 1                    |
| Compound                                           | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q               | CONC Q               | CONC Q              | CONC Q             | CONC Q               |
| 1,1,1-Trichloroethane                              | 0.68         | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,1,2,2-Tetrachloroethane                          | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane              | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,1,2-Trichloroethane                              | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,1-Dichloroethane                                 | 0.27         | 26                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,1-Dichloroethene                                 | 0.33         | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2,3-Trichlorobenzene                             | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2,4-Trichlorobenzene                             | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2,4-Trimethylbenzene                             | 3.6          | 52                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2-Dibromo-3-Chloropropane                        | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2-Dibromoethane (Ethylene Dibromide)             | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2-Dichlorobenzene                                | 1.1          | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2-Dichloroethane                                 | 0.02         | 3.1               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,2-Dichloropropane                                | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,3,5-Trimethylbenzene (Mesitylene)                | 8.4          | 52                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,3-Dichlorobenzene                                | 2.4          | 49                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 1,4-Dichlorobenzene                                | 1.8          | 13                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| 2-Hexanone                                         | NS           | NS                | 0.0057 U             | 0.0058 U             | 0.0052 U            | 0.0051 U           | 0.0064 U             |
| Acetone                                            | 0.05         | 100               | 0.025                | 0.016                | 0.0069              | 0.018              | 0.018<br>0.0013 U    |
| Benzene                                            | 0.06         | 4.8               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            |                      |
| Bromochloromethane<br>Bromodichloromethane         | NS           | NS<br>NS          | 0.0011 U<br>0.0011 U | 0.0012 U<br>0.0012 U | 0.001 U<br>0.001 U  | 0.001 U<br>0.001 U | 0.0013 U             |
| Bromodichloromethane                               | NS<br>NS     | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U<br>0.0013 U |
| Bromororm<br>Bromomethane                          | NS           | NS                | 0.0023 U             | 0.0012 U<br>0.0023 U | 0.001 U             | 0.001 U            | 0.0013 U<br>0.0026 U |
| Carbon Disulfide                                   | NS           | NS                | 0.0023 U             | 0.0023 U             | 0.0021 0<br>0.001 U | 0.002 0<br>0.001 U | 0.0028 U             |
| Carbon Distincte                                   | 0.76         | 2.4               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Chlorobenzene                                      | 1.1          | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Chloroethane                                       | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Chloroform                                         | 0.37         | 49                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Chloromethane                                      | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Cis-1,2-Dichloroethylene                           | 0.25         | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Cis-1,3-Dichloropropene                            | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Cyclohexane                                        | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Dibromochloromethane                               | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Dichlorodifluoromethane                            | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Ethylbenzene                                       | 1            | 41                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Isopropylbenzene (Cumene)                          | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| M,P-Xylenes                                        | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Methyl Acetate                                     | NS           | NS                | 0.0057 U             | 0.0058 U             | 0.0052 U            | 0.0051 U           | 0.0064 U             |
| Methyl Ethyl Ketone (2-Butanone)                   | 0.12         | 100               | 0.0057 U             | 0.0058 U             | 0.0052 U            | 0.0051 U           | 0.0064 U             |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)      |              | NS                | 0.0057 U             | 0.0058 U             | 0.0052 U            | 0.0051 U           | 0.0064 U             |
| Methylcyclohexane                                  | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Methylene Chloride                                 | 0.05         | 100               | 0.0023 U             | 0.0023 U             | 0.0021 U            | 0.002 U            | 0.0026 U             |
| N-Butylbenzene                                     | 12           | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| N-Propylbenzene                                    | 3.9          | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| O-Xylene (1,2-Dimethylbenzene)                     | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Sec-Butylbenzene                                   | 11           | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Styrene                                            | NS           | NS                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| T-Butylbenzene                                     | 5.9          | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Tert-Butyl Methyl Ether                            | 0.93         | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Tetrachloroethylene (PCE)                          | 1.3          | 19                | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Toluene                                            | 0.7          | 100               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene | 0.19<br>NS   | 100<br>NS         | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Trichloroethylene (TCE)                            | 0.47         |                   | 0.0011 U<br>0.0011 U | 0.0012 U<br>0.0012 U | 0.001 U<br>0.001 U  | 0.001 U<br>0.001 U | 0.0013 U<br>0.0013 U |
| Trichlorofluoromethane                             | 0.47<br>NS   | 21<br>NS          | 0.0011 U<br>0.0011 U | 0.0012 U<br>0.0012 U | 0.001 U             | 0.001 U            | 0.0013 U<br>0.0013 U |
| Vinyl Chloride                                     | 0.02         | 0.9               | 0.0011 U             | 0.0012 U             | 0.001 U             | 0.001 U            | 0.0013 U             |
| Xylenes, Total                                     | 0.02         | 100               | 0.0023 U             | 0.0012 U<br>0.0023 U | 0.001 U             | 0.001 U            | 0.0013 U<br>0.0026 U |
| Aylenes, I'Uldi                                    | 0.20         | 1 100             | 0.0023 0             | 0.0023 0             | 0.0021 0            | 0.002 0            | 0.0020 0             |

| Volatile Organic Compounds (VOCs)                                                    |                                                                                   |                 |                       |                                                            |                                                      |                                                           |                                                      |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------|-----------------------|------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--|
|                                                                                      | AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |                 |                       | EP-X02_20220509<br>460-257822-2<br>5/09/2022<br>mg/kg<br>1 | EP-11_20220509<br>460-257822-3<br>5/09/2022<br>mg/kg | EP-12_20220509<br>460-257822-4<br>5/09/2022<br>mg/kg<br>1 | EP-13_20220509<br>460-257822-5<br>5/09/2022<br>mg/kg |  |
|                                                                                      |                                                                                   | Dilution Factor | 1                     | •                                                          | 1                                                    | •                                                         | 1                                                    |  |
| Compound                                                                             |                                                                                   | NYSDEC RRSCO    | CONC Q                | CONC Q                                                     | CONC Q                                               | CONC Q                                                    | CONC Q                                               |  |
| 1,1,1-Trichloroethane                                                                | 0.68                                                                              | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,1,2,2-Tetrachloroethane                                                            | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,1,2-Trichloroethane                                                                | NS                                                                                | NS<br>26        | 0.0011 U              | 0.0011 U<br>0.0011 U                                       | 0.00098 U                                            | 0.00099 U<br>0.00099 U                                    | 0.001 U<br>0.001 U                                   |  |
| 1,1-Dichloroethane                                                                   | 0.27                                                                              | 100             | 0.0011 U<br>0.0011 U  | 0.0011 U                                                   | 0.00098 U<br>0.00098 U                               | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,1-Dichloroethene<br>1.2.3-Trichlorobenzene                                         | 0.33<br>NS                                                                        | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2,3-Trichlorobenzene                                                               | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2,4-Trimethylbenzene                                                               | 3.6                                                                               | 52              | 0.0011 UJ             | 0.0011 UJ                                                  | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2,4-11metrybenzene<br>1,2-Dibromo-3-Chloropropane                                  | NS                                                                                | NS S2           | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2-Dibromoethane (Ethylene Dibromide)                                               | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1.2-Dichlorobenzene                                                                  | 1.1                                                                               | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2-Dichloroethane                                                                   | 0.02                                                                              | 3.1             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,2-Dichloropropane                                                                  | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,3,5-Trimethylbenzene (Mesitylene)                                                  | 8.4                                                                               | 52              | 0.0011 UJ             | 0.0011 UJ                                                  | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,3-Dichlorobenzene                                                                  | 2.4                                                                               | 49              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 1,4-Dichlorobenzene                                                                  | 1.8                                                                               | 13              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| 2-Hexanone                                                                           | NS                                                                                | NS              | 0.0054 UJ             | 0.0053 UJ                                                  | 0.0049 U                                             | 0.005 U                                                   | 0.005 U                                              |  |
| Acetone                                                                              | 0.05                                                                              | 100             | 0.0078                | 0.0063 U                                                   | 0.0059 U                                             | 0.006 U                                                   | 0.006 U                                              |  |
| Benzene                                                                              | 0.06                                                                              | 4.8             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Bromochloromethane                                                                   | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Bromodichloromethane                                                                 | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Bromoform                                                                            | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Bromomethane                                                                         | NS                                                                                | NS              | 0.0022 U              | 0.0021 U                                                   | 0.002 U                                              | 0.002 U                                                   | 0.002 U                                              |  |
| Carbon Disulfide                                                                     | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Carbon Tetrachloride                                                                 | 0.76                                                                              | 2.4             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Chlorobenzene                                                                        | 1.1                                                                               | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Chloroethane                                                                         | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Chloroform                                                                           | 0.37                                                                              | 49              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Chloromethane                                                                        | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Cis-1,2-Dichloroethylene                                                             | 0.25                                                                              | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Cis-1,3-Dichloropropene                                                              | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Cyclohexane                                                                          | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Dibromochloromethane                                                                 | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Dichlorodifluoromethane                                                              | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Ethylbenzene                                                                         | 1<br>NS                                                                           | 41<br>NS        | 0.0011 U<br>0.0011 UJ | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Isopropylbenzene (Cumene)<br>M.P-Xylenes                                             | NS                                                                                | NS              | 0.0011 UJ             | 0.0011 UJ<br>0.0011 UJ                                     | 0.00098 U<br>0.00098 U                               | 0.00099 U<br>0.00099 U                                    | 0.001 U<br>0.001 U                                   |  |
| M,P-Xylenes<br>Methyl Acetate                                                        | NS<br>NS                                                                          | NS<br>NS        | 0.0011 UJ<br>0.0054 U | 0.0011 UJ<br>0.0053 U                                      | 0.00098 U<br>0.0049 U                                | 0.00099 U<br>0.005 U                                      | 0.001 U<br>0.005 U                                   |  |
| Methyl Ethyl Ketone (2-Butanone)                                                     | 0.12                                                                              | 100             | 0.0054 U              | 0.0053 U                                                   | 0.0049 U                                             | 0.005 U                                                   | 0.005 U                                              |  |
| Methyl Isobutyl Ketone (2-Butanone)<br>Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) |                                                                                   | NS              | 0.0054 U              | 0.0053 U                                                   | 0.0049 U                                             | 0.005 U                                                   | 0.005 U                                              |  |
| Methylcyclohexane                                                                    | NS                                                                                | NS              | 0.0034 0<br>0.0011 U  | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.003 U                                              |  |
| Methylene Chloride                                                                   | 0.05                                                                              | 100             | 0.0022 U              | 0.0021 U                                                   | 0.002 U                                              | 0.002 U                                                   | 0.001 U                                              |  |
| N-Butylbenzene                                                                       | 12                                                                                | 100             | 0.0011 UJ             | 0.0011 UJ                                                  | 0.0002 0<br>0.00098 U                                | 0.00099 U                                                 | 0.002 0                                              |  |
| N-Propylbenzene                                                                      | 3.9                                                                               | 100             | 0.0011 UJ             | 0.0011 UJ                                                  | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| O-Xylene (1,2-Dimethylbenzene)                                                       | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Sec-Butylbenzene                                                                     | 11                                                                                | 100             | 0.0011 UJ             | 0.0011 UJ                                                  | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Styrene                                                                              | NS                                                                                | NS              | 0.0011 UJ             | 0.0011 UJ                                                  | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| T-Butylbenzene                                                                       | 5.9                                                                               | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Tert-Butyl Methyl Ether                                                              | 0.93                                                                              | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Tetrachloroethylene (PCE)                                                            | 1.3                                                                               | 19              | 0.00043 J             | 0.00033 J                                                  | 0.0011                                               | 0.00056 J                                                 | 0.00069 J                                            |  |
| Toluene                                                                              | 0.7                                                                               | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Trans-1,2-Dichloroethene                                                             | 0.19                                                                              | 100             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Trans-1,3-Dichloropropene                                                            | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Trichloroethylene (TCE)                                                              | 0.47                                                                              | 21              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Trichlorofluoromethane                                                               | NS                                                                                | NS              | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
| Vinyl Chloride                                                                       | 0.02                                                                              | 0.9             | 0.0011 U              | 0.0011 U                                                   | 0.00098 U                                            | 0.00099 U                                                 | 0.001 U                                              |  |
|                                                                                      |                                                                                   |                 |                       |                                                            |                                                      |                                                           |                                                      |  |

| Volatile Organic Compounds (VOCs)                                                 |      |              |                                                      |                                                           |                                                           |                                                           |                                                            |  |
|-----------------------------------------------------------------------------------|------|--------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--|
| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |      |              | EP-14_20220509<br>460-257822-6<br>5/09/2022<br>mg/kg | EP-15_20220509<br>460-257822-7<br>5/09/2022<br>mg/kg<br>1 | EP-16_20220509<br>460-257822-8<br>5/09/2022<br>mg/kg<br>1 | EP-17_20220509<br>460-257822-9<br>5/09/2022<br>mg/kg<br>1 | EP-18_20220509<br>460-257822-10<br>5/09/2022<br>mg/kg<br>1 |  |
|                                                                                   |      |              | 1                                                    |                                                           |                                                           |                                                           |                                                            |  |
| Compound                                                                          |      | NYSDEC RRSCO | CONC Q                                               | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     |  |
| 1,1,1-Trichloroethane                                                             | 0.68 | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,1,2,2-Tetrachloroethane                                                         | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                             | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,1,2-Trichloroethane                                                             | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,1-Dichloroethane                                                                | 0.27 | 26           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,1-Dichloroethene                                                                | 0.33 | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2,3-Trichlorobenzene                                                            | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2,4-Trichlorobenzene                                                            | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2,4-Trimethylbenzene                                                            | 3.6  | 52           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2-Dibromo-3-Chloropropane                                                       | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2-Dibromoethane (Ethylene Dibromide)                                            | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2-Dichlorobenzene                                                               | 1.1  | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2-Dichloroethane                                                                | 0.02 | 3.1          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,2-Dichloropropane                                                               | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,3,5-Trimethylbenzene (Mesitylene)                                               | 8.4  | 52           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,3-Dichlorobenzene                                                               | 2.4  | 49           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 1,4-Dichlorobenzene                                                               | 1.8  | 13           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| 2-Hexanone                                                                        | NS   | NS           | 0.0048 U                                             | 0.0048 U                                                  | 0.0046 U                                                  | 0.0047 U                                                  | 0.0051 U                                                   |  |
| Acetone                                                                           | 0.05 | 100          | 0.0058 U                                             | 0.0058 U                                                  | 0.0056 U                                                  | 0.0057 U                                                  | 0.0061 U                                                   |  |
| Benzene                                                                           | 0.06 | 4.8          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Bromochloromethane                                                                | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Bromodichloromethane                                                              | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Bromoform                                                                         | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Bromomethane                                                                      | NS   | NS           | 0.0019 U                                             | 0.0019 U                                                  | 0.0019 U                                                  | 0.0019 U                                                  | 0.002 U                                                    |  |
| Carbon Disulfide                                                                  | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Carbon Tetrachloride                                                              | 0.76 | 2.4          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Chlorobenzene                                                                     | 1.1  | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Chloroethane                                                                      | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Chloroform                                                                        | 0.37 | 49           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Chloromethane                                                                     | NS   | NS NS        | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Cis-1,2-Dichloroethylene                                                          | 0.25 | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Cis-1,3-Dichloropropene                                                           | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
|                                                                                   | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 |                                                            |  |
| Cyclohexane                                                                       |      | NS           |                                                      |                                                           |                                                           |                                                           | 0.001 U                                                    |  |
| Dibromochloromethane                                                              | NS   |              | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Dichlorodifluoromethane                                                           | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Ethylbenzene                                                                      | 1    | 41           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Isopropylbenzene (Cumene)                                                         | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| M,P-Xylenes                                                                       | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Methyl Acetate                                                                    | NS   | NS           | 0.0048 U                                             | 0.0048 U                                                  | 0.0046 U                                                  | 0.0047 U                                                  | 0.0051 U                                                   |  |
| Methyl Ethyl Ketone (2-Butanone)                                                  | 0.12 | 100          | 0.0048 U                                             | 0.0048 U                                                  | 0.0046 U                                                  | 0.0047 U                                                  | 0.0051 U                                                   |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)                                     |      | NS           | 0.0048 U                                             | 0.0048 U                                                  | 0.0046 U                                                  | 0.0047 U                                                  | 0.0051 U                                                   |  |
| Methylcyclohexane                                                                 | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Methylene Chloride                                                                | 0.05 | 100          | 0.0019 U                                             | 0.0019 U                                                  | 0.0019 U                                                  | 0.0019 U                                                  | 0.002 U                                                    |  |
| N-Butylbenzene                                                                    | 12   | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| N-Propylbenzene                                                                   | 3.9  | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| O-Xylene (1,2-Dimethylbenzene)                                                    | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Sec-Butylbenzene                                                                  | 11   | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Styrene                                                                           | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| T-Butylbenzene                                                                    | 5.9  | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Tert-Butyl Methyl Ether                                                           | 0.93 | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Tetrachloroethylene (PCE)                                                         | 1.3  | 19           | 0.00075 J                                            | 0.00096 U                                                 | 0.002                                                     | 0.0018                                                    | 0.012                                                      |  |
| Toluene                                                                           | 0.7  | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Trans-1,2-Dichloroethene                                                          | 0.19 | 100          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Trans-1,3-Dichloropropene                                                         | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Trichloroethylene (TCE)                                                           | 0.47 | 21           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Trichlorofluoromethane                                                            | NS   | NS           | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
| Vinyl Chloride                                                                    | 0.02 | 0.9          | 0.00096 U                                            | 0.00096 U                                                 | 0.00093 U                                                 | 0.00095 U                                                 | 0.001 U                                                    |  |
|                                                                                   | 0.26 | 100          | 0.0019 U                                             | 0.0019 U                                                  | 0.0019 U                                                  | 0.0019 U                                                  | 0.002 U                                                    |  |

# Table 2 22-60 46th Street Queens, New York Post-Excavation Soil Endpoint Sample Analytical Results

Volatile Organic Compounds (VOCs)

| Volatile Organic Compounds (VOCs)             |              |                                                     |                                              |                                              |                                              |                                              |                                              |  |  |  |
|-----------------------------------------------|--------------|-----------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|--|--|
|                                               | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled | EP-19_20220509<br>460-257822-11<br>5/09/2022 | EP-20_20220509<br>460-257822-12<br>5/09/2022 | EP-21_20220509<br>460-257822-15<br>5/09/2022 | EP-22_20220509<br>460-257822-16<br>5/09/2022 | EP-23_20220509<br>460-257822-17<br>5/09/2022 |  |  |  |
|                                               |              | Unit                                                | mg/kg                                        | mg/kg                                        | mg/kg                                        | mg/kg                                        | mg/kg                                        |  |  |  |
| Compound                                      | NYSDEC UUSCO | Dilution Factor                                     | 1<br>CONC Q                                  |  |  |  |
| 1.1.1-Trichloroethane                         | 0.68         | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,1,2,2-Tetrachloroethane                     | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane         | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,1,2-Trichloroethane                         | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,1-Dichloroethane                            | 0.27         | 26                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,1-Dichloroethene                            | 0.33         | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1.2.3-Trichlorobenzene                        | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2,4-Trichlorobenzene                        | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2,4-Trimethylbenzene                        | 3.6          | 52                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2-Dibromo-3-Chloropropane                   | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2-Dibromoethane (Ethylene Dibromide)        | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2-Dichlorobenzene                           | 1.1          | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2-Dichloroethane                            | 0.02         | 3.1                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,2-Dichloropropane                           | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,3,5-Trimethylbenzene (Mesitylene)           | 8.4          | 52                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,3-Dichlorobenzene                           | 2.4          | 49                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 1,4-Dichlorobenzene                           | 1.8          | 13                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 2-Hexanone                                    | NS           | NS                                                  | 0.0047 U                                     | 0.0051 U                                     | 0.0056 U                                     | 0.0064 U                                     | 0.0046 U                                     |  |  |  |
| Acetone                                       | 0.05         | 100                                                 | 0.0056 U                                     | 0.0061 U                                     | 0.0067 U                                     | 0.0077 U                                     | 0.0055 U                                     |  |  |  |
| Benzene                                       | 0.06         | 4.8                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Bromochloromethane                            | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Bromodichloromethane                          | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Bromoform                                     | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Bromomethane                                  | NS           | NS                                                  | 0.0019 U                                     | 0.002 U                                      | 0.0022 U                                     | 0.0026 U                                     | 0.0018 U                                     |  |  |  |
| Carbon Disulfide                              | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Carbon Tetrachloride                          | 0.76         | 2.4                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Chlorobenzene                                 | 1.1          | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Chloroethane                                  | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Chloroform                                    | 0.37         | 49                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Chloromethane                                 | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Cis-1,2-Dichloroethylene                      | 0.25         | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Cis-1,3-Dichloropropene                       | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Cyclohexane                                   | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Dibromochloromethane                          | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Dichlorodifluoromethane                       | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Ethylbenzene                                  | 1            | 41                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Isopropylbenzene (Cumene)                     | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| M,P-Xylenes                                   | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Methyl Acetate                                | NS           | NS                                                  | 0.0047 U                                     | 0.0051 U                                     | 0.0056 U                                     | 0.0064 U                                     | 0.0046 U                                     |  |  |  |
| Methyl Ethyl Ketone (2-Butanone)              | 0.12<br>NS   | 100<br>NS                                           | 0.0047 U<br>0.0047 U                         | 0.0051 U<br>0.0051 U                         | 0.0056 U<br>0.0056 U                         | 0.0064 U<br>0.0064 U                         | 0.0046 U<br>0.0046 U                         |  |  |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | NS<br>NS     | NS<br>NS                                            | 0.0047 U<br>0.00094 U                        | 0.0051 U<br>0.001 U                          | 0.0056 U<br>0.0011 U                         | 0.0064 U<br>0.0013 U                         | 0.0046 U<br>0.00091 U                        |  |  |  |
| Methylcyclohexane<br>Methylene Chloride       | 0.05         | NS<br>100                                           | 0.00094 U<br>0.0019 U                        | 0.001 U<br>0.002 U                           | 0.0011 0<br>0.0022 U                         | 0.0013 U<br>0.0026 U                         | 0.00091 U<br>0.0018 U                        |  |  |  |
| N-Butylbenzene                                | 12           | 100                                                 | 0.00094 U                                    | 0.002 U<br>0.001 U                           | 0.0022 0<br>0.0011 U                         | 0.0026 0<br>0.0013 U                         | 0.0018 U<br>0.00091 U                        |  |  |  |
| N-Butylbenzene<br>N-Propylbenzene             | 3.9          | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| 0-Xylene (1,2-Dimethylbenzene)                | NS           | NS                                                  | 0.00094 U<br>0.00094 U                       | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Sec-Butylbenzene                              | 11           | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Styrene                                       | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| T-Butylbenzene                                | 5.9          | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Tert-Butyl Methyl Ether                       | 0.93         | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Tetrachloroethylene (PCE)                     | 1.3          | 19                                                  | 0.0038                                       | 0.001 0                                      | 0.0019                                       | 0.0013 0                                     | 0.0042                                       |  |  |  |
| Toluene                                       | 0.7          | 100                                                 | 0.00094 U                                    | 0.0028<br>0.001 U                            | 0.0019<br>0.0011 U                           | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Trans-1,2-Dichloroethene                      | 0.19         | 100                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Trans-1,3-Dichloropropene                     | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Trichloroethylene (TCE)                       | 0.47         | 21                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Trichlorofluoromethane                        | NS           | NS                                                  | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Vinyl Chloride                                | 0.02         | 0.9                                                 | 0.00094 U                                    | 0.001 U                                      | 0.0011 U                                     | 0.0013 U                                     | 0.00091 U                                    |  |  |  |
| Xylenes, Total                                | 0.26         | 100                                                 | 0.0019 U                                     | 0.002 U                                      | 0.0022 U                                     | 0.0015 U                                     | 0.0018 U                                     |  |  |  |

# Table 2 22-60 46th Street Queens, New York Post-Excavation Soil Endpoint Sample Analytical Results

Volatile Organic Compounds (VOCs)

| 1                                              |              |                                         | Volatile Organic Co             |                                 |                                |                                 |                                |
|------------------------------------------------|--------------|-----------------------------------------|---------------------------------|---------------------------------|--------------------------------|---------------------------------|--------------------------------|
|                                                | Lab          | AKRF Sample ID<br>oratory Sample ID     | EP-24_20220509<br>460-257822-18 | EP-25_20220509<br>460-257822-19 | EP-26_20220513<br>460-258122-1 | EP-X03_20220513<br>460-258122-2 | EP-27_20220513<br>460-258122-8 |
|                                                |              | Date Sampled<br>Unit<br>Dilution Factor | 5/09/2022<br>mg/kg<br>1         | 5/09/2022<br>mg/kg<br>1         | 5/13/2022<br>mg/kg<br>1        | 5/13/2022<br>mg/kg<br>1         | 5/13/2022<br>mg/kg<br>1        |
| Compound                                       | NYSDEC UUSCO | NYSDEC RRSCO                            |                                 |                                 |                                |                                 |                                |
| 1,1,1-Trichloroethane                          | 0.68         | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| 1,1,2,2-Tetrachloroethane                      | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane          | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,1,2-Trichloroethane                          | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,1-Dichloroethane                             | 0.27         | 26                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 UJ                      |
| 1,1-Dichloroethene                             | 0.33         | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2,3-Trichlorobenzene                         | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2,4-Trichlorobenzene                         | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| 1,2,4-Trimethylbenzene                         | 3.6          | 52                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2-Dibromo-3-Chloropropane                    | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2-Dibromoethane (Ethylene Dibromide)         | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2-Dichlorobenzene                            | 1.1          | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,2-Dichloroethane                             | 0.02         | 3.1                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 UJ                      |
| 1,2-Dichloropropane                            | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| 1,3,5-Trimethylbenzene (Mesitylene)            | 8.4          | 52<br>49                                | 0.0011 U<br>0.0011 U            | 0.00094 U<br>0.00094 U          | 0.0014 U<br>0.0014 U           | 0.0012 U<br>0.0012 U            | 0.0012 U<br>0.0012 U           |
| 1,3-Dichlorobenzene<br>1,4-Dichlorobenzene     | 1.8          | 49<br>13                                | 0.0011 U<br>0.0011 U            | 0.00094 U<br>0.00094 U          | 0.0014 U<br>0.0014 U           | 0.0012 U<br>0.0012 U            | 0.0012 U<br>0.0012 U           |
| 1,4-Dichlorobenzene<br>2-Hexanone              | 1.8<br>NS    | 13<br>NS                                | 0.0011 U<br>0.0056 U            | 0.00094 U<br>0.0047 U           | 0.0014 U<br>0.0071 U           | 0.0012 U<br>0.0062 U            | 0.0012 U<br>0.0062 U           |
| Acetone                                        | 0.05         | 100                                     | 0.0058 U<br>0.0067 U            | 0.0047 0<br>0.0056 U            | 0.0086 U                       | 0.0074 U                        | 0.0002 U<br>0.0074 U           |
| Benzene                                        | 0.06         | 4.8                                     | 0.0001 U                        | 0.00094 U                       | 0.0014 U                       | 0.0014 U                        | 0.0014 U                       |
| Bromochloromethane                             | NS           | NS NS                                   | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Bromodichloromethane                           | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| Bromoform                                      | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| Bromomethane                                   | NS           | NS                                      | 0.0022 U                        | 0.0019 U                        | 0.0029 U                       | 0.0025 U                        | 0.0025 U                       |
| Carbon Disulfide                               | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Carbon Tetrachloride                           | 0.76         | 2.4                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| Chlorobenzene                                  | 1.1          | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Chloroethane                                   | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Chloroform                                     | 0.37         | 49                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Chloromethane                                  | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Cis-1,2-Dichloroethylene                       | 0.25         | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Cis-1,3-Dichloropropene                        | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Cyclohexane                                    | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Dibromochloromethane                           | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Dichlorodifluoromethane                        | <u>NS</u>    | NS<br>41                                | 0.0011 U<br>0.0011 U            | 0.00094 U<br>0.00094 U          | 0.0014 U<br>0.0014 U           | 0.0012 U<br>0.0012 U            | 0.0012 U<br>0.0012 U           |
| Ethylbenzene<br>Isopropylbenzene (Cumene)      | NS           | A1<br>NS                                | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| M,P-Xylenes                                    | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Methyl Acetate                                 | NS           | NS                                      | 0.0056 U                        | 0.00094 U<br>0.0047 U           | 0.0014 0<br>0.0071 U           | 0.0012 U                        | 0.0012 U                       |
| Methyl Ethyl Ketone (2-Butanone)               | 0.12         | 100                                     | 0.0056 U                        | 0.0047 U                        | 0.0071 U                       | 0.0062 U                        | 0.0062 U                       |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone   |              | NS                                      | 0.0056 U                        | 0.0047 U                        | 0.0071 U                       | 0.0062 U                        | 0.0062 U                       |
| Methylcyclohexane                              | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Methylene Chloride                             | 0.05         | 100                                     | 0.0022 U                        | 0.0019 U                        | 0.0029 U                       | 0.0025 U                        | 0.0025 U                       |
| N-Butylbenzene                                 | 12           | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| N-Propylbenzene                                | 3.9          | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| O-Xylene (1,2-Dimethylbenzene)                 | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Sec-Butylbenzene                               | 11           | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Styrene                                        | NS           | NS                                      | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| T-Butylbenzene                                 | 5.9          | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Tert-Butyl Methyl Ether                        | 0.93         | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 UJ                      | 0.0012 UJ                       | 0.0012 U                       |
| Tetrachloroethylene (PCE)                      | 1.3          | 19                                      | 0.0029                          | 0.0023                          | 0.0091 JL                      | 0.0027 JL                       | 0.015                          |
| Toluene                                        | 0.7          | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Trans-1,2-Dichloroethene                       | 0.19         | 100                                     | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Trans-1,3-Dichloropropene                      | NS<br>0.47   | NS<br>24                                | 0.0011 U                        | 0.00094 U                       | 0.0014 U                       | 0.0012 U                        | 0.0012 U                       |
| Trichloroethylene (TCE) Trichlorofluoromethane | 0.47         | 21<br>NS                                | 0.0011 U<br>0.0011 U            | 0.00094 U<br>0.00094 U          | 0.0014 U<br>0.0014 U           | 0.0012 U<br>0.0012 U            | 0.0012 U<br>0.0012 U           |
| Vinyl Chloride                                 | NS<br>0.02   | NS<br>0.9                               | 0.0011 U                        | 0.00094 U<br>0.00094 U          | 0.0014 U<br>0.0014 U           | 0.0012 U<br>0.0012 U            | 0.0012 U<br>0.0012 UJ          |
|                                                |              |                                         |                                 |                                 |                                |                                 |                                |
| Xylenes, Total                                 | 0.26         | 100                                     | 0.0022 U                        | 0.0019 U                        | 0.0029 U                       | 0.0025 U                        | 0.0025 U                       |

#### Table 2 22-60 46th Street Queens, New York avation Soil Endnoint Sample Analytics

Post-Excavation Soil Endpoint Sample Analytical Results Volatile Organic Compounds (VOCs)

| Volatile Organic Compounds (VOCs)                                  |            |                                     |                                |                                |                                 |                                |                                |  |  |  |
|--------------------------------------------------------------------|------------|-------------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--|--|--|
|                                                                    | Lab        | AKRF Sample ID<br>oratory Sample ID | EP-28_20220513<br>460-258122-9 | EP-29_20220701<br>460-261267-1 | EP-X04_20220701<br>460-261267-2 | EP-30_20220701<br>460-261267-3 | EP-31_20220727<br>460-262709-1 |  |  |  |
|                                                                    |            | Date Sampled                        | 5/13/2022                      | 7/01/2022                      | 7/01/2022                       | 7/01/2022                      | 7/27/2022                      |  |  |  |
|                                                                    |            | Unit                                | mg/kg                          | mg/kg                          | mg/kg                           | mg/kg                          | mg/kg                          |  |  |  |
| Compound                                                           |            | Dilution Factor                     |                                |                                |                                 |                                |                                |  |  |  |
|                                                                    |            | NYSDEC RRSCO                        |                                |                                |                                 |                                |                                |  |  |  |
| 1,1,1-Trichloroethane                                              | 0.68       | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloro-1,2,2-Trifluoroethane | NS<br>NS   | NS<br>NS                            | 0.0014 U<br>0.0014 U           | 0.00099 U<br>0.00099 U         | 0.0011 U<br>0.0011 U            | 0.00098 U<br>0.00098 U         | 0.0011 U<br>0.0011 U           |  |  |  |
| 1,1,2-Trichloroethane                                              | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,1-Dichloroethane                                                 | 0.27       | 26                                  | 0.0014 UJ                      | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,1-Dichloroethene                                                 | 0.33       | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2,3-Trichlorobenzene                                             | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2,4-Trichlorobenzene                                             | NS         | NS                                  | 0.0014 U                       | 0.00099 UJ                     | 0.0011 UJ                       | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2,4-Trimethylbenzene                                             | 3.6        | 52                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2-Dibromo-3-Chloropropane                                        | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2-Dibromoethane (Ethylene Dibromide)                             | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2-Dichlorobenzene                                                | 1.1        | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2-Dichloroethane                                                 | 0.02       | 3.1                                 | 0.0014 UJ                      | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,2-Dichloropropane                                                | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,3,5-Trimethylbenzene (Mesitylene)                                | 8.4        | 52                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,3-Dichlorobenzene                                                | 2.4        | 49                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 1,4-Dichlorobenzene                                                | 1.8        | 13                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| 2-Hexanone                                                         | NS         | NS                                  | 0.0072 U                       | 0.005 U                        | 0.0054 U                        | 0.0049 U                       | 0.0054 U                       |  |  |  |
| Acetone                                                            | 0.05       | 100                                 | 0.0087 U                       | 0.006 U                        | 0.0064 U                        | 0.0059 U                       | 0.014                          |  |  |  |
| Benzene                                                            | 0.06       | 4.8                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Bromochloromethane                                                 | NS         | NS                                  | 0.0014 U                       | 0.00099 UJ                     | 0.0011 UJ                       | 0.00098 UJ                     | 0.0011 U                       |  |  |  |
| Bromodichloromethane                                               | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Bromoform                                                          | NS         | NS                                  | 0.0014 U                       | 0.00099 UJ                     | 0.0011 UJ                       | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Bromomethane                                                       | NS         | NS                                  | 0.0029 U                       | 0.002 UJ                       | 0.0021 UJ                       | 0.002 UJ                       | 0.0022 U                       |  |  |  |
| Carbon Disulfide                                                   | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Carbon Tetrachloride                                               | 0.76       | 2.4<br>100                          | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Chlorobenzene<br>Chloroethane                                      | 1.1<br>NS  | NS                                  | 0.0014 U<br>0.0014 U           | 0.00099 U<br>0.00099 U         | 0.0011 U<br>0.0011 U            | 0.00098 U<br>0.00098 U         | 0.0011 U<br>0.0011 U           |  |  |  |
| Chloroform                                                         | 0.37       | 49                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Chloromethane                                                      | NS         | NS 45                               | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Cis-1,2-Dichloroethylene                                           | 0.25       | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Cis-1,3-Dichloropropene                                            | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Cyclohexane                                                        | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Dibromochloromethane                                               | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Dichlorodifluoromethane                                            | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Ethylbenzene                                                       | 1          | 41                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Isopropylbenzene (Cumene)                                          | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| M,P-Xylenes                                                        | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Methyl Acetate                                                     | NS         | NS                                  | 0.0072 U                       | 0.005 U                        | 0.0054 U                        | 0.0049 U                       | 0.0054 U                       |  |  |  |
| Methyl Ethyl Ketone (2-Butanone)                                   | 0.12       | 100                                 | 0.0072 U                       | 0.005 UJ                       | 0.0054 UJ                       | 0.0049 U                       | 0.0054 U                       |  |  |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)                      |            | NS                                  | 0.0072 U                       | 0.005 U                        | 0.0054 U                        | 0.0049 U                       | 0.0054 U                       |  |  |  |
| Methylcyclohexane                                                  | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Methylene Chloride                                                 | 0.05       | 100                                 | 0.0029 U                       | 0.002 U                        | 0.0023 U                        | 0.002 U                        | 0.0022 U                       |  |  |  |
| N-Butylbenzene                                                     | 12         | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| N-Propylbenzene                                                    | 3.9        | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| O-Xylene (1,2-Dimethylbenzene)                                     | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Sec-Butylbenzene                                                   | 11         | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Styrene                                                            | NS         | NS                                  | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| T-Butylbenzene                                                     | 5.9        | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Tert-Butyl Methyl Ether                                            | 0.93       | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Tetrachloroethylene (PCE)                                          | 1.3        | 19                                  | 0.0027                         | 0.00042 J                      | 0.0017 JK                       | 0.0005 J                       | 0.0011 U                       |  |  |  |
| Toluene<br>Trans-1.2-Dichloroethene                                | 0.7        | 100                                 | 0.0014 U                       | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Trans-1,2-Dichloroethene<br>Trans-1,3-Dichloropropene              | 0.19<br>NS | 100                                 | 0.0014 U<br>0.0014 U           | 0.00099 U<br>0.00099 U         | 0.0011 U<br>0.0011 U            | 0.00098 U<br>0.00098 U         | 0.0011 U<br>0.0011 U           |  |  |  |
| Trichloroethylene (TCE)                                            | 0.47       | NS<br>21                            | 0.0014 U<br>0.0014 U           | 0.00099 U                      | 0.0011 U                        | 0.00098 U<br>0.00098 U         | 0.0011 U<br>0.0011 U           |  |  |  |
| Trichlorofluoromethane                                             | 0.47<br>NS | NS 21                               | 0.0014 U<br>0.0014 U           | 0.00099 U<br>0.00099 U         | 0.0011 U                        | 0.00098 U                      | 0.0011 U<br>0.0011 U           |  |  |  |
| Vinyl Chloride                                                     | 0.02       | 0.9                                 | 0.0014 UJ                      | 0.00099 U                      | 0.0011 U                        | 0.00098 U                      | 0.0011 U                       |  |  |  |
| Xylenes, Total                                                     | 0.02       | 100                                 | 0.0014 05<br>0.0029 U          | 0.00099 U<br>0.002 U           | 0.0011 U                        | 0.0038 U                       | 0.0011 0<br>0.0022 U           |  |  |  |
| Aylenes, I Utal                                                    | U.20       | 100                                 | 0.0029 0                       | 0.002 0                        | 0.0021 0                        | 0.002 0                        | 0.0022 0                       |  |  |  |

| Volatile Organic Compounds (VOCs)             |            |                                                     |                                              |                                             |                                             |                                              |                                             |  |  |  |
|-----------------------------------------------|------------|-----------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|--|--|--|
|                                               | Lab        | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled | EP-X05_20220727<br>460-262709-2<br>7/27/2022 | EP-32_20220727<br>460-262709-3<br>7/27/2022 | EP-33_20220811<br>460-263713-1<br>8/11/2022 | EP-X06_20220811<br>460-263713-2<br>8/11/2022 | EP-34_20220811<br>460-263713-3<br>8/11/2022 |  |  |  |
|                                               |            | Unit                                                | mg/kg                                        | mg/kg                                       | mg/kg                                       | mg/kg                                        | mg/kg                                       |  |  |  |
|                                               |            | Dilution Factor                                     | 1                                            | 1                                           | 1                                           | 1                                            | 1                                           |  |  |  |
| Compound                                      |            | NYSDEC RRSCO                                        | CONC Q                                       | CONC Q                                      | CONC Q                                      | CONC Q                                       | CONC Q                                      |  |  |  |
| 1,1,1-Trichloroethane                         | 0.68       | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,1,2,2-Tetrachloroethane                     | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane         | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,1,2-Trichloroethane                         | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,1-Dichloroethane                            | 0.27       | 26<br>100                                           | 0.0013 U<br>0.0013 U                         | 0.001 U<br>0.001 U                          | 0.00099 U<br>0.00099 U                      | 0.00094 U<br>0.00094 U                       | 0.0011 U<br>0.0011 U                        |  |  |  |
| 1,1-Dichloroethene<br>1.2.3-Trichlorobenzene  | 0.33<br>NS | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1.2.4-Trichlorobenzene                        | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1.2.4-Trimethylbenzene                        | 3.6        | 52                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,2-Dibromo-3-Chloropropane                   | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,2-Dibromoethane (Ethylene Dibromide)        | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,2-Dichlorobenzene                           | 1.1        | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,2-Dichloroethane                            | 0.02       | 3.1                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,2-Dichloropropane                           | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,3,5-Trimethylbenzene (Mesitylene)           | 8.4        | 52                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,3-Dichlorobenzene                           | 2.4        | 49                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 1,4-Dichlorobenzene                           | 1.8        | 13                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| 2-Hexanone                                    | NS         | NS                                                  | 0.0067 U                                     | 0.0051 U                                    | 0.0049 U                                    | 0.0047 U                                     | 0.0057 U                                    |  |  |  |
| Acetone                                       | 0.05       | 100                                                 | 0.022                                        | 0.0061 U                                    | 0.0059 U                                    | 0.0057 U                                     | 0.0068 U                                    |  |  |  |
| Benzene                                       | 0.06       | 4.8                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Bromochloromethane                            | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Bromodichloromethane                          | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Bromoform                                     | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Bromomethane                                  | NS         | NS                                                  | 0.0027 U                                     | 0.002 U                                     | 0.002 U                                     | 0.0019 U                                     | 0.0023 U                                    |  |  |  |
| Carbon Disulfide                              | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Carbon Tetrachloride                          | 0.76       | 2.4                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Chlorobenzene                                 | 1.1        | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Chloroethane<br>Chloroform                    | NS<br>0.37 | NS<br>49                                            | 0.0013 U<br>0.0013 U                         | 0.001 U<br>0.001 U                          | 0.00099 U<br>0.00099 U                      | 0.00094 U<br>0.00094 U                       | 0.0011 U<br>0.0011 U                        |  |  |  |
| Chloromethane                                 | 0.37<br>NS | 49<br>NS                                            | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Cis-1,2-Dichloroethylene                      | 0.25       | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Cis-1,3-Dichloropropene                       | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Cvclohexane                                   | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Dibromochloromethane                          | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Dichlorodifluoromethane                       | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Ethylbenzene                                  | 1          | 41                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Isopropylbenzene (Cumene)                     | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| M,P-Xylenes                                   | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Methyl Acetate                                | NS         | NS                                                  | 0.0067 U                                     | 0.0051 U                                    | 0.0049 U                                    | 0.0047 U                                     | 0.0057 U                                    |  |  |  |
| Methyl Ethyl Ketone (2-Butanone)              | 0.12       | 100                                                 | 0.0067 U                                     | 0.0051 U                                    | 0.0049 U                                    | 0.0047 U                                     | 0.0057 U                                    |  |  |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | NS         | NS                                                  | 0.0067 U                                     | 0.0051 U                                    | 0.0049 U                                    | 0.0047 U                                     | 0.0057 U                                    |  |  |  |
| Methylcyclohexane                             | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Methylene Chloride                            | 0.05       | 100                                                 | 0.0027 U                                     | 0.002 U                                     | 0.002 U                                     | 0.0019 U                                     | 0.0023 U                                    |  |  |  |
| N-Butylbenzene                                | 12         | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| N-Propylbenzene                               | 3.9        | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| O-Xylene (1,2-Dimethylbenzene)                | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Sec-Butylbenzene                              | 11         | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Styrene                                       | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| T-Butylbenzene                                | 5.9        | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Tert-Butyl Methyl Ether                       | 0.93       | 100                                                 | 0.0013 U                                     | 0.001 U<br>0.00092 J                        | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Tetrachloroethylene (PCE)                     | 1.3        | 19                                                  | 0.0013 U                                     |                                             | 0.00099 U                                   | 0.00094 U                                    | 0.00056 J                                   |  |  |  |
| Toluene<br>Trans-1,2-Dichloroethene           | 0.7        | 100<br>100                                          | 0.0013 U<br>0.0013 U                         | 0.001 U<br>0.001 U                          | 0.00099 U<br>0.00099 U                      | 0.00094 U<br>0.00094 U                       | 0.0011 U<br>0.0011 U                        |  |  |  |
| Trans-1,2-Dichloropene                        | 0.19<br>NS | 100<br>NS                                           | 0.0013 U<br>0.0013 U                         | 0.001 U                                     | 0.00099 U                                   | 0.00094 U<br>0.00094 U                       | 0.0011 U                                    |  |  |  |
| Trichloroethylene (TCE)                       | 0.47       | 21                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Trichlorofluoromethane                        | NS         | NS                                                  | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Vinyl Chloride                                | 0.02       | 0.9                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.00094 U                                    | 0.0011 U                                    |  |  |  |
| Xylenes, Total                                | 0.26       | 100                                                 | 0.0013 U                                     | 0.001 U                                     | 0.00099 U                                   | 0.0019 U                                     | 0.0023 U                                    |  |  |  |
| Ayielies, Tulai                               | 0.20       | 100                                                 | 0.0027 0                                     | 0.002 0                                     | 0.002 0                                     | 0.0019.0                                     | 0.0023 0                                    |  |  |  |

| Volatile Organic Compounds (VOCs)             |                                                                |                 |          |          |                                                      |                                                     |                                                      |  |  |  |
|-----------------------------------------------|----------------------------------------------------------------|-----------------|----------|----------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|--|--|--|
|                                               | AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit |                 |          |          | EP-36_20220830<br>460-264635-3<br>8/30/2022<br>mg/kg | FB-01_20220425<br>460-256948-7<br>4/25/2022<br>µg/L | FB-01_20220425<br>460-256954-10<br>4/25/2022<br>μg/L |  |  |  |
| Compound                                      |                                                                | Dilution Factor | 1        |          |                                                      |                                                     |                                                      |  |  |  |
| Compound                                      |                                                                |                 | CONC Q   |          |                                                      | CONC Q                                              | CONC Q                                               |  |  |  |
| 1,1,1-Trichloroethane                         | 0.68                                                           | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u>1 U</u>                                           |  |  |  |
| 1,1,2,2-Tetrachloroethane                     | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane         | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,1,2-Trichloroethane                         | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,1-Dichloroethane                            | 0.27                                                           | 26              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,1-Dichloroethene                            | 0.33                                                           | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2,3-Trichlorobenzene                        | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2,4-Trichlorobenzene                        | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2,4-Trimethylbenzene                        | 3.6                                                            | 52              | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | <u> </u>                                             |  |  |  |
| 1,2-Dibromo-3-Chloropropane                   | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2-Dibromoethane (Ethylene Dibromide)        | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2-Dichlorobenzene                           | 1.1                                                            | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2-Dichloroethane                            | 0.02                                                           | 3.1             | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,2-Dichloropropane                           | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | <u> </u>                                             |  |  |  |
| 1,3,5-Trimethylbenzene (Mesitylene)           | 8.4                                                            | 52              | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | <u> </u>                                             |  |  |  |
| 1,3-Dichlorobenzene                           | 2.4                                                            | 49              | 0.0012 U | 0.001 U  | 0.001 U                                              | <u>1 U</u>                                          | <u> </u>                                             |  |  |  |
| 1,4-Dichlorobenzene                           | 1.8                                                            | 13              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| 2-Hexanone                                    | NS                                                             | NS              | 0.006 U  | 0.0052 U | 0.0052 U                                             | 5 U                                                 | 5 U                                                  |  |  |  |
| Acetone                                       | 0.05                                                           | 100             | 0.0072 U | 0.0063 U | 0.0062 U                                             | 5 U                                                 | 5 U                                                  |  |  |  |
| Benzene                                       | 0.06                                                           | 4.8             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Bromochloromethane                            | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Bromodichloromethane                          | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Bromoform                                     | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Bromomethane                                  | NS                                                             | NS              | 0.0024 U | 0.0021 U | 0.0021 U                                             | 1 U                                                 | 1 U                                                  |  |  |  |
| Carbon Disulfide                              | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Carbon Tetrachloride                          | 0.76                                                           | 2.4             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Chlorobenzene                                 | 1.1                                                            | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Chloroethane                                  | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Chloroform                                    | 0.37                                                           | 49              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Chloromethane                                 | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Cis-1,2-Dichloroethylene                      | 0.25                                                           | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Cis-1,3-Dichloropropene                       | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Cyclohexane                                   | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Dibromochloromethane                          | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Dichlorodifluoromethane                       | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 UJ                                                 |  |  |  |
| Ethylbenzene                                  | 1                                                              | 41              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Isopropylbenzene (Cumene)                     | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| M,P-Xylenes                                   | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Methyl Acetate                                | NS                                                             | NS              | 0.006 U  | 0.0052 U | 0.0052 U                                             | 5 U                                                 | 5 U                                                  |  |  |  |
| Methyl Ethyl Ketone (2-Butanone)              | 0.12                                                           | 100             | 0.006 U  | 0.0052 U | 0.0052 U                                             | 5 U                                                 | 5 U                                                  |  |  |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone) | NS                                                             | NS              | 0.006 U  | 0.0052 U | 0.0052 U                                             | 5 U                                                 | 5 U                                                  |  |  |  |
| Methylcyclohexane                             | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Methylene Chloride                            | 0.05                                                           | 100             | 0.0024 U | 0.0021 U | 0.0021 U                                             | 1 U                                                 | 1 U                                                  |  |  |  |
| N-Butylbenzene                                | 12                                                             | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | 1 U                                                  |  |  |  |
| N-Propylbenzene                               | 3.9                                                            | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | 1 U                                                  |  |  |  |
| O-Xylene (1,2-Dimethylbenzene)                | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Sec-Butylbenzene                              | 11                                                             | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | 1 U                                                  |  |  |  |
| Styrene                                       | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| T-Butylbenzene                                | 5.9                                                            | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | NR                                                  | 1 U                                                  |  |  |  |
| Tert-Butyl Methyl Ether                       | 0.93                                                           | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Tetrachloroethylene (PCE)                     | 1.3                                                            | 100             | 0.0012 U | 0.0009 J | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Toluene                                       | 0.7                                                            | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Trans-1,2-Dichloroethene                      | 0.19                                                           | 100             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Trans-1,3-Dichloropropene                     | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Trichloroethylene (TCE)                       | 0.47                                                           | 21              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Trichlorofluoromethane                        | NS                                                             | NS              | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
| Vinyl Chloride                                | 0.02                                                           | 0.9             | 0.0012 U | 0.001 U  | 0.001 U                                              | 1 U                                                 | 1 U                                                  |  |  |  |
|                                               |                                                                | 100             |          |          |                                                      | 2 U                                                 | 1 U                                                  |  |  |  |
| Xylenes, Total                                | 0.26                                                           | 100             | 0.0024 U | 0.0021 U | 0.0021 U                                             | 20                                                  | 20                                                   |  |  |  |

| Volatile Organic Compounds (VOCs)           AKRF Sample ID         FB-01_20220509         FB-01_20220513         FB-01_20220701         FB-01_20220727         FB-01_20220811 |                                                                |                 |                   |                   |                                                     |                                                     |                                                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------|-------------------|-------------------|-----------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|--|--|--|
|                                                                                                                                                                               | AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit |                 |                   |                   | FB-01_20220701<br>460-261267-4<br>7/01/2022<br>μg/L | FB-01_20220727<br>460-262709-4<br>7/27/2022<br>μg/L | FB-01_20220811<br>460-263713-4<br>8/11/2022<br>µg/L |  |  |  |
|                                                                                                                                                                               |                                                                | Dilution Factor | μg/L<br>1         | μg/L<br>1         | 1                                                   | 1                                                   | 1                                                   |  |  |  |
| Compound                                                                                                                                                                      | NYSDEC UUSCO                                                   | NYSDEC RRSCO    | CONC Q            | CONC Q            | CONC Q                                              | CONC Q                                              | CONC Q                                              |  |  |  |
| 1,1,1-Trichloroethane                                                                                                                                                         | 0.68                                                           | 100             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                     | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                                                                                                         | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,1,2-Trichloroethane                                                                                                                                                         | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,1-Dichloroethane                                                                                                                                                            | 0.27                                                           | 26              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,1-Dichloroethene                                                                                                                                                            | 0.33                                                           | 100             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,2,3-Trichlorobenzene                                                                                                                                                        | NS                                                             | NS              | 1 UJ              | 1 UJ              | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,2,4-Trichlorobenzene                                                                                                                                                        | NS                                                             | NS              | <u>1 U</u>        | 10                | 1 U                                                 | <u> </u>                                            | <u>1 U</u>                                          |  |  |  |
| 1,2,4-Trimethylbenzene                                                                                                                                                        | 3.6                                                            | 52              | <u>1 U</u>        | 10                | 1 U                                                 | <u> </u>                                            | <u>1 U</u>                                          |  |  |  |
| 1,2-Dibromo-3-Chloropropane                                                                                                                                                   | NS                                                             | NS              | <u>1 U</u>        | 10                | <u>1 U</u>                                          | <u> </u>                                            | <u>1 UT</u>                                         |  |  |  |
| 1,2-Dibromoethane (Ethylene Dibromide)                                                                                                                                        | NS                                                             | NS              | <u>1 U</u>        | 10                | <u>1 U</u>                                          | <u>1 U</u>                                          | <u>1 U</u>                                          |  |  |  |
| 1,2-Dichlorobenzene                                                                                                                                                           | 1.1                                                            | 100             | <u>1 U</u>        | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,2-Dichloroethane                                                                                                                                                            | 0.02<br>NS                                                     | 3.1<br>NS       | <u>1 U</u><br>1 U | <u>1 U</u><br>1 U | 1 U<br>1 U                                          | <u> </u>                                            | <u>1 U</u><br>1 U                                   |  |  |  |
| 1,2-Dichloropropane<br>1,3,5-Trimethylbenzene (Mesitylene)                                                                                                                    | 8.4                                                            | NS<br>52        | <u> </u>          | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,3-Dichlorobenzene                                                                                                                                                           | 2.4                                                            |                 | <u> </u>          | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| 1,4-Dichlorobenzene                                                                                                                                                           | 1.8                                                            | 13              | 1 U               | 10                | 1 U                                                 | 1 U                                                 | 10                                                  |  |  |  |
| 2-Hexanone                                                                                                                                                                    | NS                                                             | NS              | 5 U               | 5 U               | 5 U                                                 | 5 U                                                 | 5 U                                                 |  |  |  |
| Acetone                                                                                                                                                                       | 0.05                                                           | 100             | 20 JK             | 5 U               | 5 U                                                 | 5 U                                                 | 5 U                                                 |  |  |  |
| Benzene                                                                                                                                                                       | 0.06                                                           | 4.8             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Bromochloromethane                                                                                                                                                            | NS                                                             | NS              | 10                | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Bromodichloromethane                                                                                                                                                          | NS                                                             | NS              | 1 U               | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Bromoform                                                                                                                                                                     | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Bromomethane                                                                                                                                                                  | NS                                                             | NS              | 1 U               | 1 U               | 1 UJ                                                | 1 U                                                 | 1 U                                                 |  |  |  |
| Carbon Disulfide                                                                                                                                                              | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Carbon Tetrachloride                                                                                                                                                          | 0.76                                                           | 2.4             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Chlorobenzene                                                                                                                                                                 | 1.1                                                            | 100             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Chloroethane                                                                                                                                                                  | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Chloroform                                                                                                                                                                    | 0.37                                                           | 49              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Chloromethane                                                                                                                                                                 | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Cis-1,2-Dichloroethylene                                                                                                                                                      | 0.25                                                           | 100             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Cis-1,3-Dichloropropene                                                                                                                                                       | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Cyclohexane                                                                                                                                                                   | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Dibromochloromethane                                                                                                                                                          | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Dichlorodifluoromethane                                                                                                                                                       | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Ethylbenzene                                                                                                                                                                  | 1                                                              | 41              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Isopropylbenzene (Cumene)                                                                                                                                                     | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| M,P-Xylenes                                                                                                                                                                   | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Methyl Acetate                                                                                                                                                                | NS                                                             | NS              | 5 U               | 5 U               | 5 U                                                 | 5 U                                                 | 5 U                                                 |  |  |  |
| Methyl Ethyl Ketone (2-Butanone)                                                                                                                                              | 0.12                                                           | 100             | 5 U               | 5 U               | 5 U                                                 | 5 U                                                 | 5 U                                                 |  |  |  |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)                                                                                                                                 |                                                                | NS              | <u>5 U</u>        | 5 U               | 5 U                                                 | 5 U                                                 | <u>5 U</u>                                          |  |  |  |
| Methylcyclohexane                                                                                                                                                             | NS                                                             | NS              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Methylene Chloride                                                                                                                                                            | 0.05                                                           | 100<br>100      | 0.38 JK<br>1 U    | <u>1 U</u><br>1 U | 1 U<br>1 U                                          | <u> </u>                                            | 0.8 J<br>1 U                                        |  |  |  |
| N-Butylbenzene                                                                                                                                                                | 12                                                             |                 | 1 U<br>1 U        | 1 U<br>1 U        | 1 U<br>1 U                                          | -                                                   | 1 U<br>1 U                                          |  |  |  |
| N-Propylbenzene                                                                                                                                                               | 3.9<br>NS                                                      | 100<br>NS       | <u> </u>          | 10<br>1U          | 1 U<br>1 U                                          | <u> </u>                                            | 1 U<br>1 U                                          |  |  |  |
| O-Xylene (1,2-Dimethylbenzene)<br>Sec-Butylbenzene                                                                                                                            | <u>NS</u><br>11                                                | 100             | <u> </u>          | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Styrene                                                                                                                                                                       | NS                                                             | NS              | <u> </u>          | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| T-Butylbenzene                                                                                                                                                                | 5.9                                                            | 100             | <u> </u>          | 1 U               | 1 U                                                 | <u> </u>                                            | 1 U                                                 |  |  |  |
| Tert-Butyl Methyl Ether                                                                                                                                                       | 0.93                                                           | 100             | <u> </u>          | 1 UJ              | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Tetrachloroethylene (PCE)                                                                                                                                                     | 1.3                                                            | 19              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Toluene                                                                                                                                                                       | 0.7                                                            | 19              | <u> </u>          | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Trans-1,2-Dichloroethene                                                                                                                                                      | 0.19                                                           | 100             | <u> </u>          | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Trans-1,3-Dichloropropene                                                                                                                                                     | NS                                                             | NS              | <u> </u>          | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Trichloroethylene (TCE)                                                                                                                                                       | 0.47                                                           | 21              | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Trichlorofluoromethane                                                                                                                                                        | NS                                                             | NS              | 1 U               | 10                | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Vinyl Chloride                                                                                                                                                                | 0.02                                                           | 0.9             | 1 U               | 1 U               | 1 U                                                 | 1 U                                                 | 1 U                                                 |  |  |  |
| Xylenes, Total                                                                                                                                                                | 0.26                                                           | 100             | 2 U               | 1 U               | 2 U                                                 | 2 U                                                 | 2 U                                                 |  |  |  |
| Ayienes, iotai                                                                                                                                                                | 0.20                                                           |                 | 20                | 10                | 20                                                  | 20                                                  | 20                                                  |  |  |  |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit         FB-01_20220420<br>480-28684-8<br>307022         TB-01_20220425<br>480-28684-8<br>307022         TB-01_20220425<br>480-28684-8<br>307022         TB-01_20220425<br>482-28084-8<br>4252022         TB-01_20220425<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050         TB-01_2022050         TB-01_2022050<br>4252022         TB-01_2022050<br>4252022         TB-01_2022050         TB-01_2022050         TB-01_2022050         TB-01_2022050         TB-01_202050         TB-01_2022050         TB-01_202050         TB-01_2 | TB-01_20220513<br>460-258122-16<br>5/13/2022<br>µg/L<br>1<br>CONC Q<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>CONC Q<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U                                                         |
| Compound         NYSDEC UUSCO         NYSDEC RRSCO         CONC Q         IU         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONC Q<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U                                                              |
| 11.1-Trichioroethane         0.68         100         1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U                                                          |
| 1,2,2-transchloroethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 UJ<br>1 U<br>1 U                                                                |
| 1,2-Trichioro-1,2.2-Triffuoroethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U <t< th=""><th>1 U<br/>1 U<br/>1 U<br/>1 U<br/>1 U<br/>1 UJ<br/>1 UJ</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 U<br>1 U<br>1 U<br>1 U<br>1 U<br>1 UJ<br>1 UJ                                                                             |
| 1,1,2-richlorosethane         NS         NS         1 U         1 U         1 U         1 U           1,1-Dichlorosethane         0,33         100         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 U<br>1 U<br>1 U<br>1 U<br>1 UJ<br>1 U                                                                                     |
| 1-Dickloroethene         0.27         26         1 U         1 U         1 U         1 U           1-Dickloroethene         0.33         100         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 U<br>1 U<br>1 UJ<br>1 U                                                                                                   |
| 11-Dichbroethene         0.33         100         1 U         1 U         1 U         1 U         1 U         1 U           12.3-Trichhorobenzene         NS         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 U<br>1 UJ<br>1 U                                                                                                          |
| 12.3-Trichlorobenzene         NS         NS         1U         1U         1U         1U         1U         1U           12.4-Trichtorobenzene         3.6         52         1U         NR         1U         1U <th>1 UJ<br/>1 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 UJ<br>1 U                                                                                                                 |
| 12.4-Trichlorobenzene         NS         NS         1U         1U </th <th>1 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 U                                                                                                                         |
| 12.4.Trimethylbenzene         3.6         52         1.U         NR         1.U         1.U         1.U           12.Dibrome3-Chloropropane         NS         NS         1.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                             |
| 12-Dibromo-3-Chloropropane         NS         NS         1U         1U <th< th=""><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                             |
| 12-Dibromoethane (Ethylene Dibromide)         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                                                                                                         |
| 12-Dichlorobenzene         1.1         100         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| 1.2-Dichloroethane         0.02         3.1         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 U                                                                                                                         |
| 12.Dichloropropane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 U                                                                                                                         |
| 1.3.5-trimethylbenzene (Mesitylene)         8.4         52         1 U         NR         1 U         1 U         1 U           1.3.Dichlorobenzene         2.4         49         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U <th>1 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 U                                                                                                                         |
| 1.3-Dichlorobenzene         2.4         49         1.U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| 1.4-Dichlorobenzene         1.8         13         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| 2-Hexanone         NS         NS         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| 2-Hexanone         NS         NS         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| Acetone         0.05         100         5 U         5 U         5 U         5 U           Benzene         0.06         4.8         1 U         1 U         1 U         1 U         1 U           Bromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Bromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Bromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Bromochrane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Bromoethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5 U                                                                                                                         |
| Benzene         0.06         4.8         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 U                                                                                                                         |
| Bromodichloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| Bromodichloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10                                                                                                                          |
| Bromoform         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                          |
| Bromomethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 U                                                                                                                         |
| Carbon Disulfide         NS         NS         1 U         1 U         1 U         1 U         1 U           Carbon Tetrachloride         0.76         2.4         1 U         1 U         1 U         1 U         1 U           Chlorobenzene         1.1         100         1 U         1 U         1 U         1 U         1 U         1 U           Chlorothane         NS         NS         NS         1 U         1 U         1 U         1 U         1 U           Chlorothane         NS         NS         NS         1 U         1 U         1 U         1 U         1 U           Chlorothane         NS         NS         1 U         1 U         1 U         1 U         1 U           Chloromethane         NS         NS         1 U         1 U         1 U         1 U           Chloromethane         NS         NS         1 U         1 U         1 U         1 U           Chlorothylene         0.25         100         1 U         1 U         1 U         1 U           Cis-1,3-Dichloropropene         NS         NS         1 U         1 U         1 U         1 U           Dibromochloromethane         NS         NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| Carbon Tetrachloride         0.76         2.4         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 U                                                                                                                         |
| Chlorobenzene         1.1         100         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                                                                                                                          |
| Chloroethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                                                                                                          |
| Chloroform         0.37         49         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 U                                                                                                                         |
| Chloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Cis-1,2-Dichloroethylene         0.25         100         1 U         1 U         1 U         1 U         1 U           Cis-1,3-Dichloropropene         NS         NS         1 U         1 U         1 U         1 U         1 U           Cyclohexane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dibromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Ethylbenzene         1         41         1 U         1 U         1 U         1 U         1 U           M,P-Xylenes         NS         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 U                                                                                                                         |
| Cis-1,2-Dichloroethylene         0.25         100         1 U         1 U         1 U         1 U         1 U           Cis-1,3-Dichloropropene         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Cyclohexane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Dibromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Ethylbenzene         1         41         1 U         1 U         1 U         1 U         1 U           MS         NS         1 U         1 U         1 U         1 U         1 U           Biopropylbenzene (Cumene)         NS         NS         1 U         1 U         1 U         1 U           M,P-Xylenes         NS         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 U                                                                                                                         |
| Cis-1,3-Dichloropropene         NS         NS         1 U         1 U         1 U         1 U         1 U           Cyclohexane         NS         NS         NS         1 U         1 U         1 U         1 U         1 U           Dibromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dichlorodifluoromethane         NS         NS         1 U         1 U         1 U         1 U         1 U           Ethylbenzene         1         41         1 U         1 U         1 U         1 U         1 U           Isopropylbenzene (Cumene)         NS         NS         1 U         1 U         1 U         1 U           M,P-Xylenes         NS         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u> </u>                                                                                                                    |
| Cyclohexane         NS         NS         1 U         1 U         1 U         1 U         1 U           Dibromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                                                                                                    |
| Dibromochloromethane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                                                                                                    |
| Dichlorodifluoromethane         NS         NS         1 U         1 U         1 UJ         1 U           Ethylbenzene         1         41         1 U         1 U         1 U         1 U         1 U         1 U           Isopropylbenzene (Cumene)         NS         NS         1 U         1 U         1 U         1 U         1 U           M,P-Xylenes         NS         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u> </u>                                                                                                                    |
| Ethylbenzene         1         41         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                    |
| Isopropylbenzene (Cumene)         NS         NS         1 U         1 U         1 U         1 U           M,P-Xylenes         NS         NS         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                           |
| M,P-Xylenes NS NS 1U 1U 1U 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>1 U</u>                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>1 U</u>                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>1 U</u>                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>5 U</u>                                                                                                                  |
| Methyl Ethyl Ketone (2-Butanone)         0.12         100         5 U         5 U         5 U           Methyl Lebyted Ketone (4 Methyl 2 Dentenere)         NS         NS         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 U                                                                                                                         |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)         NS         5 U         5 U         5 U         5 U           Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)         NS         NS         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U         5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>5 U</u>                                                                                                                  |
| Methylcyclohexane         NS         NS         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u>1 U</u>                                                                                                                  |
| Methylene Chloride         0.05         100         1 U         1 U         1 U         1 U           N Dut the server         40         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         400         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>1 U</u>                                                                                                                  |
| N-Butylbenzene 12 100 1 U NR 1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <u>1 U</u>                                                                                                                  |
| N-Propylbenzene 3.9 100 1 U NR 1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>1 U</u>                                                                                                                  |
| O-Xylene (1,2-Dimethylbenzene) NS NS 1U 1U 1U 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>1 U</u>                                                                                                                  |
| Sec-Butylbenzene         11         100         1 U         NR         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 U                                                                                                                         |
| Styrene         NS         1U         1U         1U         1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 U                                                                                                                         |
| T-Butylbenzene 5.9 100 1 U NR 1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 U                                                                                                                         |
| Tert-Butyl Methyl Ether         0.93         100         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 UJ                                                                                                                        |
| Tetrachloroethylene (PCE)         1.3         19         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 U                                                                                                                         |
| Toluene         0.7         100         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 U                                                                                                                         |
| Trans-1,2-Dichloroethene         0.19         100         1 UT         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 U                                                                                                                         |
| Trans-1,3-Dichloropropene         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 U                                                                                                                         |
| Trichloroethylene (TCE)         0.47         21         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                             |
| Trichlorofluoromethane         NS         NS         1 U         1 U         1 U         1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 U                                                                                                                         |
| Vinyl Chloride 0.02 0.9 1 U 1 U 1 U 1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                             |
| Xylenes, Total         0.26         100         2 U         2 U         2 U         2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 U                                                                                                                         |

|                                                   |                    | Volati                                                                         | le Organic Compounds (VO                                 |                                                          |                                                          |                                                          |
|---------------------------------------------------|--------------------|--------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|                                                   | Lab                | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | ТВ-01_20220701<br>460-261267-5<br>7/01/2022<br>µg/L<br>1 | TB-01_20220727<br>460-262709-5<br>7/27/2022<br>μg/L<br>1 | TB-01_20220811<br>460-263713-5<br>8/11/2022<br>μg/L<br>1 | TB-01_20220830<br>460-264635-5<br>8/30/2022<br>μg/L<br>1 |
| Compound                                          | NYSDEC UUSCO       | NYSDEC RRSCO                                                                   | CONC Q                                                   | CONC Q                                                   | CONC Q                                                   | CONC Q                                                   |
| 1,1,1-Trichloroethane                             | 0.68               | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
|                                                   |                    |                                                                                |                                                          |                                                          |                                                          |                                                          |
| 1,1,2,2-Tetrachloroethane                         | NS                 | NS                                                                             | <u>1 U</u>                                               | 10                                                       | 1 U                                                      | <u>1 U</u>                                               |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane             | NS                 | NS                                                                             | <u>1 U</u>                                               | 10                                                       | 1 U                                                      | <u>1 U</u><br>1 U                                        |
| 1,1,2-Trichloroethane                             | NS                 | NS                                                                             | <u>1 U</u>                                               | 10                                                       | 1 U                                                      |                                                          |
| 1,1-Dichloroethane                                | 0.27               | 26                                                                             | <u>1 U</u>                                               | 10                                                       | 1 U                                                      | <u>1 U</u>                                               |
| 1,1-Dichloroethene                                | 0.33               | 100                                                                            | <u>1 U</u>                                               | 10                                                       | 1 U                                                      | 1 U                                                      |
| 1,2,3-Trichlorobenzene                            | NS                 | NS                                                                             | 1 U                                                      | 10                                                       | 10                                                       | 1 U                                                      |
| 1,2,4-Trichlorobenzene                            | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 10                                                       | 1 U                                                      |
| 1,2,4-Trimethylbenzene                            | 3.6                | 52                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,2-Dibromo-3-Chloropropane                       | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 UT                                                     | 1 U                                                      |
| 1,2-Dibromoethane (Ethylene Dibromide)            | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,2-Dichlorobenzene                               | 1.1                | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,2-Dichloroethane                                | 0.02               | 3.1                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,2-Dichloropropane                               | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,3,5-Trimethylbenzene (Mesitylene)               | 8.4                | 52                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,3-Dichlorobenzene                               | 2.4                | 49                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 1,4-Dichlorobenzene                               | 1.8                | 13                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| 2-Hexanone                                        | NS                 | NS                                                                             | 5 U                                                      | 5 U                                                      | 5 U                                                      | 5 U                                                      |
| Acetone                                           | 0.05               | 100                                                                            | 5 U                                                      | 5 U                                                      | 5 U                                                      | 5 U                                                      |
| Benzene                                           | 0.06               | 4.8                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Bromochloromethane                                | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Bromodichloromethane                              | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Bromoform                                         | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Bromomethane                                      | NS                 | NS                                                                             | 1 UJ                                                     | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Carbon Disulfide                                  | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Carbon Tetrachloride                              | 0.76               | 2.4                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Chlorobenzene                                     | 1.1                | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Chloroethane                                      | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Chloroform                                        | 0.37               | 49                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Chloromethane                                     | NS                 | NS NS                                                                          | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Cis-1,2-Dichloroethylene                          | 0.25               | 100                                                                            | 1 U                                                      | 10                                                       | 10                                                       | 1 U                                                      |
| Cis-1,3-Dichloropropene                           | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Cyclohexane                                       | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Dibromochloromethane                              | NS                 | NS                                                                             | 1 U                                                      | 10                                                       | 1 U                                                      | 1 U                                                      |
|                                                   | NS                 | -                                                                              | <u> </u>                                                 | 10                                                       | 1 U                                                      |                                                          |
| Dichlorodifluoromethane                           |                    | NS                                                                             | -                                                        | -                                                        |                                                          | <u>1 U</u>                                               |
| Ethylbenzene                                      | 1                  | 41                                                                             | <u>1 U</u>                                               | <u>1 U</u>                                               | <u>1 U</u>                                               | <u>1 U</u>                                               |
| Isopropylbenzene (Cumene)                         | NS                 | NS                                                                             | <u>1 U</u>                                               | 1 U                                                      | <u>1 U</u>                                               | <u>1 U</u>                                               |
| M,P-Xylenes                                       | NS                 | NS                                                                             | <u>1 U</u>                                               | 10                                                       | 1 U                                                      | <u>1 U</u>                                               |
| Methyl Acetate                                    | NS                 | NS                                                                             | <u>5 U</u>                                               | <u>5 U</u>                                               | 5 U                                                      | <u>5 U</u>                                               |
| Methyl Ethyl Ketone (2-Butanone)                  | 0.12               | 100                                                                            | <u>5 U</u>                                               | <u>5 U</u>                                               | 5 U                                                      | 5 U                                                      |
| Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)     | NS NS              | NS                                                                             | <u>5 U</u>                                               | 5 U                                                      | 5 U                                                      | 5 U                                                      |
| Methylcyclohexane                                 | NS                 | NS                                                                             | 10                                                       | 10                                                       | 10                                                       | 1 U                                                      |
| Methylene Chloride                                | 0.05               | 100                                                                            | 10                                                       | 10                                                       | 0.8 J                                                    | 1 U                                                      |
| N-Butylbenzene                                    | 12                 | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| N-Propylbenzene                                   | 3.9                | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| O-Xylene (1,2-Dimethylbenzene)                    | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Sec-Butylbenzene                                  | 11                 | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Styrene                                           | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| T-Butylbenzene                                    | 5.9                | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Tert-Butyl Methyl Ether                           | 0.93               | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Tetrachloroethylene (PCE)                         | 1.3                | 19                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Toluene                                           | 0.7                | 100                                                                            | 1 U                                                      | 1 U                                                      | 0.55 J                                                   | 1 U                                                      |
| Trans-1,2-Dichloroethene                          | 0.19               | 100                                                                            | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Trans-1,3-Dichloropropene                         | NS                 | NS                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| , <u>, , , , , , , , , , , , , , , , , , </u>     |                    | 21                                                                             | 1 U                                                      | 1 U                                                      | 1 U                                                      | 1 U                                                      |
| Trichloroethylene (TCE)                           | 0.47               |                                                                                |                                                          |                                                          |                                                          |                                                          |
| Trichloroethylene (TCE)<br>Trichlorofluoromethane |                    | NS                                                                             |                                                          | 1 U                                                      | 1 U                                                      | 1 U                                                      |
|                                                   | 0.47<br>NS<br>0.02 |                                                                                | 1 U<br>1 U                                               |                                                          |                                                          |                                                          |

| 1                                                        |                   |                                                             |                                                      | Semivolatile Organic                                | ,                                                    |                                                      |                                                      |                                                      |                                                      |
|----------------------------------------------------------|-------------------|-------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                                          | Lab               | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-01_20220425<br>460-256954-1<br>4/25/2022<br>mg/kg | EP-X_20220425<br>460-256954-2<br>4/25/2022<br>mg/kg | EP-02_20220425<br>460-256954-3<br>4/25/2022<br>mg/kg | EP-03_20220425<br>460-256954-4<br>4/25/2022<br>mg/kg | EP-04_20220425<br>460-256954-5<br>4/25/2022<br>mg/kg | EP-05_20220425<br>460-256954-6<br>4/25/2022<br>mg/kg | EP-06_20220425<br>460-256954-7<br>4/25/2022<br>mg/kg |
|                                                          |                   | Dilution Factor                                             | 1                                                    | 1                                                   | 1                                                    | 1                                                    | 1                                                    | 1                                                    | 1                                                    |
| Compound                                                 | NYSDEC UUSCO      | NYSDEC RRSCO                                                | CONC Q                                               | CONC Q                                              | CONC Q                                               | CONC Q                                               | CONC Q                                               | CONC Q                                               | CONC Q                                               |
| 1,2,4,5-Tetrachlorobenzene                               | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 1,4-Dioxane (P-Dioxane)                                  | 0.1               | 13                                                          | 0.035 UJ                                             | 0.035 UJ                                            | 0.036 UJ                                             | 0.036 UJ                                             | 0.035 UJ                                             | 0.037 UJ                                             | 0.035 UJ                                             |
| 2,3,4,6-Tetrachlorophenol<br>2,4,5-Trichlorophenol       | NS<br>NS          | NS<br>NS                                                    | 0.35 U<br>0.35 U                                     | 0.35 U<br>0.35 U                                    | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.37 U<br>0.37 U                                     | 0.35 U<br>0.35 U                                     |
| 2,4,5-Trichlorophenol                                    | NS                | NS                                                          | 0.35 U<br>0.14 U                                     | 0.35 U                                              | 0.36 U<br>0.14 U                                     | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U<br>0.14 U                                     |
| 2,4-Dichlorophenol                                       | NS                | NS                                                          | 0.14 U                                               | 0.14 U                                              | 0.14 U                                               | 0.14 U                                               | 0.14 U                                               | 0.15 U                                               | 0.14 U                                               |
| 2,4-Dimethylphenol                                       | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 2,4-Dinitrophenol                                        | NS                | NS                                                          | 0.29 U                                               | 0.29 U                                              | 0.29 U                                               | 0.29 U                                               | 0.28 U                                               | 0.3 U                                                | 0.28 U                                               |
| 2,4-Dinitrotoluene                                       | NS                | NS                                                          | 0.072 U                                              | 0.072 U                                             | 0.072 U                                              | 0.073 U                                              | 0.071 U                                              | 0.074 U                                              | 0.07 U                                               |
| 2.6-Dinitrotoluene<br>2-Chloronaphthalene                | NS<br>NS          | NS<br>NS                                                    | 0.072 U<br>0.35 U                                    | 0.072 U<br>0.35 U                                   | 0.072 U<br>0.36 U                                    | 0.073 U<br>0.36 U                                    | 0.071 U<br>0.35 U                                    | 0.074 U<br>0.37 U                                    | 0.07 U<br>0.35 U                                     |
| 2-Chlorophenol                                           | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 2-Methylnaphthalene                                      | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 2-Methylphenol (O-Cresol)                                | 0.33              | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 2-Nitroaniline                                           | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 2-Nitrophenol                                            | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 3- And 4- Methylphenol (Total)<br>3,3'-Dichlorobenzidine | NS<br>NS          | NS<br>NS                                                    | 0.35 U<br>0.14 U                                     | 0.35 U<br>0.14 U                                    | 0.36 U<br>0.14 U                                     | 0.36 U<br>0.14 U                                     | 0.35 U<br>0.14 U                                     | 0.37 U<br>0.15 U                                     | 0.35 U<br>0.14 U                                     |
| 3-Nitroaniline                                           | NS                | NS                                                          | 0.14 U                                               | 0.35 U                                              | 0.14 U                                               | 0.36 U                                               | 0.35 U                                               | 0.13 U                                               | 0.14 U<br>0.35 U                                     |
| 4,6-Dinitro-2-Methylphenol                               | NS                | NS                                                          | 0.29 U                                               | 0.29 U                                              | 0.29 U                                               | 0.29 U                                               | 0.28 U                                               | 0.3 U                                                | 0.28 U                                               |
| 4-Bromophenyl Phenyl Ether                               | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 4-Chloro-3-Methylphenol                                  | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 4-Chloroaniline                                          | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 4-Chlorophenyl Phenyl Ether<br>4-Methylphenol (P-Cresol) | NS<br>0.33        | NS<br>100                                                   | 0.35 U<br>0.35 U                                     | 0.35 U<br>0.35 U                                    | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.37 U<br>0.37 U                                     | 0.35 U<br>0.35 U                                     |
| 4-Nitroaniline                                           | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| 4-Nitrophenol                                            | NS                | NS                                                          | 0.72 U                                               | 0.72 U                                              | 0.72 U                                               | 0.73 U                                               | 0.71 U                                               | 0.74 U                                               | 0.7 U                                                |
| Acenaphthene                                             | 20                | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Acenaphthylene                                           | 100               | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Acetophenone                                             | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Anthracene<br>Atrazine                                   | 100<br>NS         | 100<br>NS                                                   | 0.35 U<br>0.14 U                                     | 0.35 U<br>0.14 U                                    | 0.36 U<br>0.14 U                                     | 0.36 U<br>0.14 U                                     | 0.35 U<br>0.14 U                                     | 0.37 U<br>0.15 U                                     | 0.35 U<br>0.14 U                                     |
| Benzaldehyde                                             | NS                | NS                                                          | 0.35 UJ                                              | 0.35 UJ                                             | 0.36 UJ                                              | 0.36 UJ                                              | 0.35 UJ                                              | 0.37 UJ                                              | 0.14 U<br>0.35 UJ                                    |
| Benzo(a)Anthracene                                       | 1                 | 1                                                           | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.045                                                | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Benzo(a)Pyrene                                           | 1                 | 1                                                           | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.039                                                | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Benzo(b)Fluoranthene                                     | 1                 | 1                                                           | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.045                                                | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Benzo(g,h,i)Perylene                                     | <u>100</u><br>0.8 | <u>100</u><br>3.9                                           | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.027 J<br>0.017 J                                   | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Benzo(k)Fluoranthene<br>Benzyl Butyl Phthalate           | NS                | 3.9<br>NS                                                   | 0.035 U<br>0.35 U                                    | 0.035 U<br>0.35 U                                   | 0.036 U<br>0.36 U                                    | 0.36 U                                               | 0.035 U<br>0.35 U                                    | 0.037 U<br>0.37 U                                    | 0.035 U<br>0.35 U                                    |
| Biphenyl (Diphenyl)                                      | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Bis(2-Chloroethoxy) Methane                              | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether            | NS                | NS                                                          | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Bis(2-Chloroisopropyl) Ether                             | NS                | NS                                                          | 0.35 UJ                                              | 0.35 UJ                                             | 0.36 UJ                                              | 0.36 UJ                                              | 0.35 UJ                                              | 0.37 UJ                                              | 0.35 UJ                                              |
| Bis(2-Ethylhexyl) Phthalate<br>Caprolactam               | NS<br>NS          | NS<br>NS                                                    | 0.35 U<br>0.35 U                                     | 0.35 U<br>0.35 U                                    | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.37 U<br>0.37 U                                     | 0.35 U<br>0.35 U                                     |
| Carbazole                                                | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Chrysene                                                 | 1                 | 3.9                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.037 J                                              | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Dibenz(a,h)Anthracene                                    | 0.33              | 0.33                                                        | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Dibenzofuran                                             | 7                 | 59                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Diethyl Phthalate                                        | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Dimethyl Phthalate<br>Di-N-Butyl Phthalate               | NS<br>NS          | NS<br>NS                                                    | 0.35 U<br>0.35 U                                     | 0.35 U<br>0.35 U                                    | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.37 U<br>0.37 U                                     | 0.35 U<br>0.35 U                                     |
| Di-N-Octylphthalate                                      | NS                | NS                                                          | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Fluoranthene                                             | 100               | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.069 J                                              | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Fluorene                                                 | 30                | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Hexachlorobenzene                                        | 0.33              | 1.2                                                         | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| Hexachlorobutadiene<br>Hexachlorocyclopentadiene         | NS<br>NS          | NS<br>NS                                                    | 0.072 U<br>0.35 U                                    | 0.072 U<br>0.35 U                                   | 0.072 U<br>0.36 U                                    | 0.073 U<br>0.36 U                                    | 0.071 U<br>0.35 U                                    | 0.074 U<br>0.37 U                                    | 0.07 U<br>0.35 U                                     |
| Hexachlorocyclopentadiene<br>Hexachloroethane            | NS                | NS                                                          | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.35 U                                               | 0.037 U                                              | 0.35 U<br>0.035 U                                    |
| Indeno(1,2,3-c,d)Pyrene                                  | 0.5               | 0.5                                                         | 0.035 UJ                                             | 0.035 UJ                                            | 0.036 UJ                                             | 0.030 U                                              | 0.035 UJ                                             | 0.037 UJ                                             | 0.035 UJ                                             |
| Isophorone                                               | NS                | NS                                                          | 0.14 U                                               | 0.14 U                                              | 0.14 U                                               | 0.14 U                                               | 0.14 U                                               | 0.15 U                                               | 0.14 U                                               |
| Naphthalene                                              | 12                | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Nitrobenzene                                             | NS                | NS                                                          | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| N-Nitrosodi-N-Propylamine                                | NS                | NS                                                          | 0.035 U                                              | 0.035 U                                             | 0.036 U                                              | 0.036 U                                              | 0.035 U                                              | 0.037 U                                              | 0.035 U                                              |
| N-Nitrosodiphenylamine                                   | NS<br>0.8         | NS<br>6.7                                                   | 0.35 U<br>0.29 U                                     | 0.35 U<br>0.29 U                                    | 0.36 U<br>0.29 U                                     | 0.36 U<br>0.29 U                                     | 0.35 U<br>0.28 U                                     | 0.37 U<br>0.3 U                                      | 0.35 U<br>0.28 U                                     |
| Pentachlorophenol<br>Phenanthrene                        | 0.8               | 6.7<br>100                                                  | 0.29 U<br>0.35 U                                     | 0.29 U<br>0.35 U                                    | 0.29 U<br>0.011 J                                    | 0.29 U<br>0.031 J                                    | 0.28 U<br>0.35 U                                     | 0.3 U<br>0.37 U                                      | 0.28 U<br>0.35 U                                     |
| Phenol                                                   | 0.33              | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.36 U                                               | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
| Pyrene                                                   | 100               | 100                                                         | 0.35 U                                               | 0.35 U                                              | 0.36 U                                               | 0.066 J                                              | 0.35 U                                               | 0.37 U                                               | 0.35 U                                               |
|                                                          |                   |                                                             |                                                      |                                                     |                                                      |                                                      |                                                      |                                                      |                                                      |

|                                                       |              |                                                             |                                                      |                                                      |                                                       | -                                                    |                                                       |                                                         |                                                         |
|-------------------------------------------------------|--------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
|                                                       | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-07_20220425<br>460-256954-8<br>4/25/2022<br>mg/kg | EP-08_20220425<br>460-256954-9<br>4/25/2022<br>mg/kg | EP-09_20220425<br>460-256954-11<br>4/25/2022<br>mg/kg | EP-10_20220509<br>460-257822-1<br>5/09/2022<br>mg/kg | EP-X02_20220509<br>460-257822-2<br>5/09/2022<br>mg/kg | EP-10A_B_20220513<br>460-258122-3<br>5/13/2022<br>mg/kg | EP-10A_E_20220513<br>460-258122-5<br>5/13/2022<br>mg/kg |
|                                                       |              | Dilution Factor                                             | 1                                                    | 1                                                    | 1                                                     | 1                                                    | 1                                                     | 1                                                       | 1                                                       |
| Compound                                              | NYSDEC UUSCO |                                                             |                                                      |                                                      | CONC Q<br>0.41 U                                      |                                                      | 0.38 U                                                | CONC Q                                                  | CONC Q                                                  |
| 1,2,4,5-Tetrachlorobenzene<br>1,4-Dioxane (P-Dioxane) | NS<br>0.1    | NS<br>13                                                    | 0.36 U<br>0.036 UJ                                   | 0.36 U<br>0.036 UJ                                   | 0.041 UJ                                              | 0.38 U<br>0.038 U                                    | 0.038 U                                               | 0.36 U<br>0.036 U                                       | 0.36 U<br>0.036 U                                       |
| 2,3,4,6-Tetrachlorophenol                             | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2,4,5-Trichlorophenol                                 | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2,4,6-Trichlorophenol                                 | NS           | NS                                                          | 0.14 U                                               | 0.14 U                                               | 0.17 U                                                | 0.15 U                                               | 0.15 U                                                | 0.15 U                                                  | 0.15 U                                                  |
| 2,4-Dichlorophenol                                    | NS           | NS                                                          | 0.14 U                                               | 0.14 U                                               | 0.17 U                                                | 0.15 U                                               | 0.15 U                                                | 0.15 U                                                  | 0.15 U                                                  |
| 2,4-Dimethylphenol                                    | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2,4-Dinitrophenol                                     | NS           | NS                                                          | 0.29 U                                               | 0.29 U                                               | 0.33 U                                                | 0.3 UJ                                               | 0.31 UJ                                               | 0.29 U                                                  | 0.29 U                                                  |
| 2,4-Dinitrotoluene                                    | NS           | NS                                                          | 0.073 U                                              | 0.072 U                                              | 0.083 U                                               | 0.077 U                                              | 0.078 U                                               | 0.073 UJ                                                | 0.073 UJ                                                |
| 2.6-Dinitrotoluene<br>2-Chloronaphthalene             | NS<br>NS     | NS<br>NS                                                    | 0.073 U<br>0.36 U                                    | 0.072 U<br>0.36 U                                    | 0.083 U<br>0.41 U                                     | 0.077 U<br>0.38 U                                    | 0.078 U<br>0.38 U                                     | 0.073 U<br>0.36 U                                       | 0.073 U<br>0.36 U                                       |
| 2-Chlorophenol                                        | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2-Methylnaphthalene                                   | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.017 J                                                 | 0.36 U                                                  |
| 2-Methylphenol (O-Cresol)                             | 0.33         | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2-Nitroaniline                                        | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 2-Nitrophenol                                         | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 3- And 4- Methylphenol (Total)                        | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 3.3'-Dichlorobenzidine                                | NS           | NS                                                          | 0.14 U                                               | 0.14 U                                               | 0.17 U                                                | 0.15 U                                               | 0.15 U                                                | 0.15 U                                                  | 0.15 U                                                  |
| 3-Nitroaniline<br>4,6-Dinitro-2-Methylphenol          | NS<br>NS     | NS<br>NS                                                    | 0.36 U<br>0.29 U                                     | 0.36 U<br>0.29 U                                     | 0.41 U<br>0.33 U                                      | 0.38 U<br>0.3 UJ                                     | 0.38 U<br>0.31 UJ                                     | 0.36 U<br>0.29 UJ                                       | 0.36 U<br>0.29 UJ                                       |
| 4-Bromophenyl Phenyl Ether                            | NS           | NS                                                          | 0.29 U                                               | 0.29 U                                               | 0.33 U<br>0.41 U                                      | 0.3 U                                                | 0.38 U                                                | 0.29 UJ<br>0.36 U                                       | 0.29 UJ<br>0.36 U                                       |
| 4-Chloro-3-Methylphenol                               | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 4-Chloroaniline                                       | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 4-Chlorophenyl Phenyl Ether                           | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 4-Methylphenol (P-Cresol)                             | 0.33         | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 4-Nitroaniline                                        | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| 4-Nitrophenol                                         | NS           | NS                                                          | 0.73 U                                               | 0.72 U                                               | 0.83 U                                                | 0.77 U                                               | 0.78 U                                                | 0.73 U                                                  | 0.73 U                                                  |
| Acenaphthene                                          | 20           | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.02 J                                                  | 0.36 U                                                  |
| Acenaphthylene                                        | 100          | 100                                                         | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.41 U<br>0.41 U                                      | 0.025 JL<br>0.38 U                                   | 0.38 UJ<br>0.38 U                                     | 0.013 J<br>0.36 U                                       | 0.36 U<br>0.36 U                                        |
| Acetophenone<br>Anthracene                            | NS<br>100    | NS<br>100                                                   | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.047 J                                              | 0.38 U<br>0.02 J                                      | 0.36 U<br>0.017 J                                       | 0.36 U                                                  |
| Atrazine                                              | NS           | NS                                                          | 0.14 U                                               | 0.30 U                                               | 0.41 0<br>0.17 U                                      | 0.15 U                                               | 0.15 U                                                | 0.15 U                                                  | 0.15 U                                                  |
| Benzaldehyde                                          | NS           | NS                                                          | 0.36 UJ                                              | 0.36 UJ                                              | 0.41 UJ                                               | 0.38 UJ                                              | 0.38 UJ                                               | 0.36 UJ                                                 | 0.36 UJ                                                 |
| Benzo(a)Anthracene                                    | 1            | 1                                                           | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.044                                                | 0.035 J                                               | 0.027 J                                                 | 0.015 J                                                 |
| Benzo(a)Pyrene                                        | 1            | 1                                                           | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.064                                                | 0.038                                                 | 0.023 J                                                 | 0.036 U                                                 |
| Benzo(b)Fluoranthene                                  | 1            | 1                                                           | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.047                                                | 0.044                                                 | 0.022 J                                                 | 0.011 J                                                 |
| Benzo(g,h,i)Perylene                                  | 100          | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.85 JL                                              | 0.58 JL                                               | 0.36 U                                                  | 0.36 U                                                  |
| Benzo(k)Fluoranthene                                  | 0.8          | 3.9                                                         | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.022 J                                              | 0.018 J                                               | 0.011 J                                                 | 0.036 U                                                 |
| Benzyl Butyl Phthalate                                | NS<br>NS     | NS<br>NS                                                    | 0.36 U<br>0.36 U                                     | 0.36 U                                               | 0.41 U<br>0.41 U                                      | 0.38 U<br>0.38 U                                     | 0.38 U<br>0.38 U                                      | 0.36 U                                                  | 0.36 U<br>0.36 U                                        |
| Biphenyl (Diphenyl)<br>Bis(2-Chloroethoxy) Methane    | NS           | NS                                                          | 0.36 U                                               | 0.36 U<br>0.36 U                                     | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U<br>0.36 U                                        | 0.36 U                                                  |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether         |              | NS                                                          | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.038 U                                              | 0.038 U                                               | 0.036 U                                                 | 0.036 U                                                 |
| Bis(2-Chloroisopropyl) Ether                          | NS           | NS                                                          | 0.36 UJ                                              | 0.36 UJ                                              | 0.41 UJ                                               | 0.38 UJ                                              | 0.38 UJ                                               | 0.36 UJ                                                 | 0.36 UJ                                                 |
| Bis(2-Ethylhexyl) Phthalate                           | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Caprolactam                                           | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Carbazole                                             | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Chrysene                                              | 1            | 3.9                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.036 J                                              | 0.03 J                                                | 0.025 J                                                 | 0.019 J                                                 |
| Dibenz(a,h)Anthracene                                 | 0.33         | 0.33                                                        | 0.036 U<br>0.36 U                                    | 0.036 U                                              | 0.041 U<br>0.41 U                                     | 0.12 JL                                              | 0.35 JL<br>0.38 U                                     | 0.036 U<br>0.36 U                                       | 0.036 U                                                 |
| Dibenzofuran<br>Diethyl Phthalate                     | /<br>NS      | 59<br>NS                                                    | 0.36 U<br>0.36 U                                     | 0.36 U<br>0.36 U                                     | 0.41 U<br>0.036 J                                     | 0.38 U<br>0.38 U                                     | 0.38 U                                                | 0.36 U<br>0.36 U                                        | 0.36 U<br>0.36 U                                        |
| Dimethyl Phthalate                                    | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Di-N-Butyl Phthalate                                  | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Di-N-Octylphthalate                                   | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Fluoranthene                                          | 100          | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.076 J                                              | 0.062 J                                               | 0.046 J                                                 | 0.015 J                                                 |
| Fluorene                                              | 30           | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.015 J                                                 | 0.36 U                                                  |
| Hexachlorobenzene                                     | 0.33         | 1.2                                                         | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.038 U                                              | 0.038 U                                               | 0.036 U                                                 | 0.036 U                                                 |
| Hexachlorobutadiene                                   | NS           | NS                                                          | 0.073 U                                              | 0.072 U                                              | 0.083 U                                               | 0.077 U                                              | 0.078 U                                               | 0.073 U                                                 | 0.073 U                                                 |
| Hexachlorocyclopentadiene<br>Hexachloroethane         | NS           | NS<br>NS                                                    | 0.36 U<br>0.036 U                                    | 0.36 U<br>0.036 U                                    | 0.41 U<br>0.041 U                                     | 0.38 UJ<br>0.038 U                                   | 0.38 UJ<br>0.038 U                                    | 0.36 U<br>0.036 U                                       | 0.36 U<br>0.036 U                                       |
| Indeno(1,2,3-c,d)Pyrene                               | NS<br>0.5    | 0.5                                                         | 0.036 UJ                                             | 0.036 UJ                                             | 0.041 UJ                                              | 0.038 0<br>0.8 JL                                    | 0.038 0<br>0.62 JL                                    | 0.036 U<br>0.014 J                                      | 0.036 UJ                                                |
| Isophorone                                            | NS           | NS                                                          | 0.030 U3                                             | 0.030 03                                             | 0.17 U                                                | 0.15 U                                               | 0.15 U                                                | 0.15 U                                                  | 0.15 U                                                  |
| Naphthalene                                           | 12           | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.0091 J                                             | 0.38 U                                                | 0.13 0<br>0.047 J                                       | 0.36 U                                                  |
| Nitrobenzene                                          | NS           | NS                                                          | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.038 U                                              | 0.038 U                                               | 0.036 U                                                 | 0.036 U                                                 |
| N-Nitrosodi-N-Propylamine                             | NS           | NS                                                          | 0.036 U                                              | 0.036 U                                              | 0.041 U                                               | 0.038 U                                              | 0.038 U                                               | 0.036 U                                                 | 0.036 U                                                 |
| N-Nitrosodiphenylamine                                | NS           | NS                                                          | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Pentachlorophenol                                     | 0.8          | 6.7                                                         | 0.29 U                                               | 0.29 U                                               | 0.33 U                                                | 0.3 U                                                | 0.31 U                                                | 0.29 U                                                  | 0.29 U                                                  |
| Phenanthrene                                          | 100          | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.06 J                                               | 0.036 J                                               | 0.071 J                                                 | 0.012 J                                                 |
| Phenol                                                | 0.33         | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.38 U                                               | 0.38 U                                                | 0.36 U                                                  | 0.36 U                                                  |
| Pyrene                                                | 100          | 100                                                         | 0.36 U                                               | 0.36 U                                               | 0.41 U                                                | 0.061 JL                                             | 0.047 JL                                              | 0.059 J                                                 | 0.015 J                                                 |

| AKR 5 sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit         EP-10A_20220513<br>460.258122.7<br>5132022         EP-10A_20220513<br>460.258122.7<br>5132022         EP-11_2022059<br>460.258122.3<br>509/2022         EP-11_2022059<br>509/2022         EP-11_2022059<br>509/202         EP-11_2022059<br>509/202                                                                                                                                                                                                                                                                                                                | EP-14_20220509<br>460-257822-6<br>5/09/2022<br>mg/kg<br>1<br>CONC Q<br>0.37 U<br>0.37 U<br>0.37 U<br>0.37 U<br>0.37 U<br>0.15 U |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Dilution Factor         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1<br>CONC Q<br>0.37 U<br>0.037 U<br>0.37 U<br>0.37 U<br>0.15 U                                                                  |
| Compound         NYSDEC UUSCO INYSDEC RRSCO         CONC Q         CONS Q <th>0.37 U<br/>0.037 U<br/>0.37 U<br/>0.37 U<br/>0.37 U<br/>0.15 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37 U<br>0.037 U<br>0.37 U<br>0.37 U<br>0.37 U<br>0.15 U                                                                       |
| 1.4-Dioxane (P-Dioxane)         0.1         13         0.036 U         0.036 U         0.036 U         0.037 U         0.038 U           2.3.4.6-Trichlorophenol         NS         NS         0.36 U         0.36 U         0.38 U         0.39 U         0.37 U         0.38 U           2.4.6-Trichlorophenol         NS         NS         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2.4.6-Trichlorophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U </th <th>0.037 U<br/>0.37 U<br/>0.37 U<br/>0.37 U<br/>0.15 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.037 U<br>0.37 U<br>0.37 U<br>0.37 U<br>0.15 U                                                                                 |
| 23.46-Tritachiorophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.4.5-Trichiorophenol         NS         NS         0.36 U         0.36 U         0.30 U         0.37 U         0.38 U           2.4-5-Trichiorophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           2.4-Dirchi/phenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           2.4-Dimitry/phenol         NS         NS         0.36 U         0.36 U         0.31 U         0.37 U         0.38 U           2.4-Dinitry/oblenel         NS         NS         0.073 U         0.072 U         0.072 U         0.071 U         0.075 U         0.077 U           2.6-Dintrobluene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.6-Dintrobluene         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.6-Dintrobluene         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37 U<br>0.37 U<br>0.15 U                                                                                                      |
| 24.5-Trichbroophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.37 U         0.38 U           24.5-Trichbroophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           24-Dirtorophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           24-Dirtorophenol         NS         NS         0.38 U         0.36 U         0.36 U         0.37 U         0.38 U           24-Dirtorobueno         NS         NS         0.29 U         0.29 U         0.31 U         0.37 U         0.31 U           24-Dirtorobuene         NS         NS         0.073 U         0.072 U         0.079 U         0.075 U         0.077 U           2-Chiorophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Chiorophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Metryinaphthalene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.37 U<br>0.15 U                                                                                                                |
| 2.4.5-Trichlorophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           2.4-Dinchryphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.30 U           2.4-Dinchryphenol         NS         NS         0.26 U         0.29 U         0.29 U         0.31 U         0.37 U         0.30 U           2.4-Dintrotoluene         NS         NS         0.073 U         0.072 U         0.072 U         0.079 U         0.075 U         0.077 U           2.6-Dintrotoluene         NS         NS         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2.Chlorosphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Metryinphtalene         NS         NS         0.36 U         0.36 U         0.38 U         0.39 U         0.37 U         0.38 U           2.Metryinphtalene         NS         NS         0.36 U         0.36 U         0.38 U         0.39 U         0.37 U         0.38 U           2.Metryinphtalene         NS         NS         0.36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15 U                                                                                                                          |
| 2.4-Directorophenol         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           2.4-Dimethylphenol         NS         NS         0.36 U         0.36 U         0.38 U         0.39 U         0.37 U         0.38 U         0.38 U         0.31 U         0.37 U         0.38 U         0.31 U         0.31 U         0.3 U         0.3 U         0.3 U         0.31 U         0.075 U         0.077 U         0.077 U         0.079 U         0.075 U         0.077 U         0.077 U         0.079 U         0.075 U         0.077 U         0.079 U         0.075 U         0.077 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                 |
| 24-Dimethylphenol         NS         NS         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2.4-Dinitroplenol         NS         NS         0.29 U         0.29 U         0.29 U         0.31 U         0.3 U         0.3 U         0.3 U           2.4-Dinitroblene         NS         NS         0.073 U         0.072 U         0.072 U         0.079 U         0.075 U         0.077 U           2.6-Dinitroblene         NS         NS         0.36 U         0.36 U         0.36 U         0.072 U         0.079 U         0.075 U         0.077 U         0.077 U           2.6-Introphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.38 U         0.38 U         0.38 U           2.Methylphenol (O-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.38 U         0.38 U         0.38 U           2.Nitrophenol         NS         NS         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U         0.38 U           2.Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Nitrophine         NS         NS <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                 |
| NS         NS         0.29 U         0.29 U         0.29 U         0.21 U         0.31 U         0.31 U         0.3 U         0.3 U           2.4-Dinitrotoluene         NS         NS         0.073 U         0.072 U         0.072 U         0.079 U         0.075 U         0.077 U         0.077 U           2.6-Dinitrotoluene         NS         NS         0.073 U         0.072 U         0.072 U         0.079 U         0.075 U         0.077 U         0.38 U           2.Chlorophenol         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Methylphenol         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Methylphenol         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2.Nitrophenol         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3.3'Dichlorobenzidine         NS         NS         0.36 U         0.36 U         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.37 U                                                                                                                          |
| 2,4-Dinitrotoluene         NS         NS         0.073 UJ         0.072 UJ         0.072 UJ         0.079 U         0.075 U         0.077 U         2.6-Dinitrotoluene           2,6-Dinitrotoluene         NS         NS         0.036 U         0.36 U         0.072 U         0.079 U         0.075 U         0.077 U         0.077 U           2,C-Ihoronphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Methylinphtalene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Methylinphtalene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Methylinphtalene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3.4-Dichioro-Zidethylphenol (Total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.3 UJ                                                                                                                          |
| 2-Chloronaphthalene         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2-Chlorophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Methylaphtalene         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Methylaphenol (O-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3-And 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U           3.*Dichorobenzidine         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.074 U                                                                                                                         |
| 2-Chlorophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.37 U         0.38 U           2-Methylnaphthalene         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U         0.38 U           2-Methylphenol (O-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           2-Mitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           2-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           3-And 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.36 U           3-Victroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U <th>0.074 U</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.074 U                                                                                                                         |
| 2-Methylnaphthalene         NS         NS         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2-Methylphenol (O-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           2-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           2-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           3-And 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           3-Aind 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.50 U           3-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.36 U           4-Boroophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.37 U                                                                                                                          |
| 2-Methylphenol (0-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3-And 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3.*Dichlorobenzidine         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           3.Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.31 U         0.31 U         0.32 U         0.32 U           4.6Dintro-2-Methylphenol         NS         NS         0.29 UJ         0.29 UJ         0.29 UJ         0.31 U         0.31 U         0.31 U         0.33 U         0.34 U           4-Bromophenyl Phenyl Ether<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37 UJ                                                                                                                         |
| 2-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.37 U         0.38 U           2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U         0.38 U           2-Nitrophenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           3-And 4-Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U         0.38 U           3Dichlorobenzidine         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U         0.38 U           3Dichlorobenzidine         NS         NS         0.36 U         0.36 U         0.36 U         0.31 U         0.30 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.37 U<br>0.37 U                                                                                                                |
| 2-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.37 U         0.38 U           3-And 4- Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3-And 4- Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           3Dichorobenzidine         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.13 U         0.38 U         0.36 U         0.36 U         0.36 U         0.36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37 U                                                                                                                          |
| 3- And 4- Methylphenol (Total)         NS         NS         0.36 U         0.36 U         0.36 U         0.38 U         0.37 U         0.38 U           3.3-Dichlorobenzidine         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           3-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U           4,6-Dnitro-2-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.31 U         0.37 U         0.38 U           4-Bromophenyl Phenyl Ether         NS         NS         0.29 UJ         0.29 UJ         0.39 U         0.37 U         0.38 U           4-Chloro-3-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-dnilline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-dnilline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37 UJ                                                                                                                         |
| S.3-Dichlorobenzidine         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           3-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U         0.38 U           4,6-Dnitro-2Methylphenol         NS         NS         0.29 UJ         0.29 UJ         0.21 U         0.31 U         0.3 U         0.30 U         0.30 U         0.30 U         0.32 U         0.33 U         0.32 U         0.38 U         0.36 U         0.37 U         0.38 U         0.38 U         0.36 U         0.37 U         0.38 U         0.38 U         0.36 U         0.37 U         0.37 U         0.38 U         0.34 U         0.37 U <td< th=""><th>0.37 U</th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37 U                                                                                                                          |
| A.6-Dinitro-2-Methylphenol         NS         NS         0.29 UJ         0.29 UJ         0.29 UJ         0.31 U         0.3 U         0.3 U           4-Bromophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-3-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Mitrophinol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophenol         NS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15 U                                                                                                                          |
| 4-Bromophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-3-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-a-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloro-anline         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U           4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophenol         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.37 U                                                                                                                          |
| 4-Chloro-3-Methylphenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chloroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophenol         NS         NS         0.73 U         0.36 U         0.36 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.3 UJ<br>0.37 U                                                                                                                |
| 4-Chloropaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophenol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophinol         NS         NS         0.73 U         0.38 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophinol         NS         NS         0.73 U         0.37 U         0.72 U         0.72 U         0.79 U         0.75 U         0.77 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 U<br>0.37 U                                                                                                                |
| 4-Chlorophenyl Phenyl Ether         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophinol         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           4-Nitrophinol         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37 U                                                                                                                          |
| 4-Methylphenol (P-Cresol)         0.33         100         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U           4-Nitroaniline         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U           4-Nitroaniline         NS         NS         0.37 U         0.37 U         0.38 U           4-Nitrophenol         NS         NS         0.73 U         0.72 U         0.72 U         0.79 U         0.75 U         0.77 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.37 U                                                                                                                          |
| 4-Nitrophenol         NS         NS         0.73 U         0.72 U         0.72 U         0.79 U         0.75 U         0.77 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.37 U                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37 U                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.74 U                                                                                                                          |
| Acenaphthene 20 100 0.36 U 0.36 U 0.36 U 0.36 U 0.37 U 0.38 U 0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.045 J                                                                                                                         |
| Acenaphthylene         100         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Acetophenone         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.012 J<br>0.37 U                                                                                                               |
| Acetophenone         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Anthracene         100         100         0.36 U         0.36 U         0.36 U         0.36 U         0.023 J         0.013 J         0.025 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.095 J                                                                                                                         |
| Attrazine NS NS 0.15 U 0.14 U 0.14 U 0.16 U 0.15 U 0.15 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15 UJ                                                                                                                         |
| Benzaldehyde NS NS 0.36 UJ 0.36 UJ 0.36 UJ 0.36 UJ 0.37 UJ 0.38 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 UJ                                                                                                                         |
| Benzo(a)Anthracene 1 1 0.017 J 0.038 0.023 J 0.06 0.031 J 0.051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.19                                                                                                                            |
| Benzo(a)Pyrene         1         1         0.014 J         0.025 J         0.019 J         0.048         0.02 J         0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.15                                                                                                                            |
| Benzo(b)Fluoranthene         1         1         0.021 J         0.038         0.023 J         0.069         0.032 J         0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.21                                                                                                                            |
| Benzo(g,h,i)Perylene         100         100         0.011 J         0.017 J         0.014 J         0.097 J         0.022 J         0.015 J           Benzo(k)Fluoranthene         0.8         3.9         0.011 J         0.014 J         0.012 J         0.031 J         0.016 J         0.023 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1 J<br>0.086                                                                                                                  |
| Benzo(k)Fluoranthene         0.8         3.9         0.011 J         0.014 J         0.012 J         0.031 J         0.016 J         0.023 J           Benzyl Butyl Phthalate         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.086<br>0.37 UJ                                                                                                                |
| Biphenyl (Diphenyl) NS NS 0.36 U 0.36 U 0.36 U 0.37 U 0.37 U 0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.37 U                                                                                                                          |
| Bis(2-Chloroethoxy) Methane NS NS 0.36 U 0.36 U 0.36 U 0.36 U 0.37 U 0.37 U 0.37 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 U                                                                                                                          |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether NS NS 0.036 U 0.036 U 0.036 U 0.039 U 0.037 U 0.038 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.037 U                                                                                                                         |
| Bis(2-Chloroisopropyl) Ether         NS         NS         0.36 UJ         0.36 UJ         0.39 UJ         0.37 UJ         0.38 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 U                                                                                                                          |
| Bis(2-Ethylhexyl) Phthalate         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37 UJ                                                                                                                         |
| Caprolactam         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Carbazole         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.37 UJ<br>0.021 J                                                                                                              |
| Carbazole         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Chrysene         1         3.9         0.019 J         0.037 J         0.021 J         0.056 J         0.026 J         0.049 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.021 J<br>0.15 J                                                                                                               |
| Chrysene 1 3.9 0.019 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0 | 0.037 U                                                                                                                         |
| Dibenzofuran         7         59         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.016 J                                                                                                                         |
| Diethyl Phthalate         NS         NS         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 U                                                                                                                          |
| Dimethyl Phthalate         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.37 U                                                                                                                          |
| Di-N-Buryl Phthalate         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           DI-N-Buryl Phthalate         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.37 U                                                                                                                          |
| Di-N-Octylphthalate         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Fluoranthene         100         100         0.027 J         0.066 J         0.041 J         0.12 J         0.048 J         0.097 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37 UJ<br>0.44                                                                                                                 |
| Fluoranthene         100         100         0.027 J         0.066 J         0.041 J         0.12 J         0.048 J         0.097 J           Fluorene         30         100         0.36 U         0.36 U         0.36 U         0.36 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.024 J                                                                                                                         |
| Findbrie         30         100         0.36 U         0.36 U         0.36 U         0.33 U         0.037 U         0.038 U           Hexachlorobenzene         0.33         1.2         0.036 U         0.036 U         0.036 U         0.037 U         0.037 U         0.038 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.024 J                                                                                                                         |
| Hexachiorobutadiene NS NS 0.073 U 0.072 U 0.072 U 0.079 U 0.075 U 0.077 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.074 U                                                                                                                         |
| Hexachlorocyclopentadiene         NS         NS         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37 U                                                                                                                          |
| Hexachloroethane         NS         NS         0.036 U         0.036 U         0.036 U         0.039 U         0.037 U         0.038 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.037 U                                                                                                                         |
| Indeno(1,2,3-c,d)Pyrene 0.5 0.5 0.036 UJ 0.02 J 0.036 UJ 0.11 0.042 0.044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.15                                                                                                                            |
| Isophorone         NS         NS         0.15 U         0.14 U         0.14 U         0.16 U         0.15 U         0.15 U           Naphthalene         12         100         0.36 U         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.15 U<br>0.37 U                                                                                                                |
| Naphthalene         12         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U           Nitrobenzene         NS         NS         0.036 U         0.036 U         0.036 U         0.037 U         0.038 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.37 U<br>0.037 U                                                                                                               |
| Nitrosofi-N-Propytamine         NS         NS         0.036 U         0.036 U         0.036 U         0.037 U         0.037 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.037 U                                                                                                                         |
| Netrosodiphenylamine         NS         NS         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.37 UJ                                                                                                                         |
| Pentachlorophenol         0.8         6.7         0.29 U         0.29 U         0.29 U         0.31 U         0.3 U         0.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.37 03                                                                                                                         |
| Phenanthrene         100         100         0.013 J         0.044 J         0.027 J         0.059 J         0.022 J         0.064 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.3 U                                                                                                                           |
| Phenol         0.33         100         0.36 U         0.36 U         0.36 U         0.39 U         0.37 U         0.38 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.3 U<br>0.35 J                                                                                                                 |
| Pyrene         100         100         0.027 J         0.066 J         0.039 J         0.09 J         0.041 J         0.084 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3 U                                                                                                                           |

| -                                                     |              |                                                             |                                                      |                                                      |                                                      |                                                       |                                                       |                                                       |                                                       |
|-------------------------------------------------------|--------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
|                                                       | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-15_20220509<br>460-257822-7<br>5/09/2022<br>mg/kg | EP-16_20220509<br>460-257822-8<br>5/09/2022<br>mg/kg | EP-17_20220509<br>460-257822-9<br>5/09/2022<br>mg/kg | EP-18_20220509<br>460-257822-10<br>5/09/2022<br>mg/kg | EP-19_20220509<br>460-257822-11<br>5/09/2022<br>mg/kg | EP-20_20220509<br>460-257822-12<br>5/09/2022<br>mg/kg | EP-21_20220509<br>460-257822-15<br>5/09/2022<br>mg/kg |
|                                                       |              | Dilution Factor                                             | 1                                                    | 1                                                    | 1                                                    | 1                                                     | 1                                                     | 1                                                     | 1                                                     |
| Compound                                              | NYSDEC UUSCO | NYSDEC RRSCO                                                | CONC Q                                               | CONC Q                                               | CONC Q                                               | CONC Q                                                | CONC Q                                                | CONC Q                                                | CONC Q                                                |
| 1,2,4,5-Tetrachlorobenzene                            | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 1,4-Dioxane (P-Dioxane)                               | 0.1          | 13                                                          | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.038 U                                               |
| 2,3,4,6-Tetrachlorophenol                             | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 2,4,5-Trichlorophenol<br>2,4,6-Trichlorophenol        | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.15 U                                     | 0.36 U<br>0.15 U                                     | 0.35 U<br>0.14 U                                     | 0.36 U<br>0.15 U                                      | 0.36 U<br>0.14 U                                      | 0.37 U<br>0.15 U                                      | 0.38 U<br>0.15 U                                      |
| 2,4-Dichlorophenol                                    | NS           | NS                                                          | 0.15 U                                               | 0.15 U                                               | 0.14 U                                               | 0.15 U                                                | 0.14 U                                                | 0.15 U                                                | 0.15 UJ                                               |
| 2,4-Dimethylphenol                                    | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 2,4-Dinitrophenol                                     | NS           | NS                                                          | 0.3 U                                                | 0.29 U                                               | 0.28 U                                               | 0.29 UJ                                               | 0.29 UJ                                               | 0.3 UJ                                                | 0.31 UJ                                               |
| 2,4-Dinitrotoluene                                    | NS           | NS                                                          | 0.075 U                                              | 0.073 U                                              | 0.071 U                                              | 0.074 U                                               | 0.072 U                                               | 0.075 U                                               | 0.077 U                                               |
| 2,6-Dinitrotoluene                                    | NS           | NS                                                          | 0.075 U                                              | 0.073 U                                              | 0.071 U                                              | 0.074 U                                               | 0.072 U                                               | 0.075 U                                               | 0.077 U                                               |
| 2-Chloronaphthalene                                   | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 2-Chlorophenol                                        | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                      | 0.38 U<br>0.38 UJ                                     |
| 2-Methylnaphthalene<br>2-Methylphenol (O-Cresol)      | 0.33         | 100                                                         | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 2-Nitroaniline                                        | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 2-Nitrophenol                                         | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 UJ                                               |
| 3- And 4- Methylphenol (Total)                        | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 3.3'-Dichlorobenzidine                                | NS           | NS                                                          | 0.15 U                                               | 0.15 U                                               | 0.14 U                                               | 0.15 U                                                | 0.14 U                                                | 0.15 U                                                | 0.15 U                                                |
| 3-Nitroaniline                                        | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 4,6-Dinitro-2-Methylphenol                            | NS<br>NS     | NS<br>NS                                                    | 0.3 U<br>0.37 U                                      | 0.29 U<br>0.36 U                                     | 0.28 U<br>0.35 U                                     | 0.29 UJ<br>0.36 U                                     | 0.29 UJ<br>0.36 U                                     | 0.3 UJ<br>0.37 U                                      | 0.31 UJ<br>0.38 U                                     |
| 4-Bromophenyl Phenyl Ether<br>4-Chloro-3-Methylphenol | NS           | NS                                                          | 0.37 U<br>0.37 U                                     | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                      | 0.38 U<br>0.38 U                                      |
| 4-Chloroaniline                                       | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 4-Chlorophenyl Phenyl Ether                           | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 4-Methylphenol (P-Cresol)                             | 0.33         | 100                                                         | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 4-Nitroaniline                                        | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| 4-Nitrophenol                                         | NS           | NS                                                          | 0.75 U                                               | 0.73 U                                               | 0.71 U                                               | 0.74 U                                                | 0.72 U                                                | 0.75 U                                                | 0.77 U                                                |
| Acenaphthene                                          | 20           | 100                                                         | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Acenaphthylene<br>Acetophenone                        | 100<br>NS    | 100<br>NS                                                   | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                      | 0.012 J<br>0.38 U                                     |
| Anthracene                                            | 100          | 100                                                         | 0.37 U                                               | 0.022 J                                              | 0.35 U                                               | 0.024 J                                               | 0.36 U                                                | 0.017 J                                               | 0.056 J                                               |
| Atrazine                                              | NS           | NS                                                          | 0.15 U                                               | 0.15 U                                               | 0.14 U                                               | 0.15 U                                                | 0.14 U                                                | 0.15 U                                                | 0.15 UJ                                               |
| Benzaldehyde                                          | NS           | NS                                                          | 0.37 UJ                                              | 0.36 UJ                                              | 0.35 UJ                                              | 0.36 UJ                                               | 0.36 UJ                                               | 0.37 UJ                                               | 0.38 UJ                                               |
| Benzo(a)Anthracene                                    | 1            | 1                                                           | 0.037 U                                              | 0.053                                                | 0.013 J                                              | 0.069                                                 | 0.025 J                                               | 0.047                                                 | 0.16                                                  |
| Benzo(a)Pvrene                                        | 1            | 1                                                           | 0.037 U                                              | 0.04                                                 | 0.035 U                                              | 0.055                                                 | 0.019 J                                               | 0.035 J                                               | 0.13                                                  |
| Benzo(b)Fluoranthene                                  | 1            | 1                                                           | 0.037 U                                              | 0.052                                                | 0.035 U                                              | 0.071                                                 | 0.025 J                                               | 0.044                                                 | 0.17                                                  |
| Benzo(g,h,i)Perylene<br>Benzo(k)Fluoranthene          | 100<br>0.8   | 100<br>3.9                                                  | 0.37 U<br>0.037 U                                    | 0.011 J<br>0.021 J                                   | 0.35 U<br>0.035 U                                    | 0.036 J<br>0.03 J                                     | 0.013 J<br>0.014 J                                    | 0.023 J<br>0.02 J                                     | 0.078 J<br>0.065                                      |
| Benzyl Butyl Phthalate                                | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 UJ                                               |
| Biphenyl (Diphenyl)                                   | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Bis(2-Chloroethoxy) Methane                           | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether         | r NS         | NS                                                          | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.038 U                                               |
| Bis(2-Chloroisopropyl) Ether                          | NS           | NS                                                          | 0.37 UJ                                              | 0.36 UJ                                              | 0.35 UJ                                              | 0.36 UJ                                               | 0.36 UJ                                               | 0.37 UJ                                               | 0.38 U                                                |
| Bis(2-Ethylhexyl) Phthalate                           | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.032 J                                               | 0.38 UJ                                               |
| Caprolactam<br>Carbazolo                              | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 UJ<br>0.36 U                                     | 0.36 UJ<br>0.36 U                                     | 0.37 UJ<br>0.37 U                                     | 0.38 UJ<br>0.028 J                                    |
| Carbazole<br>Chrysene                                 | 1            | 3.9                                                         | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.042 J                                    | 0.35 U<br>0.0064 J                                   | 0.36 U<br>0.064 J                                     | 0.36 U<br>0.021 J                                     | 0.37 U<br>0.042 J                                     | 0.028 J<br>0.17 J                                     |
| Dibenz(a,h)Anthracene                                 | 0.33         | 0.33                                                        | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.03 J                                                |
| Dibenzofuran                                          | 7            | 59                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Diethyl Phthalate                                     | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Dimethyl Phthalate                                    | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Di-N-Butyl Phthalate                                  | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 U                                                |
| Di-N-Octylphthalate<br>Fluoranthene                   | NS<br>100    | NS<br>100                                                   | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.1 J                                      | 0.35 U<br>0.015 J                                    | 0.36 U<br>0.12 J                                      | 0.36 U<br>0.033 J                                     | 0.37 U<br>0.083 J                                     | 0.38 UJ<br>0.3 J                                      |
| Fluorantnene                                          | 30           | 100                                                         | 0.37 U                                               | 0.1 J<br>0.36 U                                      | 0.015 J<br>0.35 U                                    | 0.36 U                                                | 0.36 U                                                | 0.083 J<br>0.011 J                                    | 0.3 J<br>0.011 J                                      |
| Hexachlorobenzene                                     | 0.33         | 1.2                                                         | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.038 U                                               |
| Hexachlorobutadiene                                   | NS           | NS                                                          | 0.075 U                                              | 0.073 U                                              | 0.071 U                                              | 0.074 U                                               | 0.072 U                                               | 0.075 U                                               | 0.077 U                                               |
| Hexachlorocyclopentadiene                             | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 UJ                                               |
| Hexachloroethane                                      | NS           | NS                                                          | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.038 U                                               |
| Indeno(1.2.3-c.d)Pyrene                               | 0.5          | 0.5                                                         | 0.027 J                                              | 0.047                                                | 0.035 U                                              | 0.039                                                 | 0.015 J                                               | 0.026 J                                               | 0.15                                                  |
| Isophorone<br>Naphthalono                             | NS<br>12     | NS 100                                                      | 0.15 U                                               | 0.15 U                                               | 0.14 U                                               | 0.15 U                                                | 0.14 U                                                | 0.15 U                                                | 0.15 U                                                |
| Naphthalene<br>Nitrobenzene                           | 12<br>NS     | 100<br>NS                                                   | 0.37 U<br>0.037 U                                    | 0.36 U<br>0.036 U                                    | 0.35 U<br>0.035 U                                    | 0.36 U<br>0.036 U                                     | 0.36 U<br>0.036 U                                     | 0.37 U<br>0.037 U                                     | 0.019 J<br>0.038 U                                    |
| N-Nitrosodi-N-Propylamine                             | NS           | NS                                                          | 0.037 U                                              | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.036 U                                               | 0.037 U                                               | 0.038 U                                               |
| N-Nitrosodiphenylamine                                | NS           | NS                                                          | 0.37 U                                               | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.36 U                                                | 0.37 U                                                | 0.38 UJ                                               |
| Pentachlorophenol                                     | 0.8          | 6.7                                                         | 0.3 U                                                | 0.29 U                                               | 0.28 U                                               | 0.29 U                                                | 0.29 U                                                | 0.3 U                                                 | 0.31 U                                                |
|                                                       | 100          | 100                                                         | 0.37 U                                               | 0.057 J                                              | 0.01 J                                               | 0.087 J                                               | 0.023 J                                               | 0.073 J                                               | 0.21 J                                                |
| Phenanthrene                                          |              |                                                             |                                                      |                                                      |                                                      |                                                       |                                                       |                                                       |                                                       |
| Phenanthrene<br>Phenol<br>Pyrene                      | 0.33         | 100<br>100<br>100                                           | 0.37 U<br>0.37 U                                     | 0.36 U<br>0.084 J                                    | 0.35 U<br>0.012 J                                    | 0.36 U<br>0.13 J                                      | 0.36 U<br>0.04 J                                      | 0.37 U<br>0.089 J                                     | 0.38 U<br>0.31 J                                      |

| 1                                                                             |            |                                                             |                                                       |                                                         | compounds (SVOCs)                                       |                                                         |                                                         |                                                         |                                                       |
|-------------------------------------------------------------------------------|------------|-------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|
|                                                                               | Lab        | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-22_20220509<br>460-257822-16<br>5/09/2022<br>mg/kg | EP22A_B_20220513<br>460-258122-11<br>5/13/2022<br>mg/kg | EP22A_E_20220513<br>460-258122-14<br>5/13/2022<br>mg/kg | EP22A_N_20220513<br>460-258122-12<br>5/13/2022<br>mg/kg | EP22A_S_20220513<br>460-258122-15<br>5/13/2022<br>mg/kg | EP22A_W_20220513<br>460-258122-13<br>5/13/2022<br>mg/kg | EP-23_20220509<br>460-257822-17<br>5/09/2022<br>mg/kg |
|                                                                               |            | Dilution Factor                                             | 1                                                     | 1                                                       | 1                                                       | 1                                                       | 1                                                       | 1                                                       | 1                                                     |
| Compound                                                                      |            | NYSDEC RRSCO                                                | CONC Q                                                | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  | CONC Q                                                |
| 1.2.4.5-Tetrachlorobenzene                                                    | NS         | NS                                                          | 0.43 U                                                | 0.35 U<br>0.035 U                                       | 0.35 U                                                  | 0.37 U<br>0.037 U                                       | 0.37 U<br>0.037 U                                       | 0.4 U                                                   | 0.38 U                                                |
| 1,4-Dioxane (P-Dioxane)<br>2.3.4.6-Tetrachlorophenol                          | 0.1<br>NS  | 13<br>NS                                                    | 0.043 U<br>0.43 U                                     | 0.035 U                                                 | 0.035 U<br>0.35 U                                       | 0.037 U                                                 | 0.037 U                                                 | 0.04 U<br>0.4 U                                         | 0.038 U<br>0.38 U                                     |
| 2,4,5-Trichlorophenol                                                         | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 2,4,6-Trichlorophenol                                                         | NS         | NS                                                          | 0.43 U                                                | 0.14 U                                                  | 0.14 U                                                  | 0.15 U                                                  | 0.15 U                                                  | 0.4 0<br>0.16 U                                         | 0.15 U                                                |
| 2,4-Dichlorophenol                                                            | NS         | NS                                                          | 0.17 UJ                                               | 0.14 U                                                  | 0.14 U                                                  | 0.15 U                                                  | 0.15 U                                                  | 0.16 U                                                  | 0.15 UJ                                               |
| 2,4-Dimethylphenol                                                            | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 2,4-Dinitrophenol                                                             | NS         | NS                                                          | 0.35 UJ                                               | 0.28 U                                                  | 0.28 U                                                  | 0.3 U                                                   | 0.3 U                                                   | 0.32 U                                                  | 0.3 UJ                                                |
| 2,4-Dinitrotoluene                                                            | NS         | NS                                                          | 0.087 U                                               | 0.072 UJ                                                | 0.07 UJ                                                 | 0.075 UJ                                                | 0.075 UJ                                                | 0.081 UJ                                                | 0.077 U                                               |
| 2.6-Dinitrotoluene                                                            | NS         | NS                                                          | 0.087 U                                               | 0.072 U                                                 | 0.07 U                                                  | 0.075 U                                                 | 0.075 U                                                 | 0.081 U                                                 | 0.077 U                                               |
| 2-Chloronaphthalene                                                           | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 2-Chlorophenol                                                                | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 2-Methylnaphthalene                                                           | NS         | NS                                                          | 0.12 J                                                | 0.35 U<br>0.35 U                                        | 0.35 U                                                  | 0.37 U<br>0.37 U                                        | 0.37 U<br>0.37 U                                        | 0.4 U<br>0.4 U                                          | 0.38 U                                                |
| 2-Methylphenol (O-Cresol)<br>2-Nitroaniline                                   | 0.33<br>NS | 100<br>NS                                                   | 0.43 U<br>0.43 U                                      | 0.35 U<br>0.35 U                                        | 0.35 U<br>0.35 U                                        | 0.37 U<br>0.37 U                                        | 0.37 U<br>0.37 U                                        | 0.4 U<br>0.4 U                                          | 0.38 U<br>0.38 U                                      |
| 2-Nitrophenol                                                                 | NS         | NS                                                          | 0.43 U<br>0.43 UJ                                     | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 UJ                                               |
| 3- And 4- Methylphenol (Total)                                                | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 3.3'-Dichlorobenzidine                                                        | NS         | NS                                                          | 0.43 U                                                | 0.14 U                                                  | 0.14 U                                                  | 0.15 U                                                  | 0.15 U                                                  | 0.4 0<br>0.16 U                                         | 0.15 U                                                |
| 3-Nitroaniline                                                                | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4,6-Dinitro-2-Methylphenol                                                    | NS         | NS                                                          | 0.35 UJ                                               | 0.28 UJ                                                 | 0.28 UJ                                                 | 0.3 UJ                                                  | 0.3 UJ                                                  | 0.32 UJ                                                 | 0.3 UJ                                                |
| 4-Bromophenyl Phenyl Ether                                                    | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Chloro-3-Methylphenol                                                       | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Chloroaniline                                                               | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Chlorophenyl Phenyl Ether                                                   | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Methylphenol (P-Cresol)                                                     | 0.33       | 100                                                         | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Nitroaniline                                                                | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| 4-Nitrophenol                                                                 | NS         | NS                                                          | 0.87 U                                                | 0.72 U                                                  | 0.7 U                                                   | 0.75 U                                                  | 0.75 U                                                  | 0.81 U                                                  | 0.77 U                                                |
| Acenaphthene                                                                  | 20         | 100<br>100                                                  | 0.46<br>0.043 J                                       | 0.35 U<br>0.35 U                                        | 0.35 U<br>0.35 U                                        | 0.37 U<br>0.37 U                                        | 0.37 U<br>0.37 U                                        | 0.4 U<br>0.4 U                                          | 0.38 U<br>0.38 U                                      |
| Acenaphthylene<br>Acetophenone                                                | NS         | NS                                                          | 0.043 J<br>0.43 U                                     | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Anthracene                                                                    | 100        | 100                                                         | 1.4                                                   | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.015 J                                                 | 0.018 J                                                 | 0.022 J                                               |
| Atrazine                                                                      | NS         | NS                                                          | 0.17 UJ                                               | 0.14 U                                                  | 0.14 U                                                  | 0.15 U                                                  | 0.15 U                                                  | 0.16 U                                                  | 0.15 UJ                                               |
| Benzaldehyde                                                                  | NS         | NS                                                          | 0.43 UJ                                               | 0.35 UJ                                                 | 0.35 UJ                                                 | 0.37 UJ                                                 | 0.37 UJ                                                 | 0.4 UJ                                                  | 0.38 UJ                                               |
| Benzo(a)Anthracene                                                            | 1          | 1                                                           | 2.1                                                   | 0.028 J                                                 | 0.024 J                                                 | 0.029 J                                                 | 0.06                                                    | 0.05                                                    | 0.097                                                 |
| Benzo(a)Pyrene                                                                | 1          | 1                                                           | 1.8                                                   | 0.023 J                                                 | 0.023 J                                                 | 0.023 J                                                 | 0.048                                                   | 0.04                                                    | 0.08                                                  |
| Benzo(b)Fluoranthene                                                          | 1          | 1                                                           | 2.4                                                   | 0.027 J                                                 | 0.025 J                                                 | 0.028 J                                                 | 0.058                                                   | 0.052                                                   | 0.12                                                  |
| Benzo(g,h,i)Perylene                                                          | 100        | 100                                                         | 0.98                                                  | 0.014 J                                                 | 0.013 J                                                 | 0.014 J                                                 | 0.034 J                                                 | 0.025 J                                                 | 0.047 J                                               |
| Benzo(k)Fluoranthene                                                          | 0.8        | 3.9                                                         | 0.84                                                  | 0.015 J                                                 | 0.012 J                                                 | 0.014 J                                                 | 0.025 J                                                 | 0.026 J                                                 | 0.036 J                                               |
| Benzyl Butyl Phthalate                                                        | NS         | NS                                                          | 0.43 UJ                                               | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 UJ                                               |
| Biphenyl (Diphenyl)                                                           | NS         | NS                                                          | 0.059 J                                               | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Bis(2-Chloroethoxy) Methane                                                   | NS<br>NS   | NS<br>NS                                                    | 0.43 U<br>0.043 U                                     | 0.35 U<br>0.035 U                                       | 0.35 U<br>0.035 U                                       | 0.37 U<br>0.037 U                                       | 0.37 U<br>0.037 U                                       | 0.4 U<br>0.04 U                                         | 0.38 U<br>0.038 U                                     |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether<br>Bis(2-Chloroisopropyl) Ether | NS         | NS                                                          | 0.043 U                                               | 0.035 UJ                                                | 0.035 UJ                                                | 0.037 UJ                                                | 0.037 UJ                                                | 0.04 UJ                                                 | 0.38 U                                                |
| Bis(2-Ethylhexyl) Phthalate                                                   | NS         | NS                                                          | 0.43 UJ                                               | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.024 J                                               |
| Caprolactam                                                                   | NS         | NS                                                          | 0.43 UJ                                               | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 UJ                                               |
| Carbazole                                                                     | NS         | NS                                                          | 0.48                                                  | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Chrysene                                                                      | 1          | 3.9                                                         | 1.7                                                   | 0.026 J                                                 | 0.022 J                                                 | 0.027 J                                                 | 0.06 J                                                  | 0.053 J                                                 | 0.08 J                                                |
| Dibenz(a,h)Anthracene                                                         | 0.33       | 0.33                                                        | 0.22                                                  | 0.035 U                                                 | 0.035 U                                                 | 0.037 U                                                 | 0.037 U                                                 | 0.04 U                                                  | 0.029 J                                               |
| Dibenzofuran                                                                  | 7          | 59                                                          | 0.43                                                  | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Diethyl Phthalate                                                             | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Dimethyl Phthalate                                                            | NS         | NS                                                          | 0.43 U                                                | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 U                                                |
| Di-N-Butyl Phthalate<br>Di-N-Octylphthalate                                   | NS<br>NS   | NS<br>NS                                                    | 0.019 J<br>0.43 UJ                                    | 0.35 U<br>0.35 U                                        | 0.35 U<br>0.35 U                                        | 0.37 U<br>0.37 U                                        | 0.37 U<br>0.37 U                                        | 0.4 U<br>0.4 U                                          | 0.38 U<br>0.38 UJ                                     |
| Fluoranthene                                                                  | 100        | 100                                                         | 6.5                                                   | 0.35 U<br>0.039 J                                       | 0.038 J                                                 | 0.37 U<br>0.042 J                                       | 0.37 U<br>0.12 J                                        | 0.4 U<br>0.12 J                                         | 0.38 UJ<br>0.17 J                                     |
| Fluorene                                                                      | 30         | 100                                                         | 0.63                                                  | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.12 J<br>0.37 U                                        | 0.12 J<br>0.4 U                                         | 0.38 U                                                |
| Hexachlorobenzene                                                             | 0.33       | 1.2                                                         | 0.043 U                                               | 0.035 U                                                 | 0.035 U                                                 | 0.037 U                                                 | 0.037 U                                                 | 0.04 U                                                  | 0.038 U                                               |
| Hexachlorobutadiene                                                           | NS         | NS                                                          | 0.087 U                                               | 0.072 U                                                 | 0.07 U                                                  | 0.075 U                                                 | 0.075 U                                                 | 0.081 U                                                 | 0.077 U                                               |
| Hexachlorocyclopentadiene                                                     | NS         | NS                                                          | 0.43 UJ                                               | 0.35 U                                                  | 0.35 U                                                  | 0.37 U                                                  | 0.37 U                                                  | 0.4 U                                                   | 0.38 UJ                                               |
| Hexachloroethane                                                              | NS         | NS                                                          | 0.043 U                                               | 0.035 U                                                 | 0.035 U                                                 | 0.037 U                                                 | 0.037 U                                                 | 0.04 U                                                  | 0.038 U                                               |
| Indeno(1,2,3-c,d)Pyrene                                                       | 0.5        | 0.5                                                         | 1.3                                                   | 0.015 J                                                 | 0.035 UJ                                                | 0.015 J                                                 | 0.036 J                                                 | 0.027 J                                                 | 0.082                                                 |
| Isophorone                                                                    | NS         | NS                                                          | 0.17 U                                                | 0.14 U                                                  | 0.14 U                                                  | 0.15 U                                                  | 0.15 U                                                  | 0.16 U                                                  | 0.15 U                                                |
| Naphthalene                                                                   | 12         | 100                                                         | 0.17 J                                                | 0.0087 J                                                | 0.35 U                                                  | 0.01 J                                                  | 0.37 U                                                  | 0.013 J                                                 | 0.38 U                                                |
| Nitrobenzene                                                                  | NS         | NS                                                          | 0.043 U                                               | 0.035 U                                                 | 0.035 U                                                 | 0.037 U                                                 | 0.037 U                                                 | 0.04 U                                                  | 0.038 U                                               |
| N-Nitrosodi-N-Propylamine<br>N-Nitrosodiphenylamine                           | NS         | NS                                                          | 0.043 U                                               | 0.035 U                                                 | 0.035 U                                                 | 0.037 U                                                 | 0.037 U                                                 | 0.04 U                                                  | 0.038 U                                               |
| N-Nitrosodiphenylamine<br>Pentachlorophenol                                   | NS<br>0.8  | NS<br>6.7                                                   | 0.43 UJ<br>0.35 U                                     | 0.35 U<br>0.28 U                                        | 0.35 U<br>0.28 U                                        | 0.37 U<br>0.3 U                                         | 0.37 U<br>0.3 U                                         | 0.4 U<br>0.32 U                                         | 0.38 UJ<br>0.3 U                                      |
| Phenanthrene                                                                  | 100        | 100                                                         | 6.8                                                   | 0.28 U<br>0.022 J                                       | 0.28 U<br>0.026 J                                       | 0.03 U<br>0.031 J                                       | 0.063 J                                                 | 0.32 U<br>0.067 J                                       | 0.3 U<br>0.086 J                                      |
| Phenol                                                                        | 0.33       | 100                                                         | 0.43 U                                                | 0.022 J<br>0.35 U                                       | 0.35 U                                                  | 0.37 U                                                  | 0.063 J<br>0.37 U                                       | 0.007 J<br>0.4 U                                        | 0.38 U                                                |
| Pyrene                                                                        | 100        | 100                                                         | 4.6 J                                                 | 0.039 J                                                 | 0.04 J                                                  | 0.045 J                                                 | 0.37 U<br>0.12 J                                        | 0.095 J                                                 | 0.15 J                                                |
|                                                                               |            | 100                                                         |                                                       | 0.000 0                                                 | 0.07 0                                                  | 0.070 0                                                 | 0.12 0                                                  | 0.000 0                                                 | 0.10 0                                                |

|                                                             |            |                         |                   | Semivolatile Organic ( |                    |                    |                    |                    |                    |
|-------------------------------------------------------------|------------|-------------------------|-------------------|------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
|                                                             |            | AKRF Sample ID          | EP-24_20220509    | EP-25_20220509         | EP-26_20220513     | EP-X03_20220513    | EP-27_20220513     | EP-28_20220513     | EP-29_20220701     |
|                                                             | Lab        | oratory Sample ID       | 460-257822-18     | 460-257822-19          | 460-258122-1       | 460-258122-2       | 460-258122-8       | 460-258122-9       | 460-261267-1       |
|                                                             |            | Date Sampled            | 5/09/2022         | 5/09/2022              | 5/13/2022          | 5/13/2022          | 5/13/2022          | 5/13/2022          | 7/01/2022          |
|                                                             |            | Unit<br>Dilution Factor | mg/kg             | mg/kg                  | mg/kg<br>1         | mg/kg              | mg/kg              | mg/kg              | mg/kg              |
| Compound                                                    |            | NYSDEC RRSCO            | CONC Q            |                        |                    |                    | CONC Q             |                    |                    |
| •                                                           |            |                         | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 1,2,4,5-Tetrachlorobenzene<br>1,4-Dioxane (P-Dioxane)       | NS<br>0.1  | NS<br>13                | 0.038 U           | 0.038 U                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| 2.3.4.6-Tetrachlorophenol                                   | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2,4,5-Trichlorophenol                                       | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2,4,6-Trichlorophenol                                       | NS         | NS                      | 0.15 U            | 0.15 U                 | 0.16 U             | 0.15 U             | 0.14 U             | 0.16 U             | 0.14 U             |
| 2,4-Dichlorophenol                                          | NS         | NS                      | 0.15 UJ           | 0.15 UJ                | 0.16 U             | 0.15 U             | 0.14 U             | 0.16 U             | 0.14 U             |
| 2,4-Dimethylphenol                                          | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2,4-Dinitrophenol                                           | NS         | NS                      | 0.31 UJ           | 0.3 UJ                 | 0.32 U             | 0.3 U              | 0.29 U             | 0.33 U             | 0.28 U             |
| 2,4-Dinitrotoluene                                          | NS         | NS                      | 0.077 U           | 0.076 U                | 0.08 UJ            | 0.075 UJ           | 0.073 UJ           | 0.083 UJ           | 0.071 UJ           |
| 2,6-Dinitrotoluene                                          | NS         | NS                      | 0.077 U           | 0.076 U                | 0.08 U             | 0.075 U            | 0.073 U            | 0.083 U            | 0.071 U            |
| 2-Chloronaphthalene                                         | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2-Chlorophenol                                              | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2-Methylnaphthalene                                         | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2-Methylphenol (O-Cresol)                                   | 0.33       | 100                     | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 2-Nitrophonol                                               | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U<br>0.41 U   | 0.35 UJ            |
| 2-Nitrophenol<br>3- And 4- Methylphenol (Total)             | NS<br>NS   | NS<br>NS                | 0.38 UJ<br>0.38 U | 0.38 UJ<br>0.38 U      | 0.39 U<br>0.39 U   | 0.37 U<br>0.37 U   | 0.36 U<br>0.36 U   | 0.41 U<br>0.41 U   | 0.35 UJ<br>0.35 U  |
| 3.3'-Dichlorobenzidine                                      | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U<br>0.16 U   | 0.15 U             | 0.36 U             | 0.16 U             | 0.35 U             |
| 3.3 -Dichlorobenzidine<br>3-Nitroaniline                    | NS         | NS                      | 0.13 U            | 0.13 U                 | 0.39 U             | 0.13 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4,6-Dinitro-2-Methylphenol                                  | NS         | NS                      | 0.38 U<br>0.31 UJ | 0.3 UJ                 | 0.39 UJ            | 0.3 UJ             | 0.29 UJ            | 0.33 UJ            | 0.33 U<br>0.28 UJ  |
| 4-Bromophenyl Phenyl Ether                                  | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Chloro-3-Methylphenol                                     | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Chloroaniline                                             | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Chlorophenyl Phenyl Ether                                 | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Methylphenol (P-Cresol)                                   | 0.33       | 100                     | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Nitroaniline                                              | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| 4-Nitrophenol                                               | NS         | NS                      | 0.77 U            | 0.76 U                 | 0.8 U              | 0.75 U             | 0.73 U             | 0.83 U             | 0.71 UJ            |
| Acenaphthene                                                | 20         | 100                     | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Acenaphthylene                                              | 100        | 100                     | 0.38 U<br>0.38 U  | 0.38 U<br>0.38 U       | 0.39 U<br>0.39 U   | 0.37 U<br>0.37 U   | 0.36 U<br>0.36 U   | 0.41 U<br>0.41 U   | 0.35 U<br>0.35 U   |
| Acetophenone Anthracene                                     | NS<br>100  | NS<br>100               | 0.023 J           | 0.38 0<br>0.019 J      | 0.39 U             | 0.37 U             | 0.36 U             | 0.019 J            | 0.35 U             |
| Atrazine                                                    | NS         | NS                      | 0.15 UJ           | 0.15 UJ                | 0.16 U             | 0.15 U             | 0.14 U             | 0.16 U             | 0.14 U             |
| Benzaldehyde                                                | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 UJ            | 0.37 UJ            | 0.36 UJ            | 0.41 UJ            | 0.35 UJ            |
| Benzo(a)Anthracene                                          | 1          | 1                       | 0.065             | 0.067                  | 0.016 J            | 0.016 J            | 0.025 J            | 0.055              | 0.024 J            |
| Benzo(a)Pyrene                                              | 1          | 1                       | 0.048             | 0.049                  | 0.013 J            | 0.012 J            | 0.022 J            | 0.043              | 0.016 J            |
| Benzo(b)Fluoranthene                                        | 1          | 1                       | 0.076             | 0.065                  | 0.016 J            | 0.011 J            | 0.025 J            | 0.059              | 0.021 J            |
| Benzo(g,h,i)Perylene                                        | 100        | 100                     | 0.023 J           | 0.025 J                | 0.39 U             | 0.37 U             | 0.014 J            | 0.024 J            | 0.35 U             |
| Benzo(k)Fluoranthene                                        | 0.8        | 3.9                     | 0.029 J           | 0.033 J                | 0.039 U            | 0.037 U            | 0.012 J            | 0.021 J            | 0.0097 J           |
| Benzyl Butyl Phthalate                                      | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Biphenyl (Diphenyl)                                         | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Bis(2-Chloroethoxy) Methane                                 | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether               | r NS<br>NS | NS<br>NS                | 0.038 U<br>0.38 U | 0.038 U<br>0.38 U      | 0.039 U<br>0.39 UJ | 0.037 U<br>0.37 UJ | 0.036 U<br>0.36 UJ | 0.041 U<br>0.41 UJ | 0.035 U<br>0.35 UJ |
| Bis(2-Chloroisopropyl) Ether<br>Bis(2-Ethylhexyl) Phthalate | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Caprolactam                                                 | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Carbazole                                                   | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Chrysene                                                    | 1          | 3.9                     | 0.053 J           | 0.052 J                | 0.0097 J           | 0.014 J            | 0.024 J            | 0.052 J            | 0.02 J             |
| Dibenz(a,h)Anthracene                                       | 0.33       | 0.33                    | 0.038 U           | 0.023 J                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| Dibenzofuran                                                | 7          | 59                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Diethyl Phthalate                                           | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Dimethyl Phthalate                                          | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Di-N-Butyl Phthalate                                        | NS         | NS                      | 0.38 U            | 0.38 U                 | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Di-N-Octylphthalate                                         | NS<br>100  | NS<br>100               | 0.38 UJ<br>0.12 J | 0.38 UJ<br>0.12 J      | 0.39 U<br>0.019 J  | 0.37 U<br>0.023 J  | 0.36 U<br>0.038 J  | 0.41 U<br>0.11 J   | 0.35 UJ<br>0.041 J |
| Fluoranthene<br>Fluorene                                    | 30         | 100                     | 0.12 J<br>0.38 U  | 0.12 J<br>0.38 U       | 0.39 U             | 0.023 J<br>0.37 U  | 0.36 U             | 0.41 U             | 0.35 U             |
| Hexachlorobenzene                                           | 0.33       | 1.2                     | 0.38 U            | 0.038 U                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| Hexachlorobutadiene                                         | NS         | NS                      | 0.030 U           | 0.076 U                | 0.039 U            | 0.075 U            | 0.073 U            | 0.083 U            | 0.033 0<br>0.071 U |
| Hexachlorocyclopentadiene                                   | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Hexachloroethane                                            | NS         | NS                      | 0.038 U           | 0.038 U                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| Indeno(1,2,3-c,d)Pyrene                                     | 0.5        | 0.5                     | 0.062             | 0.067                  | 0.039 UJ           | 0.037 UJ           | 0.016 J            | 0.032 J            | 0.035 U            |
| Isophorone                                                  | NS         | NS                      | 0.15 U            | 0.15 U                 | 0.16 U             | 0.15 U             | 0.14 U             | 0.16 U             | 0.14 U             |
| Naphthalene                                                 | 12         | 100                     | 0.0078 J          | 0.38 U                 | 0.39 U             | 0.37 U             | 0.0095 J           | 0.018 J            | 0.35 U             |
| Nitrobenzene                                                | NS         | NS                      | 0.038 U           | 0.038 U                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| N-Nitrosodi-N-Propylamine                                   | NS         | NS                      | 0.038 U           | 0.038 U                | 0.039 U            | 0.037 U            | 0.036 U            | 0.041 U            | 0.035 U            |
| N-Nitrosodiphenylamine                                      | NS         | NS                      | 0.38 UJ           | 0.38 UJ                | 0.39 U             | 0.37 U             | 0.36 U             | 0.41 U             | 0.35 U             |
| Pentachlorophenol                                           | 0.8        | 6.7                     | 0.31 U            | 0.3 U                  | 0.32 U             | 0.3 U              | 0.29 U             | 0.33 U             | 0.28 U             |
| Phenanthrene                                                | 100        | 100                     | 0.089 J<br>0.38 U | 0.072 J                | 0.011 J<br>0.39 U  | 0.022 J<br>0.37 U  | 0.025 J<br>0.36 U  | 0.077 J<br>0.41 U  | 0.035 J<br>0.35 UJ |
|                                                             |            |                         |                   | 0.38 U                 | I 139 []           |                    |                    |                    |                    |
| Phenol<br>Pyrene                                            | 0.33       | <u>100</u><br>100       | 0.099 J           | 0.1 J                  | 0.02 J             | 0.022 J            | 0.041 J            | 0.094 J            | 0.039 J            |

|                                                     |              |                                                             |                                                       |                                                      | Compounds (SVOCs)                                    |                                                       |                                                      |                                                      |                                                       |
|-----------------------------------------------------|--------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
|                                                     | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-X04_20220701<br>460-261267-2<br>7/01/2022<br>mg/kg | EP-30_20220701<br>460-261267-3<br>7/01/2022<br>mg/kg | EP-31_20220727<br>460-262709-1<br>7/27/2022<br>mg/kg | EP-X05_20220727<br>460-262709-2<br>7/27/2022<br>mg/kg | EP-32_20220727<br>460-262709-3<br>7/27/2022<br>mg/kg | EP-33_20220811<br>460-263713-1<br>8/11/2022<br>mg/kg | EP-X06_20220811<br>460-263713-2<br>8/11/2022<br>mg/kg |
|                                                     |              | Dilution Factor                                             | 1                                                     | 1                                                    | 1                                                    | 1                                                     | 1                                                    | 1                                                    | 1                                                     |
|                                                     | NYSDEC UUSCO |                                                             | CONC Q                                                | CONC Q                                               | CONC Q                                               | CONC Q                                                | CONC Q                                               | CONC Q                                               | CONC Q                                                |
| 1,2,4,5-Tetrachlorobenzene                          | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 1,4-Dioxane (P-Dioxane)                             | 0.1          | 13                                                          | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.037 U                                              | 0.037 U                                              | 0.038 U                                               |
| 2,3,4,6-Tetrachlorophenol<br>2,4,5-Trichlorophenol  | NS<br>NS     | NS<br>NS                                                    | 0.35 U<br>0.35 U                                      | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.38 U<br>0.38 U                                      |
| 2,4,5-Trichlorophenol                               | NS           | NS                                                          | 0.35 U<br>0.14 U                                      | 0.36 U                                               | 0.35 U<br>0.14 U                                     | 0.36 U<br>0.14 U                                      | 0.37 U                                               | 0.37 U                                               | 0.38 U<br>0.15 U                                      |
| 2,4-Dichlorophenol                                  | NS           | NS                                                          | 0.14 U                                                | 0.15 U                                               | 0.14 U                                               | 0.14 U                                                | 0.15 U                                               | 0.15 U                                               | 0.15 U                                                |
| 2,4-Dimethylphenol                                  | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 2,4-Dinitrophenol                                   | NS           | NS                                                          | 0.28 U                                                | 0.29 U                                               | 0.28 U                                               | 0.29 U                                                | 0.29 U                                               | 0.3 U                                                | 0.31 U                                                |
| 2,4-Dinitrotoluene                                  | NS           | NS                                                          | 0.072 UJ                                              | 0.074 UJ                                             | 0.072 U                                              | 0.072 U                                               | 0.074 U                                              | 0.076 U                                              | 0.077 U                                               |
| 2,6-Dinitrotoluene                                  | NS           | NS                                                          | 0.072 U                                               | 0.074 U                                              | 0.072 U                                              | 0.072 U                                               | 0.074 U                                              | 0.076 U                                              | 0.077 U                                               |
| 2-Chloronaphthalene                                 | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 2-Chlorophenol                                      | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 2-Methylnaphthalene                                 | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 2-Methylphenol (O-Cresol)                           | 0.33         | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 2-Nitrophenol                                       | NS<br>NS     | NS<br>NS                                                    | 0.35 UJ<br>0.35 UJ                                    | 0.36 UJ<br>0.36 UJ                                   | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.38 U<br>0.38 U                                      |
| 2-Nitrophenol<br>3- And 4- Methylphenol (Total)     | NS           | NS                                                          | 0.35 UJ<br>0.35 U                                     | 0.36 UJ                                              | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 3,3'-Dichlorobenzidine                              | NS           | NS                                                          | 0.33 U<br>0.14 U                                      | 0.30 U                                               | 0.14 U                                               | 0.14 U                                                | 0.15 U                                               | 0.15 U                                               | 0.38 U                                                |
| 3-Nitroaniline                                      | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4,6-Dinitro-2-Methylphenol                          | NS           | NS                                                          | 0.28 UJ                                               | 0.29 UJ                                              | 0.28 U                                               | 0.29 U                                                | 0.29 U                                               | 0.3 U                                                | 0.31 U                                                |
| 4-Bromophenyl Phenyl Ether                          | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Chloro-3-Methylphenol                             | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Chloroaniline                                     | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Chlorophenyl Phenyl Ether                         | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Methylphenol (P-Cresol)                           | 0.33         | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Nitroaniline                                      | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| 4-Nitrophenol                                       | NS           | NS                                                          | 0.72 UJ                                               | 0.74 UJ                                              | 0.72 U                                               | 0.72 U                                                | 0.74 U                                               | 0.76 U                                               | 0.77 U                                                |
| Acenaphthene<br>Acenaphthylene                      | 20<br>100    | 100<br>100                                                  | 0.35 U<br>0.35 U                                      | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.013 J<br>0.38 U                                     |
| Acetophenone                                        | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Anthracene                                          | 100          | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.035 J                                               |
| Atrazine                                            | NS           | NS                                                          | 0.14 U                                                | 0.15 U                                               | 0.14 UT                                              | 0.14 UT                                               | 0.15 UT                                              | 0.15 UT                                              | 0.15 UT                                               |
| Benzaldehyde                                        | NS           | NS                                                          | 0.35 UJ                                               | 0.36 UJ                                              | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Benzo(a)Anthracene                                  | 1            | 1                                                           | 0.035 U                                               | 0.023 J                                              | 0.035 U                                              | 0.021 J                                               | 0.054                                                | 0.014 J                                              | 0.024 J                                               |
| Benzo(a)Pyrene                                      | 1            | 1                                                           | 0.035 U                                               | 0.014 J                                              | 0.035 U                                              | 0.036 U                                               | 0.043                                                | 0.037 U                                              | 0.012 J                                               |
| Benzo(b)Fluoranthene                                | 1            | 1                                                           | 0.035 U                                               | 0.016 J                                              | 0.035 U                                              | 0.014 J                                               | 0.053                                                | 0.037 U                                              | 0.016 J                                               |
| Benzo(g,h,i)Perylene                                | 100          | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.021 J                                              | 0.37 U                                               | 0.38 U                                                |
| Benzo(k)Fluoranthene                                | 0.8          | 3.9                                                         | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.022 J                                              | 0.037 U                                              | 0.038 U                                               |
| Benzyl Butyl Phthalate                              | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Biphenyl (Diphenyl)<br>Bis(2-Chloroethoxy) Methane  | NS<br>NS     | NS<br>NS                                                    | 0.35 U<br>0.35 U                                      | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.38 U<br>0.38 U                                      |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether       | NS           | NS                                                          | 0.35 U                                                | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.037 U                                              | 0.037 U                                              | 0.038 U                                               |
| Bis(2-Chloroisopropyl) Ether                        | NS           | NS                                                          | 0.35 UJ                                               | 0.36 UJ                                              | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Bis(2-Ethylhexyl) Phthalate                         | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.14 J                                               | 0.24 J                                                |
| Caprolactam                                         | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 UT                                              | 0.36 UT                                               | 0.37 UT                                              | 0.37 UT                                              | 0.38 UT                                               |
| Carbazole                                           | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Chrysene                                            | 1            | 3.9                                                         | 0.0072 J                                              | 0.014 J                                              | 0.35 U                                               | 0.014 J                                               | 0.06 J                                               | 0.0076 J                                             | 0.014 J                                               |
| Dibenz(a,h)Anthracene                               | 0.33         | 0.33                                                        | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.037 U                                              | 0.037 U                                              | 0.038 U                                               |
| Dibenzofuran                                        | 7            | 59                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.013 J                                               |
| Diethyl Phthalate                                   | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.38 U                                                |
| Dimethyl Phthalate<br>Di-N-Butyl Phthalate          | NS<br>NS     | NS<br>NS                                                    | 0.35 U<br>0.35 U                                      | 0.36 U<br>0.36 U                                     | 0.35 U<br>0.35 U                                     | 0.36 U<br>0.36 U                                      | 0.37 U<br>0.37 U                                     | 0.37 U<br>0.37 U                                     | 0.38 U<br>0.38 U                                      |
| Di-N-Octylphthalate                                 | NS           | NS                                                          | 0.35 UJ                                               | 0.36 UJ                                              | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Fluoranthene                                        | 100          | 100                                                         | 0.35 U                                                | 0.03 J                                               | 0.35 U                                               | 0.021 J                                               | 0.37 U<br>0.12 J                                     | 0.014 J                                              | 0.046 J                                               |
| Fluorene                                            | 30           | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.011 J                                              | 0.37 U                                               | 0.039 J                                               |
| Hexachlorobenzene                                   | 0.33         | 1.2                                                         | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.037 U                                              | 0.037 U                                              | 0.038 U                                               |
| Hexachlorobutadiene                                 | NS           | NS                                                          | 0.072 U                                               | 0.074 U                                              | 0.072 U                                              | 0.072 U                                               | 0.074 U                                              | 0.076 U                                              | 0.077 U                                               |
| Hexachlorocyclopentadiene                           | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Hexachloroethane                                    | NS           | NS                                                          | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.037 U                                              | 0.037 U                                              | 0.038 U                                               |
| Indeno(1,2,3-c,d)Pyrene                             | 0.5          | 0.5                                                         | 0.035 U                                               | 0.036 U                                              | 0.035 U                                              | 0.036 U                                               | 0.06                                                 | 0.037 U                                              | 0.049                                                 |
| Isophorone                                          | NS           | NS                                                          | 0.14 U                                                | 0.15 U                                               | 0.14 U                                               | 0.14 U                                                | 0.15 U                                               | 0.15 U                                               | 0.15 U                                                |
| Naphthalene<br>Nitrobanzana                         | 12           | 100                                                         | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.014 J                                               |
| Nitrobenzene<br>N-Nitrosodi-N-Propylamine           | NS<br>NS     | NS<br>NS                                                    | 0.035 U<br>0.035 U                                    | 0.036 U<br>0.036 U                                   | 0.035 U<br>0.035 U                                   | 0.036 U<br>0.036 U                                    | 0.037 U<br>0.037 U                                   | 0.037 U<br>0.037 U                                   | 0.038 U<br>0.038 U                                    |
| N-Nitrosodi-N-Propylamine<br>N-Nitrosodiphenylamine | NS           | NS                                                          | 0.35 U                                                | 0.36 U                                               | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.037 U                                              | 0.38 U                                                |
| Pentachlorophenol                                   | 0.8          | 6.7                                                         | 0.35 U<br>0.28 U                                      | 0.38 U                                               | 0.35 U<br>0.28 U                                     | 0.38 U                                                | 0.37 U                                               | 0.3 U                                                | 0.38 U                                                |
| Phenanthrene                                        | 100          | 100                                                         | 0.35 U                                                | 0.027 J                                              | 0.35 U                                               | 0.36 U                                                | 0.13 J                                               | 0.016 J                                              | 0.074 J                                               |
| Phenol                                              | 0.33         | 100                                                         | 0.35 UJ                                               | 0.36 UJ                                              | 0.35 U                                               | 0.36 U                                                | 0.37 U                                               | 0.37 U                                               | 0.38 U                                                |
| Pyrene                                              | 100          | 100                                                         | 0.011 J                                               | 0.028 J                                              | 0.35 U                                               | 0.018 J                                               | 0.11 J                                               | 0.013 J                                              | 0.037 J                                               |
|                                                     |              |                                                             |                                                       |                                                      |                                                      |                                                       |                                                      |                                                      |                                                       |

| t-                                                       |              |                                                             |                                                      | -                                                    |                                                       |                                                      |                                                     |                                                      |                                                      |
|----------------------------------------------------------|--------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
|                                                          | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit | EP-34_20220811<br>460-263713-3<br>8/11/2022<br>mg/kg | EP-35_20220830<br>460-264635-1<br>8/30/2022<br>mg/kg | EP-X07_20220830<br>460-264635-2<br>8/30/2022<br>mg/kg | EP-36_20220830<br>460-264635-3<br>8/30/2022<br>mg/kg | FB-01_20220425<br>460-256948-7<br>4/25/2022<br>µg/L | FB-01_20220425<br>460-256954-10<br>4/25/2022<br>µg/L | FB-01_20220509<br>460-257822-13<br>5/09/2022<br>µg/L |
| Compound                                                 | NYSDEC UUSCO | Dilution Factor                                             |                                                      |                                                      | CONC Q                                                | 1<br>CONC Q                                          |                                                     | CONC Q                                               |                                                      |
| 1,2,4,5-Tetrachlorobenzene                               | NS           | NS NS                                                       | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 1,4-Dioxane (P-Dioxane)                                  | 0.1          | 13                                                          | 0.037 U                                              | 0.034 U                                              | 0.036 U                                               | 0.035 U                                              | 10 U                                                | 0.2 U                                                | 0.2 U                                                |
| 2,3,4,6-Tetrachlorophenol                                | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2,4,5-Trichlorophenol                                    | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2,4,6-Trichlorophenol                                    | NS           | NS                                                          | 0.15 U                                               | 0.14 U                                               | 0.14 U                                                | 0.14 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2,4-Dichlorophenol                                       | NS           | NS                                                          | 0.15 U                                               | 0.14 U                                               | 0.14 U                                                | 0.14 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2,4-Dimethylphenol                                       | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2,4-Dinitrophenol<br>2,4-Dinitrotoluene                  | NS<br>NS     | NS<br>NS                                                    | 0.29 U<br>0.074 U                                    | 0.28 U<br>0.069 U                                    | 0.29 U<br>0.073 U                                     | 0.28 U<br>0.071 U                                    | 20 UJ<br>2 U                                        | 20 UJ<br>2 U                                         | 20 U<br>2 U                                          |
| 2,6-Dinitrotoluene                                       | NS           | NS                                                          | 0.074 U                                              | 0.069 U                                              | 0.073 U                                               | 0.071 U                                              | 2 U                                                 | 2 U                                                  | 2 U                                                  |
| 2-Chloronaphthalene                                      | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2-Chlorophenol                                           | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2-Methylnaphthalene                                      | NS           | NS                                                          | 0.093 J                                              | 0.34 U                                               | 0.011 J                                               | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2-Methylphenol (O-Cresol)                                | 0.33         | 100                                                         | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2-Nitroaniline                                           | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 2-Nitrophenol                                            | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.37 U                                     | 0.34 U<br>0.34 U                                     | 0.36 U<br>0.36 U                                      | 0.35 U<br>0.35 U                                     | 10 U<br>NR                                          | 10 U<br>10 U                                         | <u>10 U</u><br>10 U                                  |
| 3- And 4- Methylphenol (Total)<br>3,3'-Dichlorobenzidine | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.15 U                                     | 0.34 U<br>0.14 U                                     | 0.36 U<br>0.14 U                                      | 0.35 U<br>0.14 U                                     | 10 U                                                | 10 U<br>10 U                                         | 10 U<br>10 U                                         |
| 3.3 -Dichlorobenzidine<br>3-Nitroaniline                 | NS           | NS                                                          | 0.15 U                                               | 0.14 U                                               | 0.14 U<br>0.36 U                                      | 0.14 U<br>0.35 U                                     | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 4,6-Dinitro-2-Methylphenol                               | NS           | NS                                                          | 0.29 U                                               | 0.28 U                                               | 0.29 U                                                | 0.28 U                                               | 20 U                                                | 20 U                                                 | 20 U                                                 |
| 4-Bromophenyl Phenyl Ether                               | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 4-Chloro-3-Methylphenol                                  | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 4-Chloroaniline                                          | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 4-Chlorophenyl Phenyl Ether                              | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| 4-Methylphenol (P-Cresol)                                | 0.33         | 100                                                         | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U<br>10 U                                        | 10 U<br>10 U                                         | 10 U                                                 |
| 4-Nitroaniline<br>4-Nitrophenol                          | NS<br>NS     | NS<br>NS                                                    | 0.37 U<br>0.74 U                                     | 0.34 U<br>0.69 U                                     | 0.36 U<br>0.73 U                                      | 0.35 U<br>0.71 U                                     | 20 UJ                                               | 20 UJ                                                | 10 U<br>20 U                                         |
| Acenaphthene                                             | 20           | 100                                                         | 0.051 J                                              | 0.035 J                                              | 0.074 J                                               | 0.017 J                                              | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Acenaphthylene                                           | 100          | 100                                                         | 0.011 J                                              | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Acetophenone                                             | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Anthracene                                               | 100          | 100                                                         | 0.074 J                                              | 0.078 J                                              | 0.2 J                                                 | 0.035 J                                              | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Atrazine                                                 | NS           | NS                                                          | 0.15 UT                                              | 0.14 U                                               | 0.14 U                                                | 0.14 U                                               | 2 U                                                 | 2 U                                                  | 2 UJ                                                 |
| Benzaldehyde                                             | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 UJ                                               | 10 UJ                                                | 10 UJ                                                |
| Benzo(a)Anthracene                                       | 1            | 1                                                           | 0.063                                                | 0.19                                                 | 0.65                                                  | 0.09                                                 | 1 U                                                 | 1 U                                                  | <u> </u>                                             |
| Benzo(a)Pyrene                                           | 1            | 1                                                           | 0.044 0.067                                          | 0.16<br>0.22                                         | 0.57<br>0.78                                          | 0.073                                                | 1 U<br>2 U                                          | 1 U<br>2 U                                           | 1 U<br>2 U                                           |
| Benzo(b)Fluoranthene<br>Benzo(g,h,i)Perylene             | 100          | 100                                                         | 0.024 J                                              | 0.22<br>0.11 J                                       | 0.42                                                  | 0.046 J                                              | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Benzo(k)Fluoranthene                                     | 0.8          | 3.9                                                         | 0.024 J                                              | 0.1                                                  | 0.35                                                  | 0.041                                                | 1 U                                                 | 1 UJ                                                 | 100<br>1 U                                           |
| Benzyl Butyl Phthalate                                   | NS           | NS                                                          | 0.37 U                                               | 0.029 J                                              | 0.062 J                                               | 0.35 U                                               | 10 UJ                                               | 10 UJ                                                | 10 U                                                 |
| Biphenyl (Diphenyl)                                      | NS           | NS                                                          | 0.028 J                                              | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Bis(2-Chloroethoxy) Methane                              | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether            | NS           | NS                                                          | 0.037 U                                              | 0.034 U                                              | 0.036 U                                               | 0.035 U                                              | 1 U                                                 | 1 U                                                  | 1 U                                                  |
| Bis(2-Chloroisopropyl) Ether                             | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Bis(2-Ethylhexyl) Phthalate                              | NS           | NS<br>NS                                                    | 0.47<br>0.37 UT                                      | 0.019 J                                              | 0.042 J                                               | 0.35 U                                               | 2 UJ                                                | 2 UJ<br>10 U                                         | 2 UJ                                                 |
| Caprolactam<br>Carbazole                                 | NS<br>NS     | NS                                                          | 0.021 J                                              | 0.34 U<br>0.03 J                                     | 0.36 U<br>0.13 J                                      | 0.35 U<br>0.023 J                                    | 10 U<br>10 U                                        | 10 U<br>10 U                                         | <u>10 U</u><br>10 U                                  |
| Chrysene                                                 | 1            | 3.9                                                         | 0.063 J                                              | 0.03 J                                               | 0.64                                                  | 0.023 J                                              | 2 U                                                 | 2 U                                                  | 2 U                                                  |
| Dibenz(a,h)Anthracene                                    | 0.33         | 0.33                                                        | 0.037 U                                              | 0.016 J                                              | 0.04                                                  | 0.035 U                                              | 1 U                                                 | 1 U                                                  | 1 U                                                  |
| Dibenzofuran                                             | 7            | 59                                                          | 0.047 J                                              | 0.016 J                                              | 0.039 J                                               | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Diethyl Phthalate                                        | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Dimethyl Phthalate                                       | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Di-N-Butyl Phthalate                                     | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Di-N-Octylphthalate<br>Fluoranthene                      | NS<br>100    | NS<br>100                                                   | 0.37 U<br>0.14 J                                     | 0.34 U<br>0.38                                       | 0.36 U<br>1.4                                         | 0.35 U<br>0.19 J                                     | 10 UJ<br>10 U                                       | 10 UJ<br>10 U                                        | <u>10 U</u><br>10 U                                  |
| Fluorene                                                 | 30           | 100                                                         | 0.14 J<br>0.082 J                                    | 0.025 J                                              | 0.056 J                                               | 0.014 J                                              | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Hexachlorobenzene                                        | 0.33         | 1.2                                                         | 0.037 U                                              | 0.034 U                                              | 0.036 U                                               | 0.035 U                                              | 1 UJ                                                | 1 UJ                                                 | 100<br>1 U                                           |
| Hexachlorobutadiene                                      | NS           | NS                                                          | 0.074 U                                              | 0.069 U                                              | 0.073 U                                               | 0.071 U                                              | 1 U                                                 | 1 U                                                  | 1 U                                                  |
| Hexachlorocyclopentadiene                                | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Hexachloroethane                                         | NS           | NS                                                          | 0.037 U                                              | 0.034 U                                              | 0.036 U                                               | 0.035 U                                              | 2 U                                                 | 2 U                                                  | 2 U                                                  |
| Indeno(1,2,3-c,d)Pyrene                                  | 0.5          | 0.5                                                         | 0.071                                                | 0.17                                                 | 0.54                                                  | 0.094                                                | 2 U                                                 | 2 U                                                  | 2 U                                                  |
| Isophorone                                               | NS           | NS                                                          | 0.15 U                                               | 0.14 U                                               | 0.14 U                                                | 0.14 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Naphthalene<br>Nitrobonzono                              | 12           | 100<br>NS                                                   | 0.23 J                                               | 0.015 J                                              | 0.019 J                                               | 0.0068 J                                             | 2 U                                                 | 2 U                                                  | 2 U                                                  |
| Nitrobenzene<br>N-Nitrosodi-N-Propylamine                | NS<br>NS     | NS<br>NS                                                    | 0.037 U<br>0.037 U                                   | 0.034 U<br>0.034 U                                   | 0.036 U<br>0.036 U                                    | 0.035 U<br>0.035 U                                   | <u>1 U</u><br>1 U                                   | 1 U<br>1 U                                           | <u> </u>                                             |
| N-Nitrosodi-N-Propylamine<br>N-Nitrosodiphenylamine      | NS           | NS                                                          | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Pentachlorophenol                                        | 0.8          | 6.7                                                         | 0.37 U<br>0.29 U                                     | 0.34 U                                               | 0.30 U                                                | 0.33 U                                               | 20 UJ                                               | 20 UJ                                                | 20 U                                                 |
| Phenanthrene                                             | 100          | 100                                                         | 0.14 J                                               | 0.27 J                                               | 0.92                                                  | 0.15 J                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Phenol                                                   | 0.33         | 100                                                         | 0.37 U                                               | 0.34 U                                               | 0.36 U                                                | 0.35 U                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
| Pyrene                                                   | 100          | 100                                                         | 0.12 J                                               | 0.33 J                                               | 1.2                                                   | 0.15 J                                               | 10 U                                                | 10 U                                                 | 10 U                                                 |
|                                                          |              |                                                             |                                                      |                                                      | -                                                     |                                                      | •                                                   |                                                      |                                                      |

|                                                          | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled | FB-01_20220513<br>460-258122-10<br>5/13/2022 | FB-01_20220701<br>460-261267-4<br>7/01/2022 | FB-01_20220727<br>460-262709-4<br>7/27/2022 | FB-01_20220811<br>460-263713-4<br>8/11/2022 | FB-01_20220830<br>460-264635-4<br>8/30/2022 |
|----------------------------------------------------------|--------------|-----------------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
|                                                          |              | Unit<br>Dilution Factor                             | μg/L<br>1                                    | μg/L<br>1                                   | μg/L<br>1                                   | μg/L<br>1                                   | μg/L<br>1                                   |
| Compound                                                 | NYSDEC UUSCO | NYSDEC RRSCO                                        | CONC Q                                       | CONC Q                                      | CONC Q                                      | CONC Q                                      | CONC Q                                      |
| 1,2,4,5-Tetrachlorobenzene                               | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 1,4-Dioxane (P-Dioxane)                                  | 0.1          | 13                                                  | 0.2 U                                        | 0.2 U                                       | 0.2 U                                       | 0.2 U                                       | 0.2 U                                       |
| 2,3,4,6-Tetrachlorophenol                                | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2,4,5-Trichlorophenol                                    | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2.4.6-Trichlorophenol                                    | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2,4-Dichlorophenol                                       | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2,4-Dimethylphenol                                       | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2,4-Dinitrophenol                                        | NS           | NS                                                  | 20 UJ                                        | 20 UJ                                       | 40 U                                        | 40 U                                        | 40 U                                        |
| 2,4-Dinitrotoluene                                       | NS           | NS                                                  | 2 U                                          | 2 U                                         | 10 U                                        | 10 U                                        | 10 U                                        |
| 2.6-Dinitrotoluene                                       | NS           | NS                                                  | 2 UJ                                         | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| 2-Chloronaphthalene                                      | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2-Chlorophenol                                           | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2-Methylnaphthalene                                      | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2-Methylphenol (O-Cresol)                                | 0.33         | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2-Nitroaniline                                           | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 2-Nitrophenol                                            | NS           | NS                                                  | 10 UJ                                        | 10 UJ                                       | 10 U                                        | 10 U                                        | 10 U                                        |
| 3- And 4- Methylphenol (Total)                           | NS           | NS<br>NS                                            | 10 U<br>10 U                                 | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                |
| 3.3'-Dichlorobenzidine                                   | NS           | NS<br>NS                                            | 10 U<br>10 U                                 | 10 U                                        | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                |
| 3-Nitroaniline                                           | NS<br>NS     | NS                                                  | 20 UJ                                        | 10 U<br>20 UJ                               | 10 U<br>20 U                                | 10 U<br>20 U                                | 10 U<br>20 U                                |
| 4,6-Dinitro-2-Methylphenol<br>4-Bromophenyl Phenyl Ether | NS           | NS                                                  | 20 UJ<br>10 U                                | 20 UJ<br>10 U                               | 20 U<br>10 U                                | 20 U<br>10 U                                | 20 U<br>10 U                                |
| 4-Bromophenyl Phenyl Ether<br>4-Chloro-3-Methylphenol    | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 4-Chloroaniline                                          | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 4-Chlorophenyl Phenyl Ether                              | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 4-Methylphenol (P-Cresol)                                | 0.33         | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 4-Nitroaniline                                           | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 4-Nitrophenol                                            | NS           | NS                                                  | 20 U                                         | 20 U                                        | 20 U                                        | 20 U                                        | 20 U                                        |
| Acenaphthene                                             | 20           | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Acenaphthylene                                           | 100          | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Acetophenone                                             | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Anthracene                                               | 100          | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Atrazine                                                 | NS           | NS                                                  | 2 U                                          | 2 U                                         | 2 UT                                        | 2 UT                                        | 2 UT                                        |
| Benzaldehyde                                             | NS           | NS                                                  | 10 UJ                                        | 10 UJ                                       | 10 U                                        | 10 U                                        | 10 UT                                       |
| Benzo(a)Anthracene                                       | 1            | 1                                                   | 1 U                                          | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| Benzo(a)Pyrene                                           | 1            | 1                                                   | 1 U                                          | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| Benzo(b)Fluoranthene                                     | 1            | 1                                                   | 2 U                                          | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| Benzo(g,h,i)Perylene                                     | 100          | 100                                                 | 10 U                                         | 10 UJ                                       | 10 U                                        | 10 U                                        | 10 U                                        |
| Benzo(k)Fluoranthene                                     | 0.8          | 3.9                                                 | 1 U                                          | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| Benzyl Butyl Phthalate                                   | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Biphenyl (Diphenyl)                                      | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Bis(2-Chloroethoxy) Methane                              | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Bis(2-Chloroethyl) Ether (2-Chloroethyl Ether            |              | NS                                                  | 1 U                                          | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| Bis(2-Chloroisopropyl) Ether                             | NS           | NS                                                  | 10 UJ                                        | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Bis(2-Ethylhexyl) Phthalate                              | NS           | NS                                                  | 2 U                                          | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| Caprolactam                                              | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Carbazole                                                | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Chrysene                                                 | 1            | 3.9                                                 | 2 U                                          | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| Dibenz(a,h)Anthracene                                    | 0.33         | 0.33                                                | <u>1 U</u>                                   | 1 UJ                                        | 1 U                                         | 1 U                                         | 1 U                                         |
| Dibenzofuran                                             | 7            | 59                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Diethyl Phthalate                                        | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U<br>10 U                                | 10 U<br>10 U                                |
| Dimethyl Phthalate                                       | NS           | NS                                                  | 10 U<br>10 U                                 | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                |
| Di-N-Butyl Phthalate                                     | NS           | NS                                                  | 10 U<br>10 U                                 | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                |
| Di-N-Octylphthalate<br>Fluoranthene                      | NS<br>100    | NS<br>100                                           | 10 U<br>10 U                                 | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                | 10 U<br>10 U                                |
| Fluorantnene                                             | 30           | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Hexachlorobenzene                                        | 0.33         | 100                                                 | 100                                          | 100                                         | 100                                         | 100                                         | 10 U                                        |
| Hexachlorobutadiene                                      | 0.33<br>NS   | 1.2<br>NS                                           | 1 U                                          | 1 UJ                                        | 1 U                                         | 1 U                                         | 1 U                                         |
| Hexachlorocyclopentadiene                                | NS NS        | NS                                                  | 10 UJ                                        | 10 UJ                                       | 10 U                                        | 10 U                                        | 10 U                                        |
| Hexachloroethane                                         | NS           | NS                                                  | 2 U                                          | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| Indeno(1,2,3-c,d)Pyrene                                  | 0.5          | 0.5                                                 | 2 U                                          | 2 UJ                                        | 2 U                                         | 2 U                                         | 2 U                                         |
| Isophorone                                               | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Naphthalene                                              | 12           | 100                                                 | 2 U                                          | 2 U                                         | 2 U                                         | 2 U                                         | 2 U                                         |
| Nitrobenzene                                             | NS           | NS                                                  | <u> </u>                                     | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| N-Nitrosodi-N-Propylamine                                | NS           | NS                                                  | 1 U                                          | 1 U                                         | 1 U                                         | 1 U                                         | 1 U                                         |
| N-Nitrosodi-N-Propylamine<br>N-Nitrosodiphenylamine      | NS           | NS                                                  | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Pentachlorophenol                                        | 0.8          | 6.7                                                 | 20 U                                         | 20 U                                        | 20 U                                        | 20 U                                        | 20 U                                        |
| Phenanthrene                                             | 100          | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Phenol                                                   | 0.33         | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| Pyrene                                                   | 100          | 100                                                 | 10 U                                         | 10 U                                        | 10 U                                        | 10 U                                        | 10 U                                        |
| 1 41010                                                  | 100          | 100                                                 | 10 0                                         | 100                                         | 10 0                                        | 100                                         | 10 0                                        |

|                 |              |                                                                                 |                                                           | 22-60 46th Street                                        |                                                           |                                                           |                                                           |
|-----------------|--------------|---------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                 |              |                                                                                 |                                                           | Queens, New York                                         |                                                           |                                                           |                                                           |
|                 |              |                                                                                 | Post-Excavation                                           | Soil Endpoint Sample Analyti                             | cal Results                                               |                                                           |                                                           |
|                 |              |                                                                                 |                                                           | Metals                                                   |                                                           |                                                           |                                                           |
|                 | Lab          | AKRF Sample ID<br>poratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | EP-01_20220425<br>460-256954-1<br>4/25/2022<br>mg/kg<br>1 | EP-X_20220425<br>460-256954-2<br>4/25/2022<br>mg/kg<br>1 | EP-02_20220425<br>460-256954-3<br>4/25/2022<br>mg/kg<br>1 | EP-03_20220425<br>460-256954-4<br>4/25/2022<br>mg/kg<br>1 | EP-04_20220425<br>460-256954-5<br>4/25/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSCO | NYSDEC RRSCO                                                                    | CONC Q                                                    | CONC Q                                                   | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| Aluminum        | NS           | NS                                                                              | 8,370                                                     | 8,200                                                    | 6,600                                                     | 8,270                                                     | 6,860                                                     |
| Antimony        | NS           | NS                                                                              | 0.84 UJ                                                   | 0.83 UJ                                                  | 0.88 U                                                    | 0.86 U                                                    | 0.86 U                                                    |
| Arsenic         | 13           | 16                                                                              | 2.2                                                       | 1.7                                                      | 2                                                         | 3.5                                                       | 1.2                                                       |
| Barium          | 350          | 400                                                                             | 29.9 J                                                    | 26.8 J                                                   | 27.3                                                      | 35                                                        | 24.6                                                      |
| Beryllium       | 7.2          | 72                                                                              | 0.39                                                      | 0.36                                                     | 0.31 J                                                    | 0.36                                                      | 0.3 J                                                     |
| Cadmium         | 2.5          | 4.3                                                                             | 0.84 U                                                    | 0.83 U                                                   | 0.88 U                                                    | 0.1 J                                                     | 0.86 U                                                    |
| Calcium         | NS           | NS                                                                              | 1,120                                                     | 842                                                      | 700                                                       | 1,940                                                     | 607                                                       |
| Chromium, Total | NS           | NS                                                                              | 14.1                                                      | 13.8                                                     | 13.3                                                      | 12.6                                                      | 11.2                                                      |
| Cobalt          | NS           | NS                                                                              | 5.1                                                       | 5.5                                                      | 4.3                                                       | 5.4                                                       | 4.7                                                       |
| Copper          | 50           | 270                                                                             | 14.4                                                      | 16.6                                                     | 10.7                                                      | 13.4                                                      | 12.2                                                      |
| Iron            | NS           | NS                                                                              | 13,200                                                    | 12,900                                                   | 10,500                                                    | 14,200                                                    | 9,690                                                     |
| Lead            | 63           | 400                                                                             | 13.6                                                      | 9.1                                                      | 6.8                                                       | 25.6                                                      | 4.5                                                       |
| Magnesium       | NS           | NS                                                                              | 2,960                                                     | 3,050                                                    | 2,120                                                     | 2,670                                                     | 2,360                                                     |
| Manganese       | 1,600        | 2,000                                                                           | 244 J                                                     | 285 J                                                    | 200                                                       | 225                                                       | 243                                                       |
| Mercury         | 0.18         | 0.81                                                                            | 0.091                                                     | 0.045                                                    | 0.019                                                     | 0.08                                                      | 0.017                                                     |
| Nickel          | 30           | 310                                                                             | 12.4                                                      | 13.3                                                     | 9.7                                                       | 9.9                                                       | 10.2                                                      |
| Potassium       | NS           | NS                                                                              | 971                                                       | 806                                                      | 682                                                       | 602                                                       | 716                                                       |
| Selenium        | 3.9          | 180                                                                             | 0.13 J                                                    | 0.12 J                                                   | 0.14 J                                                    | 0.24 J                                                    | 1.1 U                                                     |
| Silver          | 2            | 180                                                                             | 0.34 U                                                    | 0.33 U                                                   | 0.35 U                                                    | 0.34 U                                                    | 0.34 U                                                    |
| Sodium          | NS           | NS                                                                              | 86.7                                                      | 80.4 J                                                   | 101                                                       | 64.2 J                                                    | 60.5 J                                                    |
| Thallium        | NS           | NS                                                                              | 0.074 J                                                   | 0.072 J                                                  | 0.052 J                                                   | 0.068 J                                                   | 0.058 J                                                   |
| Vanadium        | NS           | NS                                                                              | 20.2                                                      | 19.4                                                     | 15.8                                                      | 19.7                                                      | 16.9                                                      |
| Zinc            | 109          | 10,000                                                                          | 35.2                                                      | 35.4                                                     | 21.9                                                      | 38.2                                                      | 25.3                                                      |

|                 |              |                                                                                 |                 | 22-60 46th Street                                         |                                                           |                                                           |                                                            |
|-----------------|--------------|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
|                 |              |                                                                                 |                 | Queens, New York                                          |                                                           |                                                           |                                                            |
|                 |              |                                                                                 | Post-Excavation | Soil Endpoint Sample Analyti                              | cal Results                                               |                                                           |                                                            |
|                 |              |                                                                                 |                 | Metals                                                    |                                                           |                                                           |                                                            |
|                 | Lab          | AKRF Sample ID<br>poratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-256954-6    | EP-06_20220425<br>460-256954-7<br>4/25/2022<br>mg/kg<br>1 | EP-07_20220425<br>460-256954-8<br>4/25/2022<br>mg/kg<br>1 | EP-08_20220425<br>460-256954-9<br>4/25/2022<br>mg/kg<br>1 | EP-09_20220425<br>460-256954-11<br>4/25/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSCO | NYSDEC RRSCO                                                                    | CONC Q          |                                                           |                                                           |                                                           |                                                            |
| Aluminum        | NS           | NS                                                                              | 6.390           | 4,430                                                     | 7.720                                                     | 7.890                                                     | 7,270                                                      |
| Antimony        | NS           | NS                                                                              | 0.83 U          | 0.77 U                                                    | 0.86 U                                                    | 0.8 U                                                     | 0.97 U                                                     |
| Arsenic         | 13           | 16                                                                              | 1.5             | 0.71 J                                                    | 1.5                                                       | 1.4                                                       | 1.7                                                        |
| Barium          | 350          | 400                                                                             | 22.4            | 22.7                                                      | 36.5                                                      | 36.2                                                      | 37.6                                                       |
| Beryllium       | 7.2          | 72                                                                              | 0.29 J          | 0.24 J                                                    | 0.26 J                                                    | 0.29 J                                                    | 0.39                                                       |
| Cadmium         | 2.5          | 4.3                                                                             | 0.83 U          | 0.77 U                                                    | 0.86 U                                                    | 0.8 U                                                     | 0.97 U                                                     |
| Calcium         | NS           | NS                                                                              | 755             | 451                                                       | 799                                                       | 622                                                       | 959                                                        |
| Chromium, Total | NS           | NS                                                                              | 10.6            | 7.9                                                       | 13.1                                                      | 13                                                        | 11.9                                                       |
| Cobalt          | NS           | NS                                                                              | 4.4             | 3                                                         | 3.9                                                       | 4.6                                                       | 4.8                                                        |
| Copper          | 50           | 270                                                                             | 10.3            | 5.1                                                       | 11.3                                                      | 13                                                        | 12.6                                                       |
| Iron            | NS           | NS                                                                              | 9,870           | 6,610                                                     | 9,210                                                     | 10,900                                                    | 11,600                                                     |
| Lead            | 63           | 400                                                                             | 3.6             | 3.1                                                       | 4.9                                                       | 3.4                                                       | 6.3                                                        |
| Magnesium       | NS           | NS                                                                              | 2,350           | 1,910                                                     | 2,940                                                     | 2,830                                                     | 2,630                                                      |
| Manganese       | 1,600        | 2,000                                                                           | 234             | 183                                                       | 124                                                       | 239                                                       | 281                                                        |
| Mercury         | 0.18         | 0.81                                                                            | 0.015 J         | 0.0085 J                                                  | 0.023                                                     | 0.015 J                                                   | 0.02                                                       |
| Nickel          | 30           | 310                                                                             | 11              | 7.4                                                       | 11.3                                                      | 14.3                                                      | 11.3                                                       |
| Potassium       | NS           | NS                                                                              | 618             | 509                                                       | 792                                                       | 791                                                       | 796                                                        |
| Selenium        | 3.9          | 180                                                                             | 1 U             | 0.96 U                                                    | 0.11 J                                                    | 0.12 J                                                    | 0.15 J                                                     |
| Silver          | 2            | 180                                                                             | 0.33 U          | 0.31 U                                                    | 0.34 U                                                    | 0.32 U                                                    | 0.39 U                                                     |
| Sodium          | NS           | NS                                                                              | 52.2 J          | 42.1 J                                                    | 55.4 J                                                    | 55.4 J                                                    | 98.9                                                       |
| Thallium        | NS           | NS                                                                              | 0.05 J          | 0.047 J                                                   | 0.063 J                                                   | 0.054 J                                                   | 0.064 J                                                    |
| Vanadium        | NS           | NS                                                                              | 14.3            | 9.5                                                       | 15.7                                                      | 18.3                                                      | 18.1                                                       |
| Zinc            | 109          | 10,000                                                                          | 20.7            | 14.9                                                      | 26.3                                                      | 23.7                                                      | 33.1                                                       |

|                 |              |                                                                                 |                 | 22-60 46th Street                                          |                                                           |                                                           |                                                           |
|-----------------|--------------|---------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                 |              |                                                                                 |                 | Queens, New York                                           |                                                           |                                                           |                                                           |
|                 |              |                                                                                 | Post-Excavation | Soil Endpoint Sample Analytic                              | cal Results                                               |                                                           |                                                           |
|                 |              |                                                                                 |                 | Metals                                                     |                                                           |                                                           |                                                           |
|                 | La           | AKRF Sample ID<br>boratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-257822-1    | EP-X02_20220509<br>460-257822-2<br>5/09/2022<br>mg/kg<br>1 | EP-11_20220509<br>460-257822-3<br>5/09/2022<br>mg/kg<br>1 | EP-12_20220509<br>460-257822-4<br>5/09/2022<br>mg/kg<br>1 | EP-13_20220509<br>460-257822-5<br>5/09/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSCO | O NYSDEC RRSCO                                                                  | CONC Q          | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| Aluminum        | NS           | NS                                                                              | 8.380           | 5.740                                                      | 8,410                                                     | 8.060                                                     | 8,570                                                     |
| Antimony        | NS           | NS                                                                              | 1.1 UJ          | 1.1 UJ                                                     | 1.1 U                                                     | 1.1 U                                                     | 1.1 U                                                     |
| Arsenic         | 13           | 16                                                                              | 2.6             | 1.8                                                        | 3                                                         | 2.7                                                       | 3.1                                                       |
| Barium          | 350          | 400                                                                             | 49.2 J          | 28.6 J                                                     | 40.6                                                      | 39.8                                                      | 50.5                                                      |
| Beryllium       | 7.2          | 72                                                                              | 0.4 J           | 0.27 J                                                     | 0.4 J                                                     | 0.39 J                                                    | 0.41 J                                                    |
| Cadmium         | 2.5          | 4.3                                                                             | 1.1 U           | 1.1 U                                                      | 1.1 U                                                     | 1.1 U                                                     | 1.1 U                                                     |
| Calcium         | NS           | NS                                                                              | 1,710           | 2,600                                                      | 2,270                                                     | 1,590                                                     | 1,300                                                     |
| Chromium, Total | NS           | NS                                                                              | 14.9            | 11.3                                                       | 15.3                                                      | 14.2                                                      | 15.1                                                      |
| Cobalt          | NS           | NS                                                                              | 6.2             | 4.3                                                        | 6.1                                                       | 5.7                                                       | 6                                                         |
| Copper          | 50           | 270                                                                             | 14.5            | 10.7                                                       | 15.7                                                      | 14.1                                                      | 17.2                                                      |
| Iron            | NS           | NS                                                                              | 13,300          | 10,100                                                     | 14,100                                                    | 13,100                                                    | 14,400                                                    |
| Lead            | 63           | 400                                                                             | 21.2 JL         | 16.2 JL                                                    | 28.4                                                      | 22.4                                                      | 24.5                                                      |
| Magnesium       | NS           | NS                                                                              | 3,280           | 2,770                                                      | 3,330                                                     | 2,910                                                     | 2,770                                                     |
| Manganese       | 1,600        | 2,000                                                                           | 257             | 180                                                        | 287                                                       | 231                                                       | 383                                                       |
| Mercury         | 0.18         | 0.81                                                                            | 0.049 J         | 0.028 J                                                    | 0.074                                                     | 0.048                                                     | 0.045                                                     |
| Nickel          | 30           | 310                                                                             | 14              | 10.3                                                       | 14.2                                                      | 13.6                                                      | 14.1                                                      |
| Potassium       | NS           | NS                                                                              | 952 J           | 685 J                                                      | 804                                                       | 833                                                       | 806                                                       |
| Selenium        | 3.9          | 180                                                                             | 1.4 U           | 1.4 U                                                      | 0.16 J                                                    | 0.14 J                                                    | 0.16 J                                                    |
| Silver          | 2            | 180                                                                             | 0.46 U          | 0.45 U                                                     | 0.44 U                                                    | 0.44 U                                                    | 0.45 U                                                    |
| Sodium          | NS           | NS                                                                              | 78.8 J          | 64.6 J                                                     | 71.3 J                                                    | 61.9 J                                                    | 67.9 J                                                    |
| Thallium        | NS           | NS                                                                              | 0.093 J         | 0.064 J                                                    | 0.081 J                                                   | 0.086 J                                                   | 0.1 J                                                     |
| Vanadium        | NS           | NS                                                                              | 20.6            | 16.1                                                       | 20.9                                                      | 19.8                                                      | 25.7                                                      |
| Zinc            | 109          | 10,000                                                                          | 43.5 J          | 28 J                                                       | 42.8                                                      | 37.1                                                      | 64                                                        |

|                 |             |                                                                                 |                 | 22-60 46th Street                                         |                                                           |                                                           |                                                            |
|-----------------|-------------|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
|                 |             |                                                                                 |                 | Queens, New York                                          |                                                           |                                                           |                                                            |
|                 |             |                                                                                 | Post-Excavation | Soil Endpoint Sample Analyti                              | cal Results                                               |                                                           |                                                            |
|                 |             |                                                                                 |                 | Metals                                                    |                                                           |                                                           |                                                            |
|                 | La          | AKRF Sample ID<br>boratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-257822-6    | EP-15_20220509<br>460-257822-7<br>5/09/2022<br>mg/kg<br>1 | EP-16_20220509<br>460-257822-8<br>5/09/2022<br>mg/kg<br>1 | EP-17_20220509<br>460-257822-9<br>5/09/2022<br>mg/kg<br>1 | EP-18_20220509<br>460-257822-10<br>5/09/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSC | O NYSDEC RRSCO                                                                  | CONC Q          | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     |
| Aluminum        | NS          | NS                                                                              | 9,230           | 7,580                                                     | 7,490                                                     | 9,380                                                     | 8,580                                                      |
| Antimony        | NS          | NS                                                                              | 1 U             | 1.1 U                                                     | 1 U                                                       | 1 U                                                       | 1.1 U                                                      |
| Arsenic         | 13          | 16                                                                              | 4               | 1.8                                                       | 2                                                         | 2.7                                                       | 2.7                                                        |
| Barium          | 350         | 400                                                                             | 53.3            | 43.7                                                      | 44.6                                                      | 61.8                                                      | 54.4                                                       |
| Beryllium       | 7.2         | 72                                                                              | 0.42            | 0.36 J                                                    | 0.33 J                                                    | 0.4 J                                                     | 0.45                                                       |
| Cadmium         | 2.5         | 4.3                                                                             | 0.12 J          | 1.1 U                                                     | 1 U                                                       | 1 U                                                       | 1.1 U                                                      |
| Calcium         | NS          | NS                                                                              | 1,390           | 1,010                                                     | 1,260                                                     | 2,730                                                     | 1,750                                                      |
| Chromium, Total | NS          | NS                                                                              | 15.5            | 16.5                                                      | 13.8                                                      | 22.9                                                      | 18.1                                                       |
| Cobalt          | NS          | NS                                                                              | 5.6             | 6.3                                                       | 5.2                                                       | 8.5                                                       | 6.1                                                        |
| Copper          | 50          | 270                                                                             | 21.5            | 16.7                                                      | 14.6                                                      | 30.3                                                      | 20.5                                                       |
| Iron            | NS          | NS                                                                              | 14,500          | 12,200                                                    | 11,600                                                    | 17,200                                                    | 15,700                                                     |
| Lead            | 63          | 400                                                                             | 53.6            | 4.7                                                       | 18.9                                                      | 11.5                                                      | 33.9                                                       |
| Magnesium       | NS          | NS                                                                              | 2,280           | 2,260                                                     | 2,440                                                     | 5,130                                                     | 2,910                                                      |
| Manganese       | 1,600       | 2,000                                                                           | 280             | 288                                                       | 267                                                       | 300                                                       | 270                                                        |
| Mercury         | 0.18        | 0.81                                                                            | 0.045           | 0.018 U                                                   | 0.049                                                     | 0.026                                                     | 0.068                                                      |
| Nickel          | 30          | 310                                                                             | 12.3            | 13.5                                                      | 11.1                                                      | 18.1                                                      | 13                                                         |
| Potassium       | NS          | NS                                                                              | 710             | 691                                                       | 836                                                       | 2,170                                                     | 1,020                                                      |
| Selenium        | 3.9         | 180                                                                             | 0.24 J          | 1.4 U                                                     | 1.3 U                                                     | 1.3 U                                                     | 0.16 J                                                     |
| Silver          | 2           | 180                                                                             | 0.41 U          | 0.44 U                                                    | 0.42 U                                                    | 0.41 U                                                    | 0.43 U                                                     |
| Sodium          | NS          | NS                                                                              | 67.7 J          | 86.2 J                                                    | 85.1 J                                                    | 213                                                       | 101 J                                                      |
| Thallium        | NS          | NS                                                                              | 0.095 J         | 0.063 J                                                   | 0.075 J                                                   | 0.14 J                                                    | 0.091 J                                                    |
| Vanadium        | NS          | NS                                                                              | 21.8            | 22.7                                                      | 21.4                                                      | 34.2                                                      | 26                                                         |
| Zinc            | 109         | 10,000                                                                          | 52.7            | 27.8                                                      | 31.5                                                      | 34.6                                                      | 42.7                                                       |

|                 |              |                                                                                |                                                            | 22-60 46th Street                                          |                                                            |                                                            |                                                            |
|-----------------|--------------|--------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
|                 |              |                                                                                |                                                            | Queens, New York                                           |                                                            |                                                            |                                                            |
|                 |              |                                                                                | Post-Excavation                                            | Soil Endpoint Sample Analyti                               | cal Results                                                |                                                            |                                                            |
|                 |              |                                                                                |                                                            | Metals                                                     |                                                            |                                                            |                                                            |
|                 | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | EP-19_20220509<br>460-257822-11<br>5/09/2022<br>mg/kg<br>1 | EP-20_20220509<br>460-257822-12<br>5/09/2022<br>mg/kg<br>1 | EP-21_20220509<br>460-257822-15<br>5/09/2022<br>mg/kg<br>1 | EP-22_20220509<br>460-257822-16<br>5/09/2022<br>mg/kg<br>1 | EP-23_20220509<br>460-257822-17<br>5/09/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                                                     |
| Aluminum        | NS           | NS                                                                             | 8,420                                                      | 8,060                                                      | 7,980                                                      | 10,700                                                     | 8,030                                                      |
| Antimony        | NS           | NS                                                                             | 1.1 U                                                      | 0.25 J                                                     | 1.1 U                                                      | 1.2 U                                                      | 1.1 U                                                      |
| Arsenic         | 13           | 16                                                                             | 2.1                                                        | 2.1                                                        | 2.6                                                        | 4.6                                                        | 3.8                                                        |
| Barium          | 350          | 400                                                                            | 64.9                                                       | 52.7                                                       | 42.2                                                       | 69.3                                                       | 84.5                                                       |
| Beryllium       | 7.2          | 72                                                                             | 0.42                                                       | 0.39 J                                                     | 0.36 J                                                     | 0.46 J                                                     | 0.33 J                                                     |
| Cadmium         | 2.5          | 4.3                                                                            | 1.1 U                                                      | 1 U                                                        | 1.1 U                                                      | 0.25 J                                                     | 1.1 U                                                      |
| Calcium         | NS           | NS                                                                             | 1,390                                                      | 4,220                                                      | 1,550                                                      | 3,330                                                      | 1,880                                                      |
| Chromium, Total | NS           | NS                                                                             | 15.6                                                       | 16.4                                                       | 14.1                                                       | 17.8                                                       | 14.6                                                       |
| Cobalt          | NS           | NS                                                                             | 6.3                                                        | 5.8                                                        | 5.7                                                        | 6.2                                                        | 5.7                                                        |
| Copper          | 50           | 270                                                                            | 20.5                                                       | 17.5                                                       | 17.8                                                       | 26.4                                                       | 20                                                         |
| Iron            | NS           | NS                                                                             | 12,900                                                     | 13,200                                                     | 12,700                                                     | 15,800                                                     | 15,100                                                     |
| Lead            | 63           | 400                                                                            | 18.2                                                       | 17.7                                                       | 26.5                                                       | 89.4                                                       | 82.1                                                       |
| Magnesium       | NS           | NS                                                                             | 3,110                                                      | 4,200                                                      | 2,780                                                      | 3,660                                                      | 2,410                                                      |
| Manganese       | 1,600        | 2,000                                                                          | 304                                                        | 305                                                        | 229                                                        | 289                                                        | 254                                                        |
| Mercury         | 0.18         | 0.81                                                                           | 0.043                                                      | 0.054                                                      | 0.064                                                      | 0.23                                                       | 0.077                                                      |
| Nickel          | 30           | 310                                                                            | 14.4                                                       | 12.9                                                       | 14.4                                                       | 14                                                         | 11.6                                                       |
| Potassium       | NS           | NS                                                                             | 994                                                        | 1,030                                                      | 785                                                        | 868                                                        | 777                                                        |
| Selenium        | 3.9          | 180                                                                            | 1.3 U                                                      | 1.3 U                                                      | 0.14 J                                                     | 0.38 J                                                     | 0.18 J                                                     |
| Silver          | 2            | 180                                                                            | 0.42 U                                                     | 0.42 U                                                     | 0.43 U                                                     | 0.49 U                                                     | 0.43 U                                                     |
| Sodium          | NS           | NS                                                                             | 82.6 J                                                     | 92.8 J                                                     | 126                                                        | 143                                                        | 101 J                                                      |
| Thallium        | NS           | NS                                                                             | 0.092 J                                                    | 0.084 J                                                    | 0.085 J                                                    | 0.12 J                                                     | 0.084 J                                                    |
| Vanadium        | NS           | NS                                                                             | 22.4                                                       | 23.5                                                       | 26.1                                                       | 26.3                                                       | 21                                                         |
| Zinc            | 109          | 10,000                                                                         | 37.3                                                       | 35.1                                                       | 68.6                                                       | 98                                                         | 52.5                                                       |

|                 |              |                                                                                 |                                                            | 22-60 46th Street                                          |                                                           |                                                            |                                                           |
|-----------------|--------------|---------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
|                 |              |                                                                                 |                                                            | Queens, New York                                           |                                                           |                                                            |                                                           |
|                 |              |                                                                                 | Post-Excavation                                            | Soil Endpoint Sample Analyti                               | cal Results                                               |                                                            |                                                           |
|                 |              |                                                                                 |                                                            | Metals                                                     |                                                           |                                                            |                                                           |
|                 | Lab          | AKRF Sample ID<br>poratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | EP-24_20220509<br>460-257822-18<br>5/09/2022<br>mg/kg<br>1 | EP-25_20220509<br>460-257822-19<br>5/09/2022<br>mg/kg<br>1 | EP-26_20220513<br>460-258122-1<br>5/13/2022<br>mg/kg<br>1 | EP-X03_20220513<br>460-258122-2<br>5/13/2022<br>mg/kg<br>1 | EP-27_20220513<br>460-258122-8<br>5/13/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSCO | NYSDEC RRSCO                                                                    | CONC Q                                                     | CONC Q                                                     | CONC Q                                                    | CONC Q                                                     | CONC Q                                                    |
| Aluminum        | NS           | NS                                                                              | 8,910                                                      | 9,210                                                      | 10,600                                                    | 9,400                                                      | 8,490                                                     |
| Antimony        | NS           | NS                                                                              | 1.1 U                                                      | 1.1 U                                                      | 1.2 UJ                                                    | 1 UJ                                                       | 1 U                                                       |
| Arsenic         | 13           | 16                                                                              | 3                                                          | 2.9                                                        | 3.1 J                                                     | 2 J                                                        | 2.9                                                       |
| Barium          | 350          | 400                                                                             | 51.3                                                       | 54.9                                                       | 55.4 J                                                    | 48.4 J                                                     | 52.3                                                      |
| Beryllium       | 7.2          | 72                                                                              | 0.35 J                                                     | 0.4 J                                                      | 0.45 J                                                    | 0.41 J                                                     | 0.39 J                                                    |
| Cadmium         | 2.5          | 4.3                                                                             | 1.1 U                                                      | 1.1 U                                                      | 1.2 U                                                     | 1 U                                                        | 1 U                                                       |
| Calcium         | NS           | NS                                                                              | 1,420                                                      | 1,780                                                      | 1,580 J                                                   | 1,060 J                                                    | 2,140                                                     |
| Chromium, Total | NS           | NS                                                                              | 14.4                                                       | 16.2                                                       | 17.2                                                      | 14.9                                                       | 15.4                                                      |
| Cobalt          | NS           | NS                                                                              | 5.8                                                        | 5.8                                                        | 6.6                                                       | 6.2                                                        | 7.3                                                       |
| Copper          | 50           | 270                                                                             | 14.6                                                       | 18.8                                                       | 19.4 J                                                    | 18 J                                                       | 18.3                                                      |
| Iron            | NS           | NS                                                                              | 13,100                                                     | 14,600                                                     | 15,100 J                                                  | 13,600 J                                                   | 13,200                                                    |
| Lead            | 63           | 400                                                                             | 37.4                                                       | 27                                                         | 27.9 J                                                    | 14.6 J                                                     | 17.9                                                      |
| Magnesium       | NS           | NS                                                                              | 2,790                                                      | 2,910                                                      | 3,240                                                     | 3,220                                                      | 3,470                                                     |
| Manganese       | 1,600        | 2,000                                                                           | 192                                                        | 258                                                        | 307                                                       | 319                                                        | 285                                                       |
| Mercury         | 0.18         | 0.81                                                                            | 0.051                                                      | 0.092                                                      | 0.036                                                     | 0.044                                                      | 0.043                                                     |
| Nickel          | 30           | 310                                                                             | 15.1                                                       | 13.6                                                       | 14.1                                                      | 16                                                         | 17                                                        |
| Potassium       | NS           | NS                                                                              | 831                                                        | 921                                                        | 884                                                       | 813                                                        | 961                                                       |
| Selenium        | 3.9          | 180                                                                             | 1.4 U                                                      | 0.14 J                                                     | 0.21 J                                                    | 0.15 J                                                     | 1.3 U                                                     |
| Silver          | 2            | 180                                                                             | 0.44 U                                                     | 0.44 U                                                     | 0.48 U                                                    | 0.42 U                                                     | 0.4 U                                                     |
| Sodium          | NS           | NS                                                                              | 98.9 J                                                     | 110 J                                                      | 121                                                       | 91.7 J                                                     | 114                                                       |
| Thallium        | NS           | NS                                                                              | 0.086 J                                                    | 0.089 J                                                    | 0.11 J                                                    | 0.1 J                                                      | 0.08 J                                                    |
| Vanadium        | NS           | NS                                                                              | 33.6                                                       | 25.6                                                       | 24.1 JK                                                   | 21.6 JK                                                    | 22.8                                                      |
| Zinc            | 109          | 10,000                                                                          | 53.3                                                       | 48.6                                                       | 43.7 J                                                    | 32.6 J                                                     | 37.2                                                      |

|                 |             |                                                                                  |                                                           | 22-60 46th Street                                         |                                                            |                                                           |                                                           |
|-----------------|-------------|----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                 |             |                                                                                  |                                                           | Queens, New York                                          |                                                            |                                                           |                                                           |
|                 |             |                                                                                  | Post-Excavation                                           | Soil Endpoint Sample Analyti                              | cal Results                                                |                                                           |                                                           |
|                 |             |                                                                                  |                                                           | Metals                                                    |                                                            |                                                           |                                                           |
|                 | Li          | AKRF Sample ID<br>aboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | EP-28_20220513<br>460-258122-9<br>5/13/2022<br>mg/kg<br>1 | EP-29_20220701<br>460-261267-1<br>7/01/2022<br>mg/kg<br>1 | EP-X04_20220701<br>460-261267-2<br>7/01/2022<br>mg/kg<br>1 | EP-30_20220701<br>460-261267-3<br>7/01/2022<br>mg/kg<br>1 | EP-31_20220727<br>460-262709-1<br>7/27/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSC | O NYSDEC RRSCO                                                                   | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    |
| Aluminum        | NS          | NS                                                                               | 6,850                                                     | 7,610                                                     | 7,240                                                      | 8,690                                                     | 6,090                                                     |
| Antimony        | NS          | NS                                                                               | 1.2 U                                                     | 1 UJ                                                      | 1 UJ                                                       | 1 U                                                       | 0.81 U                                                    |
| Arsenic         | 13          | 16                                                                               | 2                                                         | 1.5                                                       | 1.7                                                        | 2.2                                                       | 3.6                                                       |
| Barium          | 350         | 400                                                                              | 38.7                                                      | 48.4                                                      | 44.2                                                       | 43                                                        | 25.1                                                      |
| Beryllium       | 7.2         | 72                                                                               | 0.36 J                                                    | 0.32 J                                                    | 0.32 J                                                     | 0.36 J                                                    | 0.38                                                      |
| Cadmium         | 2.5         | 4.3                                                                              | 1.2 U                                                     | 1 U                                                       | 1 U                                                        | 1 U                                                       | 0.81 U                                                    |
| Calcium         | NS          | NS                                                                               | 1,220                                                     | 2,480 J                                                   | 1,560 J                                                    | 3,160                                                     | 546                                                       |
| Chromium, Total | NS          | NS                                                                               | 13.7                                                      | 14.4                                                      | 14.2                                                       | 14.8                                                      | 11.9                                                      |
| Cobalt          | NS          | NS                                                                               | 5.5                                                       | 6 JK                                                      | 5.3 JK                                                     | 6.1                                                       | 5.2                                                       |
| Copper          | 50          | 270                                                                              | 15.6                                                      | 19.5 J                                                    | 16.9 J                                                     | 18.1                                                      | 13.2                                                      |
| Iron            | NS          | NS                                                                               | 12,900                                                    | 12,500                                                    | 11,700                                                     | 14,000                                                    | 12,800                                                    |
| Lead            | 63          | 400                                                                              | 12.9                                                      | 11.9                                                      | 12.7 J                                                     | 17.1                                                      | 4.8                                                       |
| Magnesium       | NS          | NS                                                                               | 2,790                                                     | 3,550 J                                                   | 2,860                                                      | 3,880                                                     | 1,820                                                     |
| Manganese       | 1,600       | 2,000                                                                            | 240                                                       | 296                                                       | 279                                                        | 236                                                       | 132                                                       |
| Mercury         | 0.18        | 0.81                                                                             | 0.035                                                     | 0.014 J                                                   | 0.021                                                      | 0.02                                                      | 0.018 U                                                   |
| Nickel          | 30          | 310                                                                              | 12.3                                                      | 13 JK                                                     | 12.6 JK                                                    | 12.7                                                      | 9.9                                                       |
| Potassium       | NS          | NS                                                                               | 777                                                       | 1,030                                                     | 867                                                        | 830                                                       | 548                                                       |
| Selenium        | 3.9         | 180                                                                              | 1.5 U                                                     | 1.3 U                                                     | 1.3 U                                                      | 1.3 U                                                     | 1 U                                                       |
| Silver          | 2           | 180                                                                              | 0.48 U                                                    | 0.4 U                                                     | 0.42 U                                                     | 0.4 U                                                     | 0.32 U                                                    |
| Sodium          | NS          | NS                                                                               | 120                                                       | 106 J                                                     | 55.4 J                                                     | 134                                                       | 65.8 J                                                    |
| Thallium        | NS          | NS                                                                               | 0.061 J                                                   | 0.06 J                                                    | 0.053 J                                                    | 0.056 J                                                   | 0.051 J                                                   |
| Vanadium        | NS          | NS                                                                               | 19.1                                                      | 21.3 JK                                                   | 19.1 JK                                                    | 26                                                        | 17.3                                                      |
| Zinc            | 109         | 10,000                                                                           | 30.1                                                      | 31.3 JK                                                   | 32.7 JK                                                    | 44.2                                                      | 25.3                                                      |

|                 |             |                                                                                 |                 | 22-60 46th Street                                         |                                                           |                                                            |                                                           |
|-----------------|-------------|---------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
|                 |             |                                                                                 |                 | Queens, New York                                          |                                                           |                                                            |                                                           |
|                 |             |                                                                                 | Post-Excavation | Soil Endpoint Sample Analyti                              | cal Results                                               |                                                            |                                                           |
|                 |             |                                                                                 |                 | Metals                                                    |                                                           |                                                            |                                                           |
|                 | La          | AKRF Sample ID<br>boratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-262709-2    | EP-32_20220727<br>460-262709-3<br>7/27/2022<br>mg/kg<br>1 | EP-33_20220811<br>460-263713-1<br>8/11/2022<br>mg/kg<br>1 | EP-X06_20220811<br>460-263713-2<br>8/11/2022<br>mg/kg<br>1 | EP-34_20220811<br>460-263713-3<br>8/11/2022<br>mg/kg<br>1 |
| Compound        | NYSDEC UUSC | O NYSDEC RRSCO                                                                  |                 |                                                           |                                                           |                                                            |                                                           |
| Aluminum        | NS          | NS                                                                              | 6.870           | 6.520                                                     | 9.900                                                     | 11.200                                                     | 9.750                                                     |
| Antimony        | NS          | NS                                                                              | 1 U             | 1 U                                                       | 0.91 U                                                    | 1.1 U                                                      | 1.1 U                                                     |
| Arsenic         | 13          | 16                                                                              | 3.9             | 2                                                         | 1.8                                                       | 1.9                                                        | 2.7                                                       |
| Barium          | 350         | 400                                                                             | 27.5            | 37.5                                                      | 57.6                                                      | 63                                                         | 49.1                                                      |
| Beryllium       | 7.2         | 72                                                                              | 0.4             | 0.29 J                                                    | 0.5                                                       | 0.5                                                        | 0.42 J                                                    |
| Cadmium         | 2.5         | 4.3                                                                             | 1 U             | 1 U                                                       | 0.16 J                                                    | 1.1 U                                                      | 1.1 U                                                     |
| Calcium         | NS          | NS                                                                              | 520             | 1,360                                                     | 2,040                                                     | 1,970                                                      | 1,520                                                     |
| Chromium, Total | NS          | NS                                                                              | 12.7            | 13                                                        | 23                                                        | 24.6                                                       | 18.5                                                      |
| Cobalt          | NS          | NS                                                                              | 5.9             | 4.8                                                       | 7.4                                                       | 9.1                                                        | 6.7                                                       |
| Copper          | 50          | 270                                                                             | 14.5            | 13.7                                                      | 18.7                                                      | 20.2                                                       | 18.3                                                      |
| Iron            | NS          | NS                                                                              | 13,700          | 10,500                                                    | 18,100                                                    | 19,000                                                     | 14,600                                                    |
| Lead            | 63          | 400                                                                             | 5.7             | 14.9                                                      | 6.9                                                       | 7.3                                                        | 20.2                                                      |
| Magnesium       | NS          | NS                                                                              | 1,900           | 2,450                                                     | 4,420                                                     | 5,200                                                      | 3,240                                                     |
| Manganese       | 1,600       | 2,000                                                                           | 153             | 212                                                       | 496                                                       | 475                                                        | 331                                                       |
| Mercury         | 0.18        | 0.81                                                                            | 0.018 U         | 0.016 J                                                   | 0.019 U                                                   | 0.019 U                                                    | 0.066                                                     |
| Nickel          | 30          | 310                                                                             | 10.9            | 11.3                                                      | 16.7                                                      | 18.3                                                       | 14.1                                                      |
| Potassium       | NS          | NS                                                                              | 661             | 783                                                       | 1,500                                                     | 1,710                                                      | 986                                                       |
| Selenium        | 3.9         | 180                                                                             | 1.3 U           | 1.3 U                                                     | 1.1 U                                                     | 1.4 U                                                      | 0.17 J                                                    |
| Silver          | 2           | 180                                                                             | 0.4 U           | 0.41 U                                                    | 0.37 U                                                    | 0.46 U                                                     | 0.43 U                                                    |
| Sodium          | NS          | NS                                                                              | 76.1 J          | 69.2 J                                                    | 171                                                       | 133                                                        | 119                                                       |
| Thallium        | NS          | NS                                                                              | 0.058 J         | 0.064 J                                                   | 0.11 J                                                    | 0.11 J                                                     | 0.074 J                                                   |
| Vanadium        | NS          | NS                                                                              | 18.1            | 21                                                        | 32.4                                                      | 33.2                                                       | 26.8                                                      |
| Zinc            | 109         | 10,000                                                                          | 28.3            | 30.5                                                      | 40.6                                                      | 45.7                                                       | 42.1                                                      |

|                 |             |                                                                                 |                 | 22-60 46th Street                                          |                                                           |                                                           |                                                           |
|-----------------|-------------|---------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
|                 |             |                                                                                 |                 | Queens, New York                                           |                                                           |                                                           |                                                           |
|                 |             |                                                                                 | Post-Excavation | Soil Endpoint Sample Analytic                              | cal Results                                               |                                                           |                                                           |
|                 |             |                                                                                 |                 | Metals                                                     |                                                           |                                                           |                                                           |
|                 | La          | AKRF Sample ID<br>boratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-264635-1    | EP-X07_20220830<br>460-264635-2<br>8/30/2022<br>mg/kg<br>1 | EP-36_20220830<br>460-264635-3<br>8/30/2022<br>mg/kg<br>1 | FB-01_20220425<br>460-256954-10<br>4/25/2022<br>μg/L<br>1 | FB-01_20220509<br>460-257822-13<br>5/09/2022<br>μg/L<br>1 |
| Compound        | NYSDEC UUSC | O NYSDEC RRSCO                                                                  | CONC Q          | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| Aluminum        | NS          | NS                                                                              | 8,610           | 8,490                                                      | 7,560                                                     | 40 U                                                      | 40 U                                                      |
| Antimony        | NS          | NS                                                                              | 1 U             | 0.45 J                                                     | 1 U                                                       | 2 U                                                       | 2 U                                                       |
| Arsenic         | 13          | 16                                                                              | 2.8             | 4.1                                                        | 1.7                                                       | 2 U                                                       | 2 U                                                       |
| Barium          | 350         | 400                                                                             | 58.9            | 172                                                        | 44.5                                                      | 4 U                                                       | 4 U                                                       |
| Beryllium       | 7.2         | 72                                                                              | 0.38 J          | 0.39 J                                                     | 0.34 J                                                    | 0.8 U                                                     | 0.8 U                                                     |
| Cadmium         | 2.5         | 4.3                                                                             | 0.19 J          | 0.59 J                                                     | 0.13 J                                                    | 2 U                                                       | 2 U                                                       |
| Calcium         | NS          | NS                                                                              | 3,910           | 5,070                                                      | 5,620                                                     | 500 U                                                     | 100 J                                                     |
| Chromium, Total | NS          | NS                                                                              | 17.4            | 17.3                                                       | 15.2                                                      | 4 U                                                       | 4 U                                                       |
| Cobalt          | NS          | NS                                                                              | 6.6             | 5.5                                                        | 6.1                                                       | 4 U                                                       | 4 U                                                       |
| Copper          | 50          | 270                                                                             | 23.3            | 32.4                                                       | 21.2                                                      | 4 U                                                       | 4 U                                                       |
| Iron            | NS          | NS                                                                              | 13,200          | 13,300                                                     | 11,800                                                    | 120 U                                                     | 120 U                                                     |
| Lead            | 63          | 400                                                                             | 72.8            | 240                                                        | 24.6                                                      | 1.2 U                                                     | 1.2 U                                                     |
| Magnesium       | NS          | NS                                                                              | 3,560           | 3,460                                                      | 3,990                                                     | 200 U                                                     | 200 U                                                     |
| Manganese       | 1,600       | 2,000                                                                           | 242             | 615                                                        | 304                                                       | 8 U                                                       | 8 U                                                       |
| Mercury         | 0.18        | 0.81                                                                            | 0.075           | 0.12                                                       | 0.025                                                     | 0.2 U                                                     | 0.2 U                                                     |
| Nickel          | 30          | 310                                                                             | 12.7            | 13.5                                                       | 15.6                                                      | 4 U                                                       | 4 U                                                       |
| Potassium       | NS          | NS                                                                              | 880             | 917                                                        | 1,020                                                     | 200 U                                                     | 200 U                                                     |
| Selenium        | 3.9         | 180                                                                             | 0.23 J          | 0.36 J                                                     | 1.3 U                                                     | 2.5 U                                                     | 2.5 U                                                     |
| Silver          | 2           | 180                                                                             | 0.41 U          | 0.42 U                                                     | 0.42 U                                                    | 2 U                                                       | 2 U                                                       |
| Sodium          | NS          | NS                                                                              | 141             | 153                                                        | 122                                                       | 500 U                                                     | 245 J                                                     |
| Thallium        | NS          | NS                                                                              | 0.08 J          | 0.11 J                                                     | 0.069 J                                                   | 0.8 U                                                     | 0.8 U                                                     |
| Vanadium        | NS          | NS                                                                              | 23              | 23.4                                                       | 21.7                                                      | 4 U                                                       | 4 U                                                       |
| Zinc            | 109         | 10,000                                                                          | 64.3            | 169                                                        | 39                                                        | 16 U                                                      | 16 U                                                      |

|                 | 22-60 46th Street |                   |                   |                               |                |                |                |  |  |  |  |  |
|-----------------|-------------------|-------------------|-------------------|-------------------------------|----------------|----------------|----------------|--|--|--|--|--|
|                 |                   |                   |                   | Queens, New York              |                |                |                |  |  |  |  |  |
|                 |                   |                   | Post-Excavation S | Soil Endpoint Sample Analytic | cal Results    |                |                |  |  |  |  |  |
|                 |                   |                   |                   | Metals                        |                |                |                |  |  |  |  |  |
|                 |                   | AKRF Sample ID    | FB-01_20220513    | FB-01_20220701                | FB-01_20220727 | FB-01_20220811 | FB-01_20220830 |  |  |  |  |  |
|                 | Lab               | oratory Sample ID | 460-258122-10     | 460-261267-4                  | 460-262709-4   | 460-263713-4   | 460-264635-4   |  |  |  |  |  |
|                 |                   | Date Sampled      | 5/13/2022         | 7/01/2022                     | 7/27/2022      | 8/11/2022      | 8/30/2022      |  |  |  |  |  |
|                 |                   | Unit              | μg/L              | µg/L                          | μg/L           | μg/L           | μg/L           |  |  |  |  |  |
|                 |                   | Dilution Factor   | 1                 | 1                             | 1              | 1              | 1              |  |  |  |  |  |
| Compound        | NYSDEC UUSCO      | NYSDEC RRSCO      | CONC Q            | CONC Q                        | CONC Q         | CONC Q         | CONC Q         |  |  |  |  |  |
| Aluminum        | NS                | NS                | 40 U              | 40 U                          | 40 U           | 40 U           | 40 U           |  |  |  |  |  |
| Antimony        | NS                | NS                | 2 U               | 2 U                           | 2 U            | 2 U            | 2 U            |  |  |  |  |  |
| Arsenic         | 13                | 16                | 2 U               | 2 U                           | 2 U            | 2 U            | 2 U            |  |  |  |  |  |
| Barium          | 350               | 400               | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Beryllium       | 7.2               | 72                | 0.8 U             | 0.8 U                         | 0.8 U          | 0.8 U          | 0.8 U          |  |  |  |  |  |
| Cadmium         | 2.5               | 4.3               | 2 U               | 2 U                           | 2 U            | 2 U            | 2 U            |  |  |  |  |  |
| Calcium         | NS                | NS                | 169 J             | 500 U                         | 500 U          | 500 U          | 500 U          |  |  |  |  |  |
| Chromium, Total | NS                | NS                | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Cobalt          | NS                | NS                | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Copper          | 50                | 270               | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Iron            | NS                | NS                | 120 U             | 120 U                         | 120 U          | 120 U          | 120 U          |  |  |  |  |  |
| Lead            | 63                | 400               | 1.2 U             | 1.2 U                         | 1.2 U          | 1.2 U          | 1.2 U          |  |  |  |  |  |
| Magnesium       | NS                | NS                | 200 U             | 200 U                         | 200 U          | 200 U          | 200 U          |  |  |  |  |  |
| Manganese       | 1,600             | 2,000             | 8 U               | 8 U                           | 8 U            | 8 U            | 8 U            |  |  |  |  |  |
| Mercury         | 0.18              | 0.81              | 0.2 U             | 0.2 U                         | 0.2 U          | 0.2 U          | 0.2 U          |  |  |  |  |  |
| Nickel          | 30                | 310               | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Potassium       | NS                | NS                | 200 U             | 200 U                         | 200 U          | 200 U          | 200 U          |  |  |  |  |  |
| Selenium        | 3.9               | 180               | 2.5 U             | 2.5 U                         | 2.5 U          | 2.5 U          | 2.5 U          |  |  |  |  |  |
| Silver          | 2                 | 180               | 2 U               | 2 U                           | 2 U            | 2 U            | 2 U            |  |  |  |  |  |
| Sodium          | NS                | NS                | 366 J             | 500 U                         | 500 U          | 500 U          | 500 U          |  |  |  |  |  |
| Thallium        | NS                | NS                | 0.8 U             | 0.8 U                         | 0.8 U          | 0.8 U          | 0.8 U          |  |  |  |  |  |
| Vanadium        | NS                | NS                | 4 U               | 4 U                           | 4 U            | 4 U            | 4 U            |  |  |  |  |  |
| Zinc            | 109               | 10,000            | 16 U              | 16 U                          | 16 U           | 16 U           | 16 U           |  |  |  |  |  |

|                         | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-256954-1<br>4/25/2022 | EP-X_20220425<br>460-256954-2<br>4/25/2022<br>mg/kg<br>1 | EP-02_20220425<br>460-256954-3<br>4/25/2022<br>mg/kg<br>1 | EP-03_20220425<br>460-256954-4<br>4/25/2022<br>mg/kg<br>1 | EP-04_20220425<br>460-256954-5<br>4/25/2022<br>mg/kg<br>1 |
|-------------------------|--------------|--------------------------------------------------------------------------------|---------------------------|----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Compound                | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                    | CONC Q                                                   | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| PCB-1016 (Aroclor 1016) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1221 (Aroclor 1221) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1232 (Aroclor 1232) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1242 (Aroclor 1242) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1248 (Aroclor 1248) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1254 (Aroclor 1254) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1260 (Aroclor 1260) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1262 (Aroclor 1262) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| PCB-1268 (Aroclor 1268) | NS           | NS                                                                             | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |
| Total PCBs              | 0.1          | 1                                                                              | 0.072 U                   | 0.072 U                                                  | 0.072 U                                                   | 0.073 U                                                   | 0.071 U                                                   |

|                         | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-256954-6<br>4/25/2022 | EP-06_20220425<br>460-256954-7<br>4/25/2022<br>mg/kg<br>1 | EP-07_20220425<br>460-256954-8<br>4/25/2022<br>mg/kg<br>1 | EP-08_20220425<br>460-256954-9<br>4/25/2022<br>mg/kg<br>1 | EP-09_20220425<br>460-256954-11<br>4/25/2022<br>mg/kg<br>1 |
|-------------------------|--------------|--------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Compound                | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     |
| PCB-1016 (Aroclor 1016) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1221 (Aroclor 1221) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1232 (Aroclor 1232) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1242 (Aroclor 1242) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1248 (Aroclor 1248) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1254 (Aroclor 1254) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1260 (Aroclor 1260) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1262 (Aroclor 1262) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| PCB-1268 (Aroclor 1268) | NS           | NS                                                                             | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |
| Total PCBs              | 0.1          | 1                                                                              | 0.075 U                   | 0.07 U                                                    | 0.073 U                                                   | 0.073 U                                                   | 0.083 U                                                    |

|                         | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-257822-1<br>5/09/2022 | EP-X02_20220509<br>460-257822-2<br>5/09/2022<br>mg/kg<br>1 | EP-11_20220509<br>460-257822-3<br>5/09/2022<br>mg/kg<br>1 | EP-12_20220509<br>460-257822-4<br>5/09/2022<br>mg/kg<br>1 | EP-13_20220509<br>460-257822-5<br>5/09/2022<br>mg/kg<br>1 |
|-------------------------|--------------|--------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Compound                | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                    | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| PCB-1016 (Aroclor 1016) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1221 (Aroclor 1221) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1232 (Aroclor 1232) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1242 (Aroclor 1242) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1248 (Aroclor 1248) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1254 (Aroclor 1254) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1260 (Aroclor 1260) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1262 (Aroclor 1262) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| PCB-1268 (Aroclor 1268) | NS           | NS                                                                             | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |
| Total PCBs              | 0.1          | 1                                                                              | 0.077 U                   | 0.077 U                                                    | 0.079 U                                                   | 0.075 U                                                   | 0.077 U                                                   |

|                         | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-257822-6<br>5/09/2022 | EP-15_20220509<br>460-257822-7<br>5/09/2022<br>mg/kg<br>1 | EP-16_20220509<br>460-257822-8<br>5/09/2022<br>mg/kg<br>1 | EP-17_20220509<br>460-257822-9<br>5/09/2022<br>mg/kg<br>1 | EP-18_20220509<br>460-257822-10<br>5/09/2022<br>mg/kg<br>1 |
|-------------------------|--------------|--------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|
| Compound                | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     |
| PCB-1016 (Aroclor 1016) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1221 (Aroclor 1221) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1232 (Aroclor 1232) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1242 (Aroclor 1242) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1248 (Aroclor 1248) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1254 (Aroclor 1254) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1260 (Aroclor 1260) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1262 (Aroclor 1262) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| PCB-1268 (Aroclor 1268) | NS           | NS                                                                             | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |
| Total PCBs              | 0.1          | 1                                                                              | 0.075 U                   | 0.075 U                                                   | 0.073 U                                                   | 0.071 U                                                   | 0.074 U                                                    |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |              |              | 460-257822-11<br>5/09/2022 | EP-20_20220509<br>460-257822-12<br>5/09/2022<br>mg/kg<br>1 | EP-21_20220509<br>460-257822-15<br>5/09/2022<br>mg/kg<br>1 | EP-22_20220509<br>460-257822-16<br>5/09/2022<br>mg/kg<br>1 | EP-23_20220509<br>460-257822-17<br>5/09/2022<br>mg/kg<br>1 |
|-----------------------------------------------------------------------------------|--------------|--------------|----------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|
| Compound                                                                          | NYSDEC UUSCO | NYSDEC RRSCO | CONC Q                     | CONC Q                                                     | CONC Q                                                     | CONC Q                                                     | CONC Q                                                     |
| PCB-1016 (Aroclor 1016)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1221 (Aroclor 1221)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1232 (Aroclor 1232)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1242 (Aroclor 1242)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1248 (Aroclor 1248)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1254 (Aroclor 1254)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1260 (Aroclor 1260)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1262 (Aroclor 1262)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| PCB-1268 (Aroclor 1268)                                                           | NS           | NS           | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |
| Total PCBs                                                                        | 0.1          | 1            | 0.072 U                    | 0.075 U                                                    | 0.077 U                                                    | 0.087 U                                                    | 0.076 U                                                    |

|                         | Lab          | AKRF Sample ID<br>oratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor | 460-257822-18<br>5/09/2022 | EP-25_20220509<br>460-257822-19<br>5/09/2022<br>mg/kg<br>1 | EP-26_20220513<br>460-258122-1<br>5/13/2022<br>mg/kg<br>1 | EP-X03_20220513<br>460-258122-2<br>5/13/2022<br>mg/kg<br>1 | EP-27_20220513<br>460-258122-8<br>5/13/2022<br>mg/kg<br>1 |
|-------------------------|--------------|--------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Compound                | NYSDEC UUSCO | NYSDEC RRSCO                                                                   | CONC Q                     | CONC Q                                                     | CONC Q                                                    | CONC Q                                                     | CONC Q                                                    |
| PCB-1016 (Aroclor 1016) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1221 (Aroclor 1221) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1232 (Aroclor 1232) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1242 (Aroclor 1242) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1248 (Aroclor 1248) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1254 (Aroclor 1254) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1260 (Aroclor 1260) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1262 (Aroclor 1262) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| PCB-1268 (Aroclor 1268) | NS           | NS                                                                             | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |
| Total PCBs              | 0.1          | 1                                                                              | 0.077 U                    | 0.076 U                                                    | 0.079 U                                                   | 0.075 U                                                    | 0.073 U                                                   |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |              |              | 460-258122-9 | EP-29_20220701<br>460-261267-1<br>7/01/2022<br>mg/kg<br>1 | EP-X04_20220701<br>460-261267-2<br>7/01/2022<br>mg/kg<br>1 | EP-30_20220701<br>460-261267-3<br>7/01/2022<br>mg/kg<br>1 | EP-31_20220727<br>460-262709-1<br>7/27/2022<br>mg/kg<br>1 |
|-----------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUSCO | NYSDEC RRSCO | CONC Q       | CONC Q                                                    | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    |
| PCB-1016 (Aroclor 1016)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1221 (Aroclor 1221)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1232 (Aroclor 1232)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1242 (Aroclor 1242)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1248 (Aroclor 1248)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1254 (Aroclor 1254)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1260 (Aroclor 1260)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1262 (Aroclor 1262)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| PCB-1268 (Aroclor 1268)                                                           | NS           | NS           | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |
| Total PCBs                                                                        | 0.1          | 1            | 0.083 U      | 0.072 U                                                   | 0.072 U                                                    | 0.074 U                                                   | 0.072 U                                                   |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |              |              | 460-262709-2 | EP-32_20220727<br>460-262709-3<br>7/27/2022<br>mg/kg<br>1 | EP-33_20220811<br>460-263713-1<br>8/11/2022<br>mg/kg<br>1 | EP-X06_20220811<br>460-263713-2<br>8/11/2022<br>mg/kg<br>1 | EP-34_20220811<br>460-263713-3<br>8/11/2022<br>mg/kg<br>1 |
|-----------------------------------------------------------------------------------|--------------|--------------|--------------|-----------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUSCO | NYSDEC RRSCO | CONC Q       | CONC Q                                                    | CONC Q                                                    | CONC Q                                                     | CONC Q                                                    |
| PCB-1016 (Aroclor 1016)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1221 (Aroclor 1221)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1232 (Aroclor 1232)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1242 (Aroclor 1242)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1248 (Aroclor 1248)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1254 (Aroclor 1254)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1260 (Aroclor 1260)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1262 (Aroclor 1262)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| PCB-1268 (Aroclor 1268)                                                           | NS           | NS           | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |
| Total PCBs                                                                        | 0.1          | 1            | 0.072 U      | 0.074 U                                                   | 0.076 U                                                   | 0.077 U                                                    | 0.074 U                                                   |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |              |              | 460-264635-1<br>8/30/2022 | EP-X07_20220830<br>460-264635-2<br>8/30/2022<br>mg/kg<br>1 | EP-36_20220830<br>460-264635-3<br>8/30/2022<br>mg/kg<br>1 | FB-01_20220425<br>460-256954-10<br>4/25/2022<br>µg/L<br>1 | FB-01_20220509<br>460-257822-13<br>5/09/2022<br>µg/L<br>1 |
|-----------------------------------------------------------------------------------|--------------|--------------|---------------------------|------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUSCO | NYSDEC RRSCO | CONC Q                    | CONC Q                                                     | CONC Q                                                    | CONC Q                                                    | CONC Q                                                    |
| PCB-1016 (Aroclor 1016)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1221 (Aroclor 1221)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1232 (Aroclor 1232)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1242 (Aroclor 1242)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1248 (Aroclor 1248)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1254 (Aroclor 1254)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1260 (Aroclor 1260)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1262 (Aroclor 1262)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| PCB-1268 (Aroclor 1268)                                                           | NS           | NS           | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |
| Total PCBs                                                                        | 0.1          | 1            | 0.069 U                   | 0.073 U                                                    | 0.071 U                                                   | 0.4 U                                                     | 0.4 U                                                     |

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit<br>Dilution Factor |              |              | 460-258122-10<br>5/13/2022 | FB-01_20220701<br>460-261267-4<br>7/01/2022<br>μg/L<br>1 | FB-01_20220727<br>460-262709-4<br>7/27/2022<br>μg/L<br>1 | FB-01_20220811<br>460-263713-4<br>8/11/2022<br>μg/L<br>1 | FB-01_20220830<br>460-264635-4<br>8/30/2022<br>µg/L<br>1 |
|-----------------------------------------------------------------------------------|--------------|--------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUSCO | NYSDEC RRSCO | CONC Q                     | CONC Q                                                   | CONC Q                                                   | CONC Q                                                   | CONC Q                                                   |
| PCB-1016 (Aroclor 1016)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1221 (Aroclor 1221)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1232 (Aroclor 1232)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1242 (Aroclor 1242)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1248 (Aroclor 1248)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1254 (Aroclor 1254)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1260 (Aroclor 1260)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1262 (Aroclor 1262)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| PCB-1268 (Aroclor 1268)                                                           | NS           | NS           | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |
| Total PCBs                                                                        | 0.1          | 1            | 0.4 U                      | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    | 0.4 U                                                    |

| Pesiicides                              |              |                   |              |               |                |                |                |  |  |  |
|-----------------------------------------|--------------|-------------------|--------------|---------------|----------------|----------------|----------------|--|--|--|
|                                         |              | AKRF Sample ID    |              | EP-X_20220425 | EP-02_20220425 | EP-03_20220425 | EP-04_20220425 |  |  |  |
|                                         | Lab          | oratory Sample ID | 460-256954-1 | 460-256954-2  | 460-256954-3   | 460-256954-4   | 460-256954-5   |  |  |  |
|                                         |              | Date Sampled      | 4/25/2022    | 4/25/2022     | 4/25/2022      | 4/25/2022      | 4/25/2022      |  |  |  |
|                                         | Uni          |                   |              | mg/kg         | mg/kg          | mg/kg          | mg/kg          |  |  |  |
|                                         |              | Dilution Factor   | 1            | 1             | 1              | 1              | 1              |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q       | CONC Q        | CONC Q         | CONC Q         | CONC Q         |  |  |  |
| Aldrin                                  | 0.005        | 0.097             | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48              | 0.0021 U     | 0.0021 U      | 0.0022 U       | 0.0022 U       | 0.0021 U       |  |  |  |
| Alpha Endosulfan                        | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36              | 0.0021 U     | 0.0021 U      | 0.0022 U       | 0.0022 U       | 0.0021 U       |  |  |  |
| Beta Endosulfan                         | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2               | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100               | 0.0021 U     | 0.0021 U      | 0.0022 U       | 0.0022 U       | 0.0021 U       |  |  |  |
| Dieldrin                                | 0.005        | 0.2               | 0.0021 U     | 0.0021 U      | 0.0022 U       | 0.0022 U       | 0.0021 U       |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                | 0 U          | 0 U           | 0 U            | 0 U            | 0 U            |  |  |  |
| Endrin                                  | 0.014        | 11                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Endrin Aldehyde                         | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Endrin Ketone                           | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3               | 0.0021 U     | 0.0021 U      | 0.0022 U       | 0.0022 U       | 0.0021 U       |  |  |  |
| Heptachlor                              | 0.042        | 2.1               | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Methoxychlor                            | NS           | NS                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9               | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9               | 0.0072 U     | 0.0072 U      | 0.0072 U       | 0.0073 U       | 0.0071 U       |  |  |  |
| Toxaphene                               | NS           | NS                | 0.072 U      | 0.072 U       | 0.072 U        | 0.073 U        | 0.071 U        |  |  |  |

| Pesticiaes                              |              |                                     |          |                                |                                |                                |                                 |  |  |  |  |
|-----------------------------------------|--------------|-------------------------------------|----------|--------------------------------|--------------------------------|--------------------------------|---------------------------------|--|--|--|--|
|                                         | Lab          | AKRF Sample ID<br>oratory Sample ID |          | EP-06_20220425<br>460-256954-7 | EP-07_20220425<br>460-256954-8 | EP-08_20220425<br>460-256954-9 | EP-09_20220425<br>460-256954-11 |  |  |  |  |
|                                         | Date Sampled |                                     |          | 4/25/2022                      | 4/25/2022                      | 4/25/2022                      | 4/25/2022                       |  |  |  |  |
| Unit                                    |              |                                     | mg/kg    | mg/kg                          | mg/kg                          | mg/kg                          | mg/kg                           |  |  |  |  |
|                                         |              | Dilution Factor                     | 1        | 1                              | 1                              | 1                              | 1                               |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO                        | CONC Q   | CONC Q                         | CONC Q                         | CONC Q                         | CONC Q                          |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097                               | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48                                | 0.0022 U | 0.0021 U                       | 0.0022 U                       | 0.0022 U                       | 0.0025 U                        |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36                                | 0.0022 U | 0.0021 U                       | 0.0022 U                       | 0.0022 U                       | 0.0025 U                        |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2                                 | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100                                 | 0.0022 U | 0.0021 U                       | 0.0022 U                       | 0.0022 U                       | 0.0025 U                        |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2                                 | 0.0022 U | 0.0021 U                       | 0.0022 U                       | 0.0022 U                       | 0.0025 U                        |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                                  | 0 U      | 0 U                            | 0 U                            | 0 U                            | 0 U                             |  |  |  |  |
| Endrin                                  | 0.014        | 11                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Endrin Ketone                           | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3                                 | 0.0022 U | 0.0021 U                       | 0.0022 U                       | 0.0022 U                       | 0.0025 U                        |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1                                 | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Methoxychlor                            | NS           | NS                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                                  | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9                                 | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9                                 | 0.0075 U | 0.007 U                        | 0.0073 U                       | 0.0073 U                       | 0.0083 U                        |  |  |  |  |
| Toxaphene                               | NS           | NS                                  | 0.075 U  | 0.07 U                         | 0.073 U                        | 0.073 U                        | 0.083 U                         |  |  |  |  |

| Pesticiaes                              |                      |                 |          |                 |                |                |                |  |  |  |
|-----------------------------------------|----------------------|-----------------|----------|-----------------|----------------|----------------|----------------|--|--|--|
|                                         |                      | AKRF Sample ID  |          | EP-X02_20220509 | EP-11_20220509 | EP-12_20220509 | EP-13_20220509 |  |  |  |
|                                         | Laboratory Sample ID |                 |          | 460-257822-2    | 460-257822-3   | 460-257822-4   | 460-257822-5   |  |  |  |
|                                         | Date Sampled         |                 |          | 5/09/2022       | 5/09/2022      | 5/09/2022      | 5/09/2022      |  |  |  |
|                                         | Uni                  |                 |          | mg/kg           | mg/kg          | mg/kg          | mg/kg          |  |  |  |
|                                         |                      | Dilution Factor | 1        | 1               | 1              | 1              | 1              |  |  |  |
| Compound                                | NYSDEC UUSCO         | NYSDEC RRSCO    | CONC Q   | CONC Q          | CONC Q         | CONC Q         | CONC Q         |  |  |  |
| Aldrin                                  | 0.005                | 0.097           | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02                 | 0.48            | 0.0023 U | 0.0023 U        | 0.0024 U       | 0.0022 U       | 0.0023 U       |  |  |  |
| Alpha Endosulfan                        | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036                | 0.36            | 0.0023 U | 0.0023 U        | 0.0024 U       | 0.0022 U       | 0.0023 U       |  |  |  |
| Beta Endosulfan                         | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| cis-Chlordane                           | 0.094                | 4.2             | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04                 | 100             | 0.0023 U | 0.0023 U        | 0.0024 U       | 0.0022 U       | 0.0023 U       |  |  |  |
| Dieldrin                                | 0.005                | 0.2             | 0.0023 U | 0.0023 U        | 0.0024 U       | 0.0022 U       | 0.0023 U       |  |  |  |
| Endosulfan Sulfate                      | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Endosulfans ABS                         | 2.4                  | 24              | 0 U      | 0 U             | 0 U            | 0 U            | 0 U            |  |  |  |
| Endrin                                  | 0.014                | 11              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Endrin Aldehyde                         | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Endrin Ketone                           | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1                  | 1.3             | 0.0023 U | 0.0023 U        | 0.0024 U       | 0.0022 U       | 0.0023 U       |  |  |  |
| Heptachlor                              | 0.042                | 2.1             | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Heptachlor Epoxide                      | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Methoxychlor                            | NS                   | NS              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| P,P'-DDD                                | 0.0033               | 13              | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| P,P'-DDE                                | 0.0033               | 8.9             | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| P,P'-DDT                                | 0.0033               | 7.9             | 0.0077 U | 0.0077 U        | 0.0079 U       | 0.0075 U       | 0.0077 U       |  |  |  |
| Toxaphene                               | NS                   | NS              | 0.077 U  | 0.077 U         | 0.079 U        | 0.075 U        | 0.077 U        |  |  |  |

| I                                       | Festivities  |                   |          |                           |                |                |                |  |  |  |  |
|-----------------------------------------|--------------|-------------------|----------|---------------------------|----------------|----------------|----------------|--|--|--|--|
|                                         |              | AKRF Sample ID    |          | EP-15_20220509            | EP-16_20220509 | EP-17_20220509 | EP-18_20220509 |  |  |  |  |
|                                         | Lab          | oratory Sample ID |          | 460-257822-7<br>5/09/2022 | 460-257822-8   | 460-257822-9   | 460-257822-10  |  |  |  |  |
|                                         | Date Sampleo |                   |          |                           | 5/09/2022      | 5/09/2022      | 5/09/2022      |  |  |  |  |
|                                         | Unit         | mg/kg             | mg/kg    | mg/kg                     | mg/kg          | mg/kg          |                |  |  |  |  |
|                                         |              | Dilution Factor   | 1        | 1                         | 1              | 1              | 1              |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q   | CONC Q                    | CONC Q         | CONC Q         | CONC Q         |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097             | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48              | 0.0022 U | 0.0022 U                  | 0.0022 U       | 0.0021 U       | 0.0022 U       |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36              | 0.0022 U | 0.0022 U                  | 0.0022 U       | 0.0021 U       | 0.0022 U       |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2               | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100               | 0.0022 U | 0.0022 U                  | 0.0022 U       | 0.0021 U       | 0.0022 U       |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2               | 0.0022 U | 0.0022 U                  | 0.0022 U       | 0.0021 U       | 0.0022 U       |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                | 0 U      | 0 U                       | 0 U            | 0 U            | 0 U            |  |  |  |  |
| Endrin                                  | 0.014        | 11                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Endrin Ketone                           | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3               | 0.0022 U | 0.0022 U                  | 0.0022 U       | 0.0021 U       | 0.0022 U       |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1               | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Methoxychlor                            | NS           | NS                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9               | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9               | 0.0075 U | 0.0075 U                  | 0.0073 U       | 0.0071 U       | 0.0074 U       |  |  |  |  |
| Toxaphene                               | NS           | NS                | 0.075 U  | 0.075 U                   | 0.073 U        | 0.071 U        | 0.074 U        |  |  |  |  |

| resticides                              |              |                   |                |                |                |                |                |  |  |  |  |
|-----------------------------------------|--------------|-------------------|----------------|----------------|----------------|----------------|----------------|--|--|--|--|
|                                         |              | AKRF Sample ID    | EP-19_20220509 | EP-20_20220509 | EP-21_20220509 | EP-22_20220509 | EP-23_20220509 |  |  |  |  |
|                                         | Lab          | oratory Sample ID | 460-257822-11  | 460-257822-12  | 460-257822-15  | 460-257822-16  | 460-257822-17  |  |  |  |  |
|                                         |              | Date Sampled      | 5/09/2022      | 5/09/2022      | 5/09/2022      | 5/09/2022      | 5/09/2022      |  |  |  |  |
| Uni                                     |              |                   | mg/kg          | mg/kg          | mg/kg          | mg/kg          | mg/kg          |  |  |  |  |
|                                         |              | Dilution Factor   | 1              | 1              | 1              | 1              | 1              |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q         |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097             | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48              | 0.0022 U       | 0.0022 U       | 0.0023 U       | 0.0026 U       | 0.0023 U       |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36              | 0.0022 U       | 0.0022 U       | 0.0023 U       | 0.0026 U       | 0.0023 U       |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2               | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100               | 0.0022 U       | 0.0022 U       | 0.0023 U       | 0.0026 U       | 0.0023 U       |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2               | 0.0022 U       | 0.0022 U       | 0.0023 U       | 0.0026 U       | 0.0023 U       |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                | 0 U            | 0 U            | 0 U            | 0 U            | 0 U            |  |  |  |  |
| Endrin                                  | 0.014        | 11                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Endrin Ketone                           | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3               | 0.0022 U       | 0.0022 U       | 0.0023 U       | 0.0026 U       | 0.0023 U       |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1               | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Methoxychlor                            | NS           | NS                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9               | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9               | 0.0072 U       | 0.0075 U       | 0.0077 U       | 0.0087 U       | 0.0076 U       |  |  |  |  |
| Toxaphene                               | NS           | NS                | 0.072 U        | 0.075 U        | 0.077 U        | 0.087 U        | 0.076 U        |  |  |  |  |

| Pesticides                              |              |                   |               |                |                |                 |                |  |  |  |  |
|-----------------------------------------|--------------|-------------------|---------------|----------------|----------------|-----------------|----------------|--|--|--|--|
|                                         |              | AKRF Sample ID    |               | EP-25_20220509 | EP-26_20220513 | EP-X03_20220513 | EP-27_20220513 |  |  |  |  |
|                                         | Lab          | oratory Sample ID | 460-257822-18 | 460-257822-19  | 460-258122-1   | 460-258122-2    | 460-258122-8   |  |  |  |  |
|                                         |              | Date Sampled      | 5/09/2022     | 5/09/2022      | 5/13/2022      | 5/13/2022       | 5/13/2022      |  |  |  |  |
|                                         | Uni          |                   |               | mg/kg          | mg/kg          | mg/kg           | mg/kg          |  |  |  |  |
|                                         |              | Dilution Factor   | 1             | 1              | 1              | 1               | 1              |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q        | CONC Q         | CONC Q         | CONC Q          | CONC Q         |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097             | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48              | 0.0023 U      | 0.0023 U       | 0.0024 U       | 0.0022 U        | 0.0022 U       |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36              | 0.0023 U      | 0.0023 U       | 0.0024 U       | 0.0022 U        | 0.0022 U       |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2               | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100               | 0.0023 U      | 0.0023 U       | 0.0024 U       | 0.0022 U        | 0.0022 U       |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2               | 0.0023 U      | 0.0023 U       | 0.0024 U       | 0.0022 U        | 0.0022 U       |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                | 0 U           | 0 U            | 0 U            | 0 U             | 0 U            |  |  |  |  |
| Endrin                                  | 0.014        | 11                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Endrin Ketone                           | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3               | 0.0023 U      | 0.0023 U       | 0.0024 U       | 0.0022 U        | 0.0022 U       |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1               | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Methoxychlor                            | NS           | NS                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9               | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9               | 0.0077 U      | 0.0076 U       | 0.0079 U       | 0.0075 U        | 0.0073 U       |  |  |  |  |
| Toxaphene                               | NS           | NS                | 0.077 U       | 0.076 U        | 0.079 U        | 0.075 U         | 0.073 U        |  |  |  |  |

| Pesticiaes                              |              |                                     |                                |                                |                                 |                                |                                |  |  |  |  |
|-----------------------------------------|--------------|-------------------------------------|--------------------------------|--------------------------------|---------------------------------|--------------------------------|--------------------------------|--|--|--|--|
|                                         | Lab          | AKRF Sample ID<br>oratory Sample ID | EP-28_20220513<br>460-258122-9 | EP-29_20220701<br>460-261267-1 | EP-X04_20220701<br>460-261267-2 | EP-30_20220701<br>460-261267-3 | EP-31_20220727<br>460-262709-1 |  |  |  |  |
|                                         |              |                                     |                                |                                |                                 |                                |                                |  |  |  |  |
|                                         | Date Sampled |                                     |                                | 7/01/2022                      | 7/01/2022                       | 7/01/2022                      | 7/27/2022                      |  |  |  |  |
|                                         |              | Unit                                | mg/kg                          | mg/kg                          | mg/kg                           | mg/kg                          | mg/kg                          |  |  |  |  |
|                                         |              | Dilution Factor                     | 1                              | 1                              | 1                               | 1                              | 1                              |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO                        | CONC Q                         | CONC Q                         | CONC Q                          | CONC Q                         | CONC Q                         |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097                               | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48                                | 0.0025 U                       | 0.0021 U                       | 0.0021 U                        | 0.0022 U                       | 0.0021 U                       |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36                                | 0.0025 U                       | 0.0021 U                       | 0.0021 U                        | 0.0022 U                       | 0.0021 U                       |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2                                 | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100                                 | 0.0025 U                       | 0.0021 U                       | 0.0021 U                        | 0.0022 U                       | 0.0021 U                       |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2                                 | 0.0025 U                       | 0.0021 U                       | 0.0021 U                        | 0.0022 U                       | 0.0021 U                       |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                                  | 0 U                            | 0 U                            | 0 U                             | 0 U                            | 0 U                            |  |  |  |  |
| Endrin                                  | 0.014        | 11                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Endrin Ketone                           | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3                                 | 0.0025 U                       | 0.0021 U                       | 0.0021 U                        | 0.0022 U                       | 0.0021 U                       |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1                                 | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Methoxychlor                            | NS           | NS                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                                  | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9                                 | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9                                 | 0.0083 U                       | 0.0072 U                       | 0.0072 U                        | 0.0074 U                       | 0.0072 U                       |  |  |  |  |
| Toxaphene                               | NS           | NS                                  | 0.083 U                        | 0.072 U                        | 0.072 U                         | 0.074 U                        | 0.072 U                        |  |  |  |  |

| Pesticiaes                              |              |                   |                 |                |                |                 |                |  |  |  |  |
|-----------------------------------------|--------------|-------------------|-----------------|----------------|----------------|-----------------|----------------|--|--|--|--|
|                                         |              | AKRF Sample ID    | EP-X05_20220727 | EP-32_20220727 | EP-33_20220811 | EP-X06_20220811 | EP-34_20220811 |  |  |  |  |
|                                         | Lab          | oratory Sample ID | 460-262709-2    | 460-262709-3   | 460-263713-1   | 460-263713-2    | 460-263713-3   |  |  |  |  |
|                                         | Date Sampled |                   |                 | 7/27/2022      | 8/11/2022      | 8/11/2022       | 8/11/2022      |  |  |  |  |
|                                         | Uni          |                   |                 | mg/kg          | mg/kg          | mg/kg           | mg/kg          |  |  |  |  |
|                                         |              | Dilution Factor   | 1               | 1              | 1              | 1               | 1              |  |  |  |  |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO      | CONC Q          | CONC Q         | CONC Q         | CONC Q          | CONC Q         |  |  |  |  |
| Aldrin                                  | 0.005        | 0.097             | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48              | 0.0022 U        | 0.0022 U       | 0.0023 U       | 0.0023 U        | 0.0022 U       |  |  |  |  |
| Alpha Endosulfan                        | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36              | 0.0022 U        | 0.0022 U       | 0.0023 U       | 0.0023 U        | 0.0022 U       |  |  |  |  |
| Beta Endosulfan                         | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| cis-Chlordane                           | 0.094        | 4.2               | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100               | 0.0022 U        | 0.0022 U       | 0.0023 U       | 0.0023 U        | 0.0022 U       |  |  |  |  |
| Dieldrin                                | 0.005        | 0.2               | 0.0022 U        | 0.0022 U       | 0.0023 U       | 0.0023 U        | 0.0022 U       |  |  |  |  |
| Endosulfan Sulfate                      | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Endosulfans ABS                         | 2.4          | 24                | 0 U             | 0 U            | 0 U            | 0 U             | 0 U            |  |  |  |  |
| Endrin                                  | 0.014        | 11                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Endrin Aldehyde                         | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Endrin Ketone                           | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3               | 0.0022 U        | 0.0022 U       | 0.0023 U       | 0.0023 U        | 0.0022 U       |  |  |  |  |
| Heptachlor                              | 0.042        | 2.1               | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Heptachlor Epoxide                      | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Methoxychlor                            | NS           | NS                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| P,P'-DDD                                | 0.0033       | 13                | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| P,P'-DDE                                | 0.0033       | 8.9               | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| P,P'-DDT                                | 0.0033       | 7.9               | 0.0072 U        | 0.0074 U       | 0.0076 U       | 0.0077 U        | 0.0074 U       |  |  |  |  |
| Toxaphene                               | NS           | NS                | 0.072 U         | 0.074 U        | 0.076 U        | 0.077 U         | 0.074 U        |  |  |  |  |

### Table 6 22-60 46th Street Queens, New York

Post-Excavation Soil Endpoint Sample Analytical Results Pesticides

|                                         |              |                 |              | sticides                                     |                                             |                                              |                                              |
|-----------------------------------------|--------------|-----------------|--------------|----------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------------|
| AKRF Sample ID<br>Laboratory Sample ID  |              |                 | 460-264635-1 | EP-X07_20220830<br>460-264635-2<br>8/30/2022 | EP-36_20220830<br>460-264635-3<br>8/30/2022 | FB-01_20220425<br>460-256954-10<br>4/25/2022 | FB-01_20220509<br>460-257822-13<br>5/09/2022 |
|                                         |              | Date Sampled    |              |                                              |                                             |                                              |                                              |
|                                         |              | Unit            | mg/kg        | mg/kg                                        | mg/kg                                       | µg/L                                         | µg/L                                         |
|                                         |              | Dilution Factor | 1            | 1                                            | 1                                           | 1                                            | 1                                            |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO    | CONC Q       | CONC Q                                       | CONC Q                                      | CONC Q                                       | CONC Q                                       |
| Aldrin                                  | 0.005        | 0.097           | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48            | 0.0021 U     | 0.0022 U                                     | 0.0021 U                                    | 0.02 U                                       | 0.02 U                                       |
| Alpha Endosulfan                        | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36            | 0.0021 U     | 0.0022 U                                     | 0.0021 U                                    | 0.02 U                                       | 0.02 U                                       |
| Beta Endosulfan                         | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| cis-Chlordane                           | 0.094        | 4.2             | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100             | 0.0021 U     | 0.0022 U                                     | 0.0021 U                                    | 0.02 U                                       | 0.02 U                                       |
| Dieldrin                                | 0.005        | 0.2             | 0.0021 U     | 0.0022 U                                     | 0.0021 U                                    | 0.02 U                                       | 0.02 U                                       |
| Endosulfan Sulfate                      | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Endosulfans ABS                         | 2.4          | 24              | 0 U          | 0 U                                          | 0 U                                         | 0 U                                          | 0 U                                          |
| Endrin                                  | 0.014        | 11              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Endrin Aldehyde                         | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Endrin Ketone                           | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3             | 0.0021 U     | 0.0022 U                                     | 0.0021 U                                    | 0.02 U                                       | 0.02 U                                       |
| Heptachlor                              | 0.042        | 2.1             | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Heptachlor Epoxide                      | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Methoxychlor                            | NS           | NS              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| P,P'-DDD                                | 0.0033       | 13              | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| P,P'-DDE                                | 0.0033       | 8.9             | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| P,P'-DDT                                | 0.0033       | 7.9             | 0.0069 U     | 0.0073 U                                     | 0.0071 U                                    | 0.02 U                                       | 0.02 U                                       |
| Toxaphene                               | NS           | NS              | 0.069 U      | 0.073 U                                      | 0.071 U                                     | 0.5 U                                        | 0.5 U                                        |

### Table 6 22-60 46th Street Queens, New York

Post-Excavation Soil Endpoint Sample Analytical Results Pesticides

|                                         |              |                 | 1 63          | ticides        |                |                |                |
|-----------------------------------------|--------------|-----------------|---------------|----------------|----------------|----------------|----------------|
|                                         |              | AKRF Sample ID  |               | FB-01_20220701 | FB-01_20220727 | FB-01_20220811 | FB-01_20220830 |
| Laboratory Sample ID                    |              |                 | 460-258122-10 | 460-261267-4   | 460-262709-4   | 460-263713-4   | 460-264635-4   |
|                                         |              | Date Sampled    | 5/13/2022     | 7/01/2022      | 7/27/2022      | 8/11/2022      | 8/30/2022      |
|                                         |              | Unit            | μg/L          | μg/L           | μg/L           | μg/L           | μg/L           |
|                                         |              | Dilution Factor | 1             | 1              | 1              | 1              | 1              |
| Compound                                | NYSDEC UUSCO | NYSDEC RRSCO    | CONC Q        | CONC Q         | CONC Q         | CONC Q         | CONC Q         |
| Aldrin                                  | 0.005        | 0.097           | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Alpha Bhc (Alpha Hexachlorocyclohexane) | 0.02         | 0.48            | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Alpha Endosulfan                        | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Beta Bhc (Beta Hexachlorocyclohexane)   | 0.036        | 0.36            | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Beta Endosulfan                         | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| cis-Chlordane                           | 0.094        | 4.2             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Delta BHC (Delta Hexachlorocyclohexane) | 0.04         | 100             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Dieldrin                                | 0.005        | 0.2             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Endosulfan Sulfate                      | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Endosulfans ABS                         | 2.4          | 24              | 0 U           | 0 U            | 0 U            | 0 U            | 0 U            |
| Endrin                                  | 0.014        | 11              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Endrin Aldehyde                         | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Endrin Ketone                           | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Gamma Bhc (Lindane)                     | 0.1          | 1.3             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Heptachlor                              | 0.042        | 2.1             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Heptachlor Epoxide                      | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Methoxychlor                            | NS           | NS              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| P,P'-DDD                                | 0.0033       | 13              | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| P,P'-DDE                                | 0.0033       | 8.9             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| P,P'-DDT                                | 0.0033       | 7.9             | 0.02 U        | 0.02 U         | 0.02 U         | 0.02 U         | 0.02 U         |
| Toxaphene                               | NS           | NS              | 0.5 U         | 0.5 U          | 0.5 U          | 0.5 U          | 0.5 U          |

| Table 7                                                 |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

|                                                |             | AKRF Sample ID<br>ratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit | EP-01_20220425<br>460-256994-1<br>4/25/2022<br>1<br>ppb | EP-X_20220425<br>460-256994-2<br>4/25/2022<br>1<br>ppb | EP-02_20220425<br>460-256994-3<br>4/25/2022<br>1<br>ppb | EP-03_20220425<br>460-256994-4<br>4/25/2022<br>1<br>ppb | EP-04_20220425<br>460-256994-5<br>4/25/2022<br>1<br>ppb |
|------------------------------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Compound                                       | NYSDEC UUGV | NYSDEC RRGV                                                                   | CONC Q                                                  | CONC Q                                                 | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| 8:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid  | NS          | NS                                                                            | 0.21 R                                                  | 0.21 R                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 R                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid | NS          | NS                                                                            | 0.21 R                                                  | 0.21 R                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 R                                                  |
| Perfluorobutanesulfonic acid                   | NS          | NS                                                                            | 0.42 U                                                  | 0.43 U                                                 | 0.49 U                                                  | 0.44 U                                                  | 0.43 U                                                  |
| Perfluorobutanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorodecanesulfonic acid                   | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorodecanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorododecanoic acid                       | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroheptanesulfonic acid                  | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroheptanoic acid                        | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorohexanesulfonic acid                   | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorohexanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.032 J                                                 | 0.21 U                                                  |
| Perfluorononanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorooctanesulfonic acid                   | 0.88        | 44                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.14 J                                                  | 0.21 U                                                  |
| Perfluorooctanoic acid                         | 0.66        | 33                                                                            | 0.031 J                                                 | 0.023 J                                                | 0.031 J                                                 | 0.078 J                                                 | 0.21 U                                                  |
| Perfluoropentanoic acid                        | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorotetradecanoic acid                    | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorotridecanoic acid                      | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroundecanoic acid                       | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |
| Perfluroroctanesulfonamide                     | NS          | NS                                                                            | 0.21 U                                                  | 0.21 U                                                 | 0.25 U                                                  | 0.22 U                                                  | 0.21 U                                                  |

| Table 7                                                 |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

|                                                |             | AKRF Sample ID<br>ratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit | EP-05_20220425<br>460-256994-6<br>4/25/2022<br>1<br>ppb | EP-06_20220425<br>460-256994-7<br>4/25/2022<br>1<br>ppb | EP-07_20220425<br>460-256994-8<br>4/25/2022<br>1<br>ppb | EP-08_20220425<br>460-256994-9<br>4/25/2022<br>1<br>ppb | EP-09_20220425<br>460-256994-11<br>4/25/2022<br>1<br>ppb |
|------------------------------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Compound                                       | NYSDEC UUGV | NYSDEC RRGV                                                                   | CONC Q                                                   |
| 6:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| 8:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| N-ethyl perfluorooctanesulfonamidoacetic acid  | NS          | NS                                                                            | 0.21 R                                                  | 0.22 U                                                  | 0.22 R                                                  | 0.22 R                                                  | 0.21 R                                                   |
| N-methyl perfluorooctanesulfonamidoacetic acid |             | NS                                                                            | 0.21 R                                                  | 0.22 U                                                  | 0.22 R                                                  | 0.22 R                                                  | 0.21 R                                                   |
| Perfluorobutanesulfonic acid                   | NS          | NS                                                                            | 0.42 U                                                  | 0.43 U                                                  | 0.44 U                                                  | 0.43 U                                                  | 0.42 U                                                   |
| Perfluorobutanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 UJ                                                 | 0.027 J                                                 | 0.21 U                                                   |
| Perfluorodecanesulfonic acid                   | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorodecanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 UJ                                                 | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorododecanoic acid                       | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluoroheptanesulfonic acid                  | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluoroheptanoic acid                        | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorohexanesulfonic acid                   | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorohexanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorononanoic acid                         | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 UJ                                                 | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorooctanesulfonic acid                   | 0.88        | 44                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorooctanoic acid                         | 0.66        | 33                                                                            | 0.21 U                                                  | 0.044 J                                                 | 0.22 UJ                                                 | 0.22 U                                                  | 0.027 J                                                  |
| Perfluoropentanoic acid                        | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorotetradecanoic acid                    | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluorotridecanoic acid                      | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluoroundecanoic acid                       | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |
| Perfluroroctanesulfonamide                     | NS          | NS                                                                            | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                   |

| Table 7                                                 |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

|                                                |             | AKRF Sample ID<br>ratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit | EP-10_20220509<br>460-257853-1<br>5/09/2022<br>1<br>ppb | EP-X02_20220509<br>460-257853-2<br>5/09/2022<br>1<br>ppb | EP-11_20220509<br>460-257853-3<br>5/09/2022<br>1<br>ppb | EP-12_20220509<br>460-257853-4<br>5/09/2022<br>1<br>ppb | EP-13_20220509<br>460-257853-5<br>5/09/2022<br>1<br>ppb |
|------------------------------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Compound                                       | NYSDEC UUGV | NYSDEC RRGV                                                                   | CONC Q                                                  | CONC Q                                                   | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| 8:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid  | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid | NS          | NS                                                                            | 0.038 J                                                 | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorobutanesulfonic acid                   | NS          | NS                                                                            | 0.45 U                                                  | 0.46 U                                                   | 0.46 U                                                  | 0.44 U                                                  | 0.45 U                                                  |
| Perfluorobutanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorodecanesulfonic acid                   | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorodecanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorododecanoic acid                       | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluoroheptanesulfonic acid                  | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluoroheptanoic acid                        | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorohexanesulfonic acid                   | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorohexanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorononanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorooctanesulfonic acid                   | 0.88        | 44                                                                            | 0.089 J                                                 | 0.14 J                                                   | 0.12 J                                                  | 0.061 J                                                 | 0.075 J                                                 |
| Perfluorooctanoic acid                         | 0.66        | 33                                                                            | 0.033 J                                                 | 0.038 J                                                  | 0.042 J                                                 | 0.22 U                                                  | 0.23 U                                                  |
| Perfluoropentanoic acid                        | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorotetradecanoic acid                    | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluorotridecanoic acid                      | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluoroundecanoic acid                       | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 U                                                  | 0.22 U                                                  | 0.23 U                                                  |
| Perfluroroctanesulfonamide                     | NS          | NS                                                                            | 0.23 U                                                  | 0.23 U                                                   | 0.23 UJ                                                 | 0.22 U                                                  | 0.23 U                                                  |

| Table 7                                                 |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

|                                                |             | AKRF Sample ID<br>ratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit | EP-14_20220509<br>460-257853-6<br>5/09/2022<br>1<br>ppb | EP-15_20220509<br>460-257853-7<br>5/09/2022<br>1<br>ppb | EP-16_20220509<br>460-257853-8<br>5/09/2022<br>1<br>ppb | EP-17_20220509<br>460-257853-9<br>5/09/2022<br>1<br>ppb | EP-18_20220509<br>460-257853-10<br>5/09/2022<br>1<br>ppb |
|------------------------------------------------|-------------|-------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Compound                                       | NYSDEC UUGV | NYSDEC RRGV                                                                   | CONC Q                                                   |
| 6:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| 8:2 Fluorotelomer sulfonate                    | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| N-ethyl perfluorooctanesulfonamidoacetic acid  | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.037 J                                                 | 0.22 U                                                   |
| N-methyl perfluorooctanesulfonamidoacetic acid | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorobutanesulfonic acid                   | NS          | NS                                                                            | 0.45 U                                                  | 0.44 U                                                  | 0.44 U                                                  | 0.43 U                                                  | 0.43 U                                                   |
| Perfluorobutanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorodecanesulfonic acid                   | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorodecanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorododecanoic acid                       | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluoroheptanesulfonic acid                  | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluoroheptanoic acid                        | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorohexanesulfonic acid                   | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorohexanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorononanoic acid                         | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorooctanesulfonic acid                   | 0.88        | 44                                                                            | 0.1 J                                                   | 0.22 U                                                  | 0.22 U                                                  | 0.041 J                                                 | 0.22 U                                                   |
| Perfluorooctanoic acid                         | 0.66        | 33                                                                            | 0.056 J                                                 | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.031 J                                                  |
| Perfluoropentanoic acid                        | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorotetradecanoic acid                    | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluorotridecanoic acid                      | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluoroundecanoic acid                       | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |
| Perfluroroctanesulfonamide                     | NS          | NS                                                                            | 0.23 U                                                  | 0.22 U                                                  | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   |

| Table 7                                                 |
|---------------------------------------------------------|
| 22-60 46th Street                                       |
| Queens, New York                                        |
| Post-Excavation Soil Endpoint Sample Analytical Results |

| Per- and Polyfluoroalkyl Substances (PFA | S) |
|------------------------------------------|----|
|------------------------------------------|----|

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             | EP-19_20220509<br>460-257853-11<br>5/09/2022<br>1<br>ppb | EP-20_20220509<br>460-257853-12<br>5/09/2022<br>1<br>ppb | EP-21_20220509<br>460-257853-14<br>5/09/2022<br>1<br>ppb | EP-22_20220509<br>460-257853-15<br>5/09/2022<br>1<br>ppb | EP-23_20220509<br>460-257853-16<br>5/09/2022<br>1<br>ppb |
|-----------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q                                                   |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 0.43 U                                                   | 0.45 U                                                   | 0.45 U                                                   | 0.49 U                                                   | 0.45 U                                                   |
| Perfluorobutanoic acid                                                            | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorodecanoic acid                                                            | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorododecanoic acid                                                          | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorohexanoic acid                                                            | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorononanoic acid                                                            | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.21 U                                                   | 0.041 J                                                  | 0.06 J                                                   | 0.25 U                                                   | 0.17 J                                                   |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 0.21 U                                                   | 0.031 J                                                  | 0.03 J                                                   | 0.25 U                                                   | 0.07 J                                                   |
| Perfluoropentanoic acid                                                           | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 0.21 U                                                   | 0.22 U                                                   | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 0.21 U                                                   | 0.22 UJ                                                  | 0.23 U                                                   | 0.25 U                                                   | 0.23 U                                                   |

| Table 7                                                 |  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             | EP-24_20220509<br>460-257853-17<br>5/09/2022<br>1<br>ppb | EP-25_20220509<br>460-257853-18<br>5/09/2022<br>1<br>ppb | EP-26_20220513<br>460-258154-1<br>5/13/2022<br>1<br>ppb | EP-X03_20220513<br>460-258154-2<br>5/13/2022<br>1<br>ppb | EP-27_20220513<br>460-258154-8<br>5/13/2022<br>1<br>ppb |
|-----------------------------------------------------------------------------------|-------------|-------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q                                                   | CONC Q                                                   | CONC Q                                                  | CONC Q                                                   | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 0.46 U                                                   | 0.45 U                                                   | 0.45 U                                                  | 0.45 U                                                   | 0.43 U                                                  |
| Perfluorobutanoic acid                                                            | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorodecanoic acid                                                            | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorododecanoic acid                                                          | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorohexanoic acid                                                            | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorononanoic acid                                                            | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.048 J                                                  | 0.066 J                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 0.041 J                                                  | 0.22 U                                                   | 0.037 J                                                 | 0.046 J                                                  | 0.063 J                                                 |
| Perfluoropentanoic acid                                                           | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 0.23 U                                                   | 0.22 U                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 0.23 U                                                   | 0.22 R                                                   | 0.22 U                                                  | 0.22 U                                                   | 0.22 U                                                  |

| Table 7                                                 |  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             | EP-28_20220513<br>460-258154-9<br>5/13/2022<br>1<br>ppb | EP-29_20220701<br>460-261278-1<br>7/01/2022<br>1<br>ppb | EP-X04_20220701<br>460-261278-2<br>7/01/2022<br>1<br>ppb | EP-30_20220701<br>460-261278-3<br>7/01/2022<br>1<br>ppb | EP-31_20220727<br>460-262712-1<br>7/27/2022<br>1<br>ppb |
|-----------------------------------------------------------------------------------|-------------|-------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q                                                  | CONC Q                                                  | CONC Q                                                   | CONC Q                                                  | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.22 U                                                  | 2.06 U                                                  | 2.18 U                                                   | 2.15 U                                                  | 2.12 U                                                  |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 0.22 U                                                  | 2.06 U                                                  | 2.18 U                                                   | 2.15 U                                                  | 2.12 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 0.22 U                                                  | 2.06 U                                                  | 2.18 U                                                   | 2.15 U                                                  | 2.12 U                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 0.22 R                                                  | 2.06 U                                                  | 2.18 U                                                   | 2.15 U                                                  | 2.12 U                                                  |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 0.44 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorobutanoic acid                                                            | NS          | NS          | 0.22 U                                                  | 0.51 U                                                  | 0.54 U                                                   | 0.54 U                                                  | 0.53 U                                                  |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorodecanoic acid                                                            | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorododecanoic acid                                                          | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorohexanoic acid                                                            | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorononanoic acid                                                            | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 0.042 J                                                 | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoropentanoic acid                                                           | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 0.22 U                                                  | 0.21 U                                                  | 0.22 U                                                   | 0.22 U                                                  | 0.21 U                                                  |

| Table 7                                                 |  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |  |

| Per- and Polyfluoroalkyl Substances (PFAS) |
|--------------------------------------------|
|--------------------------------------------|

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             | 460-262712-2 | EP-32_20220727<br>460-262712-3<br>7/27/2022<br>1<br>ppb | EP-33_20220811<br>460-263714-1<br>8/11/2022<br>1<br>ppb | EP-X06_20220811<br>460-263714-2<br>8/11/2022<br>1<br>ppb | EP-34_20220811<br>460-263714-3<br>8/11/2022<br>1<br>ppb |
|-----------------------------------------------------------------------------------|-------------|-------------|--------------|---------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q       | CONC Q                                                  | CONC Q                                                  | CONC Q                                                   | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 2.13 U       | 2.1 U                                                   | 2.17 U                                                  | 2.21 U                                                   | 2.15 U                                                  |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 2.13 U       | 2.1 U                                                   | 2.17 U                                                  | 2.21 U                                                   | 2.15 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 2.13 U       | 2.1 U                                                   | 2.17 U                                                  | 2.21 U                                                   | 2.15 U                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 2.13 U       | 2.1 U                                                   | 2.17 U                                                  | 2.21 U                                                   | 2.15 U                                                  |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorobutanoic acid                                                            | NS          | NS          | 0.53 U       | 0.52 U                                                  | 0.54 U                                                  | 0.55 U                                                   | 0.54 U                                                  |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorodecanoic acid                                                            | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorododecanoic acid                                                          | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorohexanoic acid                                                            | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorononanoic acid                                                            | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluoropentanoic acid                                                           | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 0.21 U       | 0.21 U                                                  | 0.22 U                                                  | 0.22 U                                                   | 0.21 U                                                  |

### Table 7 22-60 46th Street Queens, New York Post-Excavation Soil Endpoint Sample Analytical Results Per- and Polyfluoroalkyl Substances (PFAS)

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             | EP-35_20220830<br>460-264649-1<br>8/30/2022<br>1<br>ppb | EP-X07_20220830<br>460-264649-2<br>8/30/2022<br>1<br>ppb | EP-36_20220830<br>460-264649-3<br>8/30/2022<br>1<br>ppb | FB-01_20220425<br>460-256994-10<br>4/25/2022<br>1<br>ppt | FB-01_20220509<br>460-257853-13<br>5/09/2022<br>1<br>ppt |
|-----------------------------------------------------------------------------------|-------------|-------------|---------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q                                                  | CONC Q                                                   | CONC Q                                                  | CONC Q                                                   | CONC Q                                                   |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 2.11 U                                                  | 2.08 U                                                   | 2.1 U                                                   | 4.38 U                                                   | 4.24 U                                                   |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 2.11 U                                                  | 2.08 U                                                   | 2.1 U                                                   | 2.63 U                                                   | 2.54 U                                                   |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 0.1 J                                                   | 2.08 U                                                   | 2.1 U                                                   | 2.63 U                                                   | 2.54 U                                                   |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 2.11 U                                                  | 2.08 U                                                   | 2.1 U                                                   | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorobutanoic acid                                                            | NS          | NS          | 0.53 U                                                  | 0.52 U                                                   | 0.53 U                                                  | 4.38 U                                                   | 4.24 U                                                   |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorodecanoic acid                                                            | NS          | NS          | 0.033 J                                                 | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorododecanoic acid                                                          | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorohexanoic acid                                                            | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorononanoic acid                                                            | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.21                                                    | 0.14 J                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 0.075 J                                                 | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluoropentanoic acid                                                           | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 0.21 U                                                  | 0.21 U                                                   | 0.21 U                                                  | 1.75 U                                                   | 1.7 U                                                    |

| Table 7                                                 |  |  |  |  |  |  |  |
|---------------------------------------------------------|--|--|--|--|--|--|--|
| 22-60 46th Street                                       |  |  |  |  |  |  |  |
| Queens, New York                                        |  |  |  |  |  |  |  |
| Post-Excavation Soil Endpoint Sample Analytical Results |  |  |  |  |  |  |  |

Per- and Polyfluoroalkyl Substances (PFAS)

| AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Dilution Factor<br>Unit |             |             |        | FB-01_20220701<br>460-261278-4<br>7/01/2022<br>1<br>ppt | FB-01_20220727<br>460-262712-4<br>7/27/2022<br>1<br>ppt | FB-01_20220811<br>460-263714-4<br>8/11/2022<br>1<br>ppt | FB-01_20220830<br>460-264649-4<br>8/30/2022<br>1<br>ppt |
|-----------------------------------------------------------------------------------|-------------|-------------|--------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Compound                                                                          | NYSDEC UUGV | NYSDEC RRGV | CONC Q | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  | CONC Q                                                  |
| 6:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 4.16 U | 4.49 U                                                  | 4.26 U                                                  | 4.19 U                                                  | 4.42 U                                                  |
| 8:2 Fluorotelomer sulfonate                                                       | NS          | NS          | 2.5 U  | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| N-ethyl perfluorooctanesulfonamidoacetic acid                                     | NS          | NS          | 2.5 U  | 4.49 U                                                  | 4.26 U                                                  | 4.19 U                                                  | 4.42 U                                                  |
| N-methyl perfluorooctanesulfonamidoacetic acid                                    | NS          | NS          | 1.66 U | 4.49 U                                                  | 4.26 U                                                  | 4.19 U                                                  | 4.42 U                                                  |
| Perfluorobutanesulfonic acid                                                      | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorobutanoic acid                                                            | NS          | NS          | 4.16 U | 4.49 U                                                  | 4.26 U                                                  | 4.19 U                                                  | 4.42 U                                                  |
| Perfluorodecanesulfonic acid                                                      | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorodecanoic acid                                                            | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorododecanoic acid                                                          | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluoroheptanesulfonic acid                                                     | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluoroheptanoic acid                                                           | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorohexanesulfonic acid                                                      | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorohexanoic acid                                                            | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorononanoic acid                                                            | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 0.97 J                                                  | 1.77 U                                                  |
| Perfluorooctanesulfonic acid                                                      | 0.88        | 44          | 0.42 J | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorooctanoic acid                                                            | 0.66        | 33          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluoropentanoic acid                                                           | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorotetradecanoic acid                                                       | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluorotridecanoic acid                                                         | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluoroundecanoic acid                                                          | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |
| Perfluroroctanesulfonamide                                                        | NS          | NS          | 1.66 U | 1.8 U                                                   | 1.7 U                                                   | 1.68 U                                                  | 1.77 U                                                  |

## Tables 2-7 22-60 46th Street Queens, New York Post-Excavation Soil Endpoint Sample Analytical Results

### Notes

### DEFINITIONS

- J: The concentration given is an estimated value.
- **K**: Reported concentration value is proportional to dilution factor and may be exaggerated.
- L: Sample result is estimated and biased low.
- NS: No standard.
- T: Indicates that a quality control parameter has exceeded laboratory limits.
- U: The analyte was not detected at the indicated concentration.
- mg/kg: milligrams per kilogram
  - **ppb**: parts per billion
  - ppt : parts per trillion
- µg/L : micrograms per liter

### STANDARDS

Part 375 Soil Cleanup Objectives

Soil Cleanup Objectives listed in New York State Department of Environmental Conservation
 (NYSDEC) "Part 375" Regulations [6 New York Codes, Rules and Regulations (NYCRR) Part 375].

### Exceedances of Part 375 Unrestricted Use Soil Cleanup Objectives (UUSCOs) are highlighted in bold font. Exceedances of Part 375 Restricted Residential Soil Cleanup Objectives (RRSCOs) are highlighted in gray shading.

#### NYSDEC Part 375 PFAS Guidance Values New York State Department of Environmental Conservation (NYSDEC) Sampling, Analysis and Assessment Of Per- and Polyfluoroalkyl Substances (PFAS) Under NYSDEC's Part 375 Remedial Programs Issued January 2021.

Exceedances of NYSDEC PFAS Unrestricted Use Guidance Values (UUGVs) are highlighted in bold font. Exceedances of NYSDEC PFAS Restricted Residential Guidance Values (RRGVs) are highlighted in gray shading.

### DUPLICATES

EP-X\_20220425 is a blind duplicate of sample EP-01\_20220425 EP-X02\_20220509 is a blind duplicate of sample EP-10\_20220509 EP-X03\_20220513 is a blind duplicate of sample EP-26\_20220513 EP-X04\_20220701 is a blind duplicate of sample EP-29\_20220701 EP-X05\_20220727 is a blind duplicate of sample EP-31\_20220727 EP-X06\_20220811 is a blind duplicate of sample EP-33\_20220811 EP-X07\_20220830 is a blind duplicate of sample EP-35\_20220830

|                           | AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit | ISCO-MW-01_20220228<br>460-253384-6<br>2/28/2022 11:55:00 AM<br>ug/L | ISCO-MW-02_20220228<br>460-253384-7<br>2/28/2022 12:15:00 PM<br>ug/L | RI-MW-01_20201222<br>460-225478-7<br>12/22/2020 12:30:00 PM<br>ug/L | RI-MW-02_20201222<br>460-225478-5<br>12/22/2020 2:45:00 PM<br>ug/L |
|---------------------------|----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
|                           | Dilution Factor                                                | 1                                                                    | 1                                                                    | 1                                                                   | 1                                                                  |
| Compound                  | AWQSGV                                                         |                                                                      |                                                                      |                                                                     |                                                                    |
| 1,1,1-Trichloroethane     | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,1,2,2-Tetrachloroethane | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,1,2-Trichloroethane     | 1                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,1-Dichloroethane        | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,1-Dichloroethene        | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,2-Dichloroethane        | 0.6                                                            | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| 1,2-Dichloropropane       | 1                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Bromodichloromethane      | 50                                                             | 1 UJ                                                                 | 1 UJ                                                                 | 1 U                                                                 | 1 U                                                                |
| Carbon Tetrachloride      | 5                                                              | 1 UJ                                                                 | 1 UJ                                                                 | 1 U                                                                 | 1 U                                                                |
| Chlorobenzene             | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Chloroethane              | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Chloroform                | 7                                                              | 0.88 J                                                               | 0.7 J                                                                | 1.1                                                                 | 1.8                                                                |
| Chloromethane             | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Cis-1,2-Dichloroethylene  | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Cis-1,3-Dichloropropene   | NS                                                             | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Dibromochloromethane      | 50                                                             | 1 UJ                                                                 | 1 UJ                                                                 | 1 U                                                                 | 1 U                                                                |
| Methylene Chloride        | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Tetrachloroethylene (PCE) | 5                                                              | 3.7                                                                  | 4.1                                                                  | 2.1                                                                 | 2                                                                  |
| Trans-1,2-Dichloroethene  | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Trans-1,3-Dichloropropene | NS                                                             | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Trichloroethylene (TCE)   | 5                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |
| Vinyl Chloride            | 2                                                              | 1 U                                                                  | 1 U                                                                  | 1 U                                                                 | 1 U                                                                |

| La                        | AKRF Sample ID<br>aboratory Sample ID<br>Date Sampled<br>Unit | RI-MW-03_20201222<br>460-225478-4<br>12/22/2020 2:10:00 PM<br>ug/L | RI-MW-04_20201222<br>460-225478-6<br>12/22/2020 10:30:00 AM<br>ug/L | RI-MW-05_20201222<br>460-225478-8<br>12/22/2020 11:00:00 AM<br>ug/L | RI-MW-0X_20201222<br>460-225478-9<br>12/23/2020 12:25:00 PM<br>ug/L |
|---------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------|
| Compound                  | Dilution Factor AWQSGV                                        | 1                                                                  | 1                                                                   | 1                                                                   | 1                                                                   |
| 1,1,1-Trichloroethane     |                                                               | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
|                           | 5                                                             | 1 U                                                                | -                                                                   | -                                                                   |                                                                     |
| 1,1,2,2-Tetrachloroethane | 5                                                             | 1 U                                                                | 1 U<br>1 U                                                          | <u> </u>                                                            | 1 U<br>1 U                                                          |
| 1,1,2-Trichloroethane     | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| 1,1-Dichloroethene        | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| 1,2-Dichloroethane        | 0.6                                                           | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| 1,2-Dichloropropane       | 0.0                                                           | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Bromodichloromethane      | 50                                                            | 1 U                                                                | 1 U                                                                 | 10                                                                  | 1 U                                                                 |
| Carbon Tetrachloride      | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Chlorobenzene             | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Chloroethane              | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Chloroform                | 7                                                             | 6.2                                                                | 9                                                                   | 1 U                                                                 | 1 U                                                                 |
| Chloromethane             | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Cis-1,2-Dichloroethylene  | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Cis-1,3-Dichloropropene   | NS                                                            | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Dibromochloromethane      | 50                                                            | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Methylene Chloride        | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Tetrachloroethylene (PCE) | 5                                                             | 1.6                                                                | 5.3                                                                 | 14                                                                  | 14                                                                  |
| Trans-1,2-Dichloroethene  | 5                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Trans-1,3-Dichloropropene | NS                                                            | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |
| Trichloroethylene (TCE)   | 5                                                             | 1 U                                                                | 0.42 J                                                              | 1 U                                                                 | 1 U                                                                 |
| Vinyl Chloride            | 2                                                             | 1 U                                                                | 1 U                                                                 | 1 U                                                                 | 1 U                                                                 |

| L                         | AKRF Sample ID<br>aboratory Sample ID<br>Date Sampled<br>Unit | RI-MW-06_20210521<br>460-235169-1<br>5/21/2021 9:50:00 AM<br>ug/L | RI-MW-0X_20210521<br>460-235169-8<br>5/21/2021 10:15:00 AM<br>ug/L | RI-MW-06A_20220531<br>460-259088-1<br>5/31/2022 8:25:00 AM<br>ug/L | RI-MW-X_20220531<br>460-259088-2<br>5/31/2022 8:45:00 AM<br>ug/L |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------|
|                           | Dilution Factor                                               | 1                                                                 | 1                                                                  | 1                                                                  | 1                                                                |
| Compound                  | AWQSGV                                                        |                                                                   |                                                                    |                                                                    |                                                                  |
| 1,1,1-Trichloroethane     | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| 1,1,2,2-Tetrachloroethane | 5                                                             | 1 UJ                                                              | 1 UJ                                                               | 1 U                                                                | 1 U                                                              |
| 1,1,2-Trichloroethane     | 1                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| 1,1-Dichloroethane        | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| 1,1-Dichloroethene        | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| 1,2-Dichloroethane        | 0.6                                                           | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| 1,2-Dichloropropane       | 1                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Bromodichloromethane      | 50                                                            | 1 U                                                               | 1 U                                                                | 0.64 J                                                             | 0.58 J                                                           |
| Carbon Tetrachloride      | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Chlorobenzene             | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Chloroethane              | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Chloroform                | 7                                                             | 1 U                                                               | 1 U                                                                | 13                                                                 | 14                                                               |
| Chloromethane             | 5                                                             | 1 U                                                               | 1 U                                                                | 1 UJ                                                               | 1 UJ                                                             |
| Cis-1,2-Dichloroethylene  | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Cis-1,3-Dichloropropene   | NS                                                            | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Dibromochloromethane      | 50                                                            | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Methylene Chloride        | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Tetrachloroethylene (PCE) | 5                                                             | 24                                                                | 20                                                                 | 15                                                                 | 19                                                               |
| Trans-1,2-Dichloroethene  | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Trans-1,3-Dichloropropene | NS                                                            | 1 U                                                               | 1 U                                                                | 1 U                                                                | 1 U                                                              |
| Trichloroethylene (TCE)   | 5                                                             | 1 U                                                               | 1 U                                                                | 0.41 J                                                             | 0.33 J                                                           |
| Vinyl Chloride            | 2                                                             | 1 U                                                               | 1 U                                                                | 1 UJ                                                               | 1 UJ                                                             |

| L                         | AKRF Sample ID<br>aboratory Sample ID<br>Date Sampled<br>Unit | RI-MW-07_20210521<br>460-235169-3<br>5/21/2021 1:15:00 PM<br>ug/L | RI-MW-07_20220228<br>460-253384-1<br>2/28/2022 10:50:00 AM<br>ug/L | RI-MW-07-E_20220228<br>460-253384-3<br>2/28/2022 10:10:00 AM<br>ug/L | RI-MW-07-N_20220228<br>460-253384-2<br>2/28/2022 9:10:00 AM<br>ug/L |
|---------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------|
| Compound                  | Dilution Factor AWQSGV                                        | 1                                                                 | 1                                                                  | 1                                                                    | 1                                                                   |
|                           |                                                               | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| 1,1,1-Trichloroethane     | 5                                                             | 1 UJ                                                              |                                                                    |                                                                      |                                                                     |
| 1,1,2,2-Tetrachloroethane | 5                                                             |                                                                   | 1 U                                                                | <u>1 U</u><br>1 U                                                    | 1 U                                                                 |
| 1,1,2-Trichloroethane     |                                                               | <u> </u>                                                          | 1 U                                                                | 1 U<br>1 U                                                           | 1 U<br>1 U                                                          |
| 1,1-Dichloroethane        | 5                                                             | 1 U                                                               | 1 U                                                                |                                                                      | 1 U                                                                 |
| 1,1-Dichloroethene        | -                                                             | <u> </u>                                                          | 1 U                                                                | 1 U<br>1 U                                                           | 10                                                                  |
| 1,2-Dichloroethane        | 0.6                                                           | · •                                                               | 1 U                                                                | · •                                                                  | · •                                                                 |
| 1,2-Dichloropropane       | 1                                                             | <u>1 U</u>                                                        | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Bromodichloromethane      | 50                                                            | <u>1 U</u>                                                        | 1 UJ                                                               | 1 UJ                                                                 | 1 UJ                                                                |
| Carbon Tetrachloride      | 5                                                             | <u>1 U</u>                                                        | 1 UJ                                                               | 1 UJ                                                                 | 1 UJ                                                                |
| Chlorobenzene             | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Chloroethane              | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Chloroform                | 7                                                             | 1.8                                                               | 0.5 J                                                              | 0.59 J                                                               | 0.56 J                                                              |
| Chloromethane             | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Cis-1,2-Dichloroethylene  | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Cis-1,3-Dichloropropene   | NS                                                            | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Dibromochloromethane      | 50                                                            | 1 U                                                               | 1 UJ                                                               | 1 UJ                                                                 | 1 UJ                                                                |
| Methylene Chloride        | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Tetrachloroethylene (PCE) | 5                                                             | 28                                                                | 21                                                                 | 13                                                                   | 10                                                                  |
| Trans-1,2-Dichloroethene  | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Trans-1,3-Dichloropropene | NS                                                            | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Trichloroethylene (TCE)   | 5                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |
| Vinyl Chloride            | 2                                                             | 1 U                                                               | 1 U                                                                | 1 U                                                                  | 1 U                                                                 |

|                           | AKRF Sample ID<br>Laboratory Sample ID<br>Date Sampled<br>Unit | RI-MW-07-S_20220228<br>460-253384-4<br>2/28/2022 8:55:00 AM<br>ug/L | RI-MW-07-W_20220228<br>460-253384-5<br>2/28/2022 10:00:00 AM<br>ug/L | RI-MW-X_20220228<br>460-253384-8<br>2/28/2022 9:00:00 AM<br>ug/L | RI-MW-08_20210521<br>460-235169-9<br>5/21/2021 4:15:00 PM<br>ug/L |
|---------------------------|----------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|
|                           | Dilution Factor                                                | 1                                                                   | 1                                                                    | 1                                                                | 1                                                                 |
| Compound                  | AWQSGV                                                         |                                                                     |                                                                      |                                                                  |                                                                   |
| 1,1,1-Trichloroethane     | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| 1,1,2,2-Tetrachloroethane | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 UJ                                                              |
| 1,1,2-Trichloroethane     | 1                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| 1,1-Dichloroethane        | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| 1,1-Dichloroethene        | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| 1,2-Dichloroethane        | 0.6                                                            | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| 1,2-Dichloropropane       | 1                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Bromodichloromethane      | 50                                                             | 1 UJ                                                                | 1 UJ                                                                 | 1 UJ                                                             | 1 U                                                               |
| Carbon Tetrachloride      | 5                                                              | 1 UJ                                                                | 1 UJ                                                                 | 1 UJ                                                             | 1 U                                                               |
| Chlorobenzene             | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Chloroethane              | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Chloroform                | 7                                                              | 7.9                                                                 | 0.7 J                                                                | 0.53 J                                                           | 1.2                                                               |
| Chloromethane             | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Cis-1,2-Dichloroethylene  | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Cis-1,3-Dichloropropene   | NS                                                             | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Dibromochloromethane      | 50                                                             | 1 UJ                                                                | 1 UJ                                                                 | 1 UJ                                                             | 1 U                                                               |
| Methylene Chloride        | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Tetrachloroethylene (PCE) | 5                                                              | 5.6                                                                 | 14                                                                   | 10                                                               | 12                                                                |
| Trans-1,2-Dichloroethene  | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Trans-1,3-Dichloropropene | NS                                                             | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Trichloroethylene (TCE)   | 5                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |
| Vinyl Chloride            | 2                                                              | 1 U                                                                 | 1 U                                                                  | 1 U                                                              | 1 U                                                               |

| La                        | AKRF Sample ID<br>boratory Sample ID<br>Date Sampled<br>Unit | RI-MW-09_20210521<br>460-235169-4<br>5/21/2021 11:35:00 AM<br>ug/L | RI-MW-10_20210521<br>460-235169-5<br>5/21/2021 10:00:00 AM<br>ug/L | RI-MW-11_20210521<br>460-235169-2<br>5/21/2021 2:30:00 PM<br>ug/L | FB-01_20220531<br>460-259088-4<br>5/31/2022 8:35:00 AM<br>ug/L |
|---------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|
|                           | Dilution Factor                                              | 1                                                                  | 1                                                                  | 1                                                                 | 1                                                              |
| Compound                  | AWQSGV                                                       |                                                                    |                                                                    |                                                                   |                                                                |
| 1,1,1-Trichloroethane     | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| 1,1,2,2-Tetrachloroethane | 5                                                            | 1 UJ                                                               | 1 UJ                                                               | 1 UJ                                                              | 1 U                                                            |
| 1,1,2-Trichloroethane     | 1                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| 1,1-Dichloroethane        | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| 1,1-Dichloroethene        | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| 1,2-Dichloroethane        | 0.6                                                          | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| 1,2-Dichloropropane       | 1                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Bromodichloromethane      | 50                                                           | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Carbon Tetrachloride      | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Chlorobenzene             | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Chloroethane              | 5                                                            | 1 U                                                                | 1 U                                                                | 1                                                                 | 1 U                                                            |
| Chloroform                | 7                                                            | 3.1                                                                | 1.3                                                                | 1.2                                                               | 1 U                                                            |
| Chloromethane             | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Cis-1,2-Dichloroethylene  | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Cis-1,3-Dichloropropene   | NS                                                           | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Dibromochloromethane      | 50                                                           | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Methylene Chloride        | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Tetrachloroethylene (PCE) | 5                                                            | 16                                                                 | 2.2                                                                | 4.2                                                               | 1 U                                                            |
| Trans-1,2-Dichloroethene  | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Trans-1,3-Dichloropropene | NS                                                           | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Trichloroethylene (TCE)   | 5                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 U                                                            |
| Vinyl Chloride            | 2                                                            | 1 U                                                                | 1 U                                                                | 1 U                                                               | 1 UJ                                                           |

| La                                          | AKRF Sample ID<br>Iboratory Sample ID<br>Date Sampled<br>Unit | RI-FB-W-01_20201222<br>460-225478-2<br>12/22/2020 11:00:00 AM<br>ug/L | RI-FB-W-01_20210521<br>460-235169-7<br>5/21/2021 3:40:00 PM<br>ug/L | RI-TB-W-01_20210521<br>460-235169-6<br>5/21/2021<br>ug/L | TB-01_20220531<br>460-259088-3<br>5/31/2022 8:45:00 AM<br>ug/L |
|---------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------|
| Compound                                    | Dilution Factor<br>AWQSGV                                     | 1                                                                     | 1                                                                   | 1                                                        | 1                                                              |
|                                             |                                                               | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| 1,1,1-Trichloroethane                       | 5<br>5                                                        | 1 U                                                                   |                                                                     |                                                          | 1 U                                                            |
| 1,1,2,2-Tetrachloroethane                   | 5                                                             | 1 U                                                                   | 1 UJ<br>1 U                                                         | 1 UJ<br>1 U                                              | 1 U                                                            |
| 1,1,2-Trichloroethane<br>1.1-Dichloroethane | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| 1,1-Dichloroethene                          | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| 1,2-Dichloroethane                          | 0.6                                                           | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 10                                                             |
| 1,2-Dichloropropane                         | 0.0                                                           | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Bromodichloromethane                        | 50                                                            | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Carbon Tetrachloride                        | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Chlorobenzene                               | 5                                                             | <u> </u>                                                              | 1 U                                                                 | 1 U                                                      | 10                                                             |
| Chloroethane                                | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Chloroform                                  | 7                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Chloromethane                               | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Cis-1,2-Dichloroethylene                    | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Cis-1,3-Dichloropropene                     | NS                                                            | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Dibromochloromethane                        | 50                                                            | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Methylene Chloride                          | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Tetrachloroethylene (PCE)                   | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Trans-1,2-Dichloroethene                    | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Trans-1,3-Dichloropropene                   | NS                                                            | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Trichloroethylene (TCE)                     | 5                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 U                                                            |
| Vinyl Chloride                              | 2                                                             | 1 U                                                                   | 1 U                                                                 | 1 U                                                      | 1 UJ                                                           |

## Table 8 22-60 46th Street Queens, NY Baseline and Pre-Remedial Groundwater Sample Results

Notes

### DEFINITIONS

- J: The concentration given is an estimated value.
- NS: No standard.
- U: The analyte was not detected at the indicated concentration.
- µg/L : micrograms per liter

### STANDARDS

- NYSDEC New York State Department of Environmental Conservation (NYSDEC) Technical and Operational
- **Class GA** : Guidance Series (1.1.1): Class GA Ambient Water Quality Standards and Guidance Values
- AWQSGVs (AWQSGVs).

### Exceedances of NYSDEC Class GA AWQSGVs are highlighted in bold font.

### DUPLICATES

 $\label{eq:RI-MW-0X_20201222} is a duplicate of RI-MW-05_20201222 RI-MW-0X_20210521 is a blind duplicate of RI-MW-06_20210521 RI-MW-X_20220531 is a blind duplicate of RI-MW-06A_20220531 RI-MW-X_20220228 is a blind duplicate of RI-MW-07-W_20220228 RI-MW-X_20220228 is a blind duplicate of RI-MW-07-W_20220228 RI-MW-X_20220228 is a blind duplicate of RI-MW-07-W_20220228 is a blind duplicate of RI-MW-07-W_20220228 is a blind duplicate of RI-MW-07-W_2022028 is a blind duplicate of RI-MW-07-W_202028 is a blind duplicate of RI-MW-07-W_20208 is a blind duplicate of RI-MW-07-W_20208 is a blin$ 

# Table 922-60 46th StreetQueens, NYPost-Remedial Groundwater Sample ResultsChlorinated Volatile Organic Compounds

|                           | F Sample ID  | —            | RI-MW-06A_20220714 | RI-MW-X_20220714 | RI-MW-07_20220406 |
|---------------------------|--------------|--------------|--------------------|------------------|-------------------|
|                           | y Sample ID  | 460-262024-2 | 460-261934-1       | 460-261934-2     | 460-255745-7      |
| D                         | ate Sampled  | 7/15/2022    | 7/14/2022          | 7/14/2022        | 4/06/2022         |
|                           | Unit         | μg/L         | µg/L               | µg/L             | μg/L              |
| Dil                       | ution Factor | 1            | 1                  | 1                | 1                 |
| Compound                  | AWQSGV       |              |                    |                  |                   |
| 1,1,1-Trichloroethane     | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,1,2,2-Tetrachloroethane | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,1,2-Trichloroethane     | 1            | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,1-Dichloroethane        | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,1-Dichloroethene        | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,2-Dichloroethane        | 0.6          | 1 U          | 1 U                | 1 U              | 1 U               |
| 1,2-Dichloropropane       | 1            | 1 U          | 1 U                | 1 U              | 1 U               |
| Bromodichloromethane      | 50           | 1 U          | 0.57 J             | 0.65 J           | 1 U               |
| Carbon Tetrachloride      | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Chlorobenzene             | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Chloroethane              | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Chloroform                | 7            | 7            | 8                  | 8.2              | 0.7 J             |
| Chloromethane             | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Cis-1,2-Dichloroethylene  | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Cis-1,3-Dichloropropene   | NS           | 1 U          | 1 U                | 1 U              | 1 U               |
| Dibromochloromethane      | 50           | 1 U          | 1 U                | 1 U              | 1 U               |
| Methylene Chloride        | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Tetrachloroethylene (PCE) | 5            | 18           | 5.7                | 6.3              | 23                |
| Trans-1,2-Dichloroethene  | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Trans-1,3-Dichloropropene | NS           | 1 U          | 1 U                | 1 U              | 1 U               |
| Trichloroethylene (TCE)   | 5            | 1 U          | 1 U                | 1 U              | 1 U               |
| Vinyl Chloride            | 2            | 1 U          | 1 U                | 1 U              | 1 U               |

# Table 922-60 46th StreetQueens, NYPost-Remedial Groundwater Sample ResultsChlorinated Volatile Organic Compounds

|                           | F Sample ID  | RI-MW-07A_20220715 | RI-MW-08A_20220715 | RI-MW-09A_20220715 | FB-01_20220406 |
|---------------------------|--------------|--------------------|--------------------|--------------------|----------------|
|                           | y Sample ID  | 460-262024-3       | 460-262024-1       | 460-262024-4       | 460-255745-1   |
| D                         | ate Sampled  | 7/15/2022          | 7/15/2022          | 7/15/2022          | 4/06/2022      |
|                           | Unit         | μg/L               | μg/L               | μg/L               | µg/L           |
| Dil                       | ution Factor | 1                  | 1                  | 1                  | 1              |
| Compound                  | AWQSGV       |                    |                    |                    |                |
| 1,1,1-Trichloroethane     | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,1,2,2-Tetrachloroethane | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,1,2-Trichloroethane     | 1            | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,1-Dichloroethane        | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,1-Dichloroethene        | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,2-Dichloroethane        | 0.6          | 1 U                | 1 U                | 1 U                | 1 U            |
| 1,2-Dichloropropane       | 1            | 1 U                | 1 U                | 1 U                | 1 U            |
| Bromodichloromethane      | 50           | 1 U                | 1 U                | 1 U                | 1 U            |
| Carbon Tetrachloride      | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Chlorobenzene             | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Chloroethane              | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Chloroform                | 7            | 0.71 J             | 0.65 J             | 1.1                | 1 U            |
| Chloromethane             | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Cis-1,2-Dichloroethylene  | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Cis-1,3-Dichloropropene   | NS           | 1 U                | 1 U                | 1 U                | 1 U            |
| Dibromochloromethane      | 50           | 1 U                | 1 U                | 1 U                | 1 U            |
| Methylene Chloride        | 5            | 1 U                | 1 U                | 1 U                | 0.5 J          |
| Tetrachloroethylene (PCE) | 5            | 25                 | 8.4                | 7.4                | 1 U            |
| Trans-1,2-Dichloroethene  | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Trans-1,3-Dichloropropene | NS           | 1 U                | 1 U                | 1 U                | 1 U            |
| Trichloroethylene (TCE)   | 5            | 1 U                | 1 U                | 1 U                | 1 U            |
| Vinyl Chloride            | 2            | 1 U                | 1 U                | 1 U                | 1 U            |

# Table 922-60 46th StreetQueens, NYPost-Remedial Groundwater Sample ResultsChlorinated Volatile Organic Compounds

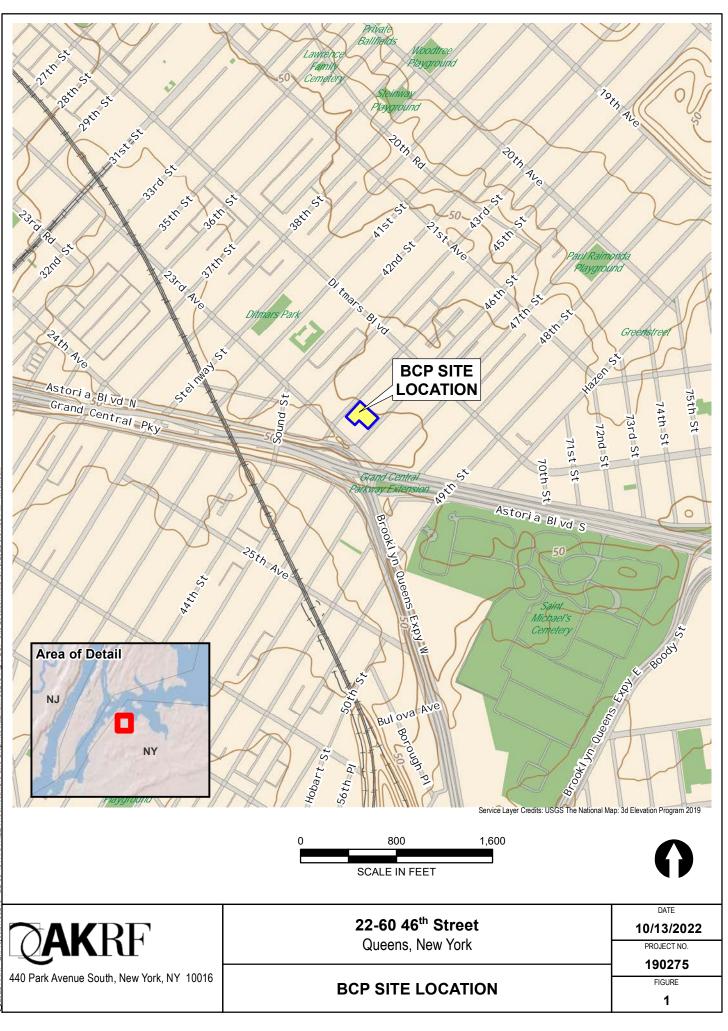
| AKR                       | F Sample ID  | FB-01_20220714 | TB-01_20220406 | TB-01_20220714 |
|---------------------------|--------------|----------------|----------------|----------------|
|                           | ry Sample ID |                | 460-255745-3   | 460-261934-4   |
|                           | ate Sampled  |                | 4/06/2022      | 7/14/2022      |
|                           | Unit         | µg/L           | μg/L           | μg/L           |
| Dil                       | ution Factor | 1              | 1              | 1              |
| Compound                  | AWQSGV       |                |                |                |
| 1,1,1-Trichloroethane     | 5            | 1 U            | 1 U            | 1 U            |
| 1,1,2,2-Tetrachloroethane | 5            | 1 U            | 1 U            | 1 U            |
| 1,1,2-Trichloroethane     | 1            | 1 U            | 1 U            | 1 U            |
| 1,1-Dichloroethane        | 5            | 1 U            | 1 U            | 1 U            |
| 1,1-Dichloroethene        | 5            | 1 U            | 1 U            | 1 U            |
| 1,2-Dichloroethane        | 0.6          | 1 U            | 1 U            | 1 U            |
| 1,2-Dichloropropane       | 1            | 1 U            | 1 U            | 1 U            |
| Bromodichloromethane      | 50           | 1 U            | 1 U            | 1 U            |
| Carbon Tetrachloride      | 5            | 1 U            | 1 U            | 1 U            |
| Chlorobenzene             | 5            | 1 U            | 1 U            | 1 U            |
| Chloroethane              | 5            | 1 U            | 1 U            | 1 U            |
| Chloroform                | 7            | 1 U            | 1 U            | 1 U            |
| Chloromethane             | 5            | 1 U            | 1 U            | 0.4 J          |
| Cis-1,2-Dichloroethylene  | 5            | 1 U            | 1 U            | 1 U            |
| Cis-1,3-Dichloropropene   | NS           | 1 U            | 1 U            | 1 U            |
| Dibromochloromethane      | 50           | 1 U            | 1 U            | 1 U            |
| Methylene Chloride        | 5            | 0.5 J          | 1 U            | 1 U            |
| Tetrachloroethylene (PCE) | 5            | 1 U            | 1 U            | 1 U            |
| Trans-1,2-Dichloroethene  | 5            | 1 U            | 1 U            | 1 U            |
| Trans-1,3-Dichloropropene | NS           | 1 U            | 1 U            | 1 U            |
| Trichloroethylene (TCE)   | 5            | 1 U            | 1 U            | 1 U            |
| Vinyl Chloride            | 2            | 1 U            | 1 U            | 1 U            |

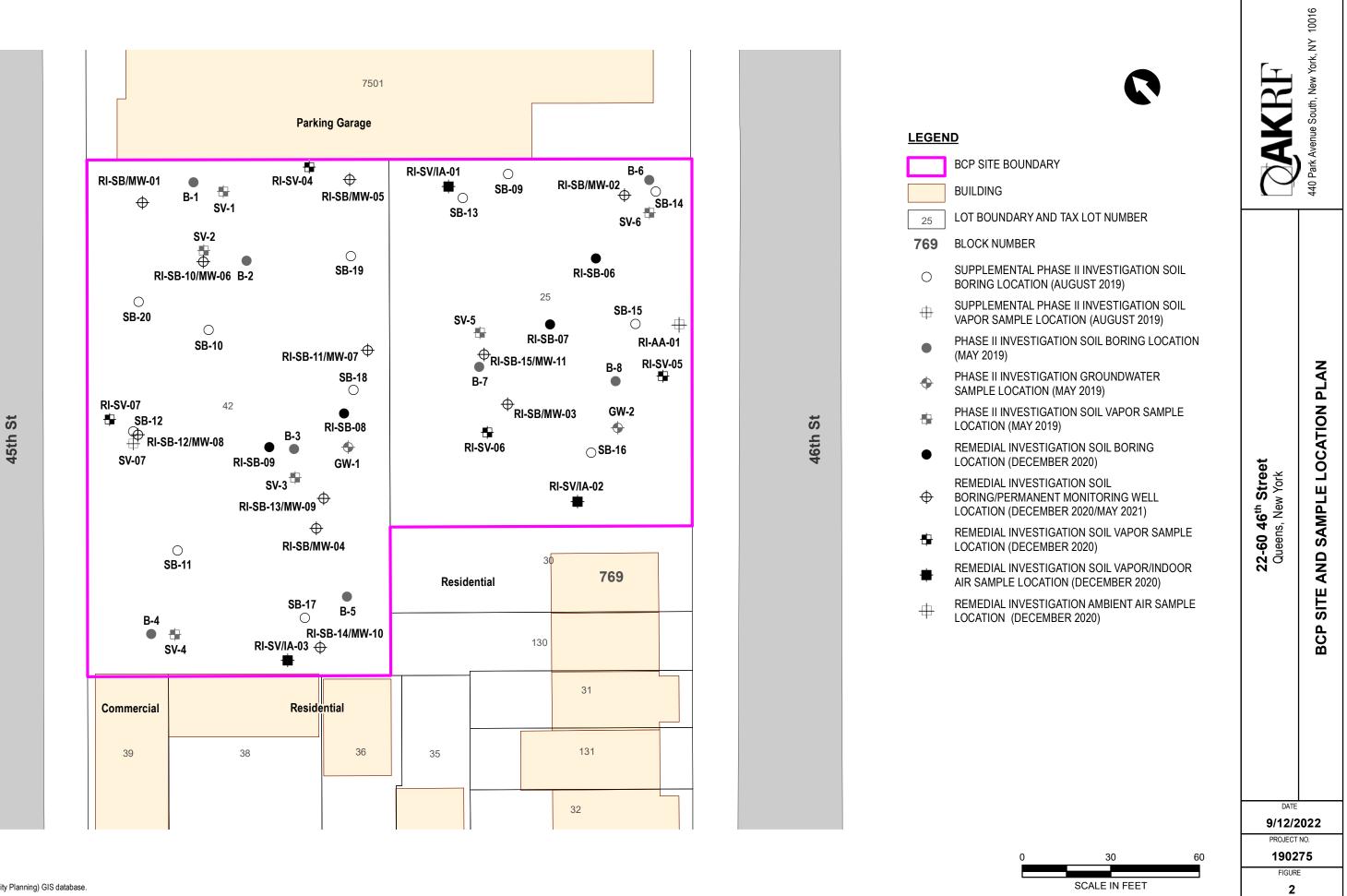
# Table 922-60 46th StreetQueens, NYPost-Remedial Groundwater Sample ResultsNotes

### DEFINITIONS

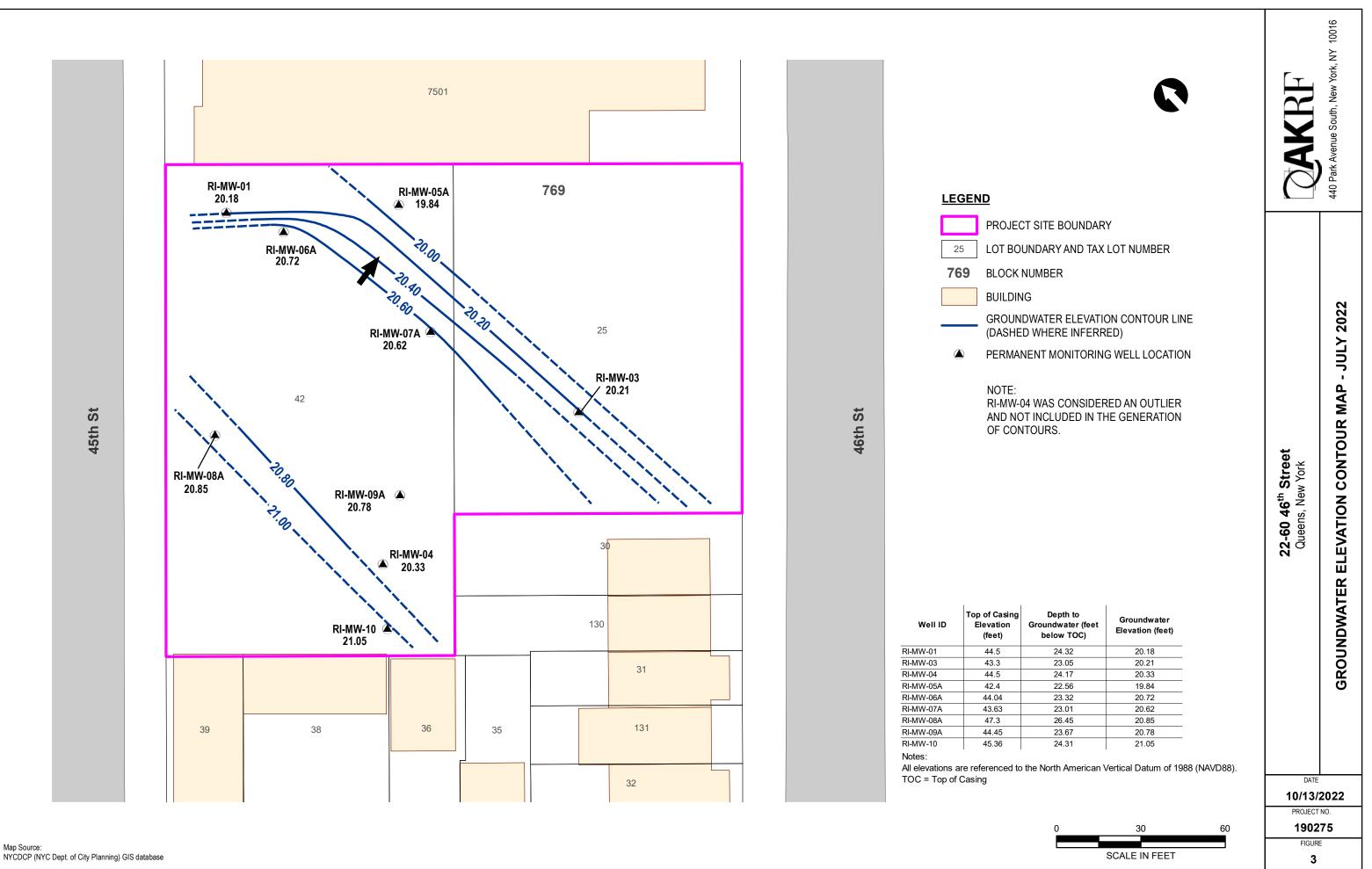
- **J** : The concentration given is an estimated value.
- NS: No standard.
- U: The analyte was not detected at the indicated concentration.
- µg/L : micrograms per liter

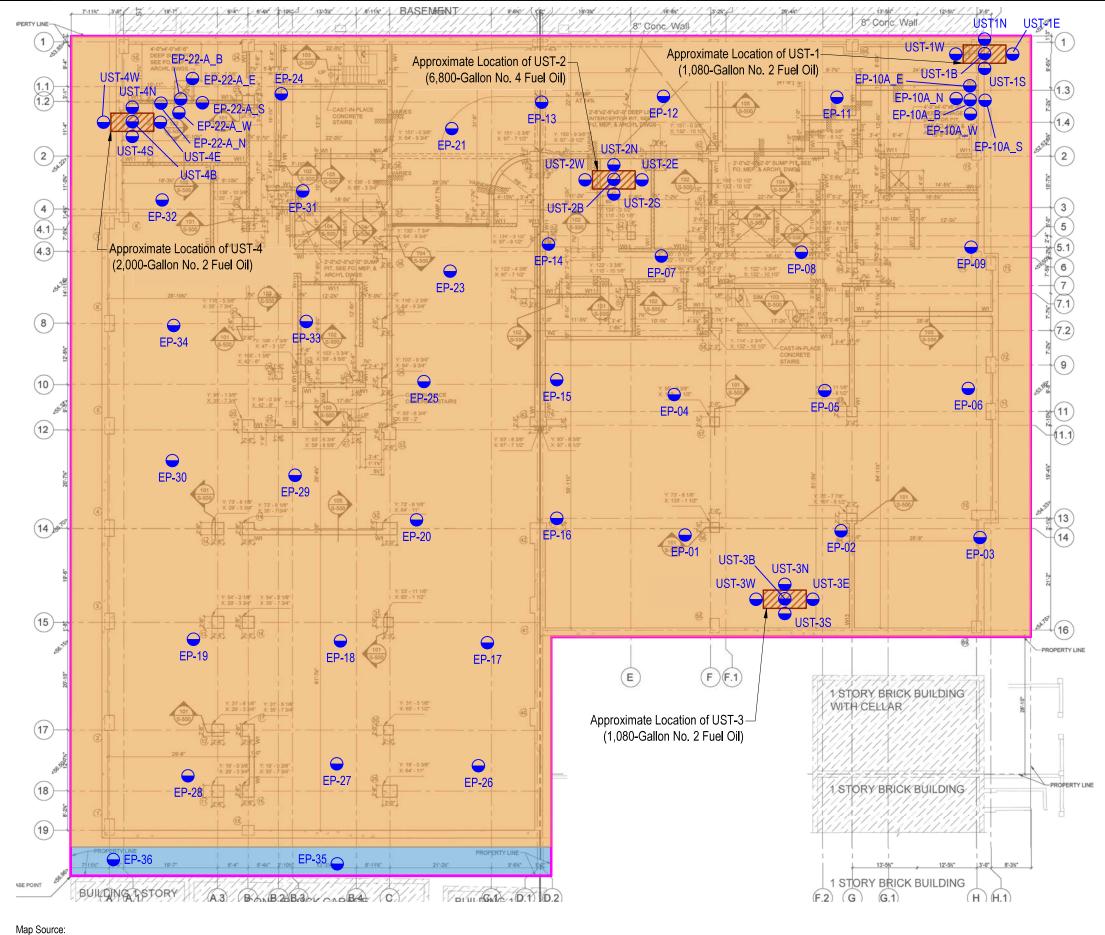
### STANDARDS


- NYSDEC New York State Department of Environmental Conservation (NYSDEC) Technical and Operational
- **Class GA** : Guidance Series (1.1.1): Class GA Ambient Water Quality Standards and Guidance Values
- AWQSGVs (AWQSGVs).


### Exceedances of NYSDEC Class GA AWQSGVs are highlighted in bold font.

### DUPLICATES


RI-MW-X\_20220714 is a duplicate of RI-MW-06A\_20220714

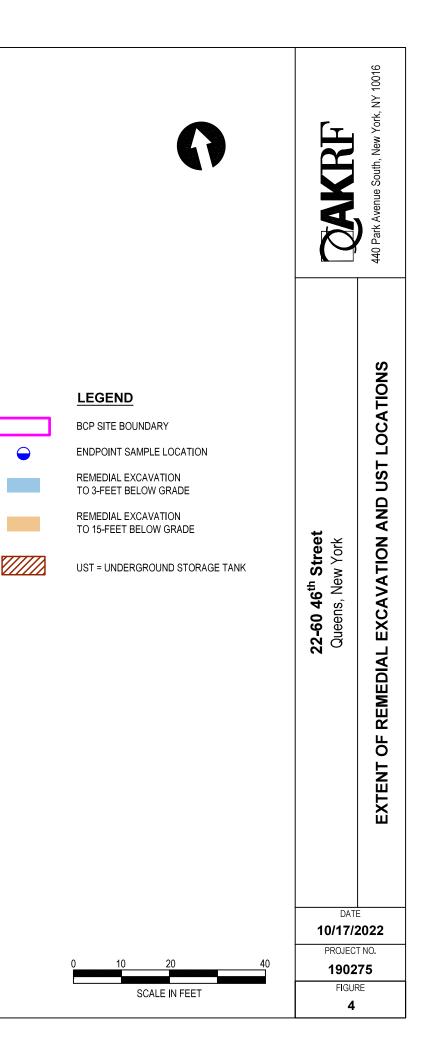

FIGURES

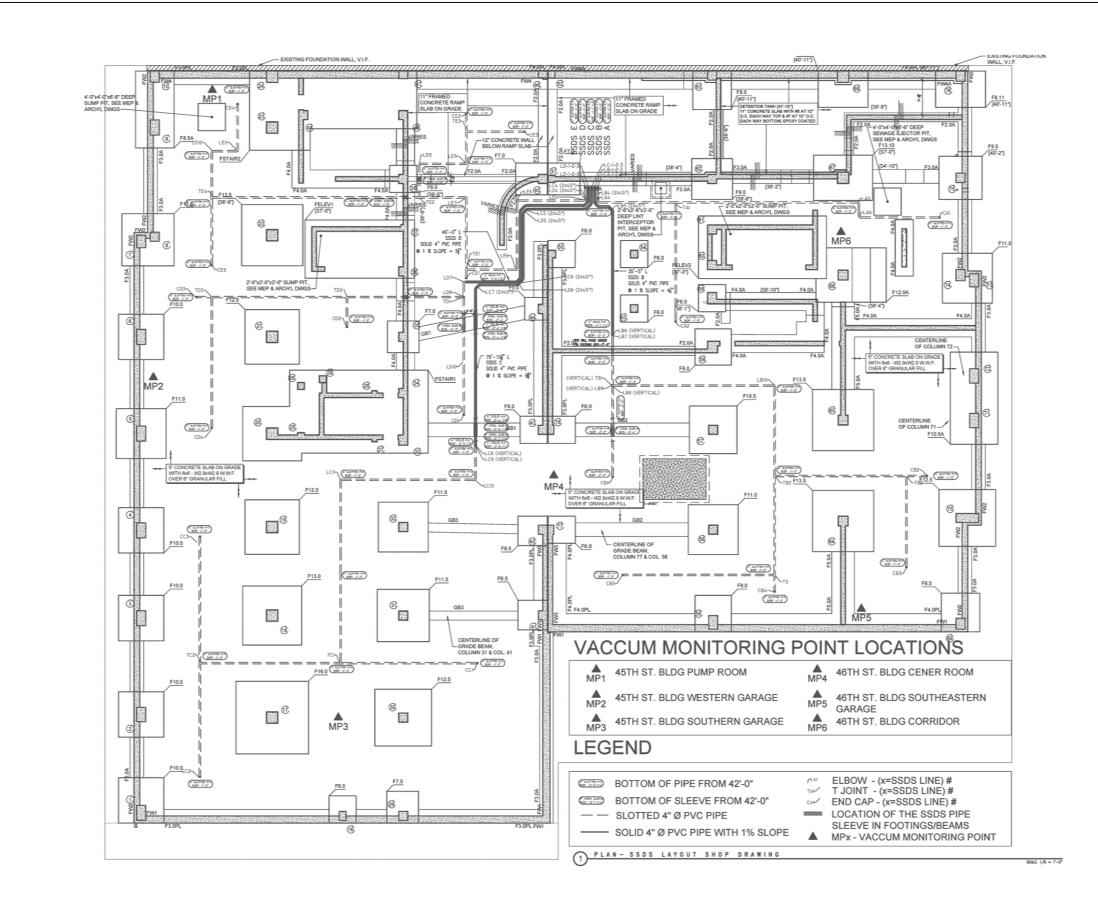




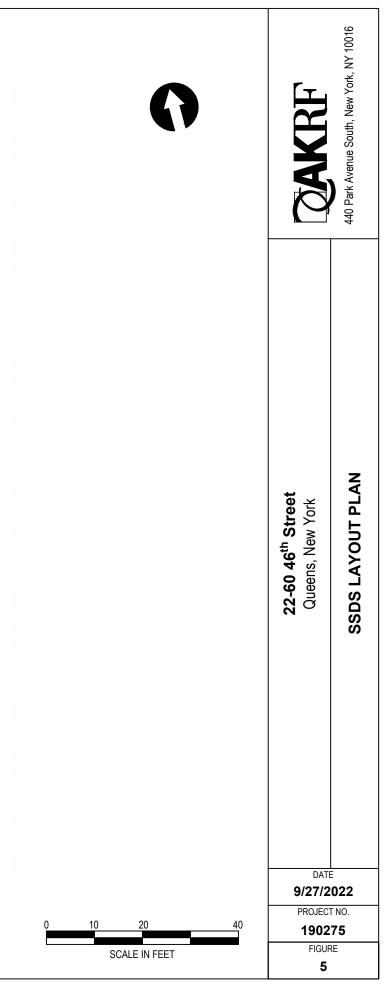
Map Source: NYCDCP (NYC Dept. of City Planning) GIS database

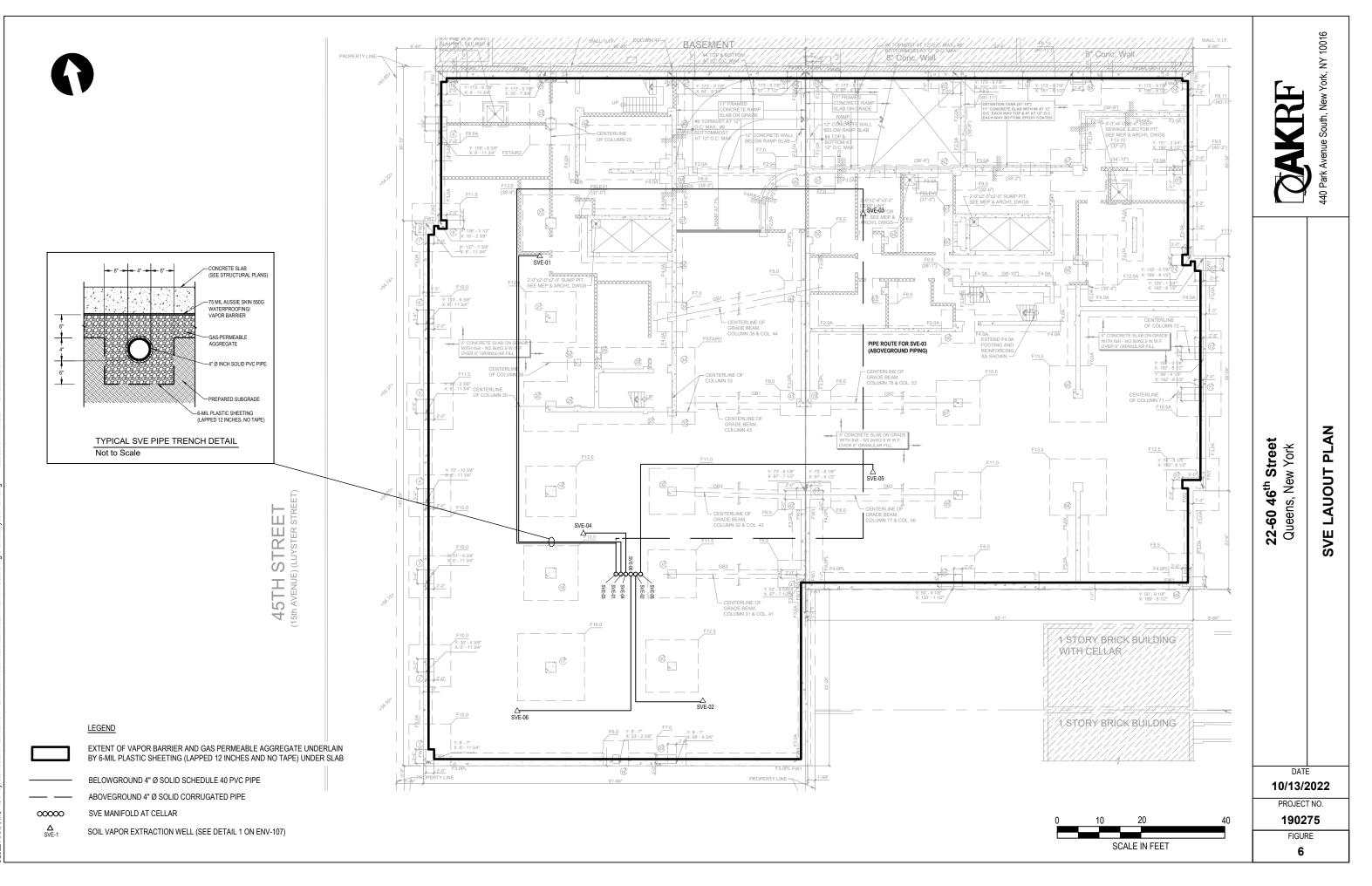


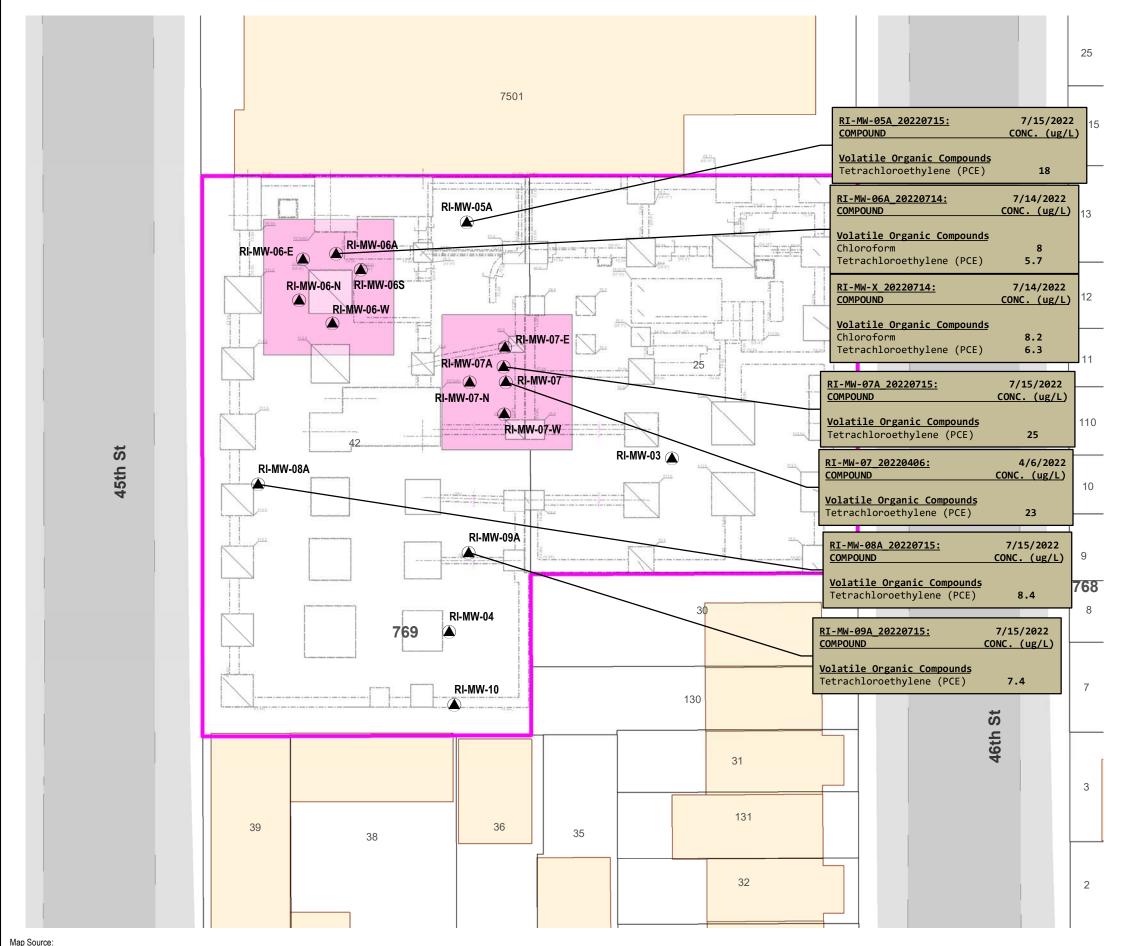




Ъ 0275 Fig 7 46TH STREE 0275 - 22-60 ö

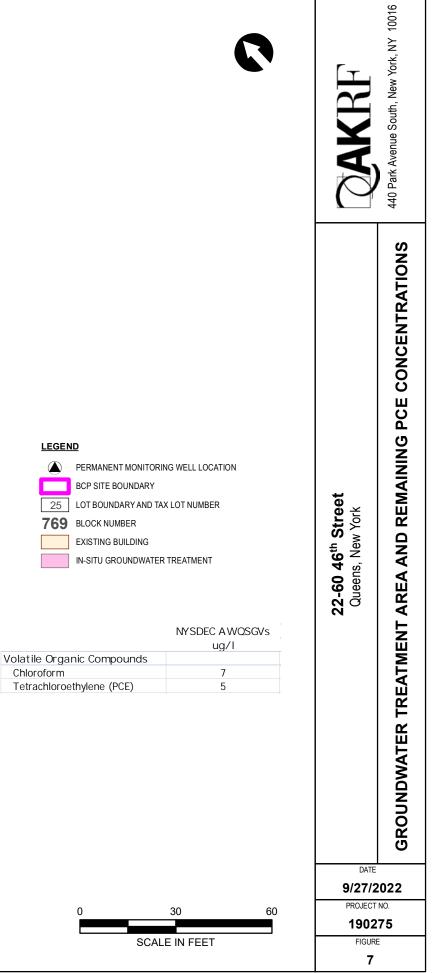
Dattner Architects, "Cellar Plan", DWG No. S-100.00,


Dated 09-30-2020.


10/17/2022 12:59 PM







Map Source: Mega Contracting Group LLC "Plan - SSDS Layout Shop Drawing", DWG No. MSSDS-100, Dated June 2nd, 2022.







Map Source: NYCDCP (NYC Dept. of City Planning) GIS database



APPENDIX A Environmental Easement

| NYC DEPARTMENT OF<br>OFFICE OF THE CITY R<br>This page is part of the instrumer<br>Register will rely on the informat<br>by you on this page for purposes<br>this instrument. The information<br>will control for indexing purpose<br>of any conflict with the rest of the | <b>EGISTER</b><br>nt. The City<br>tion provided<br>of indexing<br>on this page<br>es in the event<br>the document.                 |             | 2022121300440001002E8D73<br>PRSEMENT COVER PAGE PAGE 1 OF 10                                                     |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Degument ID: 2022121200                                                                                                                                                                                                                                                    | RECORDING AND ENDORSEMENT COVER PAGEPAGE 1 OF 10Document ID: 2022121300440001Document Date: 07-01-2022Preparation Date: 12-16-2022 |             |                                                                                                                  |  |  |  |  |
| Document Type: EASEMENT<br>Document Page Count: 9                                                                                                                                                                                                                          |                                                                                                                                    |             |                                                                                                                  |  |  |  |  |
| PRESENTER:                                                                                                                                                                                                                                                                 |                                                                                                                                    |             | RETURN TO:                                                                                                       |  |  |  |  |
| FIRESERVIER.REFORM TO.FIRST AMERICAN TITLE INSURANCE COMPANY<br>666 THIRD AVENUE-5TH FLOOR<br>3020-1159239*ACCOMCQ<br>NEW YORK, NY 10017<br>212-850-0670<br>CQUARTARARO@FIRSTAM.COMCONNELL FOLEY<br>875 THIRD AVENUE<br>21ST FLOOR<br>NEW YORK, NY 10022<br>NAOMI JAWAHAR  |                                                                                                                                    |             |                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                            | _                                                                                                                                  | PROPER      | TY DATA                                                                                                          |  |  |  |  |
| Borough Block                                                                                                                                                                                                                                                              |                                                                                                                                    |             | Address                                                                                                          |  |  |  |  |
| QUEENS 769                                                                                                                                                                                                                                                                 | 25 Entire                                                                                                                          |             | 22-60 46TH STREET                                                                                                |  |  |  |  |
| BoroughBlockQUEENS769                                                                                                                                                                                                                                                      | 8                                                                                                                                  |             |                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                                            |                                                                                                                                    | CROSS REFI  | ERENCE DATA                                                                                                      |  |  |  |  |
| CRFN or Docum                                                                                                                                                                                                                                                              | entID                                                                                                                              | <i>or</i> Y | ear Reel Page <i>or</i> File Number                                                                              |  |  |  |  |
|                                                                                                                                                                                                                                                                            | •muD                                                                                                                               |             |                                                                                                                  |  |  |  |  |
| PAR<br>GRANTOR/SELLER:<br>MD45 DEVELOPERS LLC<br>4802 25TH AVE STE 400<br>LONG ISLAND CITY, NY 11103-1027                                                                                                                                                                  |                                                                                                                                    |             | RTIES<br>GRANTEE/BUYER:<br>N.Y.S DEPARTMENT OF ENVIRONMENTAL<br>CONSERVATION<br>625 BROADWAY<br>ALBANY, NY 12233 |  |  |  |  |
|                                                                                                                                                                                                                                                                            |                                                                                                                                    | FEES A      | ND TAXES                                                                                                         |  |  |  |  |
| Mortgago .                                                                                                                                                                                                                                                                 |                                                                                                                                    |             | Filing Fee:                                                                                                      |  |  |  |  |
| <b>Mortgage :</b><br>Mortgage Amount:                                                                                                                                                                                                                                      | ¢                                                                                                                                  | 0.00        | \$ 100.00                                                                                                        |  |  |  |  |
| Taxable Mortgage Amount:                                                                                                                                                                                                                                                   | \$<br>\$                                                                                                                           | 0.00        | NYC Real Property Transfer Tax:                                                                                  |  |  |  |  |
| Exemption:                                                                                                                                                                                                                                                                 | Φ                                                                                                                                  | 0.00        |                                                                                                                  |  |  |  |  |
| TAXES: County (Basic):                                                                                                                                                                                                                                                     | \$                                                                                                                                 | 0.00        | \$ 0.00<br>NYS Real Estate Transfer Tax:                                                                         |  |  |  |  |
| City (Additional):                                                                                                                                                                                                                                                         |                                                                                                                                    | 0.00        |                                                                                                                  |  |  |  |  |
| •                                                                                                                                                                                                                                                                          | \$                                                                                                                                 | 0.00        | \$ 0.00                                                                                                          |  |  |  |  |
| Spec (Additional):<br>TASF:                                                                                                                                                                                                                                                | \$                                                                                                                                 | 0.00        | RECORDED OR FILED IN THE OFFICE                                                                                  |  |  |  |  |
| MTA:                                                                                                                                                                                                                                                                       | \$                                                                                                                                 | 0.00        | OF THE CITY REGISTER OF THE                                                                                      |  |  |  |  |
| NYCTA:                                                                                                                                                                                                                                                                     | \$\$                                                                                                                               | 0.00        | - CITY OF NEW YORK                                                                                               |  |  |  |  |
| Additional MRT:                                                                                                                                                                                                                                                            |                                                                                                                                    | 0.00        | Recorded/Filed 12-21-2022 14:16                                                                                  |  |  |  |  |
| TOTAL:                                                                                                                                                                                                                                                                     | \$                                                                                                                                 | 0.00        | City Register File No.(CRFN):                                                                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                            | \$                                                                                                                                 | 0.00        | 2022000457089                                                                                                    |  |  |  |  |
| Recording Fee:                                                                                                                                                                                                                                                             | \$                                                                                                                                 | 85.00       | - 1623 A Cantor Mullin                                                                                           |  |  |  |  |
| Affidavit Fee:                                                                                                                                                                                                                                                             | \$                                                                                                                                 | 0.00        | anatte Mfill                                                                                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                            |                                                                                                                                    |             | City Register Official Signature                                                                                 |  |  |  |  |

County: Queens Site No: C241244 Brownfield Cleanup Agreement Index : C241244-09-20

. . . . . . . . . .

· · · •

s

### ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 1st day of Actember, 2022, between

Owner(s) MD45 Developers LLC, having an office at 4802 25th Avenue, Suite 400 Long Island City NY 11103-1027, County of Queens, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee"), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL.") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 22-61 45th Street and 22-60 46th Street in the City of New York, County of Queens and State of New York, known and designated on the tax map of the County Clerk of Queens as tax map parcel numbers: County of Queens Block 769 Lots 42 and 25, being the same as that property conveyed to Grantor by deed dated April 2, 2019 and recorded in the City Register of the City of New York as CFRN 2019000107707 and 2020000132172. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately .689 +/- acres, and is hereinafter more fully described in the Land Title Survey dated May 25, 2022 prepared by Robert J. Fehringer, which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

Environmental Easement Page 1

**NOW THEREFORE**, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: C241244-09-20, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

## Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Queens County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i) or raising livestock or producing animal products for human consumption, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

 $\mathbf{i}$ 

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation County: Queens Site No: C241244 Brownfield Cleanup Agreement Index : C241244-09-20

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

the institutional controls and/or engineering controls employed at such site:
 (i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against

County: Queens Site No: C241244 Brownfield Cleanup Agreement Index : C241244-09-20

the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to: Site Number: C241244 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the

recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

11. <u>Consistency with the SMP</u>. To the extent there is any conflict or inconsistency between the terms of this Environmental Easement and the SMP, regarding matters specifically addressed by the SMP, the terms of the SMP will control.

**Remainder of Page Intentionally Left Blank** 



IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

MD45 Developers LLC: By: DU Print Nam Title: N Date: 113

#### **Grantor's Acknowledgment**

STATE OF NEW YORK ) ss: COUNTY OF QUEENS

On the  $3^{\circ}$  day of November, in the year 2022, before me, the undersigned, personally appeared Hercules Argyno) personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

**ROSALIE A. BRANCACCIO** Notary Public, State of New York No. 01BR6396872 Qualified in Queens County ~ Commission Expires August 26, 202

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting by and Through the Department of Environmental Conservation as Designee of the Commissioner,

By: and

Andrew Guglielmi, Director

Division of Environmental Remediation

#### Grantee's Acknowledgment

STATE OF NEW YORK ) ) ss: COUNTY OF ALBANY )

On the 1st day of December, in the year 20 before me, the undersigned, personally appeared Andrew Guglic Mi personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the individual acted, executed the instrument.

State of New York otary Public -

JENNIFER ANDALORO Notary Public, State of New York No. 02AN6098246 Qualified in Albany County 24 Commission Expires January 14, 20

#### **SCHEDULE "A" PROPERTY DESCRIPTION**

#### ENVIRONMENTAL EASEMENT DESCRIPTION

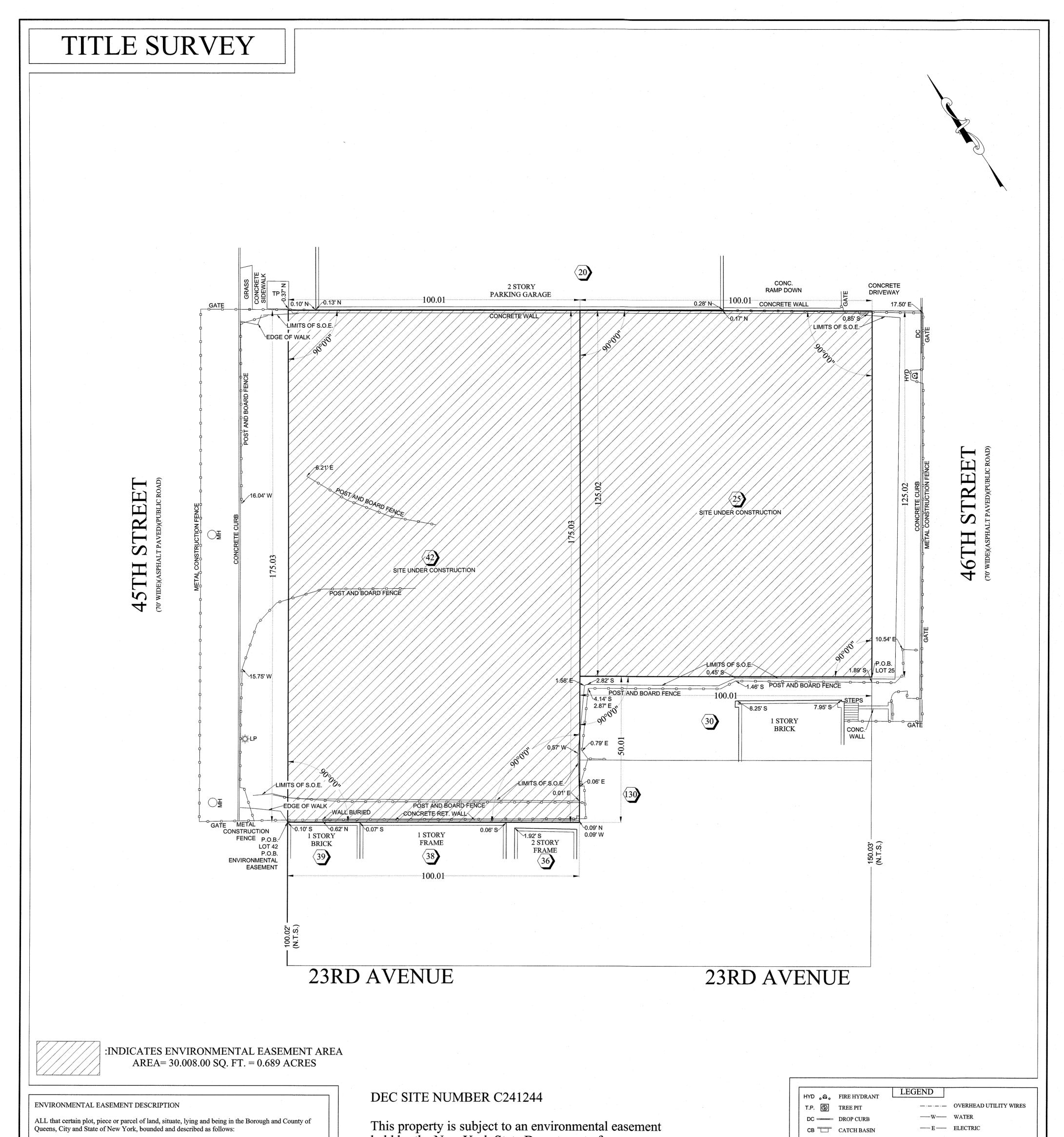
ALL that certain plot, piece or parcel of land, situate, lying and being in the Borough and County of

Queens, City and State of New York, bounded and described as follows:

BEGINNING at a point on the Easterly side of 45th Street (formerly 15th A venue, formerly Luyster Street) distant 100.02 feet (100 feet tax map) Northerly from the comer formed by the intersection of the Northerly side of 23rd Avenue (Potter Avenue) with the Easterly side of 45th Street;

RUNNING THENCE Easterly and parallel with the Northerly side of 23rd Avenue, 100.01 feet;

THENCE Northerly parallel with the easterly 45th Street, 50.01 feet;


THENCE Easterly parallel with the Northerly side of 23rd Avenue, 100.01 feet;

THENCE Northerly along the westerly side of 46th Street, 125.02 feet;

THENCE Westerly at right angles to the Westerly side of 46th Street 200.02 feet to the Easterly side of 45th Street;

THENCE southerly along the westerly side of 45th Street 175.03 feet to the point or place of BEGINNING

CONTAINING WITHIN SAID BOUNDS 0.689 ACRES OR 30,008.00 SQUARE FEET



BEGINNING at a point on the Easterly side of 45th Street (formerly 15th Avenue, formerly Luyster Street) distant 100.02 feet (100 feet tax map) Northerly from the corner formed by the intersection of the Northerly side of 23rd Avenue (Potter Avenue) with the Easterly side of 45th Street;

RUNNING THENCE Easterly and parallel with the Northerly side of 23rd Avenue, 100.01 feet;

THENCE Northerly parallel with the easterly 45th Street, 50.01 feet;

THENCE Easterly parallel with the Northerly side of 23rd Avenue, 100.01 feet;

THENCE Northerly along the westerly side of 46th Street, 125.02 feet;

THENCE Westerly at right angles to the Westerly side of 46th Street 200.02 feet to the Easterly side of 45th Street;

THENCE southerly along the westerly side of 45th Street 175.03 feet to the point or place of BEGINNING.

CONTAINING WITHIN SAID BOUNDS 0.689 ACRES OR 30,008.00 SQUARE FEET

LEGAL DESCRIPTION

LOT 25

ALL that certain plot, piece or parcel of land, situate, lying and being in the Borough and County of Queens, City and State of New York, bounded and described as follows:

BEGINNING at a point on the westerly side of 46th Street, distant 150.03 feet (150.00 feet tax map) northerly from the corner formed by the intersection of the westerly side of 46th Street with the northerly side of 23rd Avenue;

RUNNING THENCE westerly parallel with 23rd Avenue, 100.01 feet;

THENCE northerly parallel with 46th Street, 125.02 feet;

THENCE easterly parallel with 23rd Avenue, 100.01 feet to the westerly side of 46th Street;

THENCE southerly along the westerly side of 46th Street, 125.02 feet to the point or place of BEGINNING.

LOT 42

ALL that certain plot, piece or parcel of land, situate, lying and being in the Borough and County of Queens, City and State of New York, designated as Block 769 Lot 42, bounded and described as follows:

BEGINNING at a point on the Easterly side of 45th Street (formerly 15th Avenue, formerly Luyster Street) distant 100.02 feet (100 feet tax map) Northerly from the corner formed by the intersection of the Northerly side of 23rd Avenue (Potter Avenue) with the Easterly side of 45th Street;

RUNNING THENCE Northerly along the Easterly side of 45th Street, 175.03 feet;

THENCE Easterly parallel with the Northerly side of 23rd Avenue, 100.01 feet;

THENCE Southerly at right angles to the last mentioned course 175.03 feet;

THENCE Westerly at right angles to the Westerly side of 46th Street; 100.01 feet to the Easterly side of the street, the point or place of BEGINNING.

held by the New York State Department of Environmental Conservation pursuant to Titl Article 71 of the New York Environmental Conservation Law. The engineering and insti controls for this Easement are set forth in mo the Site Management Plan (SMP). A copy of must be obtained by any party with an interest property. The SMP can be obtained from NY Department of Environmental Conservation, of Environmental Remediation, Site Control 625 Broadway, Albany, NY 12233 or at derweb@dec.ny.gov

| k State Department of                                                                                                                    |                                       | ММ 🗆                                    | MUNI-METER            | G                                     | GAS                          |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------|-----------------------|---------------------------------------|------------------------------|
| ervation pursuant to Title 36 of                                                                                                         |                                       | ЕВ 🗆                                    | ELECTRIC BOX          | S                                     | SEWER                        |
| <b>▲</b>                                                                                                                                 |                                       | TSP O                                   | TRAFFIC SIGN POLE     | ST                                    | STEAM                        |
| York Environmental                                                                                                                       |                                       | LP 🔅                                    | LIGHT POLE            | T                                     | TELEPHONE                    |
| ne engineering and institutional                                                                                                         |                                       | SOE                                     | SUPPORT OF EXCAVATION | СЕ МН 🔿                               | CON ED MANHOLE COVER         |
| ment are set forth in more detail in                                                                                                     |                                       | тс                                      | TOP OF CURB           |                                       | ELECTRIC MANHOLE COVER       |
| Plan (SMP). A copy of the SMP                                                                                                            |                                       | BC                                      | BOTTOM OF CURB        | WMH O                                 | WATER MANHOLE COVER          |
|                                                                                                                                          |                                       | BW                                      | BACK OF WALK          | SMH ()                                | SEWER MANHOLE COVER          |
| iny party with an interest in the                                                                                                        |                                       | CLF                                     | CHAIN LINK FENCE      | тмн 🔿                                 | TELEPHONE MANHOLE COVER      |
| in be obtained from NYS                                                                                                                  |                                       | WIF                                     | WROUGHT IRON FENCE    | со мн ()                              | CLEAN OUT MANHOLE COVER      |
| onmental Conservation, Division                                                                                                          |                                       | WSF                                     | WOOD STOCKADE FENCE   | WV O                                  | WATER VALVE                  |
| nediation, Site Control Section,                                                                                                         |                                       | PRF                                     | POST AND RAIL FENCE   | GV ♦                                  | GAS VALVE                    |
| y, NY 12233 or at                                                                                                                        |                                       | CE                                      | CELLAR ENTRANCE       | UP O                                  | UTILITY POLE                 |
| 1y, 1x = 12233  OI al                                                                                                                    |                                       | PA                                      | PLANTED AREA<br>SIGN  | AS O<br>SP O                          | AUTO SPRINKLER<br>STAND PIPE |
|                                                                                                                                          |                                       |                                         | TAX LOT               | SP 0<br>OF 0                          | OIL FILL                     |
|                                                                                                                                          |                                       |                                         |                       | UF U                                  |                              |
|                                                                                                                                          |                                       |                                         |                       | · [*****                              |                              |
|                                                                                                                                          | · · · · · · · · · · · · · · · · · · · | · . · . · . · · · · · · · · · · · · · · |                       | BLO                                   | OCK: 769                     |
|                                                                                                                                          |                                       |                                         |                       | - LOT                                 | S: 25, 42                    |
|                                                                                                                                          | SURVEYED: MA                          | AY 25, 2                                | 2022                  |                                       |                              |
|                                                                                                                                          | DRAWN BY: MF                          |                                         |                       | LOT                                   | 25 AREA:                     |
|                                                                                                                                          |                                       |                                         |                       |                                       | FT.: 12,503.25               |
|                                                                                                                                          | FEET                                  |                                         |                       |                                       | ES: 0.2870                   |
|                                                                                                                                          | 8.00' 16.00' 24.00'                   |                                         |                       |                                       |                              |
|                                                                                                                                          |                                       |                                         |                       | LOT                                   | 42 AREA:                     |
| FEHRINGER SURVEYING, P.C.                                                                                                                |                                       |                                         |                       | -                                     | FT.: 17,504.75               |
| ROBERT FEHRINGER                                                                                                                         | 0 8                                   | 24                                      | 48                    |                                       | 2ES: 0.4019                  |
| LICENSED LAND SURVEYOR                                                                                                                   |                                       | METER                                   | S                     |                                       | LS. 0.4019                   |
| WWW.FEHRINGERSURVEYING.COM<br>2200 JACKSON AVENUE                                                                                        | 3 M 5 M                               |                                         | 8 M                   | тот                                   |                              |
| SEAFORD, N.Y. 11783                                                                                                                      |                                       |                                         |                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | AL LOT AREA:                 |
| (516) 763 - 5515 FAX NO. (516) 763 - 5525                                                                                                |                                       |                                         |                       |                                       | FT.: 30,008.00               |
| FS@FEHRINGERSURVEYING.COM                                                                                                                | 0 3 M                                 | 8 M                                     | 16 M                  | ACR                                   | ES: 0.689                    |
|                                                                                                                                          |                                       |                                         |                       |                                       |                              |
| UNAUTHORIZED ALTERATION OR ADDITION TO THIS SURVEY IS A VIOLATION OF                                                                     | TE OF NEW L                           |                                         | SURVEY OF PRO         | DPERTY                                | SITUATED IN:                 |
| SECTION 7209 OF THE NEW YORK STATE EDUCATION LAW.                                                                                        | S OBERT STEHRING P                    |                                         | 22-60 4               | 6TH ST                                | REET                         |
| COPIES OF THIS SURVEY MAP NOT BEARING THE LAND SURVEYOR'S INKED SEAL<br>OR EMBOSSED SEAL SHALL NOT BE CONSIDERED TO BE A VALID TRUE COPY |                                       |                                         |                       |                                       |                              |
| GUARANTEES INDICATED HEREON SHALL RUN ONLY TO THE PERSON FOR WHOM                                                                        | Col Santo                             |                                         | BOROUC                |                                       |                              |
| THE SURVEY IS PREPARED, AND ON HIS BEHALF TO THE TITLE COMPANY,<br>GOVERNMENTAL AGENCY AND LENDING INSTITUTION LISTED HEREON, AND TO     | TA - A                                |                                         | COUNT                 | Y OF QI                               | UEENS                        |
| THE ASSIGNEES OF THE LENDING INSTITUTION, GUARANTEES ARE NOT<br>TRANSFERABLE TO ADDITIONAL INSTITUTIONS OR SUBSEQUENT OWNERS.            | 050001 P                              | / ]                                     | CITY O                | F NEW                                 | YORK                         |
|                                                                                                                                          | CLAND SU!                             |                                         | STATE C               | <b>DF NEW</b>                         | YORK                         |
| L                                                                                                                                        | I                                     | ·                                       |                       |                                       |                              |

APPENDIX B SITE CONTACT INFORMATION

| Name                                                                                                                               | Phone/Email Address                       |
|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| MD45 Developers LLC                                                                                                                | (718) 932-6342 / ekokinakis@megagroup.nyc |
| Rebecca Kinal (PE/Qualified Environmental Professional)                                                                            | (914) 922-2362 / rkinal@akrf.com          |
| George Duke (Client Attorney)                                                                                                      | (212) 542-3772 / gduke@connellfoley.com   |
| Meghan Medwid<br>NYSDEC Project Manager<br>625 Broadway<br>Albany, NY 12233-7014                                                   | (518) 402-8610 / meghan.medwid@dec.ny.gov |
| Sally Rushford<br>Bureau of Environmental Exposure<br>Investigation<br>New York State Department of Health                         | (518) 402-5465 / beei@health.ny.gov       |
| Chief, Site Control Section<br>New York State Department of Environmental<br>Conservation<br>Division of Environmental Remediation | (518) 402-9543                            |

# **APPENDIX B – LIST OF SITE CONTACTS**

APPENDIX C PBS REGISTRATION

| YORK<br>YORK<br>2-61                                                       | · π ·                                            | Petroleum Bulk Storage Program |                              |                            |               |                                      | facrpt_foil.rpt          |                                             |                                   |                                |                     |                      |
|----------------------------------------------------------------------------|--------------------------------------------------|--------------------------------|------------------------------|----------------------------|---------------|--------------------------------------|--------------------------|---------------------------------------------|-----------------------------------|--------------------------------|---------------------|----------------------|
| Site Information                                                           |                                                  | Tax Map Info                   |                              | •                          | ner Informa   | tion                                 |                          |                                             | Mail Correspo                     | ondent Info                    | ormation            | Page 1 of 1          |
| 22-60 46TH STREET                                                          |                                                  | Boro/Sec.: Que                 |                              |                            | DEVELOPE      |                                      |                          |                                             | MD 45 DEVE                        |                                |                     | -                    |
| 22-60 46TH STREET                                                          |                                                  | Block: 769                     | .ens                         |                            |               | NUE, SUITI                           | E 400                    |                                             | 48-02 25TH                        |                                |                     |                      |
| QUEENS, NY 11105                                                           |                                                  | Lot: 25                        |                              |                            | S, NY 11103   | ,                                    |                          |                                             | QUEENS, NY                        |                                | ~                   |                      |
|                                                                            |                                                  |                                |                              | (718) 932                  | 2-6342        |                                      |                          |                                             |                                   |                                |                     |                      |
| Site Phone: (718) 932-                                                     | 342                                              |                                |                              | Owner 7                    | Гуре: Согр    | orate/Comm                           | ercial/Othe              | er A                                        | ATTN: EMAN                        | NUEL KO                        | <b>)KINAK</b>       | IS                   |
| Town: New York City                                                        | County: Que                                      | ens                            |                              |                            |               |                                      |                          | (                                           | (718) 932-6342                    |                                |                     |                      |
| Facility Operator: N/A                                                     |                                                  |                                |                              |                            |               |                                      |                          |                                             | <b>`</b>                          |                                |                     |                      |
| Emergency Contact: E                                                       | IANUEL KOKINAI                                   | KIS                            |                              | Emerge                     | ency Phone: ( | Aut<br>(718) 932-634                 |                          | epresentati                                 | ive: EMANU                        | EL KOK                         | INAKIS              |                      |
| Site Status : Unregulat                                                    | d/Closed                                         | Reg Expires : 07               | 7/22/2027 C                  | ert Printed:               | :             | Total A                              | Active Tank              | s: 0                                        | Last Inspect                      | ed:                            |                     |                      |
| Site Type: Other                                                           |                                                  |                                |                              |                            |               | <b>Sotal Active</b>                  | ·                        |                                             | Inspected By                      |                                |                     |                      |
| (2) (3) (4) (<br><u>Tank Tank</u> Status <u>I</u>                          |                                                  |                                | (9) (10)<br><u>Fank Tank</u> | (11) (12<br><u>Tank Ta</u> |               | (14) (15)<br><u>Tank</u> <u>Tank</u> |                          | (18) (19<br><u>Pipe</u> <u>Pip</u><br>EP SC | 9) (20) (21<br>9 <u>e Pipe UD</u> | ) <u>Next</u><br><u>C</u> Tank | <u>Next</u><br>Line | <u>Tank</u><br>Owner |
| No         Loc         In           UST-1         5         3         04/1 | <u>al Closed (gals)</u><br>2020 03/31/2022 1,080 |                                | IP <u>EP</u><br>00 00        | <u>SC</u> LI               | D <u>OP</u>   | <u>SP</u> Disp<br>00 00              | <u>Loc Type</u><br>00 00 | EP SC<br>00 00                              | (                                 | Test                           | Test                |                      |
| Subpart: 3 Category                                                        | ,                                                | 0001 01                        | 00 00                        |                            | , 00 ,        | 00 00                                | 00 00                    | 00 00                                       | 00 .                              |                                |                     |                      |
|                                                                            | 2020 03/31/2022 6,800                            | 0002 01                        | 00 00                        | 00 00                      | 00            | 00 00                                | 00 00                    | 00 00                                       | 00                                |                                |                     |                      |
| Subpart: 3 Category                                                        | 3                                                |                                |                              |                            |               |                                      |                          |                                             |                                   |                                |                     |                      |
| UST-3 5 3 04/1                                                             | 2020 04/05/2022 1,080                            | 0001 01                        | 00 00                        | 00 00                      | 00            | 00 00                                | 00 00                    | 00 00                                       | 00                                |                                |                     |                      |
| Subpart: 3 Category                                                        |                                                  |                                |                              |                            |               |                                      |                          | 1                                           | ,                                 |                                |                     |                      |
|                                                                            | 2020 04/26/2022 2,000                            | 0001 01                        | 00 00                        | 00 00                      | : 00 :        | 00 00                                | 00 00                    | 00 00                                       | 00                                |                                |                     |                      |
| Subpart: 3 Category                                                        | 3                                                |                                |                              |                            |               |                                      |                          |                                             |                                   |                                |                     |                      |

(See Reverse Side or Last Page for Code Keys)

## PETROLEUM BULK STORAGE APLICATION - SECTION B - TANK INFORMATION - CODE KEYS

#### Action (1)

- 1. Initial Listing
- 2. Add Tank
- 3. Close/Remove Tank
- 4. Information Correction
- 5. Recondition/Repair/Reline

## Tank Location (3)

- 1. Aboveground-contact w/soil
- 2. Aboveground-contact w/ impervious barrier
- 3. Aboveground on saddles, leggs, stilts, rack or cradle
- 4. Tank 10% or more below ground
- 5. Underground including vaulted
- with no access for inspection
- 6. Aboveground in Subterranean

## Status (4)

- 1. In-service
- 2. Out-of-service
- 3. Closed-Removed
- 4. Closed- In Place
- 5. Tank converted to Non-Regulated use

## **Products Stored (7)**

Heating Oils: On-Site

- Consumption 0001. #2 Fuel Oil
- 0002. #4 Fuel Oil 0259. #5 Fuel Oil 0003. #6 Fuel Oil 0012. Kerosene 0591. Clarified Oil 2711. Biodiesel (Heating) 2642. Used Oil (Heating) Heating Oils: Resale/

## **Redistribution**

2718. #2 Fuel Oil 2719. #4 Fuel Oil 2720. #5 Fuel Oil 2721. #6 Fuel Oil 2722. Kerosene 2723. Clarified Oil 2724. Biodiesel (Heating)

#### Motor Fuels

0009. Gasoline 2712. Gasoline/Ethanol 0008. Diesel 2710. Biodiesel 0011. Jet Fuel 1044. Jet Fuel (Biofuel) 2641. Aviation Gasoline Lubricating/Cutting Oils 0013. Lube Oil 0015. Motor Oil 1045. Gear/Spindle Oil 0010. Hydraulic Oil 0007. Cutting Oil 0021. Transmission Fluid 1836. Turbine Oil

#### Oils Used as Building Materials

2626. Asphaltic Emulsions 0748. Form Oil

#### Petroleum Spirits

0014. White/Mineral Spirits 1731. Nantha

#### Mineral/Insulating Oils

0020. Insulating Oil (e.g., Transformer, Cable Oil) 2630. Mineral Oil

#### Waste/Used/Other Oils

0022 Waste/Used Oil 9999. Other-Please list:\*

#### Crude Oil

0006. Crude Oil 0701. Crude Oil Fractions

#### Tank Type (8)

01. Steel/Carbon Steel/Iron
02. Galvanized Steel Alloy
03. Stainless Steel Alloy
04. Fiberglass Coated Steel
05. Steel Tank in Concrete
06. Fiberglass Reinforced Plastic (FRP)
07. Plastic
08. Equivalent Technology
09. Concrete
10. Urethane Clad Steel
99. Other-Please list:\*

#### **Internal Protection (9)**

00. None 01 Epoxy Liner 02. Rubber Liner 03. Fiberglass Liner (FRP) 04. Glass Liner 99. Other-Please list:\*

#### External Protection (10/18)

00. None
01. Painted/Asphalt Coating
02. Original Sacrificial Anode
03. Original Impressed Current
04. Fiberglass
05. Jacketed
06. Wrapped (Piping)
07 Retrofitted Sacrificial Anode
08. Retrofitted Impressed Current
09. Urethane

#### Tank Secondary Containment (11)

- 00. None
- 01. Diking (AST Only)
- 02. Vault (w/access)
- 03. Vault (w/o access)
- 04. Double-Walled (UST Only)
- 05. Synthetic Liner
- 06. Remote Impounding Area
- 07. Excavation Liner
- 09. Modified Double-Walled (AST Only)
- 10. Impervious Underlayment (AST Only)\*\*
- 11. Double Bottom (AST Only)\*\*
- 12. Double-Walled (AST Only)
- 99. Other Please List:\*

#### Tank Leak Detection (12)

00. None
01. Interstitial Electronic Monitoring
02. Interstitial Manual Monitoring
03. Vapor Well
04. Groundwater Well
05. In-Tank System (Auto Tank Gauge)
06. Impervious Barrier/Concrete Pad (AST Only)
07. Statistical Inventory Reconciliation (SIR)
08. Weep holes in vaults with no access for inspection.

#### **Overfill Protection (13)**

00. None
01. Float Vent Valve
02. High Level Alarm
03. Automatic Shut-Off
04. Product Level Gauge (AST)
05. Vent Whistle
99. Other-Please list:\*

#### **Spill Prevention (14)**

00. None 01. Catch Basin 99. Other-Please list:\*

#### **Pumping/Dispensing Method (15)**

#### 00. None

- 01. Presurized Dispenser
- 02. Suction Dispenser
- 03. Gravity
- 04. On-Site Heating System
- (Suction) 05. On-Site Heating System (Supply/Return)
- 06. Tank-Mounted Dispenser

#### **Piping Location (16)**

- 00. No Piping
- 01. Aboveground
- 02. Underground/On-ground
- 03. Aboveground/Underground Combination

## Piping Type (17)

- 00. None
- 01. Steel/Carbon Steel/Iron
- 02. Galvanized Steel
- 03. Stainless Steel Alloy
- 04. Fiberglass Coated Steel
- 05. Steel Encased in Concrete
- 06. Fiberglass Reinforced Plastic (FRP)
- 07. Plastic
- 08. Equivalent Technology
- 09. Concrete
- 10. Copper
- 11. Flexible Piping

#### Piping Secondary Containment (19)

- <u>[] 7]</u>
- 00. None 01. Diking (Aboveground Only)
- 02. Vault (w/access)
- 04. Double-Walled (Underground Only)
- 06. Remote Impounding Area
- 07. Trench Liner

00. None

12. Double-Walled (Aboveground Only)

**Pipe Leak Detection (20)** 

02. Insterstitial Manual Monitoring

**Under Dispenser Containment** 

Check Box if Present

99. Other - Please List:\*

01. Interstitial Electronic

Monitoring

04. Groundwater Well

07. Pressurized Piping Leak

09. Exempt Suction Piping

10. Statistical Inventory

99. Other-Please list:\*

(UDC)(21)

\* If other, please list on a

to meet compliance

requirements

number

separate sheet including tank

\*\* Each of these codes must be

combined with code 01 or 06

03. Vapor Well

Detector

Reconciliation

(SIR)

APPENDIX D Import Approvals

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor, Albany, NY 12233-7016 P: (518) 402-9767 I F: (518) 402-9773 www.dec.ny.gov

- TO: Ashutosh Sharma, AKRF, Inc.
- FROM: Meghan Medwid, Project Manager NYS DEC, Remedial Bureau B, Section D
- SUBJECT: Request to Import Site Name: 22-60 46<sup>th</sup> Street Site No.: C241244
- **DATE:** 04/04/2022

# Approved:

The Department has reviewed the request dated 03/31/2022 to import 4,000 cubic yards of stone from Braen Stone of Sparta, NJ. Based on the information provided, the request is hereby approved.

The proposed fill material meets the requirements for material other than soil (i.e., gravel, rock, stone, recycled concrete or recycled brick) as specified in section 5.4(e)5 of DER-10. Therefore, this material may be placed as backfill behind the support of excavation and foundation walls, and below the site cap.

Testing in accordance with DER-10 and the Remedial Design Work Plan and approval by the Department is required for any additional material imported from this source.



Department of Environmental Conservation

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor, Albany, NY 12233-7016 P: (518) 402-9767 I F: (518) 402-9773 www.dec.ny.gov

- TO: Ashutosh Sharma, AKRF, Inc.
- **FROM:** Meghan Medwid, Project Manager NYS DEC, Remedial Bureau B, Section D
- SUBJECT: Request to Import Site Name: 22-60 46<sup>th</sup> Street Site No.: C241244
- **DATE:** 04/04/2022

# Approved:

The Department has reviewed the request dated 03/31/2022 to import 500-800 cubic yards of stone from Braen Stone of Sparta, NJ. Based on the information provided, the request is hereby approved.

The proposed fill material meets the requirements for material other than soil (i.e., gravel, rock, stone, recycled concrete or recycled brick) as specified in section 5.4(e)5 of DER-10. Therefore, this material may be placed as backfill around the foundation elements and below the concrete slab.

Testing in accordance with DER-10 and the Remedial Design Work Plan and approval by the Department is required for any additional material imported from this source.



Department of Environmental Conservation

# NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12th Floor, Albany, NY 12233-7016 P: (518) 402-9767 I F: (518) 402-9773 www.dec.ny.gov

- TO: Ashutosh Sharma, AKRF, Inc.
- **FROM:** Meghan Medwid, Project Manager NYS DEC, Remedial Bureau B, Section D
- SUBJECT: Request to Import Site Name: 22-60 46<sup>th</sup> Street Site No.: C241244
- **DATE:** 04/04/2022

# Approved:

The Department has reviewed the request dated 03/31/2022 to import 200-300 cubic yards of stone from Braen Stone of Sparta, NJ. Based on the information provided, the request is hereby approved.

The proposed fill material meets the requirements for material other than soil (i.e., gravel, rock, stone, recycled concrete or recycled brick) as specified in section 5.4(e)5 of DER-10. Therefore, this material may be placed on site for use as truck tracking pad.

Testing in accordance with DER-10 and the Remedial Design Work Plan and approval by the Department is required for any additional material imported from this source.



Department of Environmental Conservation APPENDIX E

FOUNDATION MANAGEMENT PLAN

# FOUNDATION MANAGEMENT PLAN (FMP)

#### 1.1 Notification

At least 15 days prior to the start of any activity that is anticipated to disturb the EC system of the on-site buildings, the Site owner or their representative will notify the NYSDEC. No contaminated soil is known to remain at the Site. The following table includes contact information for notification. The information on this table will be updated as necessary to provide accurate contact information.

### FMP Table 1 Notifications\*

| Meghan Medwid                                                                 | (518) 402-8610                                 |
|-------------------------------------------------------------------------------|------------------------------------------------|
| NYSDEC Project Manager                                                        | meghan.medwid@dec.ny.gov                       |
| Sally Rushford<br>NYSDEC, Superfund & Brownfield Cleanup Section,<br>Region 2 | (518) 402-5465<br>sally.rushford@health.ny.gov |
| Kelly Lewandowski, P.E.                                                       | (518) 402-9569                                 |
| NYSDEC, Chief, Site Control Section                                           | kelly.lewandowski@dec.ny.gov                   |

\*Notifications are subject to change and will be updated as necessary.

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for Site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated, and any work that may impact an engineering control;
- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix F of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

The NYSDEC project manager will review the notification and may impose additional requirements for the excavation that are not listed in this FMP.

## **1.2 EC System Restoration**

After the completion of soil removal and any other invasive activities that disturb any ECs, the system(s) will be restored in a manner that complies with the RAWP and RMR. The ECs include the active SSDS (including a vapor barrier) and the SVE system. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in an updated SMP.

## **1.3 Backfill from Off-Site Sources**

All materials proposed for import onto the Site will be approved by the QEP and will be in compliance with provisions in this SMP prior to receipt at the Site. Any fill imported to the Site would meet the criteria outlined in 6 NYCRR Part 375. Non-virgin imported material that does not have an approved NYSDEC Beneficial Use Determination will be tested from a segregated stockpile at the originating facility for full list VOCs, SVOCs, pesticides, PCBs,1,4-dioxane, PFAS, and Target Analyte List (TAL) metals by a New York State-certified laboratory. The sampling should be conducted by an environmental professional in accordance with DER-10 Section 5.4(e). The results will be compared to the appropriate Part 375 SCOs and submitted to the NYSDEC for review and approval prior to importing of the material from a segregated stockpile. No construction and demolition (C&D) debris will be imported to the Site for use as fill.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site. All imported soils will meet the backfill and cover soil quality standards established in 6 NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards will be the Part 375 SCOs for Restricted Residential Use. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

### **1.4 Stormwater Pollution Prevention**

During any soil excavation, erosion and sediment control measures including barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

APPENDIX F

HEALTH AND SAFETY PLAN AND COMMUNITY AIR MONITORING PLAN

# 22-60 46<sup>TH</sup> STREET

# QUEENS, NEW YORK

# Health and Safety Plan and Community Air Monitoring Plan

NYSDEC BCP Site #: C241244 AKRF Project Number: 190275

#### **Prepared for:**

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12<sup>th</sup> Floor Albany, New York 12233

#### **On Behalf Of:**

MD45 Developers LLC 48-02 25<sup>th</sup> Avenue, Suite 400 Queens, NY 11103



AKRF, Inc. 440 Park Avenue South, 7<sup>th</sup> Floor New York, NY 10016 212-696-0670

## **DECEMBER 2022**

# **TABLE OF CONTENTS**

| 1.0 | INTRODUCTION                                      |
|-----|---------------------------------------------------|
| 2.0 | HEALTH AND SAFETY GUIDELINES AND PROCEDURES2      |
| 2.1 | Hazard Evaluation                                 |
| 2.  | .1.1 Hazards of Concern                           |
| 2.  | .1.2 Physical Characteristics                     |
| 2.  | .1.3 Hazardous Materials                          |
| 2.  | .1.4 Chemicals of Concern                         |
| 2.2 | Designated Personnel4                             |
| 2.3 | Training4                                         |
| 2.4 | Medical Surveillance Program4                     |
| 2.5 | Site Work Zones                                   |
| 2.6 | Air Monitoring                                    |
| 2.7 | Special Requirements CAMP7                        |
| 2.8 | Personal Protection Equipment7                    |
| 2.9 | General Work Practices                            |
| 3.0 | EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN9 |
| 3.1 | Hospital Directions                               |
| 3.2 | Emergency Contacts                                |
| 4.0 | APPROVAL & ACKNOWLEDGMENTS OF HASP 10             |

# FIGURES

Figure 1 – Site Location Figure 2 – Hospital Location Map

# **APPENDICES**

Attachment A - Potential Health Effects from On-Site Contaminants

Attachment B - West Nile Virus/St. Louis Encephalitis Prevention

Attachment C – Report Forms

Attachment D – Emergency Hand Signals

Attachment E – Special Requirements CAMP

# **1.0 INTRODUCTION**

This environmental Health and Safety Plan (HASP) has been developed for implementation of Site Management Plan (SMP) activities conducted by all personnel on-Site, both AKRF, Inc. (AKRF) employees and others, at 22-60 46<sup>th</sup> Street (the "Site"). The Site is located at 22-60 46<sup>th</sup> Street in Queens, New York. The legal definition of the Site is Tax Block 769, Lots 25 and 42. A Site Location plan is provided as Figure 1.

MD45 Developers LLC (MD45) entered into a Brownfield Cleanup Agreement (BCA) (Index No. C241244-09-20) on September 17, 2020 with the NYSDEC as a participant to remediate the Site. To support the proposed redevelopment, the Site was rezoned in February 2020 from M1-1 (manufacturing) to R6A (residential) and C2-3 (commercial). The Site is currently being redeveloped into two 8-story, mixed-use buildings. The buildings will contain approximately 96 residential units, including 30 permanently affordable units. The first floor will contain approximately 3,721-square feet of commercial space, approximately 11,740-square feet of community facility space, and residential amenities. Floors two through eight will contain residential units. Additionally, an exterior courtyard is proposed between the two buildings on the first and second floors. The two proposed buildings will occupy the entirety of the Site.

After completion of the remedial work in accordance with the NYSDEC-approved RAWP, some contamination was left at this Site. Institutional and Engineering Controls (ICs/ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Queens County Clerk, requires compliance with the SMP and all ICs/ECs placed on the Site.

This HASP and CAMP does not discuss routine health and safety issues common to general construction and excavation, including, but not, limited to slips, trips, falls, shoring, and other physical hazards. All AKRF employees are directed that all work must be performed in accordance with the AKRF's Generic HASP and all Occupation Safety and Health Administration (OSHA)-applicable regulations for the work activities required for the project. All project personnel are furthermore directed that they are not permitted to enter Permit Required Confined Spaces (as defined by OSHA). For issues unrelated to contaminated materials, all non-AKRF employees are to be bound by all applicable OSHA regulations as well as any more stringent requirements specified by their employer in their corporate HASP or otherwise. AKRF is not responsible for providing oversight for issues unrelated to contaminated materials for non-employees. This oversight shall be the responsibility of the employer of that worker or other official designated by that employer.

# 2.0 HEALTH AND SAFETY GUIDELINES AND PROCEDURES

## 2.1 Hazard Evaluation

## 2.1.1 Hazards of Concern

| Check all that apply                       |                         |                         |  |  |  |  |
|--------------------------------------------|-------------------------|-------------------------|--|--|--|--|
| (X) Organic Chemicals                      | (X) Inorganic Chemicals | () Radiological         |  |  |  |  |
| () Biological                              | () Explosive/Flammable  | () Oxygen Deficient Atm |  |  |  |  |
| (X) Heat Stress                            | (X) Cold Stress         | ( ) Carbon Monoxide     |  |  |  |  |
| Comments:<br>No personnel are permitted to |                         |                         |  |  |  |  |

## 2.1.2 Physical Characteristics

| Check all that app | ly         |           |
|--------------------|------------|-----------|
| (X) Liquid         | (X) Solid  | () Sludge |
| (X) Vapors         | () Unknown | () Other  |
| Comments:          |            |           |

## 2.1.3 Hazardous Materials

| Check all that apply                  |               |           |                         |                              |             |  |
|---------------------------------------|---------------|-----------|-------------------------|------------------------------|-------------|--|
| Chemicals                             | Solids        | Sludges   | Solvents                | Oils                         | Other       |  |
| () Acids                              | () Ash        | () Paints | () Halogens             | () Transformer               | () Lab      |  |
| () Caustics                           | () Asbestos   | () Metals | (X)<br>Petroleum        | () Other DF                  | () Pharm    |  |
| (X) Pesticides                        | () Tailings   | () POTW   | (X) Other               | () Motor or<br>Hydraulic Oil | () Hospital |  |
| (X) Petroleum                         | (X) Other     | () Other  | Chlorinated<br>Solvents | (X) Gasoline                 | ( ) Rad     |  |
| ( ) Inks                              | Fill material |           |                         | (X) Fuel Oil                 | () MGP      |  |
| (X) PCBs                              |               |           |                         |                              | () Mold     |  |
| (X) Metals                            |               |           |                         |                              | () Cyanide  |  |
| ( <b>X</b> )Other:<br>VOCs &<br>SVOCs |               |           |                         |                              |             |  |

| Chemicals                                  | REL/PEL/STEL (ppm)                                                                                   | Health Hazards                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2-dichloroethane                         | REL = 1 ppm<br>PEL = 50 ppm                                                                          | Irritation eyes, corneal opacity; central nervous system<br>depression; nausea, vomiting; dermatitis; liver, kidney,<br>cardiovascular system damage; [potential occupational<br>carcinogen].                                                                                                                     |
| Barium                                     | $\begin{aligned} \text{PEL} &= 0.5 \text{ mg/m}^3 \\ \text{REL} &= 0.5 \text{ mg/m}^3 \end{aligned}$ | Irritation eyes, skin, upper respiratory system; skin burns;<br>gastroenteritis; muscle spasm; slow pulse, extrasystoles;<br>hypokalemia                                                                                                                                                                          |
| Benzene                                    | REL = 0.1 ppm<br>PEL = 1 ppm<br>STEL = 5 ppm                                                         | Irritation eyes, skin, nose, respiratory system; dizziness;<br>headache, nausea, staggered gait; anorexia, lassitude, dermatitis,<br>bone marrow depression, potential occupational carcinogen.                                                                                                                   |
| Cadmium                                    | PEL = 0.005 mg/m <sup>3</sup>                                                                        | Pulmonary edema, dyspnea (breathing difficulty), cough, chest<br>tightness, substernal (occurring beneath the sternum) pain;<br>headache; chills, muscle aches; nausea, vomiting, diarrhea;<br>anosmia (loss of the sense of smell), emphysema, proteinuria,<br>mild anemia; [potential occupational carcinogen]. |
| Chromium                                   | $\begin{aligned} \text{REL} &= 0.5 \text{ mg/m}^3 \\ \text{PEL} &- 1 \text{ mg/m}^3 \end{aligned}$   | Irritation eyes, skin; lung fibrosis (histologic).                                                                                                                                                                                                                                                                |
| Copper                                     | $REL = 1 mg/m^3$ $PEL = 1 mg/m^3$                                                                    | Irritation eyes, nose, pharynx; nasal septum perforation; metallic<br>taste; dermatitis; in animals: lung, liver, kidney damage; anemia                                                                                                                                                                           |
| DDT (pesticide)                            | $REL = 0.5 mg/m^3$ $PEL = 1 mg/m^3 [skin]$                                                           | Irritation eyes, skin; paresthesia tongue, lips, face; tremor;<br>anxiety, dizziness, confusion, malaise (vague feeling of<br>discomfort), headache, lassitude (weakness, exhaustion);<br>convulsions; paresis hands; vomiting; potential carcinogen.                                                             |
| Ethylbenzene                               | REL = 100 ppm<br>PEL = 100 ppm                                                                       | Irritation eyes, skin, mucous membrane; headache; dermatitis;<br>narcosis, coma.                                                                                                                                                                                                                                  |
| Fuel Oil                                   | $REL = 350 \text{ mg/m}^3$ $PEL = 400 \text{ ppm}$                                                   | Nausea, irritation – eyes, hypertension, headache, light-<br>headedness, loss of appetite, poor coordination; long-term<br>exposure – kidney damage, blood clotting problems; potential<br>carcinogen.                                                                                                            |
| Lead                                       | $\begin{split} REL &= 0.05 \ mg/m^3 \\ PEL &= 0.05 \ mg/m^3 \end{split}$                             | Lassitude (weakness, exhaustion), insomnia; facial pallor;<br>anorexia, weight loss, malnutrition; constipation, abdominal<br>pain, colic; anemia; gingival lead line; tremor; paralysis wrist,<br>ankles; encephalopathy; kidney disease; irritation eyes;<br>hypertension.                                      |
| Mercury                                    | $\begin{aligned} REL &= 0.1 \text{ mg/m}^3 \\ PEL &= 0.05 \text{ mg/m}^3 \end{aligned}$              | Irritation eyes, skin; cough, chest pain, dyspnea (breathing<br>difficulty), bronchitis, pneumonitis; tremor, insomnia,<br>irritability, indecision, headache, lassitude (weakness,<br>exhaustion); stomatitis, salivation; gastrointestinal disturbance<br>anorexia, weight loss; proteinuria.                   |
| Naphthalene                                | REL = 15 ppm<br>PEL = 10 ppm                                                                         | Irritation eyes; headache, confusion, excitement, malaise (vagu<br>feeling of discomfort); nausea, vomiting, abdominal pain;<br>irritation bladder; profuse sweating; jaundice; hematuria (blooc<br>in the urine), renal shutdown; dermatitis, optical neuritis,<br>corneal damage.                               |
| Polycyclic Aromatic<br>Hydrocarbons (PAHs) | $PEL = 5 mg/m^3$                                                                                     | Harmful effects to skin, bodily fluids, and ability to fight disease, reproductive problems; potential carcinogen.                                                                                                                                                                                                |
| Tetrachloroethylene                        | PEL = 100 ppm                                                                                        | Irritation eyes, skin, nose, throat, respiratory system; nausea;<br>flush face, neck; dizziness, incoordination; headache,<br>drowsiness; skin erythema (skin redness); liver damage;<br>[potential occupational carcinogen].                                                                                     |
| Toluene                                    | REL = 100 ppm<br>PEL = 200 ppm<br>STEL = 300 ppm                                                     | Irritation eyes, nose; lassitude, confusion, euphoria, dizziness,<br>headache; dilated pupils, lacrimation (discharge of tears);<br>anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver<br>kidney damage.                                                                                           |
| Xylenes                                    | REL = 100  ppm                                                                                       | Irritation eyes, skin, nose, throat; dizziness, excitement,                                                                                                                                                                                                                                                       |

## 2.1.4 Chemicals of Concern

| Chemicals                                                                                                   | REL/PEL/STEL (ppm)                 | Health Hazards                                                                                                                                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                             | PEL = 100 ppm                      | drowsiness, poor coordination, staggering gait; corneal<br>vacuolization; anorexia, nausea, vomiting, abdominal pain;<br>dermatitis.                                   |  |  |  |
| Zinc                                                                                                        | $REL = 5 mg/m^3$ $PEL = 10 mg/m^3$ | Chills, muscle ache, fever, dry throat, cough, weakness or<br>exhaustion, headache, blurred vision, low back pain, vomiting,<br>chest tightness, breathing difficulty. |  |  |  |
| Comments:<br>REL = National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit |                                    |                                                                                                                                                                        |  |  |  |

PEL = OSHA Permissible Exposure Limit STEL = OSHA Short Term Exposure Limit

## 2.2 Designated Personnel

AKRF will appoint one of its on-site personnel as the Site Safety Officer (SSO). This individual will be responsible for implementation of the HASP. The SSO will have a 2-year or 4-year college degree in occupational safety or a related environmental science/engineering field, and experience in implementation of air monitoring and hazardous materials sampling programs. Health and safety training required for the SSO and all field personnel are outlined in Section 2.3 of this HASP.

## 2.3 Training

All personnel who enter the work area while intrusive activities are being performed will have completed a 40-hour training course that meets OSHA requirements of 29 CFR Part 1910, Occupational Safety and Health Standards. In addition, all personnel will have up-to-date 8-hour refresher training. The training will allow personnel to recognize and understand the potential hazards to health and safety. All field personnel must attend a training program, whose purpose is to:

- Make them aware of the potential hazards they may encounter;
- Provide the knowledge and skills necessary for them to perform the work with minimal risk to health and safety and make them aware of the purpose and limitations of safety equipment; and
- Ensure that they can safely avoid or escape from emergencies.

Each member of the field crew will be instructed in these objectives before he/she goes onto the Site. A Site safety meeting will be conducted at the start of the project. Additional meetings shall be conducted, as necessary, for new personnel working at the Site.

### 2.4 Medical Surveillance Program

All AKRF and subcontractor personnel performing field work involving subsurface disturbance at the Site are required to have passed a complete medical surveillance examination in accordance with 29 CFR 1910.120 (f). A physician's medical release for work will be confirmed by the SSO before an employee can begin Site activities. The medical release shall consider the type of work to be performed and the required personal protective equipment (PPE). The medical examination will, at a minimum, be provided annually and upon termination of hazardous waste Site work.

#### 2.5 Site Work Zones

During any activities involving subsurface disturbance, the work area must be divided into various zones to prevent the spread of contamination, ensure that proper protective equipment is donned, and provide an area for decontamination.

The Exclusion Zone is defined as the area where exposure to impacted media could be encountered. The Contamination Reduction Zone (CRZ) is the area where decontamination procedures take place and is located next to the Exclusion Zone. The Support is the zone area where support facilities such as vehicles, fire extinguisher, and first aid supplies are located. The emergency staging area (part of the Support Zone) is the area where all workers on-site would assemble in the event of an emergency. A summary of these areas is provided below. These zones may be changed by the SSO, depending on that day's activities. All field personnel will be informed of the location of these zones before work begins. The exclusion zone and CRZ are 10 and 25 feet from the drill rig during excavation and/or sampling. Control measures such as caution tape and/or traffic cones will be placed around the perimeter of the work area when needed.

| Task              | Exclusion Zone          | CRZ                     | Support Zone |
|-------------------|-------------------------|-------------------------|--------------|
| Excavation and/or | 10 ft from Drill Rig or | 25 ft from Drill Rig or | As Needed    |
| Sampling          | Excavator               | Excavator               |              |

Comments:

Control measures such as "caution tape" and/or traffic cones will be placed around the perimeter of the work area when work is being done in a public area.

### 2.6 Air Monitoring

The purpose of the air monitoring program is to identify any exposure of the field personnel to potential environmental hazards in the soil and groundwater. Results of the air monitoring will be used to determine the appropriate response action, if needed.

### 1.1.1 Volatile Organic Compound (VOC) Monitoring

Continuous monitoring for VOCs will be conducted during all ground-intrusive activities, including soil boring advancement and groundwater monitoring well installation. Upwind concentrations will be measured at the start of each workday and periodically thereafter to establish background concentrations. VOCs will be monitored continuously at the downwind perimeter of the exclusion zone. Monitoring will be conducted with a PID equipped with an 10.6 eV lamp capable of calculating 15-minute running average concentrations.

More frequent intervals of monitoring will be conducted if required as determined by the SSO. All PID readings will be recorded and available for NYSDEC and NYSDOH personnel to review. Instantaneous readings, if any, will also be recorded.

### **1.1.2** Community Air Monitoring Action Levels

### VOC Action Levels

The following actions will be taken based on organic vapor levels measured:

- If total organic vapor levels exceed 5 ppm above background for the 15-minute average at the exclusion zone perimeter, work activities will be temporarily halted and monitoring continued. If levels readily decrease (per instantaneous readings) below 5 ppm above background, work activities will resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the exclusion zone persist at levels in excess of 5 ppm above background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken

to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the hot zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less – but in no case less than 20 feet – is below 5 ppm above background for the 15-minute average.

• If the total organic vapor level is above 25 ppm at the perimeter of the exclusion zone, activities will be shutdown.

#### Major Vapor Emission Response Plan

If any organic levels greater than 5 ppm over background are identified 200 feet downwind from the work Site, or half the distance to the nearest residential or commercial property, whichever is less, all work activities must be halted or vapor controls must be implemented.

If, following the cessation of the work activities, or as the result of an emergency, organic levels persist above 5 ppm above background 200 feet downwind or half the distance to the nearest residential or commercial property from the exclusion zone, then the air quality must be monitored within 20 feet of the perimeter of the nearest residential or commercial structure (20 Foot Zone).

If either of the following criteria is exceeded in the 20 Foot Zone, then the Major Vapor Emission Response Plan shall automatically be implemented:

- Sustained organic vapor levels approaching 1 ppm above background for a period of more than 30 minutes; or
- Organic vapor levels greater than 5 ppm above background for any time period.

Upon activation, the following activities shall be undertaken as part of the Major Vapor Emission Response Plan:

- The NYSDEC, NYSDOH, and local police authorities will be immediately contacted by the SSO and advised of the situation;
- Frequent air monitoring will be conducted at 30-minute intervals within the 20-Foot Zone. If two successive readings below action levels are measured, air monitoring may be halted or modified by the Site Health and Safety Officer; and
- All Emergency contacts will go into effect as appropriate.
- All readings will be recorded and be available for NYSDEC and NYSDOH personnel to review.

| Instrument              | Action Level                      | <b>Response Action</b>                                     |  |  |
|-------------------------|-----------------------------------|------------------------------------------------------------|--|--|
|                         | Less than 5 ppm in breathing zone | Level D or D-Modified                                      |  |  |
| PID                     | Between 5 ppm and 50 ppm          | Level C                                                    |  |  |
|                         | More than 50 ppm                  | Stop work. Resume work when readings are less than 50 ppm. |  |  |
| ppm = parts per million |                                   |                                                            |  |  |

#### 2.7 Special Requirements CAMP

As the Site is located within 20 feet of potentially occupied structures, a Special Requirements CAMP will be implemented during activities involving subsurface disturbance. One of the two fixed CAMP stations will be located near potentially exposed individuals. Private residences are located south-adjacent to the Site.

The additional CAMP provisions included in the Special Requirements CAMP are as follows:

- 1. Use of engineering controls such as vapor/dust barriers or special ventilation devices will be considered; and
- 2. Special consideration will be given to implementing planned activities when potentially exposed populations are at a minimum.

The following Site-Specific CAMP provisions will be implemented at the Site, as necessary:

- 1. If total VOC concentrations near the outside walls or next to intake vents of the southadjacent occupied structures exceed 1 ppm, air monitoring should occur within the occupied structures; and
- 2. If total particulate concentrations near the outside walls or next to intake vents of the southadjacent occupied structures exceed 0.150 mg/m<sup>3</sup>, work activities should be suspended until controls are implemented.

Additional information regarding the Special Requirements CAMP is provided in Attachment E.

## 2.8 Personal Protection Equipment

The PPE required for various kinds of investigation tasks are based on 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response, Appendix B, "General Description and Discussion of the Levels of Protection and Protective Gear."

AKRF field personnel and other site personnel shall wear, at a minimum, Level D PPE. The protection will be based on the air monitoring described in Section 2.6.

Level D PPE includes donning of the following during drilling and sampling:

- 1. Steel Toed Boots
- 2. Hard Hat
- 3. Work Gloves
- 4. Safety Glasses
- 5. Ear Plugs
- 6. Nitrile Gloves
- 7. Tyvek Suit if NAPL is present

If PID readings exceed 5 ppm in the breathing zone, personnel will don Level C PPE, which includes Level D PPE and a half- or full-face respirator with a dual organic and particulate cartridge.

| LEVEL OF PROTECTION & PPE                                                     |                                                                                                                   | <b>Excavation/ Sampling</b> |  |
|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|--|
| Level D<br>(X) Steel Toe Shoes<br>(X) Hard Hat<br>(within 25 ft of drill rig) | <ul> <li>(X) Safety Glasses</li> <li>() Face Shield</li> <li>(X) Ear Plugs (within 25 ft of drill rig)</li> </ul> | Yes                         |  |

| LEVEL OF PROTECTION & PPE                                                                                                                                       |                                                                                                                                               | <b>Excavation/ Sampling</b>      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| (X) Work Gloves                                                                                                                                                 | <ul><li>(X) Nitrile Gloves</li><li>(X) Tyvek for drill rig</li><li>operator if NAPL present</li></ul>                                         |                                  |
| <ul> <li>Level C (in addition to Level D)</li> <li>(X) Half-Face<br/>Respirator OR</li> <li>(X) Full Face<br/>Respirator</li> <li>( ) Full-Face PAPR</li> </ul> | <ul> <li>( ) Particulate<br/>Cartridge</li> <li>( ) Organic<br/>Cartridge</li> <li>(X) Dual Organic/<br/>Particulate<br/>Cartridge</li> </ul> | If PID > 10 ppm (breathing zone) |

Cartridges to be changed out at least once per shift unless warranted beforehand (e.g., more difficult to breathe or any odors detected).

#### 2.9 General Work Practices

To protect the health and safety of the field personnel, field personnel will adhere to the guidelines listed below during activities involving subsurface disturbance:

- Eating, drinking, chewing gum or tobacco, and smoking are prohibited, except in designated areas on the Site. These areas will be designated by the SSO.
- Workers must wash their hands thoroughly on leaving the work area and before eating, drinking, or any other such activity.
- The workers should shower as soon as possible after leaving the Site. Contact with contaminated or suspected surfaces should be avoided.
- The buddy system should always be used; each buddy should watch for signs of fatigue, exposure, and heat/cold stress.

# 3.0 EMERGENCY PROCEDURES AND EMERGENCY RESPONSE PLAN

The field crew will be equipped with emergency equipment, such as a first aid kit and disposable eye washes. In the case of a medical emergency, the SSO will determine the nature of the emergency and he/she will have someone call for an ambulance, if needed. If the nature of the injury is not serious, i.e., the person can be moved without expert emergency medical personnel, he/she should be taken to a hospital by on-site personnel. Directions to the hospital are provided below, and a hospital route map is provided as Figure 2.

#### **3.1** Hospital Directions

| Hospital Name:    | Mount Sinai Queens                                                                                                                                                                                                                                                                                           |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phone Number:     | 718-932-1000                                                                                                                                                                                                                                                                                                 |
| Address/Location: | 25-10 30 <sup>th</sup> Avenue, Queens, NY 11102                                                                                                                                                                                                                                                              |
| Directions:       | <ol> <li>Turn LEFT from the Site onto 45th Street</li> <li>Turn right onto Astoria Boulevard North.</li> <li>Continue onto Hoyt Avenue North.</li> <li>Turn left onto Crescent Street.</li> <li>The Emergency Room will be on the LEFT at the corner of Crescent Street and 30<sup>th</sup> Road.</li> </ol> |

## **3.2 Emergency Contacts**

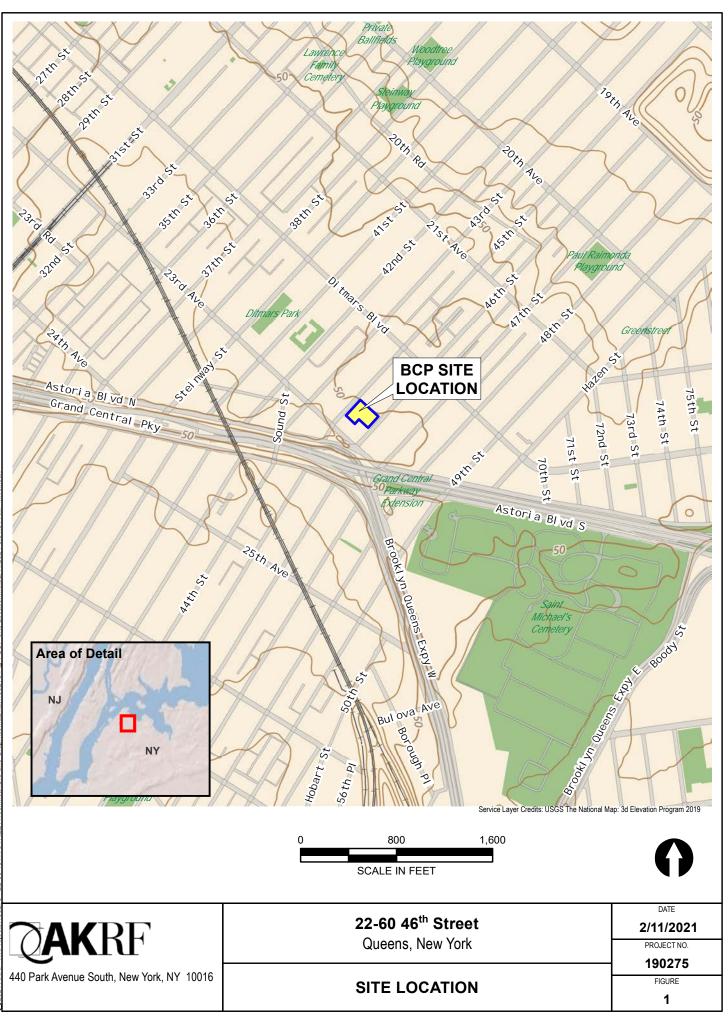
| Company                                              | Individual Name      | Title                        | Contact Number                               |
|------------------------------------------------------|----------------------|------------------------------|----------------------------------------------|
| AKRF                                                 | Rebecca Kinal        | Remedial<br>Engineer         | 914-922-2362 (office)<br>914-263-8730 (cell) |
|                                                      | Deborah Shapiro      | Project Principal            | 646-388-9544 (office)<br>917-957-8991 (cell) |
|                                                      | Adrianna Bosco       | Project Manager              | 646-388-9576 (office)<br>914-874-3358 (cell) |
|                                                      | Ashutosh Sharma      | Project Manager<br>Alternate | 646-388-9865 (office)<br>347-249-0652 (cell) |
| MD45 Developers LLC                                  | Emanuel<br>Kokinakis | Requestor<br>Representative  | 718-932-6342 (office)                        |
| Ambulance, Fire<br>Department & Police<br>Department | -                    | -                            | 911                                          |
| NYSDEC Spill Hotline                                 | -                    | -                            | 800-457-7362                                 |

## 4.0 APPROVAL & ACKNOWLEDGMENTS OF HASP

#### APPROVAL

| Signed:              | Date: |
|----------------------|-------|
| AKRF Project Manager |       |
| Signed:              | Date: |

AKRF Health and Safety Officer


Below is an affidavit that must be signed by all workers who enter the site. A copy of the HASP must be on-site at all times and will be kept by the SSO.

#### AFFIDAVIT

I, \_\_\_\_\_(name), of \_\_\_\_\_(company name), have read the Health and Safety Plan (HASP) for the property located at 22-60 46<sup>th</sup> Street in Queens, New York. I agree to conduct all on-site work in accordance with the requirements set forth in this HASP and understand that failure to comply with this HASP could lead to my removal from the site.

| Signed: | Company: | Date: |
|---------|----------|-------|
| Signed: | Company: | Date: |
|         |          |       |

FIGURES



mveilleux mxd2/11/2021 8:31:04 AM zmat\190275 Fig 1 BCP Site | 46TH 99-AKRF C 2021



| 0 | 1,000         | 2,000 |
|---|---------------|-------|
|   |               |       |
|   | SCALE IN FEET |       |

| <b>ØAK</b> RF                             | <b>22-60 46<sup>th</sup> Street</b><br>Queens, New York | DATE<br>7/8/2022<br>PROJECT NO. |
|-------------------------------------------|---------------------------------------------------------|---------------------------------|
| 440 Park Avenue South, New York, NY 10016 | HOSPITAL ROUTE MAP                                      | 190275<br>FIGURE<br>2           |

ROUTE TO HOSPITAL

ATTACHMENT A

POTENTIAL HEALTH EFFECTS FROM ON-SITE CONTAMINANTS

### 1,2-DICHLOROETHANE CAS #107-06-2

### Division of Toxicology ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about 1,2-Dichloroethane. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to 1,2-dichloroethane usually occurs by breathing contaminated air in workplaces that use 1,2-dichloroethane. Breathing or ingesting high levels of 1,2-dichloroethane can cause damage to the nervous system, liver, kidneys, and lungs and may cause cancer. This substance has been found in at least 570 of the 1,585 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is 1,2-dichloroethane?

1,2-Dichloroethane, also called ethylene dichloride, is a manufactured chemical that is not found naturally in the environment. It is a clear liquid and has a pleasant smell and sweet taste.

The most common use of 1,2-dichloroethane is in the production of vinyl chloride which is used to make a variety of plastic and vinyl products including polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. It is also used to as a solvent and is added to leaded gasoline to remove lead.

# What happens to 1,2-dichloroethane when it enters the environment?

□ Most of the 1,2-dichloroethane released to the environment is released to the air. In the air, 1,2-dichloroethane breaks down by reacting with other compounds formed by sunlight. It can stay in the air for more than 5 months before it is broken down.

□ 1,2-Dichloroethane can also be released into rivers and lakes. It breaks down very slowly in water and most of it will evaporate to the air.

□ 1,2-Dichloroethane released in soil will either evaporate into the air or travel down through the soil and enter underground water.

### How might I be exposed to 1,2-dichloroethane?

The general population may be exposed to 1,2-dichloroethane by breathing air or drinking water that contains 1,2-dichloroethane.
People who work or live near a factory where 1,2-dichloroethane is used, may be exposed to higher than usual levels.
People living near uncontrolled hazardous waste sites may also be exposed to higher than usual levels of 1,2-dichloroethane.

### How can 1,2-dichloroethane affect my health?

Nervous system disorders, liver and kidney diseases, and lung effects have been reported in humans ingesting or inhaling large amounts of 1,2-dichloroethane.

In laboratory animals, breathing or ingesting large amounts of 1,2-dichloroethane have also caused nervous system disorders and liver, kidney, and lung effects. Animal studies also suggest that 1,2-dichloroethane may damage the

### September 2001



### 1,2-DICHLOROETHANE CAS #107-06-2

### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

immune system. Kidney disease has also been seen in animals ingesting low doses of 1,2-dichloroethane for a long time. Studies in animals indicate that 1,2-dichloroethane does not affect reproduction.

### How likely is 1,2-dichloroethane to cause cancer?

Human studies examining whether 1,2-dichloroethane can cause cancer have been considered inadequate. In animals, increases in the occurrence of stomach, mammary gland, liver, lung, and endometrium cancers have been seen following inhalation, oral, and dermal exposure.

The Department of Health and Human Services (DHHS) has determined that 1,2-dichloroethane may reasonably be expected to cause cancer. The EPA has determined that 1,2-dichloroethane is a probable human carcinogen and the International Agency for Cancer Research (IARC) considers it to be a possible human carcinogen.

### How can 1,2-dichloroethane affect children?

We do not know if exposure to 1,2-dichloroethane will result in birth defects or other developmental effects in people. Studies in animals suggest that 1,2-dichloroethane does not produce birth defects.

It is likely that health effects seen in children exposed to high levels of 1,2-dichloroethane will be similar to the effects seen in adults.

# How can families reduce the risk of exposure to 1,2-dichloroethane?

The general population is not likely to be exposed to large amounts of 1,2-dichloroethane. In the past, it was used in small amounts in household products such as cleaning agents, pesticides, and wallpaper and carpet glue. Risk of exposure from this source could be eliminated if these older products were immediately discarded.

Children should avoid playing in soils near uncontrolled hazardous waste sites where 1,2-dichloroethane may have been discarded.

# Is there a medical test to show whether I've been exposed to 1,2-dichloroethane?

Tests are available to measure 1,2-dichloroethane in breath, blood, breast milk, and urine of exposed people. Because 1,2-dichloroethane leaves the body fairly quickly, these tests need to be done within a couple of days of exposure. These tests cannot be used to predict the nature or severity of toxic effects. These tests are not usually done in the doctor's office.

# Has the federal government made recommendations to protect human health?

The EPA allows 0.005 milligrams of 1,2-dichloroethane per liter of drinking water (0.005 mg/L).

The Occupational Safety and Health Administration has set a limit of 50 parts of 1,2-dichloroethane per million parts of air (50 ppm) in workplace air for 8 hour shifts and 40 hour work weeks.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2001. Toxicological Profile for 1,2-Dichloroethane. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





# BARIUM AND COMPOUNDS CAS # 7440-39-3

### Division of Toxicology and Environmental Medicine ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about barium and barium compounds. For more information, call the ATSDR Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to barium occurs mostly in the workplace or from drinking contaminated water. Ingesting drinking water containing levels of barium above the EPA drinking water guidelines for relatively short periods of time can cause gastrointestinal disturbances and muscle weakness. Ingesting high levels for a long time can damage the kidneys. Barium and barium compounds have been found in at least 798 of the 1,684 National Priority List sites identified by the Environmental Protection Agency (EPA).

### What is barium?

Barium is a silvery-white metal which exists in nature only in ores containing mixtures of elements. It combines with other chemicals such as sulfur or carbon and oxygen to form barium compounds.

Barium compounds are used by the oil and gas industries to make drilling muds. Drilling muds make it easier to drill through rock by keeping the drill bit lubricated. They are also used to make paint, bricks, ceramics, glass, and rubber.

Barium sulfate is sometimes used by doctors to perform medical tests and to take x-rays of the gastrointestinal tract.

# What happens to barium when it enters the environment?

□ Barium gets into the air during the mining, refining, and production of barium compounds, and from the burning of coal and oil.

□ The length of time that barium will last in air, land, water, or sediments depends on the form of barium released.

□ Barium compounds, such as barium sulfate and barium carbonate, which do not dissolve well in water, can last a long time in the environment.

□ Barium compounds, such as barium chloride, barium nitrate, or barium hydroxide, that dissolve easily in water usually do not last in these forms for a long time in the environment. The barium in these compounds that is dissolved in water quickly combines with sulfate or carbonate that are naturally found in water and become the longer lasting forms (barium sulfate and barium carbonate).

□ Fish and aquatic organisms can accumulate barium.

### How might I be exposed to barium?

□ Ingesting small amounts present in your food and water or breathing air containing very low levels of barium.

Living in areas with unusually high natural levels of barium in the drinking water.

 $\hfill\square$  Working in a job that involves barium production or use.

 $\hfill\square$  Living or working near waste sites where barium has been disposed of.

### How can barium affect my health?

The health effects of the different barium compounds depend on how well the compound dissolves in water or in the stomach contents. Barium compounds that do not dissolve well, such as barium sulfate, are not generally harmful.

### August 2007

### BARIUM AND COMPOUNDS CAS # 7440-39-3

### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

Barium has been found to potentially cause gastrointestinal disturbances and muscular weakness when people are exposed to it at levels above the EPA drinking water standards for relatively short periods of time. Some people who eat or drink amounts of barium above background levels found in food and water for a short period may experience vomiting, abdominal cramps, diarrhea, difficulties in breathing, increased or decreased blood pressure, numbness around the face, and muscle weakness. Eating or drinking very large amounts of barium compounds that easily dissolve can cause changes in heart rhythm or paralysis and possibly death. Animals that drank barium over long periods had damage to the kidneys, decreases in body weight, and some died.

### How likely is barium to cause cancer?

The Department of Health and Human Services (DHHS) and the International Agency for Research on Cancer (IARC) have not classified barium as to its carcinogenicity. The EPA has determined that barium is not likely to be carcinogenic to humans following ingestion and that there is insufficient information to determine whether it will be carcinogenic to humans following inhalation exposure.

### How can barium affect children?

We do not know whether children will be more or less sensitive than adults to barium toxicity. A study in rats that swallowed barium found a decrease in newborn body weight; we do not know if a similar effect would be seen in humans.

# How can families reduce the risks of exposure to barium?

The greatest potential source of barium exposure is through food and drinking water. However, the amount of barium in foods and drinking water are typically too low to be of concern.

# Is there a medical test to determine whether I've been exposed to barium?

There is no routine medical test to determine whether you have been exposed to barium. Doctors can measure barium in body tissues and fluids, such as bones, blood, urine, and feces, using very complex instruments. These tests cannot be used to predict the extent of the exposure or potential health effects.

The geometric mean barium level measured in the U.S. general population aged 6 and older is reported by the Centers for Disease Control and Prevention (CDC) as  $1.44 \,\mu g/g$  creatinine (measured in urine).

# Has the federal government made recommendations to protect human health?

The EPA has set a limit of 2.0 milligrams of barium per liter of drinking water (2.0 mg/L), which is the same as 2 ppm.

The Occupational Safety and Health Administration (OSHA) has set Permissible Exposure Limits (PELs) of 0.5 milligrams of soluble barium compounds per cubic meter of workplace air (0.5 mg/m<sup>3</sup>) for 8 hour shifts and 40 hour work weeks. The OSHA limits for barium sulfate dust are 15 mg/m<sup>3</sup> of total dust and 5 mg/m<sup>3</sup> for respirable fraction.

The National Institute for Occupational Safety and Health (NIOSH) has set Recommended Exposure Limits (RELs) of 0.5 mg/m<sup>3</sup> for soluble barium compounds. The NIOSH has set RELs of 10 mg/m<sup>3</sup> (total dust) for barium sulfate and 5 mg/m<sup>3</sup> (respirable fraction).

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Barium and Compounds (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-800-232-4636, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about benzene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Benzene is a widely used chemical formed from both natural processes and human activities. Breathing benzene can cause drowsiness, dizziness, and unconsciousness; long-term benzene exposure causes effects on the bone marrow and can cause anemia and leukemia. Benzene has been found in at least 813 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is benzene?

(Pronounced bĕn'zēn')

Benzene is a colorless liquid with a sweet odor. It evaporates into the air very quickly and dissolves slightly in water. It is highly flammable and is formed from both natural processes and human activities.

Benzene is widely used in the United States; it ranks in the top 20 chemicals for production volume. Some industries use benzene to make other chemicals which are used to make plastics, resins, and nylon and synthetic fibers. Benzene is also used to make some types of rubbers, lubricants, dyes, detergents, drugs, and pesticides. Natural sources of benzene include volcanoes and forest fires. Benzene is also a natural part of crude oil, gasoline, and cigarette smoke.

# What happens to benzene when it enters the environment?

- □ Industrial processes are the main source of benzene in the environment.
- Benzene can pass into the air from water and soil.
- □ It reacts with other chemicals in the air and breaks down within a few days.
- □ Benzene in the air can attach to rain or snow and be carried back down to the ground.

- □ It breaks down more slowly in water and soil, and can pass through the soil into underground water.
- Benzene does not build up in plants or animals.

### How might I be exposed to benzene?

- Outdoor air contains low levels of benzene from tobacco smoke, automobile service stations, exhaust from motor vehicles, and industrial emissions.
- □ Indoor air generally contains higher levels of benzene from products that contain it such as glues, paints, furniture wax, and detergents.
- Air around hazardous waste sites or gas stations will contain higher levels of benzene.
- □ Leakage from underground storage tanks or from hazardous waste sites containing benzene can result in benzene contamination of well water.
- People working in industries that make or use benzene may be exposed to the highest levels of it.
- $\Box$  A major source of benzene exposures is tobacco smoke.

### How can benzene affect my health?

Breathing very high levels of benzene can result in death, while high levels can cause drowsiness, dizziness, rapid heart rate, headaches, tremors, confusion, and unconsciousness. Eating or drinking foods containing high levels of benzene can cause vomiting, irritation of the stomach, dizziness, sleepiness, convulsions, rapid heart rate, and death.

### September 1997



### **BENZENE** CAS # 71-43-2

### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

The major effect of benzene from long-term (365 days or longer) exposure is on the blood. Benzene causes harmful effects on the bone marrow and can cause a decrease in red blood cells leading to anemia. It can also cause excessive bleeding and can affect the immune system, increasing the chance for infection.

Some women who breathed high levels of benzene for many months had irregular menstrual periods and a decrease in the size of their ovaries. It is not known whether benzene exposure affects the developing fetus in pregnant women or fertility in men.

Animal studies have shown low birth weights, delayed bone formation, and bone marrow damage when pregnant animals breathed benzene.

#### How likely is benzene to cause cancer?

The Department of Health and Human Services (DHHS) has determined that benzene is a known human carcinogen. Long-term exposure to high levels of benzene in the air can cause leukemia, cancer of the blood-forming organs.

# Is there a medical test to show whether I've been exposed to benzene?

Several tests can show if you have been exposed to benzene. There is test for measuring benzene in the breath; this test must be done shortly after exposure. Benzene can also be measured in the blood, however, since benzene disappears rapidly from the blood, measurements are accurate only for recent exposures.

In the body, benzene is converted to products called metabolites. Certain metabolites can be measured in the urine. However, this test must be done shortly after exposure and is not a reliable indicator of how much benzene you have been exposed to, since the metabolites may be present in urine from other sources.

# Has the federal government made recommendations to protect human health?

The EPA has set the maximum permissible level of benzene in drinking water at 0.005 milligrams per liter (0.005 mgL). The EPA requires that spills or accidental releases into the environment of 10 pounds or more of benzene be reported to the EPA.

The Occupational Safety and Health Administration (OSHA) has set a permissible exposure limit of 1 part of benzene per million parts of air (1 ppm) in the workplace during an 8-hour workday, 40-hour workweek.

#### Glossary

Anemia: A decreased ability of the blood to transport oxygen.

Carcinogen: A substance with the ability to cause cancer.

CAS: Chemical Abstracts Service.

Chromosomes: Parts of the cells responsible for the development of hereditary characteristics.

Metabolites: Breakdown products of chemicals.

Milligram (mg): One thousandth of a gram.

Pesticide: A substance that kills pests.

### References

This ToxFAQs information is taken from the 1997 Toxicological Profile for Benzene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop E-29, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 404-498-0093. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about cadmium. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to cadmium happens mostly in the workplace where cadmium products are made. The general population is exposed from breathing cigarette smoke or eating cadmium contaminated foods. Cadmium damages the lungs, can cause kidney disease, and may irritate the digestive tract. This substance has been found in at least 776 of the 1,467 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is cadmium?

(Pronounced kăd/mē-əm)

Cadmium is a natural element in the earth's crust. It is usually found as a mineral combined with other elements such as oxygen (cadmium oxide), chlorine (cadmium chloride), or sulfur (cadmium sulfate, cadmium sulfide).

All soils and rocks, including coal and mineral fertilizers, contain some cadmium. Most cadmium used in the United States is extracted during the production of other metals like zinc, lead, and copper. Cadmium does not corrode easily and has many uses, including batteries, pigments, metal coatings, and plastics.

# What happens to cadmium when it enters the environment?

- Cadmium enters air from mining, industry, and burning coal and household wastes.
- Cadmium particles in air can travel long distances before falling to the ground or water.
- □ It enters water and soil from waste disposal and spills or leaks at hazardous waste sites.
- □ It binds strongly to soil particles.
- □ Some cadmium dissolves in water.

- □ It doesn't break down in the environment, but can change forms.
- □ Fish, plants, and animals take up cadmium from the environment.
- □ Cadmium stays in the body a very long time and can build up from many years of exposure to low levels.

### How might I be exposed to cadmium?

- □ Breathing contaminated workplace air (battery manufacturing, metal soldering or welding).
- □ Eating foods containing it; low levels in all foods (highest in shellfish, liver, and kidney meats).
- □ Breathing cadmium in cigarette smoke (doubles the average daily intake).
- Drinking contaminated water.
- □ Breathing contaminated air near the burning of fossil fuels or municipal waste.

### How can cadmium affect my health?

Breathing high levels of cadmium severely damages the lungs and can cause death. Eating food or drinking water with very high levels severely irritates the stomach, leading to vomiting and diarrhea. Long-term exposure to lower levels of cadmium in air, food, or water leads to a buildup of cadmium in the kidneys and possible kidney disease.

### June 1999

**CADMIUM** 

CAS # 7440-43-9



### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Other long-term effects are lung damage and fragile bones. Animals given cadmium in food or water had high blood pressure, iron-poor blood, liver disease, and nerve or brain damage.

We don't know if humans get any of these diseases from eating or drinking cadmium. Skin contact with cadmium is not known to cause health effects in humans or animals.

### How likely is cadmium to cause cancer?

The Department of Health and Human Services (DHHS) has determined that cadmium and cadmium compounds may reasonably be anticipated to be carcinogens.

### How can cadmium affect children?

The health effects in children are expected to be similar to those in adults (kidney, lung and intestinal damage).

We don't know if cadmium causes birth defects in people. Cadmium does not readily go from a pregnant woman's body into the developing child, but some portion can cross the placenta. It can also be found in breast milk. The babies of animals exposed to high levels of cadmium during pregnancy had changes in behavior and learning ability. Cadmium may also affect birth weight and the skeleton in developing animals.

Animal studies also indicate that more cadmium is absorbed into the body if the diet is low in calcium, protein, or iron, or is high in fat. A few studies show that younger animals absorb more cadmium and are more likely to lose bone and bone strength than adults.

# How can families reduce the risk of exposure to cadmium?

In the home, store substances that contain cadmium safely, and keep nickel-cadmium batteries out of reach of young children. If you work with cadmium, use all safety precautions to avoid carrying cadmium-containing dust home from work on your clothing, skin, hair, or tools.

A balanced diet can reduce the amount of cadmium taken into the body from food and drink.

# Is there a medical test to show whether I've been exposed to cadmium?

Tests are available in some medical laboratories that measure cadmium in blood, urine, hair, or nails. Blood levels show recent exposure to cadmium, and urine levels show both recent and earlier exposure. The reliability of tests for cadmium levels in hair or nails is unknown.

# Has the federal government made recommendations to protect human health?

The EPA has set a limit of 5 parts of cadmium per billion parts of drinking water (5 ppb). EPA doesn't allow cadmium in pesticides.

The Food and Drug Administration (FDA) limits the amount of cadmium in food colors to 15 parts per million (15 ppm).

The Occupational Safety and Health Administration (OSHA) limits workplace air to 100 micrograms cadmium per cubic meter (100  $\mu$ g/m<sup>3</sup>) as cadmium fumes and 200  $\mu$ g cadmium/m<sup>3</sup> as cadmium dust.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological profile for cadmium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### **COPPER** CAS # 7440-50-8

September 2002



AGENCY FOR TOXIC SUBSTANCES AND DISEASE BEGISTRY

### Division of Toxicology ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about copper. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Copper is a reddish metal that occurs naturally in the environment. It also occurs naturally in plants and animals. Low levels of copper are essential for maintaining good health. High levels can cause harmful effects such as irritation of the nose, mouth and eyes, vomiting, diarrhea, stomach crumps, and nausea. Copper has been found in at least 884 of the 1,613 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is copper?

Copper is a reddish metal that occurs naturally in rocks, soil, water, and air. Copper also occurs naturally in plants and animals.

Metallic copper can be easily molded or shaped. Metallic copper can be found in the U.S. penny, electrical wiring, and some water pipes. Metallic copper is also found in mixtures (called alloys) with other metals such as brass and bronze. Copper is also found as part of other compounds forming salts. Copper salts occur naturally, but are also manufactured. The most common copper salt is copper sulfate. Most copper compounds are blue-green in color. Copper compounds are commonly used in agriculture to treat plant diseases like mildew, for water treatment and, as preservatives for wood, leather, and fabrics.

## What happens to copper when it enters the environment?

□ Copper can enter the environment from the mining of copper and other metals and from factories that make or use metallic copper or copper compounds.

□ It can also enter the environment through domestic waste water, combustion of fossil fuels and wastes, wood production, phosphate fertilizer production, and natural sources (e.g., windblown dust from soils, volcanoes, decaying vegetation, forest fires, and sea spray). □ Copper in soil strongly attaches to organic material and minerals.

□ Copper that dissolves in water becomes rapidly bound to particles suspended in the water.

□ Copper does not typically enter groundwater.

□ Copper carried by particles emitted from smelters and ore processing plants is carried back to the ground by gravity or in rain or snow.

□ Copper does not break down in the environment.

### How might I be exposed to copper?

□ Breathing air, drinking water, eating food, and by skin contact with soil, water, or other copper-containing substances.

 $\Box$  Some copper in the environment can be taken up by plants and animals.

□ Higher exposure may occur if your water is corrosive and you have copper plumbing and brass water fixtures. □ You may be exposed to higher amounts of copper if you drink water or swim in lakes or reservoirs recently treated with copper to control algae or receive cooling water from a power plant that may have high amounts of dissolved copper.

Using some garden products (e.g., fungicides) to control plant diseases.

Living near bronze and brass production facilities may expose you to higher copper levels in soil.

□ You may breathe copper-containing dust or have skin contact if you work in the industry of mining copper or

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

### **COPPER** CAS # 7440-50-8

### ToxFAQs<sup>TM</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

processing the ore. You may breathe high levels if you grind or weld copper metal.

#### How can copper affect my health?

Copper is essential for good health, but high amounts can be harmful. Long-term exposure to copper dust can irritate your nose, mouth, and eyes, and cause headaches, dizziness, nausea, and diarrhea.

Drinking water with higher than normal levels of copper may cause vomiting, diarrhea, stomach cramps, and nausea. Intentionally high intakes of copper can cause liver and kidney damage and even death.

#### How likely is copper to cause cancer?

We do not know whether copper can cause cancer in humans. The EPA has determined that copper is not classifiable as to carcinogenicity.

#### How can copper affect children?

Exposure to high levels of copper will result in the same type of effects in children and adults. Studies in animals suggest that the young children may have more severe effects than adults; we do not know if this would also be true in humans. There is a very small percentage of infants and children who are unusually sensitive to copper.

We do not know if copper can cause birth defects or other developmental effects in humans. Studies in animals suggest that ingestion of high levels of copper may cause a decrease in fetal growth.

# How can families reduce the risk of exposure to copper?

□ The greatest potential source of copper exposure is through drinking water, especially in water that is first drawn in the morning after sitting in copper pipes and brass faucets overnight.

 $\Box$  To reduce exposure, run the water for at least 15-30 seconds before using it.

□ If you are exposed to copper at work, you may carry

copper home on your skin, clothes, or tools. You can avoid this by showering, and changing clothing before leaving work, and your work clothes should be kept separate from other clothes and laundered separately.

### Is there a medical test to show whether I've been exposed to copper?

Copper is normally found in all tissues of the body, blood, urine, feces, hair, and nails. High levels of copper in these samples can show that you have been exposed to higher than normal levels of copper. Tests to measure copper levels in the body are not routinely available at the doctor's office because they require special equipment. These tests cannot tell the extent of exposure or whether you will experience harmful effects.

### Has the federal government made recommendations to protect human health?

The EPA has determined that drinking water should not contain more than 1.3 milligrams of copper per liter of water (1.3 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 0.1 mg per cubic meter (0.1 mg/m<sup>3</sup>) of copper fumes (vapor generated from heating copper) and 1 mg/m<sup>3</sup> of copper dusts (fine metallic copper particles) and mists (aerosol of soluble copper) in workroom air during an 8-hour work shift, 40-hour workweek.

The Food and Nutrition Board of the Institute of Medicine recommends dietary allowances (RDAs) of 340 micrograms (340  $\mu$ g) of copper per day for children aged 1-3 years, 440  $\mu$ g/day for children aged 4-8 years, 700  $\mu$ g/day for children aged 9-13 years, 890  $\mu$ g/day for children aged 14-18 years, and 900  $\mu$ g/day for adults.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological Profile for Copper (Draft for Public Comment). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



# DDT, DDE, AND DDD

CAS # 50-29-3, 72-55-9, 72-54-8

### Division of Toxicology ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about DDT, DDE, and DDD. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to DDT, DDE, and DDD occurs mostly from eating foods containing small amounts of these compounds, particularly meat, fish and poultry. High levels of DDT can affect the nervous system causing excitability, tremors and seizures. In women, DDE can cause a reduction in the duration of lactation and an increased chance of having a premature baby. DDT, DDE, and DDD have been found in at least 441 of the 1,613 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What are DDT, DDE, and DDD?

DDT (dichlorodiphenyltrichloroethane) is a pesticide once widely used to control insects in agriculture and insects that carry diseases such as malaria. DDT is a white, crystalline solid with no odor or taste. Its use in the U.S. was banned in 1972 because of damage to wildlife, but is still used in some countries.

DDE (dichlorodiphenyldichloroethylene) and DDD (dichlorodiphenyldichloroethane) are chemicals similar to DDT that contaminate commercial DDT preparations. DDE has no commercial use. DDD was also used to kill pests, but its use has also been banned. One form of DDD has been used medically to treat cancer of the adrenal gland.

# What happens to DDT, DDE, and DDD when they enter the environment?

□ DDT entered the environment when it was used as a pesticide; it still enters the environment due to current use in other countries.

□ DDE enters the environment as contaminant or breakdown product of DDT; DDD also enters the environment as a breakdown product of DDT.

□ DDT, DDE, and DDD in air are rapidly broken down by sunlight. Half of what's in air breaks down within 2 days. □ They stick strongly to soil; most DDT in soil is broken down slowly to DDE and DDD by microorganisms; half the DDT in soil will break down in 2-15 years, depending on the type of soil.

Only a small amount will go through the soil into groundwater; they do not dissolve easily in water.
DDT, and especially DDE, build up in plants and in fatty tissues of fish, birds, and other animals.

# How might I be exposed to DDT, DDE, and DDD?

□ Eating contaminated foods, such as root and leafy vegetables, fatty meat, fish, and poultry, but levels are very low.

□ Eating contaminated imported foods from countries that still allow the use of DDT to control pests.

□ Breathing contaminated air or drinking contaminated water near waste sites and landfills that may contain higher levels of these chemicals.

□ Infants fed on breast milk from mothers who have been exposed.

□ Breathing or swallowing soil particles near waste sites or landfills that contain these chemicals.

### How can DDT, DDE, and DDD affect my health?

DDT affects the nervous system. People who accidentally swallowed large amounts of DDT became excitable and had tremors and seizures. These effects went away after the exposure stopped. No effects were seen in people who took small daily doses of DDT by capsule for 18 months. A study in humans showed that women who had high amounts of a form of DDE in their breast milk were unable to

September 2002



### **DDT, DDE, AND DDD** CAS # 50-29-3, 72-55-9, 72-54-8

### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

breast feed their babies for as long as women who had little DDE in the breast milk. Another study in humans showed that women who had high amounts of DDE in breast milk had an increased chance of having premature babies. In animals, short-term exposure to large amounts of DDT in food affected the nervous system, while long-term exposure to smaller amounts affected the liver. Also in animals, shortterm oral exposure to small amounts of DDT or its breakdown products may also have harmful effects on reproduction.

# How likely are DDT, DDE, and DDD to cause cancer?

Studies in DDT-exposed workers did not show increases in cancer. Studies in animals given DDT with the food have shown that DDT can cause liver cancer.

The Department of Health and Human Services (DHHS) determined that DDT may reasonable be anticipated to be a human carcinogen. The International Agency for Research on Cancer (IARC) determined that DDT may possibly cause cancer in humans. The EPA determined that DDT, DDE, and DDD are probable human carcinogens.

### How can DDT, DDE, and DDD affect children?

There are no studies on the health effects of children exposed to DDT, DDE, or DDD. We can assume that children exposed to large amounts of DDT will have health effects similar to the effects seen in adults. However, we do not know whether children differ from adults in their susceptibility to these substances.

There is no evidence that DDT, DDE, or DDD cause birth defects in people. A study showed that teenage boys whose mothers had higher DDE amounts in the blood when they were pregnant were taller than those whose mothers had lower DDE levels. However, a different study found the opposite in preteen girls. The reason for the discrepancy between these studies is unknown.

Studies in rats have shown that DDT and DDE can mimic the action of natural hormones and in this way affect the development of the reproductive and nervous systems. Puberty was delayed in male rats given high amounts of DDE as juveniles. This could possibly happen in humans. A study in mice showed that exposure to DDT during the first weeks of life may cause neurobehavioral problems later in life.

# How can families reduce the risk of exposure to DDT,DDE, and DDE?

Most families will be exposed to DDT by eating food or drinking liquids contaminated with small amounts of DDT.
Cooking will reduce the amount of DDT in fish.
Washing fruit and vegetables will remove most DDT from their surface.

□ Follow health advisories that tell you about consumption of fish and wildlife caught in contaminated areas.

# Is there a medical test to show whether I've been exposed to DDT, DDE, and DDD?

Laboratory tests can detect DDT, DDE, and DDD in fat, blood, urine, semen, and breast milk. These tests may show low, moderate, or excessive exposure to these compounds, but cannot tell the exact amount you were exposed to, or whether you will experience adverse effects. These tests are not routinely available at the doctor's office because they require special equipment.

### Has the federal government made

### recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) sets a limit of 1 milligram of DDT per cubic meter of air (1 mg/m<sup>3</sup>) in the workplace for an 8-hour shift, 40-hour workweek.

The Food and Drug Administration (FDA) has set limits for DDT, DDE, and DDD in foodstuff at or above which the agency will take legal action to remove the products from the market.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2002. Toxicological Profile for DDT/DDE/DDD (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### ETHYLBENZENE CAS # 100-41-4

### Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about ethylbenzene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Ethylbenzene is a colorless liquid found in a number of products including gasoline and paints. Breathing very high levels can cause dizziness and throat and eye irritation. Ethylbenzene has been found in at least 731 of the 1,467 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is ethylbenzene?

(Pronounced ĕth' əl bĕn' zēn')

AGENCY FOR TOXIC SUBSTANCES AND DISEASE REGISTRY

Ethylbenzene is a colorless, flammable liquid that smells like gasoline. It is found in natural products such as coal tar and petroleum and is also found in manufactured products such as inks, insecticides, and paints.

Ethylbenzene is used primarily to make another chemical, styrene. Other uses include as a solvent, in fuels, and to make other chemicals.

# What happens to ethylbenzene when it enters the environment?

- Ethylbenzene moves easily into the air from water and soil.
- □ It takes about 3 days for ethylbenzene to be broken down in air into other chemicals.
- Ethylbenzene may be released to water from industrial discharges or leaking underground storage tanks.
- □ In surface water, ethylbenzene breaks down by reacting with other chemicals found naturally in water.
- □ In soil, it is broken down by soil bacteria.

### How might I be exposed to ethylbenzene?

- □ Breathing air containing ethylbenzene, particularly in areas near factories or highways.
- Drinking contaminated tap water.
- □ Working in an industry where ethylbenzene is used or made.
- Using products containing it, such as gasoline, carpet glues, varnishes, and paints.

### How can ethylbenzene affect my health?

Limited information is available on the effects of ethylbenzene on people's health. The available information shows dizziness, throat and eye irritation, tightening of the chest, and a burning sensation in the eyes of people exposed to high levels of ethylbenzene in air.

Animals studies have shown effects on the nervous system, liver, kidneys, and eyes from breathing ethylbenzene in air.

### How likely is ethylbenzene to cause cancer?

The EPA has determined that ethylbenzene is not classifiable as to human carcinogenicity.

### June 1999

### ETHYLBENZENE CAS # 100-41-4

### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

No studies in people have shown that ethylbenzene exposure can result in cancer. Two available animal studies suggest that ethylbenzene may cause tumors.

### How can ethylbenzene affect children?

Children may be exposed to ethylbenzene through inhalation of consumer products, including gasoline, paints, inks, pesticides, and carpet glue. We do not know whether children are more sensitive to the effects of ethylbenzene than adults.

It is not known whether ethylbenzene can affect the development of the human fetus. Animal studies have shown that when pregnant animals were exposed to ethylbenzene in air, their babies had an increased number of birth defects.

# How can families reduce the risk of exposure to ethylbenzene?

Exposure to ethylbenzene vapors from household products and newly installed carpeting can be minimized by using adequate ventilation.

Household chemicals should be stored out of reach of children to prevent accidental poisoning. Always store household chemicals in their original containers; never store them in containers children would find attractive to eat or drink from, such as old soda bottles. Gasoline should be stored in a gasoline can with a locked cap.

Sometimes older children sniff household chemicals, including ethylbenzene, in an attempt to get high. Talk with your children about the dangers of sniffing chemicals.

# Is there a medical test to show whether I've been exposed to ethylbenzene?

Ethylbenzene is found in the blood, urine, breath, and

some body tissues of exposed people. The most common way to test for ethylbenzene is in the urine. This test measures substances formed by the breakdown of ethylbenzene. This test needs to be done within a few hours after exposure occurs, because the substances leave the body very quickly.

These tests can show you were exposed to ethylbenzene, but cannot predict the kind of health effects that might occur.

# Has the federal government made recommendations to protect human health?

The EPA has set a maximum contaminant level of 0.7 milligrams of ethylbenzene per liter of drinking water (0.7 mg/L).

The EPA requires that spills or accidental releases into the environment of 1,000 pounds or more of ethylbenzene be reported to the EPA.

The Occupational Safety and Health Administration (OSHA) has set an occupational exposure limit of 100 parts of ethylbenzene per million parts of air (100 ppm) for an 8-hour workday, 40-hour workweek.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological profile for ethylbenzene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





### FUEL OILS CAS # 8008-20-6, 70892-10-3, 68476-30-2, 68476-34-6, 68476-31-3

### Agency for Toxic Substances and Disease Registry ToxFAQs

### September 1996

This fact sheet answers the most frequently asked health questions (FAQs) about fuel oils. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Fuel oils are liquid mixtures produced from petroleum, and their use mostly involves burning them as fuels. Drinking or breathing fuel oils may cause nausea or nervous system effects. However, exposure under normal use conditions is not likely to be harmful. Fuel oils have been found in at least 26 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What are fuel oils?

(Pronounced fyoo/əl oilz)

Fuel oils are a variety of yellowish to light brown liquid mixtures that come from crude petroleum. Some chemicals found in fuel oils may evaporate easily, while others may more easily dissolve in water.

Fuel oils are produced by different petroleum refining processes, depending on their intended uses. Fuel oils may be used as fuel for engines, lamps, heaters, furnaces, and stoves, or as solvents.

Some commonly found fuel oils include kerosene, diesel fuel, jet fuel, range oil, and home heating oil. These fuel oils differ from one another by their hydrocarbon compositions, boiling point ranges, chemical additives, and uses.

# What happens to fuel oils when they enter the environment?

- □ Some chemicals found in fuel oils may evaporate into the air from open containers or contaminated soil or water.
- □ Some chemicals found in fuel oils may dissolve in water after spills to surface waters or leaks from underground storage tanks.

- □ Some chemicals found in fuel oils may stick to particles in water, which will eventually cause them to settle to the bottom sediment.
- □ Some of the chemicals found in fuel oils may be broken down slowly in air, water, and soil by sunlight or small organisms.
- □ Some of the chemicals found in fuel oils may build up significantly in plants and animals.

### How might I be exposed to fuel oils?

- □ Using a home kerosene heater or stove, or using fuel oils at work.
- □ Breathing air in home or building basements that has been contaminated with fuel oil vapors entering from the soil.
- Drinking or swimming in water that has been contaminated with fuel oils from a spill or a leaking underground storage tank.
- □ Touching soil contaminated with fuel oils.
- □ Using fuel oils to wash paint or grease from skin or equipment.

### How can fuel oils affect my health?

Little information is available about the health effects that may be caused by fuel oils. People who use kerosene

### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

stoves for cooking do not seem to have any health problems related to their exposure.

Breathing some fuel oils for short periods may cause nausea, eye irritation, increased blood pressure, headache, lightheadedness, loss of appetite, poor coordination, and difficulty concentrating. Breathing diesel fuel vapors for long periods may cause kidney damage and lower your blood's ability to clot.

Drinking small amounts of kerosene may cause vomiting, diarrhea, coughing, stomach swelling and cramps, drowsiness, restlessness, painful breathing, irritability, and unconsciousness. Drinking large amounts of kerosene may cause convulsions, coma, or death. Skin contact with kerosene for short periods may cause itchy, red, sore, or peeling skin.

#### How likely are fuel oils to cause cancer?

The International Agency for Research on Cancer (IARC) has determined that some fuel oils (heavy) may possibly cause cancer in humans, but for other fuel oils (light) there is not enough information to make a determination. IARC has also determined that occupational exposures to fuel oils during petroleum refining are probably carcinogenic in humans.

Some studies with mice have suggested that repeated contact with fuel oils may cause liver or skin cancer. However, other mouse studies have found this not to be the case. No studies are available in other animals or in people on the carcinogenic effects of fuel oils.

# Is there a medical test to show whether I've been exposed to fuel oils?

There is no medical test that shows if you have been exposed to fuel oils. Tests are available to determine if some of

the chemicals commonly found in fuel oils are in your blood. However, the presence of these chemicals in blood may not necessarily mean that you have been exposed to fuel oils.

# Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) and the Air Force Office of Safety and Health (AFOSH) have set a permissible exposure level (PEL) of 400 parts of petroleum distillates per million parts of air (400 ppm) for an 8-hour workday, 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that average workplace air levels not exceed 350 milligrams of petroleum distillates per cubic meter of air (350 mg/m<sup>3</sup>) for a 40-hour workweek.

The Department of Transportation (DOT) lists fuel oils as hazardous materials and, therefore, regulates their transportation.

#### Glossary

Carcinogenic: Able to cause cancer.

CAS: Chemical Abstracts Service.

Evaporate: To change into a vapor or a gas.

Hydrocarbon: Any compound made up of hydrogen and carbon.

Milligram (mg): One thousandth of a gram.

ppm: Parts per million.

Sediment: Mud and debris that have settled to the bottom of a body of water.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for fuel oils. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop E-29, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 404-498-0093. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Division of Toxicology and Environmental Medicine ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about lead. For more information, call the ATSDR Information Center at 1-800-232-4636. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to lead can happen from breathing workplace air or dust, eating contaminated foods, or drinking contaminated water. Children can be exposed from eating lead-based paint chips or playing in contaminated soil. Lead can damage the nervous system, kidneys, and reproductive system. Lead has been found in at least 1,272 of the 1,684 National Priority List sites identified by the Environmental Protection Agency (EPA).

### What is lead?

Lead is a naturally occurring bluish-gray metal found in small amounts in the earth's crust. Lead can be found in all parts of our environment. Much of it comes from human activities including burning fossil fuels, mining, and manufacturing.

Lead has many different uses. It is used in the production of batteries, ammunition, metal products (solder and pipes), and devices to shield X-rays. Because of health concerns, lead from paints and ceramic products, caulking, and pipe solder has been dramatically reduced in recent years. The use of lead as an additive to gasoline was banned in 1996 in the United States.

# What happens to lead when it enters the environment?

□ Lead itself does not break down, but lead compounds are changed by sunlight, air, and water.

□ When lead is released to the air, it may travel long distances before settling to the ground.

□ Once lead falls onto soil, it usually sticks to soil particles.

□ Movement of lead from soil into groundwater will depend on the type of lead compound and the characteristics of the soil.

### How might I be exposed to lead?

□ Eating food or drinking water that contains lead. Water pipes in some older homes may contain lead solder. Lead can leach out into the water.

□ Spending time in areas where lead-based paints have been used and are deteriorating. Deteriorating lead paint can contribute to lead dust.

❑ Working in a job where lead is used or engaging in certain hobbies in which lead is used, such as making stained glass.

□ Using health-care products or folk remedies that contain lead.

### How can lead affect my health?

The effects of lead are the same whether it enters the body through breathing or swallowing. Lead can affect almost every organ and system in your body. The main target for lead toxicity is the nervous system, both in adults and children. Long-term exposure of adults can result in decreased performance in some tests that measure functions of the nervous system. It may also cause weakness in fingers, wrists, or ankles. Lead exposure also causes small increases in blood pressure, particularly in middle-aged and older people and can cause anemia. Exposure to high lead levels can severely damage the brain and kidneys in adults or children and ultimately cause death. In pregnant women, high levels of exposure to lead may cause miscarriage. Highlevel exposure in men can damage the organs responsible for sperm production.

### How likely is lead to cause cancer?

We have no conclusive proof that lead causes cancer in humans. Kidney tumors have developed in rats and mice that had been given large doses of some kind of lead compounds. The Department of Health and Human Services

### August 2007

LEAD



# CAS # 7439-92-1

### ToxFAQs<sup>TM</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

(DHHS) has determined that lead and lead compounds are reasonably anticipated to be human carcinogens and the EPA has determined that lead is a probable human carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic lead is probably carcinogenic to humans and that there is insufficient information to determine whether organic lead compounds will cause cancer in humans.

### How can lead affect children?

Small children can be exposed by eating lead-based paint chips, chewing on objects painted with lead-based paint, or swallowing house dust or soil that contains lead. Children are more vulnerable to lead poisoning than adults. A child who swallows large amounts of lead may develop blood anemia, severe stomachache, muscle weakness, and brain damage. If a child swallows smaller amounts of lead, much less severe effects on blood and brain function may occur. Even at much lower levels of exposure, lead can affect a child's mental and physical growth.

Exposure to lead is more dangerous for young and unborn children. Unborn children can be exposed to lead through their mothers. Harmful effects include premature births, smaller babies, decreased mental ability in the infant, learning difficulties, and reduced growth in young children. These effects are more common if the mother or baby was exposed to high levels of lead. Some of these effects may persist beyond childhood.

## How can families reduce the risks of exposure to lead?

Avoid exposure to sources of lead.

□ Do not allow children to chew or mouth surfaces that may have been painted with lead-based paint.

□ If you have a water lead problem, run or flush water that has been standing overnight before drinking or cooking with it.

□ Some types of paints and pigments that are used as make-up or hair coloring contain lead. Keep these kinds of products away from children

□ If your home contains lead-based paint or you live in an area contaminated with lead, wash children's hands and faces

often to remove lead dusts and soil, and regularly clean the house of dust and tracked in soil.

# Is there a medical test to determine whether I've been exposed to lead?

A blood test is available to measure the amount of lead in your blood and to estimate the amount of your recent exposure to lead. Blood tests are commonly used to screen children for lead poisoning. Lead in teeth or bones can be measured by X-ray techniques, but these methods are not widely available. Exposure to lead also can be evaluated by measuring erythrocyte protoporphyrin (EP) in blood samples. EP is a part of red blood cells known to increase when the amount of lead in the blood is high. However, the EP level is not sensitive enough to identify children with elevated blood lead levels below about 25 micrograms per deciliter ( $\mu$ g/dL). These tests usually require special analytical equipment that is not available in a doctor's office. However, your doctor can draw blood samples and send them to appropriate laboratories for analysis.

# Has the federal government made recommendations to protect human health?

The Centers for Disease Control and Prevention (CDC) recommends that states test children at ages 1 and 2 years. Children should be tested at ages 3–6 years if they have never been tested for lead, if they receive services from public assistance programs for the poor such as Medicaid or the Supplemental Food Program for Women, Infants, and Children, if they live in a building or frequently visit a house built before 1950; if they visit a home (house or apartment) built before 1978 that has been recently remodeled; and/or if they have a brother, sister, or playmate who has had lead poisoning. CDC considers a blood lead level of 10  $\mu$ g/dL to be a level of concern for children.

EPA limits lead in drinking water to 15  $\mu$ g per liter.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for lead (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology and Environmental Medicine, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-800-232-4636, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about mercury. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to mercury occurs from breathing contaminated air, ingesting contaminated water and food, and having dental and medical treatments. Mercury, at high levels, may damage the brain, kidneys, and developing fetus. This chemical has been found in at least 714 of 1,467 National Priorities List sites identified by the Environmental Protection Agency.

### What is mercury?

(Pronounced mūr/kyə-rē)

Mercury is a naturally occurring metal which has several forms. The metallic mercury is a shiny, silver-white, odorless liquid. If heated, it is a colorless, odorless gas.

Mercury combines with other elements, such as chlorine, sulfur, or oxygen, to form inorganic mercury compounds or "salts," which are usually white powders or crystals. Mercury also combines with carbon to make organic mercury compounds. The most common one, methylmercury, is produced mainly by microscopic organisms in the water and soil. More mercury in the environment can increase the amounts of methylmercury that these small organisms make.

Metallic mercury is used to produce chlorine gas and caustic soda, and is also used in thermometers, dental fillings, and batteries. Mercury salts are sometimes used in skin lightening creams and as antiseptic creams and ointments.

# What happens to mercury when it enters the environment?

- Inorganic mercury (metallic mercury and inorganic mercury compounds) enters the air from mining ore deposits, burning coal and waste, and from manufacturing plants.
- □ It enters the water or soil from natural deposits, disposal of wastes, and volcanic activity.

- □ Methylmercury may be formed in water and soil by small organisms called bacteria.
- □ Methylmercury builds up in the tissues of fish. Larger and older fish tend to have the highest levels of mercury.

### How might I be exposed to mercury?

- Eating fish or shellfish contaminated with methylmercury.
- Breathing vapors in air from spills, incinerators, and industries that burn mercury-containing fuels.
- □ Release of mercury from dental work and medical treatments.
- Breathing contaminated workplace air or skin contact during use in the workplace (dental, health services, chemical, and other industries that use mercury).
- □ Practicing rituals that include mercury.

### How can mercury affect my health?

The nervous system is very sensitive to all forms of mercury. Methylmercury and metallic mercury vapors are more harmful than other forms, because more mercury in these forms reaches the brain. Exposure to high levels of metallic, inorganic, or organic mercury can permanently damage the brain, kidneys, and developing fetus. Effects on brain functioning may result in irritability, shyness, tremors, changes in vision or hearing, and memory problems.

Short-term exposure to high levels of metallic mercury vapors may cause effects including lung damage, nausea,

### **MERCURY** CAS # 7439-97-6



### April 1999

### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

vomiting, diarrhea, increases in blood pressure or heart rate, skin rashes, and eye irritation.

### How likely is mercury to cause cancer?

There are inadequate human cancer data available for all forms of mercury. Mercuric chloride has caused increases in several types of tumors in rats and mice, and methylmercury has caused kidney tumors in male mice. The EPA has determined that mercuric chloride and methylmercury are possible human carcinogens.

### How can mercury affect children?

Very young children are more sensitive to mercury than adults. Mercury in the mother's body passes to the fetus and may accumulate there. It can also can pass to a nursing infant through breast milk. However, the benefits of breast feeding may be greater than the possible adverse effects of mercury in breast milk.

Mercury's harmful effects that may be passed from the mother to the fetus include brain damage, mental retardation, incoordination, blindness, seizures, and inability to speak. Children poisoned by mercury may develop problems of their nervous and digestive systems, and kidney damage.

# How can families reduce the risk of exposure to mercury?

Carefully handle and dispose of products that contain mercury, such as thermometers or fluorescent light bulbs. Do not vacuum up spilled mercury, because it will vaporize and increase exposure. If a large amount of mercury has been spilled, contact your health department. Teach children not to play with shiny, silver liquids.

Properly dispose of older medicines that contain mercury. Keep all mercury-containing medicines away from children. rooms where liquid mercury has been used.

Learn about wildlife and fish advisories in your area from your public health or natural resources department.

# Is there a medical test to show whether I've been exposed to mercury?

Tests are available to measure mercury levels in the body. Blood or urine samples are used to test for exposure to metallic mercury and to inorganic forms of mercury. Mercury in whole blood or in scalp hair is measured to determine exposure to methylmercury. Your doctor can take samples and send them to a testing laboratory.

# Has the federal government made recommendations to protect human health?

The EPA has set a limit of 2 parts of mercury per billion parts of drinking water (2 ppb).

The Food and Drug Administration (FDA) has set a maximum permissible level of 1 part of methylmercury in a million parts of seafood (1 ppm).

The Occupational Safety and Health Administration (OSHA) has set limits of 0.1 milligram of organic mercury per cubic meter of workplace air (0.1 mg/m<sup>3</sup>) and 0.05 mg/m<sup>3</sup> of metallic mercury vapor for 8-hour shifts and 40-hour work weeks.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1999. Toxicological profile for mercury. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Pregnant women and children should keep away from

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





# NAPHTHALENE 1-METHYLNAPHTHALENE CAS # 91-20-3 CAS # 90-12-0

2-METHYLNAPHTHALENE CAS # 91-57-6

### **Division of Toxicology ToxFAQs**<sup>TM</sup>

August 2005

This fact sheet answers the most frequently asked health questions (FAQs) about naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because these substances may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Exposure to naphthalene, 1-methylnaphthalene, or 2methylnaphthalene happens mostly from breathing air contaminated from the burning of wood, tobacco, or fossil fuels, industrial discharges, or moth repellents. Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. Naphthalene has caused cancer in animals. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene have been found in at least 687, 36, and 412, respectively, of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA).

What are naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

Naphthalene is a white solid that evaporates easily. Fuels such as petroleum and coal contain naphthalene. It is also called white tar, and tar camphor, and has been used in mothballs and moth flakes. Burning tobacco or wood produces naphthalene. It has a strong, but not unpleasant smell. The major commercial use of naphthalene is in the manufacture of polyvinyl chloride (PVC) plastics. Its major consumer use is in moth repellents and toilet deodorant blocks.

1-Methylnaphthalene and 2-methylnaphthalene are naphthalenerelated compounds. 1-Methylnaphthalene is a clear liquid and 2methylnaphthalene is a solid; both can be smelled in air and in water at very low concentrations.

1-Methylnaphthalene and 2-methylnaphthalene are used to make other chemicals such as dyes and resins. 2-Methylnaphthalene is also used to make vitamin K.

#### What happens to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene

### when they enter the environment?

□ Naphthalene enters the environment from industrial and domestic sources, and from accidental spills.

□ Naphthalene can dissolve in water to a limited degree and may be present in drinking water from wells close to hazardous waste sites and landfills.

□ Naphthalene can become weakly attached to soil or pass through soil into underground water.

 $\Box$  In air, moisture and sunlight break it down within 1 day. In water, bacteria break it down or it evaporates into the air.

□ Naphthalene does not accumulate in the flesh of animals or fish that you might eat.

□ 1-Methylnaphthalene and 2-methylnaphthalene are expected to act like naphthalene in air, water, or soil because they have similar chemical and physical properties.

### How might I be exposed to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

□ Breathing low levels in outdoor air.

□ Breathing air contaminated from industrial discharges or smoke from burning wood, tobacco, or fossil fuels.

Using or making moth repellents, coal tar products, dyes or inks could expose you to these chemicals in the air.

Drinking water from contaminated wells.

□ Touching fabrics that are treated with moth repellents containing naphthalene.

Exposure to naphthalene, 1-methylnaphthalene and

2-methylnaphthalene from eating foods or drinking beverages is unlikely.

### How can naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene affect my health?

Exposure to large amounts of naphthalene may damage or destroy some of your red blood cells. This could cause you to have too few red blood cells until your body replaces the destroyed cells. This condition is called hemolytic anemia. Some symptoms of hemolytic anemia are fatigue, lack of appetite, restlessness, and pale skin. Exposure to large amounts of naphthalene may also cause nausea, vomiting, diarrhea, blood in the urine, and a yellow color to the skin. Animals sometimes develop cloudiness in their eyes after swallowing high amounts of naphthalene. It is not clear whether this also develops in people. Rats and mice that breathed naphthalene vapors daily for a lifetime developed irritation and inflammation of their nose and lungs. It is unclear if naphthalene

### Page 2

### NAPHTHALENE CAS # 91-20-3

1-METHYLNAPHTHALENE CAS # 90-12-0 2-METHYLNAPHTHALENE CAS # 91-57-6

### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

causes reproductive effects in animals; most evidence says it does not.

There are no studies of humans exposed to 1-methylnaphthalene or 2-methylnaphthalene.

Mice fed food containing 1-methylnaphthalene and 2-

methylnaphthalene for most of their lives had part of their lungs filled with an abnormal material.

### How likely are naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene to cause cancer?

There is no direct evidence in humans that naphthalene, 1methylnaphthalene, or 2-methylnaphthalene cause cancer. However, cancer from naphthalene exposure has been seen in animal studies. Some female mice that breathed naphthalene vapors daily for a lifetime developed lung tumors. Some male and female rats exposed to naphthalene in a similar manner also developed nose tumors.

Based on the results from animal studies, the Department of Health and Humans Services (DHHS) concluded that naphthalene is reasonably anticipated to be a human carcinogen. The International Agency for Research on Cancer (IARC) concluded that naphthalene is possibly carcinogenic to humans. The EPA determined that naphthalene is a possible human carcinogen (Group C) and that the data are inadequate to assess the human carcinogenic potential of 2-methylnaphthalene.

### How can naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene affect children?

Hospitals have reported many cases of hemolytic anemia in children, including newborns and infants, who either ate naphthalene mothballs or deodorants cakes or who were in close contact with clothing or blankets stored in naphthalene mothballs. Naphthalene can move from a pregnant woman's blood to the unborn baby's blood. Naphthalene has been detected in some samples of breast milk from the general U.S. population, but not at levels that are expected to be of concern.

There is no information on whether naphthalene has affected development in humans. No developmental abnormalities were observed in the offspring from rats, mice, and rabbits fed naphthalene during pregnancy.

We do not have any information on possible health effects of 1methylnaphthalene or 2-methylnaphthalene on children.

#### How can families reduce the risks of exposure to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

□ Families can reduce the risks of exposure to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene by avoiding smoking tobacco, generating smoke during cooking, or using fireplaces or heating appliances in the their homes.

□ If families use naphthalene-containing moth repellents, the material should be enclosed in containers that prevent vapors from escaping, and kept out of the reach from children.

□ Blankets and clothing stored with naphthalene moth repellents should be aired outdoors to remove naphthalene odors and washed before they are used.

□ Families should inform themselves of the contents of air deodorizers that are used in their homes and refrain from using deodorizers with naphthalene.

#### Is there a medical test to determine whether I've been exposed to naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene?

Tests are available that measure levels of these chemicals and their breakdown products in samples of urine, feces, blood, maternal milk, or body fat. These tests are not routinely available in a doctor's office because they require special equipment, but samples can be sent to special testing laboratories. These tests cannot determine exactly how much naphthalene, 1-methylnaphthalene, or 2methylnaphthalene you were exposed to or predict whether harmful effects will occur. If the samples are collected within a day or two of exposure, then the tests can show if you were exposed to a large or small amount of naphthalene, 1-methylnaphthalene, or 2methylnaphthalene.

### Has the federal government made recommendations to protect human health?

The EPA recommends that children not drink water with over 0.5 parts per million (0.5 ppm) naphthalene for more than 10 days or over 0.4 ppm for any longer than 7 years. Adults should not drink water with more than 1 ppm for more than 7 years. For water consumed over a lifetime (70 years), the EPA suggests that it contain no more than 0.1 ppm naphthalene.

The Occupational Safety and Health Administration (OSHA) set a limit of 10 ppm for the level of naphthalene in workplace air during an 8-hour workday, 40-hour workweek. The National Institute for Occupational Safety and Health (NIOSH) considers more than 500 ppm of naphthalene in air to be immediately dangerous to life or health. This is the exposure level of a chemical that is likely to impair a worker's ability to leave a contaminate area and therefore, results in permanent health problems or death.

#### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile for Naphthalene, 1-Methylnaphthalene, and 2-Methylnaphthalene (Update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





# POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

### Agency for Toxic Substances and Disease Registry ToxFAQs

September 1996

This fact sheet answers the most frequently asked health questions (FAQs) about polycyclic aromatic hydrocarbons (PAHs). For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Exposure to polycyclic aromatic hydrocarbons usually occurs by breathing air contaminated by wild fires or coal tar, or by eating foods that have been grilled. PAHs have been found in at least 600 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What are polycyclic aromatic hydrocarbons?

(Pronounced pŏl'ĭ-sī'klĭk ăr'ə-măt'ĭk hī'drəkar'bənz)

Polycyclic aromatic hydrocarbons (PAHs) are a group of over 100 different chemicals that are formed during the incomplete burning of coal, oil and gas, garbage, or other organic substances like tobacco or charbroiled meat. PAHs are usually found as a mixture containing two or more of these compounds, such as soot.

Some PAHs are manufactured. These pure PAHs usually exist as colorless, white, or pale yellow-green solids. PAHs are found in coal tar, crude oil, creosote, and roofing tar, but a few are used in medicines or to make dyes, plastics, and pesticides.

# What happens to PAHs when they enter the environment?

- □ PAHs enter the air mostly as releases from volcanoes, forest fires, burning coal, and automobile exhaust.
- □ PAHs can occur in air attached to dust particles.
- □ Some PAH particles can readily evaporate into the air from soil or surface waters.
- □ PAHs can break down by reacting with sunlight and other chemicals in the air, over a period of days to weeks.

- □ PAHs enter water through discharges from industrial and wastewater treatment plants.
- □ Most PAHs do not dissolve easily in water. They stick to solid particles and settle to the bottoms of lakes or rivers.
- □ Microorganisms can break down PAHs in soil or water after a period of weeks to months.
- □ In soils, PAHs are most likely to stick tightly to particles; certain PAHs move through soil to contaminate underground water.
- □ PAH contents of plants and animals may be much higher than PAH contents of soil or water in which they live.

### How might I be exposed to PAHs?

- Breathing air containing PAHs in the workplace of coking, coal-tar, and asphalt production plants; smokehouses; and municipal trash incineration facilities.
- Breathing air containing PAHs from cigarette smoke, wood smoke, vehicle exhausts, asphalt roads, or agricultural burn smoke.
- Coming in contact with air, water, or soil near hazardous waste sites.
- □ Eating grilled or charred meats; contaminated cereals, flour, bread, vegetables, fruits, meats; and processed or pickled foods.
- Drinking contaminated water or cow's milk.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, Public Health Service Agency for Toxic Substances and Disease Registry

### POLYCYCLIC AROMATIC HYDROCARBONS (PAHs)

### ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html

Nursing infants of mothers living near hazardous waste sites may be exposed to PAHs through their mother's milk.

### How can PAHs affect my health?

Mice that were fed high levels of one PAH during pregnancy had difficulty reproducing and so did their offspring. These offspring also had higher rates of birth defects and lower body weights. It is not known whether these effects occur in people.

Animal studies have also shown that PAHs can cause harmful effects on the skin, body fluids, and ability to fight disease after both short- and long-term exposure. But these effects have not been seen in people.

#### How likely are PAHs to cause cancer?

The Department of Health and Human Services (DHHS) has determined that some PAHs may reasonably be expected to be carcinogens.

Some people who have breathed or touched mixtures of PAHs and other chemicals for long periods of time have developed cancer. Some PAHs have caused cancer in laboratory animals when they breathed air containing them (lung cancer), ingested them in food (stomach cancer), or had them applied to their skin (skin cancer).

# Is there a medical test to show whether I've been exposed to PAHs?

In the body, PAHs are changed into chemicals that can attach to substances within the body. There are special tests that can detect PAHs attached to these substances in body tissues or blood. However, these tests cannot tell whether any health effects will occur or find out the extent or source of your exposure to the PAHs. The tests aren't usually available in your doctor's office because special equipment is needed to conduct them.

# Has the federal government made recommendations to protect human health?

The Occupational Safety and Health Administration (OSHA) has set a limit of 0.2 milligrams of PAHs per cubic meter of air (0.2 mg/m<sup>3</sup>). The OSHA Permissible Exposure Limit (PEL) for mineral oil mist that contains PAHs is 5 mg/m<sup>3</sup> averaged over an 8-hour exposure period.

The National Institute for Occupational Safety and Health (NIOSH) recommends that the average workplace air levels for coal tar products not exceed  $0.1 \text{ mg/m}^3$  for a 10-hour workday, within a 40-hour workweek. There are other limits for workplace exposure for things that contain PAHs, such as coal, coal tar, and mineral oil.

### Glossary

Carcinogen: A substance that can cause cancer.

Ingest: Take food or drink into your body.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for polycyclic aromatic hydrocarbons. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





### TETRACHLOROETHYLENE CAS # 127-18-4

### Agency for Toxic Substances and Disease Registry ToxFAQs

### September 1997

This fact sheet answers the most frequently asked health questions (FAQs) about tetrachloroethylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Tetrachloroethylene is a manufactured chemical used for dry cleaning and metal degreasing. Exposure to very high concentrations of tetrachloroethylene can cause dizziness, headaches, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death. Tetrachloroethylene has been found in at least 771 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is tetrachloroethylene?

(Pronounced tĕt'rə-klôr' ō-ĕth'ə-lēn')

Tetrachloroethylene is a manufactured chemical that is widely used for dry cleaning of fabrics and for metal-degreasing. It is also used to make other chemicals and is used in some consumer products.

Other names for tetrachloroethylene include perchloroethylene, PCE, and tetrachloroethene. It is a nonflammable liquid at room temperature. It evaporates easily into the air and has a sharp, sweet odor. Most people can smell tetrachloroethylene when it is present in the air at a level of 1 part tetrachloroethylene per million parts of air (1 ppm) or more, although some can smell it at even lower levels.

# What happens to tetrachloroethylene when it enters the environment?

- □ Much of the tetrachloroethylene that gets into water or soil evaporates into the air.
- □ Microorganisms can break down some of the tetrachloroethylene in soil or underground water.
- □ In the air, it is broken down by sunlight into other chemicals or brought back to the soil and water by rain.
- □ It does not appear to collect in fish or other animals that live in water.

### How might I be exposed to tetrachloroethylene?

- □ When you bring clothes from the dry cleaners, they will release small amounts of tetrachloroethylene into the air.
- □ When you drink water containing tetrachloroethylene, you are exposed to it.

### How can tetrachloroethylene affect my health?

High concentrations of tetrachloroethylene (particularly in closed, poorly ventilated areas) can cause dizziness, headache, sleepiness, confusion, nausea, difficulty in speaking and walking, unconsciousness, and death.

Irritation may result from repeated or extended skin contact with it. These symptoms occur almost entirely in work (or hobby) environments when people have been accidentally exposed to high concentrations or have intentionally used tetrachloroethylene to get a "high."

In industry, most workers are exposed to levels lower than those causing obvious nervous system effects. The health effects of breathing in air or drinking water with low levels of tetrachloroethylene are not known.

Results from some studies suggest that women who work in dry cleaning industries where exposures to tetrachloroethyl-

### TETRACHLOROETHYLENE CAS # 127-18-4

### ToxFAQs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

ene can be quite high may have more menstrual problems and spontaneous abortions than women who are not exposed. However, it is not known if tetrachloroethylene was responsible for these problems because other possible causes were not considered.

Results of animal studies, conducted with amounts much higher than those that most people are exposed to, show that tetrachloroethylene can cause liver and kidney damage. Exposure to very high levels of tetrachloroethylene can be toxic to the unborn pups of pregnant rats and mice. Changes in behavior were observed in the offspring of rats that breathed high levels of the chemical while they were pregnant.

# How likely is tetrachloroethylene to cause cancer?

The Department of Health and Human Services (DHHS) has determined that tetrachloroethylene may reasonably be anticipated to be a carcinogen. Tetrachloroethylene has been shown to cause liver tumors in mice and kidney tumors in male rats.

# Is there a medical test to show whether I've been exposed to tetrachloroethylene?

One way of testing for tetrachloroethylene exposure is to measure the amount of the chemical in the breath, much the same way breath-alcohol measurements are used to determine the amount of alcohol in the blood.

Because it is stored in the body's fat and slowly released into the bloodstream, tetrachloroethylene can be detected in the breath for weeks following a heavy exposure.

Tetrachloroethylene and trichloroacetic acid (TCA), a breakdown product of tetrachloroethylene, can be detected in the blood. These tests are relatively simple to perform. These tests aren't available at most doctors' offices, but can be performed at special laboratories that have the right equipment.

Because exposure to other chemicals can produce the same breakdown products in the urine and blood, the tests for breakdown products cannot determine if you have been exposed to tetrachloroethylene or the other chemicals.

# Has the federal government made recommendations to protect human health?

The EPA maximum contaminant level for the amount of tetrachloroethylene that can be in drinking water is 0.005 milligrams tetrachloroethylene per liter of water (0.005 mg/L).

The Occupational Safety and Health Administration (OSHA) has set a limit of 100 ppm for an 8-hour workday over a 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) recommends that tetrachloroethylene be handled as a potential carcinogen and recommends that levels in workplace air should be as low as possible.

#### Glossary

Carcinogen: A substance with the ability to cause cancer.

CAS: Chemical Abstracts Service.

Milligram (mg): One thousandth of a gram.

Nonflammable: Will not burn.

#### References

This ToxFAQs information is taken from the 1997 Toxicological Profile for Tetrachloroethylene (update) produced by the Agency for Toxic Substances and Disease Registry, Public Health Service, U.S. Department of Health and Human Services, Public Health Service in Atlanta, GA.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.





### Division of Toxicology ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAOs) about toluene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

**HIGHLIGHTS:** Exposure to toluene occurs from breathing contaminated workplace air, in automobile exhaust, some consumer products paints, paint thinners, fingernail polish, lacquers, and adhesives. Toluene affects the nervous system. Toluene has been found at 959 of the 1,591 National Priority List sites identified by the Environmental Protection Agency

### What is toluene?

Toluene is a clear, colorless liquid with a distinctive smell. Toluene occurs naturally in crude oil and in the tolu tree. It is also produced in the process of making gasoline and other fuels from crude oil and making coke from coal.

Toluene is used in making paints, paint thinners, fingernail polish, lacquers, adhesives, and rubber and in some printing and leather tanning processes.

### What happens to toluene when it enters the environment?

□ Toluene enters the environment when you use materials that contain it. It can also enter surface water and groundwater from spills of solvents and petrolieum products as well as from leasking underground storage tanks at gasoline stations and other facilities.

U When toluene-containing products are placed in landfills or waste disposal sites, the toluene can enter the soil or water near the waste site.

□ Toluene does not usually stay in the environment long.

□ Toluene does not concentrate or buildup to high levels in animals.

### How might I be exposed to toluene?

Breathing contaminated workplace air or automobile exhaust.

U Working with gasoline, kerosene, heating oil, paints, and lacquers.

Drinking contaminated well-water.

Living near uncontrolled hazardous waste sites containing toluene products.

### How can toluene affect my health?

Toluene may affect the nervous system. Low to moderate levles can cause tiredness, confusion, weakness, drunkentype actions, memory loss, nausea, loss of appetite, and

### February 2001

TOLUENE

CAS # 108-88-3

AGENCY FOR TOXIC SUBSTANCES



### **TOLUENE** CAS # 108-88-3

### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

hearing and color vision loss. These symptoms usually disappear when exposure is stopped.

Inhaling High levels of toluene in a short time can make you feel light-headed, dizzy, or sleepy. It can also cause unconsciousness, and even death.

High levels of toluene may affect your kidneys.

### How likely is toluene to cause cancer?

Studies in humans and animals generally indicate that toluene does not cause cancer.

The EPA has determined that the carcinogenicity of toluene can not be classified.

### How can toluene affect children?

It is likely that health effects seen in children exposed to toluene will be similar to the effects seen in adults. Some studies in animals suggest that babies may be more sensitive than adults.

Breathing very high levels of toluene during pregnancy can result in children with birth defects and retard mental abilities, and growth. We do not know if toluene harms the unborn child if the mother is exposed to low levels of toluene during pregnancy.

# How can families reduce the risk of exposure to toluene?

Use toluene-containing products in well-ventilated areas.

□ When not in use, toluene-containing products should be tightly covered to prevent evaporation into the air.

# Is there a medical test to show whether I've been exposed to toluene?

There are tests to measure the level of toluene or its breakdown products in exhaled air, urine, and blood. To determine if you have been exposed to toluene, your urine or blood must be checked within 12 hours of exposure. Several other chemicals are also changed into the same breakdown products as toluene, so some of these tests are not specific for toluene.

# Has the federal government made recommendations to protect human health?

EPA has set a limit of 1 milligram per liter of drinking water (1 mg/L).

Discharges, releases, or spills of more than 1,000 pounds of toluene must be reported to the National Response Center.

The Occupational Safety and Health Administration has set a limit of 200 parts toluene per million of workplace air (200 ppm).

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2000. Toxicological Profile for Toluene. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs<sup>TM</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html . ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Agency for Toxic Substances and Disease Registry ToxFAQs

This fact sheet answers the most frequently asked health questions (FAQs) about xylene. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It's important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

SUMMARY: Exposure to xylene occurs in the workplace and when you use paint, gasoline, paint thinners and other products that contain it. People who breathe high levels may have dizziness, confusion, and a change in their sense of balance. This substance has been found in at least 658 of the 1,430 National Priorities List sites identified by the Environmental Protection Agency (EPA).

### What is xylene?

### (Pronounced zī/lēn)

Xylene is a colorless, sweet-smelling liquid that catches on fire easily. It occurs naturally in petroleum and coal tar and is formed during forest fires. You can smell xylene in air at 0.08–3.7 parts of xylene per million parts of air (ppm) and begin to taste it in water at 0.53–1.8 ppm.

Chemical industries produce xylene from petroleum. It's one of the top 30 chemicals produced in the United States in terms of volume.

Xylene is used as a solvent and in the printing, rubber, and leather industries. It is also used as a cleaning agent, a thinner for paint, and in paints and varnishes. It is found in small amounts in airplane fuel and gasoline.

# What happens to xylene when it enters the environment?

- □ Xylene has been found in waste sites and landfills when discarded as used solvent, or in varnish, paint, or paint thinners.
- □ It evaporates quickly from the soil and surface water into the air.

- □ In the air, it is broken down by sunlight into other less harmful chemicals.
- □ It is broken down by microorganisms in soil and water.
- □ Only a small amount of it builds up in fish, shellfish, plants, and animals living in xylene-contaminated water.

### How might I be exposed to xylene?

- □ Breathing xylene in workplace air or in automobile exhaust.
- **D** Breathing contaminated air.
- □ Touching gasoline, paint, paint removers, varnish, shellac, and rust preventatives that contain it.
- □ Breathing cigarette smoke that has small amounts of xylene in it.
- Drinking contaminated water or breathing air near waste sites and landfills that contain xylene.
- $\Box$  The amount of xylene in food is likely to be low.

### How can xylene affect my health?

Xylene affects the brain. High levels from exposure for short periods (14 days or less) or long periods (more than 1 year) can cause headaches, lack of muscle coordination, dizziness, confusion, and changes in one's sense of balance. Exposure of

### **XYLENE** CAS # 1330-20-7



### September 1996

### ToxFAQs Internet home page via WWW is http://www.atsdr.cdc.gov/toxfaq.html

people to high levels of xylene for short periods can also cause irritation of the skin, eyes, nose, and throat; difficulty in breathing; problems with the lungs; delayed reaction time; memory difficulties; stomach discomfort; and possibly changes in the liver and kidneys. It can cause unconsciousness and even death at very high levels.

Studies of unborn animals indicate that high concentrations of xylene may cause increased numbers of deaths, and delayed growth and development. In many instances, these same concentrations also cause damage to the mothers. We do not know if xylene harms the unborn child if the mother is exposed to low levels of xylene during pregnancy.

#### How likely is xylene to cause cancer?

The International Agency for Research on Cancer (IARC) has determined that xylene is not classifiable as to its carcinogenicity in humans.

Human and animal studies have not shown xylene to be carcinogenic, but these studies are not conclusive and do not provide enough information to conclude that xylene does not cause cancer.

# Is there a medical test to show whether I've been exposed to xylene?

Laboratory tests can detect xylene or its breakdown products in exhaled air, blood, or urine. There is a high degree of agreement between the levels of exposure to xylene and the levels of xylene breakdown products in the urine. However, a urine sample must be provided very soon after exposure ends because xylene quickly leaves the body. These tests are not routinely available at your doctor's office.

# Has the federal government made recommendations to protect human health?

The EPA has set a limit of 10 ppm of xylene in drinking water.

The EPA requires that spills or accidental releases of xylenes into the environment of 1,000 pounds or more must be reported.

The Occupational Safety and Health Administration (OSHA) has set a maximum level of 100 ppm xylene in workplace air for an 8-hour workday, 40-hour workweek.

The National Institute for Occupational Safety and Health (NIOSH) and the American Conference of Governmental Industrial Hygienists (ACGIH) also recommend exposure limits of 100 ppm in workplace air.

NIOSH has recommended that 900 ppm of xylene be considered immediately dangerous to life or health. This is the exposure level of a chemical that is likely to cause permanent health problems or death.

#### Glossary

Evaporate: To change from a liquid into a vapor or a gas.Carcinogenic: Having the ability to cause cancer.CAS: Chemical Abstracts Service.ppm: Parts per million.Solvent: A liquid that can dissolve other substances.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 1995. Toxicological profile for xylenes (update). Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.

Where can I get more information? For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop E-29, Atlanta, GA 30333. Phone:1-888-422-8737, FAX: 404-498-0093. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



### Division of Toxicology ToxFAQs<sup>TM</sup>

This fact sheet answers the most frequently asked health questions (FAQs) about zinc. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. It is important you understand this information because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present.

HIGHLIGHTS: Zinc is a naturally occurring element. Exposure to high levels of zinc occurs mostly from eating food, drinking water, or breathing workplace air that is contaminated. Low levels of zinc are essential for maintaining good health. Exposure to large amounts of zinc can be harmful. It can cause stomach cramps, anemia, and changes in cholesterol levels. Zinc has been found in at least 985 of the 1,662 National Priority List sites identified by the Environmental Protection Agency (EPA).

### What is zinc?

Zinc is one of the most common elements in the earth's crust. It is found in air, soil, and water, and is present in all foods. Pure zinc is a bluish-white shiny metal.

Zinc has many commercial uses as coatings to prevent rust, in dry cell batteries, and mixed with other metals to make alloys like brass, and bronze. A zinc and copper alloy is used to make pennies in the United States.

Zinc combines with other elements to form zinc compounds. Common zinc compounds found at hazardous waste sites include zinc chloride, zinc oxide, zinc sulfate, and zinc sulfide. Zinc compounds are widely used in industry to make paint, rubber, dyes, wood preservatives, and ointments.

# What happens to zinc when it enters the environment?

□ Some is released into the environment by natural processes, but most comes from human activities like mining, steel production, coal burning, and burning of waste.

 $\hfill\square$  It attaches to soil, sediments, and dust particles in the air.

□ Rain and snow remove zinc dust particles from the air.

Depending on the type of soil, some zinc compounds can move into the groundwater and into lakes, streams, and rivers.

 $\hfill\square$  Most of the zinc in soil stays bound to soil particles and

does not dissolve in water.

 $\Box$  It builds up in fish and other organisms, but it does not build up in plants.

### How might I be exposed to zinc?

Ingesting small amounts present in your food and water.
 Drinking contaminated water or a beverage that has been stored in metal containers or flows through pipes that have been coated with zinc to resist rust.

Eating too many dietary supplements that contain zinc.
 Working on any of the following jobs: construction, painting, automobile mechanics, mining, smelting, and welding; manufacture of brass, bronze, or other zinc-containing alloys; manufacture of galvanized metals; and manufacture of machine parts, rubber, paint, linoleum, oilcloths, batteries, some kind of glass, ceramics, and dyes.

### How can zinc affect my health?

Zinc is an essential element in our diet. Too little zinc can cause problems, but too much zinc is also harmful.

Harmful effects generally begin at levels 10-15 times higher than the amount needed for good health. Large doses taken by mouth even for a short time can cause stomach cramps, nausea, and vomiting. Taken longer, it can cause anemia and decrease the levels of your good cholesterol. We do not know if high levels of zinc affect reproduction in humans. Rats that were fed large amounts of zinc became infertile.

### August 2005

CAS # 7440-66-6

ZINC



### ToxFAQs<sup>™</sup> Internet address is http://www.atsdr.cdc.gov/toxfaq.html

Inhaling large amounts of zinc (as dusts or fumes) can cause a specific short-term disease called metal fume fever. We do not know the long-term effects of breathing high levels of zinc.

Putting low levels of zinc acetate and zinc chloride on the skin of rabbits, guinea pigs, and mice caused skin irritation. Skin irritation will probably occur in people.

### How likely is zinc to cause cancer?

The Department of Health and Human Services (DHHS) and the International Agency for Research on Cancer (IARC) have not classified zinc for carcinogenicity. Based on incomplete information from human and animal studies, the EPA has determined that zinc is not classifiable as to its human carcinogenicity.

### How can zinc affect children?

Zinc is essential for proper growth and development of young children. It is likely that children exposed to very high levels of zinc will have similar effects as adults. We do not know whether children are more susceptible to the effects of excessive intake of zinc than the adults.

We do not know if excess zinc can cause developmental effects in humans. Animal studies have found decreased weight in the offspring of animals that ingested very high amounts of zinc.

# How can families reduce the risks of exposure to zinc?

□ Children living near waste sites that contain zinc may be exposed to higher levels of zinc through breathing contaminated air, drinking contaminated drinking water, touching or eating contaminated soil.

□ Discourage your children from eating soil or putting their hands in their mouths and teach them to wash their hands frequently and before eating.

□ If you use medicines or vitamin supplements containing

zinc, make sure you use them appropriately and keep them out of the reach of children.

# Is there a medical test to determine whether I've been exposed to zinc?

There are tests available to measure zinc in your blood, urine, hair, saliva, and feces. These tests are not usually done in the doctor's office because they require special equipment. High levels of zinc in the feces can mean high recent zinc exposure. High levels of zinc in the blood can mean high zinc consumption and/or high exposure. Tests to measure zinc in hair may provide information on long-term zinc exposure; however, the relationship between levels in your hair and the amount of zinc you were exposed to is not clear.

# Has the federal government made recommendations to protect human health?

The EPA recommends that drinking water should contain no more than 5 milligrams per liter of water (5 mg/L) because of taste. The EPA requires that any release of 1,000 pounds (or in some cases 5,000 pounds) into the environment be reported to the agency.

To protect workers, the Occupational Safety and Health Administration (OSHA) has set an average limit of  $1 \text{ mg/m}^3$  for zinc chloride fumes and  $5 \text{ mg/m}^3$  for zinc oxide (dusts and fumes) in workplace air during an 8-hour workday, 40-hour workweek.

Similarly, the National Institute for Occupational Safety and Health (NIOSH) has set the same standards for up to a 10-hour workday over a 40-hour workweek.

### References

Agency for Toxic Substances and Disease Registry (ATSDR). 2005. Toxicological Profile for Zinc (Update). Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service.

**Where can I get more information?** For more information, contact the Agency for Toxic Substances and Disease Registry, Division of Toxicology, 1600 Clifton Road NE, Mailstop F-32, Atlanta, GA 30333. Phone: 1-888-422-8737, FAX: 770-488-4178. ToxFAQs Internet address via WWW is http://www.atsdr.cdc.gov/toxfaq.html. ATSDR can tell you where to find occupational and environmental health clinics. Their specialists can recognize, evaluate, and treat illnesses resulting from exposure to hazardous substances. You can also contact your community or state health or environmental quality department if you have any more questions or concerns.



ATTACHEMENT B

WEST NILE VIRUS/ST. LOUIS ENCEPHALITIS PREVENTION

### WEST NILE VIRUS/ST. LOUIS ENCEPHALITIS PREVENTION

The following section is based upon information provided by the CDC Division of Vector-Borne Infectious Diseases. Symptoms of West Nile Virus include fever, headache, and body aches, occasionally with skin rash and swollen lymph glands, with most infections being mild. More severe infection may be marked by headache, high fever, neck stiffness, stupor, disorientation, coma, tremors, convulsions, muscle weakness, paralysis, and, rarely, death. Most infections of St. Louis encephalitis are mild without apparent symptoms other than fever with headache. More severe infection is marked by headache, high fever, neck stiffness, stupor, disorientation, coma, tremors, occasional convulsions (especially infants) and spastic (but rarely flaccid) paralysis. The only way to avoid infection of West Nile Virus and St. Louis encephalitis is to avoid mosquito bites. To reduce the chance of mosquito contact:

- Stay indoors at dawn, dusk, and in the early evening.
- Wear long-sleeved shirts and long pants whenever you are outdoors.
- Spray clothing with repellents containing permethrin or DEET (N, N-diethyl-meta-toluamide), since mosquitoes may bite through thin clothing.
- Apply insect repellent sparingly to exposed skin. An effective repellent will contain 35% DEET. DEET in high concentrations (greater than 35%) provides no additional protection.
- Repellents may irritate the eyes and mouth.
- Whenever you use an insecticide or insect repellent, be sure to read and follow the manufacturer's directions for use, as printed on the product.

ATTACHMENT C REPORT FORMS

# WEEKLY SAFETY REPORT FORM

| Week Ending:               | Project Name/Number:                                                   |  |
|----------------------------|------------------------------------------------------------------------|--|
| Report Date:               | Project Manager Name:                                                  |  |
|                            | of procedures occurring that week:                                     |  |
|                            |                                                                        |  |
| Summary of any job related | injuries, illnesses, or near misses that week:                         |  |
|                            |                                                                        |  |
|                            |                                                                        |  |
|                            | g data that week (include and sample analyses, action levels exceeded, |  |
|                            |                                                                        |  |
| Comments:                  |                                                                        |  |
|                            |                                                                        |  |
|                            |                                                                        |  |
| Name:                      | Company:                                                               |  |
| Signature:                 | Title:                                                                 |  |

# **INCIDENT REPORT FORM**

| Date of Report:     |               |                   |
|---------------------|---------------|-------------------|
| Injured:            |               |                   |
| Employer:           |               |                   |
| Site:               | Site Lo       | cation:           |
| Report Prepared By: | ature         |                   |
| -                   |               |                   |
| ACCIDENT/INCIDENT   | •             |                   |
| Injury              | Illness       | Near Miss         |
| Property Damage     | Fire          | Chemical Exposure |
| On-site Equipment   | Motor Vehicle | Electrical        |
| Mechanical          | Spill         | Other             |
|                     |               |                   |
|                     |               |                   |
| WITNESS TO ACCIDEN  | T/INCIDENT:   |                   |
| Name:               | (             | Company:          |
| Address:            |               | Address:          |
| Phone No.:          | ]             | Phone No.:        |
| Name:               |               | Company:          |
| Address:            |               | Address:          |
| Phone No :          |               | Phone No.:        |
|                     |               |                   |

| <b>INJURED - ILL:</b>                |                         |                      |
|--------------------------------------|-------------------------|----------------------|
| Name:                                | SSN:                    |                      |
| Address:                             | Age:                    |                      |
|                                      |                         |                      |
| Length of Service:                   | Time on Pre             | sent Job:            |
| Time/Classification:                 |                         |                      |
| SEVERITY OF INJURY OR I              | LLNESS:                 |                      |
| Disabling                            | Non-disabling           | Fatality             |
| Medical Treatment                    | First Aid Only          |                      |
| ESTIMATED NUMBER OF D                |                         |                      |
| CLASSIFICATION OF INJUI<br>Abrasions | <b>RY:</b> Dislocations | Punctures            |
| Bites                                | Faint/Dizziness         | Radiation Burns      |
| Blisters                             | Fractures               | Respiratory Allergy  |
| Bruises                              | Frostbite               | Sprains              |
| Chemical Burns                       | Heat Burns              | Toxic Resp. Exposure |
| Cold Exposure                        | Heat Exhaustion         | Toxic Ingestion      |
| Concussion                           | Heat Stroke             | Dermal Allergy       |
| Lacerations                          |                         |                      |
| Part of Body Affected:               |                         |                      |
|                                      |                         |                      |
|                                      |                         |                      |
| Where Medical Care was Receiv        | ed:                     |                      |
|                                      |                         |                      |
| (If two or more injuries, record o   | n separate sheets)      |                      |

# **PROPERTY DAMAGE:**

| Description of Damage:                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                       |
| Cost of Damage: \$                                                                                                                                    |
| ACCIDENT/INCIDENT LOCATION:                                                                                                                           |
| ACCIDENT/INCIDENT ANALYSIS: Causative agent most directly related to accident/inciden (Object, substance, material, machinery, equipment, conditions) |
|                                                                                                                                                       |
| Was weather a factor?:                                                                                                                                |
| Unsafe mechanical/physical/environmental condition at time of accident/incident (Be specific):                                                        |
| Personal factors (Attitude, knowledge or skill, reaction time, fatigue):                                                                              |
| ON-SITE ACCIDENTS/INCIDENTS:                                                                                                                          |
| Level of personal protection equipment required in Site Safety Plan:                                                                                  |
| Modifications:                                                                                                                                        |
| Was injured using required equipment?:                                                                                                                |

If not, how did actual equipment use differ from plan?:

ACTION TAKEN TO PREVENT RECURRENCE: (Be specific. What has or will be done? When will it be done? Who is the responsible party to insure that the correction is made?

| ACCIDENT/INCIDENT REPORT REVI                             | EWED BY:      |
|-----------------------------------------------------------|---------------|
|                                                           |               |
| SSO Name Printed                                          | SSO Signature |
| OTHERS PARTICIPATING IN INVESTI                           | GATION:       |
| Signature                                                 | Title         |
| Signature                                                 | Title         |
| Signature                                                 | Title         |
| ACCIDENT/INCIDENT FOLLOW-UP:                              | Date:         |
| Outcome of accident/incident:                             |               |
|                                                           |               |
|                                                           |               |
|                                                           |               |
| Physician's recommendations:                              |               |
|                                                           |               |
|                                                           |               |
|                                                           |               |
|                                                           |               |
| Date injured returned to work:<br>Follow-up performed by: |               |
| renew up performed by:                                    |               |
| Signature 7                                               | Title         |

ATTACH ANY ADDITIONAL INFORMATION TO THIS FORM

ATTACHMENT D EMERGENCY HAND SIGNALS

# **EMERGENCY SIGNALS**

In most cases, field personnel will carry portable radios for communication. If this is the case, a transmission that indicates an emergency will take priority over all other transmissions. All other site radios will yield the frequency to the emergency transmissions.

Where radio communications is not available, the following air-horn and/or hand signals will be used:

# **EMERGENCY HAND SIGNALS**

# **OUT OF AIR, CAN'T BREATHE!**



Hand gripping throat

# LEAVE AREA IMMEDIATELY, NO DEBATE!

(No Picture) Grip partner's wrist or place both hands around waist

**NEED ASSISTANCE!** 



Hands on top of head

OKAY! – I'M ALL RIGHT! - I UNDERSTAND!



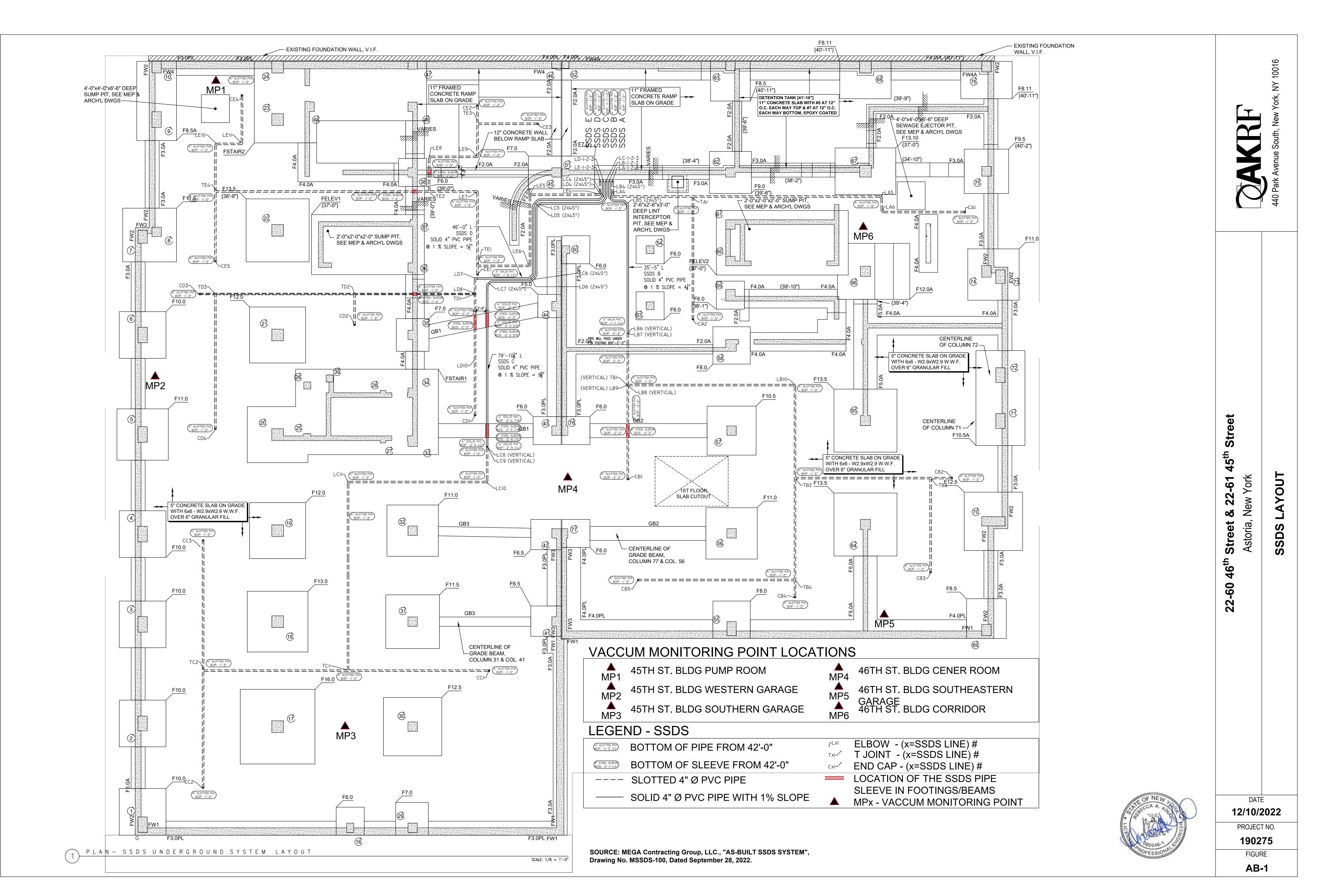
Thumbs up

**NO! - NEGATIVE!** 

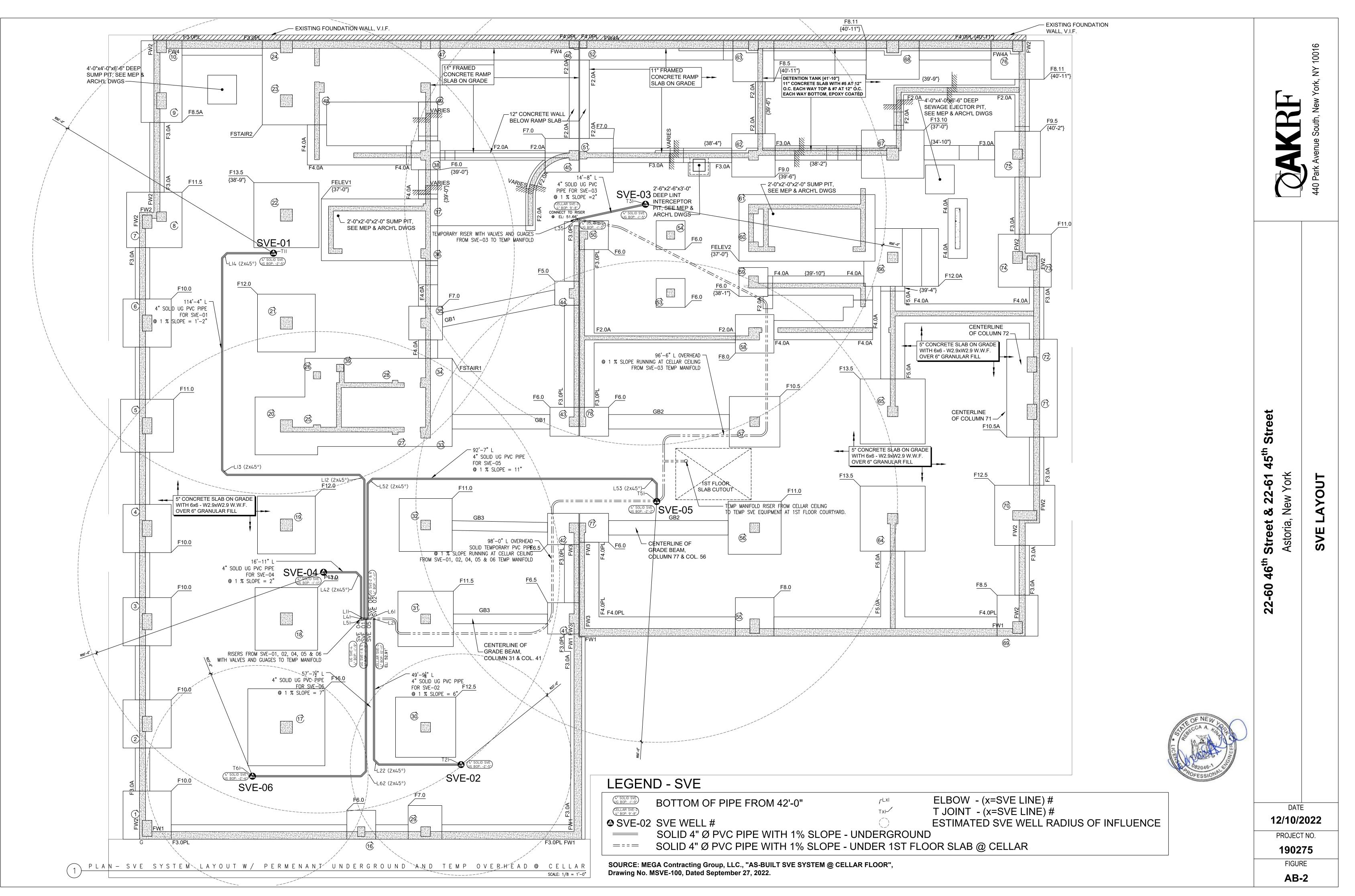


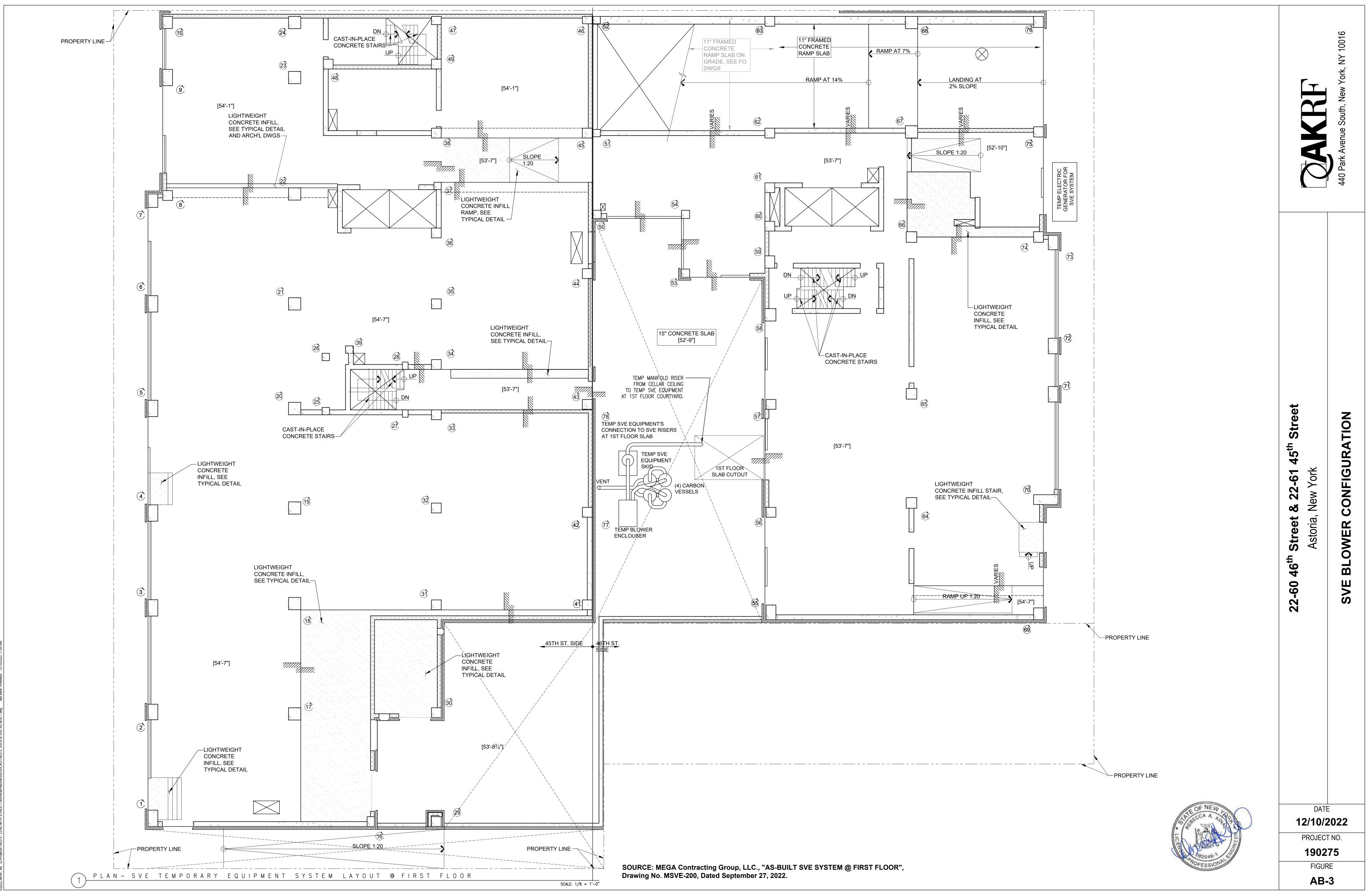
ATTACHMENT E

SPECIAL REQUIREMENTS CAMP


# Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.


- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring should occur within the occupied structure(s). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m<sup>3</sup>, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 mcg/m<sup>3</sup> or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.


# Special Requirements for Indoor Work With Co-Located Residences or Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum. APPENDIX G SSDS AND SVE SYSTEM AS-BUILTS



2022 AKRF, Inc @:Projects/190275 - 22-60 46TH STREET/Technical/HazmattSSDS/CAD/190275\_SSDS & SVE AS BUILT.dwg last save: mveilleux 12/10/2022 11:55 AM





APPENDIX H QUALITY ASSURANCE PROJECT PLAN

# 22-60 46<sup>TH</sup> STREET QUEENS, NEW YORK Quality Assurance Project Plan

AKRF Project Number: 190275 BCP Site Number: C241244

## **Prepared for:**

New York State Department of Environmental Conservation Division of Environmental Remediation, Remedial Bureau B 625 Broadway, 12<sup>th</sup> Floor Albany, New York 12233

#### **On Behalf Of:**

MD45 Developers LLC 48-02 25<sup>th</sup> Avenue, Suite 400 Queens, NY 11103

# **Prepared by:**



AKRF, Inc. 440 Park Avenue South New York, New York 10016 (212) 696-0670

# **DECEMBER 2022**

# **TABLE OF CONTENTS**

| 1.0  | INTRODUCTION                                                     | 1  |
|------|------------------------------------------------------------------|----|
| 2.0  | PROJECT TEAM                                                     | 2  |
| 2.1  | PROJECT DIRECTOR                                                 | 2  |
| 2.2  | REMEDIAL ENGINEER                                                | 2  |
| 2.3  | PROJECT MANAGER                                                  |    |
| 2.4  | PROJECT MANAGER ALTERNATE                                        |    |
| 2.5  | FIELD TEAM LEADER, FIELD TECHNICIAN, AND SITE SAFETY OFFICER, AN | D  |
| ALT  | TERNATES                                                         |    |
| 2.6  | LABORATORY QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) OFFICER     |    |
| 2.7  | LABORATORY DATA VALIDATOR                                        |    |
| 3.0  | STANDARD OPERATING PROCEDURES (SOPs)                             | 4  |
| 3.1  | WELL INSTALLATION AND DEVELOPMENT                                |    |
| 3.2  | DECONTAMINATION OF SAMPLING EQUIPMENT                            |    |
| 3.3  | MANAGEMENT OF INVESTIGATION DERIVED WASTE (IDW)                  |    |
| 4.0  | SAMPLING AND LABORATORY PROCEDURES                               |    |
| 4.1  | MONITORING WELL SAMPLING                                         |    |
| 4.2  | SUB-SLAB SOIL VAPOR and INDOOR AIR SAMPLING                      |    |
|      | 2.1 Sample Set-up                                                |    |
|      | 2.2 Sample Collection                                            |    |
| 4.3  | SSDS and SVE System Vacuum Monitoring                            |    |
| 4.4  | Influent/Effluent Vapor Sampling                                 |    |
| 4.5  | Carbon Sampling                                                  | 9  |
| 4.6  | Condensate Water Sampling                                        |    |
| 4.7  | LABORATORY METHODS                                               | -  |
| 4.8  | QUALITY CONTROL (QC) SAMPLING                                    |    |
| 4.9  | SAMPLE HANDLING                                                  |    |
|      | 9.1 Sample Identification                                        | 2  |
|      | .9.1.1. Site Management (SM) Sample Identification               |    |
|      | 9.1.2. Waste Classification                                      | -  |
| 4.10 |                                                                  |    |
| 4.11 |                                                                  |    |
| 4.12 | REPORTING OF DATA                                                | .4 |

# FIGURES

Figure 1 -Site LocationFigure 2 -SMP Field Sampling Plan

# **TABLES**

- Table 1 –
   Laboratory Analytical Methods
- Table 2 –Field Sample and QC Sample Quantities
- Table 3 –Sample Nomenclature
- Table 4 –
   Waste Classification Sample Nomenclature

# ATTACHMENTS

Attachment A – Resumes for Project Director, Quality Assurance Officer, Project Manager, Project Manager Alternates, and Field Team Leaders

# **1.0 INTRODUCTION**

This Quality Assurance Project Plan (QAPP) describes the protocols and procedures that will be followed during implementation of the Site Management Plan (SMP) at the 22-60 46<sup>th</sup> Street site (the Site), hereafter referred to as the Site. The legal definition of the Site is Queens Borough Tax Block 769, Lots 25 and 42. The Site is abutted to the north by a parking garage, followed by a multi-story residential building; to the east by 46<sup>th</sup> Street, followed by private residences; to the south by private residences and commercial uses; and to the west by 45<sup>th</sup> Street, followed by a shopping center and warehouses. A Site Location Plan is provided as Figure 1.

The objective of this QAPP is to provide for Quality Assurance (QA) and maintain Quality Control (QC) during sampling performed under the SMP) for BCP Site No. C241244. Adherence to the QAPP will ensure that defensible data will be obtained to confirm the successful operation and maintenance of remedial systems or other engineering controls.

# 2.0 PROJECT TEAM

The project team will be drawn from AKRF professional and technical personnel, and AKRF's subcontractors. All field personnel and subcontractors will have completed a 40-hour training course and updated 8-hour refresher course that meet the Occupational Safety and Health Administration (OSHA) requirements of 29 CFR Part 1910. The following sections describe the key project personnel and their responsibilities.

## 2.1 **PROJECT DIRECTOR**

The project director will be responsible for the general oversight of all aspects of the project, including scheduling, budgeting, data management, and field program decision-making. The project director will communicate regularly with all members of the AKRF project team and the NYSDEC to ensure a smooth flow of information between involved parties. Deborah Shapiro will serve as the project director for the SMP. Ms. Shapiro's resume is included in Attachment A.

## 2.2 **REMEDIAL ENGINEER**

The Remedial Engineer is a registered professional engineer licensed by the State of New York. The Remedial Engineer will have primary direct responsibility for implementation of the SMP. The Remedial Engineer will certify in the Periodic Review Reports which summarize that the engineering controls were monitored, maintained, and remain effective. The Remedial Engineer will certify that the Site management activities were conducted by qualified environmental professionals under her supervision and that the remediation requirements set forth in the SMP and any other relevant provisions of ECL 27-1419 have been achieved in full conformance with that Plan. The Remedial Engineer for this project will be Rebecca Kinal, P.E. Ms. Kinal's resume is included in Attachment A.

## 2.3 **PROJECT MANAGER**

The project manager will be responsible for directing and coordinating all elements of the SMP. The project manager will prepare reports and participate in meetings with the Site owner/BCP Requestor, and/or the NYSDEC. Adrianna Bosco will serve as the project manager for the SMP. Ms. Bosco's resume is included in Attachment A.

#### 2.4 PROJECT MANAGER ALTERNATE

The project manager alternate will be responsible for assisting the project manager. The project manager alternate will help prepare reports and will participate in meetings with the Site owner/Volunteer, and/or the NYSDEC. Ashutosh Sharma will serve as the project manager alternate for the SMP. Mr. Sharma's resume is included in Attachment A.

# 2.5 FIELD TEAM LEADER, FIELD TECHNICIAN, AND SITE SAFETY OFFICER, AND ALTERNATES

The field team leader will be responsible for conducting routine operations maintenance and monitoring and health and safety activities in the field and will ensure adherence to the SMP and Health and Safety Plan (HASP), included in Appendix D of the SMP. The field team leader will also act as the field technician and Site safety officer (SSO) and will report to the project manager or project manager alternate on a regular basis regarding daily progress and any deviations from the work plan. The field team leader will be a qualified and responsible person able to act professionally and promptly during environmental work at the Site. Stephen Schmid will act as the field team leader. The field team leader alternate is Antonio Cardenas. Resumes for Mr. Schmid and Mr. Cardenas are included in Attachment A.

### AKRF, Inc.

# 2.6 LABORATORY QUALITY ASSURANCE/QUALITY CONTROL (QA/QC) OFFICER

The laboratory QA/QC officer will be responsible for quality control procedures and checks in the laboratory and ensuring adherence to laboratory protocols. The QA/QC officer will track the movement of samples from the time they are checked in at the laboratory to the time that analytical results are issued, and will conduct a final check on the analytical calculations and sign off on the laboratory reports. The laboratory QA/QC officer will be Carl Armbruster of Eurofins TestAmerica Laboratories (TestAmerica), the New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP)-certified laboratory being employed for all environmental sampling at the Site.

## 2.7 LABORATORY DATA VALIDATOR

The laboratory data validator will be responsible for third party data validation and preparation of Data Usability Summary Reports (DUSRs). The third-party laboratory data validator will be Lori Beyer of L.A.B. Validation Corp.

# **3.0 STANDARD OPERATING PROCEDURES (SOPS)**

The following sections describe the SOPs for the monitoring activities included in the SMP. During these operations, safety monitoring will be performed as described in the HASP, included as Appendix F of the SMP. SMP implementation will include routine inspection of the soil vapor extraction system (SVES) and active sub-slab depressurization system (SSDS), and quarterly groundwater monitoring and sampling (for the first year, then as needed) and soil vapor intrusion evaluation for new buildings (once after building completion and then as needed).

# 3.1 WELL INSTALLATION AND DEVELOPMENT

Groundwater monitoring, injection, and soil vapor extraction wells have been installed throughout the Site. The following procedure should be followed in the event that a well requires replacement or redevelopment or additional wells are installed. The well locations and/or screen depths may be adjusted based on observations and data compiled during the necessary field activities. Details outlined below may be altered based on the preparation and submittal of a work plan submitted to NYSDEC and NYSDOH. This QAPP will be updated accordingly and included in the SMP.

All monitoring, soil vapor extraction and/or injection wells will be advanced using a Geoprobe direct push technology, Geoprobe sonic technology or hollow stem auger technology. A target depth of approximately 10-feet below the water table will be used for monitoring wells, a target depth of 10-feet below grade will be used for injection wells, and a target depth of up to a minimum of 1-foot above the observed water table will be used for the soil vapor extraction wells. During the RI, groundwater beneath the Site ranged from elevation 19.79 to elevation 21.07 (NAVD88), or 32.92 to 33.73 feet below grade across the Site. Monitoring and injection wells will be constructed with 10 feet of PVC screen, whereas the soil vapor extraction wells will be constructed with 15 feet of polyvinyl chloride (PVC) screen (based on the elevation of the existing concrete slab).

Morie sand will be backfill around the screen zone of each new well to a depth of 2 feet above the screen. The annular space around the well riser will be sealed with bentonite extending one to two feet above the sand filter pack and completed with a non-shrinking cement mixture to approximately one foot below grade. Each injection, monitoring and SVE well will be completed using flush to grade locking gate boxes. The monitoring and injection wells will be developed by agitating the well screen with a surge block and pumping out the sediment until below 50 nephelometric turbidity units (NTU), if practical. The location/elevation of each new PVC well will be surveyed by a licensed surveyor and incorporated into the existing Site map.

# 3.2 DECONTAMINATION OF SAMPLING EQUIPMENT

All sampling equipment (augers, drilling rods, split spoon samplers, probe rods, pumps, etc.) will be either dedicated or decontaminated between sampling locations. Decontamination will be conducted on plastic sheeting (or equivalent) that is bermed to prevent discharge to the ground. The decontamination procedure will be as follows:

- 1. Scrub using tap water/Simple Green<sup>®</sup> mixture and bristle brush.
- 2. Rinse with tap water.
- 3. Scrub again with tap water/Simple Green<sup>®</sup> mixture and bristle brush.
- 4. Rinse with tap water.
- 5. Rinse with distilled water.

6. Air-dry the equipment, if possible.

## **3.3** MANAGEMENT OF INVESTIGATION DERIVED WASTE (IDW)

IDW will be containerized in New York State Department of Transportation (NYSDOT)approved 55-gallon drums during the site management activities. The drums will be sealed at the end of each work day and labeled with the date, the boring location(s), the type of waste e.g., drill cuttings, excavated trenching material), and the name and phone number of an AKRF point-ofcontact. All IDW collected into drums will be sampled and disposed of or treated according to applicable local, state, and federal regulations.

# 4.0 SAMPLING AND LABORATORY PROCEDURES

## 4.1 MONITORING WELL SAMPLING

Groundwater samples for post remedial monitoring will be collected using low-flow sampling techniques, as described in U.S. EPA's Ground-Water Sampling Guidelines for Superfund and Resource Conservation and Recovery Act (RCRA) Project Managers [EPA 542-S-02-001, May 2002]. Sampling will be conducted according to the following procedure:

- Prepare the sampling area by placing plastic sheeting over the well. Cut a hole in the sheeting to provide access to the well cover.
- Slowly remove the locking cap and immediately measure the vapor concentrations in the well with a PID calibrated to the manufacturer's specifications.
- Measure the depth to water and total well depth, and check for the presence of non-aquesous phase liquid (NAPL) using an oil/water interface probe. Measure the thickness of NAPL, if any, and record in field book and well log. Groundwater samples will not be collected from wells containing measurable NAPL.
- Use the water level and total well depth measurements to calculate the length of the mid-point of the water column within the screened interval. For example, for a well where the total depth is 20 feet, screened interval is 10 to 20 feet, and depth to water is 14 feet, the mid-point of the water column within the screened interval would be 17 feet.
- Connect dedicated tubing to a submersible bladder pump, and lower the pump such that the intake of the pump is set at the mid-point of the water column within the screened interval of the well. Connect the discharge end of the tubing to the flow-through cell of a YSI multi-parameter (or equivalent) meter. Connect tubing to the output of the cell and place the discharge end of the tubing in a five-gallon bucket.
- Activate the pump at the lowest flow rate setting of the pump.
- Measure the depth to water within the well. The pump flow rate may be increased such that the water level measurements do not change by more than 0.3 feet as compared to the initial static reading. The well-purging rate should be adjusted so as to produce a smooth, constant (laminar) flow rate and so as not to produce excessive turbulence in the well. The expected targeted purge rate will be approximately 100 milliliters/minute and will be no greater than 500 milliliters/minute.
- Transfer discharged water from the 5-gallon buckets to on-site 55-gallon drums.
- During purging, collect periodic samples and analyze for water quality indicators (e.g., turbidity, pH, temperature, dissolved oxygen (DO), reduction-oxidation potential (ORP), and specific conductivity) with measurements collected approximately every five minutes.
- Continue purging the well until turbidity is less than 50 nephelometric turbidity units (NTUs) and water quality indicators have stabilized to the extent practicable. The criteria for stabilization will be three successive readings for the following parameters and criteria:

| Parameter            | Stabilization Criteria |
|----------------------|------------------------|
| РН                   | +/- 0.1 pH units       |
| Specific Conductance | +/- 3% mS/cm           |

| Stabil | lization | <u>Criteria</u> |
|--------|----------|-----------------|
|        |          |                 |

| ORP/Eh           | +/- 10mV     |
|------------------|--------------|
| Turbidity        | <50 NTU      |
| Dissolved Oxygen | +/- 0.3 mg/l |

Notes: mS/cm = millisievert per centimeter

NTU = nephthalometric turbidity units

mg/l = milligrams per liter

- If the water quality parameters do not stabilize and/or turbidity is greater than 50 NTU within two hours, purging may be discontinued. Efforts to stabilize the water quality for the well must be recorded in the field book, and samples may then be collected as described herein.
- After purging, disconnect the tubing to the inlet of the flow-through cell. Collect groundwater samples directly from the discharge end of the tubing and place into the required sample containers as described in Section 4.4 of this QAPP. Label the containers as described in Section 4.4.1.1, Table 2 of this QAPP and place in a chilled cooler.
- Once sampling is complete, remove the pump and tubing from the well. Dispose of the sampling materials and PPE in accordance with applicable regulations. The purge water will be managed as described in Section 3.4 of this QAPP.
- Decontaminate the pump, oil/water interface probe, and flow-through cell, as described in Section 3.3 of this QAPP.
- Record all measurements (depth to water, depth to NAPL, water quality parameters, turbidity), calculations (well volume) and observations in the project logbook and field data sheet, if applicable.

A figure illustrating the SMP groundwater sampling locations is included in the Monitoring Locations for Site Management on Figure 8 of the SMP.

# 4.2 SUB-SLAB SOIL VAPOR and INDOOR AIR SAMPLING

Sub-slab soil vapor and indoor air sampling, if needed in the future, will be conducted using Summa canisters with 24-hour flow regulators. Samples will be collected using the following procedures:

## 4.2.1 Sample Set-up

- 1. Conduct a pre-sampling inspection and record chemical inventory of the Site building.
- 2. Install flexible hose to a Gilian GilAir plus (or equivalent) sampling pump and connect the Teflon sample tubing to the hose. Connect the other end (discharge end) of the flexible tubing to a 1-liter Tedlar bag. Purge the soil gas sampler of approximately three sampler volumes by activating the pump to fill the Tedlar bag to near capacity. The air withdrawal flow rate shall be 0.2 liters/minute or less.
- 3. The Tedlar bag will be analyzed in the field using a PID calibrated to the manufacturer's specifications to check for levels of volatile organic compounds (VOCs) in the sub-slab soil vapor.
- 4. Disconnect the sample tubing from the Gilian GilAir plus (or equivalent) pump and connect it to the inlet of a labeled 6-liter Summa canister.
- 5. Repeat procedure for all sampling locations.

mV = millivolts

## 4.2.2 Sample Collection

- 1. After Summa canisters are set up at all of the sampling locations, record the vacuum reading from the vacuum gauge on the canister at the beginning of the 24-hour sampling period. Open the valve of the canister and record the time in the field book. In addition, place labeled Summa canisters at the breathing zone level (minimum of 3- to 5-feet above the ground floor) adjacent to the monitoring point locations for collection of co-located indoor air (IA) samples from the cellar level, and place canisters at select locations on the first floor space for collection of IA samples over a 24-hour period.
- 2. At the end of the 24-hour sampling period, close the valve, remove the flow-rate controllers and vacuum gauges, install caps on canisters, and record the time at the end of the sampling period.
- 3. Place the sub-slab soil vapor and co-located IA sample, and the first floor IA sample canisters in shipping containers for transportation to laboratory.
- 4. Repeat procedure for all sampling locations.

## 4.3 SSDS and SVE System Vacuum Monitoring

A network of 6 vacuum monitoring points (MP-1 through MP-6) was installed during remedial action implementation at strategic locations to inspect induced vacuum conditions during the operation of the SSDS and SVE system. Vacuum will be monitored at these locations at regular intervals as designated in the SMP. The procedures for instantaneously screening the vacuum monitoring points are as follows:

- Slowly remove the access manhole.
- Attach the analog vacuum gauge or digital manometer with male Quick-Connect fitting to the female Quick-Connect fitting at the monitoring point and document reading.
- Detach vacuum gauge/manometer and confirm that Quick-Connect female fitting is closed/sealed.
- Replace the access manhole and twist to tighten seal.

## 4.4 Influent/Effluent Vapor Sampling

Confirmatory effluent vapor sampling will be conducted following 6 months and 12 months after startup (and as determined by the SMP and NYSDEC thereafter) as part of a reassessment of VOC emissions calculations according to the following procedure:

- Confirmatory sampling will comprise grab samples from each individual SVE line and combined influent, intermediate and effluent samples, as appropriate.
- A Gilian GilAir plus (or equivalent) pump will be used to extract influent/effluent vapors from each of the sample ports installed on the SVE line. A 1-liter tedlar bag will be filled with extracted vapors by attaching dedicated silicon-lined or silicon tubing from the sampling port to the inlet of the pump. The tedlar bag fill port will be attached to the outlet of the pump. Both ports will be opened and the pump will be started. The pump rate will be throttled to fill the 1-liter Tedlar bag in approximately 10 minutes, resulting in a an approximate air flow rate of 0.1 liters per minute. The tedlar bag will be removed after its fill port has been closed.
- The tedlar bag will be properly labeled and enclosed in a zip-lock bag which will be used as an added protection layer to ensure safety in transit to the laboratory.

- The tubing used will be replaced after each sample collected.
- Place tedlar bars in a shipping container for transportation to laboratory (do not put the tedlar bags on ice).
- Samples will be collected in accordance with the QAPP and analyzed for CVOCs by EPA Method TO-15.
- Decontaminate all non-dedicated sampling equipment between sampling locations as described in Section 3.3 of this QAPP.

## 4.5 Carbon Sampling

Based on monitoring inspections performed during the operation of the SVE system, a representative grab sample of spent carbon will be collected and submitted for laboratory analysis prior to off-site disposal according to the following procedure:

- Access carbon treatment filter in accordance with manufacturer's specification and component manuals.
- Note any visual or field observations.
- Collect one aliquot of spent carbon material into a laboratory supplied sampling container.
- Relinquish sealed sampling container to a certified laboratory for analysis of total VOCs.

## 4.6 Condensate Water Sampling

Based on monitoring inspections performed during the operation of the SVE system, a representative sample of condensate water will be collected and submitted for laboratory analysis prior to off-site disposal according to the following procedure:

- Slowly remove the lid of the 55-gallon drum containing the collected condensate water and immediately measure the vapor concentrations in the well with a PID calibrated to the manufacturer's specifications.
- Lightly stir the water in the drum with clean, dedicated sample collection equipment or tubing to homogenize the collected condensate water.
- Collect a representative sample directly from a dedicated bailer or tubing connected to a peristaltic pump and place into the required sample containers. Sample should be collected for VOCs and submitted to a NYSDOH-certified laboratory.

## 4.7 LABORATORY METHODS

Table 1 summarizes the laboratory methods that will be used to analyze field samples and the sample container type, preservation, and applicable holding times. Eurofins Environment Testing America - Edison of Edison, New Jersey, a NYSDOH ELAP-certified laboratory subcontracted to AKRF, will be used for all chemical analyses in accordance with the Division of Environmental Remediation (DER)-10 2.1(b) and 2.1(f) with Category B Deliverables.

| Matrix                                     | Analysis                                                             | EPA Method                               | Bottle Type                                                  | Preservative                                        | Hold Time                                                                                                                                 |
|--------------------------------------------|----------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | Volatile Organic<br>Compounds<br>(VOCs)                              | 8260C                                    | EnCore <sup>®</sup><br>samplers (3) and<br>2 oz. plastic jar | ≤6 °C                                               | 48 hours to<br>extract;<br>14 days to<br>analyze                                                                                          |
|                                            | Semivolatile<br>Organic<br>Compounds<br>(SVOCs)                      | 8270D                                    | 8 oz. Glass Jar                                              | ≤ 6 °C                                              | 14 days to<br>extract;<br>40 days to<br>analyze                                                                                           |
|                                            | 1,4-Dioxane                                                          | 8270D; 0.1<br>mg/kg RL                   | 4 oz. Glass Jar                                              | ≤ 6 °C                                              | 14 days to<br>extract;<br>40 days to<br>analyze                                                                                           |
| Soil (if needed)                           | Total Analyte<br>List (TAL)<br>Metals, and<br>Hexavalent<br>Chromium | 6000/7000<br>Series, 6010C,<br>and 7196A | 8 oz. Glass Jar                                              | ≤ 6 °C                                              | 6 months<br>holding time;<br>Mercury 28<br>days holding<br>time;<br>Hexavalent<br>chromium 30<br>days to extract,<br>7 days to<br>analyze |
|                                            | Pesticides                                                           | 8081B                                    | 8 oz. Glass Jar                                              | ≤ 6 °C                                              | 14 days to<br>extract;<br>40 days to<br>analyze                                                                                           |
|                                            | Polychlorinated<br>Biphenyls<br>(PCBs)                               | 8082A                                    | 8 oz. Glass Jar                                              | ≤ 6 °C                                              | 14 days to<br>extract;<br>40 days to<br>analyze                                                                                           |
|                                            | Per- and<br>Polyfluorinated<br>Compounds<br>(PFAS)                   | Modified 537.1;<br>0.2 ng/L RL           | 4 oz. HDPE<br>Plastic<br>Container                           | ≤ 6 °C                                              | 14 days to<br>extract;<br>40 days to<br>analyze                                                                                           |
| Groundwater                                | Chlorinated<br>VOCs (CVOCs)                                          | 8260C                                    | 3 40 mL Glass<br>Vials                                       | HCl to pH < $2 \text{ and } \le 6 ^{\circ}\text{C}$ | 14 days to<br>analyze                                                                                                                     |
| Sub-Slab Soil<br>Vapor                     | o-Slab Soil VOCs TO-15 6L Summa<br>Canisters                         |                                          | None                                                         | 30 days                                             |                                                                                                                                           |
| Indoor Air                                 | VOCs                                                                 | TO-15                                    | 6L Summa<br>Canisters<br>(24-hr flow<br>controllers)         | None                                                | 30 days                                                                                                                                   |
| Influent/Effluent<br>SVE and SSDS<br>Vapor | CVOCs                                                                | TO-15                                    | 1L Tedlar Bag                                                | None                                                | 72 hours                                                                                                                                  |
| Carbon<br>Sampling                         | VOCs                                                                 | 8260C                                    | EnCore sampler                                               | 4°C                                                 | 48 hours                                                                                                                                  |

Table 1Laboratory Analytical Methods

| Condensate<br>Water Sampling                                               | VOCs | 8260C | 3 40 mL Glass<br>Vials | HCl to pH < $2 \text{ and } \le 6 ^{\circ}\text{C}$ | 14 days to<br>analyze |  |
|----------------------------------------------------------------------------|------|-------|------------------------|-----------------------------------------------------|-----------------------|--|
| Notes:                                                                     |      |       |                        |                                                     |                       |  |
| EPA - Environmental Protection Agency<br>HDPE – High Density Poly Ethylene |      |       |                        |                                                     |                       |  |

## 4.8 QUALITY CONTROL (QC) SAMPLING

In addition to the laboratory analysis of the groundwater samples, additional analysis will be included for QC measures, as required by the Category B sampling techniques. These samples will include field blank, trip blank, matrix spike/matrix spike duplicate (MS/MSD), and blind duplicate samples at a frequency of one sample per 20 field samples collected. QC samples will be analyzed for the same parameters as the accompanying samples, with the exception of any trip blanks, which will be analyzed for the VOC list only.

|                                             |                                                                          |                                                             |                  | QC Samples             |                     |                |                                |
|---------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------|------------------|------------------------|---------------------|----------------|--------------------------------|
| Sample Type                                 | Parameters                                                               | EPA<br>Method <sup>1</sup>                                  | Field<br>Samples | Duplicate <sup>3</sup> | MS/MSD <sup>3</sup> | Field<br>Blank | Trip Blank <sup>2</sup>        |
|                                             | VOCs                                                                     | EPA 8260C                                                   | TBD              | 1/20<br>(TBD)          | 1/20<br>(TBD)       | 1/20<br>(TBD)  | 1<br>(Laboratory-<br>Supplied) |
| Soil                                        | SVOCs,<br>TAL<br>Metals,<br>Mercury,<br>PCBs,<br>Pesticides,<br>and PFAS | EPA 8270D,<br>6010C/7471B,<br>8082A,<br>8081B, and<br>537.1 | TBD              | 1/20<br>(TBD)          | 1/20<br>(TBD)       | 1/20<br>(TBD)  | NA                             |
| Groundwater                                 | CVOCs                                                                    | EPA 8260                                                    | TBD              | 1/20<br>(TBD)          | 1/20<br>(TBD)       | 1/20<br>(TBD)  | 1                              |
| Sub-Slab Soil Vapor                         | VOCs                                                                     | TO-15                                                       | 6                | 1                      | NA                  | NA             | 1 Ambient<br>Air               |
| Indoor Air                                  | VOCs                                                                     | TO-15                                                       | 18               | 1                      | NA                  | NA             | 1 Ambient<br>Air (TBD)         |
| Influent/Intermediate/Effluent<br>SVE Vapor | CVOCs                                                                    | TO-15                                                       | 3                | 1                      | NA                  | NA             | 1                              |

 Table 2

 Field Sample and QC Sample Quantities

Notes:

MS/MSD - matrix spike/matrix spike duplicate

TBD - To be determined based on planned work activities

NA - Not Applicable

<sup>1</sup> - NYSDEC July 2005 ASP Category B deliverables

<sup>2</sup>-One trip blank per shipment with VOC analyses

<sup>3</sup> - One MS/MSD and Duplicate sample per twenty field samples or sample shipment

## 4.9 SAMPLE HANDLING

#### 4.9.1 Sample Identification

All samples will be consistently identified in all field documentation, chain-of-custody (COC) documents, and laboratory reports. All samples will be amended with a collection date at the end of the sample same in a year, month, day (YYYYMMDD) format. Blind duplicate sample nomenclature will consist of the sample type, followed by an "X"; MS/MSD samples nomenclature will consist of the parent sample name, followed by "MS/MSD"; and trip and field blanks will consist of "TB-" and "FB-", respectively, followed by a sequential number of the trip/field blanks collected within the SDG. Special characters, including primes/apostrophes ('), will not be used for sample nomenclature.

## 4.9.1.1. Site Management (SM) Sample Identification

All samples will be consistently identified in all field documentation, chain-of-custody documents and laboratory reports using an alpha-numeric code. Groundwater samples collected during the Site Management phase will be identified with "RI-MW-" followed by groundwater monitoring well number. The field duplicate samples will be labeled with a dummy sample location to ensure that they are submitted as blind samples to the laboratory. Trip blanks and field blanks will be identified with "TB" and "FB", respectively. Table 3 provides examples of the sampling identification scheme for samples collected during the Site management activities.

| bumple i tomencature                                                                                                                          |                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Sample Description                                                                                                                            | Sample Designation            |  |
| Groundwater sample collected from groundwater monitoring well<br>RI_MW-07A on August 1, 20223                                                 | RI-MW-07A_20230801            |  |
| Matrix spike/matrix spike duplicate sample of groundwater sample<br>collected from groundwater monitoring well RI-MW-07A on August 1,<br>2023 | RI-MW-<br>07A_20230801_MS/MSD |  |
| Blind duplicate sample of groundwater sample collected from groundwater monitoring well RI-MW-07A on August 1, 2023                           | RI-MW-X01_20230801            |  |
| Second trip blank collected on August 1, 2023                                                                                                 | TB-02_20230801                |  |
| Sub-slab soil vapor sample collected from sub-slab soil vapor point MP-<br>01 on August 1, 2023                                               | MP-01_20230801                |  |
| Indoor air sample collected from the cellar of the building on August 1, 2023                                                                 | IA-01_20230801                |  |
| Soil sample (if needed) collected from 1 to 2 feet below basement grade<br>on August 1, 2023                                                  | SS-01_20230801                |  |
| SVE effluent sample collected from the effluent port on August 1,2023                                                                         | SVE-EFF_20230801              |  |

# Table 3Sample Nomenclature

WC-D1 20230801

## 4.9.1.2. Waste Classification

Any waste classification samples (if needed) will be amended with "WC-" and the alphanumeric drum identification. Table 4 provides examples of the sampling identification scheme for proposed waste classification samples.

| Table 4                                  |                    |  |
|------------------------------------------|--------------------|--|
| Waste Classification Sample Nomenclature |                    |  |
| Sample Description                       | Sample Designation |  |

## Sample Labeling and Shipping

All sample containers will be provided with labels containing the following information:

• Project identification, including Site name, BCP Site number, Site address

Waste classification sample collected from Drum 1 on August 1, 2023

- Sample identification
- Date and time of collection
- Analysis(es) to be performed
- Sampler's initials

Once the samples are collected and labeled, they will be placed in chilled coolers (except for sub-slab soil vapor or IA samples) and stored in a cool area away from direct sunlight to await shipment to the laboratory. All samples will be shipped to the laboratory at least twice per week. At the start and end of each workday, field personnel will add ice to the cooler(s) as needed.

The samples will be prepared for shipment by placing each sample in laboratory-supplied glassware, then wrapping each container in bubble wrap to prevent breakage, and adding freezer packs and/or fresh ice in sealable plastic bags. The COC form will be properly completed by the sampler in ink, and all sample shipment transactions will be documented with signatures, and the date and time of custody transfer. Samples will be shipped overnight (e.g., Federal Express) or transported by a laboratory courier. All coolers shipped to the laboratory will be sealed with mailing tape and a COC seal to ensure that the samples remain under strict COC protocol.

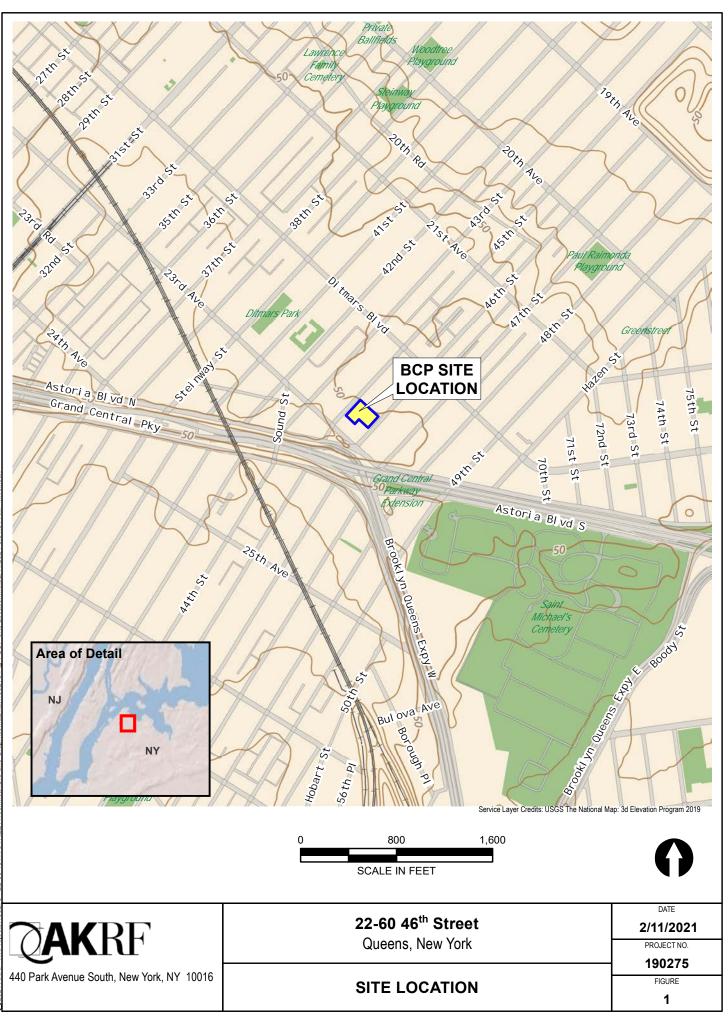
#### Sample Custody

Field personnel will be responsible for maintaining the sample coolers in a secured location until they are picked up and/or sent to the laboratory. The record of possession of samples from the time they are obtained in the field to the time they are delivered to the laboratory or shipped off-site will be documented on COC forms. The COC forms will contain the following information: project name; names of sampling personnel; sample number; date and time of collection and matrix; and signatures of individuals involved in sample transfer, and the dates and times of transfers. Laboratory personnel will note the condition of the custody seal and sample containers at sample check-in.

#### AKRF, Inc.

# 4.10 FIELD INSTRUMENTATION

Field personnel will be trained in the proper operation of all field instruments at the start of the field program. Instruction manuals for the equipment will be on file at the Site for referencing proper operation, maintenance, and calibration procedures. The equipment will be calibrated according to manufacturer specifications at the start of each day of fieldwork. If an instrument fails calibration, the project manager or QA/QC officer will be contacted immediately to obtain a replacement instrument. A calibration log will be maintained to record the date of each calibration, any failure to calibrate and corrective actions taken. The PID will be equipped with a 10.6 electron volt (eV) lamp and will be calibrated each day using 100 parts per million (ppm) isobutylene standard gas in accordance with the manufacturer's standards.


## 4.11 QUALITY ASSURANCE (QA)

All soil and groundwater laboratory analytical data will be reviewed by a third-party validator and a Data Usability Summary Report (DUSR) will be prepared to document the usability and validity of the data. The objective of the third-party validator is to provide an unbiased review to confirm that the laboratory followed all method and reporting requirements, and to provide a basis for making decisions about the minimum quality of environmental data that is sufficient to support risk assessment remedial performance decisions. The quarterly reports will include a detailed description of sampling activities, data summary tables, concentration map showing sample locations and concentrations, DUSR, and laboratory reports.

# 4.12 **REPORTING OF DATA**

All data generated during the monitoring activities will be submitted in the appropriate EQuIS<sup>™</sup> EDD format.

FIGURES



mveilleux mxd2/11/2021 8:31:04 AM zmat\190275 Fig 1 BCP Site | 46TH 99-AKRF C 2021

ATTACHMENT A

RESUMES OF PROJECT DIRECTOR, PROJECT MANAGER, PROJECT MANAGER ALTERNATE, AND FIELD TEAM LEADER

# **REBECCA KINAL, P.E.**

#### VICE PRESIDENT

Rebecca Kinal has over 20 years of experience in the assessment and remediation of soil and groundwater contamination and other hazardous/non-hazardous waste problems. Ms. Kinal's experience includes environmental due diligence, soil and groundwater investigations, leaking underground storage tank studies, soil gas/vapor intrusion surveys, and oversight of small- and large-scale remediation programs, including design of groundwater remediation systems and vapor mitigation systems. She has directed numerous Phase I and Phase II investigations and remediation programs, many of them in conjunction with commercial/residential developers, law firms, lending institutions, and public agencies. She is experienced in the cleanup of contaminated properties under New York State Brownfield Cleanup Program (BCP) regulations and the New York City "E-designation" program. As a part of this work, her duties have included technical and report review, proposal writing, scheduling, budgeting, and acting as liaison between clients and regulatory agencies, and project coordination with federal, state, and local authorities.

## BACKGROUND

#### **Education**

M.S., Hydrogeology, Rensselaer Polytechnic Institute, 1995 B.S., Civil Engineering, Lafayette College, 1992

## Licenses/Certifications

State of New York, P.E. Registration No. 082046, 2004

#### Years of Experience

Year started in company: 2000 Year started in industry: 1996

## **RELEVANT EXPERIENCE**

#### White Plains Mall/Hamilton Green

Ms. Kinal managed environmental due diligence and remediation planning for the project, which included Phase I and II environmental assessments, a petroleum Spill investigation, preparation of remediation cost estimates, and application to the NYSDEC BCP.

# New York City School Construction Authority On-Call Contracts for Environmental Consulting Services, Various Sites, NY

Ms. Kinal serves as the project manager for AKRF's on-call hazardous materials consulting contract with the New York City School Construction Authority for over 8 years. For potential new school sites, assignments include initial due diligence, Phase I environmental site assessments, (ESAs) and subsurface investigation of soil, groundwater, and soil vapor to determine the suitability of a site for development as a school, likely remediation requirements, and associated costs. For sites undergoing design and development, assignments include preparation of remediation plan, contract specifications, and design drawings. The work has also included conducting indoor air quality testing, vapor intrusion assessments, preparation of specifications, supervision of storage tank removals, and investigation and remediation of spills for existing schools. Due to the sensitivity of school sites, work under this contract is often conducted on short notice and during non-school hours.



## REBECCA KINAL, P.E.

VICE PRESIDENT-ENVIRONMENTAL p. 2

## USTA National Tennis Center, Queens, NY

AKRF prepared an EIS for the New York City Departments of City Planning (DCP) and Environmental Protection (DEP) as co-lead agencies to analyze the expansion of the National Tennis Center, which includes multiple improvements and construction projects at the USTA campus over several years. As part of the EIS requirements, AKRF prepared a Remedial Action Plan for implementation during the proposed project's construction. In accordance with the RAP, vapor mitigation systems were incorporated into the design for several of the proposed structures at the facility, including two new stadiums, a new transportation center, and several practice court facilities. Ms. Kinal prepared the specifications and design drawings for the vapor mitigation and is providing on-going construction support to review contractor submittals and inspect the vapor barrier and sub-slab depressurization system installations.

## Montefiore Medical Center, Various Locations, NY

Ms. Kinal provides due diligence assistance to Montefiore Medical Center (MMC) for the ongoing expansion of their facilities, primarily in the Bronx and Westchester County. She conducts and manages environmental due diligence tasks related to their property transactions, including Phase I Environmental Site Assessments (ESAs), Phase II investigations, and geophysical surveys. She also assists MMC in making decisions with respect to environmental risk issues.

## Queens West Development Project, Long Island City, NY

For over 20 years, AKRF has played a key role in advancing the Queens West development, which promises to transform an underused industrial waterfront property into one of largest and most vibrant mixed-use communities just across the East River from the United Nations. AKRF has prepared an Environmental Impact Statement that examines issues pertaining to air quality, land use and community character, economic impacts, historic and archaeological resources, and infrastructure. As part of the project, AKRF also undertook the largest remediation ventures completed to date under the NYSDEC Brownfields Cleanup Program (BCP). Ms. Kinal helped prepare the Remedial Work Plan (RWP) and oversaw the remediation of Parcel 9, a 1.8-acre former industrial site. Remediation includes installation of a sheet pile containment wall, excavation of coal tar- and petroleum-contaminated soil under a temporary structure to control odors during remediation, vapor mitigation for the future buildings, and institutional controls. Upon completion of the remediation activities, Ms. Kinal managed the preparation of a Final Engineering Report (FER) to document the clean-up activities. The NYSDEC issued a Certificate of Completion (COC) for the Parcel 9 site in December 2006. Ms. Kinal continues to oversee post-remediation monitoring and site management activities to ensure that the remedy remains in-place and effective.

## Roosevelt Union Free School District, Roosevelt, NY

Ms. Kinal managed environmental investigation and remediation activities for the sites of three new elementary schools and a new middle school in Roosevelt, New York. Remediation activities include removal/closure of contaminated dry wells and underground petroleum storage tanks, and excavation and off-site disposal of petroleum- and pesticide-contaminated soil. Remediation of the new middle school site, which also included a sub-slab depressurization system, was conducted through coordination with the NYSDEC, NYSDOH, New York State Education Department (NYSED), and the local school district. Upon completion of the remediation and school construction, Ms. Kinal managed confirmatory indoor air testing and preparation of a Final Engineering Report to document the site clean-up. The NYSDEC issued a Certificate of Completion and the school was open for the Fall 2008 semester as planned.

## Proposed NYC Public School Campus, Bronx, NY

Ms. Kinal provided environmental consulting services to the selected environmental remediation contractor for this former manufactured gas plant in the Mott Haven neighborhood of the Bronx, which was remediated under the NYSDEC BCP. These services included: preparation of an in situ sampling plan and excavation plan for waste



## REBECCA KINAL, P.E.

## VICE PRESIDENT-ENVIRONMENTAL p. 3

characterization and disposal; supervision of waste characterization sampling activities; development and implementation of a community air monitoring program during all remediation activities; and daily reporting to the NYC School Construction Authority.

## National Grid - Halesite Manufactured Gas Plant Site, Town of Huntington, NY

Ms. Kinal served as the project manager for the remedial design and engineering work associated with remediation of National Grid's former manufactured gas plant (MGP) located in the Town of Huntington. The site is situated in a sensitive location along the waterfront, surround by commercial and residential properties, and half the property where the remediation was conducted is a steep slope. The remedy consisted of soil removal, oxygen injection, and non-aqueous phase liquid recovery. Ms. Kinal developed the remedial work plans, design/construction documents, and managed environmental oversight of the remedial work, including waste characterization and tracking, confirmatory endpoint sampling, air monitoring, and reporting to the NYSDEC. After the remediation work was completed, Ms. Kinal prepared appropriate close-out documentation in accordance with NYSDEC requirements.

## Shell Service Station, Millwood, NY

Ms. Kinal planned and oversaw a Phase I Environmental Site Assessment and Phase II Subsurface Investigation of this active gasoline station in northern Westchester County. The Phase I/Phase II investigations were performed for the potential buyer of the property who wished to redevelop it with a more modern service station and convenience store. Ms. Kinal also prepared a conceptual remediation plan to address several areas of petroleum contamination identified during the Phase II. The plan, which was approved by NYSDEC, will be implemented in conjunction with the site redevelopment activities to achieve closure for several spills reported at the site.

## Pelham Plaza Shopping Center Site Investigation & Remediation, Pelham Manor, NY

Ms. Kinal managed a Site Investigation at Pelham Plaza, an approximately ten-acre site that formerly contained a manufactured gas plant. The site was investigated under a voluntary clean-up agreement entered into with the NYSDEC by the site owner. The site investigation included advancing over 100 soil borings with continuous soil sampling to bedrock, installing monitoring and recovery wells, and conducting test pitting both indoor and outdoor locations to collect soil and groundwater samples and determine the extent of Non-Aqueous Phase Liquid (NAPL). The investigation also included: soil gas sampling to determine contaminant concentrations in the vapors beneath the foundation of an on-site retail store; sediment sampling in an adjacent creek to identify off-site impacts; and a tidal survey to determine tidal influence on groundwater levels at the site. Ms. Kinal also oversaw interim remedial measures, which include biweekly pumping of recovery wells to remove dense NAPL (DNAPL) from the site subsurface.

## Shaws Supermarket Redevelopment Project, New Fairfield, CT

Ms. Kinal managed the Remedial Investigation (RI) for an approximately nine-acre shopping center site that was contaminated by releases from former dry cleaning operations. The site was being redeveloped with a new supermarket and separate retail stores. The investigation included the installation of monitoring wells in the intermediate overburden aquifer and bedrock aquifer, sampling of existing and newly installed wells, geophysical logging in bedrock wells, and pump testing in intermediate and bedrock wells. Ms. Kinal prepared a Remedial Action Work Plan (RAWP) based on results from the RI, which included a groundwater pump and treat system to contain a plume of perchlorethylene (PCE)-contaminated groundwater, and excavation and disposal of contaminated soil in the presumed source area. Following CTDEP approval of the RAWP, Ms. Kinal prepared bid specifications for soil excavation and remediation system installation, and oversaw their implementation. Ms. Kinal also prepared NPDES permit applications for discharges from construction dewatering and the groundwater remediation system, and conducted associated discharge monitoring.



## **REBECCA KINAL, P.E.**

## VICE PRESIDENT-ENVIRONMENTAL p. 4

## Yankee Stadium, Bronx, NY

Ms. Kinal performed the hazardous materials analysis for the Draft Environmental Impact Statement for the proposed new Yankee Stadium. The analysis included a Phase I Environmental Site Assessment of the entire project area and Subsurface (Phase II) Investigation in areas where environmental conditions were identified. The Phase II investigation included geophysical surveys to search for potential underground storage tanks; and soil, soil gas, and groundwater sampling at over 40 locations to determine potential environmental impacts during and after the proposed construction. Ms. Kinal also developed an extensive community air monitoring plan and oversaw its implementation during deconstruction of the old Yankee Stadium.

## Avalon on the Sound, New Rochelle, NY

Ms. Kinal oversaw environmental investigation and soil remediation during the construction of two luxury highrise apartment buildings and an associated parking garage. Investigation activities included an electromagnetic survey to search for possible underground storage tanks, and subsurface sampling to characterize soil and groundwater. Remediation activities included removing underground storage tanks, excavating and disposing of soil contaminated with volatile and semi-volatile organic compounds, and collecting end-of-excavation confirmation samples.

## Davids Island Environmental Audit, New Rochelle, NY

Ms. Kinal managed the hazardous materials portion of the audit of this undeveloped island site, including a Phase I Environmental Site Assessment (ESA) and Subsurface (Phase II) Investigation in areas where environmental conditions were identified. The Phase II investigation included collecting soil samples from more than 100 locations and analyzing them for targeted compounds, including volatile organic compounds, semi-volatile compounds, metals, pesticides, and polychlorinated biphenyls (PCBs). Ms. Kinal also oversaw an electromagnetic (EM) survey conducted to identify the location of suspected underground storage tanks on the island. Based on soil sample results, Ms. Kinal estimated the volume of contaminated soil requiring remediation and prepared cost estimates for soil excavation and for transportation and disposal of contaminated soil and hazardous materials.

## Outlet City Site Investigation, Queens, NY

Ms. Kinal prepared a work plan for remedial investigation of the Outlet City site, a property in Long Island City that was formerly occupied by a manufacturer of industrial cleaners and pharmaceuticals. The site is being investigated and remediated under the NYSDEC voluntary clean-up program. In preparing the work plan, Ms. Kinal evaluated results from several previous investigations and conducted a limited groundwater sampling program to determine future data needs for designing remediation of creosote-contaminated soil and groundwater. The work plan included additional soil and groundwater sampling, a tidal survey to determine tidal influence on groundwater levels, and pilot free product recovery testing. Ms. Kinal also helped design a venting system for an on-site basement and performed exposure calculations for the vented vapors.

## Yonkers Waterfront Redevelopment Project, Yonkers, NY

For this redevelopment along Yonkers' Hudson River waterfront, Ms. Kinal supervised the remediation of Parcels H and I that were contaminated with hazardous soil. During the remediation process, she reviewed the subcontractor health and safety plans, delineated the areas of excavation, and oversaw field activities to ensure compliance with the specifications and appropriate regulations. This property was remediated under the NYSDEC Environmental Restoration Program (ERP).



## DEBORAH SHAPIRO, QEP

## VICE PRESIDENT

Deborah Shapiro is a Vice President in the Site Assessment and Remediation Department. Ms. Shapiro supervises project teams and manages all aspects of assessment and remediation projects across the New York Metropolitan Area. Ms. Shapiro works with developers, non-profit organizations, architects, local community groups, local businesses, and government agencies. Her projects fall under the regulatory oversight of NYSDEC, NYCDEP, and NYCOER including the New York State Brownfield Cleanup Program (BCP), New York City Voluntary Cleanup Program (VCP), NYSDEC petroleum spills program, RCRA/UIC closures, and NYCOER's E-designation program. Ms. Shapiro has also assisted commercial and industrial property owners with maintaining the integrity of their portfolios by providing compliance related cleanup and chemical storage management services. Ms. Shapiro has also been a moderator and panelist at numerous conferences.

Ms. Shapiro manages all aspects of redevelopment projects from the initial Phase I ESA, Phase II, and remediation through post-remedial site management. In addition, her experience includes groundwater investigations, monitoring, and sampling programs; Brownfield and hazardous waste site investigations; In-Situ Chemical Oxidation; underground storage tank studies, including soil contamination delineation, classification, removal and disposal; waste characterization sampling; exposure assessments; on-going remedial action (especially AS/SVE), and permitting.

## BACKGROUND

## Education

M.S., Environmental Science, American University, 2001 B.A., Environmental Studies, American University, 1998

## Professional Licenses/Certifications

Qualified Environmental Professional Health and Safety Operations at Hazardous Materials Sites 29 CFR 1910.120 OSHA 8 Hour HAZWOPER Supervisor OSHA 10 Hour Occupational Construction Safety and Health CPR

## Professional Memberships

Past President, New York City Brownfield Partnership Board Member, Residents for a More Beautiful Port Washington Member, Institute of Professional Environmental Practitioners (IPEP)

## Awards

Big Apple Brownfield Award recipient as part of the Elton Crossing redevelopment team 2017 Big Apple Brownfield Award recipient as part of the Courtlandt Crescent redevelopment team 2013 Big Apple Brownfield Award recipient as part of the Via Verde redevelopment team 2012 Big Apple Brownfield Award recipient as part of the Cornerstone B1 (LaTerraza) redevelopment team 2011

## Years of Experience

Year started in company: 2013 Year started in industry: 1998



## DEBORAH SHAPIRO, QEP

VICE PRESIDENT p. 2

## **RELEVANT EXPERIENCE**

#### Elton Crossing, Bronx, NY

AKRF provided environmental consulting services in connection with the purchase and redevelopment of the Elton Crossing site at 899 Elton Avenue in the Bronx, NY. The work initially involved the preparation of a Phase II subsurface investigation including soil and soil vapor testing to determine if the site would be eligible for the New York State Brownfield Cleanup Program (NYSBCP). Upon completion of the investigation, AKRF prepared a NYCBCP Application and the site was accepted into the NYSBCP. AKRF managed all aspects of the brownfield cleanup including; development of Investigation Work Plans, performing Remedial Investigations and Reports, preparation of Phase I ESAs, preparation of a Citizen Participation Plan, distribution of public notices, preparation of the Final Engineering Report and Site Management Plan, and sampling and management of soil disposal. AKRF is in the midst of implementing the Site Management Plan. As project manager, Ms. Shapiro was responsible for managing all technical components of the project, communication with NYSDEC and the Client, and managing the budget.

#### Second Farms, Bronx, NY

AKRF, Inc. was initially contracted by the New York City Office of Environmental Remediation (NYCOER) to conduct a subsurface investigation of a 1.12-acre parcel in the Bronx, New York under the United States Environmental Protection Agency (USEPA) Brownfield Assessment Grant program. The investigation included a geophysical survey and utility mark-outs, and the collection and analysis of soil, groundwater, soil vapor, indoor air and ambient air samples. AKRF continued working on the project for the developer by preparing a Remedial Action Plan and Environmental Assessment Statement. AKRF is in the midst of implementing the remedy.As project manager, Ms. Shapiro was responsible for managing all technical components of the project, communication with OER, NYCDEP, and the Client, and managing the budget.

#### Bradhurst Cornerstone II Residences, Manhattan, NY

AKRF, Inc. prepared a Part 58 Environmental Assessment and a City Environmental Quality Review Environmental Assessment Statement for the Bradhurst Cornerstone II Apartments project. Issues of concern for the environmental review included the identification of project commitments for certain of the four sites related to historic resources, hazardous materials, air quality, and building attenuation. As part of the mitigation of hazardous materials, AKRF conducted a Phase II investigation, and prepared a Remedial Action Plan and Construction Health and Safety Plan. As project manager, Ms. Shapiro was responsible for managing all technical components of the hazardous materials portion of the project, communication with the regulatory agency and the Client, and managing the budget.

#### Lambert Houses, Bronx, NY

AKRF performed an EIS of the Lambert Houses affordable housing complex located in the West Farms section of the Bronx, NY. Lambert Houses consisted of multi-story apartment buildings, parking garage, and a multitenant retail/commercial building alongside the elevated NYC subway. AKRF also conducted a Phase I ESA with a vapor intrusion screen of the Property to satisfy HUD's vapor intrusion requirements. The Phase I and vapor intrusion screens were prepared in accordance with ASTM E1527-05, ASTM E2600, and EPA's All Appropriate Inquiry (AAI) rule. After completion of the EIS, an E designation for hazardous materials was placed on the Site. A Subsurface Investigation was conducted and a Remedial Action Work Plan was prepared under OER oversight. The Site was subsequently entered in the NYC Voluntary Cleanup Program. AKRF is in the midst of implementing the RAWP, which included remediation of a hydraulic oil spill. As project manager, Ms. Shapiro was responsible for managing all technical components of the hazardous materials portion of the project, communication with the regulatory agency and the Client, and managing the budget.



## DEBORAH SHAPIRO, QEP

VICE PRESIDENT p. 3

## Brook 156, Bronx, NY

AKRF was retained to provide environmental consulting services in connection with the purchase and development of the Site. AKRF prepared a Phase I Environmental Site Assessment (ESA) of the NYC-owned former gasoline service station and a former railroad. A Tier 1 Vapor Encroachment Screening was also conducted to satisfy HUD's vapor intrusion requirements. AKRF prepared a Remedial Investigation Work Plan (RIWP) and conducted a Remedial Investigation (RI) at the site, which included the collection and analysis of soil, soil vapor, and groundwater. The results of the RI, which were documented in a Remedial Investigation Report (RIR), were used to prepare a New York City Brownfield Cleanup Program (NYCBCP) application. The site was accepted into the New York State Brownfield Cleanup Program (NYSBCP). AKRF prepared a Citizen Participation Plan (CPP), distributed public notices, and conducted multiple Remedial Investigations to further investigate soil, soil vapor, and groundwater at the site prior to redevelopment. The results of the investigations were used to prepare a Remedial Action Work Plan (RAWP), which is undergoing review and approval by NYSDEC. The proposed remedy includes excavation of soil, design and installation of a soil vapor extraction system and sub-slab depressurization system. As project manager, Ms. Shapiro is responsible for managing all technical components of the project, communication with NYSDEC and the Client, and managing the budget.

## On-Call Environmental Consulting Services (Various Locations), New York City Mayor's Office of Environmental Remediation (OER) (administered by NYCEDC)

Ms. Shapiro is managing an on-call contract with the OER for brownfields environmental assessment and remediation. The work has included conducting Phase I environmental site assessments (ESAs) and multi-media sampling of soil, groundwater, and soil vapor for various sites funded by EPA grants. The work plans and investigation reports were completed in accordance with OER and EPA requirements. AKRF also implemented a remedial plan for capping a park site in Staten Island. In addition, AKRF provided support to OER and an affordable housing developer to expedite an application for entry into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP), as well as preparation and implementation of the remedial investigation and remedial plan.

## Atlantic Chestnut, Brooklyn, NY

AKRF was retained to provide environmental consulting services in connection with the purchase and redevelopment of former burned manufacturing buildings encompassing an entire city block in Brooklyn, New York. As part of due diligence, AKRF prepared a Phase I Environmental Site Assessment (ESA) Report for the property. After acquisition, the property was divided into three separate sites (3264 Fulton Street, 235 Chestnut Street, and 3301 Atlantic Avenue). AKRF prepared a Subsurface (Phase II) Investigation Work Plans and conducted Phase IIs at each of the sites, which included the collection and analysis of soil, soil vapor, and groundwater samples. Based on the results of the Phase IIs, which were documented in Subsurface (Phase II) Reports, New York State Brownfield Cleanup Program (NYSBCP) applications were prepared for each of the sites. After acceptance into the NYSBCP, AKRF prepared Citizen Participation Plans (CPPs) and distributed public notices. AKRF prepared Remedial Investigation (RI) Work Plans (RIWPs) and implemented numerous Remediation Investigations for each of the sites to further investigate contaminated media at the site prior to redevelopment, and prepared the RI Reports (RIRs). AKRF is in the midst of preparing Interim Remedial Work Plans for each Site, which include installation of a Soil Vapor Extraction to prevent the off-site migration of contaminants. As project manager, Ms. Shapiro was responsible for managing all technical components of the project, communication with NYSDEC and the Client, and managing the budget.



## **ADRIANNA BOSCO**

## **TECHNICAL DIRECTOR**

Adrianna Bosco is a Technical Director in AKRF's Site Assessment and Remediation Department. She has experience in navigating redevelopment projects through regulatory requirements under local and state programs. Ms. Bosco has worked closely with projects enrolled in the NYSDEC Brownfield Cleanup Program, the New York City Voluntary Cleanup Program, and NYSDEC petroleum spills program, from initial stages of investigation and remediation, through site closure and post-remedial management. Ms. Bosco also has experience in preparing Phase I Environmental Site Assessments and Subsurface (Phase II) Investigations, in addition to conducting environmental/construction oversight and the associated reporting elements. Prior to joining AKRF, she worked as an Environmental Scientist for PS&S Engineering, Inc.

## BACKGROUND

## **Education**

BS, Manhattan College, Environmental Engineering, 2011

#### Licenses/Certifications

OSHA 40 Hour HAZWOPER OSHA 8 Hour Refresher

#### **Professional Memberships**

Committee Member - Policy Innovation Network, Citizens Housing Planning Council

#### Years of Experience

11 years in the industry 8 years with AKRF

#### **Contact Information**

440 Park Avenue South, 7<sup>th</sup> Floor New York, NY 10016 P: (646) 388-9576 E: <u>abosco@akrf.com</u>

## **RELEVANT EXPERIENCE**

## 22-60 46th Street, Queens, NY

AKRF is providing environmental consulting services during to further investigate and remediate the property under the Brownfield Cleanup Program. This property has a long history of industrial and manufacturing uses, including a knitting mill and electronics manufacturer. As a result of the former operations, soil vapor beneath the site is contaminated with chlorinated solvents. As Project Manager, Ms. Bosco led the Remedial Investigation and assisted in the design and implementation of an active sub-slab depressurization system, soil vapor extraction system, and in-situ groundwater treatment program. Ms. Bosco oversees the day-to-day activities during remediation, and was the primary author of the Final Engineering Report and Site Management Plan.

## 601 West 29th Street, Manhattan, NY

This site is currently enrolled in the Brownfield Cleanup Program and contains E-Designations for air quality, noise, and hazardous materials. Historically, the site was developed with various industrial and automotive operations since the early 1800s. As the Project Manager, Ms. Bosco managed various pertinent tasks from



## **ADRIANNA BOSCO**

TECHNICAL DIRECTOR

preparation of the Brownfield Cleanup Program Application to implementation of the Remedial Investigation, and successfully managing the remediation. A Certificate of Completion was issued in December 2020. Ms. Bosco is also managing the post-remedial monitoring and site inspections.

#### East Side Coastal Resiliency (ESCR) Preliminary & Final Design, New York, NY

AKRF is leading a multidisciplinary design team that was selected by the New York City agency partnership of the New York Department of Design and Construction (NYCDDC), New York City Department of Parks and Recreation (NYC Parks), New York City Department of Transportation (NYCDOT), and the Mayor's Office of Recovery and Resiliency (ORR) to provide engineering, planning, landscape architecture, urban design and community engagement services for the Preliminary and Final Design Services for ESCR.

Adrianna conducted a portion of the 2016 subsurface investigation. The ESCR subsurface exploration program involved a review of available utility plans and environmental reports involving manufactured gas plant (MGP) and petroleum-related contamination. Responsibilities included groundwater sampling, soil boring and temporary well installation, and compliance with the Supplemental Subsurface Investigation Work Plan.

## 147-25 94th Avenue, Queens, NY

This historical meat refrigeration facility is enrolled in the Brownfield Cleanup Program to remediate the property and construct a 23-story affordable residential building. Although the site has an E-Designation for hazardous materials, noise, and air quality, AKRF assisted with applying for entry into the NYSDEC Brownfield Cleanup Program, due to the presence of contaminated soil and soil vapor beneath the site. AKRF is providing environmental consulting services throughout the project.

As the Deputy Project Manager, Ms. Bosco prepared the Brownfield Cleanup Program application and Remedial Action Work Plan. Ms. Bosco also managed field activities associated with the Remedial Investigation, to determine the vertical and horizontal extent of on-site contamination. During construction, Ms. Bosco managed the on-site remediation and prepared NYSDEC-required submittals and reports.

## 1888 Bathgate Avenue Redevelopment Site, Bronx, NY

AKRF provided environmental consulting services in connection to the investigation and remediation of an approximately 36,000-square foot parcel enrolled in the Brownfield Cleanup Program. This former steel door manufacturing facility was contaminated with chlorinated solvents, including tetrachloroethene. The selected remedy included site-wide excavation of soil and bedrock, continuous air monitoring, collection of post-excavation endpoint samples, and implementation of an in-situ groundwater treatment program.

As the Deputy Project Manager for this project, Ms. Bosco managed various field efforts, including a Remedial Design Investigation to develop the groundwater treatment program and implementation of the Remedial Action Work Plan. Upon completion of the remediation, Ms. Bosco prepared the Final Engineering Report and Site Management Plan for submission to the NYSDEC.

#### On-Call for Professional Services for an Environmental Assessment Statement (EAS), New York, NY

AKRF worked with NYCDDC, NYCDOT, and the New York State Department of Transportation (NYSDOT) on a full roadway and sidewalk reconstruction project along Main Street between 38th Avenue and 40th Road in Downtown Flushing, Queens. The goal of the project was focused on formalizing a NYCDOT pilot program for improving pedestrian circulation and safety in an area that experiences some of the highest pedestrian traffic in New York City given its proximity to the terminus of the 7-train subway line at Flushing Main Street station and Long Island Rail Road (LIRR) Flushing Main Street station as well as numerous bus routes, in conjunction with traffic study and analysis, and environmental impact analysis for the proposed widening of sidewalks within the project limits. This unique project tied together the interconnected relationship between the proposed reconstruction engineering and the balance of improving



## **ADRIANNA BOSCO**

TECHNICAL DIRECTOR

pedestrian accommodation, flow, and safety with maintaining modified vehicular flow and acceptable level of service along Main Street which experiences notably high volumes of intermodal pedestrian, train, bus, and vehicular traffic. Design scope included reconstruction of the roadway and curb to widen sidewalks, traffic study and analysis, and environmental impact assessment including Design Approval Document and Plans, Specifications and Estimate (PS&E) submission to NYSDOT for review and approval associated with Federal funding allocated for the project. AKRF developed the preliminary design and final design plans for the reconstruction project.

## New York City Mayor's Office of Environmental Remediation (OER) On-Call Contract, Various Locations, NY

The work has included conducting Phase I environmental site assessments (ESAs) and multi-media sampling of soil, groundwater, and soil vapor for various sites funded by U.S. Environmental Protection Agency (USEPA) grants. The work plans and investigation reports were completed in accordance with OER and USEPA requirements. AKRF also implemented a remedial plan for capping a park site in Staten Island. In addition, AKRF provided support to OER and an affordable housing developer to expedite an application for entry into the New York State Department of Environmental Conservation (NYSDEC) BCP, as well as preparation and implementation of the remedial investigation and remedial plan.

#### On-Call Environmental Consulting for NYCSCA, Various locations, NY

AKRF's on-call hazardous materials consulting contract with NYCSCA. AKRF performed lead in drinking water sampling in about 160 schools during two three-month periods. AKRF continues to provide lead sampling, reporting and remedial recommendations, as new plumbing is installed. AKRF also oversees plumbing disinfection work, which is required prior to new plumbing being placed into service. The assignments involve reviewing and commenting on disinfection plans, supervision of the disinfection and confirmation testing, and preparation of reports documenting the work was conducted in accordance with the specifications and applicable requirements. Due to the sensitivity of school sites, work under this contract is often conducted on short notice and during non-school hours.

Adrianna worked on the following assignments under this contract:

- PS 11Q Addition
- PS 340M Design
- PS K680 Design
- Upk Sites Brooklyn, Staten Island, and the Bronx

#### New York City Housing Authority (NYCHA), Settlement Housing Fund Inc., Twin Parks Terrace, Bronx, NY

AKRF provided site assessment/remediation services on behalf of NYCHA in connection with a joint application for conversion of assistance under the U.S. Department of Housing and Urban Development (HUD)'s Rental Assistance Demonstration and Section 18 disposition programs. We then supported the public/private partnership formed between NYCHA and Highbridge Affordable Group for leasing, financing, capital rehabilitation, operation, property management, and social service delivery at several public housing developments in the Bronx, including Twin Parks West (Sites 1 and 2). AKRF proceeded to work on behalf of Settlement Housing Fund for Twin Parks Terrace, the proposed redevelopment of a parking lot adjacent to Twin Parks West (Sites 1 and 2). Twin Parks Terrace will be a 14-story building with 182 units of affordable housing, 10,000 square feet of commercial space, and 1,800 square feet of community facility space. Social services will be provided by BronxWorks.



## Ashutosh Sharma

## **Senior Environmental Professional**

Ashutosh Sharma is an Environmental Scientist with over 10 years of experience in the environmental consulting field. He has managed and implemented investigations and remedial measures for various properties, including those under different regulatory programs such as the New York State Department of Environmental Conservation's (NYSDEC) Voluntary Cleanup Program and Brownfield Cleanup Program, New York State's Spill Response Program, the Mayor's Office of Environmental Remediation (OER) E-Designation Program. Mr. Sharma has extensive experience in Phase I and Phase II (subsurface) site assessment and remedial investigation, remediation and cleanup of contaminated sites, and construction oversight. He has experience with subsurface soil, groundwater and sub-slab air/vapor sampling procedures, coordinating and running Community Air Monitoring Plans (CAMP) and is familiar with relevant United States Environmental Protection Agency (USEPA), New York State Department of Environmental Conservation (NYSDEC), and New York City Department of Environmental Protection (NYCDEP) environmental laws and regulations.

## Background

#### Education

M.S., Environmental Science, New Jersey Institute of Technology, 2007 B.Tech, Dr. B.R. Ambedkar National Institute of Technology, India, 2005

#### Years of Experience

Year started in industry: 2007 Year started in company: 2007

## **Relevant Experience**

## New York City School Construction Authority: On Call Environmental Consulting

Under an on-call contract, AKRF provides the New York City School Construction Authority (NYCSCA) with hazardous materials consulting services. Mr. Sharma has provided assistance with various environmental assessment tasks including Phase II (Subsurface) Environmental Site Investigations (soil, groundwater and soil gas investigations); Indoor Air Quality (IAQ) and Vapor Intrusion (VI) Assessments; and Underground Storage Tank (UST) investigations. He evaluates the results of the investigations in the context of applicable environmental regulations to assist the project manager and/or project engineer in developing recommendations for remedial actions. Mr. Sharma also provided assistance with the lead in drinking water and plumbing disinfection tasks under the current on-call contract. AKRF also oversees plumbing disinfection work, which is required prior to new plumbing being placed into service. The assignments involve reviewing and commenting on disinfection plans, supervision of the disinfection and confirmation testing, and preparation of reports documenting the work was conducted in accordance with the specifications and applicable requirements. Due to the sensitivity of school sites, work under this contract is often conducted on short notice and during non-school hours.

## **RXR Realty, NY: Multiple Projects**

AKRF has worked with RXR Realty on multiple projects and provided services for completion of Phase I Environmental Site Assessments (ESAs), implemented Phase II Environmental Site Investigations (ESI) and soil waste characterization sampling. Mr. Sharma acted as project manager, overseeing field personnel

implementing the Phase I ESA site reconnaissance the subsurface investigations, as well as completing reports for delivery to the client.

#### Larkin Plaza, Yonkers, NY

RXR SoYo Exalta LLC enrolled in the New York State Brownfield Cleanup Program (NYS BCP) to investigate and remediate the property located at 25 Warburton Avenue in Yonkers, NY. Mr. Sharma assisted the client in preparing the application to enroll the site in the NYS BCP program. Mr. Sharma acted as the project manager for the project and prepared the Remedial Investigation Work Plan (RIWP). the Remedial Investigation Report (RIR), the Interim Remedial Measure Work Plan (IRMWP), the Remedial Action Work Plan (RAWP), the Interim Remedial Measures Construction Completion Report and the Site Management Plan (SMP) for the BCP site. Mr. Sharma also managed the field implementation of the remedial investigation and site cleanup activities during the development. Mr. Sharma maintained constant communication with the NYS Department of Environmental Conservation (NYSDEC) project manager and the client during the site redevelopment.

## 810 Fulton Street, Brooklyn, NY

RXR 810 Fulton Owner LLC developed the property located at 810 Fulton Street in Brooklyn. Mr. Sharma acted as project manager, overseeing field personnel implementing the requirements of the NYC Office of Environmental Remediation (OER)-approved Remedial Action Plan (RAP). Mr. Sharma also coordinated with the OER on behalf of the client on the day to day activities during the remedial action. Mr. Sharma also completed reports for delivery to the client and OER.

#### Lambert Houses, Bronx, NY

988 East 180th Street Housing Development Fund Corporation enrolled in the New York City Voluntary Cleanup Program (NYC VCP) to investigate and remediate the property located at 988 East 180th Street in the Bronx. Mr. Sharma acted as the deputy project manager overseeing field personnel implementing the construction oversight during site redevelopment, and coordinated with the client and their subcontractors. Mr. Sharma prepared the spill investigation work plan, coordinated spill cleanup and prepared the spill closure report to address the petroleum spill encountered during site redevelopment.

## Melrose Commons Site C, Bronx, NY

The Bridge Inc. enrolled in the New York City Voluntary Cleanup Program (NYC VCP) to investigate and remediate the property located at 988 East 18th Street in the Bronx. Mr. Sharma acted as the deputy project manager overseeing field personnel implementing the construction oversight during site redevelopment, and coordinated with the client and their subcontractors. Mr. Sharma prepared the remedial closure report for delivery to the client.

## Essex Crossing Sites 1, 2, 3, 4, 5, 6, and 8, Manhattan, NY

AKRF provided various services during the redevelopment of the Essex Crossing sites in the lower east of Manhattan. Mr. Sharma acted as the deputy project manager overseeing field personnel implementing the construction oversight during site redevelopment, and coordinated with the client and their subcontractors. Mr. Sharma also coordinated spill cleanups and prepared the spill closure reports to address the multiple petroleum spills encountered during redevelopment. Mr. Sharma also coordinated with the client and the New York City Department of Housing & Preservation (HPD) during the implementation of the NYC Department of Environmental Protection (DEP)-approved Remedial Action Plan (RAP). Mr. Sharma also completed reports for delivery to the client.

## NYU Langone Medical Center (NYULMC) - Kimmel Pavilion, New York, NY

New York University Langone Medical Center enrolled in the New York City Voluntary Cleanup Program (NYC VCP) to investigate and remediate the property located at 424 East 34th Street in Manhattan. The proposed development consisted of a new medical facility. Mr. Sharma acted as the deputy project manager overseeing field personnel implementing the construction oversight during site redevelopment, and coordinated with the client and their subcontractors.

## 551 Tenth Avenue, New York, NY

Extell 4110 LLC enrolled in the New York City Voluntary Cleanup Program (NYC VCP) to investigate and remediate the property located at 547-551 Tenth Avenue in Manhattan. The property was developed with a 52-story residential building with one sub-grade level. Mr. Sharma provided construction oversight during site excavation, spill remediation, coordination and management of soil removal and fill material imports, oversight of the on-site air monitoring program, identification and proper management of contamination encountered during excavation work, and maintenance of critical paperwork and preparation of the final closure report.

## Zerega Avenue - Phase I, Phase II and Wetland Survey, Bronx, NY

AKRF was contracted by EDC to conduct perform environmental services at an approximately 255,000square foot project area located at 530 to 590 Zerega Avenue, Bronx, New York. The work included a Phase I Environmental Site Assessment (ESA), and Phase II Environmental Site Investigation which included preparation of a site-specific health and safety plan, a geophysical survey and utility mark-outs, and the collection and analysis of soil, groundwater, soil vapor, indoor air and ambient air samples. Mr. Sharma provided assistance with subsurface soil, groundwater and soil gas investigation as part of the Phase II investigation of the project site.

## Rego Park Home Depot, Queens, NY

Solvent contamination was encountered during retail development of a former industrial property in Rego Park, Queens, New York. The site work included an extensive investigation and a multi-phase remediation performed under the NYSDEC Voluntary Cleanup Program (BCP). Remediation included removal of aboveground and underground storage tanks (ASTs and USTs) and hotspot soil removal. An Air Sparging/Soil Vapor Extraction (AS/SVE) groundwater remediation system designed by AKRF was installed as part of the building construction. Continued remediation work included upgrading and expanding the AS/SVE system after the store was opened. AKRF prepared the Final Engineering Report and obtained closure with a Release and Covenant Not to Sue issued by NYSDEC in 2013. AKRF continues operations, maintenance, and monitoring under the NYSDEC-approved Site Management Plan. Mr. Sharma assisted with ongoing operation, maintenance and monitoring of the AS/SVE system.

## TF Cornerstone - 606 West 57th Street, New York, NY

AKRF has been retained by TF Cornerstone to provide environmental services for the proposed redevelopment of a portion of the block bounded by Eleventh and Twelfth Avenues and West 56th and 57th Streets. The proposed actions include a zoning map amendment, zoning text amendments, a special permit, and an authorization to facilitate development of approximately 1.2 million square feet of residential and retail space. AKRF is currently preparing an Environmental Impact Statement (EIS) for the New York City Department of City Planning (DCP) to analyze the effects of the proposed actions and development of the proposed building. The EIS will address the full range of environmental impacts associated with the proposed development. As part of the project's review, AKRF also prepared documents and graphics submitted to DCP under its Blue PRint program, a pre-application process that presents basic project information to DCP and clarifies major issues prior to the filing of a land use- or zoning-related application. The process is intended to standardize the pre-application process and expedite DCP's overall project review. Mr. Sharma was responsible for contractor oversight for the spill remediation activities as requested by the NYSDEC.

## Whitney Museum of American Art, NY

Mr. Sharma provided assistance with subsurface soil and groundwater investigation, construction oversight and soil disposal management during the remediation phase of the project. The project included the construction of an approximately 230,000-square foot museum building with one sub-grade level with exhibition galleries, administrative offices, accessory use (café and bookstore), storage space, and an approximately 4,000-square foot restaurant.

#### Yankee Stadium Demolition, Bronx, NY

The New York City Economic Development Corporation (NYCEDC) project included demolition of the old Yankee Stadium and construction of a ball field known as Heritage Field. Mr. Sharma provided air monitoring and remedial action plan (RAP) oversight during the demolition and soil disturbance work.

#### East River Science Park, New York, NY

The New York City Economic Development Corporation (NYCEDC) proposed to construct two seventeen-story buildings to serve as a biomedical research center. The space between the two towers included an elevated atrium and an outdoor plaza on top of a parking garage. Mr. Sharma provided construction oversight during site excavation, coordination and management of soil removal and fill material imports, oversight of the on-site air monitoring program, identification and proper management of contamination encountered during excavation work, and maintenance of critical paperwork and preparation of the final closure report.

#### W 61st Street Site, NY

Mr. Sharma provided assistance with construction oversight during site excavation activities and helped prepare the final closure report for the site which, as part of the Brownfield Cleanup Program (BCP), was slated for redevelopment as two residential buildings with a courtyard and a tennis court.

#### 164 Kent Avenue, Brooklyn, NY

The project was a multi-phase development consisting of a large waterfront block in the Williamsburg Rezoning Area. The project site has been developed with a mixed-use residential-commercial high rise towers with an esplanade and a pier along the East River. AKRF provided acquisition and development support, including performing Phase I and II environmental site assessments, and preparation of Remedial Action Plans (RAPs) and Construction Health and Safety Plan (CHASPs) for approval by DEP and OER. AKRF provided assistance with construction oversight during soil handling activities and managing the Community Air Monitoring Plan (CAMP) activities. To date, closure reports have been prepared and occupancy achieved for three of the four buildings. Mr. Sharma provided construction oversight during soil handling activities and running the Community Air Monitoring Plan (CAMP).

#### 285 Jay Street, Brooklyn, NY

Under contract with the Dormitory Authority of the State New York (DASNY), AKRF completed a Phase II Subsurface investigation at the site of a proposed CUNY educational building to satisfy New York City Edesignation requirements. As part of the work AKRF performed at the site, Mr. Sharma conducted subsurface soil and groundwater investigation work and coordinated with the driller and the property owner for successful completion of the work. Mr. Sharma prepared the remedial closure report for delivery to the client.

## MTA Long Island Railroad, East Side Access Project, New York, NY

The Metropolitan Transportation Authority (MTA) sponsored the East Side Access project to connect the Long Island Railroad to the Grand Central Terminal, thereby allowing Long Island commuters direct access to the East Side of Manhattan. Mr. Sharma provided assistance with the execution of the Community Air Monitoring Plan (CAMP) at various locations during the construction phase.

#### Adam Clayton Powell Jr. Boulevard, New York, NY

AKRF performed a Phase II study to meet the requirements of the New York City Department of Environmental Protection (NYCDEP) and to determine whether subsurface conditions had been affected by the on-site and/or off-site petroleum storage tanks and to ascertain whether current or former on- or off-site activities had adversely affected the subject property. Mr. Sharma conducted sub-surface soil and groundwater investigation at the abandoned site slated for future development. He was responsible for coordinating with the driller and the property owner for successful completion of the work.

## **ANTONIO CARDENAS**

## **ENVIRONMENTAL SCIENTIST**

Mr. Cardenas is an Environmental Scientist in the AKRF, Inc. Site Assessment and Remediation Group. His experience includes Phase I Environmental Site Assessments, soil, groundwater, and soil gas sampling, and environmental monitoring of construction sites.

## BACKGROUND

## **Education**

B.S., Geology, City College of the City University of New York, NY, 2017

## Certifications

OSHA 40-hour Health & Safety Training for Hazardous Waste Operations

OSHA 10-hour Health & Safety Training for Hazardous Waste Operations

USEPA Air Monitoring for Emergency Response Training Program, AMFER Certificate

## Years of experience

Year started in company: 2018

Year started in the industry: 2018

## **RELEVANT EXPERIENCE – AKRF**

## 85 Jay Street, Brooklyn, NY - NYS Brownfield Redevelopment

Remediation of a former lead smelter is being conducted under the New York State Brownfield Cleanup Program (BCP). AKRF completed a Phase II Subsurface Investigation, Remedial Investigation, and prepared a Remedial Action Work Plan (RAWP) to address subsurface contamination during site redevelopment including in-situ stabilization of lead impacted soil. For this project, Mr. Cardenas served as an on-site environmental monitor who conducted work zone and community air monitoring, and oversaw excavation and export of soil. Additionally, Mr. Cardenas collected confirmatory soil samples at the bottom of excavation and throughout soil stabilization. The project is in the midst of remediation, and Mr. Cardenas assists in overseeing the soil conditioning program, the excavation monitoring (CAMP and CHASP), and the daily reporting obligation to NYSDEC. The project anticipates a 12-month construction period and is projected to achieve a Track 1 cleanup in 2019.

## Rego Park Home Depot, Queens, NY

Solvent contamination was encountered during retail development of a former industrial property in Rego Park, Queens, New York. The site work included an extensive investigation and a multi-phase remediation performed under the NYSDEC Voluntary Cleanup Program (VCP). Remediation included removal of aboveground and underground storage tanks (ASTs and USTs) and hotspot soil removal. An Air Sparging/Soil Vapor Extraction (AS/SVE) groundwater remediation system designed by AKRF was installed as part of the building construction. Continued remediation work included upgrading and expanding the AS/SVE system after the store was opened. AKRF continues operations, maintenance, and monitoring under the NYSDEC-approved Site Management Plan. Mr. Cardenas performed low flow sampling as part this process.



## **ANTONIO CARDENAS**

## ENVIRONMENTAL SCIENTIST p. 2

## Manhattan West, Manhattan, NY

AKRF is providing environmental consulting services to Brookfield Office Properties in connection with the Manhattan West development site, which encompasses an entire city-block above the Amtrak approach to Penn Station. The four towers that comprise the Manhattan west development site are being remediated as four different sites under the New York City Office of Environmental Remediation (NYCOER), due to an E-Designation for hazardous materials, air quality, and noise attenuation. Mr. Cardenas provided environmental oversight.

## 34 Berry Street, Brooklyn, NY

AKRF was retained to prepare close-out documentation for this former industrial/warehouse facility in Williamsburg, which was remediated under the NYCOER E-designation and NYSDEC Spills programs. The closure report, which was based on documentation provided by the environmental contractor, was prepared on an expedited basis so that the developer could obtain a Certificate of Occupancy in time for the scheduled opening of the new building. AKRF is currently providing on-going remediation monitoring services to fulfill NYSDEC Spill closure requirements. For this project, Mr. Cardenas performed soil sampling.

## Queens Animal Shelter Site, Queens, NY

The Queens Animal Shelter Site is currently an automobile wrecking facility. AKRF is assisting the Client in taking the Site into the BCP to investigate and remediate the property as part of redevelopment into a new state-of-the-art animal shelter and care facility. For this project, Mr. Cardenas performed low flow sampling for laboratory analyses as part of the Remedial Investigation at the Site.

## **RELEVANT EXPERIENCE – OTHER**

## Interior Management Inc. (2011-2013)

Before joining AKRF, Mr. Cardenas worked in the maintenance department of Interior Management Inc. He learned how to manage a work site, detect and report leaks, identify building damages, and foster a positive work environment for employees.



## **ENVIRONMENTAL SCIENTIST**

Stephen Schmid is an Environmental Scientist in AKRF's Hazardous Materials Department with five years of experience. He has experience in Phase I and II site assessments, asbestos surveying and monitoring, and construction/remediation. Mr. Schmid is a 2011 graduate from the University of New Hampshire, where he studied marine and freshwater biology, and environmental conservation. Prior to joining AKRF Mr. Schmid conducted fieldwork, water sampling and analysis in addition to assisting in a study of lakes in the North Eastern United States.

## BACKGROUND

## **Education**

BS Marine & Freshwater Biology, University of New Hampshire, Durham, NH

## Licenses/Certifications

40 Hour OSHA HAZWOPER

10 Hour OSHA Construction Health and Safety

NYS DEC Erosion and Sediment Control Certificate

Asbestos Project Monitor, Air Sampling Technician, Inspector and Investigator

## Years of Experience

Year started in company: 2012

Year started in industry: 2011

## **RELEVANT EXPERIENCE**

## Willets Point, Queens, NY

AKRF supported the New York City Economic Development Corporation (EDC) with Phase 1 of the Willets Point Redevelopment Plan, which includes the demolition of existing structures. Mr. Schmid performed predemolition asbestos-containing materials and universal waste surveys of approximately 70 structures throughout the 23-acre area site in Queens along with an AKRF licensed NYC asbestos investigator.

## Adelaar, Monticello, NY

The project is a multi-phase development consisting of approximately 1,700 acres. The project site has been developed with a mixed-use residential-commercial hotel, casino, water park and entertainment village. AKRF provided acquisition and development support, including performing Phase I and II environmental site assessments. Mr. Schmid provided assistance with Phase I assessments, oversight during remedial soil handling activities and conducted inspections in accordance with the Stormwater Pollution and Prevention Plans.

## NYCHA Randolph Houses, W 114th Street, Harlem, NY

AKRF was directed to survey 14 five story affordable housing apartment buildings for potential asbestos containing materials prior to the renovation of the buildings. Mr. Schmid along with AKRF licensed NYC asbestos investigators performed the collection of bulk samples throughout the building's main floors, basements and roofs to confirm the presence of asbestos in some of the building materials.



## ENVIRONMENTAL SCIENTIST p. 2

## 25 Broad Street, Manhattan, NY

AKRF was contracted by LCOR during the demolition of a residential building on a property which will eventually be redeveloped. AKRF was responsible for creating and implementing a community air monitoring program during demolition activities. As the environmental scientist Mr. Schmid was the on-site monitor responsible for calibrating equipment and monitoring levels of volatile organic compounds and particulate matter for the surrounding area and construction personnel. Reports of the daily activity including data collected throughout the day were prepared for submittal to the client.

## Kent Avenue, Brooklyn, NY (AKA Northside Piers and 1 North 4th Place)

The project was a multi-phase development consisting of a waterfront block in the Williamsburg Rezoning Area. The project site has been developed with a mixed-use residential-commercial high rise towers with an esplanade and a pier along the East River. AKRF provided acquisition and development support, including performing Phase I and II environmental site assessments, and preparation of Remedial Action Plans (RAPs) and Construction Health and Safety Plan (CHASPs) for approval by DEP and OER. As the environmental scientist Mr. Schmid provided assistance with construction oversight during soil handling activities and managing the Community Air Monitoring Plan (CAMP) activities.

## 250 North 10th Street, LLC., Residential Redevelopment Site, Brooklyn, NY

AKRF was retained to investigate and remediate this former industrial property in the Williamsburg section of Brooklyn, New York in connection with site redevelopment. The site is approximately 50,000 square feet, and redevelopment included a six story residential building and parking garage. The work was completed to satisfy the requirements of the NYC E-designation Program and NYC Voluntary Cleanup Program (NYC VCP). AKRF completed a Remedial Investigation (RI) to evaluate the nature and extent of site contamination, and developed Action a Remedial Work Plan (RAWP) to properly address site contamination during redevelopment. Remediation included removal of underground storage tanks, more than 7,500 tons of contaminated soil, and installation of a vapor barrier and site cap across the entire property. The remediation was completed under oversight of the NYC Office of Environmental Remediation (OER), and in a manner that has rendered the Site protective of public health and the environment consistent with residential use of the property. As the environmental scientist Mr. Schmid conducted construction oversight and community air monitoring during the removal of contaminated soil.

## Pier 40, 353 West Street, New York, NY

AKRF was directed to survey the property for potential asbestos containing materials prior to renovations and upgrades to multiple rooms. As the environmental scientist Mr. Schmid collected bulk samples to test for asbestos along with an AKRF licensed NYC asbestos investigator. Results confirmed the presence of asbestos in some of the rooms and Mr. Schmid subsequently provided project monitoring and the collection of air samples during the abatement.

## 137-44 94th Avenue, Queens, NY

AKRF was contracted to survey the building for potential asbestos containing materials prior to demolition. As the environmental scientist Mr. Schmid collected bulk samples to test for asbestos along with an AKRF licensed NYC asbestos investigator. Results confirmed the presence of asbestos in an office, trailer and the roof. During abatement Mr. Schmid served as the project monitor and collected daily air samples.

## The Home Depot, Rego Park, NY

AKRF has designed, installed and performed upgrades to an air sparging and soil vapor extraction system being used to remediate tetrachloroethene contamination at this site under the NYSDEC Voluntary Cleanup Program. As the environmental scientist Mr. Schmid has performed low flow, indoor air and effluent sampling as part of ongoing monitoring activities to assess the progress of the cleanup.



## ENVIRONMENTAL SCIENTIST p. 3

## AP-Williamsburg, LLC, 50 North 5th Street Development, Brooklyn, NY

AKRF directed the remedial program at a 55,000-square foot site located in the Williamsburg section of Brooklyn, New York. The site had an industrial and manufacturing history for over 100 years that included a barrel making factory, use of kilns, and a carpet and flooring materials warehouse. AKRF completed a Remedial Investigation (RI) to evaluate the nature and extent of site contamination, and developed a Remedial Action Work Plan (RAWP) to properly address site contamination during redevelopment. Remediation included removal of more than 5,000 tons of contaminated soil, and installation of a vapor barrier and sub-slab depressurization system (SSDS) beneath the site building. The remediation was completed in a manner that has rendered the Site protective of public health and the environment consistent with commercial and residential use of the property, and in accordance with the requirements of the NYC OER E-designation program. The site includes a seven story residential apartment building with street level retail space and a parking garage. As the environmental scientist Mr. Schmid provided oversight and community air monitoring during construction activities.

## Gedney Way Leaf and Yard Waste Composting Facility, White Plains, NY

AKRF directed the remediation and landfill closure project at the existing composting facility. The project included investigation to document disposal history, extent of landfill materials and a solvent plume, preparation of a landfill closure plan, and management of landfill closure and cap construction. The landfill investigation and closure activities were completed to satisfy the requirements of a New York State Department of Environmental Conservation's (NYSDEC) consent order, and were completed in compliance with NYSDEC DER-10 and 6NYCRR Part 360. As the environmental scientist Mr. Schmid performed construction oversight and low-flow groundwater sampling during construction activities.

## 443 Greenwich Street, New York, NY

AKRF was retained to investigate and remediate this property in the Tribeca section of Manhattan, New York in connection with site redevelopment for a multi-story residential building. AKRF completed a Remedial Investigation (RI) to evaluate the nature and extent of site contamination, and developed a Remedial Action Work Plan (RAWP) to properly address site contamination during redevelopment. Remediation included removal of contaminated soil and installation of a vapor barrier. The remediation was completed under oversight of the NYC Office of Environmental Remediation (OER), and in a manner that has rendered the Site protective of public health and the environment consistent with residential use of the property. As the environmental scientist Mr. Schmid conducted construction oversight and community air monitoring during the removal of contaminated soil.

## 606 W 57th Street, New York, NY

AKRF was retained to investigate and remediate this property in Manhattan, New York in connection with site redevelopment for a multi-story residential structure. The work is being completed to satisfy the requirements of the NYC E-designation Program. AKRF completed a Remedial Investigation (RI) to evaluate the nature and extent of site contamination, and developed a Remedial Action Work Plan (RAWP) to properly address site contamination during redevelopment. Remediation includes removal of underground storage tanks and contaminated soil. The remediation is being completed under oversight of the NYC Office of Environmental Remediation (OER), and in a manner that has rendered the Site protective of public health and the environment consistent with residential use of the property. As the environmental scientist Mr. Schmid conducted construction oversight and community air monitoring during the removal of contaminated soil.

## NYCEDC Office of Environmental Remediation (OER) On-Call Environmental Consulting Services

## Second Farms, Bronx, NY

AKRF, Inc. was contracted by OER to conduct a subsurface investigation of a 1.12-acre parcel in the Bronx, New York under the United States Environmental Protection Agency (USEPA) Brownfield Assessment Grant program.



## ENVIRONMENTAL SCIENTIST p. 4

As the environmental scientist Mr. Schmid assisted in the investigation which included a geophysical survey and utility mark-outs, and the collection and analysis of soil, groundwater, soil vapor, indoor air and ambient air samples.

## Former Nelson Foundry, Long Island City, NY

AKRF, Inc. was contracted by OER to conduct a subsurface investigation around the perimeter of a former foundry property in Long Island City, New York under the USEPA Brownfield Assessment Grant program. The work included preparation of a rigorous investigation work plan, Quality Assurance Project Plan, and Health and Safety Plan. The investigation will include a geophysical survey and utility mark-outs and the collection and analysis of soil, groundwater, soil vapor, and ambient air samples. The project also requires careful coordination of investigation-derived waste due to lack of on-site storage and daily drum pick-ups. As the environmental scientist Mr. Schmid conducted low flow sampling for the analysis of groundwater.



APPENDIX I GROUNDWATER AND SOIL VAPOR SAMPLING LOGS

|  |  | Q | AK | R | F |
|--|--|---|----|---|---|
|--|--|---|----|---|---|

## Well Sampling Log

| Job No:             |                | 190275           |                         |                  |              | Client:              | MD45 Develop | Well No:   |                                                                                                                                                   |  |  |  |  |
|---------------------|----------------|------------------|-------------------------|------------------|--------------|----------------------|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Project Locat       | tion:          | 22-60 46th Stree | et, Queens, NY          | 7 11105          |              | Sampled By:          |              |            |                                                                                                                                                   |  |  |  |  |
| Date:               |                |                  |                         |                  |              | Sampling Time:       |              |            |                                                                                                                                                   |  |  |  |  |
| LEL at surfac       | ce:            |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
| PID at surfac       | e:             |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
| <b>Total Depth:</b> |                |                  |                         | ft. below top of | casing       | Water Column (WC):   |              | feet       | *= 0.163 * WC for 2" wells                                                                                                                        |  |  |  |  |
| epth to Wat         | er:            |                  |                         | ft. below top of | casing       | Well Volume*:        |              | gallons    | *= 0.653 * WC for 4" wells                                                                                                                        |  |  |  |  |
| Depth to Proc       | duct:          |                  |                         | ft. below top of | casing       | Volume Purged:       |              | gallons    | *= 1.469 * WC for 6" wells                                                                                                                        |  |  |  |  |
| epth to top         | of screen:     |                  |                         | ft. below top of | casing       | Well Diam.:          | 2            | inches     | Target maximum                                                                                                                                    |  |  |  |  |
| epth to bott        | om of screen:  |                  |                         | ft. below top of | casing       | Purging Device (pump | type):       |            | flow rate is                                                                                                                                      |  |  |  |  |
| Approx. Pum         | p Intake:      |                  | ft. below top of casing |                  |              |                      |              | 100 ml/min |                                                                                                                                                   |  |  |  |  |
| Time                | Depth to Water | Purge Rate       | Temp                    | Conductivity     | DO           | рН                   | ORP          |            | <b>Comments</b> (problems, odor, sheen)                                                                                                           |  |  |  |  |
|                     | (Ft.)          | (ml/min)         | (°C)                    | (mS/cm)          | (mg/L)       |                      | (mV)         | (NTU)      |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | _                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | 1                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | -1                                                                                                                                                |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | _                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | 7                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | -                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | -1                                                                                                                                                |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | 4                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            |                                                                                                                                                   |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | 1                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | -                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         | Samplir          |              |                      |              |            | _                                                                                                                                                 |  |  |  |  |
|                     |                |                  |                         |                  |              |                      |              |            | -                                                                                                                                                 |  |  |  |  |
|                     | Stabilizatio   | n Criteria:      |                         | +/- 3 mS/cm      | +/- 0.3 mg/L | +/- 0.1 pH units     | +/- 10 mV    | <50 NTU    | If water quality parameters do no<br>stabilize and/or turbidity is greater t<br>50 NTU within two hours, discontir<br>purging and collect sample. |  |  |  |  |

| <b>MAK</b> RI        |                                  |                                 | Soil Vapor Sample Log                                  |
|----------------------|----------------------------------|---------------------------------|--------------------------------------------------------|
| AKRF Project No:     | 190275                           | Point Installed By:             |                                                        |
| Project Location:    | 22-60 46th Street Queens, NY     | Installation Method:            |                                                        |
| Client:              | MD45 Developers LLC              | Sampled By:                     |                                                        |
| Date:                |                                  | Weather:                        |                                                        |
|                      |                                  | Sample Setup                    |                                                        |
| Vapor Point Depth:   | Inches                           | Total Time of Purge:            | minutes                                                |
| Purging Pump:        |                                  | Purge Volume:                   | Liters                                                 |
| Pump Flow Rate*:     | L/min                            | Purged Vapor PID:               | ppb                                                    |
|                      |                                  | Helium Concentration:           | %                                                      |
|                      |                                  | Sample Identification           | on                                                     |
| Soil Vapor Point ID: |                                  | SUMMA <sup>®</sup> Canister ID: |                                                        |
| Flow Controller ID:  |                                  | Soil Vapor Sample ID:           |                                                        |
|                      |                                  | Sample Collection               |                                                        |
| Time                 | Vacuum (in/Hg)                   | Background PID                  | Notes                                                  |
| Time<br>Started:     |                                  |                                 |                                                        |
| Time<br>Halfway:     |                                  |                                 |                                                        |
| Time<br>Stopped:     |                                  |                                 |                                                        |
| ·                    | *Purge flow rate not to exceed 0 | .2 L/min.                       |                                                        |
| Notes:               | ND = non-o                       | letect ppm = parts j            | ber million L/min = Liters per minute                  |
|                      | Soil vapor sample                | collected in a -L SUMM          | A <sup>®</sup> canister using a -hour flow controller. |

APPENDIX J SSDS COMPONENT MANUALS



## **Submittal Documentation**

For: AWT ENVIRONMENTAL PO BOX 128 SAYREVILLE, NJ 08871

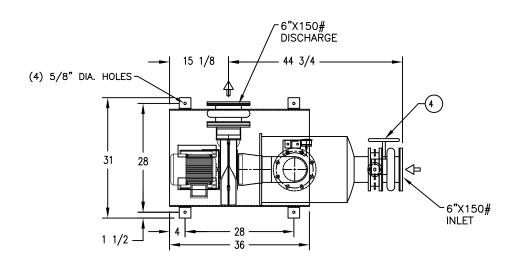
Quote # 220210JG.1 PO: 18261-SGT

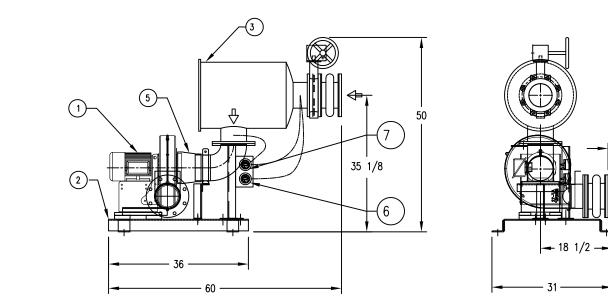
**Equipment Description:** 

Gasho Custom Centrifugal Fan SSDS Package consisting of: Howden Fan Model AF-12B13031-7, 1.5 HP TEFC Direct Coupled Motor, 6" Inlet and Outlat Flanged Conections, Discharge Damper, 6" Butterfly Valve – Gear Operator, Gauges, Connectors, 6" Inline Filter, Nema 3R VFD Control Panel – UL Stamped

REV A, 11/8/22

## **Supplier:**


Gasho, Inc. 460 West Gay Street West Chester, PA 19380

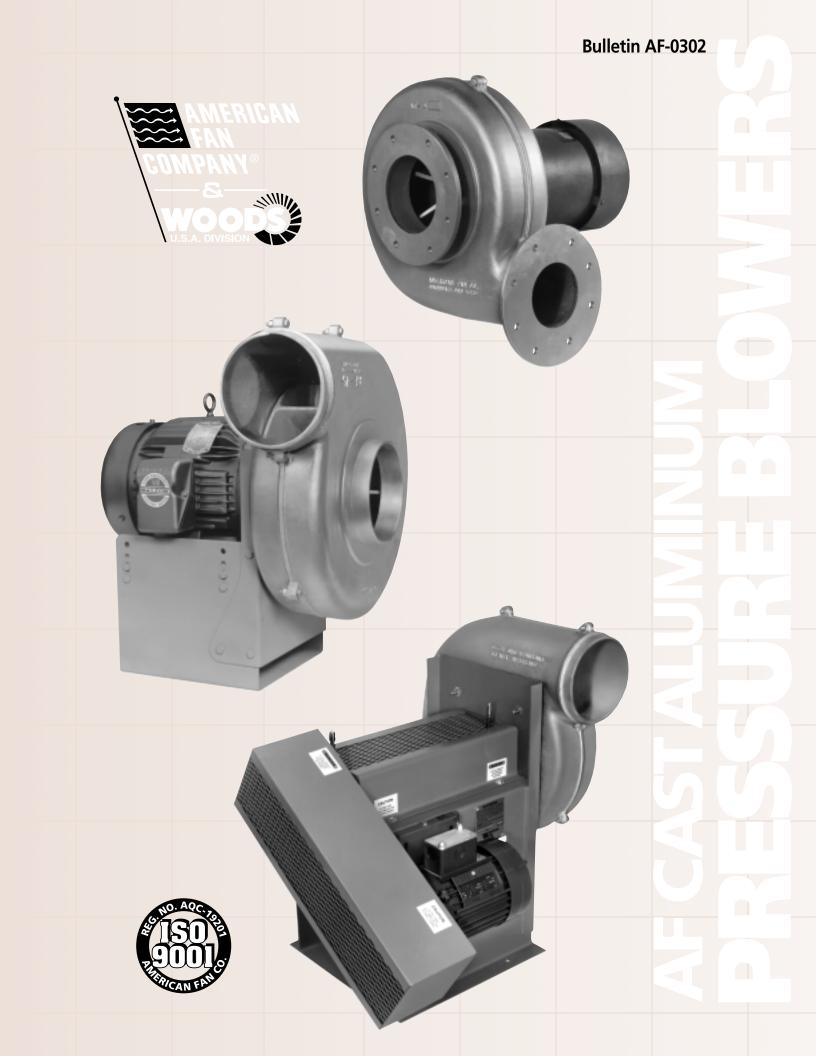

> JG22H-3597 August 29, 2022

|        |           |                   |                  |                                         |                            | Description                            | Date         | Revision |
|--------|-----------|-------------------|------------------|-----------------------------------------|----------------------------|----------------------------------------|--------------|----------|
| (      | 1         | MITTE             | Gash             | o, Inc.                                 |                            | #220210JG.1 AWT                        |              |          |
|        | 12        | snoi              | Blower           | Package                                 |                            |                                        |              |          |
| A GEIG | ER PUMP & | EQUIPMENT COMPANY | JG22F            | 1-3597<br>H20 VACUUM                    |                            | 500 cfm at 7" H20 vacuum               |              |          |
| ltem   | Qty.      | Supplier          | Component        | Description                             | Supplier Part Number       | Gasho Part Number                      | Misc ID      | Weight   |
| 1      | 1         | Howden            | Fan              | 1.5 hp TEFC VFD 230/460/3/60            | AF-12-B13031-7             | H3AF12-B13031-7                        |              | 60       |
|        |           |                   |                  |                                         | 7" Inlet 6" Flanged Outlet | Discharge damper                       |              |          |
| 2      | 1         | Gasho             | Base             | Base Weldment                           | B52                        | Z4BW-20.00-0000                        |              | 110      |
| 3      | 1         | Solberg           | Inline Filter    | 6" Inline filter with polyester element | CSL-275P-600F              | Z2FIL-SL2-6.0-F-1050                   |              | 110      |
| 4      | 1         | Value Valve       | Butterfuly Valve | 6" Butterfuly valve, Gear               | 6VF913-221-3               | Z2VBF-6.00-W-IEG-0100                  |              | 12       |
| 5      | 1         | Pipeline Plastics | Flex Connector   | 7.38 x 6.38 x 6" Ig Flex Coupler        | 1001-65                    | Z2PIP-1001-65                          |              | 2        |
| 6      | 1         | Dwyer             | Vacuum Gauge     | Minihelic Vacuum Gauge                  | '2-5020                    | Z2GD-2.1-0-020WC-1004                  | 20"WC        | 1        |
| 7      | 1         | Dwyer             | Gauge/Switch     | Mini Photohelic gauge/switch            | MP-020                     | Z2DWY-MP-020                           | 0-20" H20    | 1        |
|        |           |                   |                  |                                         |                            |                                        |              | 296      |
| 900    | 1         | ICP               | Control Panel    | Nema 4 control panel                    | Custom                     | with VFD 230/3/60, dead face, 1 1/2 hp | Q201222-SG-2 |          |
|        |           |                   |                  |                                         |                            |                                        |              |          |

| CONTRACTING GROUP, LLC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ASTORIA 46<br>22-60 46TH STR, ASTORIA, NY<br>22-61 45TH STR, ASTORIA, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SUBMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ITAL REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| CONTRACTOR: MEGA CONTRAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CTING GROUP<br>312113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| SUBMITTAL NUMBER:<br>SUBSTITUTIONS: NO YES - S<br>CHANGES, NOTES FLAGGED:                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| RECOMMEND FOR APPROVAL:<br>REVIEWED BY: <u>AK</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YES FOR RECORD<br>DATE:11/14/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| DOCUMENTS TO THE BEST OF OUR KNO<br>THE SUBCONRACTOR OR SUPPLIER REL<br>TO THE CONTRACT DOCUEMNTS AND AL<br>VERIFICATIONS AND DIMENSIONS ARE TI<br>ASSOCIATED WITH THIS SUBMISSION. IT<br>CONFIRM ALL DESIGN PARTIES REQUIRE<br>ACCORDINGLY. TO PRODUCE A FULL YR<br>ADD UNDERSTANDS THE REVIEW PERIOD<br>SUBMISSION, SUBMITTALS, STETUNED WIT<br>AND UNDERSTANDS THE REVIEW PERIOD<br>SUBMISSION, SUBMITTALS, STETUNED WIT<br>NO POTENTIAL TIME EXTENSION. ANY NI<br>INCREASE THE CONTRACTUALLY AGREE | OR GENERAL COMPLIANCE WITH THE CONTRACT<br>WLDEGE FOR ARCHITECT APPROVAL. IN NO CASE IS<br>LEVED OF FULL RESPONSABILITY FOR ADHEARNOCE<br>LI NOTATIONS PROVIDED ON SUBMITTALS. ALL FIELD<br>HE SOLE RESONSIBILITY OF THE CONTRACTOR<br>IS THE RESPONSABILITY OF THE CONTRACTOR<br>DI HAVE REVIEWED AND APPLED THEIR STAMPS<br>VIEWED SUBMITTAL. MEGA CONTRACTING GROUP<br>VIEWED SUBMITTAL. MEGA CONTRACTING GROUP<br>DI HE CONTRACTOR OF THE CATE OF<br>INTERNET AND AND AND AND ADD AND ADD AND<br>TATIONS MADE BY ANY DESIGN PARTY WHICH<br>DI PON SCOPE OF WORK WILL BE IDENTIFIED BY THE<br>THE DESIGN AND OWNERSHIP ENTITIES OF ANY COST |  |

| and the second                                                                                                                                                                                                                                                                                                                            | -           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| AKRF, Inc.<br>440 Park Avenue South, New York, NY 100                                                                                                                                                                                                                                                                                                                                                                                       | 16          |
| X CONFORMS.<br>CONFORMS AS NOTED.<br>REVISE AS NOTED AND RESUBMIT.<br>REJECTED, RESUBMIT.<br>REVIEW NOT REQUIRED.<br>BY                                                                                                                                                                                                                                                                                                                     |             |
| THIS DOCUMENT HAS BEEN REVIEWED I<br>GENERAL CONFORMANCE WITH THE DE<br>CONCEPT ONLY.                                                                                                                                                                                                                                                                                                                                                       |             |
| This review does not relieve the contractor<br>or any subcontractor of responsibility for<br>full compliance with contract requirements;<br>for correctness of dimensions, clearances,<br>and material quantities; for proper design<br>of details; for proper fabrication and construct<br>techniques; for proper coordination with othe<br>trades; and for providing all devices required<br>safe and satisfactory construction and opera | er<br>I for |



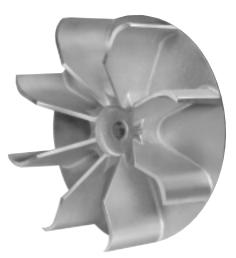



NOTES: 1. CUSTOMER PIPING TO BE INDEPENDENTLY SUPPORTED. PACKAGE PIPE SUPPORTS PROVIDED BUT NOT SHOWN. 2. PACKAGE IS TO BE MOUNTED SECURELY TO A LEVEL CONCRETE PAD 3. TOLERANCE  $\pm 1/2^{"}$ 4. (DIM) ARE CRITICAL DIMENSIONS

|      |      |             | JJH             | B/26/22<br>Date   | J.E.GASHO & Assoc., Inc.<br>460 W. GAY ST.<br>WEST CHESTER, PENNSYLVANIA 19380 |
|------|------|-------------|-----------------|-------------------|--------------------------------------------------------------------------------|
|      |      |             | DIMENSIONS      | IN INCHES         |                                                                                |
|      |      |             | scale<br>NA     |                   | SUB-SLAB SYSTEM                                                                |
|      |      |             | TOLERANCE +1/2" | ANGULAR TOLERANCE | AF12 1.5HP TEFC                                                                |
|      |      |             | 1 - 1/ -        | weicht<br>400     | SKID MOUNT                                                                     |
|      |      |             |                 |                   |                                                                                |
| REV. | DATE | DESCRIPTION | SHEET 1         | OF 1              | JG22-H- 3597                                                                   |

9 1/8

- 1 1/8




## **WHEEL TYPES**



Radial Wheel (Code R)

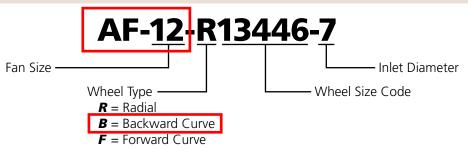
Cast aluminum radial open design for air and light material applications. Also available in welded steel construction.



## Backward Curve Wheel (Code B)

Cast aluminum backward curve blade tip design for clean air applications where lower noise level is a consideration.




## Forward Curve Wheel (Code F)

Fabricated aluminum forward curve with cast iron hub design for clean air applications. Has highest performance at a given speed making it ideal for 50 Hz applications where space is a problem.

## CONTENTS

| Accessories             |
|-------------------------|
| Arrangements            |
| Fan Codes               |
| Fan Drawings            |
| Arr't 1                 |
| Arr't 2                 |
| Arr't 4 w/ base         |
| Arr't 4 Flange Mount    |
| Arr't 819               |
| Arr't 9                 |
| Flanges                 |
| Dampers                 |
| Fan Ratings             |
| 60 Hz 3600 RPM          |
| Radial Wheels           |
| Backward Curve Wheels7  |
| Forward Curve Wheels    |
| 50 Hz 3000 RPM          |
| Radial Wheels           |
| Backward Curve Wheels12 |
| Forward Curve Wheels 13 |
| Wheel Types2            |

## FAN CODES



## **TESTING**

All fan/wheel/inlet combinations shown in this catalog have each been thoroughly air and sound performance tested at the American Fan Company Test Laboratory.

Air testing was performed per AMCA 210-85 figure 7, installation type B (free inlet, ducted outlet). Sound testing was performed per AMCA 300-85, installation type B. Fans in this catalog **are not** licensed to bear the AMCA certified ratings seal.

|               | R SPEE    |           |
|---------------|-----------|-----------|
| BHP Range     | 60 Hz RPM | 50 Hz RPM |
| up to 2.00    | 3450      | 2875      |
| 2.01-5.00     | 3500      | 2875      |
| 5.01 & higher | 3515      | 2900      |

## FEATURES

Model AF features a rugged, lightweight and rustproof cast aluminum housing making it ideal for demanding industrial applications. Model AF is available in direct or belt drive with a variety of accessories to meet your requirements.

Capacity selections are available up to 4000 CFM and pressure selections up to 20" SP w.g.

- Split housing for maintenance ease
- Even O.D. pipe sizes on inlet and outlet
- Non-sparking cast aluminum housing
- Assortment of wheel sizes to pin-point your performance requirement
   Reliability
- Reliability
- Wheel both statically and dynamically balancedRustproof
- Low initial cost
- Available in arrangements 1,2,4,8 and 9

## **APPLICATIONS**

- Rubber processing
- Food processing
- Chemical processing
- Fume control
- Dust control
- Combustion air for incinerators, ovens, furnaces, kilns and dryers
- Paper and printing machinery
- Cooling electronic equipment, motors, generators and transformers
- Textile machinery
- Light materials conveying
- Woodworking machinery
- Forced drying

## **OPTIONS**

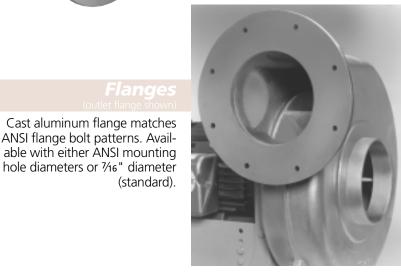
- Inlet flange
- Outlet flange
- Housing drain
- Cast Iron housing
- Fabricated steel wheel
- Shaft seal
- Sound attenuator
- Inlet filter

- Corrosive resistant coatings
- Inlet and/or outlet guard
- Fabricated stainless wheel and housing
- Full or half cut-off
- Heat slinger
- Drive guard system

## Inlet Venturi

Spun steel venturi provides efficient smooth airflow into fan inlet on non inlet-ducted applications.




## Inlet Guard

1" square wire cloth is welded to large end of inlet venturi providing OSHA type guarding with minimal airflow restriction.



## Inlet Filter

Oil wetted, crimped steel wire mesh media provides 94% filtration efficiency of particulate of 10 micron or larger. Filters are cleanable and reusable.





Cast aluminum housing with steel gate allows manual adjustment of CFM. Thumbscrew locks gate in place. Can be mounted on inlet or outlet.



## **Vibration Isolators**

Neoprene isolators with molded-in steel mounting plate and threaded top mounting hole. Provides ¼" static deflection.



## Half Cut-off Dampers

Similar to full cut-offs except half cut-offs are saddle mounted to ductwork on inlet or outlet.

## ARRANGEMENTS



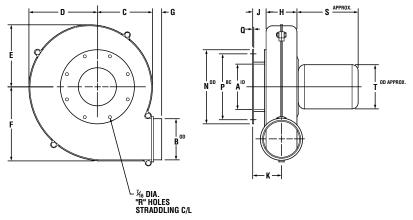
The fan wheel is overhung with both bearings mounted on a common pedestal. ARRT. 1 is suitable for high temperature (250°F max.) and/or corrosive environment. Fan can be belt driven or directly coupled to drive motor mounted on a separate base. AF-12 Shown CCW-BH

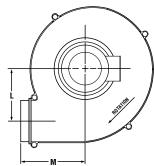
The fan wheel is overhung with both bearings mounted in a cast iron housing supported by the fan housing and a cast aluminum base. Unit can be either belt driven or direct coupled to an independently supported motor.

# AF-9 Shown CW-TH with cast alum. base

## AF-15 Shown CW-TH with steel base

Direct drive fan with wheel mounted directly on motor shaft. Unit is designed for standard temperature applications only. With no belt losses, the direct drive fan operates at a higher efficiency.





Direct drive fan with wheel mounted directly on motor shaft. Unit is designed to be supported by the outlet flange.

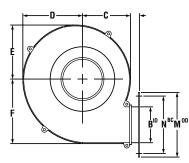
ARKING AF-12 CCW-UB with optional cast iron housing, heat slinger, and TEXP motor shown

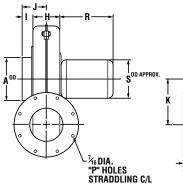
Direct drive fan thru shaft and bearings. Efficiency of ARRT. 4 is maintained. However AART. 8 may be used for high temperature (250°F max.) and/or corrosive applications which require the motor shaft to be outside of airstream. AF-12 Shown CW-TH with OSHA type belt and shaft guards

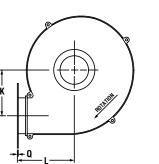
> The fan wheel is overhung with both bearings mounted on a common pedestal. Fan is driven with drive motor mounted on bearing pedestal for a more compact unit suitable for high temperature (250°F max.) and/ or corrosive environment.

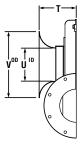





| A | LL DIME | NSIONS | SHOWN | IN IN | ICHES |
|---|---------|--------|-------|-------|-------|
|   |         |        |       |       |       |


|   | FAN<br>Size | MOTOR<br>Frame Size                            | inlet<br>Dia.<br>A                    | OUTLET<br>DIA.<br>B | C      | D             | E                  | F      | G     | H   | J                          | ĸ                   | L           | М                   | N     | P    | Q        | R       | NET WTS.<br>No motor<br>LBS. |    |     |   |    |
|---|-------------|------------------------------------------------|---------------------------------------|---------------------|--------|---------------|--------------------|--------|-------|-----|----------------------------|---------------------|-------------|---------------------|-------|------|----------|---------|------------------------------|----|-----|---|----|
|   | AF-8        | 56-C. 143-TC. 145-TC                           | 2%                                    | 4                   | 115/   | <b>5</b> 13/  | 5 <sup>3</sup> ⁄32 | 611/16 | 1%    | 3½  | 1%                         | 31/8                | 4%          | <b>6</b> 5⁄16       | 7½    | 6    | 1/4      | 4       | 14                           |    |     |   |    |
|   | AL-0        | 30-0, 143-10, 143-10                           | 3%6                                   | 4                   | 4.716  | <b>J</b> 716  | <b>J</b> 732       | 0.716  | 178   | 372 | 178                        | 3/8                 | 4716        | 0716                | 9     | 7½   | 74       | 8       | 14                           |    |     |   |    |
|   | AF-9        | 56-C, 143-TC, 145-TC                           | 3%6                                   | 4                   | 6      | 7¼            | 617/32             | 7¾     | 13/16 | 3¾  | 17/16                      | 35/16               | E54 734.    | 556 734             | 5% 7% | 73/. | E54 734. | 556 734 | 9                            | 7½ | 1/4 | 8 | 20 |
|   | AF-9        | 30-0, 143-10, 143-10                           | 4%                                    | 4                   | 0      | 1 74          | 0.732              | 1 74   | I 716 | 374 | 1716                       | 3716                | <b>J</b> 78 | 1 716               | 10    | 8½   | 74       | 0       | 20                           |    |     |   |    |
|   | AF-10       | 56-C, 143-TC, 145-TC                           | 5½                                    | 5                   | 611/16 | <b>8</b> 5⁄16 | 715/32             | 9      | 11⁄8  | 3¾  | <b>1</b> <sup>13</sup> ⁄16 | 311/16              | 6%          | 7 <sup>13</sup> /16 | 11    | 9½   | 1⁄4      | 8       | 35                           |    |     |   |    |
| C | AF-12       | 56-C, 143-TC, 145-TC<br>182-TC, 184-TC         | 6¼                                    | 6                   | 7¾     | 9¼            | 8½                 | 107⁄16 | 11%   | 4¼  | 1 <sup>13</sup> ⁄16        | 315/16              | 75⁄16       | 8%                  | 11    | 9½   | 5⁄16     | 8       | 40                           |    |     |   |    |
|   |             | 140 TO 145 TO 100 TO                           | 6¼                                    |                     |        |               |                    |        |       |     |                            |                     |             |                     | 11 9½ |      | 8        |         |                              |    |     |   |    |
|   | AF-15       | 143-TC, 145-TC, 182-TC, 184-TC, 213-TC, 215-TC | 7½                                    | 8                   | 9%     | 11            | 10                 | 12     | 1%    | 5%  | 2                          | 4 <sup>15</sup> ⁄16 | 7%          | 1015/16             | 13½   | 11¾  | 1⁄2      | 8       | 56                           |    |     |   |    |
|   |             | 10, 210 10, 210 10                             | <b>9</b> <sup>1</sup> / <sub>16</sub> |                     |        |               |                    |        |       |     |                            |                     |             |                     | 16    | 14¼  |          | 12      |                              |    |     |   |    |


| MOTORS        |             |     |     |  |  |  |  |  |  |
|---------------|-------------|-----|-----|--|--|--|--|--|--|
| FRAME<br>Size | WT.<br>LBS. | S   | T   |  |  |  |  |  |  |
| 56-C          | 25          | 11½ | 6¼  |  |  |  |  |  |  |
| 143-TC        | 33          | 11½ | 7   |  |  |  |  |  |  |
| 145-TC        | 45          | 11½ | 7   |  |  |  |  |  |  |
| 182-TC        | 60          | 14½ | 9   |  |  |  |  |  |  |
| 184-TC        | 70          | 14½ | 9   |  |  |  |  |  |  |
| 213-TC        | 120         | 16  | 10½ |  |  |  |  |  |  |
| 215-TC        | 140         | 16  | 10½ |  |  |  |  |  |  |


#### NOTES:

- For optional outlet flange, see drawing AFA11421F
- Inlet flange is welded to inlet side housing
- ③ Housing, flange, and wheel are constructed of cast aluminum









FAN INLET

4 415/16

SIZE DIA.

AF-8 3

AF-8 4 4¾ 3% 7¼

AF-9

AF-9 AF-10 AF-12 AF-15 AF-15 AF-15

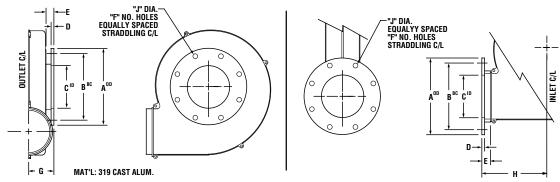
| FAN<br>Size | MOTOR<br>FRAME SIZE                       | inlet<br>Dia.<br>A | OUTLET<br>Dia.<br>B | C                   | D                   | E           | F      | G     | H  | I   | J     | к     | L           | м   | N   | Р | Q                  | NET WTS.<br>No motor<br>LBS. |
|-------------|-------------------------------------------|--------------------|---------------------|---------------------|---------------------|-------------|--------|-------|----|-----|-------|-------|-------------|-----|-----|---|--------------------|------------------------------|
| AF-8        | 56-C, 143-TC, 145-TC                      | 3                  | 3%                  | 4 <sup>15</sup> ⁄16 | 5 <sup>13</sup> ⁄16 | <b>5</b> ¾2 | 611/16 | 1%    | 3½ | 1½  | 21%   | 4%    | 6%          | 9   | 7½  | 8 | 1⁄4                | 14                           |
| AF-9        | 56-C, 143-TC, 145-TC                      | 4<br>5             | 3%                  | 6                   | 7¼                  | 617/32      | 7¾     | 17⁄16 | 3¾ | 1¾6 | 31/16 | 5%    | 71/16       | 9   | 7½  | 8 | 1⁄4                | 20                           |
| AF-10       | 56-C, 143-TC, 145-TC                      | 6                  | 4%                  | 611/16              | 85/16               | 715/16      | 9      | 1%    | 3¾ | 1½  | 3%    | 6¾    | 81/16       | 10  | 8½  | 8 | 5⁄16               | 35                           |
| AF-12       | 56-C, 143-TC, 145-TC<br>182-TC, 184-TC    | 7                  | 5½                  | 7¾                  | 9¼                  | 8½          | 107⁄16 | 17⁄16 | 4¼ | 1½  | 3%    | 75/16 | <b>9</b> ¾6 | 11  | 9½  | 8 | 5⁄16               | 40                           |
| AF-15       | 143-TC, 145-TC, 182-TC,<br>213-TC, 215-TC | 7<br>8<br>10       | 7½                  | 9%                  | 11                  | 10          | 12     | 21/16 | 5% | 1½  | 47⁄16 | 7%    | 117⁄16      | 13½ | 11¾ | 8 | 5/16<br>1/2<br>1/2 | 56                           |

| MOTORS        |     |     |     |  |  |  |  |  |  |  |  |  |
|---------------|-----|-----|-----|--|--|--|--|--|--|--|--|--|
| FRAME<br>Size | S   | Т   |     |  |  |  |  |  |  |  |  |  |
| 56-C          | 25  | 11½ | 6¼  |  |  |  |  |  |  |  |  |  |
| 143-TC        | 33  | 11½ | 7   |  |  |  |  |  |  |  |  |  |
| 145-TC        | 45  | 11½ | 7   |  |  |  |  |  |  |  |  |  |
| 182-TC        | 60  | 14½ | 9   |  |  |  |  |  |  |  |  |  |
| 184-TC        | 70  | 14½ | 9   |  |  |  |  |  |  |  |  |  |
| 213-TC        | 120 | 16  | 10½ |  |  |  |  |  |  |  |  |  |
| 215-TC        | 140 | 16  | 10½ |  |  |  |  |  |  |  |  |  |

#### NOTES:

For optional inlet flange, see drawing AFA11421F
Inlet flange is welded to motor side housing and bolted to inlet side housing

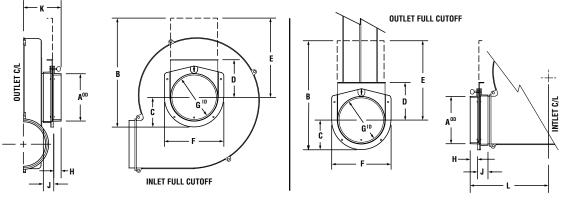
Housing, flange, and wheel are constructed of cast aluminum


| 5  | 51/16               | 4%  | 9¼ |  |
|----|---------------------|-----|----|--|
| 6  | 6¾6                 | 5½  | 11 |  |
| 7  | 6 <sup>15</sup> /16 | 6½  | 13 |  |
| 7  | 7¾                  | 072 | 15 |  |
| 8  | 8¼                  | 7½  | 15 |  |
| 10 | 9¼                  | 9½  | 19 |  |
|    |                     |     |    |  |
|    |                     |     |    |  |

INLET BELL

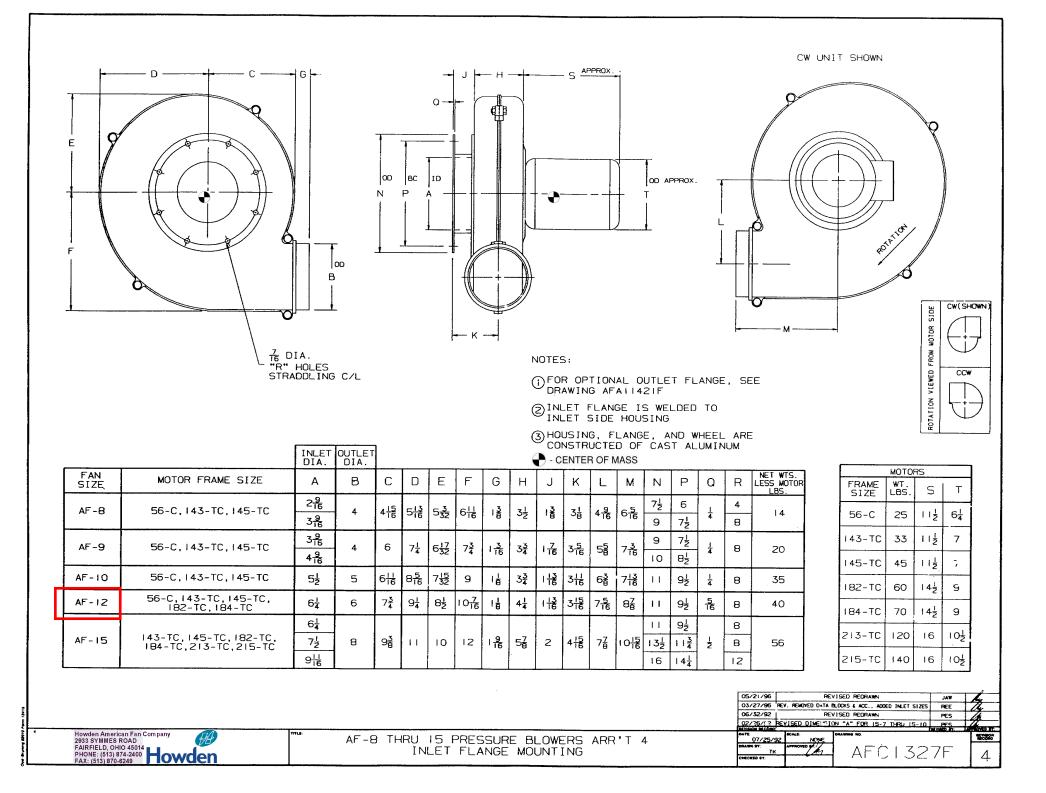
T U V

41/4 25% 51/4


## FLANGES



| FAN<br>Size | INLET | OUTLET | A   | В   | C                               | D    | E  | F G H ANSI FLANGE BOLT<br>PATTERN |        | ANSI FLANGE BOLT<br>PATTERN |     | IES 125/150 Ib. ANSI<br>Ige Bolt Pattern<br>Pt Hole Dia. = 7/6<br>AFC Standard) |      |             |
|-------------|-------|--------|-----|-----|---------------------------------|------|----|-----------------------------------|--------|-----------------------------|-----|---------------------------------------------------------------------------------|------|-------------|
|             |       |        |     |     |                                 |      |    |                                   |        |                             | J   | PART NUMBER                                                                     | J    | PART NUMBER |
| AF-8        | 3     | Х      | 7½  | 6   | 2%                              | 1⁄4  | 1¼ | 4                                 | 31⁄8   | —                           | 3⁄4 | 24149F                                                                          | 7⁄16 | 24149F-7⁄16 |
| AL-0        | 4     | 4      | 9   | 7½  | 3%                              | 1⁄4  | 1¼ | 8                                 | 31/8   | 6%                          | 3⁄4 | 24101F                                                                          | 7⁄16 | 24101F-7/16 |
| 45.0        | 4     | 4      | 9   | 7½  | 3%6                             | 1⁄4  | 1¼ | 8                                 | 35/16  | 71/16                       | 3⁄4 | 24101F                                                                          | 7⁄16 | 24101F-7/16 |
| AF-9        | 5     | Х      | 10  | 8½  | 4%                              | 1⁄4  | 1¼ | 8                                 | 35/16  | _                           | 3⁄4 | 24103F                                                                          | 7⁄16 | 24103F-7/16 |
| AF-10       | Х     | 5      | 10  | 8½  | 4%                              | 1⁄4  | 1¼ | 8                                 | -      | 81/8                        | 3⁄4 | 24103F                                                                          | 7⁄16 | 24103F-7/16 |
| AF-10       | 6     | Х      | 11  | 9½  | 5½                              | 5/16 | 1¼ | 8                                 | 3%     | _                           | 78  | 24106F                                                                          | 7⁄16 | 24106F-7/16 |
| AF-12       | Х     | 6      | 11  | 9½  | 5½                              | 5⁄16 | 1¼ | 8                                 | —      | <b>9</b> ¾6                 | 7⁄8 | 24106F                                                                          | 7⁄16 | 24106F-7/16 |
| Ar-12       | 7*    | Х      | 11  | 9½  | 6¼                              | 5/16 | 1¼ | 8                                 | 315/16 | —                           | 7∕8 | 24129F                                                                          | 7⁄16 | 24129F-7/16 |
|             | 7*    | Х      | 11  | 9½  | 6¼                              | 5/16 | 1¼ | 8                                 | 4¾     | _                           | 78  | 24129F                                                                          | 7⁄16 | 24129F-7/16 |
| AF-15       | 8     | 8      | 13½ | 11¾ | 7½                              | 1/2  | 1½ | 8                                 | 415/16 | 117/16                      | 7⁄8 | 24044F                                                                          | 7⁄16 | 24044F-7⁄16 |
|             | 10    | Х      | 16  | 14¼ | 9 <sup>11</sup> / <sub>16</sub> | 1/2  | 1½ | 12                                | 415/16 | —                           | 1   | 24130F                                                                          | 7⁄16 | 24130F-7/16 |


\*O.D. and B.C. match 6" ANSI flange

## FULL CUT-OFF DAMPERS



|   | INLET | OUTLET | SIZE | PART NO. | A                   | В      | C     | D           | E      | F   | G    | Н    | J                          | K      | L       |
|---|-------|--------|------|----------|---------------------|--------|-------|-------------|--------|-----|------|------|----------------------------|--------|---------|
| [ | AF-8  |        | 3"   | 63649    | 215/16              | 7%     | 23⁄16 | 3           | 53⁄16  | 4   | 21/2 | 1¼   | 17/16                      | 5½     | 81⁄8    |
| ſ | AF-8  | AF-8   | 4"   | 63650    | 315/16              | 9%     | 2¾    | 3¾          | 71/8   | 5   | 3½   | 1¼   | 17/16                      | 5½     | 81⁄8    |
| ſ | AF-9  | AF-9   | 4    | 03030    | <b>3</b> '916       | 978    | 294   | 3%          | 178    | 5   | 372  | 1 74 | I //16                     | 5%     | 815/16  |
| [ | AF-9  | AF-10  | 5"   | 63651    | 415/16              | 12%    | 35%   | 41⁄8        | 9      | 6¾  | 4½   | 1¼   | 17/16                      | 5%     | 9%6     |
|   | AF-10 | AF-12  | 6"   | 63652    | 5 <sup>15</sup> /16 | 13%    | 3¾    | 4¾          | 9%     | 7½  | 5½   | 1¼   | 17/16                      | 5%     | 10%     |
| Π | AF-12 |        | 7"   | 63653    | 615/16              | 15%    | 4¼    | 5¼          | 11%    | 8½  | 6½   | 1¼   | 17/16                      | 5%     | 10%     |
| Т | AF-15 | _      | 1    | 03033    | 0 '916              | 1378   | 4 74  | <b>3</b> 74 | 1178   | 072 | 072  | 1 74 | I //16                     | 611/16 | 1211/16 |
|   | AF-15 | AF-15  | 8"   | 63654    | 715/16              | 185/16 | 5     | 65/16       | 135/16 | 10  | 7½   | 1¼   | 17/16                      | 611/16 | 1211/16 |
|   | AF-15 | —      | 10"  | 63655    | 9 <sup>15</sup> /16 | 225/16 | 6     | 75⁄16       | 165/16 | 12  | 9½   | 1¾   | <b>1</b> <sup>15</sup> ⁄16 | 611/16 | 1211/16 |







# "L" Style Vacuum Filters

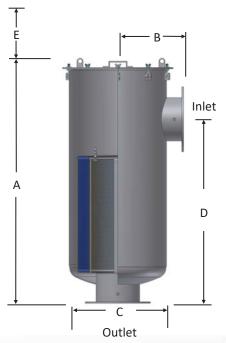
## CSL Series 3" - 12"

## **Benefits**

- Reduce piping costs with multiple mounting configurations (mount horizontal or inverted)
- Minimize equipment pressure-drop change with low pressure-drop filter design

## **Features**

- Heavy duty T bolts for easy maintenance
- Corrosive resistant black powder coat carbon steel
- O-ring stays in place with unique U-channel groove
- Inlet & outlet ¼" gauge taps


## **Technical Specifications**

- Vacuum Rating: medium vacuum service\*
- Filter change out differential: 15-20" H<sub>2</sub>O over initial ΔP
- Polyester: 99%+ removal efficiency standard to 5 micron
- Paper: 99%+ removal efficiency standard to 2 micron



- Straight-through configurations
- Various filter media
- Stainless steel
- Various nonstandard finishes and connection styles
- ISO Flange (contact factory for specs, sizes & availability)
- Flange faces free of paint
- Internal surfaces free of paint
- Lifting lugs
- Brackets for optional support legs
- Mounting housing bands
- Nameplate bracket

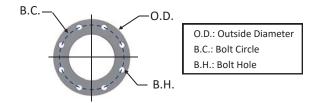




\*See Vacuum Filter Technical Data for vacuum service data.

Rev: CSL 3-12-US1911K

Sales/Service: 630.773.1363 sales@solbergmfg.com


## CSL Series 3" - 12"

## **Flanged Assemblies**

| Flange<br>Inlet & | Assembly<br>SCFM | Assembly Part Number |                    | C                  | oimensio | ns - inch | es     | Suggested<br>Service ht. | Approx.<br>Weight | Replac<br>Element | ement<br>Part No | Element<br>SCFM |
|-------------------|------------------|----------------------|--------------------|--------------------|----------|-----------|--------|--------------------------|-------------------|-------------------|------------------|-----------------|
| Outlet            | Rating           | Polyester            | Paper              | А                  | В        | С         | D      | E                        | lbs               | Polyester         | Paper            | Rating          |
| 4"                | 520              | CSL-235P-400F        | CSL-234P-400F      | 27 <del>3</del> ⁄8 | 9        | 14        | 18 ½   | 15″                      | 62                | 235P              | 234P             | 570             |
| 4"                | 520              | CSL-335P-400F        | CSL-334P-400F      | 27 <del>3</del> ⁄8 | 9        | 14        | 18 1⁄2 | 20″                      | 64                | 335P              | 334P             | 800             |
| 5″                | 800              | CSL-245P-500F        | CSL-244P-500F      | 28 1⁄4             | 11       | 18 1⁄2    | 19 ½   | 15″                      | 88                | 245P              | 244P             | 880             |
| 5″                | 800              | CSL-345P-500F        | CSL-344P-500F      | 28 1⁄4             | 11       | 18 1⁄2    | 19 ½   | 20″                      | 90                | 345P              | 344P             | 1100            |
| 6″                | 1100             | CSL-275P-600F        | CSL-274P-600F      | 29 1⁄4             | 12       | 18 1⁄2    | 20 1⁄2 | 15″                      | 110               | 275P              | 274P             | 1100            |
| 6″                | 1100             | CSL-375P-600F        | CSL-374P-600F      | 29 1⁄4             | 12       | 18 1⁄2    | 20 1/2 | 20″                      | 113               | 375P              | 374P             | 1500            |
| 8"                | 1800             | CSL-377P-800F        | CSL-376P-800F      | 39 1⁄8             | 14       | 22 1/2    | 25 1/2 | 20″                      | 185               | 377P              | 376P             | 1825            |
| 10"               | 2900             | CSL-685P-1000F       | CSL-384P(2)-1000F* | 57 ½               | 16       | 27        | 45     | 33″                      | 380               | 685P              | 384P (2)         | 6600            |
| 12"               | 4950             | CSL-485P(2)-1200F*   | CSL-484P(2)-1200F* | 70 1⁄4             | 16       | 27        | 57     | 25″                      | 465               | 485P (2)          | 484P (2)         | 9410            |

See Vacuum Filter Technical Data for sizing guidelines. \*Denotes 2 elements stacked in housing.

| 125/150#<br>Pattern | Dime   | ensions - in | No. of | Flores |                     |
|---------------------|--------|--------------|--------|--------|---------------------|
| Flange              | O.D.   | B.C.         | B.H.   | Holes  | Flange<br>Thickness |
| 4″                  | 9      | 7 1/2        | 0.75   | 8      | 0.38                |
| 5″                  | 10     | 8 1/2        | 0.88   | 8      | 0.38                |
| 6″                  | 11     | 9 1⁄2        | 0.88   | 8      | 0.38                |
| 8"                  | 13 1⁄2 | 11 3⁄4       | 0.88   | 8      | 0.38                |
| 10"                 | 16     | 14 1⁄4       | 1      | 12     | 0.38                |
| 12"                 | 19     | 17           | 1      | 12     | 0.50                |



All flanges are orientated "split center".

## **MPT Assemblies**

| MPT<br>Inlet & | Assembly<br>SCFM | Assembly F   | Part Number  | C                  | imensio | ns - inch | es     | Suggested<br>Service ht. | Approx.<br>Weight | Replac<br>Element | ement<br>Part No | Element<br>SCFM |
|----------------|------------------|--------------|--------------|--------------------|---------|-----------|--------|--------------------------|-------------------|-------------------|------------------|-----------------|
| Outlet         | Rating           | Polyester    | Paper        | Α                  | В       | С         | D      | E                        | lbs               | Polyester         | Paper            | Rating          |
| 3″             | 300              | CSL-235P-300 | CSL-234P-300 | 27 <del>3</del> ⁄8 | 9       | 14        | 18 1⁄2 | 10″                      | 47                | 235P              | 234P             | 570             |
| 3″             | 300              | CSL-335P-300 | CSL-334P-300 | 27 <del>3</del> ⁄8 | 9       | 14        | 18 ½   | 15″                      | 50                | 335P              | 334P             | 800             |
| 4"             | 520              | CSL-235P-400 | CSL-234P-400 | 27 <del>3</del> ⁄8 | 9       | 14        | 18 ½   | 10″                      | 52                | 235P              | 234P             | 570             |
| 4"             | 520              | CSL-335P-400 | CSL-334P-400 | 27 <del>3</del> ⁄8 | 9       | 14        | 18 ½   | 15″                      | 55                | 335P              | 334P             | 800             |
| 5″             | 800              | CSL-245P-500 | CSL-244P-500 | 28 1⁄4             | 11      | 18 1⁄2    | 19 ½   | 10″                      | 82                | 245P              | 244P             | 880             |
| 5″             | 800              | CSL-345P-500 | CSL-344P-500 | 28 1⁄4             | 11      | 18 1⁄2    | 19 ½   | 15″                      | 88                | 345P              | 344P             | 1100            |
| 6″             | 1100             | CSL-275P-600 | CSL-274P-600 | 29 1⁄4             | 12      | 18 1⁄2    | 20 1⁄2 | 10″                      | 95                | 275P              | 274P             | 1100            |
| 6″             | 1100             | CSL-375P-600 | CSL-374P-600 | 29 1⁄4             | 12      | 18 1⁄2    | 20 1⁄2 | 15″                      | 97                | 375P              | 374P             | 1500            |

See Vacuum Filter Technical Data for sizing guidelines.



All model offerings and design parameters are subject to change without prior notice. Contact your representative or Solberg for the most current information. www.solbergmfg.com



## **Technical Data**

## **Inlet Vacuum Filters**

## **Applications & Equipment**

- Industrial & Severe Duty
- Vacuum Pumps & Systems: Roots, Rotary Vane, Screw, Piston
- Vacuum Packaging Equipment
- Vacuum Furnace
- Blowers: Side Channel & P.D.
- Vacuum Lifters
- Intake Suction Filters
- Food Industry
- Woodworking/Routers
- Ash Handling
- Printing Industry
- Medical/Hospital
- Remote Installations for Piston & Screw Compressors
- Paper Processing
- Waste Water Aeration
- Cement Processing
- Bag House Systems
- Vacuum Vent Breathers
- Chemical Processing
- Factory Automation Equipment
- Leak Detection Systems

## Identification

Standard Solberg assemblies should have an identification label/nameplate that gives the following information:

- Assembly Model #
- Replacement Element #

The part number designates the filter type, the element configuration and housing connection size. For example, the following part number identifies the filter as being a "CSL" design filter with a "235" element, "P" prefilter and 4" flange connection size.

## CSL-235P-400F



## Vacuum Service Rating Chart

Threaded vacuum filter connections must be free of defect and properly sealed to achieve deeper vacuum levels. Vacuum service levels are given for reference only and serve as a guideline for product selection. Product certification and alternative designs are available for applications requiring deeper vacuum levels and specific leak rates. Please contact factory for details.

| Vacuum Level         | Pressure (mbar)                              | Pressure (Torr)                          | Pressure (Pa)                            |
|----------------------|----------------------------------------------|------------------------------------------|------------------------------------------|
| Atmospheric Pressure | 1013                                         | 760                                      | 1.013x10 <sup>+5</sup>                   |
| Coarse Vacuum        | 1013 to 33                                   | 760 to 25                                | 1x10 <sup>+5</sup> to 3x10 <sup>+3</sup> |
| Medium Vacuum        | 33 to 1.3x10 <sup>-3</sup>                   | 25 to 1x10 <sup>-3</sup>                 | 3x10 <sup>+3</sup> to 1x10 <sup>-1</sup> |
| High Vacuum          | 1.3x10 <sup>-3</sup> to 1.3x10 <sup>-9</sup> | 1x10 <sup>-3</sup> to 1x10 <sup>-9</sup> | 1x10 <sup>-1</sup> to 1x10 <sup>-7</sup> |

Rev: IVTD-US1904K

### **Inlet Vacuum Filters**

#### Choosing the Best Filter for Your Equipment

A. When the connection & airflow is known:

1. select the appropriate connection style. (i.e.: MPT, Flange, NPSC, etc.)

2. check assembly SCFM (flow) rating. Compare with your required airflow.

(Note: Assembly flow ratings are based on 6,000 FPM or 30m/sec for a given connection size to achieve low pressure drop performance. When required flow exceeds assembly flow rating, the pressure drop through the outlet connection will increase. In such cases select by element SCFM (flow) rating.)

3. when required flow rating matches connection size; skip to "C. Selecting Elements".

B. When the connection size is unknown, flexible, or the required flow rating exceeds assembly flow rating:

1. match required flow rating with the element flow rating.

2. choose related connection size.

C. Selecting Elements: The filter performance is influenced by the actual application duty and the equipment it is installed on. Regular maintenance checks and proper servicing is required.

#### Application Duty Descriptions:

Industrial Duty: clean workshop or clean outdoor environment - small element sizing is sufficient.

Severe Duty: dirty workshop, wastewater – medium to large element is recommended.

Extreme Duty: cement, steel making, plastics or dusty material conveying – largest element sizing is recommended.

1. Select media required by your application. Options include:

a. Standard media

1. Polyester: all purpose; withstands pulses, moisture, and oily air

- 2. Paper: mostly dry, smooth flow applications
- b. Special Media: for a variety of micron levels and media types, see the "Filter Media Specifications" in the Replacement Element Section or contact Solberg.
- 2. Select element size by matching the element with the anticipated duty and upsize accordingly.

#### Filter Assembly Maintenance

Request the appropriate maintenance manual for more in-depth information from your Solberg representative or on our website www.solbergmfg.com.

#### **Element Maintenance**

Solberg elements should be replaced once the pressure drop reaches  $15-20'' H_2O$  above the initial pressure drop of the installation. Cleaning the element is also an option.

Solberg recommends replacing dirty elements for optimal performance. Any damage which results from by-pass or additional pressure drop created by element cleaning is the sole responsibility of the operator.

Note: The overall performance of a filter element is altered once cleaned. The initial pressure drop after subsequent cleanings will be greater than the original, clean pressure drop of the element. After each cleaning, the pressure drop will continue to increase. Under all circumstances, the initial pressure drop of the element needs to be maintained at less than  $15'' H_2O$ .

If the pressure drop exceeds 20" H<sub>2</sub>O at start-up; it should be replaced with a new element. With many types of equipment, the maximum pressure drop allowed will be dictated by the ability of the equipment to perform to its rated capacity. Under all circumstances, the operator should avoid exceeding the manufacturer's recommended maximum pressure drop for their specific equipment.



All model offerings and design parameters are subject to change without prior notice. Contact your representative or Solberg for the most current information. www.solbergmfg.com



# **CENTRIC** Butterfly Valve

RUBBER SEATED VF - 7 Series

LEVER · GEAR · PNEUMATIC ELECTRIC OPERATED

#### ALLOWABLE PRESSURE

1.5" - 12.0" : 230 psig 14.0" - 40.0" : 150 psig



INVESTMENT CAST STEATINESS STEEL BODY

1.5" - 24"(40mm - 600mm)

# VALUE VALVE



## **RESILIENT SEATED BUTTERFLY VALVES**



VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)

FACE TO FACE: Valve body designed to meet ISO 5752 table 5 short.

#### TOP WORKS:

24" and below, valve mounting flange and stem shall be per ISO 5211. 28" and above, valve mounting flange per ISO 5211, stem shall be round keyed.

#### FLANGE REQUIREMENT:

VF-730. VF-733: ANSI 125/150. BS Table E. JIS 10K. DIN PN10. DIN PN16. All wafers have locating holes for ease of installation. VF-737: ANSI 150. JIS10K. DIN PN10. DIN PN16

#### PRESSURE RATING:

| Bi-directional bubble-tight shut off to | 16bar (230psi)1.5"~12.0". |
|-----------------------------------------|---------------------------|
|                                         | 10bar (150psi)14.0"~40.0" |

and tested to 110% of full rating

18bar (260psi)-----1.5"~12.0" 11bar (160psi)-----14.0"~40.0"

#### SHELL TESTING:

The body strength can stand 150% of full rating.

24bar (340psi)-----1.5"~12.0" 15bar (220psi)-----14.0"~40.0"

#### INSTALLATION INSTRUCTIONS:

The valve is designed for use between all types of flat or raised face flanges. DO NOT USE FLANGE GASKETS. The butterfly valve design eliminates the need for gaskets. For proper installation, the space between flanges must be sufficient to permit valve insertion without disturbing the rubber liner flange seal. Note that the disc sealing edge is 45° from the flat of the shaft, but inline with the scribed line. Rotate the stem to position the disc within the body, place the valve between flanges and hand-tighten the bolts. SLOWLY OPEN the valve counterclockwise to check for adequate disc clearance. RETURN THE DISC TO 10% OPEN POSITION and cross tighten all bolts, again check for adequate disc clearance.

#### STEM RETAINING MECHANISM:

The stem is retained in the body by means of a special "Q" type design when the valve size is under 14.0", and hence the stem can be removed from the body and disc without any special tools.

\*Unless you intend to disassemble the valve, do not position the disc in the 135° position.

#### Anti-Condensed: (On customer's requirement)



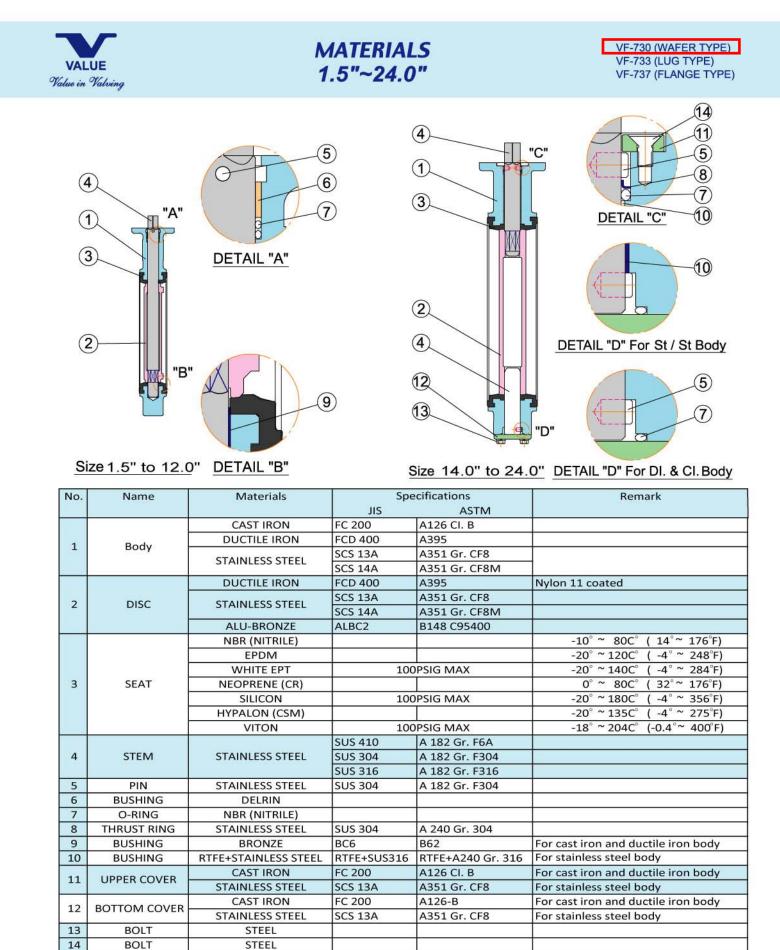
## **DESIGN DETAILS AND SPECIFICATIONS**

VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)

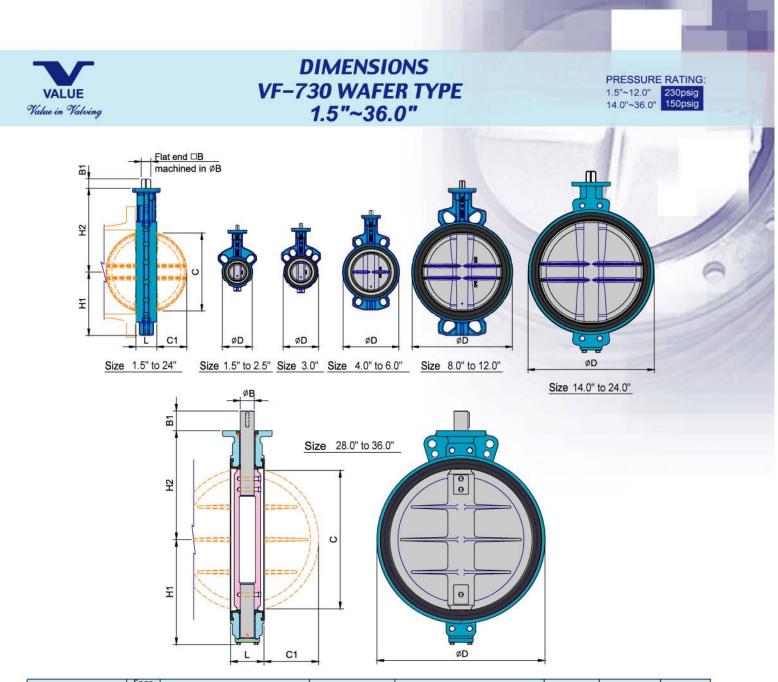
#### Cv Values-Valve Sizing Coefficient.

| S    | ize   |              | ***  | -    | Disc A | Angle (Open | Degree) | ee v  |        |        |
|------|-------|--------------|------|------|--------|-------------|---------|-------|--------|--------|
| mm   | inch  | $10^{\circ}$ | 20°  | 30°  | 40°    | 50°         | 60°     | 70°   | 80°    | 90°    |
| 40   | 1 1/2 | 0.8          | 2.8  | 8.1  | 16.6   | 26          | 42      | 69    | 95     | 132    |
| 50   | 2     | 1.3          | 4.4  | 11.9 | 25.7   | 44          | 70      | 117   | 154    | 226    |
| 65   | 2 1/2 | 2.3          | 8.8  | 21.3 | 41     | 71          | 111     | 219   | 281    | 369    |
| 80   | 3     | 2.9          | 11.5 | 30   | 56     | 97          | 147     | 250   | 395    | 497    |
| 100  | 4     | 4.4          | 17   | 46   | 84     | 139         | 259     | 422   | 709    | 846    |
| 125  | 5     | 7.6          | 28   | 73   | 138    | 254         | 461     | 701   | 1214   | 1454   |
| 150  | 6     | 12           | 48   | 111  | 205    | 381         | 634     | 1021  | 1474   | 2175   |
| 200  | 8     | 22           | 75   | 193  | 358    | 670         | 1164    | 1833  | 2703   | 3655   |
| 250  | 10    | 33           | 118  | 287  | 528    | 978         | 1711    | 2636  | 3810   | 5566   |
| 300  | 12    | 40           | 151  | 365  | 720    | 1330        | 2486    | 3800  | 5839   | 8258   |
| 350  | 14    | 55           | 191  | 456  | 930    | 1753        | 3010    | 4657  | 6726   | 9733   |
| 400  | 16    | 73           | 270  | 594  | 1260   | 2308        | 3956    | 6300  | 9476   | 13406  |
| 450  | 18    | 88           | 300  | 727  | 1413   | 2709        | 4592    | 7407  | 11085  | 15926  |
| 500  | 20    | 121          | 405  | 1005 | 1980   | 3611        | 6257    | 9960  | 15338  | 21935  |
| 600  | 24    | 163          | 578  | 1349 | 2795   | 5225        | 8846    | 13976 | 21163  | 29504  |
| 700  | 28    | 223          | 771  | 1959 | 3772   | 7008        | 12471   | 20407 | 29477  | 43081  |
| 750  | 30    | 238          | 819  | 2079 | 4001   | 7434        | 13229   | 21649 | 31271  | 45703  |
| 800  | 32    | 301          | 1138 | 2693 | 5304   | 9635        | 16524   | 26935 | 36987  | 53814  |
| 900  | 36    | 385          | 1466 | 3452 | 6859   | 12648       | 21275   | 34815 | 50185  | 71421  |
| 1000 | 40    | 597          | 2245 | 5214 | 9309   | 15788       | 25669   | 42120 | 63939  | 80583  |
| 1050 | 42    | 687          | 2411 | 5352 | 9826   | 16665       | 27095   | 44459 | 67490  | 85058  |
| 1100 | 44    | 823          | 3082 | 7109 | 10230  | 19436       | 30924   | 50837 | 79709  | 92686  |
| 1200 | 48    | 1134         | 4256 | 9481 | 16591  | 25865       | 41321   | 67652 | 105788 | 124357 |

Cv value denotes the flow rate in US gallon/min for water at 70° F under a pressure differential 1 psig. When required Kv = Cv/1.17


#### Expected Seating/ Unseating Torque (in Lbs)

| Si   | ze    | Lubrica | ating (Non-c                               | orrosive) 🛆 | P (psig) | Dry (Non- | Lubricating | ) ∆P (psig) | Reduced Di<br>P (90 | sc Diameter<br>psig) |
|------|-------|---------|--------------------------------------------|-------------|----------|-----------|-------------|-------------|---------------------|----------------------|
| mm   | inch  | 45      | 90                                         | 150         | 230      | 45        | 90          | 150         | Lubricating         | Dry                  |
| 40   | 1 1/2 | 133     | 151                                        | 169         | 204      | 169       | 186         | 204         | 93                  | 118                  |
| 50   | 2     | 133     | 151                                        | 169         | 204      | 169       | 186         | 204         | 93                  | 118                  |
| 65   | 2 1/2 | 159     | 177                                        | 195         | 231      | 195       | 213         | 239         | 112                 | 136                  |
| 80   | 3     | 248     | 275                                        | 301         | 363      | 301       | 337         | 372         | 174                 | 211                  |
| 100  | 4     | 328     | 363                                        | 399         | 478      | 399       | 443         | 496         | 229                 | 279                  |
| 125  | 5     | 540     | 602                                        | 673         | 806      | 673       | 744         | 823         | 378                 | 471                  |
| 150  | 6     | 1027    | 1124                                       | 1239        | 1363     | 1116      | 1222        | 1346        | 719                 | 781                  |
| 200  | 8     | 1514    | 1682                                       | 1868        | 2239     | 1868      | 2071        | 2301        | 1060                | 1308                 |
| 250  | 10    | 2434    | 2709                                       | 3009        | 3611     | 3009      | 3346        | 3717        | 1705                | 2108                 |
| 300  | 12    | 3372    | 3744                                       | 4160        | 4992     | 4160      | 4620        | 5133        | 2362                | 2914                 |
| 350  | 14    | 4824    | 5355                                       | 5948        |          | 5948      | 6611        | 7346        | 3379                | 4166                 |
| 400  | 16    | 6443    | 7160                                       | 7957        |          | 7957      | 8842        | 9824        | 4514                | 5574                 |
| 450  | 18    | 8072    | 8965                                       | 9965        |          | 9966      | 11072       | 12302       | 5654                | 6981                 |
| 500  | 20    | 10045   | 11160                                      | 12399       |          | 12399     | 13780       | 15311       | 7037                | 8686                 |
| 600  | 24    | 11727   | 13027                                      | 14479       |          | 14479     | 16090       | 17877       | 8215                | 10143                |
| 700  | 28    | 20701   | 23002                                      | 25559       |          | 25559     | 23400       | 31560       | 14502               | 17905                |
| 750  | 30    | 23081   | 25648                                      | 28497       |          | 28497     | 31666       | 35179       | 16169               | 19964                |
| 800  | 32    | 26621   | 29577                                      | 32860       |          | 32860     | 36507       | 40560       | 18649               | 23020                |
| 900  | 36    | 33878   | 36639                                      | 42826       |          | 41826     | 46472       | 51631       | 23733               | 26301                |
| 950  | 38    | 39073   | 43542                                      | 58499       |          | 48233     | 53543       | 62835       |                     |                      |
| 1000 | 40    | 45047   | 50268                                      | 67437       |          | 55578     | 62039       | 83279       | 28755               | 35501                |
| 1050 | 42    |         |                                            |             |          |           | 5           |             | 33765               | 41682                |
| 1100 | 44    |         | ji i                                       |             |          |           |             | 1           | 34124               | 42135                |
| 1200 | 48    |         | (ja la |             |          |           |             | (           | 43015               | 53108                |

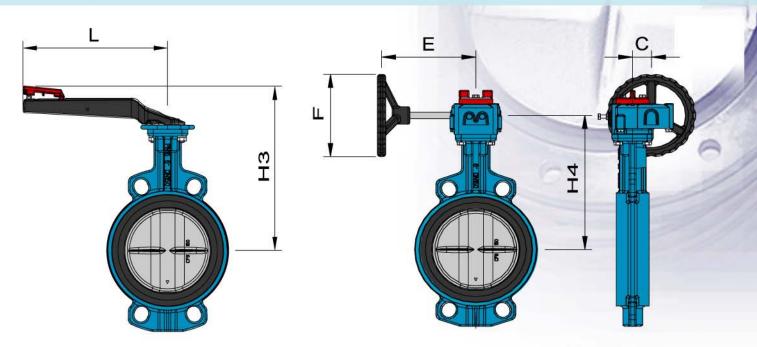

To Use The Torque Chart, Note The Following

- 1) Seating/Unseating torque values above include friction bearing torque for stated  $\Delta P$ .
- Do not apply a safety factor to above torque values when determining actuator output torque requirement.

#### 2 Butterfly Valve



#### 3 Butterfly Valve




| Si  | ize   | Face<br>to<br>Face |       |       | 2     | The second second second | ing Flange<br>5211) |      | Shaft End | 2    | Key         | 1000  | isc<br>rance | Weight  |
|-----|-------|--------------------|-------|-------|-------|--------------------------|---------------------|------|-----------|------|-------------|-------|--------------|---------|
| mm  | inch  | L                  | H1    | H2    | D     | Туре                     | PCD                 | ØB   | □B        | B1   |             | С     | C1           | lbs     |
| 40  | 1 1/2 | 1.30               | 2.36  | 4.72  | 3.19  | F07                      | 2.76                | 0.55 | 0.43      | 0.75 |             | 1.34  | 0.28         | 4.40    |
| 50  | 2     | 1.69               | 2.56  | 5.63  | 3.78  | F07                      | 2.76                | 0.55 | 0.43      | 0.75 |             | 1.54  | 0.32         | 6.60    |
| 65  | 2 1/2 | 1.81               | 2.80  | 6.10  | 4.33  | F07                      | 2.76                | 0.55 | 0.43      | 0.75 |             | 2.17  | 0.51         | 8.36    |
| 80  | 3     | 1.81               | 3.03  | 6.38  | 4.88  | F07                      | 2.76                | 0.55 | 0.43      | 0.75 |             | 2.72  | 0.75         | 8.80    |
| 100 | 4     | 2.05               | 4.21  | 7.13  | 5.83  | F07                      | 2.76                | 0.55 | 0.43      | 0.75 |             | 3.58  | 1.06         | 11.66   |
| 125 | 5     | 2.20               | 4.80  | 7.76  | 7.09  | F07                      | 2.76                | 0.71 | 0.55      | 0.75 |             | 4.53  | 1.42         | 16.06   |
| 150 | 6     | 2.20               | 5.51  | 8.27  | 8.11  | F07                      | 2.76                | 0.71 | 0.55      | 0.75 |             | 5.51  | 1.85         | 18.04   |
| 200 | 8     | 2.36               | 6.50  | 9.45  | 10.20 | F10                      | 4.02                | 0.87 | 0.67      | 0.95 |             | 7.32  | 2.68         | 29.70   |
| 250 | 10    | 2.68               | 7.91  | 11.26 | 12.60 | F10                      | 4.02                | 0.98 | 0.75      | 0.95 |             | 9.41  | 3.54         | 46.64   |
| 300 | 12    | 3.07               | 9.21  | 12.17 | 14.57 | F10                      | 4.02                | 1.10 | 0.87      | 0.95 |             | 11.34 | 4.37         | 71.50   |
| 350 | 14    | 3.07               | 11.93 | 12.95 | 16.22 | F12/14                   | 4.92/5.51           | 1.38 | 1.06      | 1.14 |             | 12.80 | 5.04         | 105.60  |
| 400 | 16    | 4.02               | 13.19 | 14.21 | 18.70 | F12/14                   | 4.92/5.51           | 1.38 | 1.06      | 1.14 |             | 14.76 | 5.63         | 132.00  |
| 450 | 18    | 4.49               | 14.29 | 15.47 | 20.87 | F14/16                   | 5.51/6.50           | 1.89 | 1.42      | 1.50 |             | 16.65 | 6.38         | 176.00  |
| 500 | 20    | 5.00               | 15.63 | 16.81 | 23.03 | F14/16                   | 5.51/6.50           | 1.89 | 1.42      | 1.50 |             | 18.62 | 7.17         | 275.00  |
| 600 | 24    | 6.06               | 18.07 | 19.37 | 27.05 | F16                      | 6.50                | 2.36 | 1.81      | 1.89 |             | 22.05 | 8.43         | 440.00  |
| 700 | 28    | 6.50               | 20.12 | 22.17 | 31.34 | F16                      | 6.50                | 2.76 |           | 3.54 | .071 X 0.47 | 25.79 | 10.04        | 869.00  |
| 750 | 30    | 7.48               | 21.42 | 23.03 | 33.70 | F25                      | 10.00               | 2.95 |           | 4.33 | 0.79 X 0.47 | 27.24 | 10.39        | 1078.00 |
| 800 | 32    | 7.48               | 23.31 | 24.80 | 34.25 | F25                      | 10.00               | 3.15 |           | 4.33 | 0.79 X 0.47 | 28.98 | 11.22        | 1276.00 |
| 900 | 36    | 7.99               | 24.88 | 25.98 | 39.49 | F25                      | 10.00               | 3.35 |           | 4.33 | 0.94 X 0.63 | 33.11 | 13.03        | 1606.00 |



## **LEVER & GEAR OPERATED**

VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)



| Si   | ze    | Operator<br>Series No. | Lever Operator |       | Gear Operator |      | Gear Operator |       | Handwheel<br>Turns ON/OFF | Mounting<br>52 |       |
|------|-------|------------------------|----------------|-------|---------------|------|---------------|-------|---------------------------|----------------|-------|
| mm   | inch  |                        | H3             | L     | H4            | С    | E             | F     | N                         | Туре           | PCD   |
| 40   | 1 1/2 | L 7A                   | 7.68           | 7.87  |               |      |               |       |                           | F07            | 2.76  |
| 40   | 0     | C 07                   | 0              |       | 6.18          | 1.61 | 6.1           | 5.91  | 10                        | FU7            | 2.70  |
| 50   | 2     | L 7A                   | 8.58           | 7.87  |               |      |               |       |                           | F07            | 2.76  |
| 50   |       | C 07                   |                |       | 7.09          | 1.61 | 6.1           | 5.91  | 10                        | F07            | 2.70  |
| 65   | 2 1/2 | L 7A                   | 9.06           | 7.87  |               |      |               |       |                           | F07            | 2.76  |
| 05   |       | C 07                   |                |       | 7.56          | 1.61 | 6.1           | 5.91  | 10                        | F07            | 2.70  |
| 80   | 3     | L 7A                   | 9.33           | 7.87  |               |      |               |       |                           | F07            | 2.76  |
| 80   |       | C 07                   |                |       | 7.83          | 1.61 | 6.1           | 5.91  | 10                        | F07            | 2.70  |
| 100  | 4     | L7A                    | 10.08          | 7.87  |               |      |               |       |                           | F07            | 2.76  |
| 100  |       | C 07                   |                |       | 8.58          | 1.61 | 6.1           | 5.91  | 10                        | F07            | 2.70  |
| 125  | 5     | L 7B                   | 10.71          | 9.84  |               |      |               |       |                           | F07            | 2.76  |
| 125  |       | C 07                   |                |       | 9.21          | 1.61 | 6.1           | 5.91  | 10                        | FU7            | 2.70  |
| 150  | 6     | L 7B                   | 11.22          | 9.84  |               |      |               |       |                           | F07            | 2.76  |
| 130  |       | C 07                   |                |       | 9.72          | 1.61 | 6.1           | 5.91  | 10                        | FU7            | 2.70  |
| 200  | 8     | L10                    | 12.76          | 13.98 |               |      |               |       |                           | F10            | 4.02  |
| 200  |       | C10                    |                |       | 11.06         | 2.48 | 7.68          | 7.87  | 9                         | FIO            | 4.02  |
| 250  | 10    | L 10                   | 14.57          | 13.98 |               |      |               |       |                           | F10            | 4.02  |
| 230  |       | C 10                   |                |       | 12.87         | 2.48 | 7.68          | 7.87  | 9                         | FIU            | 4.02  |
| 300  | 12    | L 10                   | 15.47          | 13.98 |               |      |               |       |                           | F10            | 4.02  |
| 500  |       | C 10                   |                |       | 13.78         | 2.48 | 7.68          | 7.87  | 9                         | 1/12/06/08     | 4.02  |
| 350  | 14    | C 12                   |                |       | 14.57         | 2.4  | 9.13          | 12.2  | 9                         | F12            | 4.92  |
| 400  | 16    | C 12                   | ( )            |       | 15.82         | 2.4  | 9.13          | 12.2  | 9                         | F12            | 4.92  |
| 450  | 18    | C 14                   |                |       | 17.52         | 3.19 | 11.02         | 15.75 | 13                        | F14            | 5.51  |
| 500  | 20    | C 14                   |                |       | 18.86         | 3.19 | 11.02         | 15.75 | 13                        | F14            | 5.51  |
| 600  | 24    | A2                     |                |       | 21.57         | 4.84 | 12.09         | 15.75 | 17.5                      | F16            | 6.5   |
| 700  | 28    | A2                     |                |       | 24.37         | 4.84 | 12.09         | 15.75 | 17.5                      | F16            | 6.5   |
| 750  | 30    | A3+S3                  |                |       | 28.74         | 6.3  | 14.57         | 15.75 | 52                        | F25            | 10    |
| 800  | 32    | A3+S3                  |                |       | 30.51         | 6.3  | 14.57         | 15.75 | 52                        | F25            | 10    |
| 900  | 36    | A3+S3                  |                |       | 31.69         | 6.3  | 14.57         | 15.75 | 52                        | F25            | 10    |
| 950  | 38    | A3+S3                  |                |       | 34.41         | 6.3  | 14.57         | 15.75 | 52                        | F25            | 10    |
| 1000 | 40    | A4+S4                  |                |       | 37.2          | 7.76 | 18.54         | 23.62 | 90                        | F30            | 11.73 |



### INVESTMENT CAST STAINLESS STEEL BODY

7

10

11

3

10 11

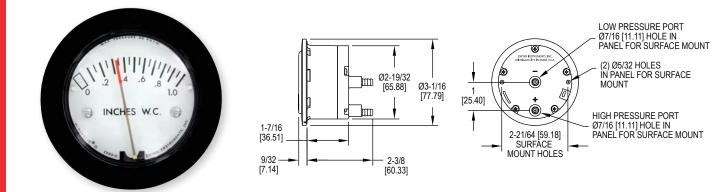
PRESSURE RATING: 1.5"~24.0" 230psig

2

6

8

Value Valves offers a line of Investment Cast Stainless Steel Butterfly Valves in size 1.5" to 24.0". Available in Wafer and Lug, both Body (1) 5 and Disc (2) are low profile engineered investment cast.


The basics features of these valves are identical to the VF730/733 vales with ISO-5211 mounting but offer **Top and Bottom Teflon Coated Stainless Steel Bushings (8)**, and a **Stainless Stem Retainer Pin Cover (9)**. Available are Stainless Steel Handles and Gear Boxes, Stainless Steel Rack and Pinion Actuators and Stainless Steel Limit Switch Boxes, offering a high level of corrosion resistance in the most aggressive atmospheres.

All valves are equipped with **Anti-Static Spring Loaded Stem Pin (10)(11)**, reducing the build up of static electricity possibly produced due to the isolation of the disc and stem from the body by the rubber seat.

Available are various seats including Food Grade White EPT

| No. | Name              | Materials              | Spec         | ifications       | Remark                      |
|-----|-------------------|------------------------|--------------|------------------|-----------------------------|
|     |                   |                        | JIS          | ASTM             |                             |
| 1   | BODY              | STAINLESS STEEL        | SCS 13A      | A351 Gr. CF8     |                             |
| Т   | BODY              | STAINLESS STEEL        | SCS 14A      | A351 Gr. CF8M    |                             |
| 2   | DISC              | STAINLESS STEEL        | SCS 13A      | A351 Gr. CF8     |                             |
| 2   | DISC              | STAINLESS STEEL        | SCS 14A      | A351 Gr. CF8M    |                             |
|     |                   | NBR (NITRILE)          |              |                  | -10° ~ 80°C ( 14° ~ 176°F)  |
|     |                   | EPDM                   |              |                  | -20° ~ 120°C ( -4° ~ 248°F) |
|     |                   | WHITE EPT              |              |                  | -20° ~ 140°C ( -4° ~ 284°F) |
| 3   | SEAT              | NEOPRENE (CR)          |              |                  | 0° ~ 80°C ( 32° ~ 176°F)    |
|     |                   | SILICON                |              |                  | -20° ~ 180°C ( -4° ~ 356°F) |
|     |                   | HYPALON (CSM)          |              |                  | -20° ~ 135°C ( -4° ~ 275°F) |
|     |                   | VITON                  |              |                  | -18° ~ 204°C (-0.4°~ 400°F) |
|     |                   |                        | SUS 410      | A182 Gr. F6A     |                             |
| 4   | STEM              | STAINLESS STEEL        | SUS 304      | A182 Gr. F304    |                             |
|     |                   |                        | SUS316       | A182 Gr. F316    |                             |
| 5   | PIN               | STAINLESS STEEL        | SUS304       | A182 Gr. F304    |                             |
| 6   | BUSHING           | DELRIN                 |              |                  |                             |
| 7   | O-RING            | NBR (NITRILE)          |              |                  |                             |
| 8   | BUSHING           | RTFE + STAINLESS STEEL | RTFE+SUS 316 | RTFE+A240 Gr.316 |                             |
| 9   | STEM RETAINER     | STAINLESS STEEL        | SUS 304      | A240 Gr. F304    |                             |
| 10  | PIN (ANTI-STATIC) | STAINLESS STEEL        | SUS 304      | A182 Gr. F316    |                             |
| 11  | SPRING            | STAINLESS STEEL        | SUS 304      | A240 Gr. F304    |                             |
| 12  | SCREW             | STAINLESS STEEL        | SUS 304      | A193 Gr. B8      |                             |

## **SERIES 2-5000** MINIHELIC® II DIFFERENTIAL PRESSURE GAGE Combining High Accuracy, Compactness, Dependability, and Low Cost





Dwyer.

Combining clean design, small size and low cost with enough accuracy for all but the most demanding applications our Series 2-5000 Minihelic® II Differential Pressure Gage offers the latest in design features for a dial type differential pressure gage. It is our most compact gage but is easy to read and can safely operate at total pressures up to 30 psig.

#### FEATURES/BENEFITS

- · Removable lens and rear-housing provides easy, cost-effective servicing
- · Accuracy and value provides an excellent solution for OEM and user applications
- · Durable housing materials make it well-suited for rough environments and total high pressure

#### APPLICATIONS

- Room positive pressure sensing
- · Cabinet air-purging
- · Medical respiratory equipment
- · Air samplers
- · Electronic air cooling systems
- · Laminar flow hoods
- · Local indication on filter status
- · Face velocity on fume hood
- · Duct pressures

Wetted Materials: Consult factory. Housing: Glass filled nylon; polycarbonate lens. Accuracy: ±5% of FS at 70°F (21.1°C). Pressure Limits: 30 psig (2.067 bar) continuous to either pressure connection. Temperature Limits: 20 to 120°F (-6.67 to 48.9°C). Size: 2-1/16" (52.39 mm) diameter dial face. Mounting Orientation: Diaphragm in vertical position. Consult factory for other position orientations. Process Connections: Barbed, for 3/16" ID tubing (standard); 1/8" male NPT (optional). Weight: 6 oz (170.1 g). Agency Approvals: Meets the technical requirements of EU Directive 2011/65/EU (RoHS II). Caution: For use only with air or compatible non-corrosive gases.

SPECIFICATIONS

Service: Air and compatible gases.

Differential Pressure Gages

PRESSURE

## Dwyer **SERIES 2-5000** MINIHELIC<sup>®</sup> II DIFFERENTIAL PRESSURE GAGE Combining High Accuracy, Compactness, Dependability, and Low Cost

Housing is molded from strong mineral and glass filled . nylon.

Pointer stops of molded rubber prevent pointer over-travel without damage.

Full view lens is removable and molded of acrylic.

Aluminum scale litho-printed black on white, enhances readability.

Red tipped aluminum pointer, rigidly mounted to helix is easy to see.

Wishbone assembly provides mounting for helix, helix bearings, and pointer shaft.

Jewel bearings provide virtually friction-free helix motion.

Helix is free to rotate in jewel bearings. It aligns with magnetic field of magnet to transmit pressure indications to pointer.

Zero adjustment screw, located behind the removable lens, eliminates tampering.

| MODEL C  | HART            |              |             |
|----------|-----------------|--------------|-------------|
|          | Range,          |              | Range,      |
| Model    | Inches of Water | Model        | MM of Water |
| 2-5000-0 | 0-0.5           | 2-5000-25MM  | 0-25        |
| 2-5001   | 0-1.0           | 2-5000-50MM  | 0-50        |
| 2-5002   | 0-2.0           | 2-5000-100MM | 0-100       |
| 2-5003   | 0-3.0           |              | Range,      |
| 2-5005   | 0-5.0           | Model        | Pascals     |
| 2-5010   | 0-10            | 2-5000-125PA | 0-125       |
| 2-5020   | 0-20            | 2-5000-250PA | 0-250       |
| 2-5040   | 0-40            | 2-5000-500PA | 0-500       |
| 2-5060   | 0-60            |              | Range,      |
| 2-5100   | 0-100           | Model        | kPa         |
|          | Range,          | 2-5000-1KPA  | 0-1         |
| Model    | PSI             | 2-5000-3KPA  | 0-3         |
| 2-5205   | 0-5             |              |             |

| OPTIONS              |                                        |  |  |  |  |
|----------------------|----------------------------------------|--|--|--|--|
| To order add suffix: | Description                            |  |  |  |  |
| -NPT                 | 1/8" male NPT connections              |  |  |  |  |
| Example: 2-5001-NP   | T                                      |  |  |  |  |
| -BB                  | Bottom barbed surface mount            |  |  |  |  |
| Example: 2-5001-BB   | ·                                      |  |  |  |  |
| -NIST                | NIST traceable calibration certificate |  |  |  |  |
| Example: 2-5001-NIS  | Example: 2-5001-NIST                   |  |  |  |  |
| -FC                  | Factory calibration certificate        |  |  |  |  |
| Example: 2-5001-FC   |                                        |  |  |  |  |

| ACCESSO  | ACCESSORIES                                                |  |  |  |  |
|----------|------------------------------------------------------------|--|--|--|--|
| Model    | Description                                                |  |  |  |  |
| A-302F-A | 303 SS static pressure tip with mounting flange; for 3/16" |  |  |  |  |
|          | ID rubber or plastic tubing; 4" insertion depth; includes  |  |  |  |  |
|          | mounting screws                                            |  |  |  |  |
| A-434    | Portable kit                                               |  |  |  |  |
| A-489    | 4" straight static pressure tip with flange                |  |  |  |  |
| A-497    | Surface mounting bracket                                   |  |  |  |  |
| A-609    | Air filter kit                                             |  |  |  |  |
| A-480    | Plastic static pressure tip                                |  |  |  |  |

Range spring calibration clamp fixes live length of spring for proper gage calibration and is factory set and sealed.

Silicone rubber diaphragm allows accurate response to a broad range of temperatures and at extremely low pressure. Incorporates blow out area for overpressure protection.

Diaphragm support plates of lightweight aluminum on each side of the diaphragm minimize position or attitude sensitivity and help define pressure area.

Flat leaf range spring reacts to pressure on the diaphragm. Live length is adjustable for calibration. Small amplitude of motion minimizes inaccuracies and assures long life.

Low pressure tap connects to rear chamber.

**Coil spring link** provides a resilient connection between the diaphragm and the range spring.

Ceramic magnet mounted on a molded bracket at the end of the range spring rotates the helix without direct mechanical linkage.

High pressure tap connects with the front chamber through passageway in the plastic case and a sealing ring molded into the edge of the diaphragm.

Differential Pressure Gages

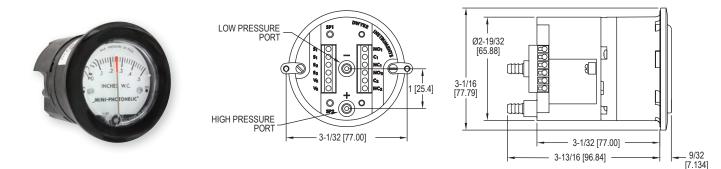
#### SURFACE MOUNTING



Optional surface mounting with back mounting plate allows for quick installation to any surface. Process connections are barbed and point downwards. Add -BB for bottom barbed surface mount option.



PANEL MOUNTING




Mounting hardware is supplied with the Minihelic<sup>®</sup> II gage for panel mounting through a single hole, 2-5/8" (67 mm) in diameter. Panel thickness up to 1/2" (13 mm) can be accommodated with the hardware supplied. If necessary, surface mounting of the gage can be accomplished by means of two 4-40 screws into the tapped mounting bracket stud holes in the rear of the gage. Surface mounting requires clearance holes in the panel for the two pressure taps.

Process Tubing Options: See page 455 (Gage Tubing Accessories)

#### Durger SERIES MP MINI-PHOTOHELIC® DIFFERENTIAL PRESSURE SWITCH/GAGE Compact, Low Cost Switch Gage





The Series MP Mini-Photohelic<sup>®</sup> Differential Pressure Switch/Gage combines the time proven Minihelic<sup>®</sup> II differential pressure gage with two SPDT switching set points. The Mini-Photohelic<sup>®</sup> switch/gage is designed to measure and control positive, negative, or differential pressures consisting of non-combustible and non-corrosive gases. Gage reading is independent of switch operation. Switching status is visible by LED indicators located on the front and rear of the gage. Set points are adjusted with push-buttons on the back of the unit.

#### FEATURES/BENEFITS

- Gage reading unaffected by switch operation and will continue to read pressure even during power loss
- Visible switch status LED provides indication of set point switching state
- Compact design but with the power of larger devices can meet the same application specifications

#### APPLICATIONS

- Fume hoods
- Dust collection
- Pneumatic conveyingClean room

Differential Pressure Gages/Switches, Dial

| MODEL  | MODEL CHART     |          |        |  |  |  |
|--------|-----------------|----------|--------|--|--|--|
|        | Range,          |          | Range, |  |  |  |
| Model  | Inches of Water | Model    | Ра     |  |  |  |
| MP-000 | 0-0.5           | MP-125PA | 0-125  |  |  |  |
| MP-001 | 0-1.0           | MP-250PA | 0-250  |  |  |  |
| MP-002 | 0-2.0           | MP-500PA | 0-500  |  |  |  |
| MP-003 | 0-3.0           |          | Range, |  |  |  |
| MP-005 | 0-5.0           | Model    | kPa    |  |  |  |
| MP-010 | 0-10            | MP-1KPA  | 0-1    |  |  |  |
| MP-020 | 0-20            | MP-3KPA  | 0-3    |  |  |  |

| OPTIONS                                      |                                       |  |  |  |
|----------------------------------------------|---------------------------------------|--|--|--|
| To order add suffix: Description             |                                       |  |  |  |
| -NPT                                         | 1/8" male NPT connections             |  |  |  |
| Example: MP-000-NF                           | PT; Note: Allow additional lead time. |  |  |  |
| -NIST NIST traceable calibration certificate |                                       |  |  |  |
| Example: MP-005-NIST                         |                                       |  |  |  |

| ACCESSO  | ACCESSORIES                                                             |  |  |  |  |
|----------|-------------------------------------------------------------------------|--|--|--|--|
| Model    | Description                                                             |  |  |  |  |
| A-301    | Static pressure tip for 1/4" metal tubing connection                    |  |  |  |  |
| A-302    | Static pressure tip for 3/16" and 1/8" I.D. plastic or rubber tubing    |  |  |  |  |
| A-302F-A | 303 SS static pressure tip with mounting flange; for 3/16" ID rubber or |  |  |  |  |
|          | plastic tubing; 4" insertion depth; includes mounting screws            |  |  |  |  |
| A-489    | 4" straight static pressure tip with flange                             |  |  |  |  |

#### SPECIFICATIONS

 GAGE SPECIFICATIONS

 Service: Air and non-combustible, compatible gases.

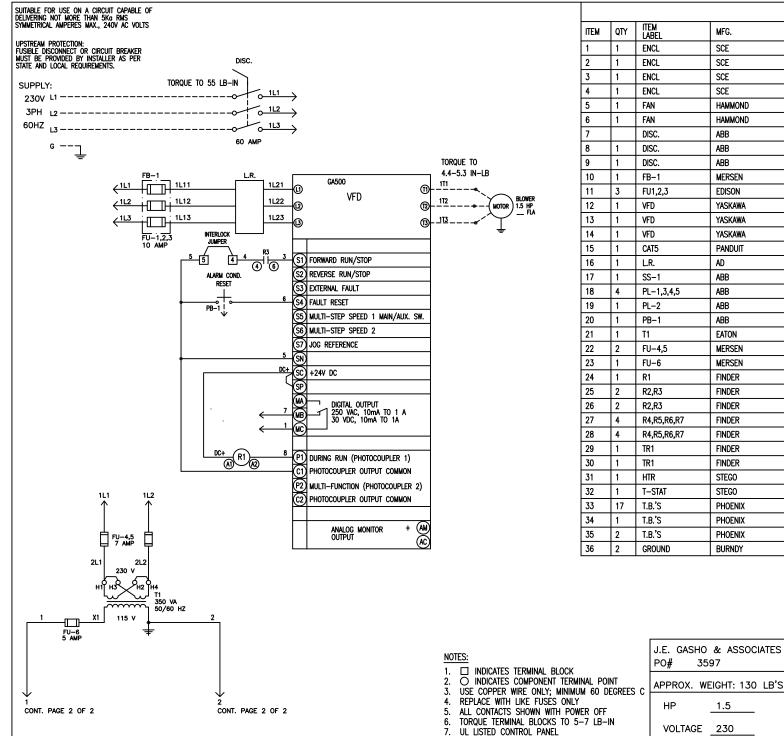
 Wetted Materials: Consult factory.

 Accuracy: ±5% of FS @ 70°F (21.1°C). Gage face mounted in vertical position.

 Pressure Limits: 30 psig (2.067 bar).

 Temperature Limits: 20 to 120°F (-6.7 to 49°C).

 Process Connections: Barbed for 3/16″ ID tubing (STD); 1/8″ male NPT (optional).


 Size: 4-1/8″ (104.78 mm) depth x 3-1/16″ (77.79 mm) diameter.

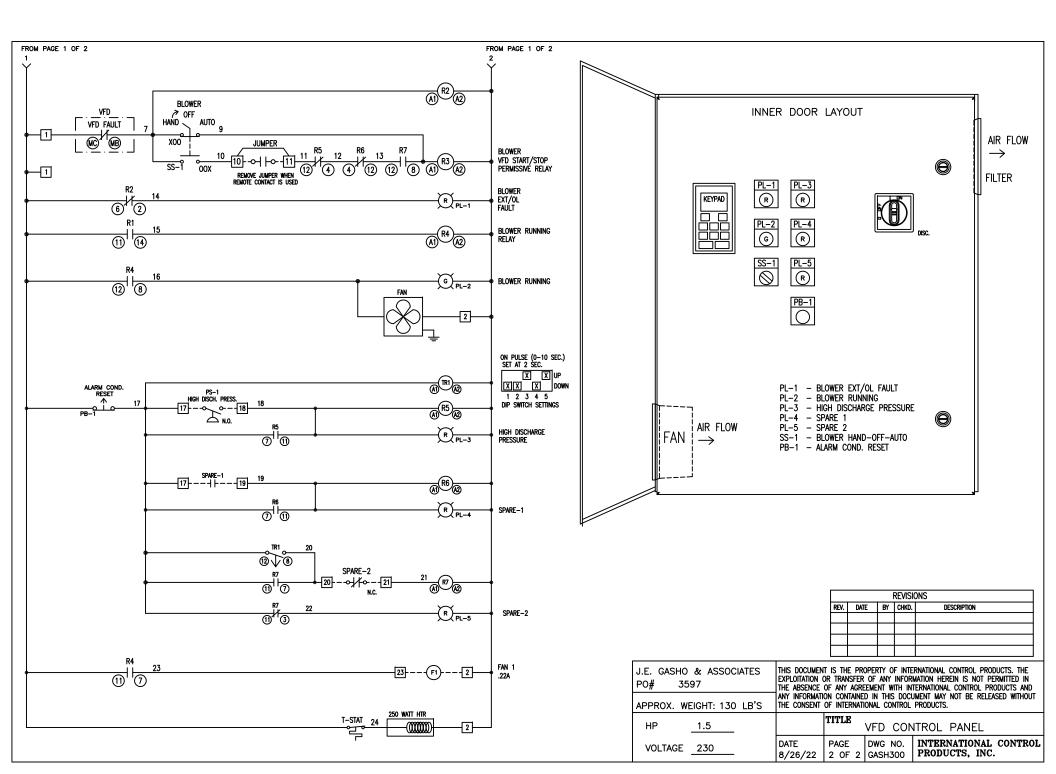
 Weight: 23 oz (652 g).

 SWITCH SPECIFICATIONS

 Switch Type: (2) SPDT relays.

Switch Type: (2) SPDT relays. Electrical Rating: 5 A @ 120/240 VAC resistive; 5 A @ 30 VDC. Electrical Connections: Screw type terminal block. Accepts 22-12 AWG wire. Power Requirements: 24 VDC / 24 VAC 50/60 Hz 4 watts. Mounting Orientation: Gage face in vertical position. Set Point Adjustment: Push-buttons. Standard Accessories: (2) mounting screws, (1) .050" hex allen wrench. Agency Approvals: CE, cULus.




7.

|      |     |               |         | BILL OF MATERIALS                      |               |
|------|-----|---------------|---------|----------------------------------------|---------------|
| ITEM | QTY | ITEM<br>LABEL | MFG.    | DESCRIPTION                            | PART NUMBE    |
| 1    | 1   | ENCL          | SCE     | 30x24x10 NEMA 3R ENCLOSURE             | SCE-30EL24    |
| 2    | 1   | ENCL          | SCE     | 27x21 STEEL BACK PANEL                 | SCE-30P24     |
| 3    | 1   | ENCL          | SCE     | 27x21 STEEL DEAD FRONT DOOR            | SCE-DF30EL:   |
| 4    | 1   | ENCL          | SCE     | PADLOCK ATTACHMENT                     | SCE-PLHG      |
| 5    | 1   | FAN           | HAMMOND | 38 CFM FAN                             | PF22000T3RE   |
| 6    | 1   | FAN           | HAMMOND | ENCLOSURE FILTER                       | PFA20000T3F   |
| 7    |     | DISC.         | ABB     | 60A 3P NON-FUSED DISC. SWITCH          | OT60F3        |
| 8    | 1   | DISC.         | ABB     | NEMA 3R DISCONNECT HANDLE              | OHBS2AJ       |
| 9    | 1   | DISC.         | ABB     | DISCONNECT SHAFT                       | 0XS6X180      |
| 10   | 1   | FB-1          | MERSEN  | 3P 30A CLASS J FUSE BLOCK              | 60308SJ       |
| 11   | 3   | FU1,2,3       | EDISON  | 10 AMP CLASS J FUSE                    | JDL10         |
| 12   | 1   | VFD           | YASKAWA | 1.5HP VFD                              | GA50U2010AE   |
| 13   | 1   | VFD           | YASKAWA | LCD DIGITAL OPERATOR                   | JVOP-KPLCA    |
| 14   | 1   | VFD           | YASKAWA | KEYPAD INSTALL KIT                     | 900-192-93    |
| 15   | 1   | CAT5          | PANDUIT | 5' CAT 5E CABLE                        | NK5EPC5BUY    |
| 16   | 1   | L.R.          | AD      | LINE REACTOR                           | LR2-21P5      |
| 17   | 1   | SS-1          | ABB     | 3 POS. S.S. SPRG. RET. L TO C (2 N.O.) | M3SS7-1B-2    |
| 18   | 4   | PL-1,3,4,5    | ABB     | RED F.V. PILOT LIGHT - 120V            | CL-100R       |
| 19   | 1   | PL-2          | ABB     | GREEN F.V. PILOT LIGHT - 120V          | CL-100G       |
| 20   | 1   | PB-1          | ABB     | BLACK FLUSH P.B. (2 N.O./1 N.C.)       | MP1-10B-2'    |
| 21   | 1   | T1            | EATON   | 350VA CONTROL TRANSFORMER              | C0350E2AXXF   |
| 22   | 2   | FU-4,5        | MERSEN  | 7 AMP CLASS CC FUSE                    | ATDR7         |
| 23   | 1   | FU-6          | MERSEN  | 5 AMP TIME DELAY FUSE                  | TRM5          |
| 24   | 1   | R1            | FINDER  | 1 POLE RELAY - 24V DC                  | 38.51.7.024.( |
| 25   | 2   | R2,R3         | FINDER  | 2 POLE RELAY - 120V                    | 56.32.8.120.0 |
| 26   | 2   | R2,R3         | FINDER  | 2 POLE RELAY SOCKET                    | 96.02         |
| 27   | 4   | R4,R5,R6,R7   | FINDER  | 4 POLE RELAY - 120V                    | 55.34.8.120.0 |
| 28   | 4   | R4,R5,R6,R7   | FINDER  | 4 POLE RELAY SOCKET                    | 94.74         |
| 29   | 1   | TR1           | FINDER  | 2 POLE TIMER - 120V                    | 85.02.0.125.0 |
| 30   | 1   | TR1           | FINDER  | 2 POLE TIMER SOCKET                    | 94.82         |
| 31   | 1   | HTR           | STEGO   | 250 WATT HTR                           | 028119-00     |
| 32   | 1   | T-STAT        | STEGO   | HEATER T-STAT                          | 011409-00     |
| 33   | 17  | T.B.'S        | PHOENIX | TERMINAL BLOCK                         | 3004362       |
| 34   | 1   | T.B.'S        | PHOENIX | TERMINAL BLOCK END COVER               | 3003020       |
| 35   | 2   | T.B.'S        | PHOENIX | DIN RAIL END RETAINER                  | 0800886       |
| 36   | 2   | GROUND        | BURNDY  | 14-2 AWG GROUND LUG                    | DLA2          |

3597

|                                                                    |       | REVISIONS                      |      |         |                             |  |  |  |  |
|--------------------------------------------------------------------|-------|--------------------------------|------|---------|-----------------------------|--|--|--|--|
|                                                                    | REV.  | REV. DATE BY CHKD. DESCRIPTION |      |         |                             |  |  |  |  |
|                                                                    |       |                                |      |         |                             |  |  |  |  |
|                                                                    |       |                                |      |         |                             |  |  |  |  |
|                                                                    |       |                                |      |         |                             |  |  |  |  |
|                                                                    |       |                                |      |         |                             |  |  |  |  |
| THIS DOCUMENT IS THE PROPERTY OF INTERNATIONAL CONTROL PRODUCTS.   |       |                                |      |         |                             |  |  |  |  |
| EXPLOITATION OR TRANSFER OF ANY INFORMATION HEREIN IS NOT PERMITTE |       |                                |      |         |                             |  |  |  |  |
| THE ABSENCE O                                                      | F ANY | AGREEME                        | NT W | ith int | ERNATIONAL CONTROL PRODUCTS |  |  |  |  |

| APPROX. WEIGHT: 130 LB'S |                 | ON CONTAINE    | D IN THIS DOC      | ITERNATIONAL CONTROL PRODUCTS<br>UMENT MAY NOT BE RELEASED W<br>PRODUCTS. |
|--------------------------|-----------------|----------------|--------------------|---------------------------------------------------------------------------|
| HP <u>1.5</u>            |                 | TITLE          | VFD CON            | NTROL PANEL                                                               |
| VOLTAGE _230             | DATE<br>8/26/22 | PAGE<br>1 OF 2 | DWG NO.<br>GASH300 | INTERNATIONAL CON<br>PRODUCTS, INC.                                       |



APPENDIX K SVE MANUFACTURER'S SPECIFICATIONS AND MANUALS

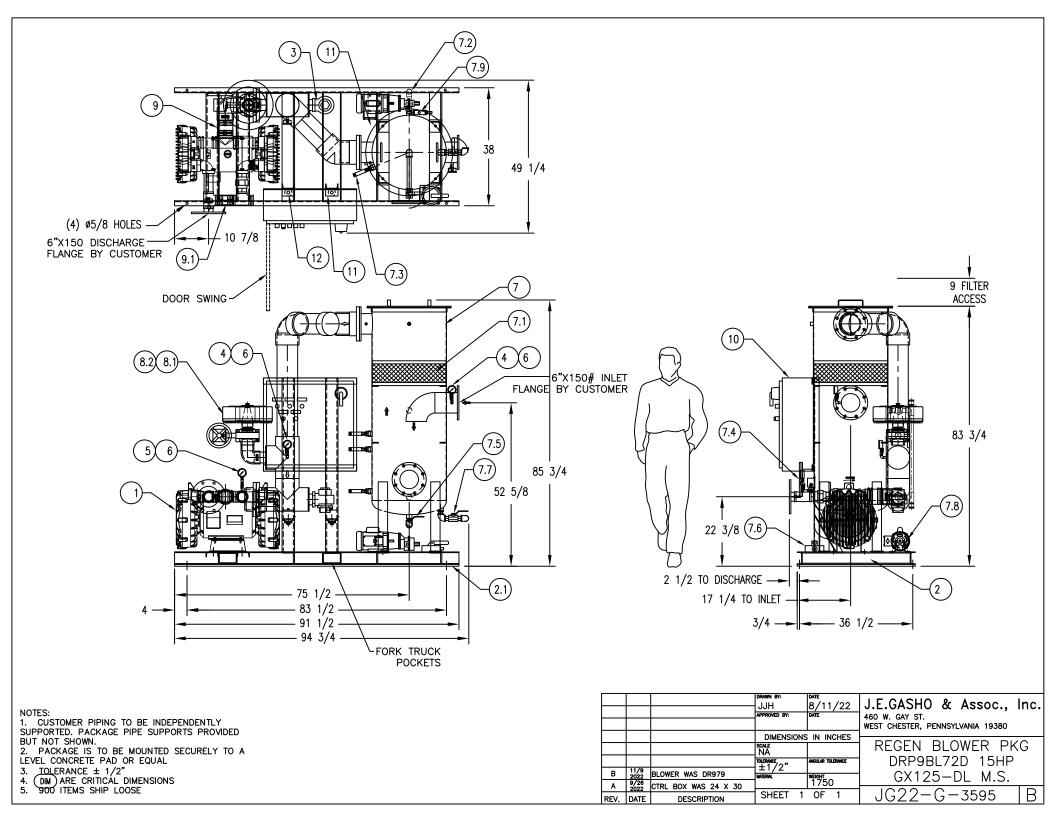


The Leader in Blower & Vacuum Solutions

## **Submittal Documentation**

## 22 9

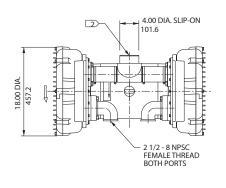
For: AWT Environmental PO Box 128 Sayreville, NJ 08871 Purchase Order #:

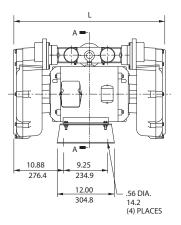

Equipment Description: Skid mounted DRP9BL72D Ametek Rotron Blower, 1 hp with GX125-DL moisture separator, control panel

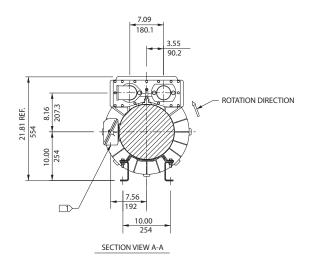
R B 11/11/22

Supplier: Geiger Gasho, Inc. 460 West Gay Street West Chester, PA 19380

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ASTORIA 46<br>22-60 46TH STR, ASTORIA, NY<br>22-61 45TH STR, ASTORIA, NY |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--|--|--|
| SUBMI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TTAL REVIEW                                                              |  |  |  |
| CONTRACTOR: MEGA CONTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CTING GROUP                                                              |  |  |  |
| SPECIFICATION SECTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 22221                                                                    |  |  |  |
| SUBMITTAL NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REVISION: 2                                                              |  |  |  |
| SUBSTITUTIONS: NO YES -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SUBSTITUTION REQUEST N/A                                                 |  |  |  |
| CHANGES, NOTES FLAGGED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES N/A                                                                  |  |  |  |
| RECOMMEND FOR APPROVAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | YES FOR RECORD                                                           |  |  |  |
| REVIEWED BY: <u>AK</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DATE:11/14/22                                                            |  |  |  |
| THIS SUBMITTAL HAS BEEN REVIEWED FOR GENERAL COMPLIANCE WITH THE CONTRACT<br>DOCUMENTS TO THE BEST OF OUR KNOWLDEGE FOR ARCHITECT APPROVAL IN NO CASE IS<br>THE SUBCONRACTOR OR SUPPLIER RELIEVED OF FULL RESPONSABILITY FOR ADHEARANCE<br>UTHECOMPTICATION DOLEMENTS ADE LIE COLOR DESCINSABILITY FOR ADHEARANCE<br>DITHECOMPTICATION DOLEMENTS ADE LIE COLOR DESCINSABILITY FOR ADHEARANCE<br>CONFIRM ALL DESCINDARTIES ADE LIE COLOR DESCINSABILITY FOR ADHEARANCE<br>CONFIRM ALL DESCINDARTIES ADE LIE COLOR DESCINSABILITY OF THE ARCHITECT TO<br>CONFIRM ALL DESCINDARTIES REQUIRED, HAVE REVIEWED AND APPLIED THER STAMPS<br>ACCORDINGLY. TO PRODUCE A FULLY REVIEWED SUBMITTAL MERGY AND APPLIED THER STAMPS<br>ACCORDINGLY. TO PRODUCE A FULLY REVIEWED SUBMITTAL STAMP OF APPROVAL ARE FINAL,<br>AND UNDERSTANDS THE REVIEWE PRUNED TO DE 10 WORKING DAYS FROM THE DATE OF<br>SUBMISSION, SUBMITTALS WICH ARE NOT RETURNED WITH THE ARCHITECTION<br>TO POTENTIAL TIME EXTENSION. ANY NOTATIONS MADE BY ANY DESIGN PARTY WHICH<br>INCREASE THE CONTRACTURALY AGREED WORK SCOPE OF WORK WILL BE IDENTIFIED BY THE<br>PRIME CONTRACTOR WHO WILL ADVISE THE DESIGN AND OWNERSHIP ENTITIES OF ANY COST<br>OR SCHEDULE CHANGES. |                                                                          |  |  |  |


|      |            |                        |                    |                                   |                           | Description              | Date                            | Revision |
|------|------------|------------------------|--------------------|-----------------------------------|---------------------------|--------------------------|---------------------------------|----------|
|      | ~          | MITT                   | Gasho              | , Inc.                            |                           | Revise per cust comments | 9/26/2022                       | А        |
|      | lá         | asnos                  | Blower Pac         | kage-SVE                          |                           | Item 1 was DR979         | 11/8/2022                       | В        |
|      | GEIGER PUN | MP & EQUIPMENT COMPANY | JG22H-             | 3595                              | #220618JG.1               | Item 11 was 1"Hg set pt  |                                 |          |
|      |            |                        | 500 scfm at        | 50" H20                           | Paint Gasho Blue Oil Base |                          |                                 |          |
| ltem | Qty.       | Supplier               | Components         | Description                       | Part Number               | Gasho Part Number        | Misc ID                         | Weight   |
| 1    | 1          | Ametek Rotron          | Blower             | Regenerative Blower               | DRP9BL72D                 | TBD                      | p/n 036513                      | 687      |
|      |            |                        |                    | -                                 | 15 hp, ODP, 230/460/3/60  |                          |                                 |          |
| 2    | 1          | Gasho                  | Base               | Base Weldment                     | 93 X 38                   | Custom                   |                                 | 225      |
| 2.1  | 1          | Gasho                  | Isolation Mat      | Vibration/Isolation Mat           | GVM4X6                    | Z2GVM-4.0X6.0-0000       |                                 | 65       |
| 3    | 1          | Nasvi                  | Relief Valve       | 3" Relief Valve                   | 215V-K01AQE               | Z2RV-3.00-V-S-0025       | set 5"Hg                        | 20       |
| 4    | 2          | Gasho                  | Vacuum Gauges      | Vacuum Gauges                     | LPI-254-100V              |                          | 0-100"WC                        | 2        |
| 5    | 1          | Gasho                  | Pressure Gauge     | Pressure Gauge                    | LP1-254-60                |                          | 0-60"WC                         | 1        |
| 6    | 3          | SMC Specialties        | Isolation Valve    | Isolation Valves                  | 025-4F4M-BT               | Z2VIS-0.25-FM-B-0000     |                                 | 1        |
| 7    | 1          | Gasho                  | Moisture Seperator | GX-125 DL with SS demister        |                           | Z4TK-C-9270-0000         | 6" inlet port                   | 320      |
| 7.1  | 1          | CWI                    | Demister Material  | Demister Mesh Pad, SS             | CWI-USA-655               | Z26SC-6-24.00-0000       |                                 | 12       |
| 7.2  | 1          | Gasho                  | Sight Gauge        | Sight Gauge                       | 9539                      | Custom                   |                                 | 3        |
| 7.3  | 3          | Dwyer                  | Level Switch       | Level Switches                    | L6-EPB-B-S-3-O            | Z2SW-L7-1.0-BCR-0100     |                                 | 3        |
| 7.4  | 1          | Gasho                  | Cover Plate        | Cover Plate, 6"                   | -                         | -                        |                                 | 1        |
| 7.5  | 1          | Apollo                 | Ball Valve         | Ball Valve, 1"                    | 77F-105-01                | Z2VBL-1.00-BT-0000       |                                 | 1        |
| 7.6  | 1          | Gasho                  | Manual Hand Pump   | manual hand pump                  | 4332K31                   | Z2MSP-10-1.00-0000       |                                 | 2        |
| 7.7  | 1          | Apollo                 | Drain Valve        | Drain Valve                       | V77F10401                 | Z2VBL-0.75-BT-0000       | 3/4"                            | 1        |
| 7.8  | 1          | Oberdorfer             | Gear Pump          | Bronze Gear Pump                  | N994R                     | Z1OBN994R                | 10 gpm 1 hp, TEFC, 230/460/3/60 | 19       |
| 7.9  | 1          | McMaster               | Check Valve        | Check Valve                       | 4616K92                   | Z2MCM-4616K92            | 3/4"                            | 1        |
| 8.1  | 1          | Solberg                | Filter Silencer    | 3" Filter silencer-Dilution Valve | FS-231P-300               | Z2FS-SL-3.0-F-1050       |                                 | 9        |
| 8.2  | 1          | Valu-Valve             | Butterfly Valve    | 3" gear operated butterfly valve  | VF-730-221-3              | Z2VBF-3.00-W-IEG-0100    |                                 | 9        |
| 9    | 1          | Gasho                  | Flex Connector     | 4" x 5" lg                        | TFC4008-PC                | FLSS-4.00K-0000          |                                 | 1        |
| 9.1  | 1          | Gasho                  | Flex Connector     | 2-1/2" x 5" lg                    | TFC2508-PC                | FLSS-2.50K-0000          |                                 | 1        |
| 10   | 1          | ICP                    | Control Panel      | Nema 3R Control Panel             | Standard Relay Logic, VFD | Custom                   | Dead Face, 460/3/60             | 55       |
| 11   | 1          | Ashcroft               | Vacuum Switch      | Low Vacuum Switch                 | D424-B-XRN-0-30"Hg        | Z2SW-V4-0.0/30M-0202     | set 20"Hg decreasing            | 2        |
| 12   | 1          | Ashcroft               | Temp Switch        | High Temp Switch                  | T424-T05-030-XRN          | Z2SW-T4-150/260F-0212    | set 220F                        | 2        |
|      |            |                        |                    |                                   |                           |                          |                                 | 1443     |
|      |            |                        |                    |                                   |                           |                          |                                 |          |





## **ROTRON**<sup>®</sup>

15.0 / 20.0 HP Regenerative Blower

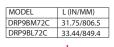
**DR P9** 







IN MM


NOTES

1) TERMINAL BOX CONNECTOR HOLE 1.37 (34.8) DIA.

2 PRESSURE OUTLET CONNECTION.

2 DRAWING NOT TO SCALE, CONTACT FACTORY FOR SCALE CAD DRAWING.

3 CONTACT FACTORY FOR BLOWER MODEL LENGTHS NOT SHOWN.



PRECISION MOTION CONTROL

DYNAMIC FLUID SOLUTIONS

|                              |          |               |               |               |               |               | $\checkmark$  |
|------------------------------|----------|---------------|---------------|---------------|---------------|---------------|---------------|
| Part/ Model Number           |          |               |               |               |               |               |               |
|                              |          | DRP9BM72C     | DRP9BM72D     | DRP9BM86C     | DRP9BM86D     | DRP9BL72C     | DRP9BL72D     |
| Specification                | Units    | 037033        | 036275        | 037040        | 036276        | 036512        | 036513        |
| Motor Enclosure - Shaft Mtl. | -        | ODP-CS        | ODP - CS      | ODP-CS        | ODP - CS      | ODP-CS        | ODP - CS      |
| Horsepower                   | -        | 20            | 20            | 20            | 20            | 15            | 15            |
| Voltage                      | AC       | 230/460       | 230/460       | 575           | 575           | 230/460       | 230/460       |
| Phase - Frequency            | -        | Three-60 hz   | Three - 60 hz | Three-60 hz   | Three - 60 hz | Three-60 hz   | Three - 60 hz |
| Insulation Class             | -        | F             | F             | F             | F             | F             | F             |
| NEMA Rated Motor Amps        | Amps (A) | 49/24.5       | 49/24.5       | 20            | 20            | 37/18.5       | 37/18.5       |
| Service Factor               | -        | 1.15          | 1.15          | 1.15          | 1.15          | 1.15          | 1.15          |
| Max. Blower Amps             | Amps (A) | 60/30         | 60/30         | 22.2          | 22.2          | 50/25         | 50/25         |
| Locked Rotor Amps            | Amps (A) | 306/153       | 306/153       | 115           | 115           | 256/128       | 256/128       |
| NEMA Starter Size            | - 1      | 3/2           | 3/2           | 2             | 2             | 2/2           | 2/2           |
| Shinning Waight              | Lbs      | 400           | 408           | 464           | 408           | 380           | 418           |
| Shipping Weight              | Kg       | 181.4         | 185.1         | 210.5         | 185.1         | 172.4         | 189.6         |
| Description                  | -        | Pressure Mode | Suction Mode  | Pressure Mode | Suction Mode  | Pressure Mode | Suction Mode  |

Voltage - ROTRON motors are designed to handle a broad range of world voltages and power supply variations. Our dual voltage 3 phase motors are factory tested and certified to operate on both: 208-230/415-460 VAC-3 ph-60 Hz and 190-208/380-415 VAC-3 ph-50 Hz. Our dual voltage 1 phase motors are factory tested and certified to operate on both: 104-115/208-230 VAC-1 ph-60 Hz and 100-110/200-220 VAC-1 ph-50 Hz. All voltages above can handle a ±10% voltage fluctuation. Special wound motors can be ordered for voltages outside our certified range.

**Operating Temperatures** - Maximum operating temperature: Motor winding temperature (winding rise plus ambient) should not exceed 140°C for Class F rated motors or 120°C for Class B rated motors. Blower outlet air temperature should not exceed 140°C (air temperature rise plus inlet temperature). Performance curve maximum pressure and suction points are based on a 40°C inlet and ambient temperature. Consult factory for inlet or ambient temperatures above 40°C.

**Maximum Blower Amps** - Corresponds to the performance point at which the motor or blower temperature rise with a 40°C inlet and/or ambient temperature reaches the maximum operating temperature.

This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.



#### Industrial / Chemical Processing Blowers

#### DR P9

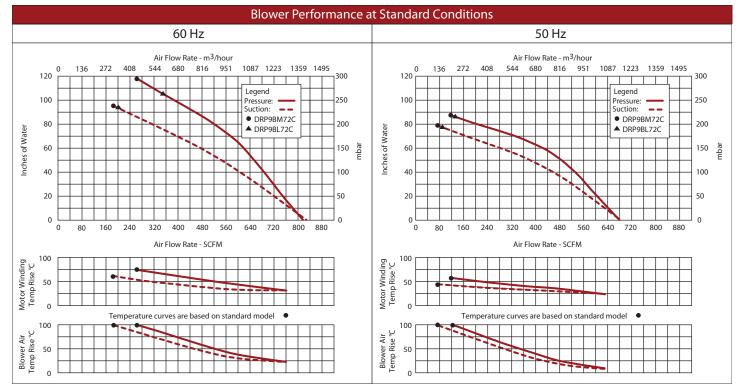
15.0 / 20.0 HP Regenerative Blower

#### **FEATURES**

- Manufactured in the USA ISO 9001 and NAFTA compliant
- CE compliant Declaration of Conformity on file
- Maximum flow: 800 SCFM
- Maximum pressure: 116 IWG
- Maximum vacuum: 95 IWG
- Standard motor: 20 HP, ODP
- Cast aluminum blower housing, impeller & cover; cast iron flanges (threaded)
- UL & CSA approved motor with permanently sealed ball bearings
- Inlet & outlet internal muffling
- Quiet operation within OSHA standards when properly piped or muffled -2 mufflers included part #515185

#### **MOTOR OPTIONS**

- International voltage & frequency (Hz)
- Chemical duty, high efficiency, inverter duty or industry-specific designs
- Various horsepowers for application-specific needs


#### **BLOWER OPTIONS**

- · Corrosion resistant surface treatments & sealing options
- Remote drive (motorless) models
- Slip-on or face flanges for application-specific needs

#### ACCESSORIES

- Flowmeters reading in SCFM
- Filters & moisture separators
- Pressure gauges, vacuum gauges, & relief valves
- Switches air flow, pressure, vacuum, or temperature
- External mufflers for additional silencing
- Air knives (used on blow-off applications)
- Variable frequency drive package





This document is for informational purposes only and should not be considered as a binding description of the products or their performance in all applications. The performance data on this page depicts typical performance under controlled laboratory conditions. AMETEK is not responsible for blowers driven beyond factory specified speed, temperature, pressure, flow or without proper alignment. Actual performance will vary depending on the operating environment and application. AMETEK products are not designed for and should not be used in medical life support applications. AMETEK reserves the right to revise its products without notification. The above characteristics represent standard products. For product designed to meet specific applications, contact AMETEK Technical & Industrial Products Sales department.

AMETEK DYNAMIC FLUID SOLUTIONS 75 North Street, Saugerties, NY 12477 USA: +1 215-256-6601 - Europe: +49 7703 930909 - Asia: +86 21 5763 1258 Customer Service Fax: +1 215.256.1338 www.ametekdfs.com





## **ROTRON**®

## RUBBER MAT, BLACK, 4 FT. X 6 FT. X 3/4 IN.

This Rubber Mat is ideal for agricultural, commercial and sporting uses. The anti-skid surface is safe and comfortable. Mats can be cut or interlocked, glued or fastened to any surface.

- 4 ft. x 6 ft. x 3/4 in.Heavy-duty 100% recycled rubber
- Insulating properties
- Noise and vibration absorbent
  Surface pattern may vary by location
- 5 year limited warranty



| Specification            | Description          |
|--------------------------|----------------------|
| Material:                | 100% Recycled Rubber |
| Product Length:          | 72 in.               |
| Product Thickness:       | 3/4 in.              |
| Product Type:            | Rubber Matting       |
| Product Width:           | 48 in.               |
| Warranty:                | 5-Year Limited       |
| Manufacturer Part Number |                      |

Models 215V, 337 Model 337 is ASME Section VIII, Air/Gas vacuum, 'UV' National Board Certified, Safety Valves



**Pressure and Temperature Limits** 

#### Model 337:

1 to 60 psig [0.07 to 4.1 barg] -20° to 406°F [-29° to 208°C]

#### Vacuum Limits

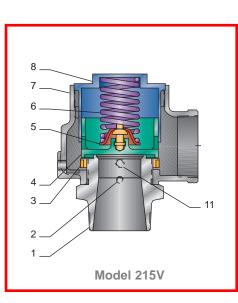
Model 215V: 2-inch HG to 29-inch HG [67.7 to 982 mbarg] -20° to 400°F [-29° to 205°C]

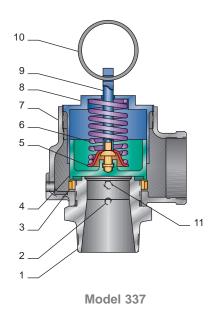
#### **Applications**

- Protection of low to medium pressure high volume blowers, compressors and pneumatic conveying systems.
- Bulk hauling trailers/equipment.
- · Light gauge tanks.
- Protection of high volume vacuum pumps and conveying systems.

#### **Features and Benefits**

- Large nozzle design provides high capacity.
- Flat bronze valve seats are lapped for optimum performance.
- Warn ring offers easy adjustability for precise opening with minimum preopen or simmer and exact blowdown control.
- **Pivot between disc and spring** corrects misalignment and compensates for spring side thrust.


#### **Model Descriptions**


- Model 337 has 'pull-ring' lift device for easy manual testing.
- Every valve is 100% tested/inspected for pressure setting, blowdown and leakage.
- All adjustments are factory sealed to prevent tampering or disassembly.

#### Option

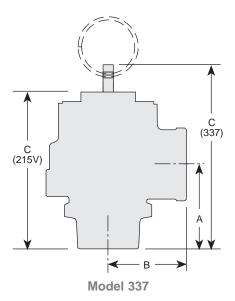
• SS trim. (nozzle and disc) (Variation 03)

#### Models 215V, 337





#### Parts and Materials - Models 215V, 337


| No. | Part Name                | 215V                         | 337                          |
|-----|--------------------------|------------------------------|------------------------------|
| 1   | Nozzle <sup>1</sup>      | Bronze, B62                  | Bronze, B62                  |
| 2   | Set Screw                | Steel A108-1018 Brass Plated | Steel A108-1018 Brass Plated |
| 3   | Regulator Ring           | Bronze B584 Alloy 84400      | Bronze B584-C84400           |
| 4   | Disc <sup>1</sup>        | Bronze B584 Alloy 84400      | Bronze B584-C84400           |
| 5   | Spring Step              | Steel A-109 Cadmium Plated   | Steel A109, CAD Plated       |
| 6   | Spring                   | SS, A313 TY 302              | SS A313-302                  |
| 7   | Body                     | Cast Iron, Zinc Plated, B633 | Iron A-126, CL A or B        |
| 8   | Compression Screw        | Bronze, B-584 Alloy 84400    | Bronze, B584-C84400          |
| 9   | Stem <sup>2</sup>        | N/A                          | Brass B16                    |
| 10  | Lift Ring <sup>2</sup>   | N/A                          | SS A313-302                  |
| 11  | Regulator Ring Set Screw | N/A                          | Brass B16                    |

#### Specifications

| Size  | Inlet     |      |         | — Din | nensions | s, in [m | m]      |   |         | We | eight |
|-------|-----------|------|---------|-------|----------|----------|---------|---|---------|----|-------|
| and   | Outlet    |      | Α       |       | В        | C        | 215V    | C | 337     | lb | [kg]  |
| 2"    | [50.8 mm] | 31/4 | [82.5]  | 3     | [76.2]   | 61/2     | [165.1] | 7 | [177.8] | 8  | [3.6] |
| 21/2" | [63.5 mm] | 33/4 | [95.2]  | 31/2  | [88.9]   | 75/8     | [194.6] | 8 | [203.2] | 12 | [5.4] |
| 3"    | [76.2 mm] | 41/4 | [107.9] | 4     | [101.6]  | 81/2     | [215.9] | 9 | [228.6] | 20 | [4.1] |

#### Notes

- Disc and nozzle available in SSA-479 TY 316.
- 2. Stem and lift ring available on Model 337 only.



#### Model 215V

| Non-code Vacu | ium Air (SCFM) - Flo          | ow Coefficient                |                               |
|---------------|-------------------------------|-------------------------------|-------------------------------|
| Relief Set    |                               | Valve Inlet and Outlet S      | Size                          |
| (in, HG)      | 2"                            | <b>2</b> <sup>1</sup> /2"     | 3"                            |
|               | Orifice Area, in <sup>2</sup> | Orifice Area, in <sup>2</sup> | Orifice Area, in <sup>2</sup> |
|               | 1.84                          | 2.79                          | 4.04                          |
| 2             | 229                           | 347                           | 503                           |
| <b>→</b> 5    | 338                           | 512                           | 742                           |
| 10            | 415                           | 630                           | 912                           |
| 15            | 426                           | 646                           | 936                           |
| 20            | 426                           | 646                           | 936                           |

| Non-code Vacu         | um Air [Metric, Nm                                  | <sup>3</sup> /h]                                                      |                                        |
|-----------------------|-----------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------|
| Relief Set<br>[mbarg] | 5.08 cm<br>Orifice Area<br>[11.86 cm <sup>2</sup> ] | /alve Inlet and Outlet Size<br>6.35 cm<br>Orifice Area<br>[17.97 cm²] | 7.62 cm<br>Orifice Area<br>[26.05 cm²] |
| 50                    | 328                                                 | 498                                                                   | 722                                    |
| 100                   | 450                                                 | 682                                                                   | 988                                    |
| 150                   | 533                                                 | 807                                                                   | 1170                                   |
| 200                   | 593                                                 | 899                                                                   | 1303                                   |
| 250                   | 638                                                 | 966                                                                   | 1400                                   |
| 300                   | 669                                                 | 1014                                                                  | 1470                                   |
| 350                   | 690                                                 | 1046                                                                  | 1516                                   |
| 400                   | 701                                                 | 1062                                                                  | 1540                                   |
| 450                   | 704                                                 | 1067                                                                  | 1546                                   |
| 500                   | 704                                                 | 1067                                                                  | 1546                                   |
| 550                   | 704                                                 | 1067                                                                  | 1546                                   |
| 600                   | 704                                                 | 1067                                                                  | 1546                                   |
| 650                   | 704                                                 | 1067                                                                  | 1546                                   |
| 700                   | 704                                                 | 1067                                                                  | 1546                                   |
| 750                   | 704                                                 | 1067                                                                  | 1546                                   |

#### Models 215V, 337

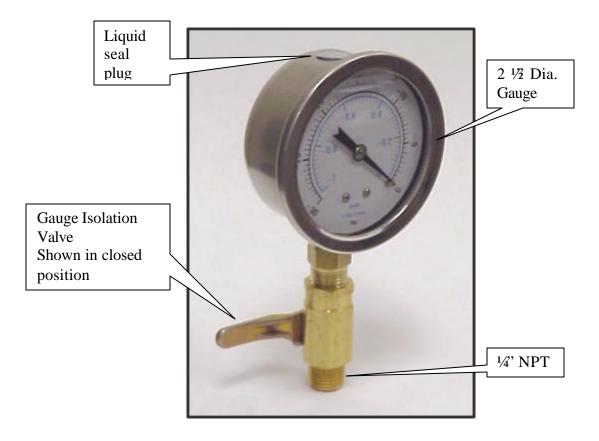
| Model | Numbe  | r/Order | Guide |
|-------|--------|---------|-------|
| wouer | NUTTUE | i/Uruer | Guiu  |

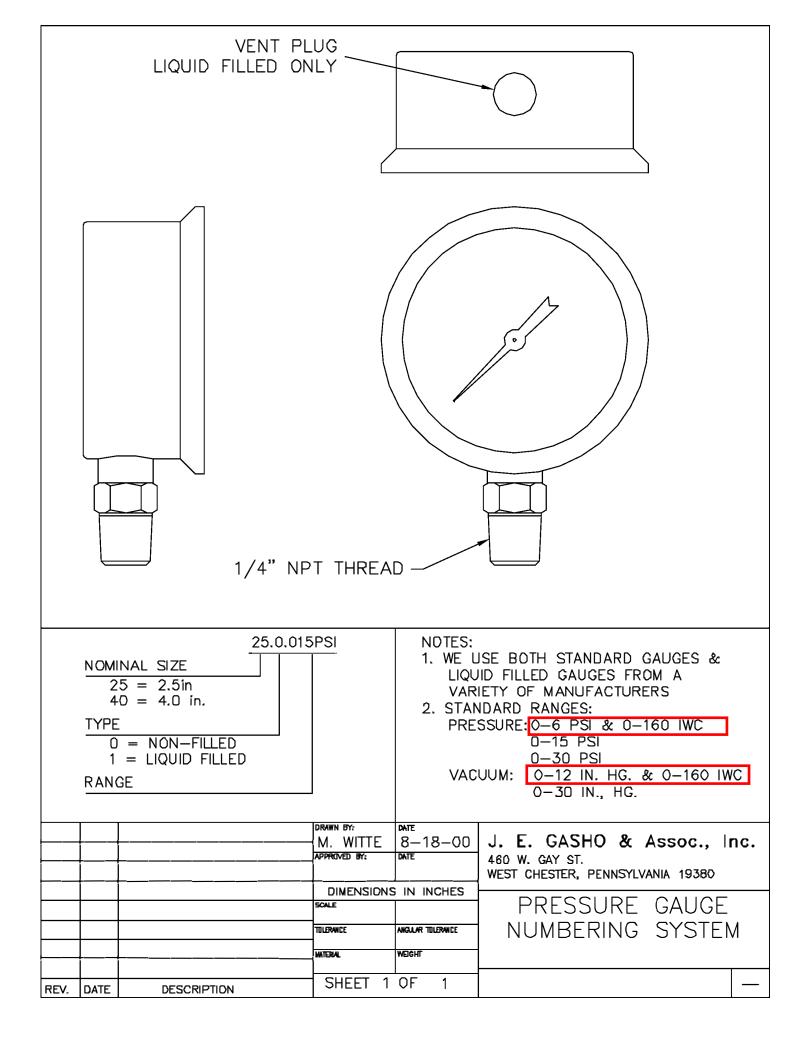
| Model Number<br>Position                                                                                                         | 1 2                          | 3            | 4      | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|--------|---|---|---|---|---|----|----|----|----|----|----|
|                                                                                                                                  |                              | _            |        |   |   | - |   |   | -  | _  |    |    |    |    |
| Example                                                                                                                          | 2 1                          | 5            | V      | — | H | 0 | 1 | A | Q  | E  |    |    |    |    |
|                                                                                                                                  |                              |              |        |   |   |   |   |   |    |    |    |    |    |    |
| <b>Model</b><br>215V<br>0337                                                                                                     |                              |              |        |   |   |   |   |   |    |    |    |    |    |    |
| Inlet Size<br>H - 2-inch [50.<br>J - 21/2-inch [63.<br>K - 3-inch [76.                                                           | 5 mm]<br>2 mm]               |              |        |   |   |   |   |   |    |    |    |    |    |    |
| Variation (01 throu<br>01 - Bronze Disc a<br>03 - SS Disc and<br>60 - BSP Connect                                                | and Nozzle<br>Nozzle         |              |        |   |   |   | J |   |    |    |    |    |    |    |
| Design Revision<br>Indicates non-interco<br>revision Current De                                                                  | hangeable                    | Revisi       | on 'A' |   |   |   |   |   |    |    |    |    |    |    |
| Valve Service           K         - Air ASME Service           Q         - Vacuum (Moorname)           N         - Non-code Air/ | ction VIII (N<br>lel 215V on | lodel<br>lv) |        |   |   |   |   |   |    |    |    |    |    |    |
| Spring Material<br>E - SS                                                                                                        |                              |              |        |   |   |   |   |   |    |    |    |    |    |    |

#### Set Pressure \_\_\_\_

Model 337, 1 psig [0.7 barg] (0001) through 60 psig [4.1 barg] (0060) Model 215V, 2-inch HG [68 mbarg] (0002) through 22-inch HG [743 mbarg] (0022) vacuum




J. E. GASHO & ASSOCIATES, INC.


Authorized Manufacturer's Representative Air / Gas Moving Equipment 460 W. GAY STREET WEST CHESTER, PA 19380 PHONE: 610-692-5650 FAX: 610-692-5837

#### **Pressure and Vacuum Gauges**

We use both standard gauges and liquid filled gauges from a variety of manufacturers. Gauges are installed on our packages with gauge isolation valves (gauge cocks) part number VIS-0.25-FM-B-0000. The gauge isolation valve can be used as a snubber while reading the gauge by opening it slightly. To protect gauges from damage due to shocks or pulsations in the system, gauge isolation valves should be closed except when the gauge is being read.

Liquid filled gauges may display incorrect readings due to variations in atmospheric pressure. To determine if a gauge is subject to this condition, the liquid filled cavity should be temporarily vented to atmosphere. Most liquid filled gauges have a seal plug in the liquid filled cavity. Remove this plug to allow the cavity to be vented to atmosphere. In some instances the case can be lightly squeezed to burp it. Replace the plug.







Maximum Operating Pressure - 500 psi Maximum Operating Temperature - 180 Degrees F Ball Through Hole Diameter - .218

### **025 SERIES BALL VALVE**

#### 025 One-Way Ball Valve Design Considerations

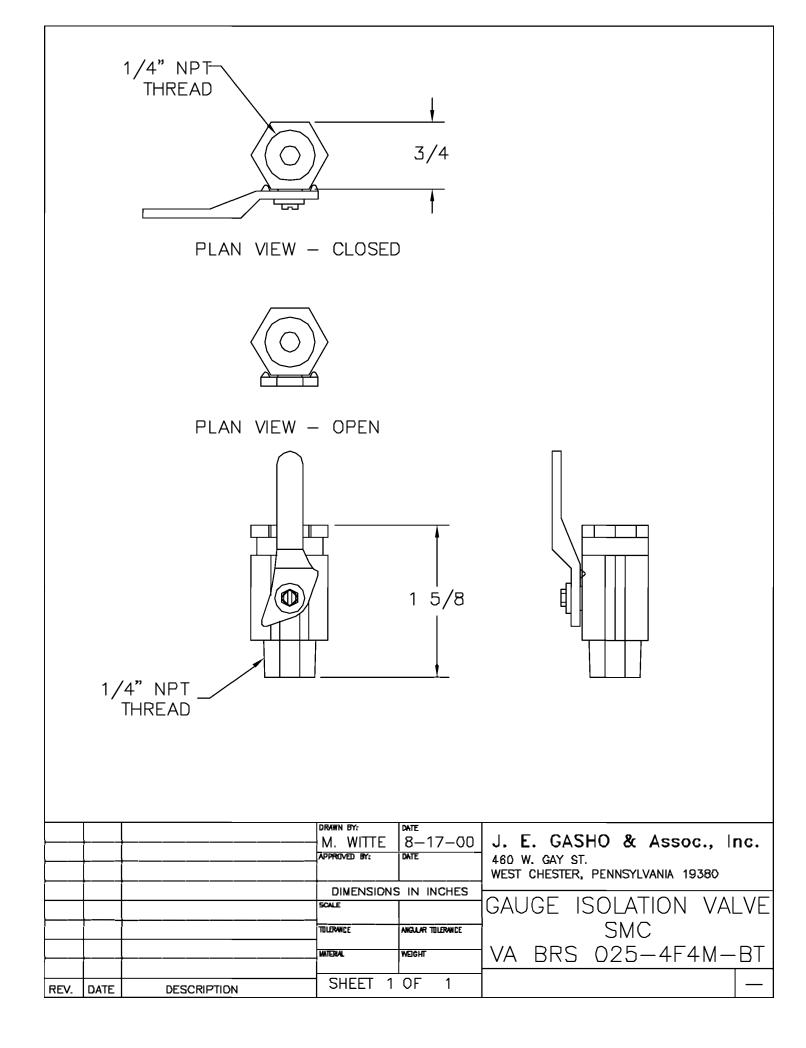
The 025 Series One-Way Ball Valve compact design promotes multiple configurations to fit the exact end use application. The 025 Ball Valve Series is rated to 500 psi and will support flow and pressure only in the flow direction. The 025 Series has a one-piece body construction, stamped with directional flow arrows, to cover 1/4" NPT end configuration applications. The Zinc Die Cast Lever Handle is standard. Handles can be ordered Reversed - to lie over the outlet when the valve is in the open position. UL configurations are available and rated to 250 psi. UR configurations are available and rated to 500 psi.

| <u>Example:</u> | Inlet End    | Outlet End  | <u>Seal</u> | Handle | <u>Plating</u> |  |
|-----------------|--------------|-------------|-------------|--------|----------------|--|
|                 | 1/4 FNPT     | 1/4 MNPT    | Buna-N      | Steel  | ENP            |  |
| SMC Part Nu     | umber: 025-4 | F4M-B,SH,EN | Р           |        |                |  |

The handle will lie over the Inlet port when the valve is in the open position. SMC Part Numbers are a description of the valve as read left to right, Inlet to Outlet. **Example:** 025-4F4M-B,SH,ENP = 1/4 FNPT Inlet x 1/4 MNPT Outlet

#### 025 Series Options

Material Options Brass Body, Nickel Plated Brass Ball, Teflon® Seats, Stainless Handle Screw


Seal Options Buna-N, Ethylene Propylene, Fluoroelastomer (Viton®), Neoprene

Body Options1/4 Female x 1/4 Female NPT1/4 Female x 11/16-16 Male1/4 Female x 1/4 Male NPT1/4 Female x 7/16-24 Female1/4 Female x 1/8 Female NPT1/4 Female x 1/4 Female Flare1/4 Female x 1/8 Male NPT1/4 Female x 3/8 Compression1/4 Female x 1/4 Hose Barb1/4 Female x 3/8 Compression

Handle OptionsZinc Die Cast Lever (Standard), Zinc Die Cast Lever with Red Vinyl Sleeve, Steel Lever, Steel Lever, Round Handle,<br/>Steel Lever, Steel Lever with Red Vinyl Sleeve, Round Zinc Die Cast Handle, Black Nylon T-Handle,<br/>Blue Nylon Knob, .312 x 1" Stem, Screw Slot Headed Ball

Plating Options Electroless Nickel, Black Zinc

SMC will quote alternate materials or customize our standard products when quantities ensure competitive pricing. Contact Customer Service at (651) 653-0599, FAX - (651) 653-0989, E-Mail - info@specialtymfg.com

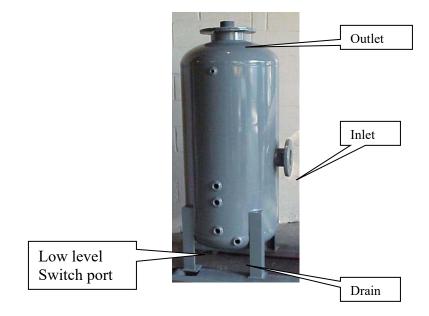


460 West Gay Street West Chester, PA 610-692-5650 Fax:



19380 610-692-5837 cs@gasho.org

The Leader in Blower & Vacuum Solutions


#### **Moisture Separators**

Moisture separators are used to remove water and other liquids from air streams. They are typically used on the inlet of vacuum systems to remove water and other contaminants before they enter the vacuum pump. The air volume of the moisture separator reduces the velocity of the air stream to allow liquids to precipitate. Up to 95% water removal is possible. The models GX-30 & GX-60 are rated for full vacuum. Other moisture separators are rated to 18 in. Hg. Higher vacuum ratings available.

Inside the top of the separators is a basket with stainless steel demister/filter media to trap entrained water droplets. Standard accessories include a sight gauge and drain valve.

Options include: 1 to 3 level switches, hand operated sludge pump, automatic pump down systems, heat tracing, vacuum gauges, and thermometers.

| Model    | Nominal   | Liquid   | Diameter | Height   | Inlet     | Discharge | Cleanout  | Weight   |
|----------|-----------|----------|----------|----------|-----------|-----------|-----------|----------|
| Number   | Flow Rate | Capacity | (inches) | (inches) | Size      | Size      | Size      | (Pounds) |
| GX-30    | 250       | 8        | 16       | 47       | 3"        | 3"        | 4"        | 125      |
| GX-60    | 500       | 22       | 20       | 57       | 4"        | 4"        | 4"        | 175      |
| GX-90    | 1200      | 30       | 24       | 58       | 6" Flange | 6" Flange | 4"        | 240      |
| GX-100DL | 1300      | 40       | 27       | 70       | 4"        | 4"        | 6" Flange | 305      |
| GX-125DL | 1500      | 40       | 27       | 82       | 6" Flange | 6" Flange | 6" Flange | 320      |





## **CWI Tech-Mesh™** Knitted Products

## Stainless and Specialty Alloy Wire <del>Mesn Technology</del>

The Right Wire Crade for your Unique Demister Application

CWI Tech-Mesh™ typically employs 300 series stainless grades(304, 304L 316, 316L, 321, 347) for its wire mesh mist eliminators. For extreme or aggressive process conditions with unique product chemistries, CWI has a wide range of specialty alloys such as Monel 400, Copper, Duplex, Alloy 20Cb3, and Inconel. Other exotics and copper base metals may be available upon request.

# CWI Tech-Mesh

### A Leader In Wire Technology

Central Wire Industries is a world leader in the manufacture of wire in specialty alloys tallored to their customers specific requirements. Our product range includes stainless steel, nickel, cobalt, copper, brass, bronze, and zinc wires, in diameters ranging from 0.003 inches (0.0762 mm) to 1.000 inches (25.4 mm).

CWI Tech-Mesh<sup>™</sup> products are engineered for maximum separation efficiency or minimum pressure drop in order to meet your specifications and vessel configurations.

www.centralwire.com



**CONTACT US TODAY!** 

HOUSTON, Tx 800-325-5861

# CWI Tech-Mesh

## **Applications**

Liquid mist extraction from a vapor-liquid process stream using a knitted wire mesh pad (demister pad).

## Demister Pad

Dry Gas Out

Wet Gas In

CWI Tech-Mesh<sup>™</sup> demister pads are engineered and designed for specific process conditions.

## **Process Applications**

- Cas-liquid separators
- Distillation equipment
- Process absorbers, precipitators, and scrubbers
- · Chemical separators and extractors
- Oil and gas processing equipment
- · Combustion gas scrubbers
- Knock-out drums and receivers
- Refinery towers
- Liquid-Liquid coalescers
- Pollution control equipment
- Liquid entrainment for compressor equipment
- Product recovery systems

## CWI Tech-Mesh<sup>™</sup> Engineered products

CWI Tech-Mesh<sup>™</sup> is knitted on state of the art equipment under strict quality control processes. Your demanding mist extraction applications require that our demister pads meet rigorous technical specifications. Whether the process is mist eliminaton or coalescing, CWI offers product options in a variety of wire diameters, alloys, mesh densities, and product geometries. CWI Tech-Mesh<sup>™</sup> products are engineered for maximum separation efficiency or minimum pressure drop in order to meet your specifications and vessel configurations.

Central Wire Industries is a world leader in the manufacture of wire in specialty alloys tailored to their customers specific requirements. Our product range includes stainless steel, nickel, cobalt, copper. brass, bronze, and zinc wires, in diameters ranging from 0.003 inches (0.0762 mm) to 1.000 Inches (25.4 mm).

The industry standard size wire for mist eliminators is 0.011 inches (0.28 mm). The most common alloys used are 304 and 316 stainless steel.

CONTACT US TODAY! HOUSTON, Tx / 800-325-5861

# CWI Tech-Mesh

## Custom Manufactured with Exceptional Quality

Sandau Secondaria Sec

Mist eliminators are custom designed specifically to meet each customers' specifications and equipment geometry.

#### A wide array of product configurations and geometries

CWI 's engineering team designs exactly what you need and follows a rigorous design process:

- Wire grade selection and verification
- Drawing wire to exact size diameter
- Wire surface finishing/coating
- Knit configuration setup
- Crimped for correct mesh density construction
- Pad design and construction



CWI Tech-Mesh™ wire is drawn and treated under the highest quality standards in one of our several manufacturing locations in North America

Mist eliminators are configured and constructed to ensure minimum liquid entrainment at maximum flow conditions.



### CWI Tech-Mesh™ Quality Assurance

Meeting exact customer product dimensional, ductility, and performance specifications requires specialized alloy selection and engineered manufacturing. CWI Tech-Mesh™ can be manufactured in a wide range of wire diameters, alloys, mesh densities. and product geometries under precise production and processing equipment capabilities. Mist Eliminator Mesh Densities typically range from 5.0 to 12.0 lb/ft3.

- Engineering and design consultation services
- Mechanical wire testing measures tensile strength, yield strength, and elongation
- Microscopy evaluation for alloy grain structure and surface quality
- Engineering and manufacturing process step checks
- Final product thorough inspection
- Fast, reliable shipping, customized inventory and delivery programs
- Customer service: in person, on-line or over the phone



CWI produces the core products in-house that comprise the final product including wire, support rods, and welding wire.

CONTACT US TODAY! HOUSTON, TX / 800-325-5861

# CWI Tech-Mesh

The Right Wire Grade for your Unique Demister Application



mist extraction mesh products.

## CWI has the widest range of alloys.

300 series stainless grades (304, 304L, 316, 316L, 321, 347)

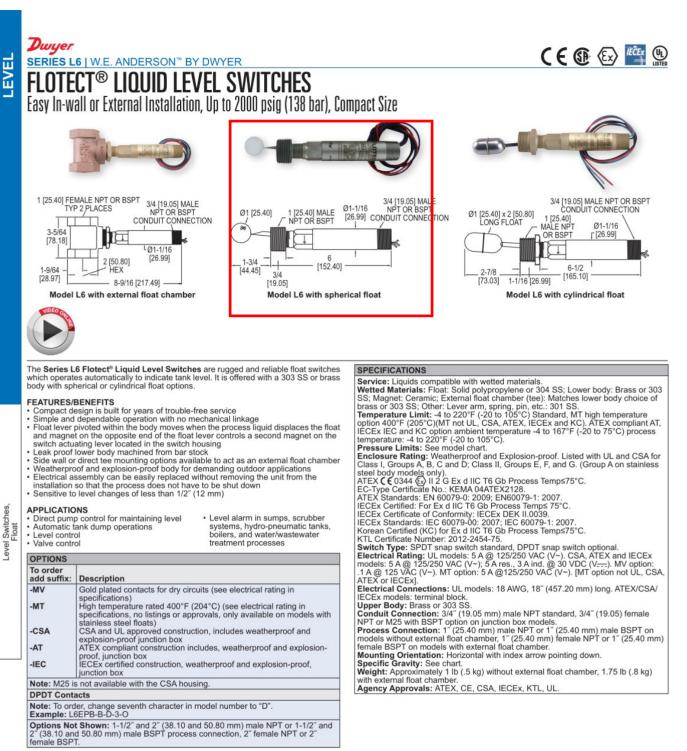
Monel 400, Copper, Duplex, Alloy 20Cb3, and Inconel.

Exotics and Copper base metals - available upon request

CWI engineered products are tailored to your requirements to ensure that your process is optimized and the product lasts.

CWI has the materials and resources to meet your custom mist elimination requirements.

### The Right Wire Grade for your Unique Demister Application


CWI Tech-Mesh<sup>™</sup> typically employs **300 series stainless** grades (**304. 304L 316. 316L 321. 347**) for its wire mesh mist eliminators. For extreme or aggressive process conditions with unique product chemistries, CWI has a wide range of specialty alloys such as **Monel 400**, **Copper. Duplex. Alloy 20Cb3, and Inconel.** Other exotics and copper base metals may be available upon request. You can choose the wire alloy most suitable to withstand and last under your harsh operating conditions. CWI has the widest range of alloys.

We can also design "co-knits" using a range of non-metallic synthetic materials such as fiberglass, polypropylene, Dacron, Taflon, and other polymers.

### Contact our engineering team to discuss your special mist elimination challenge.

If you have any additional questions about our products, check out the Live Chat Option on our website. **www.centralwire.com** 

CONTACT US TODAY! HOUSTON, Tx / 800-325-5861 LEVEL

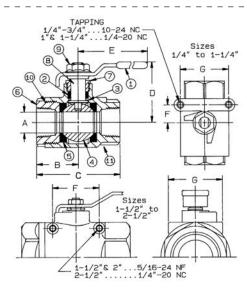


Level

|               | MODEL CHART     |          |                                     |                            |                           |                          |           |
|---------------|-----------------|----------|-------------------------------------|----------------------------|---------------------------|--------------------------|-----------|
|               | Model           | Body     | Installation                        | Float Material             | <b>Process Connection</b> | Max. Pressure psig (bar) | Min. S.G. |
| $\rightarrow$ | L6EPB-B-S-3-O   | Brass    | Side wall mounting                  | Polypropylene spherical    | NPT                       | 1000 (69)                | 0.9       |
| -             | L6EPB-B-S-3-A   | Brass    | Side wall mounting                  | 304 SS cylindrical         | NPT                       | 200 (13.8)               | 0.5       |
|               | L6EPB-B-S-3-C   |          | Side wall mounting                  | 304 SS spherical           | NPT                       | 350 (24.1)               | 0.7       |
|               | L6EPB-B-S-3-B   |          | Brass external float chamber (tee)  | Polypropylene spherical    |                           | 250 (17.2)               | 0.9       |
|               | L6EPB-B-S-3-H   |          | Brass external float chamber (tee)  | 304 SS spherical           | NPT                       | 250 (17.2)               | 0.7       |
|               |                 |          | Side wall mounting                  | Polypropylene spherical    | NPT                       | 2000 (138)               | 0.9       |
|               |                 |          | Side wall mounting                  | 304 SS cylindrical         | NPT                       | 200 (13.8)               | 0.5       |
|               |                 |          | Side wall mounting                  | 304 SS spherical           |                           | 350 (24.1)               | 0.7       |
|               |                 |          | 304 SS external float chamber (tee) | r olypropylerie sprierical | NPT                       | 2000 (138)               | 0.9       |
|               | L6EPS-S-S-3-L   | 303 SS   | 304 SS external float chamber (tee) | 304 SS spherical           | NPT                       | 350 (24.1)               | 0.7       |
|               | BSPT process co | nnection | and M25 conduit connection. Note: 7 | lo order, change eighth ch | aracter in model to "4".  | Example: L6EPB-B-S-4-A   |           |

USA: California Proposition 65

AWARNING: Cancer and Reproductive Harm - www.P65Warnings.ca.gov


## **77-100 SERIES**

#### **Bronze Full Port Ball Valve**

Female NPT Thread, 600 CWP (psig), Cold Non-Shock. (See referenced P/T chart) 150 psig Saturated Steam. Vacuum Service to 29 inches Hg. MSS SP-110 compliant.

## FEATURES

- Two-piece body
- Reinforced seats
- Mounting pad for easy actuator mounting
- Blow-out-proof stem design
- Adjustable packing gland
- Full port for full flow & min. pressure drop



#### **STANDARD MATERIAL LIST**

|    | PART           | MATERIAL                                              |
|----|----------------|-------------------------------------------------------|
| 1  | Lever and grip | Steel, zinc plated w/vinyl                            |
| 2  | Stem packing   | MPTFE                                                 |
| 3  | Stem bearing   | RPTFE                                                 |
| 4  | Ball           | B16 Brass, chrome plated                              |
| 5  | Seat (2)       | RPTFE                                                 |
| 6  | Retainer       | B16 Brass (1/4" to 1")<br>B584-C84400 (1.25" to 2.5") |
| 7  | Gland nut      | B16 Brass                                             |
| 8  | Stem           | B16 Brass                                             |
| 9  | Lever nut      | Steel, zinc plated                                    |
| 10 | Body seal      | PTFE (1.25" to 2.5")                                  |
| 11 | Body           | B584-C84400                                           |

| PRODUCT<br>NUMBER | SIZE  | A    | В    | C    | D    | E    | F    | G    | WT.   |
|-------------------|-------|------|------|------|------|------|------|------|-------|
| 77-101-01         | 1/4″  | 0.43 | 1.09 | 2.18 | 1.77 | 3.87 | 0.50 | 1.12 | 0.79  |
| 77-102-01         | 3/8″  | 0.50 | 1.09 | 2.18 | 1.77 | 3.87 | 0.50 | 1.12 | 0.75  |
| 77-103-01         | 1/2″  | 0.50 | 1.09 | 2.18 | 1.77 | 3.87 | 0.50 | 1.12 | 0.69  |
| 77-104-01         | 3/4″  | 0.81 | 1.56 | 3.12 | 2.17 | 4.87 | 0.87 | 1.37 | 1.83  |
| 77-105-01         | 1″    | 1.00 | 1.81 | 3.62 | 2.68 | 5.50 | 0.93 | 1.50 | 3.32  |
| 77-106-01         | 1.25″ | 1.25 | 2.12 | 4.25 | 2.90 | 5.50 | 0.93 | 1.50 | 5.05  |
| 77-107-01         | 1.5″  | 1.50 | 2.37 | 4.75 | 3.10 | 8.00 | 2.08 | 3.06 | 6.71  |
| 77-108-01         | 2″    | 2.00 | 2.65 | 5.37 | 3.50 | 8.00 | 2.41 | 3.52 | 11.75 |
| 77-109-01         | 2.5″  | 2.50 | 3.25 | 6.50 | 4.06 | 8.00 | 2.75 | 3.37 | 17.25 |



### VARIATIONS AVAILABLE

| 77-140 Series | (316 SS Ball & Stem) |
|---------------|----------------------|
| 77-190 Series | (Locked Retainer)    |

#### **OPTIONS AVAILABLE:** (More information in Section J)

YEAR warranty

- Minimum quantities apply
- To specify an option, replace the "01" standard suffix with the suffix of the option.
- To specify multiple options, replace the "01" suffix with the desired suffixes in the numerical order shown below. NOTE: Not all suffixes can be combined together.

| (SUFFIX)           | or shown below. NUTE: Not all suffixes can be combined <b>OPTION</b> | SIZES         |
|--------------------|----------------------------------------------------------------------|---------------|
| -01                | Standard Configuration                                               | All           |
| -01<br>-P -01-     | BSPP (Parallel) Thread Connection                                    | 1/4" to 2.5"  |
| -F -01-<br>-T -01- | BSPT (Tapered) Thread Connection                                     | 1/4" to 2.5"  |
|                    |                                                                      |               |
| -02-               | Stem Grounded                                                        | 1/4" to 2.5"  |
|                    | 2.25" Stem Extension (Carbon Steel, Zinc Plated)                     | 1/4" to 2.5"  |
| -05-               | Plain Ball                                                           | 1/4" to 2.5"  |
| -07-               | Steel Tee Handle                                                     | 1/4" to 1.25" |
| -08-               | 90° Reversed Stem                                                    | 1/4" to 2.5"  |
| -10-               | SS Lever & Nut                                                       | 1/4" to 2.5"  |
| -11-               | Therma-Seal <sup>™</sup> Insulating Tee Handle                       | 1/4" to 2"    |
| -14-               | Side Vented Ball (Uni-Directional)                                   | 1/4" to 2.5"  |
| -15-               | Wheel Handle, Steel                                                  | 1/4" to 1.25" |
| -16-               | Chain Lever - Vertical                                               | 3/4" to 2.5"  |
| -17-               | Rough Chrome Plated - Bronze Valves                                  | 1/4" to 2.5"  |
| -18-               | Plain Yellow Grip                                                    | 1/4" to 2.5"  |
| -20-               | Slot Vented Ball                                                     | 1/4" to 2.5"  |
| -21-               | UHMWPE Trim (Non-PTFE)                                               | 1/4" to 2.5"  |
| -24-               | Graphite Packing                                                     | 1/4" to 2.5"  |
| -27-               | SS Latch-Lock Lever & Nut                                            | 1/4" to 2.5"  |
| -28-               | Mounting Pad Not Drilled & Tapped                                    | 1/4" to 2.5"  |
| -30-               | Cam-Lock and Grounded                                                | 1/4" to 1.25" |
| -32-               | SS Tee Handle & Nut                                                  | 1/4" to 1.25" |
| -35-               | PTFE Trim                                                            | 1/4" to 2.5"  |
| -36-               | SS High-Rise Round Handle & Nut                                      | 1/4" to 1.25" |
| -40-               | Cyl-Loc and Grounded                                                 | 1/4" to 1.25" |
| -45-               | Less Lever & Nut                                                     | 1/4" to 2.5"  |
| -46-               | Latch Lock Lever - Lock in Closed Position Only                      | 1/4" to 2.5"  |
| -47-               | SS Oval Latch-Lock Handle & Nut                                      | 1/4" to 3/4"  |
| -48-               | SS Oval Handle (No Latch) & Nut                                      | 1/4" to 2"    |
| -49-               | No Lubrication. Assembled Dry.                                       | 1/4" to 2.5"  |
| -50-               | 2.25" CS Locking Stem Extension                                      | 1/4" to 2.5"  |
| -56-               | Multifill Seats & Packing                                            | 1/4" to 2.5"  |
| -57-               | Oxygen Cleaned                                                       | 1/4" to 2.5"  |
| -58-               | Chain Lever - Horizontal                                             | 3/4" to 2.5"  |
| -60-               | Static Grounded Ball & Stem                                          | 1/4" to 2.5"  |
| -63-               | NPT x Solder/Socket Weld                                             | 1/4" to 2.5"  |
|                    | 250# Steam Trim (MPTFE Seats & Packing)                              |               |
| -64-               | Use with 316 SS Ball & Stem Variation                                | 1/4" to 2.5"  |
| -92-               | Balancing Stop                                                       | 1/4" to 2.5"  |
| -94-               | 2.25" Stem Extension, Balancing Stop                                 | 1/4" to 2.5"  |
| -SV-               | Safety Vent (H-12)                                                   | 1/4" to 2"    |



A-29

# **FLOW DATA**

### For Apollo<sup>®</sup> Ball Valves

The listed Cv "factors" are derived from actual flow testing, in the Apollo® Ball Valve Division, Conbraco Industries, Inc., Pageland, South Carolina. These tests were completed using standard "off the shelf" valves with no special preparation and utilizing standard schedule 40 pipe. It should be understood that these factors are for the valve only and also include the connection configuration. The flow testing is done utilizing water as a fluid media and is a direct statement of the gallons of water flowed per minute with a 1 psig pressure differential across the valve/ connection unit. Line pressure is not a factor. Because the Cv is a factor, the formula can be used to estimate flow of most media for valve sizing.

#### **FLOW OF LIQUID**

Where:

SpGr =

Q =

 $\Delta P =$ 

Cv =

$$Q = C_v \sqrt{\frac{\Delta P}{SpGr}}$$
  
or  $\Delta P = \frac{(Q)^2 (SpGr)}{(Cv)^2}$ 

# FLOW OF GAS $Q = 1360 C_{v} \sqrt{\frac{(\Delta P) (P_{2})}{(SpGr) (T)}}$ or $\Delta P = \frac{5.4 \times 10^{-7} (SpGr) (T) (Q)^{2}}{(Cv)^{2} (P_{2})}$

#### Where:

| Q = | flow in SCFI | ł |  |
|-----|--------------|---|--|
|     |              |   |  |

 $\Delta P = pressure drop (psig)$ 

SpGr = specific gravity (based on air = 1.0)

 $P_2 =$  outlet pressure-psia (psig + 14.7)

T = (temp. °F + 460)

Cv = valve constant

**CAUTION:** The gas equation shown, is valid at very low pressure drop ratios. The gas equation is <u>NOT</u> valid when the ratio of pressure drop ( $\Delta P$ ) to inlet pressure (P1) exceeds 0.02.

NOTE: Only use the gas equation shown if (P1-P2)/P1 is less than 0.02.

| Cv FACTORS FO      | v FACTORS FOR APOLLO VALVES |     |     |     |    |      |     |            |     |     |     |   |   |    |    |  |  |
|--------------------|-----------------------------|-----|-----|-----|----|------|-----|------------|-----|-----|-----|---|---|----|----|--|--|
| VALVE              |                             |     |     |     |    |      |     | SIZE (IN.) |     |     |     |   |   |    |    |  |  |
| VALVE              | 1/4                         | 3/8 | 1/2 | 3/4 | 1  | 1.25 | 1.5 | 2          | 2.5 | 3   | 4   | 6 | 8 | 10 | 12 |  |  |
| 70B-140 Series     | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 70-100/200 Series  | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 70-300/400 Series  |                             |     | 15  | 30  | 43 | 48   | 84  | 108        |     |     |     |   |   |    |    |  |  |
| 70-600 Series      | 2.3                         | 4.5 | 5.4 | 12  | 14 | 21   | 34  | 47         |     |     |     |   |   |    |    |  |  |
| 70-800 Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  |            |     |     |     |   |   |    |    |  |  |
| 71-AR Series       |                             |     |     | 30  | 43 | 48   | 84  | 108        | 190 | 370 |     |   |   |    |    |  |  |
| 71-100/200 Series  |                             |     |     | 30  | 43 | 48   | 84  | 108        | 190 | 370 |     |   |   |    |    |  |  |
| 72-100/900 Series  |                             |     | 26  | 48  | 65 | 125  | 170 | 216        |     |     |     |   |   |    |    |  |  |
| 73A-100 Series     | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        |     |     |     |   |   |    |    |  |  |
| 73-300/400 Series  |                             |     | 26  | 48  | 65 | 125  | 170 | 216        |     |     |     |   |   |    |    |  |  |
| 74-100 Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 75-100 Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 76-AR Series       | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 76F-100 Series     | 8.1                         | 15  | 15  | 51  | 68 | 125  | 177 | 389        |     |     |     |   |   |    |    |  |  |
| 76FJ-100 Series    | 8.1                         | 15  | 15  | 51  | 68 | 125  | 177 | 389        |     |     |     |   |   |    |    |  |  |
| 76FK-100 Series    | 8.1                         | 15  | 15  | 51  | 68 | 125  | 177 | 389        |     |     |     |   |   |    |    |  |  |
| 76-100 Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 |     |   |   |    |    |  |  |
| 76-300/400 Series  |                             |     | 26  | 48  | 65 | 125  | 170 | 216        |     |     |     |   |   |    |    |  |  |
| 76-600 Series      | 2.3                         | 4.5 | 5.4 | 12  | 14 | 21   | 34  | 47         |     |     |     |   |   |    |    |  |  |
| 76J-100 Series     | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 |     |   |   |    |    |  |  |
| 76J-AR Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 76K-100 Series     | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 |     |   |   |    |    |  |  |
| 76K-AR Series      | 8.4                         | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370 | 670 |   |   |    |    |  |  |
| 7K-100 Series      |                             |     | 15  | 51  | 68 | 125  | 177 | 389        | 503 |     |     |   |   |    |    |  |  |
| 77-AR Series       | 8.1                         | 15  | 15  | 51  | 68 | 125  | 177 | 389        |     |     |     |   |   |    |    |  |  |
| 77C-100/200 Series | 4.5                         | 7.2 | 16  | 36  | 68 | 125  | 177 | 389        | 503 |     |     |   |   |    |    |  |  |
| 77D-140 Series     | 4.5                         | 7.2 | 16  | 36  | 68 | 125  | 177 | 389        |     |     |     |   |   |    |    |  |  |

#### continued on next page



#### **Cv FACTORS FOR APOLLO VALVES**

flow in US gpm

valve constant

pressure drop (psig)

specific gravity at flowing temperature

M-3

# FLOW DATA

# For Apollo® Ball Valves

### Cv FACTORS FOR APOLLO VALVES (continued from M-3)

| VALVE              |     |     |     |     |    |      |     | SIZE (IN.) |     |      |      |      |      |       |       |
|--------------------|-----|-----|-----|-----|----|------|-----|------------|-----|------|------|------|------|-------|-------|
| VALVE              | 1/4 | 3/8 | 1/2 | 3/4 | 1  | 1.25 | 1.5 | 2          | 2.5 | 3    | 4    | 6    | 8    | 10    | 12    |
| 77D-640 Series     |     |     |     | 11  | 24 | 35   |     |            |     |      |      |      |      |       |       |
| 77G-UL Series      | 4.5 | 7.2 | 16  | 36  | 68 | 125  | 177 | 389        | 503 |      |      |      |      |       |       |
| 77W Series         |     |     | 16  | 36  | 68 | 125  | 177 | 389        |     |      |      |      |      |       |       |
| 77-100/200 Series  | 8.1 | 15  | 15  | 51  | 68 | 125  | 177 | 389        | 503 |      |      |      |      |       |       |
| 79 Series          | 8.5 | 8.5 | 9.8 | 32  | 44 | 66   | 148 | 218        | 440 | 390  |      |      |      |       |       |
| 80 Series          | 8.4 | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370  |      |      |      |       |       |
| 82-100/200 Series  | 8.1 | 14  | 26  | 51  | 68 | 120  | 170 | 376        | 510 | 996  | 1893 |      |      |       |       |
| 83A/83B Series     | 8.1 | 14  | 26  | 51  | 68 | 120  | 170 | 376        |     |      |      |      |      |       |       |
| 83R-100/200 Series |     |     |     |     |    |      | 170 | 376        |     | 996  | 1893 |      |      |       |       |
| 86A/86B Series     | 8.1 | 14  | 26  | 51  | 68 | 120  | 170 | 376        |     |      |      |      |      |       |       |
| 86R-100/200 Series |     |     |     |     |    |      | 170 | 376        |     | 996  | 1893 |      |      |       |       |
| 87A-100 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87A-200 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 87A-700 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87A-900 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 87A-F00 Series     |     |     |     |     | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 |      |       |       |
| 87B-100 Series     |     |     |     |     |    |      |     |            |     | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87J-100 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87J-200 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 87J-700 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87J-900 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 87K-100 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87K-200 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 87K-700 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 87K-900 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 88A-100 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 88A-200 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 88A-700 Series     |     |     |     |     |    |      | 86  | 104        | 234 | 375  | 673  | 1099 | 1902 | 3890  |       |
| 88A-900 Series     |     |     | 15  | 19  | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 | 9250 | 15170 | 22390 |
| 88A-F00 Series     |     |     |     |     | 75 |      | 195 | 410        | 545 | 1021 | 2016 | 4837 |      |       |       |
| 88B-100 Series     |     |     |     |     |    |      |     |            |     | 375  | 673  | 1099 | 1902 | 3890  |       |
| 89-100 Series      | 8.4 | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370  |      |      |      |       |       |
| 9A-100 Series      | 8.3 | 6.7 | 5.7 | 10  | 16 | 25   | 40  | 62         |     |      |      |      |      |       |       |
| 90-100 Series      | 8.3 | 6.7 | 5.7 | 10  | 16 | 25   | 40  | 62         |     |      |      |      |      |       |       |
| 92-100 Series      | 8.3 | 6.7 | 5.7 | 10  | 16 | 25   | 40  | 62         |     |      |      |      |      |       |       |
| 93-100 Series      | 8.3 | 6.7 | 5.7 | 10  | 16 | 25   | 40  | 62         |     |      |      |      |      |       |       |
| 94A-100/200 Series | 6   | 7   | 19  | 34  | 50 | 104  | 268 | 309        | 629 | 1018 | 1622 |      |      |       |       |
| 96-100 Series      | 8.3 | 6.7 | 5.7 | 10  | 16 | 25   | 40  | 62         |     |      |      |      |      |       |       |
| 399-100 Series     | 8.4 | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370  |      |      |      |       |       |
| 489-100 Series     | 8.4 | 7.2 | 15  | 30  | 43 | 48   | 84  | 108        | 190 | 370  |      |      |      |       |       |



# **McMASTER-CARR**<sub>•</sub>

# Hand-Operated Water-Removal Pump 14 oz./Stroke Maximum Flow Rate

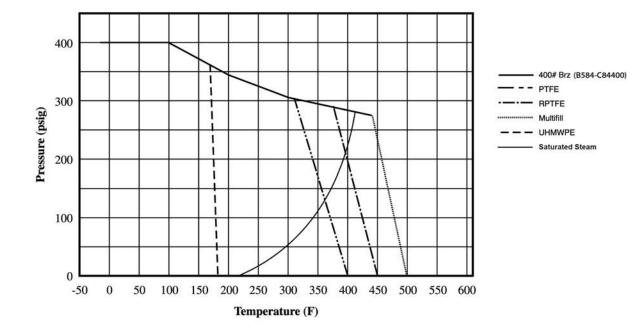


| Ритр Туре    | Sump                |  |  |  |  |
|--------------|---------------------|--|--|--|--|
| Pump Style   | Diaphragm           |  |  |  |  |
| Power Source | Manual              |  |  |  |  |
| Maximum Flow | 14 oz./stroke       |  |  |  |  |
| Rate         | 14 02.7501000       |  |  |  |  |
| Maximum      | 25 East of Hoad (15 |  |  |  |  |
| Discharge    | 35 Feet of Head (15 |  |  |  |  |
| Pressure     | psi)                |  |  |  |  |
| Maximum      |                     |  |  |  |  |
| Solids       | 1/8"                |  |  |  |  |
| Diameter     |                     |  |  |  |  |
| Maximum      | 100.000 cm          |  |  |  |  |
| Viscosity    | 100,000 cp          |  |  |  |  |
| Temperature  |                     |  |  |  |  |
| Range, °F    |                     |  |  |  |  |
| Min.         | 35°                 |  |  |  |  |
| Maximum      | 150°                |  |  |  |  |
| Intake       |                     |  |  |  |  |
| Connection   | Hose                |  |  |  |  |
| Туре         |                     |  |  |  |  |
| For Hose ID  | 1"                  |  |  |  |  |
| Hose         |                     |  |  |  |  |
| Connection   | Barbed              |  |  |  |  |
| Туре         |                     |  |  |  |  |
| Gender       | Male                |  |  |  |  |
| Discharge    |                     |  |  |  |  |
| Connection   | Hose                |  |  |  |  |
| Туре         |                     |  |  |  |  |
| For Hose ID  | 1"                  |  |  |  |  |
| Hose         |                     |  |  |  |  |
| Connection   | Barbed              |  |  |  |  |
| Туре         |                     |  |  |  |  |
| Gender       | Male                |  |  |  |  |
| Self-Priming | Self-Priming        |  |  |  |  |
| Housing      | Acetal Plastic      |  |  |  |  |
| Material     |                     |  |  |  |  |
|              | Buna-N Rubber       |  |  |  |  |

#### 4332K31

| Overall            | 4                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Height             | 4 3/8"                                                                                                                                                                                                                                                                                                                                                                                              |
| Width              | 4 3/8"                                                                                                                                                                                                                                                                                                                                                                                              |
| Depth              | 12 3/4"                                                                                                                                                                                                                                                                                                                                                                                             |
| For Use With       | Water, Deionized<br>Water, Salt Water                                                                                                                                                                                                                                                                                                                                                               |
| Warning<br>Message | Chemical<br>compatibility must<br>be determined by<br>the customer<br>based on the<br>conditions in which<br>the product is<br>being used,<br>including the<br>presence of other<br>chemicals,<br>temperature, and<br>consistency.                                                                                                                                                                  |
| Chemical           |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Resistance         |                                                                                                                                                                                                                                                                                                                                                                                                     |
| Excellent          | Deionized Water,<br>Ethylene Glycol,<br>Hydraulic Oil, Motor<br>Oil, Salt Water,<br>Sodium Hydroxide<br>(20%), Sodium<br>Hydroxide (50%),<br>Water                                                                                                                                                                                                                                                  |
| Moderate           | Ammonium<br>Hydroxide                                                                                                                                                                                                                                                                                                                                                                               |
| Poor               | Acetone, Diesel<br>Fuel, Ethanol,<br>Gasoline,<br>Hydrochloric Acid<br>(100%),<br>Hydrochloric Acid<br>(20%), Hydrochloric<br>Acid (37%),<br>Isopropyl Alcohol,<br>Kerosene, Lacquer<br>Thinner, Methanol,<br>Methyl Chloride,<br>Methyl Ethyl Ketone<br>(MEK), Mineral<br>Spirits, Nitric Acid<br>(20%), Nitric Acid<br>(50%), Nitric Acid<br>(Concentrated),<br>Paint, Phosphoric<br>Acid (<40%), |

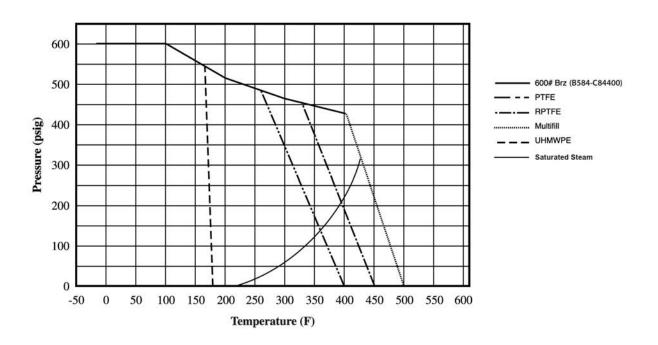
|                | Phosphoric Acid      |  |  |  |  |
|----------------|----------------------|--|--|--|--|
|                | (Greater Than or     |  |  |  |  |
|                | Equal to 40%),       |  |  |  |  |
|                | Sodium Hydroxide     |  |  |  |  |
|                | (80%), Sodium        |  |  |  |  |
|                | Hypochlorite         |  |  |  |  |
|                | (Bleach), Sulfuric   |  |  |  |  |
|                | Acid (<10%),         |  |  |  |  |
|                | Sulfuric Acid (10-   |  |  |  |  |
|                | 75%), Sulfuric Acid  |  |  |  |  |
|                | (75-100%), Xylene    |  |  |  |  |
| Matta d Davita | 304 Stainless Steel, |  |  |  |  |
| Wetted Parts   | Acetal Plastic.      |  |  |  |  |
| Material       | ,                    |  |  |  |  |
|                | Buna-N Rubber        |  |  |  |  |


Install these pumps right in your line and engage the lever handle to start pumping. They have few moving parts that can fail for an extended service life.

# **PRESSURE TEMPERATURE RATINGS**

400 CWP

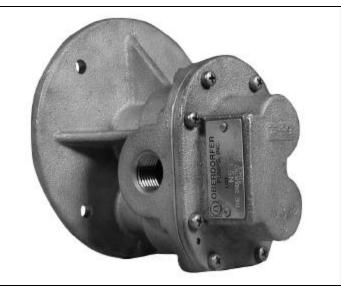
### **Bronze ASTM B584-C84400**


## (GRAPH 3)



600 CWP

**Bronze ASTM B584-C84400** 


(GRAPH 4)





# **BRONZE CLOSE COUPLED ROTARY GEAR PUMPS** OBERDORFER PUMPS A Subsidiary of Thomas Industries Inc.

#### MODEL N994 - 1/2" NPT PORTS



#### **FEATURES**

- n Bronze Construction with Stainless Steel Shafts
- n Helical gears for quiet operation
- n Easy Field Assembly to Motors
- n Self-Lubricating Carbon Bearings
- n O-ring seal for maximum leak protection

#### **GENERAL DESCRIPTION**

Pump housings and gears are made of top quality bronze, shafts are stainless steel 303. Bearings are made of high performance carbongraphite material selected for wear resistance and long service life.

Gear pumps are positive displacement pumps. Each shaft revolu tion displaces a definite amount of liquid relatively unaffected by the back pressure in the discharge line. Shaft speed and flow are directly propor tional.

#### DRIVE ARRANGEMENT

Close coupled pumps are mounted directly to the electric motor by means of a suitable adapter bracket. The pump drive shaft is connected to the motor shaft by a flexible coupling.

#### LIQUIDS AND TEMPERATURE

These pumps are suitable for all liquids that are compatible with bronze. Most common liquids are water, oil, and mild chemicals in the pHrange of 4 to 11. Viscous liquids require reduced shaft speeds of 1150 RPM or lower. Consult factory.

Liquids containing solids, abrasives, powders or paint pigments are definitely not recommended for gear pumps. If abrasives are unavoidable, use a very low shaft speed. The recommended liquid temperature range is 32°F to 140°F for longest pump life. If more extreme temperature conditions exist, our factory should be consulted. Freezing of water-filled pumps can cause damage and must be avoided. Oils at low temperatures are very viscous requiring a lower speed or extra power.

#### PERFORMANCE

Water 70<sup>°</sup> F

| 1725 | R.P.M. |      | Pump & Motor No. |                  |                  |          |  |  |  |  |  |
|------|--------|------|------------------|------------------|------------------|----------|--|--|--|--|--|
| PSI  | GPM    | HP   | HP               | Motor            | Single           | Three    |  |  |  |  |  |
|      |        | Req. | Motor            | Frame            | Phase            | Phase    |  |  |  |  |  |
| 0    | 10.5   | 0.50 | 1/2              | 56C              | N994HJ45         | N994HJ95 |  |  |  |  |  |
| 20   | 10.3   | 0.75 | 3/4              | 56C              | N994HM26         | N994HM95 |  |  |  |  |  |
| 40   | 10.1   | 0.9  | 1                | 56C              | N994HN26         | N994HN95 |  |  |  |  |  |
| 60   | 9.9    | 1.2  | 1 1/2            | 145TC            | N994JT45         | N994JT95 |  |  |  |  |  |
| 80   | 9.6    | 1.5  | 1 1/2            | 2 145TC N994JT45 |                  | N994JT95 |  |  |  |  |  |
| 100  | 9.4    | 1.75 | 2                | 145TC            | N994JW45         | N994JW95 |  |  |  |  |  |
| 125* | 9.2    | 2    | 2                | 145TC            | N994JW45         | N994JW95 |  |  |  |  |  |
| 150* | 9      | 2.32 | 3                | 182TC            | N994KY45         | N994KY95 |  |  |  |  |  |
| 4450 |        |      |                  |                  |                  |          |  |  |  |  |  |
| 1150 | R.P.M. |      |                  |                  | Pump & Motor No. |          |  |  |  |  |  |
| PSI  | GPM    | HP   | HP               | Motor            | Single           | Three    |  |  |  |  |  |
|      |        | Req. | Motor            | Frame            | Phase            | Phase    |  |  |  |  |  |
| 0    | 6.9    | 0.24 | 1/2              | 56C              | N994HJ46         | N994HJ96 |  |  |  |  |  |
| 20   | 6.6    | 0.29 | 1/2              | 56C              | N994HJ46         | N994HJ96 |  |  |  |  |  |
| 40   | 6.4    | 0.43 | 1/2              | 56C              | N994HJ46         | N994HJ96 |  |  |  |  |  |
| 60   | 6.1    | 0.58 | 3/4              | 56C              | N994HM46         | N994HM96 |  |  |  |  |  |

MODEL

N994

SERIES

5.2 2 184TC N994KW46 150\* 1.63 N994KW96 \*For pressures over 100 psi, the above selections are suitable for pumping fluids with lubricity (e.q. oils, polymers). Service life will decrease for fluids without lubricity (e.q. water, solvents).

56C

145TC

145TC

N994HM46

N994JN46

N994JT46

N994HM96

N994JN96

N994JT96

#### SUCTION LIFT

80

100

125\*

59

5.6

5.4

0.72

0.93

1.25

3/4

1

1 1/2

As a general rule, the suction lift should be kept at an absolute mini mum by placing the pump as close to the liquid source as possible. A gear pump in new condition can lift 20 feet of water in the suction line. A foot valve (preferably with built-in strainer) is recommended at the beginning of the suction line. For a first start-up, the pump should be primed to avoid dry run ning. Minimum size of the suction pipe is the size of the pump inlet port. For longer suction lines (over 3 feet), or for viscous liquids, the pipe size should be at least one size or two sizes larger than the pump inlet port.

#### ROTATION AND RELIEF VALVE

The relief valve is not intended to be a metering or flow control device. Its main purpose is to function as a discharge pressure relief when the spring tension is exceeded by the discharge pressure. Overheating can occur within 5-10 minutes if the discharge line is completely shut off for extended periods.

Unless otherwise specified, the pump motor unit is supplied by the factory for shaft rotation clockwise from shaft end. Reversing the motor rotation will reverse the "in" and "out" ports and also requires changing the relief valve location. The relief valve is always on the discharge side in this pump series. The factory pressure setting is 50 PSIG. To increase pressure, turn the relief valve adjusting screw in a clockwise direction.

To reverse single phase motors, find instructions on the inside of the junction box cover or on the name plate of the motor.

Three phase motors are not wired for any particular rotation. They can be reversed by interchanging any two (2) wires of the three (3) wire leads.

MODEL N994 **SERIES** 

# BRONZE CLOSE COUPLED **ROTARY GEAR PUMPS** OBERDORFER PUMPS A Subsidiary of Thomas Industries Inc.

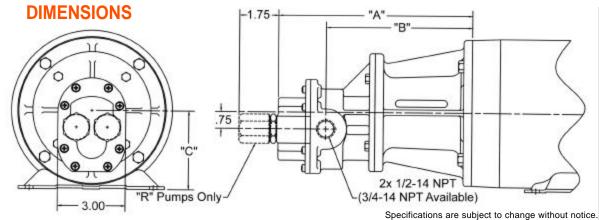
#### 17 **EXPLODED VIEW & PARTS LIST** (8 6 OF 1-000000 ROTATION 342 573 (9) 10 (12) 1 (10) (13)(14) (15) (16) 17 10<sup>1</sup> 11<sup>1</sup> 12<sup>1</sup> 16<sup>1,2</sup> Pump 1 2 3 4 5 6 7 8 9 13 14<sup>1</sup> 15

|   | No.   | Bypass  | Adj.    | Fiber   | Locknut | Spring  | Plugnut | Ball    | Screw   | Cover    | Bearing | Drive Gear | Idle Gear | Dowel   | O-Ring   | Body     | Lipseal | Adapter |
|---|-------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|------------|-----------|---------|----------|----------|---------|---------|
|   |       | Nut     | Screw   | Washer  |         |         |         |         |         |          |         | Assy.      | Assy.     | Pin     |          |          |         | Kits    |
|   |       | 1 Req'd | 1 Req'd | 3 Req'd | 1 Req'd | 1 Req'd | 1 Req'd | 1 Req'd | 8 Req'd | 1 Req'd  | 4 Req'd | 1 Req'd    | 1 Req'd   | 2 Req'd | 1 Req'd  | 1Req'd   | 1 Req'd |         |
|   | N994  |         |         | -       |         | -       |         |         | 5385    | 9322NN5N | 5091    | 33011      | 33008     | 8885    | 9797-041 | 9320ND2N | 5463    | See     |
|   | N994R | 5204    | 5200    | 6964    | 5209    | 5207    | 5205    | 5206    | 5385    | 9323NN5B | 5091    | 33011      | 33008     | 8885    | 9797-041 | 9320ND2N | 5463    | Below   |
| - |       |         |         |         |         |         |         |         |         |          |         |            |           |         |          |          |         |         |

<sup>1</sup> Repair kits contain items 10, 11, 12, 14 & 16. Repair kit for N994(R) is 11333.

Variationa

#### <sup>2</sup> Part # 5463 is standard Buna N, part #9997 is Viton(R)\*-Teflon(R)\*.


| Adapter | Kits |
|---------|------|
|         |      |

| Adapter Kits |        |             |  |  |  |
|--------------|--------|-------------|--|--|--|
| Adapter      | Part   | Description |  |  |  |
| Kit          | Number |             |  |  |  |
| н            | 11299  | 56C Frame   |  |  |  |
| J            | 11300  | 143TC/145TC |  |  |  |
| к            | 11301  | 182TC/184TC |  |  |  |
| L            | 11302  | 213TC/215TC |  |  |  |

|   | variations |                   |                      |            |
|---|------------|-------------------|----------------------|------------|
|   | Pump       | 16 <sup>1,2</sup> | Description          | Repair Kit |
|   | Model      | Lipseal           |                      |            |
|   | N994S15    | 9997              | Viton(R)*-Teflon(R)* | 12100      |
| ) | N994RS15   | 9997              | Viton(R)*-Teflon(R)* | 12100      |
|   |            |                   |                      |            |

#### Motor/Adapter Kit Dimensions (see below)

| Model    | Motor Frame | "A"  | "B"  | "C"  |  |  |  |  |  |  |
|----------|-------------|------|------|------|--|--|--|--|--|--|
| N994(R)H | 56C         | 8.63 | 6.50 | 3.50 |  |  |  |  |  |  |
| N994(R)J | 143TC/145TC | 8.63 | 6.50 | 3.50 |  |  |  |  |  |  |
| N994(R)K | 182TC/184TC | 9.45 | 7.31 | 4.50 |  |  |  |  |  |  |
| N994(R)L | 213TC/215TC | 9.45 | 7.31 | 5.25 |  |  |  |  |  |  |



\*Viton(R) or equivalent FKM will be used. Viton(R) is a trademark of DuPont Dow Elastomers. Teflon(R) or equivalent PTFE will be used. Teflon(R) is a registered trademark of DuPont.

6/00

## Low-Lead Silicon Bronze Spring-Loaded Piston Check Valves

Maximum Pressure: 400 psi @ 190° F Cracking Pressure: Less than 0.5 psi Temperature Range: 32° to 190° F

Engineered for cold water service. Body and piston are silicon bronze and contain less than 0.05% lead (considered lead free); spring is Type 316 stainless steel, and seal is Buna-N. Has a soft seat. *Note:* Cv factor not rated. **Connections:** NPT female.



| Pipe Size | End-to-End Lg. | Part No. |
|-----------|----------------|----------|
| 1/2"      | 2 5/8"         | 4616K91  |
| 3/4"      | 3 3/8"         | 4616K92  |
| 1"        | 3 5/8"         | 4616K93  |
| 1 1/4"    | 3 3/4"         | 4616K94  |
| 1 1/2"    | 4 1/8"         | 4616K95  |
| 2"        | 5 1/8"         | 4616K96  |
| 2 1/2"    | 7 3/8"         | 4616K97  |
| 3"        | 7 1/4"         | 4616K98  |



# **Compact Filter Silencers**

## FS Series 1/2" - 6"

#### **Features**

**Options** 

Tap holes availablePressure drop indicator

Stainless steel construction

- Fully drawn weatherhood
- Tubular silencing design tubes are positioned to maximize attenuation and air flow while minimizing pressure drop
- Corrosive resistant gray powder coat carbon steel

### **Technical Specifications**

- Temp (continuous): min -15°F (-26°C) max 220°F (104°C)
- Filter change out differential: 15-20" H<sub>2</sub>O over initial △ P
- Pressure drop graphs available upon request

ATEX

Various media for different environments

restricted enclosures (select models)

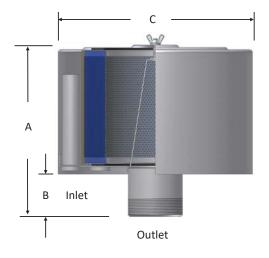
Various nonstandard finishes and connection styles
 Side Access Silencer Filters (LQB Series) for space

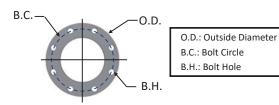
Available

- Polyester: 99%+ removal efficiency standard to 5 micron
- Paper: 99%+ removal efficiency standard to 2 micron



Threaded Outlet Assembly





Flange Outlet Assembly

Rev: FS .5-6-US1903K

Sales/Service: 630.773.1363 sales@solbergmfg.com

# FS Series 1/2" - 6"





| 5/150#<br>httern | Dime | ensions - in | ches | No. of          | Elango              |
|------------------|------|--------------|------|-----------------|---------------------|
| ange             | O.D. | B.C.         | B.H. | No. of<br>Holes | Flange<br>Thickness |
| 4″               | 9    | 7 1/2        | 0.75 | 8               | 0.5                 |
| 5″               | 10   | 8 1/2        | 0.88 | 8               | 0.5                 |
| 6″               | 11   | 9 ½          | 0.88 | 8               | 0.5                 |

| MADT          | Assembly       | Assembly F      | Part Number     | Dime              | nsions - ir                             | nches  | Suggested             | No. of             | Approx.<br>Weight | Replac               |                   | Element        |
|---------------|----------------|-----------------|-----------------|-------------------|-----------------------------------------|--------|-----------------------|--------------------|-------------------|----------------------|-------------------|----------------|
| MPT<br>Outlet | SCFM<br>Rating | Polyester       | Paper           | Α                 | В                                       | С      | Service ht.<br>inches | Silencing<br>Tubes | lbs.              | Element<br>Polyester | Part No.<br>Paper | SCFM<br>Rating |
| 1/2"          | 10             | FS-15-050       | FS-14-050       | 3 7⁄16            | 1                                       | 6      | 3                     | 1                  | 2                 | 15                   | 14                | 35             |
| 3/4″          | 25             | FS-15-075       | FS-14-075       | 4                 | 1 1/4                                   | 6      | 3                     | 2                  | 2                 | 15                   | 14                | 35             |
| 1″            | 35             | FS-15-100       | FS-14-100       | 4                 | 1 5/16                                  | 6      | 3                     | 3                  | 2                 | 15                   | 14                | 35             |
| 1″            | 55             | FS-19P-100      | FS-18P-100      | 6 3⁄8             | 1 4/16                                  | 6      | 5                     | 3                  | 3                 | 19P                  | 18P               | 100            |
| 1 1⁄4″        | 70             | FS-19P-125      | FS-18P-125      | 6 ¾               | 1 1 1/8                                 | 6      | 5                     | 5                  | 3                 | 19P                  | 18P               | 100            |
| 1 1⁄2″        | 85             | FS-19P-150      | FS-18P-150      | 6 <sup>3</sup> ⁄4 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 6      | 5                     | 5                  | 4                 | 19P                  | 18P               | 100            |
| 2″            | 135            | FS-31P-200      | FS-30P-200      | 7 1/2             | 2 1⁄4                                   | 10     | 5                     | 5                  | 8                 | 31P                  | 30P               | 195            |
| 2″            | 135            | FS-231P-200     | FS-230P-200     | 12                | 2 3⁄8                                   | 10     | 10                    | 5                  | 14                | 231P                 | 230P              | 300            |
| 2 1⁄2″        | 195            | FS-31P-250      | FS-30P-250      | 7 1/2             | 2 1/2                                   | 10     | 5                     | 5                  | 8                 | 31P                  | 30P               | 195            |
| 2 1⁄2″        | 195            | FS-231P-250     | FS-230P-250     | 12 3⁄8            | 2 5⁄8                                   | 10     | 10                    | 9                  | 15                | 231P                 | 230P              | 300            |
| 3″            | 300            | FS-231P-300     | FS-230P-300     | 12 3⁄4            | 3 1/8                                   | 10 1⁄4 | 10                    | 9                  | 15                | 231P                 | 230P              | 300            |
| 3"            | 300            | FS(12)-235P-300 | FS(12)-234P-300 | 12 7/8            | 2 <sup>11</sup> /16                     | 12 1⁄4 | 10                    | 3                  | 29                | 235P                 | 234P              | 570            |
| 3"            | 300            | FS-275P-300     | FS-274P-300     | 13                | 3                                       | 16     | 10                    | 9                  | 33                | 275P                 | 274P              | 1100           |
| 4"            | 520            | FS(12)-235P-400 | FS(12)-234P-400 | 13 7⁄8            | 3 <sup>11</sup> /16                     | 12 1⁄4 | 10                    | 6                  | 29                | 235P                 | 234P              | 570            |
| 4"            | 520            | FS-275P-400     | FS-274P-400     | 14                | 4                                       | 16     | 10                    | 9                  | 34                | 275P                 | 274P              | 1100           |
| 5″            | 800            | FS-245P-500     | FS-244P-500     | 14                | 4 1/8                                   | 16     | 10                    | 14                 | 33                | 245P                 | 244P              | 880            |
| 5″            | 800            | FS-275P-500     | FS-274P-500     | 14                | 4 1/8                                   | 16     | 10                    | 14                 | 36                | 275P                 | 274P              | 1100           |
| 6"            | 1100           | FS-275P-600     | FS-274P-600     | 15                | 5 ½                                     | 16     | 10                    | 18                 | 38                | 275P                 | 274P              | 1100           |

| Flange | Assembly<br>SCFM |                  | art Number       | Dime   | nsions - ir<br>-    | nches  | Suggested<br>Service ht. | No. of<br>Silencing | Approx.<br>Weight | Replac<br>Element | Part No. | Element<br>SCFM |
|--------|------------------|------------------|------------------|--------|---------------------|--------|--------------------------|---------------------|-------------------|-------------------|----------|-----------------|
| Outlet | Rating           | Polyester        | Paper            | Α      | В                   | С      | inches                   | Tubes               | lbs.              | Polyester         | Paper    | Rating          |
| 4″     | 520              | FS(12)-235P-400F | FS(12)-234P-400F | 13 7⁄8 | 3 <sup>11</sup> /16 | 12 1⁄4 | 10                       | 6                   | 32                | 235P              | 234P     | 570             |
| 4"     | 520              | FS-275P-400F     | FS-274P-400F     | 14     | 4                   | 16     | 10                       | 9                   | 39                | 275P              | 274P     | 1100            |
| 5″     | 800              | FS-245P-500F     | FS-244P-500F     | 14     | 4 1/8               | 16     | 10                       | 14                  | 38                | 245P              | 244P     | 880             |
| 5″     | 800              | FS-275P-500F     | FS-274P-500F     | 14     | 4 1/8               | 16     | 10                       | 14                  | 41                | 275P              | 274P     | 1100            |
| 6″     | 1100             | FS-275P-600F     | FS-274P-600F     | 15     | 5 1⁄8               | 16     | 10                       | 18                  | 42                | 275P              | 274P     | 1100            |

See Filter Silencer Technical Data for sizing guidelines.



All model offerings and design parameters are subject to change without prior notice. Contact your representative or Solberg for the most current information. www.solbergmfg.com



# **CENTRIC** Butterfly Valve

RUBBER SEATED VF - 7 Series

LEVER · GEAR · PNEUMATIC ELECTRIC OPERATED

### ALLOWABLE PRESSURE

1.5" - 12.0" : 230 psig 14.0" - 40.0" : 150 psig



INVESTIMENT CAST STATICESS STEEL BODY

1.5" - 24"(40mm - 600mm)

# VALUE VALVE



# **RESILIENT SEATED BUTTERFLY VALVES**



## **DESIGN DETAILS AND SPECIFICATIONS**

VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)

FACE TO FACE: Valve body designed to meet ISO 5752 table 5 short.

#### **TOP WORKS**:

24" and below, valve mounting flange and stem shall be per ISO 5211.28" and above, valve mounting flange per ISO 5211, stem shall be round keyed.

#### FLANGE REQUIREMENT:

VF-730. VF-733: ANSI 125/150. BS Table E. JIS 10K. DIN PN10. DIN PN16. All wafers have locating holes for ease of installation. VF-737: ANSI 150. JIS10K. DIN PN10. DIN PN16

#### PRESSURE RATING:

Bi-directional bubble-tight shut off to 16bar (230psi)-----1.5"~12.0". 10bar (150psi)-----14.0"~40.0"

and tested to 110% of full rating

18bar (260psi)-----1.5"~12.0" 11bar (160psi)-----14.0"~40.0"

#### SHELL TESTING:

The body strength can stand 150% of full rating.

24bar (340psi)-----1.5"~12.0" 15bar (220psi)-----14.0"~40.0"

#### INSTALLATION INSTRUCTIONS:

The valve is designed for use between all types of flat or raised face flanges. DO NOT USE FLANGE GASKETS. The butterfly valve design eliminates the need for gaskets. For proper installation, the space between flanges must be sufficient to permit valve insertion without disturbing the rubber liner flange seal. Note that the disc sealing edge is 45° from the flat of the shaft, but inline with the scribed line. Rotate the stem to position the disc within the body, place the valve between flanges and hand-tighten the bolts. SLOWLY OPEN the valve counterclockwise to check for adequate disc clearance. RETURN THE DISC TO 10% OPEN POSITION and cross tighten all bolts, again check for adequate disc clearance.

#### STEM RETAINING MECHANISM:

The stem is retained in the body by means of a special "Q" type design when the valve size is under 14.0", and hence the stem can be removed from the body and disc without any special tools.

\*Unless you intend to disassemble the valve, do not position the disc in the 135° position.

#### Anti-Condensed: (On customer's requirement)



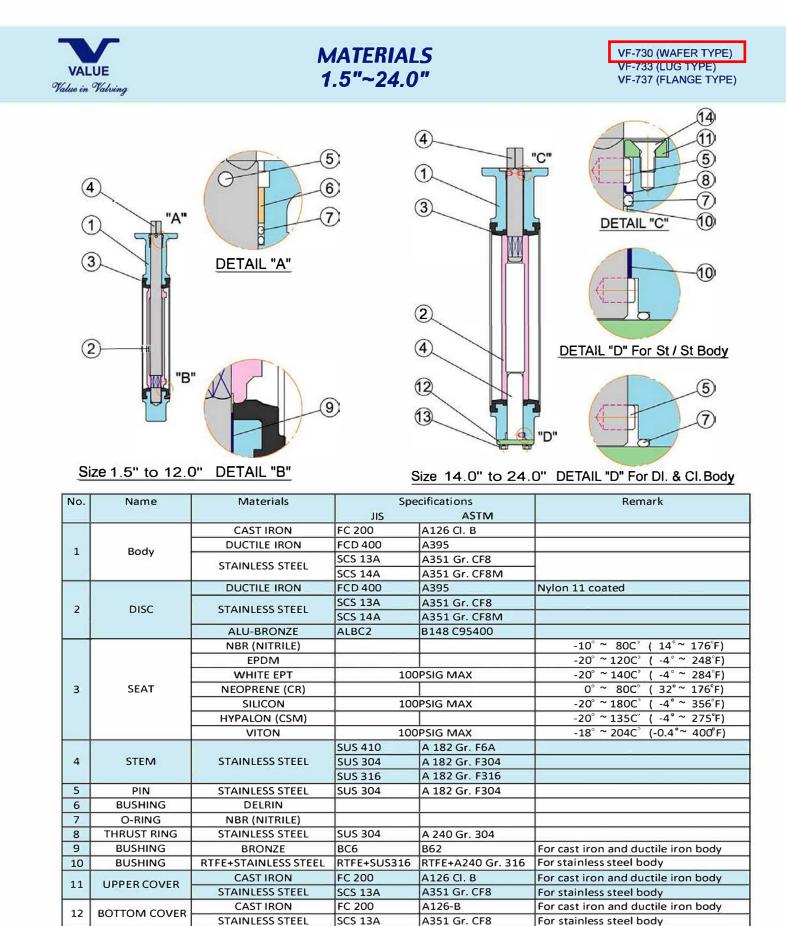
# **DESIGN DETAILS AND SPECIFICATIONS**

VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)

## Cv Values-Valve Sizing Coefficient.

| S    | ize   |      |      |      | Disc A | ngle (Open | Degree) | -     |        |        |
|------|-------|------|------|------|--------|------------|---------|-------|--------|--------|
| mm   | inch  | 10°  | 20°  | 30°  | 40°    | 50°        | 60°     | 70°   | 80°    | 90°    |
| 40   | 1 1/2 | 0.8  | 2.8  | 8.1  | 16.6   | 26         | 42      | 69    | 95     | 132    |
| 50   | 2     | 1.3  | 4.4  | 11.9 | 25.7   | 44         | 70      | 117   | 154    | 226    |
| 65   | 2 1/2 | 2.3  | 8.8  | 21.3 | 41     | 71         | 111     | 219   | 281    | 369    |
| 80   | 3     | 2.9  | 11.5 | 30   | 56     | 97         | 147     | 250   | 395    | 497    |
| 100  | 4     | 4.4  | 17   | 46   | 84     | 139        | 259     | 422   | 709    | 846    |
| 125  | 5     | 7.6  | 28   | 73   | 138    | 254        | 461     | 701   | 1214   | 1454   |
| 150  | 6     | 12   | 48   | 111  | 205    | 381        | 634     | 1021  | 1474   | 2175   |
| 200  | 8     | 22   | 75   | 193  | 358    | 670        | 1164    | 1833  | 2703   | 3655   |
| 250  | 10    | 33   | 118  | 287  | 528    | 978        | 1711    | 2636  | 3810   | 5566   |
| 300  | 12    | 40   | 151  | 365  | 720    | 1330       | 2486    | 3800  | 5839   | 8258   |
| 350  | 14    | 55   | 191  | 456  | 930    | 1753       | 3010    | 4657  | 6726   | 9733   |
| 400  | 16    | 73   | 270  | 594  | 1260   | 2308       | 3956    | 6300  | 9476   | 13406  |
| 450  | 18    | 88   | 300  | 727  | 1413   | 2709       | 4592    | 7407  | 11085  | 15926  |
| 500  | 20    | 121  | 405  | 1005 | 1980   | 3611       | 6257    | 9960  | 15338  | 21935  |
| 600  | 24    | 163  | 578  | 1349 | 2795   | 5225       | 8846    | 13976 | 21163  | 29504  |
| 700  | 28    | 223  | 771  | 1959 | 3772   | 7008       | 12471   | 20407 | 29477  | 43081  |
| 750  | 30    | 238  | 819  | 2079 | 4001   | 7434       | 13229   | 21649 | 31271  | 45703  |
| 800  | 32    | 301  | 1138 | 2693 | 5304   | 9635       | 16524   | 26935 | 36987  | 53814  |
| 900  | 36    | 385  | 1466 | 3452 | 6859   | 12648      | 21275   | 34815 | 50185  | 71421  |
| 1000 | 40    | 597  | 2245 | 5214 | 9309   | 15788      | 25669   | 42120 | 63939  | 80583  |
| 1050 | 42    | 687  | 2411 | 5352 | 9826   | 16665      | 27095   | 44459 | 67490  | 85058  |
| 1100 | 44    | 823  | 3082 | 7109 | 10230  | 19436      | 30924   | 50837 | 79709  | 92686  |
| 1200 | 48    | 1134 | 4256 | 9481 | 16591  | 25865      | 41321   | 67652 | 105788 | 124357 |

Cv value denotes the flow rate in US gallon/min for water at 70° F under a pressure differential 1 psig. When required Kv = Cv/1.17


### Expected Seating/ Unseating Torque (in Lbs)

| Si   | ze    | Lubrica | ting (Non-c | orrosive) <b>Δ</b> | P (psig) | Dry (Non- | Lubricating | ΔP (psig) |             | isc Diameter<br>) psig) |
|------|-------|---------|-------------|--------------------|----------|-----------|-------------|-----------|-------------|-------------------------|
| mm   | inch  | 45      | 90          | 150                | 230      | 45        | 90          | 150       | Lubricating | Dry                     |
| 40   | 1 1/2 | 133     | 151         | 169                | 204      | 169       | 186         | 204       | 93          | 118                     |
| 50   | 2     | 133     | 151         | 169                | 204      | 169       | 186         | 204       | 93          | 118                     |
| 65   | 2 1/2 | 159     | 177         | 195                | 231      | 195       | 213         | 239       | 112         | 136                     |
| 80   | 3     | 248     | 275         | 301                | 363      | 301       | 337         | 372       | 174         | 211                     |
| 100  | 4     | 328     | 363         | 399                | 478      | 399       | 443         | 496       | 229         | 279                     |
| 125  | 5     | 540     | 602         | 673                | 806      | 673       | 744         | 823       | 378         | 471                     |
| 150  | 6     | 1027    | 1124        | 1239               | 1363     | 1116      | 1222        | 1346      | 719         | 781                     |
| 200  | 8     | 1514    | 1682        | 1868               | 2239     | 1868      | 2071        | 2301      | 1060        | 1308                    |
| 250  | 10    | 2434    | 2709        | 3009               | 3611     | 3009      | 3346        | 3717      | 1705        | 2108                    |
| 300  | 12    | 3372    | 3744        | 4160               | 4992     | 4160      | 4620        | 5133      | 2362        | 2914                    |
| 350  | 14    | 4824    | 5355        | 5948               |          | 5948      | 6611        | 7346      | 3379        | 4166                    |
| 400  | 16    | 6443    | 7160        | 7957               |          | 7957      | 8842        | 9824      | 4514        | 5574                    |
| 450  | 18    | 8072    | 8965        | 9965               |          | 9966      | 11072       | 12302     | 5654        | 6981                    |
| 500  | 20    | 10045   | 11160       | 12399              |          | 12399     | 13780       | 15311     | 7037        | 8686                    |
| 600  | 24    | 11727   | 13027       | 14479              |          | 14479     | 16090       | 17877     | 8215        | 10143                   |
| 700  | 28    | 20701   | 23002       | 25559              |          | 25559     | 23400       | 31560     | 14502       | 17905                   |
| 750  | 30    | 23081   | 25648       | 28497              |          | 28497     | 31666       | 35179     | 16169       | 19964                   |
| 800  | 32    | 26621   | 29577       | 32860              |          | 32860     | 36507       | 40560     | 18649       | 23020                   |
| 900  | 36    | 33878   | 36639       | 42826              |          | 41826     | 46472       | 51631     | 23733       | 26301                   |
| 950  | 38    | 39073   | 43542       | 58499              |          | 48233     | 53543       | 62835     |             |                         |
| 1000 | 40    | 45047   | 50268       | 67437              |          | 55578     | 62039       | 83279     | 28755       | 35501                   |
| 1050 | 42    |         |             |                    |          |           |             |           | 33765       | 41682                   |
| 1100 | 44    |         |             |                    |          |           |             | 1         | 34124       | 42135                   |
| 1200 | 48    |         |             |                    |          |           |             |           | 43015       | 53108                   |

To Use The Torque Chart, Note The Following

- 1) Seating/Unseating torque values above include friction bearing torque for stated  $\Delta P$ .
- 2) Do not apply a safety factor to above torque values when determining actuator output torque requirement.

#### 2 Butterfly Valve



3 📕 Butterfly Valve

BOLT

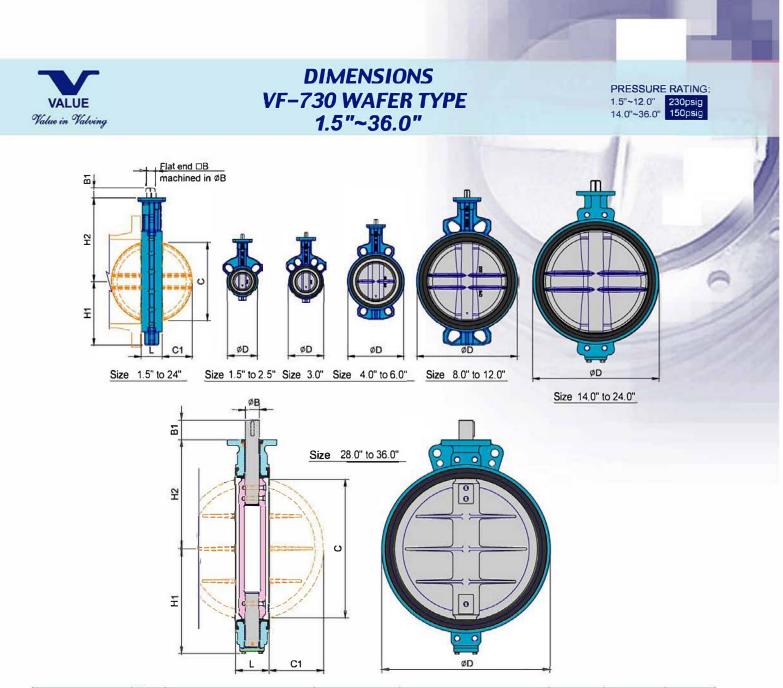
BOLT

STEEL

STEEL

13

14

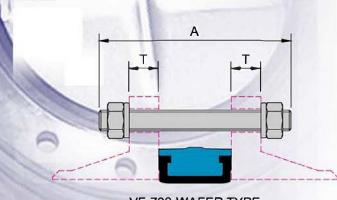



# MATERIALS 28.0"~36.0"

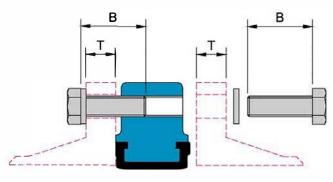
#### VF-730 (WAFER TYPE) VF-737 (FLANGE TYPE)



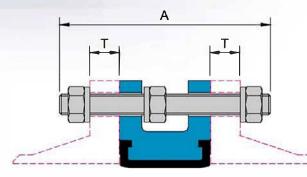
| No. | Name         | Materials            | Spe         | cifications       | Remark                              |
|-----|--------------|----------------------|-------------|-------------------|-------------------------------------|
|     |              |                      | JIS         | ASTM              |                                     |
|     |              | DUCTILE IRON         | FCD 400     | A395              |                                     |
| 1   | Body         | STAINLESS STEEL      | SCS 13A     | A351 Gr. CF8      |                                     |
|     |              | STAINLESS STEEL      | SCS 14A     | A351 Gr. CF8M     |                                     |
|     |              | DUCTILE IRON         | FCD 400     | A395              | Nylon 11 coated                     |
| 2   | DISC         | STAINLESS STEEL      | SCS 13A     | A351 Gr. CF8      |                                     |
| 2   | DISC         | STAINLESS STEEL      | SCS 14A     | A351 Gr. CF8M     |                                     |
|     |              | ALU-BRONZE           | ALBC2       | B148 C95400       |                                     |
|     |              | NBR (NITRILE)        |             |                   | -10° ~ 80C° ( 14° ~176°F)           |
|     |              | EPDM                 |             |                   | -20° ~ 120C° ( -4° ~248°F)          |
|     |              | WHITE EPT            | 100         | PSIG MAX          | -20° ~ 140C° ( -4° ~284°F)          |
| 3   | SEAT         | NEOPRENE (CR)        |             |                   | 0°~ 80C°( 32°~176°F)                |
|     |              | SILICON              | 100         | PSIG MAX          | -20° ~ 180C" ( -4° ~356°F)          |
|     |              | HYPALON (CSM)        |             |                   | -20° ~ 135C° ( -4° ~275°F)          |
|     |              | VITON                | 100         | PSIG MAX          | -18° ~ 204C° (-0.4° ~400°F)         |
|     |              |                      | SUS 410     | A 182 Gr. F6A     |                                     |
| 4   | STEM         | STAINLESS STEEL      | SUS 304     | A 182 Gr. F304    |                                     |
|     |              |                      | SUS 316     | A 182 Gr. F316    |                                     |
| 5   | PIN          | STAINLESS STEEL      | SUS 304     | A 182 Gr. F304    |                                     |
| 6   | PLUG         | STAINLESS STEEL      |             |                   |                                     |
| 7   | O-RING       | NBR (NITRILE)        |             |                   |                                     |
| 8   | UPPER COVER  | STEEL                | SS400       | A36               | For cast iron and ductile iron body |
| •   | UPPER COVER  | STAINLESS STEEL      | SUS 304     | A240 Gr. 304      | For stainless steel body            |
| 9   | BUSHING      | BRONZE               | BC6         | B62               | For cast iron and ductile iron body |
| 9   | BUSHING      | RTFE+STAINLESS STEEL | RTFE+SUS316 | RTFE+A240 Gr. 316 | For stainless steel body            |
| 10  | KEY          | STEEL                |             |                   |                                     |
| 11  | BOTTOM COVER | CAST IRON            | FC 200      | A126 CI. B        | For cast iron and ductile iron body |
| 11  | BOTTOWICOVER | STAINLESS STEEL      | SCS 13A     | A351 Gr. CF8      | For stainless steel body            |
| 12  | BOLT         | STEEL                |             |                   |                                     |
| 13  | BOLT         | STEEL                |             |                   |                                     |

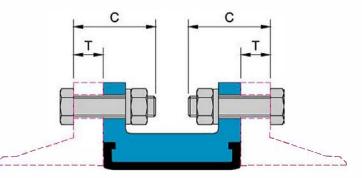



| Si  | ze    | Face<br>to<br>Face |       |       |       |        | ng Flange<br>5211) |      | Shaft End |      | Кеу         |       | isc<br>rance | Weight  |
|-----|-------|--------------------|-------|-------|-------|--------|--------------------|------|-----------|------|-------------|-------|--------------|---------|
| mm  | inch  | L                  | H1    | H2    | D     | Туре   | PCD                | ØB   | □B        | B1   |             | С     | C1           | lbs     |
| 40  | 1 1/2 | 1.30               | 2.36  | 4.72  | 3.19  | F07    | 2.76               | 0.55 | 0.43      | 0.75 |             | 1.34  | 0.28         | 4.40    |
| 50  | 2     | 1.69               | 2.56  | 5.63  | 3.78  | F07    | 2.76               | 0.55 | 0.43      | 0.75 |             | 1.54  | 0.32         | 6.60    |
| 65  | 2 1/2 | 1.81               | 2.80  | 6.10  | 4.33  | F07    | 2.76               | 0.55 | 0.43      | 0.75 |             | 2.17  | 0.51         | 8.36    |
| 80  | 3     | 1.81               | 3.03  | 6.38  | 4.88  | F07    | 2.76               | 0.55 | 0.43      | 0.75 |             | 2.72  | 0.75         | 8.80    |
| 100 | 4     | 2.05               | 4.21  | 7.13  | 5.83  | F07    | 2.76               | 0.55 | 0.43      | 0.75 |             | 3.58  | 1.06         | 11.66   |
| 125 | 5     | 2.20               | 4.80  | 7.76  | 7.09  | F07    | 2.76               | 0.71 | 0.55      | 0.75 |             | 4.53  | 1.42         | 16.06   |
| 150 | 6     | 2.20               | 5.51  | 8.27  | 8.11  | F07    | 2.76               | 0.71 | 0.55      | 0.75 |             | 5.51  | 1.85         | 18.04   |
| 200 | 8     | 2.36               | 6.50  | 9.45  | 10.20 | F10    | 4.02               | 0.87 | 0.67      | 0.95 |             | 7.32  | 2.68         | 29.70   |
| 250 | 10    | 2.68               | 7.91  | 11.26 | 12.60 | F10    | 4.02               | 0.98 | 0.75      | 0.95 |             | 9.41  | 3.54         | 46.64   |
| 300 | 12    | 3.07               | 9.21  | 12.17 | 14.57 | F10    | 4.02               | 1.10 | 0.87      | 0.95 |             | 11.34 | 4.37         | 71.50   |
| 350 | 14    | 3.07               | 11.93 | 12.95 | 16.22 | F12/14 | 4.92/5.51          | 1.38 | 1.06      | 1.14 |             | 12.80 | 5.04         | 105.60  |
| 400 | 16    | 4.02               | 13.19 | 14.21 | 18.70 | F12/14 | 4.92/5.51          | 1.38 | 1.06      | 1.14 |             | 14.76 | 5.63         | 132.00  |
| 450 | 18    | 4.49               | 14.29 | 15.47 | 20.87 | F14/16 | 5.51/6.50          | 1.89 | 1.42      | 1.50 |             | 16.65 | 6.38         | 176.00  |
| 500 | 20    | 5.00               | 15.63 | 16.81 | 23.03 | F14/16 | 5.51/6.50          | 1.89 | 1.42      | 1.50 |             | 18.62 | 7.17         | 275.00  |
| 600 | 24    | 6.06               | 18.07 | 19.37 | 27.05 | F16    | 6.50               | 2.36 | 1.81      | 1.89 |             | 22.05 | 8.43         | 440.00  |
| 700 | 28    | 6.50               | 20.12 | 22.17 | 31.34 | F16    | 6.50               | 2.76 |           | 3.54 | .071 X 0.47 | 25.79 | 10.04        | 869.00  |
| 750 | 30    | 7.48               | 21.42 | 23.03 | 33.70 | F25    | 10.00              | 2.95 |           | 4.33 | 0.79 X 0.47 | 27.24 | 10.39        | 1078.00 |
| 800 | 32    | 7.48               | 23.31 | 24.80 | 34.25 | F25    | 10.00              | 3.15 |           | 4.33 | 0.79 X 0.47 | 28.98 | 11.22        | 1276.00 |
| 900 | 36    | 7.99               | 24.88 | 25.98 | 39.49 | F25    | 10.00              | 3.35 |           | 4.33 | 0.94 X 0.63 | 33.11 | 13.03        | 1606.00 |




# **BOLTING FOR INSTALLATION**


VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)




VF-730 WAFER TYPE 1.5" to 36.0"



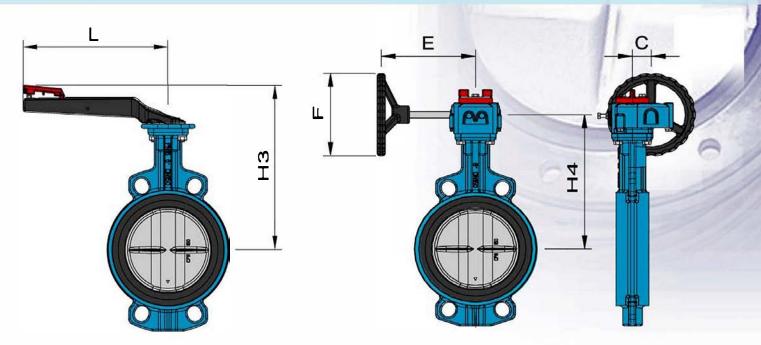
VF-733 FULL LUG TYPE 1.5" to 24.0"





VF-737 FLANGE TYPE 20.0"

VF-737 FLANGE TYPE 24.0" to 40.0"


| Si   | ze    |      |     | PN10 |     |    |           |     | PN16 |     |    | ASME B 10<br>16.47 |     | CLASS 19<br>5 150 Se |      |      |           |     | JI510K |     |     |
|------|-------|------|-----|------|-----|----|-----------|-----|------|-----|----|--------------------|-----|----------------------|------|------|-----------|-----|--------|-----|-----|
|      |       | Bolt |     |      |     |    | 1         |     |      |     |    |                    |     | i i                  | Î I  | n i  |           | 1   | 1      |     |     |
| mm   | inch  | Size | A   | В    | С   | T  | Bolt Size | A   | В    | С   | T  | Bolt Size          | A   | в                    | С    | T    | Bolt Size | A   | В      | С   | Т   |
| 40   | 1 1/2 | M16  | 115 | 35   |     | 18 | M16       | 115 | 35   |     | 18 | 1/2 · 12X4         | 4.1 | 1.38                 |      | 0.71 | M16       | 110 | 35     |     | 16  |
| 50   | 2     | M16  | 130 | 40   |     | 20 | M16       | 130 | 40   |     | 20 | 5/8 - 11X4         | 4.9 | 1.57                 |      | 0.75 | M16       | 120 | 40     |     | 116 |
| 65   | 2 1/2 | M16  | 130 | 45   | 1   | 20 | M16       | 130 | 45   |     | 20 | 5/8-11X4           | 5.3 | 1.77                 |      | 0.87 | M16       | 125 | 45     |     | 18  |
| 80   | 3     | M16  | 130 | 45   |     | 20 | M16       | 130 | 45   |     | 20 | 5/8 - 11X4         | 5.5 | 1.77                 |      | 0.94 | M16       | 125 | 45     |     | 18  |
| 100  | 4     | M16  | 140 | 50   |     | 22 | M16       | 140 | 50   |     | 22 | 5/8 - 11X8         | 5.7 | 1.97                 |      | 0.94 | M16       | 135 | 45     |     | 18  |
| 125  | 5     | M16  | 145 | 50   |     | 22 | M16       | 145 | 50   |     | 22 | 3/4 - 10X8         | 6.1 | 2.17                 |      | 0.94 | M20       | 145 | 55     | 1   | 20  |
| 150  | 6     | M20  | 160 | 55   |     | 24 | M20       | 160 | 55   |     | 24 | 3/4 - 10X8         | 6.3 | 2.17                 |      | 0.98 | M20       | 155 | 55     |     | 22  |
| 200  | В     | M20  | 165 | 55   |     | 24 | M20       | 160 | 55   |     | 24 | 3/4 · 10X8         | 6.7 | 2.36                 |      | 1.1  | M20       | 160 | 55     |     | 22  |
| 250  | 10    | M20  | 175 | 60   |     | 26 | M24       | 180 | 60   |     | 26 | 7/8-9X12           | 7.3 | 2.56                 |      | 1.18 | M22       | 175 | 60     |     | 24  |
| 300  | 12    | M20  | 185 | 60   |     | 26 | M24       | 195 | 70   |     | 28 | 7/8 - 9X12         | 7.9 | 2.76                 |      | 1.26 | M22       | 185 | 60     |     | 24  |
| 350  | 14    | M20  | 185 | 60   |     | 26 | M24       | 200 | 70   |     | 30 | 1-8X12             | 8.5 | 2.95                 |      | 1.38 | M22       | 185 | 65     |     | 26  |
| 400  | 16    | M24  | 220 | 65   |     | 26 | M27       | 235 | 80   |     | 32 | 1 - 8X16           | 9.7 | 3.15                 |      | 1.46 | M24       | 225 | 70     |     | 28  |
| 450  | 18    | M24  | 235 | 70   |     | 28 | M27       | 265 | 85   |     | 40 | 1 1/8 · 8X16       | 10  | 3.35                 |      | 1.57 | M24       | 240 | 70     |     | 30  |
| 500  | 20    | M24  | 250 | 70   |     | 28 | M30       | 290 | 100  |     | 44 | 1 1/8 - 8X20       | 11  | 3.54                 |      | 1.69 | M24       | 250 | 70     |     | 30  |
| 600  | 24    | M27  | 295 | 80   | 100 | 34 | M33       | 345 | 110  | 130 | 54 | 1 1/4 - 8X20       | 13  | 3.94                 | 4.72 | 1.89 | M30       | 295 | 80     | 100 | 32  |
| 700  | 28    | M27  | 295 |      | 100 | 30 | M33       | 325 |      | 120 | 38 |                    | 15  |                      | 5.91 | 2.8  | M30       | 310 |        | 110 | 34  |
| 750  | 30    |      |     |      |     |    |           |     |      |     |    | 1 1/4 - 8X28       | 17  |                      | 5.91 | 2.95 | M30       | 335 |        | 110 | 36  |
| 800  | 32    | M30  | 330 |      | 110 | 32 | M36       | 355 |      | 120 | 38 |                    | 18  |                      | 6.69 | 3.19 | M30       | 335 |        | 110 | 36  |
| 900  | 36    | M30  | 345 |      | 110 | 34 | M36       | 370 |      | 130 | 40 | 1 1/2 - 8X32       | 19  |                      | 7.09 | 3.54 | M30       | 355 |        | 120 | 38  |
| 950  | 38    |      |     |      |     |    |           |     |      |     | _  |                    | 19  |                      | 7.28 | 3.43 |           |     |        |     |     |
| 1000 | 40    | M33  | 365 |      | 125 | 34 | M39       | 395 |      | 140 | 42 |                    | 19  |                      | 7.48 | 3.54 | M36       | 385 |        | 135 | 40  |

#### 8 Butterfly Valve



# **LEVER & GEAR OPERATED**

VF-730 (WAFER TYPE) VF-733 (LUG TYPE) VF-737 (FLANGE TYPE)



| Si   | ze    | Operator<br>Series No. | Lever O | perator |       | Gear O | perator |       | Handwheel<br>Turns ON/OFF | Mounting<br>52 | Flange (ISO<br>11) |
|------|-------|------------------------|---------|---------|-------|--------|---------|-------|---------------------------|----------------|--------------------|
| mm   | inch  |                        | Н3      | L       | H4    | С      | E       | F     | N                         | Туре           | PCD                |
| 40   | 1 1/2 | L 7A                   | 7.68    | 7.87    |       |        |         |       |                           | F07            | 2.76               |
| 40   |       | C 07                   |         |         | 6.18  | 1.61   | 6.1     | 5.91  | 10                        |                | 2.70               |
| 50   | 2     | L 7A                   | 8.58    | 7.87    |       |        |         | _     |                           | F07            | 2.76               |
| 30   |       | C 07                   |         |         | 7.09  | 1.61   | 6.1     | 5.91  | 10                        | FUT            | 2.70               |
| 65   | 2 1/2 | L 7A                   | 9.06    | 7.87    |       |        |         |       |                           | F07            | 2.76               |
| 05   |       | C 07                   |         |         | 7.56  | 1.61   | 6.1     | 5.91  | 10                        | 107            | 2.70               |
| 80   | 3     | L 7A                   | 9.33    | 7.87    |       |        | 1       |       |                           | F07            | 2.76               |
| 00   |       | C 07                   |         |         | 7.83  | 1.61   | 6.1     | 5.91  | 10                        | 107            | 2.70               |
| 100  | 4     | L 7A                   | 10.08   | 7.87    |       |        |         |       | -                         | F07            | 2.76               |
| 100  |       | C 07                   |         |         | 8.58  | 1.61   | 6.1     | 5.91  | 10                        | 107            | 2.70               |
| 125  | 5     | L 7B                   | 10.71   | 9.84    |       |        |         |       | U                         | F07            | 2.76               |
| 125  |       | C 07                   |         |         | 9.21  | 1.61   | 6.1     | 5.91  | 10                        |                | 2.70               |
| 150  | 6     | L 7B                   | 11.22   | 9.84    |       |        |         |       |                           | F07            | 2.76               |
| 150  |       | C 07                   |         |         | 9.72  | 1.61   | 6.1     | 5.91  | 10                        |                | 2.7.0              |
| 200  | 8     | L10                    | 12.76   | 13.98   |       |        |         |       |                           | F10            | 4.02               |
| 200  |       | C10                    |         |         | 11.06 | 2.48   | 7.68    | 7.87  | 9                         |                |                    |
| 250  | 10    | L 10                   | 14.57   | 13.98   |       |        |         |       |                           | F10            | 4.02               |
| 200  |       | C 10                   |         |         | 12.87 | 2.48   | 7.68    | 7.87  | 9                         | 120            |                    |
| 300  | 12    | L 10                   | 15.47   | 13.98   |       |        |         |       |                           | F10            | 4.02               |
|      |       | C 10                   |         |         | 13.78 | 2.48   | 7.68    | 7.87  | 9                         |                |                    |
| 350  | 14    | C 12                   | _       |         | 14.57 | 2.4    | 9.13    | 12.2  | 9                         | F12            | 4.92               |
| 400  | 16    | C 12                   |         |         | 15.82 | 2.4    | 9.13    | 12.2  | 9                         | F12            | 4.92               |
| 450  | 18    | C 14                   |         |         | 17.52 | 3.19   | 11.02   | 15.75 | 13                        | F14            | 5.51               |
| 500  | 20    | C 14                   |         |         | 18.86 | 3.19   | 11.02   | 15.75 | 13                        | F14            | 5.51               |
| 600  | 24    | A2                     |         |         | 21.57 | 4.84   | 12.09   | 15.75 | 17.5                      | F16            | 6.5                |
| 700  | 28    | A2                     |         |         | 24.37 | 4.84   | 12.09   | 15.75 | 17.5                      | F16            | 6.5                |
| 750  | 30    | A3+S3                  |         |         | 28.74 | 6.3    | 14.57   | 15.75 | 52                        | F25            | 10                 |
| 800  | 32    | A3+S3                  | _       |         | 30.51 | 6.3    | 14.57   | 15.75 | 52                        | F25            | 10                 |
| 900  | 36    | A3+S3                  |         |         | 31.69 | 6.3    | 14.57   | 15.75 | 52                        | F25            | 10                 |
| 950  | 38    | A3+S3                  |         |         | 34.41 | 6.3    | 14.57   | 15.75 | 52                        | F25            | 10                 |
| 1000 | 40    | A4+S4                  |         |         | 37.2  | 7.76   | 18.54   | 23.62 | 90                        | F30            | 11.73              |

# **Butterfly Valve Numbering System Ordering Matrix**

| 4.0"             | VF730                     | 2                           | - 4 -                                  | 3                         |                                        | 4                              | • D •                    | 1                | - A       |
|------------------|---------------------------|-----------------------------|----------------------------------------|---------------------------|----------------------------------------|--------------------------------|--------------------------|------------------|-----------|
| SIZE             | STYLE                     | BODY                        | SEAT                                   | DISC                      | STEM                                   | OPERATOR ("see legend)         | LIMIT SWITCH             | SOLENOID / MOTOR | POSITIONE |
|                  | WAFER                     | CAST IRON                   | BUNA N                                 | 316SS                     | 410SS                                  | Air Operated@80 PSIG, U/C, D/A | SPDT, NEMA4, BEACON      | 120 VAC          | A         |
|                  |                           | -                           |                                        |                           |                                        |                                |                          |                  |           |
|                  |                           | 1                           |                                        |                           | (NOTE 2)                               |                                |                          |                  |           |
| 1.5 <sup>*</sup> | VF-730-WAFER RS           | 1-DUCTILE IRON              | 1-VITON                                | 0-ENP DUCTILE IRON        | 410SS STANDARD<br>ON ALL IRON BODY     | 0-BARE STEM                    | A -NONE                  | 0- NONE          | A-NONE    |
| 2.0 <sup>×</sup> | VF-733-LUG RS             | 2-CAST IRON                 | 2-EPDM                                 | 1-NYLON / DUCTILE IRON    | VALVES                                 | 1 -INFINITE POSITION           | B-SPDT, NEMA4, FLAT TOP  | 1 - 120/1/60 VAC | B-3-15 PS |
| 2.5*             | VF-737 FLANGED RS         | 3-CARBON STEEL              | 3-EPT-WHITE                            | 2-NYLON/ DUCTILE IRON U/C | F-304SS                                | 2-10 POSITION HANDLE           | C-DPDT, NEMA4, FLAT TOP  | 2-220/1/60 VAC   | C-4-20 M  |
| 3.0"             | VF-810 WAFER H.P.         | 4-316SS                     | 4-BUNA N                               | 3-316SS                   | M-316SS                                | 3 -GEAR OPERATOR WITH WHEEL    | D-S PDT, NEMA4, BEACON   | 3-24/1/60 VAC    | D-1-5 VD  |
| 4.0"             | VF-813 LUG H.P.           | 5-304SS                     | 5-EPT                                  | 4-316SS U/C               | P- 17-4 Ph                             | 4 -A/O@80 PSIG, U/C, D/A       | E -DPDT, NEMA4, BEACON   | 4-220/3/60 VAC   | E-2-10 VD |
| 5.0*             | VF-910 WAFER H.P.         | 6-CAST IRON NYLON COATED    | 6-SILICONE                             | 5-ALUMINUM BRONZE         | X-XM19                                 | 5-A/O@60 PSIG, U/C, D/A        | F-SPDT, NEMA7, FLAT TOP  | 5-380/3/60 VAC   |           |
| 6.0"             | VF-913 LUG H.P.           | 7-DUCTILE IRON NYLON COATED | 7-HYPALON                              | 6-ALUMINUM BRONZE U/C     | L-316L SS                              | 6 -A/0@80 PSIG, F/P, D/A       | G -DPDT, NEMA7, FLAT TOP | 6-440/3/60 VAC   |           |
| 8.0"             | VF-920 WAFER H.P.         |                             | 8-NEOPRENE                             | 7-HAYLAR / DUCTILE IRON   |                                        | 7 -A/O@60 PSIG, F/P, D/A       | H-SPDT, NEMA7, BEACON    | 7-12 VDC         |           |
| 10.0"            | VF-923 LUG H,P.           |                             | 9-PTFE / BUNA                          | 8-NYLON COATED 316SS      |                                        | 8 -A/O@80 PSIG, U/C, S/R       | J -DPDT, NEMA7, BEACON   | 8-24 VDC         |           |
| 12.0"            | VF-930 WAFER H.P.         |                             | 10-PTFE                                | 9-ENP SS                  |                                        | 9 -A/O@60 PSIG, U/C, S/R       | K-E/O 2 SPDT             | 9-12 VAC         |           |
| 14.0"            | VF-933 LUG H.P.           |                             | 11-GRTFE                               | 10-304 SS                 |                                        | 10-A/O@80 PSIG, F/P, S/R       | L-E/O 4 SPDT             | 10-24 VAC        |           |
| 16.0"            | VF-940 WAFER H.P          |                             | 12-GLTFE                               | 11-304 SS U/C             |                                        | 11-A/O@60 PSIG, F/P, S/R       | S-PLEASE SPECIFY         |                  |           |
| 18.0"            | VF-943 LUG H.P.           |                             | 13-FS FIRE SAFE/PTFE                   | 12-316 SS U/C POLISHED    |                                        | 12-E/O FULL PRESSURE           |                          |                  |           |
| 20.0"            | VF-264 AWWA               |                             | 14-FS FIRE SAFE/GLTFE                  | 13-316 SS POLISHED        |                                        | 13-E/O U/C                     |                          |                  |           |
| 24.0"            | VF-504AWWA                | P                           | 15-PTFE / EPDM                         | 14-DUCTILE IRON           |                                        |                                |                          | 1                |           |
| 280*             | VF-870 WAFER TRIPLE ECC   |                             | 16 -FS FIRE SAFE/GRTFE                 | 15-PTFE COATED 316SS DISK |                                        |                                | 1                        |                  | 1         |
| 30.0"            | VF-873 LUG TRIPLE ECC     |                             | 17-(S) METAL - (NOTE 1)                |                           |                                        |                                |                          | 1                |           |
| 32.0"            | VF-877 FLANGED TRIPLE ECC |                             |                                        |                           |                                        |                                |                          | 1                |           |
| 36.0*            |                           | A ser We                    | (NOTE 1)                               |                           | (NOTE 2)                               |                                |                          | 9                |           |
| 40.0"            | LEG                       | END:                        | See Valve Tag or<br>Order for Complete |                           | Please specify<br>ONLY If stem         | NYLON                          | COATED                   | ]                |           |
| 42.0"            | AVO                       | AIR OPERATED                | Details                                |                           | material is different<br>from standard | STD NYLON BODY                 | - BLACK                  |                  |           |
| 44.0"            | U/C                       | UNDERCUT/90 PSIG            |                                        |                           | 410SS                                  | 90 PSIG DISK                   | - BLUE                   |                  |           |
| 48.0"            | F/P                       | FULL PRESSURE               |                                        |                           |                                        | 150 PSIG DISK                  | BLACK                    |                  |           |
| -                | D/A                       | DOUBLE ACTING               |                                        |                           |                                        | 230 PSIG DISK                  | - GRAY                   |                  |           |
|                  | S/R                       | SPRING RETURN               |                                        |                           |                                        |                                |                          |                  |           |
|                  | E/O                       | ELECTRIC OPERATED           |                                        |                           |                                        |                                |                          |                  |           |

VALUE Value in Valving

REV. 3/2009



The ratings furnished in this listing table have been developed from information furnished by manufacturers of the raw materials, publications and industry applications. This information may be considered as a basis for evaluation, but not as a guarantee.

#### E = Excellent, recommended. U = Unsatisfactory - = Not tested

G = Good. May sometimes be used depending upon the concentration and temperature. Testing is recommended before full scale usage.

| Testing is reco                                          | mmended b | petore t | ull scale | e usage. |      |       | 1 1   |
|----------------------------------------------------------|-----------|----------|-----------|----------|------|-------|-------|
| FLUID                                                    | NDI       | AB       | 316       | Buna-N   | EPDM | VITON | PTFE  |
| Acetaldehyde (CH3CHO)                                    | E         | E        | E         | U        | E    | U     | E     |
| Acetamide                                                | G         | -        | E         | E        | G    | U     | E     |
| Acetic Acid (CH3COOH) 50%, <80°F                         | G         | U        | E         | U        | U    | G     | E     |
| Acetic Anhydride [(CH3CO)2O] < 80°F                      | G         | U        | E         | U        | G    |       | E     |
| Acetone (CH3COCH3)<70°F                                  | E         | E        | E         | U        | G    | U     | E     |
| Acetophenone                                             | G         | -        | E         | U        | G    | U     | E     |
| Acetylene (C2H2) < 80°F                                  | E         | G        | E         | -        | E    | E     | E     |
| Acrylonitrile (CH2CHCN)                                  | G         | E        | E         | U        | G    | G     | E     |
| Air (Dry)                                                | E         | E        | E         | E        | E    | E     | Е     |
| Alcohol ñ V Amyl                                         | E         | E        | E         | G        | E    | E     | E     |
| Alcohol ñ V Butyl                                        | E         | E        | E         | G        | Е    | E     | E     |
| Alcohol ñ Methyl                                         | E         | E        | E         | G        | E    | U     | E     |
| Aluminum Sulfate [Al2(SO4)3]                             | E         | U        | G         | E        | E    | E     | Ē     |
| Amines                                                   | E         | G        | E         |          | G    | -     | E     |
| Ammonia Solutions                                        | G         | U        | E         | G        | G    |       | E     |
| Ammonia Hydroxide (NH4OH)                                | E         | U        | A         | U        | G    | -     | E     |
| Amyl Acetate (CH3COOC5H11)                               | E         | G        | E         | U        | E    |       | E     |
| Aniline Dye (C6H5NH2)                                    | G         | U        | E         |          | G    | G     | E     |
| Aqua Regia (HCI+HNO3)                                    | G         | U        |           | U        | U    | G     | E     |
| Argua Regia (HCI+HNOS)<br>Arsenic Acid (H3AsO4. 1/2 H2O) | G         | -        | E         | U        | U    | G     | E     |
| Asphalt<150°F                                            | G         |          | E         | G        | U    | E     | <br>U |
|                                                          | E         | E        | E         | E        | E    | E     | E     |
| Beer                                                     | E         | E        | E         | E        | E    | E     | E     |
| Beet Sugar Liquors                                       |           |          |           |          |      |       |       |
| Benzaldehyde < 80°F                                      | E         | E        | E         | U        | U    | U     | E     |
| Benzene (C6H6) < 70°F                                    | E         | E        | E         | U        | U    | G     | E     |
| Benzoic Acid (C6H5COOH)                                  | E         | E        | E         | U        | U    | G     | E     |
| Black sulfate Liquor                                     | G         | U        | E         | G        | G    | E     | E     |
| Bleaching Powder Solution                                | G         | U        | U         | U        | E    | E     | E     |
| Brine                                                    | E         | G        | E         | E        | E    | E     | E     |
| Butadiene(C4H6)                                          | E         | E        | E         | U        | U    | E     | E     |
| Butyl Acetate (CH3COOC4H9)                               | E         | G        | E         | U        | U    | U     | E     |
| Butyric Acid < 5% < <u>10</u> 0°F                        | G         | U        | E         | U        | G    | G     | E     |
| Calcium Bisulfite (Ca(H2SO3) 2                           | E         | U        | E         | U        | G    | E     | E     |
| Cane Sugar Liquors                                       | E         | E        | E         | E        | E    | E     | E     |
| Carbolic Acid (C6H5OH) < 10%, < 80°F                     | U         | U        | E         | U        | U    | U     | E     |
| Carbon Dioxide - Dry (CO2)                               | E         | E        | E         | E        | E    | E     | E     |
| Carbon Dioxide - Wet (CO2)                               | E         | U        | E         | G        | E    | E     | E     |
| Carbon Disulfide (CS2)                                   | E         | E        | E         | U        | U    | E     | E     |
| Carbon Monoxide (CO)                                     | E         | E        | E         | E        | E    | E     | E     |
| Carbon Tetrachloride (CCl4)                              | G         | E        | E         | U        | U    | E     | E     |
| Carbonic Acid (CO2.H2O)                                  | E         | U        | E         | G        | G    | E     | E     |
| Cellosolve 2-2                                           | E         | -        | E         | U        | G    | U     | E     |
| Cement                                                   | E         | E        | E         | E        | E    | E     | U     |
| China Wood Oil                                           | E         | E        | E         | E        | G    | E     | E     |
| Chlorine Gas (Dry) (Cl2)<70°F                            | U         | U        | U         | U        | U    | G     | E     |
| Chlorbenzene (C6H5Cl)                                    | G         | E        | E         | U        | U    | G     | E     |
| Chloroform (CHCl3)                                       | G         | E        | E         | U        | U    | G     | E     |
| Chromic Acid (H2CrO4) < 10% < 70°F                       | U         | U        | G         | U        | U    | G     | E     |
| Cider                                                    |           | E        | E         |          | E    | E     | E     |
| Citer<br>Citric Acid < 100°F                             | E<br>E    | G        | E         | E        | E    | E     | E     |
|                                                          | G         |          | E         | E        |      |       |       |
| Citrus Juices<br>Cola Syrup                              | G         | GU       | E         | E        | EG   | E     | E     |
|                                                          |           |          |           | -        |      | E     |       |
| Cresol                                                   | -         | -        | E         | U        | U    | E     | E     |



| FLUID                                    | NDI | AB       | 316 | Buna-N | EPDM | VITON | PTFE |
|------------------------------------------|-----|----------|-----|--------|------|-------|------|
| Detergents                               | E   | G        | E   | E      | E    | E     | G    |
| Developers (Photography) < 70°F          | E   | υ        | E   | E      | G    | E     | E    |
| Dibutyl Phthalate (C16H22O4)             | G   | U        | E   | U      | G    | U     | E    |
| Diesel Fuel                              | E   | E        | E   | E      | U    | E     | E    |
| Diethyl Ether {(C2H5)2O}                 | G   | U        | E   | U      | U    | U     | E    |
| Diethylene Glycol {(HOCH2CH2)2O}         | E   | E        | E   | E      | E    | E     | E    |
| Dowtherm                                 | G   | G        | E   | U      | U    | E     | E    |
| Drilling Mud                             | E   | E        | E   | Е      | υ    | E     | υ    |
| Dyes                                     | E   | E        | E   | U      | υ    | E     | E    |
| Enamel                                   | G   | E        | E   | υ      | υ    | G     | E    |
| Epoxy Resins                             | G   | G        | E   | U      | U    | G     | E    |
| Ethane                                   | E   | E        | E   | G      | U    |       | E    |
| Ethers                                   | G   | E        | E   | U      | U    | -     | E    |
| Ethyl Acetate (CH3COOC2H5)               | E   | E        | E   | U      | U    | U     | E    |
| Ethyl Chloride (C2H5Cl) < 5%, < 60°F     | E   | G        | E   | G      | E    | -     | E    |
| Ethylene Glycol [C2H4(OH)2] < 100 °F     | E   | E        | E   | E      | E    | E     | E    |
| Fatty Acids                              | E   | U        | E   | E      | U    | E     | E    |
| Ferric Sulfate [Fe2(SO4)3] < 10%, <70°F  | E   | U        | G   | E      | E    | E     | E    |
| Flue Gas                                 | G   | U<br>U   | G   | E      |      | E     | E    |
| Flue Gas<br>Fluoboric Acid (HBF4)        | G   | 0        | E   | G      | G    | G     | E    |
|                                          | E   | G        |     | U      |      | E     |      |
| Formaldehyde (HCHO) < 40%, < 180°F       |     | E        | E   |        | E    |       | E    |
| Formic Acid (HCOOH) < 90%, < 150°F       |     |          | E   | U      | U    | U     | E    |
| Freons                                   | G   | E        | E   | G      | U    | U     | E    |
| Fruit Juices                             | E   | G        | E   | E      | E    | -     | E    |
| Furfural (C4H3OCHO)                      | E   | E        | E   | -      | G    | -     | E    |
| Gas ñ Furnace                            | G   | E        | E   | E      | U    | E     | E    |
| Gas Natural                              | G   | E        | E   | E      | υ    | E     | E    |
| Gasoline Regular                         | E   | E        | E   | E      | υ    | E     | E    |
| Glucose (C6H12O6.H2O)                    | E   | E        | E   | E      | E    | E     | E    |
| Glue                                     | G   | E        | E   | E      | E    | E     | E    |
| Glycols (CH2OHCH2OH)                     | E   | E        | E   | E      | E    | E     | E    |
| Grease                                   | E   | E        | E   | E      | U    | E     | E    |
| Helium (He)                              | E   | E        | E   | E      | E    | E     | E    |
| Hexane(C6H14)100%, <75°F                 | E   | E        | E   | E      | U    | G     | E    |
| Hexyl Alcohol                            | E   | E        | E   | E      | U    | E     | E    |
| Hydrazine(H2N.NH2) < 75°F                | E   | U        | E   | U      | G    | U     | E    |
| Hydrochloric Acid (HCl) < 5%, < 100°F    | E   | υ        | U   | G      | E    | E     | E    |
| Hydrocyanic Acid (HCN) < 75°F            | E   | υ        | E   | U      | G    | G     | E    |
| Hydrogen Chloride (Gas-Dry) (HCl)        | G   | U        | E   | G      | E    | E     | E    |
| Hydrogen Gas                             | E   | E        | E   | E      | E    | E     | E    |
| Hydrogen Peroxide (H2O2) < 75°F          | U   | U        | E   | U      | E    | E     | E    |
| Ink                                      | E   | G        | E   | G      | E    | E     | E    |
| Isobutyl Alcohol <75°F                   | E   | -        | E   | E      | E    | E     | E    |
| Isooctane                                | E   | E        | E   | E      | υ    | G     | E    |
| Jet Fuels                                | E   | E        | E   | E      | U    | G     | E    |
| Kerosene                                 | E   | E        | E   | E      | U    | G     | E    |
| Ketchup                                  | E   | U _      | E   | E      | E    | E     | E    |
| Lacquers                                 | G   | E        | E   | U      | U    | U     | G    |
| Lacquer Solvents                         | G   | E        | E   | U      | U    | U     | G    |
| Lactic Acid(CH3CHOHCOOH)                 | E   | U        | E   | U      | E    | E     | E    |
| Lard Oil                                 | E   | E        | E   | E      | U    | E     | E    |
| Latex                                    | E   | U        | E   | G      | U    | G     | E    |
| Lead Acetate [Pb(C2H3O2)2.3H2O]          |     | U        | E   | E      | E    | E     | E    |
| Linoleic Acid                            |     |          |     |        |      | -     |      |
|                                          | E   | U        | E   |        | G    | G     | E    |
| Liquid Soap                              | E   | -        | E   | E      | E    | E     | E    |
| Magnesium Carbonate(MgCO3) < 50%         | E   | <u> </u> | E   | E      | G    | E     | E    |
| Magnesium Chloride (MgCl2/6H2O)          | E   | U        | G   | E      | E    | E     | E    |
| Magnesium Oxide (MgO)                    | G   | U        | E   | E      | G    | E     | E    |
| Magnesium Sulfate (MgSO4) < 25%, < 150°F | E   | E        | E   | E      | E    | E     | E    |



|                                                |          |       | 1000 |   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |
|------------------------------------------------|----------|-------|------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| FLUID                                          | NDI      | AB    | 316  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VITON | PTFE |
| Maleic Acid (HOOCCHCHCOOH)                     | E        | U     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Mercury (Hg)                                   | E        | U     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Methane (CH4)                                  | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Methyl Alcohol (CH3OH)                         | E        | E     | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Methyl Ethyl Ketone (CH3COC2H5) < 70°F         | E        | E     | E    | U | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Methylene Chloride (CH2CL2)                    | <u> </u> | U     | E    | U | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Milk                                           | E        | E     | E    | G | and the second se |       | E    |
|                                                | E        | G     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Monochlorobenzene (CH2CICOOH)                  | G        | E     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Mustard                                        | E        |       | E    | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0     | E    |
| Naphtha                                        | E        | E     | E    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G     | E    |
| Naphthalene                                    | E        | E     | E    | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -     | E    |
| Natural Gas                                    | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Nitric Acid (HNO3) < 5%, < 100°F               | G        | U     | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Nitrobenzene(C6H5NO2)                          | G        | U     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Nitrogen Gas (N2)                              | E        | E     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Octane                                         | E        | E     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Octyl Alcohol                                  | E        |       | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Castor                                   | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8     | E    |
| Oil – Coconut                                  | E        | U     | E    | E | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 202   | E    |
| Oil – Cod Liver                                | E        | U     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Cooking                                  | E        | U     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Cottonseed                               | E        | E     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Creosote                                 | G        | E     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Oil – Fish                                     | E        | U     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Oil – Lavender                                 | G        | 1 H . | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Linseed                                  | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil - Lubricant                                | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Hydraulic (Petrol. Base)                 | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Mineral                                  | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Olive                                    | E        | G     | E    | E | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | E    |
| Oil – Palm                                     | E        | G     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9     | E    |
| Oil – Peanut                                   | E        | G     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ÷     | E    |
| Oil – Pine                                     | G        | G     | E    | G | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Oil – Rosin                                    | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Silicone                                 | E        | E     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Soybean                                  | E        | G     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Transformer                              | E        | Е     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Turbine                                  | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oil – Vegetable                                | E        | G     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oxalic Acid (C2H2O4.2H2O) < 10%, < 80°F        | E        | U     | E    | U | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Oxygen Gas (O2)                                | E        | E     | E    | G | Е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Ozone (O3)                                     | G        |       | E    | U | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Paint (Water Base)                             | G        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Paraffin                                       | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Penrchlorethylene (C2Cl4)                      | E        | E     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Perchloric Acid (HCIO4)                        |          |       | -    | U | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Phosphoric Acid (H3PO4) < 80%, < 150°F         | G        | U     | E    | U | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Potassium Hydroxide (KOH) < 50%, < 100°F       | E        | U     | E    | U | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Propane (C3H8) < 70°F                          | E        | E     | E    | E | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | E    |
| Propyl Alcohol                                 | E        | E     | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Propylene Glycol (C3H8O2) < 150°F              | E        | G     | G    | G | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Pulp Stock < 5%                                | G        | U     | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G     | U    |
| Pyridine Oil (C5H5N)                           | G        | U     | E    | U | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | G    |
| Rum                                            | E        | U     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -     | E    |
| Sewage                                         | E        | E     | E    | E | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Shellac                                        | G        | E     | E    | G | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U     | E    |
| Snellac<br>Sodium Hydroxide (NaOH)<50%, <100°F | E        | U     | E    | G | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
| Sodium Sulfate (NaSO4)                         | E        | E     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | E    |
|                                                | E        | E     | E    | E | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | E     | 2    |



| FLUID                                     | NDI | AB     | 31 | Buna-N | EPDM | VITON | PTFE |
|-------------------------------------------|-----|--------|----|--------|------|-------|------|
| Sodium Sulfide (NaS) < 70°F               | E   | U      | E  | E      | E    | E     | E    |
| Sodium Sulfite (Na2SO3)                   | E   | U      | E  | E      | E    | E     | E    |
| Sodium Thiosulfate (Na2S2O3.5H2O)         | G   | U      | E  | E      | E    | E     | E    |
| Stannic Chloride < 10%, < 120°F           | E   | U      | U  | E      | G    | U     | E    |
| Starch Solution (C6H11O5) X               | E   | E      | E  | E      | E    | E     | E    |
| Steam L.P. & Hot Water < 220°F            | E   | E      | E  | U      | E    | G     | E    |
| Styrene                                   | E   | E      | E  | U      | U    | U     | E    |
| Sugar Solution                            | E   | E      | E  | E      | Е    | E     | E    |
| Sulfite Liquors                           | G   | U      | E  | G      | G    | E     | E    |
| Sulfur                                    | E   | U      | E  | U      | G    | G     | E    |
| Sulfur Dioxide (SO2) (Dry)                | G   | E      | E  | G      | E    | E     | E    |
| Sulfur Dioxide (SO2) (Wet)                | G   | U      | E  | U      | U    | G     | E    |
| Sulfuric Acld (H2SO4) < 20%, < 70°F       | E   | U      | E  | U      | E    | E     | E    |
| Sulfuric Acid (Fuming)                    | G   | U      | E  | U      | U    | G     | E    |
| Tannic Acid (C14H10O9)                    | G   | G      | E  | G      | E    | E     | E    |
| Tar                                       | E   | E      | E  | G      | U    | G     | E    |
| TartaricAcid [(CHOHCOOH)2] < 10%, < 100°F | E   | G      | E  | E      | G    | G     | E    |
| Toluene (CH3C6H5)                         | E   | E      | E  | U      | U    | U     | G    |
| Turpentine                                | G   | E      | E  | G      | U    | U     | E    |
| Urea [CO(NH2)2] < 70°F                    | E   | U      | E  | E      | E    | E     | E    |
| Vaseline(Petrolatum)                      | E   | E      | E  | E      | U    | E     | E    |
| Vinegar                                   | E   | U      | E  | G      | E    | E     | E    |
| Water (Acidic Mine)                       | E   | U      | E  | E      | E    | E     | E    |
| Water (Brackish)                          | E   | E      | E  | E      | E    | E     | E    |
| Water (Carbonated)                        | E   | U      | E  | E      | E    | E     | E    |
| Water (Chilled)                           | E   | E      | E  | E      | E    | E     | E    |
| Water (Cooling)                           | E   | Е      | E  | E      | Е    | E     | E    |
| Water (Distilled)                         | E   | U      | E  | E      | E    | E     | E    |
| Water (Fresh)                             | E   | E      | E  | E      | E    | E     | E    |
| Water (Hot Water) < 212°F                 | E   | E      | E  | U      | E    | E     | E    |
| Water (Paint Spray Reclamation)           | E   | E      | E  | E      | E    | E     | E    |
| Water (Sea Water)                         | E   | E      | E  | E      | E    | E     | E    |
| Water (Swimming Pool)                     | E   | E      | E  | E      | E    | E     | E    |
| Waxes                                     | E   | E      | E  | E      | U    | E     | E    |
| Whiskey                                   | E   | U      | E  | G      | E    | E     | E    |
| Wine                                      | E   | U      | E  | E      | E    | E     | E    |
| Wood Alcohol                              | E   | E      | E  | G      | E    | E     | E    |
| Wood Pulp                                 | G   | -<br>- | E  | E      | E    | E     | E    |
| Wort                                      | G   | G      | E  | G      | E    | E     | E    |
| Xylene (C8H10)                            | E   | E      | E  | U      | U    | U     | E    |
| Zinc Acetate [Zn(C2H3O2)2.2H2O]           | E   | U      | E  | U      | E    | E     | E    |

## **Data Sheet**

#### B-Series Switches – Pressure, Differential Pressure & Hydraulic

#### **FEATURES**

- Adjustable setpoints 15-100% of range
- Fixed or limited adjustable deadband
- Wide selection of switch elements
- Explosion proof enclosure provides uncompromising protection
- Special designs for NACE & fire applications
- SIL 3 Capable (B and D series only)

#### **TYPICAL USES**

- Offshore oil rigs
- Chemical and petrochemical plants
- Pulp and papermills
- Steel mills
- Power plants
- Water and sewage-treatment plants
- Other corrosive environments

#### SPECIFICATIONS

| SPECIFICATION                 | <b>N</b>                                                                                                                                                       |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setpoint:                     | Factory set or field adjustable                                                                                                                                |
| Setpoint<br>Repeatability:    | $\pm1\%$ of full range (Additional setpoint shift of $\pm1\%$ of range per 50 °F from initial setpoint set at 70 °F typical)                                   |
| Enclosure Rating:             | B4/Hydraulic: NEMA 4X, IP66<br>B7: NEMA 7/9, IP66                                                                                                              |
| Enclosure Material:           | Epoxy coated aluminum (standard)<br>Optional: 316 stainless steel (NEMA 7/9 only)                                                                              |
| Diaphragm Material:           | Buna N, Viton, Teflon, SS, Monel                                                                                                                               |
| Pressure<br>Connection:       | 1/4 NPT Female (standard)<br>Optional: 1/2 NPT Female , 1/4 NPT Female &<br>1/2 NPT Male combo                                                                 |
| Electrical Output:            | SPDT or DPDT                                                                                                                                                   |
| Electrical<br>Termination:    | <sup>3</sup> ⁄ <sub>4</sub> NPT Female (standard)<br>Optional: <sup>1</sup> ⁄ <sub>2</sub> NPT Female                                                          |
| Ambient<br>Temperature Range: | –20°F to 150°F (–28°C to 65°C)<br>All units calibrated at 70 °F                                                                                                |
| Process<br>Temperature:       | 0 °F to 150 °F (Buna N or Teflon diaphragm)<br>20 °F to 300 °F (Viton diaphragm)<br>0°F to 300°F (SS or Monel diaphragm)                                       |
| Pressure Ranges:              | Pressure: Vac-3000#<br>Differential: 0-600#D<br>Hydraulic: 1000-7500#                                                                                          |
| Approvals:                    | UL E34743 (B4/D4)<br>E38812 (B7/D7)<br>CSA: 55541<br>ATEX: Sira 02ATEX1391X (B7/D7 with XCN)<br>IECEx SIR 14.0077X<br>FM: Limit Contol and Steam Limit Control |







#### • Highly reliable

- Designed for use in wide range of applications
- Pressure ranges from vacuum to 7500 psi

CLASS I DIV 1 GROUPS B, C, & D CLASS II DIV 1 GROUPS B, C, & D CLASS II DIV 1 GROUPS E, F, & G

Ex s

Sira 02ATEX1391X IECEx SIB 14.0077X

1

II 2GD Ex d IIC T6 Gb Ex tb IIIC T85°C Db Ta = -20 °C to +60°C

All specifications are subject to change without notice. All sales subject to standard terms and conditions. © 2018 Ashcroft Inc. bswp\_switch\_final, 05/18



## B-Series Switches – Pressure, Differential Pressure & Hydraulic

#### PRESSURE, DIFFERENTIAL PRESSURE & HYDRAULIC RANGES

| PRESSURE/  | VACUUM RANGES <sup>(1)</sup>                   |                   | Overpress            | ure Ratings | Approximate Deadband Switch Element <sup>(2) (4)</sup> Buna-N Diaphragm |                  |                   |                 |                  |  |
|------------|------------------------------------------------|-------------------|----------------------|-------------|-------------------------------------------------------------------------|------------------|-------------------|-----------------|------------------|--|
|            | Nominal Pressure                               |                   | Proof psi            | Burst psi   | 20, 26, 27                                                              | 21, 24, 31       | 50                | 22              | 32, 42           |  |
| Vacuum     |                                                |                   |                      |             |                                                                         |                  |                   |                 |                  |  |
| 30IMV      | -760mm Hg                                      | -100 kPa          | 250                  | 400         | 0.3-0.7                                                                 | 1.5-4.0          | 0.5-2.2           | 0.4-1.5         | 2.1-4.2          |  |
| Compound   |                                                |                   |                      |             |                                                                         |                  |                   |                 |                  |  |
| 15IWV/15IW | –375mm H_0/375mm H_0                           | –3.7 kPa/ 3.7 kPa | 20                   | 35          | 0.1575/0.1575                                                           | 1.5-2.5/1.5-2.5  | 0.45-2.0/0.45-2.0 | 0.5-1.2/0.5-1.2 | 2.1-3.5/2.1-3.5  |  |
| 30IWV/30IW | –760mm H <sub>2</sub> 0/760mm H <sub>2</sub> 0 | –7.5 kPa/ 7.5 kPa | 20                   | 35          | 0.3060/0.3060                                                           | 1.5-2.5/1.5-2.5  | 0.45-2.0/0.45-2.0 | 0.5-1.5/0.5-1.5 | 2.1-3.5/ 2.1-3.5 |  |
| 30IMV/15#  | -760mm Hg/ 1.0 kg/cm <sup>2</sup>              | –100 kPa/100 kPa  | 250                  | 400         | 0.5-1.0/0.3-0.7                                                         | 2.0-3.0/0.5-2.5  | 0.75-2.5/0 .5-1.0 | 0.7-1.8/0.7-1.4 | 2.8-4.2/0.7-2.1  |  |
| 30IMV/30#  | -760mm Hg/1.0 kg/cm <sup>2</sup>               | –100 kPa/ 200 kPa | 250                  | 400         | 1.0-1.5/0.3-0.8                                                         | 3.0-6.0/1-3.5    | 1.2-4.5/0.7-1.5   | 1.4-2.4/0.4-1.3 | 4.2-8.4/1.4-2.8  |  |
| 30 IMV/60# | -760mm Hg/4.0 kg/cm <sup>2</sup>               | -100 kPa/ 400 kPa | 250                  | 400         | 2.0-3.0/0.7-1.5                                                         | 5.0-9.0/3.0-5.0  | 2.5-7.0/3.0-5.0   | 2.8-4.5/3.0-5.0 | 7.0-12.0/4.2-7.0 |  |
| Pressure   |                                                |                   |                      |             |                                                                         |                  |                   |                 |                  |  |
| 10IW       | 250mm H <sub>2</sub> 0                         | 2.5 kPa           | 20                   | 35          | 0.2-0.5                                                                 | 1.0-2.0          | 0.35-1.5          | 0.4-1.0         | 1.4-2.8          |  |
| 30IW       | 750mm H <sub>2</sub> 0                         | 7.5 kPa           | 20                   | 35          | 0.3-0.6                                                                 | 1.5-2.5          | 0.45-2.0          | 0.5-2.0         | 2.1-3.5          |  |
| 60IW       | 1500mm H <sub>2</sub> 0                        | 15 kPa            | 20                   | 35          | 0.5-1.3                                                                 | 1.5-3.5          | 0.9-2.5           | 0.7-3.0         | 2.1-5.0          |  |
| 100IW      | 2500mm H <sub>2</sub> 0                        | 25 kPa            | 20                   | 35          | 0.6-1.6                                                                 | 2.5-5.5          | 1.1-4.0           | 1.0-4.0         | 3.5-7.7          |  |
| 15IW       | 3750mm H <sub>2</sub> 0                        | 37 kPa            | 20                   | 35          | 1.0-2.5                                                                 | 4.5-8.5          | 1.7-6.5           | 2.0-6.0         | 6.0-12.0         |  |
| 15#        | 1.0 kg/cm <sup>2</sup>                         | 100 kPa           | 500                  | 1500        | 0.1-0.35                                                                | 0.1-0.35 0.5-1.5 |                   | 0.4-1.0         | 0.7-2.1          |  |
| 30#        | 2.0 kg/cm <sup>2</sup>                         | 200 kPa           | 500                  | 1500        | 0.1-0.50                                                                | 0.5-1.5          | 0.3-1.0           | 0.4-1.0         | 0.7-2.1          |  |
| 60#        | 4.0 kg/cm <sup>2</sup>                         | 400 kPa           | 500                  | 1500        | 0.3-1.0                                                                 | 1.0-3.5          | 0.7-2.5           | 0.6-2.0         | 1.4-5.0          |  |
| 100#       | 7.0 kg/cm <sup>2</sup>                         | 700 kPa           | 1000                 | 3000        | 0.5-1.7                                                                 | 1.5-5.0          | 1.1-3.5           | 1.0-4.5         | 2.1-7.0          |  |
| 200#       | 14 kg/cm <sup>2</sup>                          | 1400 kPa          | 1000                 | 3000        | 1-3                                                                     | 5-13             | 2-9               | 3.0-7.5         | 7.0-18.2         |  |
| 400#       | 28 kg/cm <sup>2</sup>                          | 2800 kPa          | 2400                 | 3000        | 4-7.5                                                                   | 5-24             | 5.5-15            | 4.0-11.0        | 7.0-33.6         |  |
| 600#       | 42 kg/cm <sup>2</sup>                          | 4200 kPa          | 2400                 | 3000        | 4-11                                                                    | 9-30             | 7-20              | 5.0-23.0        | 12.6-42          |  |
| 1000#((5)  | 70 kg/cm <sup>2</sup>                          | 7000 kPa          | 12000 <sup>(5)</sup> | 18000       | 7-30                                                                    | 30-110           | 18-70             | 15-80           | 42-154           |  |
| 3000#      | 210 kg/cm <sup>2</sup>                         | 21000 kPa         | 12000                | 18000       | 15-60                                                                   | 80-235           | 37-160            | 30.0-230        | 112-329          |  |
|            | AL PRESSURE RANGE                              |                   |                      | re Ratings  |                                                                         |                  | Switch Element    |                 |                  |  |
|            |                                                | -                 | Static               |             |                                                                         |                  |                   | Ì               |                  |  |
|            | Nominal Pressure                               |                   | Working<br>Pressure  | Proof p     | osi 20, 26, 27                                                          | 21, 24, 31       | 50                | 22              | 32, 42           |  |
| 30IWD      | 750mm H <sub>2</sub> O                         | 7.5 kPa           | 5.4                  | 21.6        | 0.3-0.6                                                                 | 1.5-2.5          | 0.45-2.0          | 0.5-2.0         | 2.1-3.5          |  |
| 60IWD      | 1500mm H <sub>2</sub> O                        | 15 kPa            | 5.4                  | 21.6        | 0.5-1.3                                                                 | 1.5-3.5          | 0.9-2.5           | 0.7-3.0         | 2.1-5.0          |  |
| 100IWD     | 2500mm H <sub>2</sub> O                        | 25 kPa            | 5.4                  | 21.6        | 0.6-1.6                                                                 | 2.5-5.5          | 1.1-4.0           | 1.0-4.0         | 3.5-7.7          |  |
| 150IWD     | 3750mm H <sub>2</sub> O                        | 37 kPa            | 5.4                  | 21.6        | 1.0-2.5                                                                 | 4.5-8.5          | 1.8-6.5           | 2.0-6.0         | 6.3-12.0         |  |
| 15#D       | 1.0 kg/cm <sup>2</sup>                         | 100 kPa           | 500                  | 2000        | 0.5-1.0                                                                 | 2.0-5.0          | 0.7-3.5           | 0.7-1.4         | 2.8-7.0          |  |
| 30#D       | 2.0 kg/cm <sup>2</sup>                         | 200 kPa           | 500                  | 2000        | 1.0-2.0                                                                 | 2.0-5.0          | 1.5-3.5           | 1.4-2.8         | 2.8-7.0          |  |
| 60#D       | 4.0 kg/cm <sup>2</sup>                         | 400 kPa           | 500                  | 2000        |                                                                         | 3.0-6.0          | 3.0-4.5           | 2.8-5.6         | 4.2-8.5          |  |
| 100#D      | 7.0 kg/cm <sup>2</sup>                         | 700 kPa           | 1000                 | 4000        |                                                                         | 11.0-20.0        | 7.0-15.0          | 6.0-14.0        | 16.0-28.0        |  |
| 200#D      | 14.0 kg/cm <sup>2</sup>                        | 1400 kPa          | 1000                 | 4000        |                                                                         | 12.0-40.0        | 10.0-26.0         | 7.0-21.0        | 17.0-56.0        |  |
| 400#D      | 28.0 kg/cm <sup>2</sup>                        | 2800 kPa          | 1000                 | 8000        |                                                                         |                  | 15.0-40.0         | 14.0-28.0       | 28.0-84.0        |  |
| 400#D      | 0                                              | 4200 kPa          | 1000                 | 8000        |                                                                         |                  |                   | 30.0-56.0       |                  |  |
| 000#D      | 42.0 kg/cm <sup>2</sup>                        | 4200 KPa          | 1000                 | 8000        | 20.0-40.0                                                               | 60.0-150.0       | 30.0-115.0        | 30.0-50.0       | 12.0-210.0       |  |

#### NOTES:

 Switches may generally be set between 15% and 100% of nominal range on increasing pressure. Consult factory for applications where setpoints must be lower.

2. All deadbands are given in English units as shown in the nominal range column. Deadbands shown are for switches with Buna N diaphragm.

| Approximate deadbands for optional diaphragms: |                              |  |  |  |  |  |  |  |
|------------------------------------------------|------------------------------|--|--|--|--|--|--|--|
| Viton:                                         | Multiply Buna N value by 1.4 |  |  |  |  |  |  |  |
| Teflon:                                        | Multiply Buna N value by 1.2 |  |  |  |  |  |  |  |
| Stainless Steel:                               | Multiply Buna N value by 1.7 |  |  |  |  |  |  |  |
| Monel:                                         | Multiply Buna N value by 1.7 |  |  |  |  |  |  |  |
|                                                |                              |  |  |  |  |  |  |  |

3. Deadbands given are for zero static working pressure.

4. For approximate deadbands for dual switch elements,

multiply the single switch element by 1.6.

5. Proof pressure is 4000 psi with stainless steel and monel welded diaphragms.



## B-Series Switches – Pressure, Differential Pressure

| ORDERIN                               | G CODE                                      |                        |               |                 |                 | Example: B4                                                                              | 20                            | В            | ХРК | 600 |
|---------------------------------------|---------------------------------------------|------------------------|---------------|-----------------|-----------------|------------------------------------------------------------------------------------------|-------------------------------|--------------|-----|-----|
| Enclosure                             |                                             |                        |               |                 |                 |                                                                                          |                               |              |     |     |
| B4 - Pressure sw                      | itch, Type 400, wate                        | ertight enclos         | sure meets N  | NEMA 3, 4, 42   | K, 13 and IP6   | 6 requirements.                                                                          |                               |              |     |     |
| B7 - Pressure swi<br>Standard ho      |                                             |                        |               |                 |                 |                                                                                          |                               |              |     |     |
| D4 - Differential p                   | -                                           |                        |               |                 |                 |                                                                                          |                               |              |     |     |
| <b>D7</b> - Differential prequirement |                                             |                        |               |                 |                 |                                                                                          |                               |              |     |     |
| Switch Element                        | Selection - UL/CS                           | A Listed SP            | DT            |                 |                 |                                                                                          | -                             |              |     |     |
| 20 - Narrow dead                      | Iband ac, 15A - 125                         | 5/250 Vac. E           | stimated dc   | rating, 0.4A,   | 120 Vdc (not    | UL listed).                                                                              |                               |              |     |     |
| 21 - Ammonia se                       | rvice, 5A - 125/250                         | Vac                    |               |                 |                 |                                                                                          |                               |              |     |     |
| 22 - Hermetically                     | sealed switch, narr                         | row deadban            | d, 5A - 125/  | 250 Vac. Est    | imated dc. ra   | ting, 2.5A, 28 Vdc (not UI                                                               | _ listed).                    |              |     |     |
| 23 - Heavy duty a                     | ac, 22A - 125/250 V                         | 'ac                    |               |                 |                 |                                                                                          |                               |              |     |     |
| <b>24</b> - General purp              | oose, 15A - 125/250                         | /480 Vac, ½/           | - 125 Vdc, ¼/ | A - 250 Vdc; 6A | , 30 Vdc. (Stan | dard switch)                                                                             |                               |              |     |     |
| 25 - Heavy duty o                     | dc, 10A - 125 Vac o                         | r dc,1∕8 HP - 1        | 125 Vac or c  | lc. Not availa  | ble with psid   | ranges.                                                                                  |                               |              |     |     |
| 26 - Sealed enviro                    | onment proof, 15A -                         | - 125/250 Va           | c. Estimated  | d dc rating, 0  | .4A, 120 Vdc    | (not UL listed).                                                                         |                               |              |     |     |
| 27 - High temper                      | ature 300°F, 15A -                          | 125/250 Vac            |               |                 |                 |                                                                                          |                               |              |     |     |
| 28 - Manual rese                      | t trip on, increasing                       | 15A - 125/2            | 50 Vac. Not   | available wit   | h type 700 er   | nclosure.                                                                                |                               |              |     |     |
| 29 - Manual rese                      | t trip on decreasing                        | g, 15A - 125           | /250 Vac. N   | ot available v  | vith type 700   | enclosure.                                                                               |                               |              |     |     |
| 31 - Low level (g                     | old) contacts, 1A -                         | 125 Vac                |               |                 |                 |                                                                                          |                               |              |     |     |
| 32 - Hermetically                     | v sealed switch, ge                         | neral purpos           | se, 11A - 12  | 5/250 Vac, 5    | A - 30 Vdc      |                                                                                          |                               |              |     |     |
| 42 - Hermetically                     | v sealed switch, go                         | Id contacts,           | 1A - 125 Va   | .C              |                 |                                                                                          |                               |              |     |     |
| 50 - Variable dea                     | dband, 15A - 125/                           | 250 Vac                |               |                 |                 |                                                                                          |                               |              |     |     |
| Switch Element                        | Selection - UL/CS                           | A Listed Du            | al (2 SPDT)   |                 |                 |                                                                                          |                               |              |     |     |
| 61 - Dual narrow                      | deadband, 15A - 1                           | 125/250 Vac.           | Estimated     | dc rating, 0.4  | A, 120 Vdc (r   | not UL listed).                                                                          |                               |              |     |     |
| 62 - Dual sealed                      | environment proof,                          | 15A - 125/2            | 50 Vac. Estir | mated dc rati   | ng, 0.4A, 120   | ) Vdc (not UL listed).                                                                   |                               |              |     |     |
| 63 - Dual high ter                    | mp. 300°F, 15A - 12                         | 25/250 Vac             |               |                 |                 |                                                                                          |                               |              |     |     |
| 64 - Dual general                     | purpose, 15A - 128                          | 5/250/480 Va           | ic, ½A- 125   | Vdc, ¼A - 25    | 0 Vdc           |                                                                                          |                               |              |     |     |
| 65 - Dual ammon                       | ia service, 5A - 125                        | 6/250 Vac              |               |                 |                 |                                                                                          |                               |              |     |     |
|                                       | cally sealed switch<br>stimated dc. rating, |                        |               |                 | . Wires cann    | ot be terminated inside B                                                                | 400 switch                    |              |     |     |
|                                       |                                             |                        |               | ,               | 5A, 30 Vdc.     | Wires cannot be terminat                                                                 | ed inside                     |              |     |     |
| B400 switch                           |                                             |                        |               |                 |                 |                                                                                          |                               |              |     |     |
|                                       | el gold contacts, 14                        |                        |               |                 |                 |                                                                                          |                               |              |     |     |
|                                       |                                             | joid contacts          | -             |                 | iot be termina  | ted inside B400 switch enc                                                               | losure.                       |              |     |     |
| Actuator Seal                         | Process Temp.                               |                        | Ra            | inge            |                 | Ambient operating tempe                                                                  | rature limite -               | 20 to 150 °F |     |     |
| Material                              | Limits °F <sup>(10)</sup>                   | Vac. "H <sub>2</sub> O | 0-600 psi     | 0-1000 psi      | 0-3000 psl      | all styles, setpoint shift of<br>temperature change is no<br>calibrated at 70 °F referer | ±1% of range<br>rmal. Switche | per 50 °F    |     |     |
| B Buna N                              | 0 to 150                                    | •                      | •             | •               | •               |                                                                                          |                               |              |     |     |
| V - Viton                             | 20 to 300                                   | •                      | •             | •               | •               |                                                                                          |                               |              |     |     |
| T - Teflon                            | 0 to 150                                    | •                      | •             | •               | •               |                                                                                          |                               |              |     |     |
| S - 316L                              | 0 to 300                                    |                        | •             | •               |                 | Available on pressure or                                                                 | ıly.                          |              |     |     |
|                                       |                                             |                        |               |                 |                 |                                                                                          |                               |              |     |     |

Range - Select from table page 2

All specifications are subject to change without notice. All sales subject to standard terms and conditions. 2018 Ashcroft Inc. bswp\_switch\_final, 05/18



## B-Series Switches – Hydraulic\*

| ORDERIN                                                                                                                | G CODE                       |                            |          |               |              |             | Exam       | ple:     | H4    | 24 | V      | ХРК | 3000# |
|------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|----------|---------------|--------------|-------------|------------|----------|-------|----|--------|-----|-------|
| Enclosure                                                                                                              |                              |                            |          |               |              |             |            |          |       |    |        |     |       |
| H4 - Hydraulic                                                                                                         | pressure switch, Type 400    | watertight e               | enclos   | ure meets l   | NEMA 3, 4    | 4, 4X, 13 a | nd IP66    | requirem | ents. |    |        |     |       |
| Switch Eleme                                                                                                           | ent Selection                |                            |          |               |              |             |            |          |       | -  |        |     |       |
| 20 - Narrow de                                                                                                         | eadband ac, 15A - 125/250    | Vac. Estimat               | ted dc   | rating, 0.4   | A, 120 Vdd   | c (not UL   | listed)    |          |       |    |        |     |       |
| 22 - Hermetically sealed switch, narrow deadband, 5A - 125/250 Vac. Estimated dc rating, 2.5A, 28 Vdc (not UL listed). |                              |                            |          |               |              |             |            |          |       |    |        |     |       |
| 23 - Heavy du                                                                                                          | ty ac, 22A - 125/250 Vac     |                            |          |               |              |             |            |          |       |    |        |     |       |
| 24 - General p                                                                                                         | ourpose, 15A - 125/250/480   | Vac, ½A - 125              | Vdc, ¼   | A - 250 Vdc;  | 6A, 30 Vdc.  | Standard    | switch.    |          |       |    |        |     |       |
| 25 - Heavy du                                                                                                          | ty dc, 10A - 125 Vac or dc,  | /8 HP - 125 \              | Vac or   | dc            |              |             |            |          |       |    |        |     |       |
| 26 - Sealed en                                                                                                         | vironment proof, 15A - 125/  | 250 Vac. Est               | timateo  | d dc rating,  | , 0.4A, 120  | 0 Vdc (not  | t UL liste | d)       |       |    |        |     |       |
| 27 - High temp                                                                                                         | perature 300°F, 15A - 125/2  | 50 Vac                     |          |               |              |             |            |          |       |    |        |     |       |
| 28 - Manual re                                                                                                         | eset trip on increasing, 15A | - 125/250                  |          |               |              |             |            |          |       |    |        |     |       |
| 29 - Manual re                                                                                                         | eset trip on decreasing, 15  | ۹ - 125/250 ۱              | Vac      |               |              |             |            |          |       |    |        |     |       |
| 32 - Hermetic                                                                                                          | ally sealed switch, general  | purpose, 11                | A - 12   | 5/250 Vac,    | , 5A - 30 V  | /dc         |            |          |       |    |        |     |       |
| Switch Element Selection                                                                                               |                              |                            |          |               |              |             |            |          |       |    |        |     |       |
| 61 - Dual narr                                                                                                         | ow deadband, 15A - 125/2     | 50 Vac. Estin              | nated    | dc rating, 0  | 0.4A, 120 \  | Vdc (not l  | JL listed) |          |       |    |        |     |       |
| 62 - Dual seale                                                                                                        | ed environment proof, 15A    | 125/250 Va                 | ic. Esti | imated dc r   | rating, 0.4A | A, 120 Vd   | c (not UL  | listed)  |       |    |        |     |       |
| 63 - Dual high                                                                                                         | temp. 300°F, 15A - 125/25    | ) Vac                      |          |               |              |             |            |          |       |    |        |     |       |
| 64 - Dual gene                                                                                                         | eral purpose, 15A - 125/250  | /480 Vac, ½A               | A- 125   | Vdc, ¼A -     | 250 Vdc      |             |            |          |       |    |        |     |       |
| 65 - Dual amm                                                                                                          | nonia service, 5A - 125/250  | Vac                        |          |               |              |             |            |          |       |    |        |     |       |
| 70 - Dual low                                                                                                          | level gold contacts, 1A - 12 | 5 Vac                      |          |               |              |             |            |          |       |    |        |     |       |
| Actuator Sea                                                                                                           | I                            |                            |          |               |              |             |            |          |       |    |        |     |       |
| Material                                                                                                               | Process Temp. Limits°F       | Ambient op<br>per 50 °F te |          | • •           |              |             |            |          | •     |    | <br>ge |     |       |
| V - Viton                                                                                                              | 20 to 300                    |                            | Vito     | on O-ring, st | tainless ste | eel pressu  | ure conne  | ection   |       |    |        |     |       |
| Options Use t                                                                                                          | table from page 6            |                            |          |               |              |             |            |          |       |    |        |     |       |
| Range                                                                                                                  |                              |                            |          |               |              |             |            |          |       |    |        |     |       |
| Range psi                                                                                                              | Adjustable Setpoi            | nt Limits psi              | Pro      | of Pressure   | e psi        |             |            |          |       |    |        |     |       |
| 1000                                                                                                                   | 150 – 1000                   |                            |          | 12,000        |              |             |            |          |       |    |        |     |       |
| 2000                                                                                                                   | 300 – 2000                   |                            |          | 12,000        |              |             |            |          |       |    |        |     |       |
| 3000                                                                                                                   | 450 – 3000                   |                            |          | 12,000        |              |             |            |          |       |    |        |     |       |
| 5000                                                                                                                   | 750 – 5000                   |                            |          | 10,000        |              |             |            |          |       |    |        |     |       |
| 7500                                                                                                                   | 1125 – 7500                  |                            |          | 10,000        |              |             |            |          |       |    |        |     |       |

\*Not all B-series hydraulic version (H4) switches are CE compliant. Consult factory for further information

All specifications are subject to change without notice. All sales subject to standard terms and conditions. © 2018 Ashcroft Inc. bswp\_switch\_final, 05/18

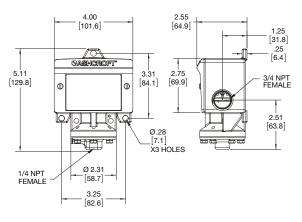


## B-Series Switches – Pressure, Differential Pressure & Hydraulic

#### **OPTIONAL FEATURES AND ACCESSORIES**

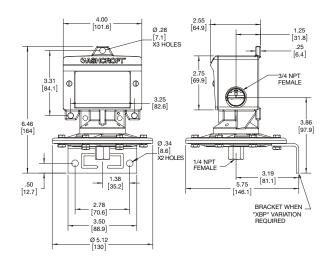
|      | B-SERIES SWITCH OPTIONS                                                                                                                |       |                        |       |                        |      |                                                                                        |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|-------|------------------------|------|----------------------------------------------------------------------------------------|--|--|
|      |                                                                                                                                        | 4     | Appicab                | le Sw | vitch Se               | ries |                                                                                        |  |  |
|      |                                                                                                                                        | Pre   | essure                 |       | erential<br>essure     | н    |                                                                                        |  |  |
| Code | Description                                                                                                                            | (psi) | (in. H <sub>2</sub> 0) | (psi) | (in. H <sub>2</sub> O) |      | Notes                                                                                  |  |  |
| XBP  | Wall Mounting Bracket in. H <sub>2</sub> O                                                                                             |       | •                      |       | •                      |      |                                                                                        |  |  |
| ХСН  | Chained Cover                                                                                                                          | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| XC8  | CSA Approval                                                                                                                           | •     | •                      | •     | •                      |      | Standard on 400 Series                                                                 |  |  |
| XCN  | ATEX Directive 94/9/EC/IECEx Rating                                                                                                    | •     | •                      | •     | •                      |      | 700 Series only.                                                                       |  |  |
| XD2  | Dual Seal Rating (700 Series only)                                                                                                     | •     |                        |       | •                      |      |                                                                                        |  |  |
| XFM  | FM Approval – Single Element                                                                                                           | •     | •                      | •     | •                      |      | N/A on all combinations.                                                               |  |  |
|      | FM Approval – Dual Element                                                                                                             | •     | •                      | •     | •                      |      | N/A on all combinations.                                                               |  |  |
| XFP  | Fungus Proofing                                                                                                                        | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| XFS  | Factory Adjusted Setpoint                                                                                                              | •     | •                      | ٠     | •                      | •    | Advise static or working pressure for differential pressure switches.                  |  |  |
| XG3  | Belleville Actuator                                                                                                                    | •     |                        |       |                        |      | 64 or 68 element only. N/A on all combinations.                                        |  |  |
| XG5  | UL Limit Control to 150" H <sub>2</sub> O                                                                                              |       |                        |       | •                      |      | Buna N and Viton diaphragm. N/A on all combinations.                                   |  |  |
| XG6  | UL Limit Control to 600 psi                                                                                                            | •     |                        |       |                        |      | Buna N and Viton diaphragm.N/A on all combinations.                                    |  |  |
| XG7  | Secondary Chamber with Vent                                                                                                            | •     |                        |       |                        |      | SS diaphragm required. Teflon diaphragm is the backup. NEMA 7 only.                    |  |  |
| XG8  | Steam Limit Control to 300 psi                                                                                                         | •     |                        |       |                        |      |                                                                                        |  |  |
| XG9  | Fire Safe Welded Actuator                                                                                                              | •     |                        |       |                        |      | Stainless steel diaphragm only.                                                        |  |  |
| XHS  | High Static Differential Pressure                                                                                                      |       |                        | •     |                        |      | 12 Buna N and Viton diaphragm – 15#D & 30#D only.                                      |  |  |
| хнх  | High Pressure, 40 psi, (static) d/p only<br>160 psi (proof) d/p only<br>100 psi (proof) pressure only ( <sup>°</sup> H <sub>2</sub> O) |       | •                      |       | •                      |      |                                                                                        |  |  |
| XJK  | Left Conduit Connection                                                                                                                | •     | •                      | •     | •                      | •    | Standard on 700 Series. N/A with DPDT element on 400 Series.                           |  |  |
| XJL  | 34" to 1/2" Reducing Bushing                                                                                                           | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| XJM  | Metric Electrical Conduit Conn. M20 x 1.5                                                                                              | •     | •                      | ٠     | •                      | •    |                                                                                        |  |  |
| ХКЗ  | Terminal Block (700 Series only)                                                                                                       | •     | •                      | •     | •                      |      | Terminal Blocks standard with 700 dual switches.                                       |  |  |
| XLE  | 6 foot Leads on the Micro Switch                                                                                                       | •     | •                      | ٠     | •                      | •    |                                                                                        |  |  |
| XNH  | Tagging Stainless Steel                                                                                                                | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| XNN  | Paper Tag                                                                                                                              | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| ХРК  | Pilot Light(s) Top Mounted                                                                                                             | •     | •                      | •     | •                      | •    | N/A on 700 Series.                                                                     |  |  |
| ХРМ  | <sup>3</sup> / <sub>4</sub> " Sealed Conduit Connection<br>w/16" Lead Wires                                                            | •     | •                      | •     | •                      | •    |                                                                                        |  |  |
| XTA  | 316 Stainless Steel Pressure<br>Connection for in. H <sub>2</sub> O Range                                                              |       | •                      |       | •                      |      |                                                                                        |  |  |
| ХТМ  | 2" Pipe Mounting Bracket                                                                                                               | •     | •                      | •     | •                      |      |                                                                                        |  |  |
| XUD  | 316 Stainless Steel Pressure Conn.                                                                                                     |       |                        | ٠     |                        |      |                                                                                        |  |  |
| X06  | Pressure Connection:<br>1/2 NPT Male, 1/4 NPT Female<br>316 Stainless Steel (Combination)                                              | •     | •                      | •     | •                      |      | Standard with 1000 and 3000 psi ranges. Bottom connection only on DP in $H_2O$ ranges. |  |  |
| X07  | 1/2 NPTF Press. Conn., 316 SS                                                                                                          | •     | •                      | •     | •                      |      | N/A with Monel diaphragm.                                                              |  |  |
| X6B  | Cleaned for Oxygen Service                                                                                                             | •     |                        | ٠     |                        |      | Buna N cannot be cleaned for oxygen service.                                           |  |  |
| X9F  | Inches of Water Housing for Outdoor Use                                                                                                |       | •                      |       |                        |      |                                                                                        |  |  |
| XYW  | 316SS Housing                                                                                                                          | •     | •                      | ٠     | •                      |      |                                                                                        |  |  |
| XMD  | Metric Range on Label                                                                                                                  | •     | •                      | •     | •                      | •    |                                                                                        |  |  |

All specifications are subject to change without notice. All sales subject to standard terms and conditions. 2018 Ashcroft Inc. bswp\_switch\_final, 05/18

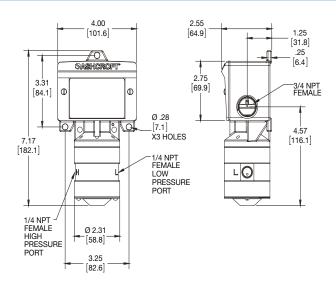

## **Data Sheet**



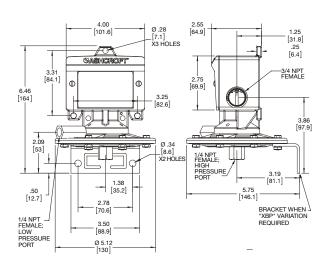
### B-Series Switches – Pressure, Differential Pressure & Hydraulic


#### **B 400 DIMENSIONS**

#### Pressure switch – psi ranges




#### Pressure switch - inches of water ranges


Albhan



#### Differential pressure switch – psi differential ranges



Differential pressure switch - inches of water ranges





All specifications are subject to change without notice. All sales subject to standard terms and conditions. © 2018 Ashcroft Inc. bswp\_switch\_final, 05/18 ashcroft.com info@ashcroft.com 1.800.328.8258

6

#### **Data Sheet**



#### B-Series Switches – Pressure, Differential Pressure & Hydraulic

Ashcroft Inc. supplies highly reliable Ashcroft<sup>®</sup> switches and controls for industrial and process applications. We begin with rock-solid designs, matching the most appropriate technology with the safety and reliability requirements of the applications. The materials of construction are specified to Ashcroft's exacting standards, and product is built to last in the toughest applications. Our modern, responsive manufacturing facility is supported by an extensive network of stocking distributors and factory sales offices located in virtually every part of the world. Special application assistance is always just a telephone call away.

The Ashcroft B-Series switch line is designed to satisfy most switch requirements. Materials of construction have been selected for long life. A wide variety of precision switch elements are available to meet every application requirement, including hermetically sealed contacts for added reliability and safety. The actuators we use have been proven in more than 20 years of service in the world's plants and mills. Special designs are available for fire safety, NACE, limit control and other more stringent requirements. Simplicity and ease of use are stressed to improve reliability of the installation.

Applications include: pumps, compressors, washers, filters, degreasers, evaporators, recovery systems, food processing, ground support equipment, reverse osmosis systems, heat exchangers, hydraulic systems, lubrication systems, marine equipment, textile machinery, heating and air conditioning equipment.

#### **Pressure & Differential Pressure Switches**

B-Series pressure, differential pressure and vacuum switches use two different actuators depending on setpoint requirements. For setpoints between 2 and 3000 psi, the simple, rugged diaphragm-sealed piston actuator is used. This design features high reliability and choice of actuator seal materials for virtually every application. An optional welded design is also available for setpoints up to 1000 psi for maximum reliability. This design is available in 316 SS or Monel. Differential pressure models use a unique, dual diaphragm-sealed piston design that features very high static operating pressures and small size.

For setpoints between 4.5 and 150 inches of H<sub>2</sub>O, a large diaphragm is used for increased sensitivity in both pressure and differential pressure designs with good choice of materials of construction.

All standard models feature  $\pm 1$  percent of range setpoint repeatability and a minimum of 400 percent of range proof pressures.

These standard designs perform well in applications where shock and vibration could be a problem and may be used in conjunction with Ashcroft diaphragm seals in extreme services such as slurries or abrasive process fluids.

All specifications are subject to change without notice. All sales subject to standard terms and conditions. © 2018 Ashcroft Inc. bswp\_switch\_final, 05/18



# **B-Series Temperature Switches**



#### **FEATURES**

B-Series switches have proven reliable in such harsh environments as:

- Offshore oil rigs
- Chemical and petrochemical plants
- Pulp and paper mills
- Steel mills
- Power plants
- · Water and sewage-treatment plants
- Other corrosive environments

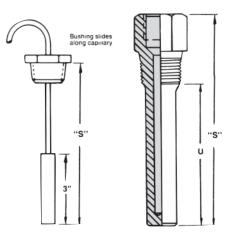
Ashcroft Inc. supplies highly reliable Ashcroft<sup>®</sup> switches and controls for industrial and process applications. We begin with rock-solid designs, matching the

most appropriate technology with the safety and reliability requirements of the applications. The materials of construction are specified to Ashcroft's exacting standards, and

product is built to last in the toughest applications. Our modern, responsive manufacturing facility is supported by an extensive network of stocking distributors and factory sales offices located in virtually every part of the world. Special application assistance is always just a telephone call away.

The Ashcroft B-Series switch line is designed to satisfy most switch requirements. Materials of construction have been selected for long life. A wide variety of precision switch ele-

ments are available to meet every application requirement, including hermetically sealed contacts for added reliability and safety. The actuators we use have been proven in more than 20 years of service in the world's plants and mills. Special designs are available for fire safety, NACE, limit control and other more stringent requirements. Simplicity and ease of use are stressed to improve reliability of the installation.


Applications include: pumps, compressors, washers, filters, degreasers, evaporators, recovery systems, food processing, ground support equipment, reverse osmosis systems, heat exchangers, hydraulic systems, lubrication systems, marine equipment, textile machinery, heating and air conditioning equipment.

#### Thermowells

Thermowells must be used on any application where the stem of the temperature switch may be exposed to pressure, corrosive fluids or high velocity. Additionally, the use of a thermowell permits instrument interchange or calibration check without disturbing or closing down the process.

Ashcroft temperature switches have bulb diameters to match  $\frac{3}{6}$  nominal bore thermowells. The bulbs have a sensitive portion length of 2<sup>°</sup> which can be used with 2½<sup>°</sup> "U" dimensioned thermowells or longer. For maximum accuracy, a thermowell's "U" dimension should be selected to permit complete immersion of the sensitive portion plus 1<sup>°</sup> when measuring the temperature of liquids; an extra 3<sup>°</sup> should be allowed when measuring the temperature of gases.

Thermowell bushings should be used with remote mount temperature switches. We recommend the standard 3<sup>"</sup> bulb and code 69 Series bushings for use with any thermowell "U" dimension. A split rubber grommet allows easy installation and "S" dimension adjustment.



All specifications are subject to change without notice. All sales subject to standard terms and conditions. @ Ashcroft Inc. 2014 10/14



# **B-Series Temperature Switches**

#### **Temperature Switches**

B-Series temperature switches feature a SAMA Class II vapor pressure thermal system. This system provides quick, accurate response to process temperature changes with negligible ambient temperature effects. This is inherent in the design due to the precise relationship that exists between temperature and pressure according to the vapor pressure laws. A wide selection of sensing bulb and armored capillary lengths is available. The vapor pressure system design features small bulb sizes, making installation easy and cost-effective.

All models feature ±1.0% percent of

span setpoint repeatability with very high overtemperature ratings.

These standard designs perform well in applications where shock and vibration could be a problem and should be used with Ashcroft thermowells for bulb protection and ease of installation and maintenance.

#### STANDARD TEMPERATURE RANGE SELECTION

| Nominal Range <sup>(1),(5)</sup> |            | Maximum<br>Temperature |            |            |          |          |           |
|----------------------------------|------------|------------------------|------------|------------|----------|----------|-----------|
| °F                               | °C         | °F                     | 20, 26, 27 | 21, 24, 31 | 50       | 22       | 32, 42    |
| -40 to 60                        | -40 to 160 | 400                    | 1.0-2.0    | 3.0-8.0    | 1.5-5.5  | 1.4-6.0  | 8.0-16.0  |
| 0 to 100                         | –20 to 400 | 400                    | 1.5-3.0    | 5.0-12.0   | 2.2-8.5  | 1.5-7.5  | 9.0-20.0  |
| 75 to 205                        | 21 to 95   | 400                    | 1.5-3.5    | 8.0-16.0   | 2.5-12.0 | 2.0-9.0  | 10.0-24.0 |
| 150 to 260                       | 65 to 125  | 400                    | 1.5-3.0    | 5.0-12.0   | 2.2-8.5  | 2.0-9.0  | 10.0-24.0 |
| 235 to 375                       | 110 to 190 | 500                    | 1.5-3.5    | 5.0-12.0   | 2.5-8.5  | 2.0-9.0  | 10.0-24.0 |
| 350 to 525(3)                    | 175 to 275 | 700                    | 2.0-4.5    | 8.0-16.0   | 3.2-12.0 | 2.5-10.0 | 15.0-34.0 |
| 500 to 750 <sup>(2)</sup>        | 260 to 400 | 900                    | 4.0-8.0    | 16.0-30.0  | 7.2-24.0 | 5.0-23.0 | 30.0-50.0 |

NOTES:

1 All deadbands given in °F.

Available with remote mount thermal systems only.
 Not available with 2<sup>3</sup>/<sub>4</sub>" stem.

4 Dual switch element multiply single switch element value by 1.6 for approximate deadband.

5 Set and reset points must fall within the adjustable range.



# **B-Series Temperature Switches**

## B-SERIES TEMPERATURE SWITCH MODEL NUMBER:

To specify the exact switch desired, select entries from appropriate tables as shown in example below.

| T7enclosure meets Div. 1 & 2, NEMA 7, 9 and IP66<br>requirements.2 - SWITCH ELEMENT SELECTIONOrder CodeSystem MaterialLine LengthStrOrder CodeSystem MaterialLine LengthStrOfder CodeSystem MaterialLine LengthStrOrder CodeSystem MaterialLine LengthStrOrder CodeSystem MaterialLine LengthStr <th colspa<="" th=""><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <th></th>                               |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Temperature switch, Type 400, watertight enclosure<br>meets NEMA 3, 4, 4X, 13 and IP66 requirements.To<br>requirementsTemperature switch, Type 700, explosion-proof<br>enclosure meets Div. 1 & 2, NEMA 7, 9 and IP66<br>requirements.Order CodeSystem MaterialStyleCoder<br>CodeSwitch Elements<br>UL/CSA Listed SPDTTo<br>316 SS16 LengthSt<br>Cap20'''<br>20'''Narrow deadband ac15A, 125/250 Vac170316 SS20'Ar21<br>21''<br>22'''<br>22'''Hermetically sealed switch,<br>narrow deadband<br>23<br>24'''5A, 125/250 VacArArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <th< th=""><th></th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |  |
| Temperature switch, Type 400, watertight enclosure<br>meets NEMA 3, 4, 4X, 13 and IP66 requirements.To<br>requirementsTemperature switch, Type 700, explosion-proof<br>enclosure meets Div. 1 & 2, NEMA 7, 9 and IP66<br>requirements.Order CodeSystem MaterialStyleCoder<br>CodeSwitch Elements<br>UL/CSA Listed SPDTTo<br>316 SS16 LengthSt<br>Cap20'''<br>20'''Narrow deadband ac15A, 125/250 Vac170316 SS20'Ar21<br>21''<br>22'''<br>22'''Hermetically sealed switch,<br>narrow deadband<br>23<br>24'''5A, 125/250 VacArArAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA <th< th=""><th>N</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N                                       |  |
| 14meets NEMA 3, 4, 4X, 13 and IP66 requirements.ToTemperature switch, Type 700, explosion-proof<br>enclosure meets Div. 1 & 2, NEMA 7, 9 and IP66<br>requirements.2 - SWITCH ELEMENT SELECTIONOrder CodeSystem MaterialLine LengthSt0rder<br>CodeSwitch Elements<br>UL/CSA Listed SPDTOrder System MaterialLine LengthSt20'')Narrow deadband ac15A, 125/250 Vac115316 SS15'30221Ammonia service5A, 125/250 Vac125316 SS20'Sp22'')Hernetically sealed switch,<br>narrow deadband5A, 125/250 Vac15A, 125/250 Vac4 - BULB LENGTH SELECTION23Heavy duty ac22A, 125/250 Vac15A, 125/250 Vac027(8)2%''Minimum<br>Thermowel24'')General purpose15A, 125/250 Vac15A, 125/250 Vac027(8)2%''Minimum<br>Thermowel25Heavy duty dc10A, 125 Vac or dc,<br>½A, 125 Vac or dc,<br>½A, 125/250 Vac15A, 125/250 Vac027(8)2%''26('')Sealed environment proof15A, 125/250 Vac15A, 125/250 Vac0909''7''/''29('')Manual reset trip on<br>increasing15A, 125/250 Vac12012''10'''29('')Manual reset trip on<br>decreasing15A, 125/250 Vac31Corder CodeSystem MaterialSystem31Low level (gold) contacts1A, 125 Vac1A, 125 Vac31System MaterialSystem31Low level (gold) contacts1A, 125 Vac1A12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |  |
| Temperature switch, Type 700, explosion-proof<br>enclosure meets Div. 1 & 2, NEMA 7, 9 and IP66<br>requirements.TS316 SSRemote MountOrder CodeSwitch Elements<br>UL/CSA Listed SPDTOther Switch Elements<br>UL/CSA Listed SPDT20 <sup>(7)</sup> Narrow deadband ac15A, 125/250 Vac21Ammonia service5A, 125/250 Vac22 <sup>(6)</sup> Heavy duty ac22A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac25Heavy duty dc15A, 125/250 Vac26 <sup>(7)</sup> Sealed environment proof15A, 125/250 Vac27High temperature 300°F15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>increasing15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>decreasing15A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac24 <sup>(7)</sup> Sealed environment proof15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>decreasing15A, 125/250 Vac31 <th cols<="" th=""><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <th></th>                               |  |
| T7enclosure meets Div. 1 & 2, NEMÀ 7, 9 and IP66<br>requirements.2 - SWITCH ELEMENT SELECTIONOrder<br>CodeSwitch Elements<br>UL/CSA Listed SPDTT05316 SS520 <sup>(7)</sup> Narrow deadband ac15A, 125/250 Vac22 <sup>(6)</sup> Herwetically sealed switch,<br>narrow deadband5A, 125/250 Vac22 <sup>(6)</sup> Heavy duty ac22A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac25Heavy duty dc15A, 125/250 Vac26 <sup>(7)</sup> Sealed environment proof15A, 125/250 Vac27High temperature 300°F15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>increasing15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>decreasing15A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac2Meavy duty dc15A, 125/250 Vac2Heavy duty dc15A, 125/250 Vac2Remote Mount000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rigid                                   |  |
| Order CodeOrder NutlevialCodeOrder NutlevialCode20 <sup>(7)</sup> Narrow deadband ac15A, 125/250 Vac20 <sup>(7)</sup> Narrow deadband ac15A, 125/250 Vac21Ammonia serviceSA, 125/250 Vac21Ammonia serviceSA, 125/250 Vac21Ammonia serviceSA, 125/250 Vac21Ammonia serviceSA, 125/250 Vac24 <sup>(6)</sup> Heavy duty ac22A, 125/250 Vac24 <sup>(7)</sup> General purpose15A, 125/250 Vac25Heavy duty dc10A, 125/250 Vac25Heavy duty dc10A, 125/250 Vac26 <sup>(7)</sup> Sealed environment proof15A, 125/250 Vac28 <sup>(6)</sup> Manual reset trip on<br>increasing15A, 125/250 Vac29 <sup>(6)</sup> Manual reset trip on<br>increasing15A, 125/250 Vac31Low level (gold) contacts1A, 125/250 Vac <th colspa<="" th=""><th></th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <th></th>                               |  |
| 2 - SWITCH ELEMENT SELECTIONOrder<br>CodeSwitch Elements<br>UL/CSA Listed SPDT20"Narrow deadband ac15A, 125/250 Vac21Ammonia service5A, 125/250 Vac22(6)Hermetically sealed switch,<br>narrow deadband5A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac24"General purpose15A, 125/250/480 Vac<br>½A, 125 Vdc25Heavy duty dc10A, 125 Vac or dc,<br>½A, 125 Vac or dc26(7)Sealed environment proof15A, 125/250 Vac27High temperature 300°F15A, 125/250 Vac28(6)Manual reset trip on<br>increasing15A, 125/250 Vac29(5)Manual reset trip on<br>decreasing15A, 125/250 Vac31Low level (gold) contacts1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tyle <sup>(9)</sup>                     |  |
| Tio         316 SS         10'         W           Order         Switch Elements         15'         302           20 <sup>(7)</sup> Narrow deadband ac         15A, 125/250 Vac         T20         316 SS         20'         Sp           20 <sup>(7)</sup> Narrow deadband ac         15A, 125/250 Vac         T20         316 SS         20'         Sp           20 <sup>(7)</sup> Narrow deadband ac         15A, 125/250 Vac         T20         316 SS         20'         Sp           22 <sup>(6)</sup> Hermetically sealed switch,<br>narrow deadband         5A, 125/250 Vac         T25         316 SS         25'         Arr           23         Heavy duty ac         22A, 125/250 Vac         T25/250/480 Vac         Minimum           24 <sup>(1)</sup> General purpose         15A, 125/250/480 Vac         Minimum         Minimum           24 <sup>(1)</sup> General purpose         15A, 125/250 Vac         Other         Winimum         Minimum           25         Heavy duty dc         10A, 125 Vac or dc,<br>$\frac{16}{16}$ HP, 125 Vac or dc         O40         4" $2\frac{16}{2}$ "           26 <sup>(7)</sup> Sealed environment proof         15A, 125/250 Vac         T3A, 125/250 Vac         T20         120         12"         10 $\frac{12}{2}$ "           29 <sup>(6)</sup> </th <th>oillary</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oillary                                 |  |
| CodeUL/CSA Listed SPDT20(7)Narrow deadband ac15A, 125/250 Vac21Ammonia service5A, 125/250 Vac22(6)Hermetically sealed switch,<br>narrow deadband5A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac24(1)General purpose15A, 125/250/480 Vac<br>½A, 125 Vdc<br>¼A, 250 Vdc 6A, 30 Vdc25Heavy duty dc10A, 125 Vac or dc,<br>½ HP, 125 Vac or dc,<br>½ HP, 125 Vac or dc26(7)Sealed environment proof15A, 125/250 Vac27High temperature 300°F15A, 125/250 Vac28(%)Manual reset trip on<br>increasing15A, 125/250 Vac29(%)Manual reset trip on<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vith                                    |  |
| 2017)Narrow deadband ac15A, 125/250 Vac21Ammonia service5A, 125/250 Vac22(%)Hermetically sealed switch,<br>narrow deadband5A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac24(1)General purpose15A, 125/250/480 Vac<br>$VA, 125 Vdc$<br>$VA, 250 Vdc; 6A, 30 VdcOrderVA, 125 Vac or dc,V_8 HP, 125 Vac or dcMinimumThermowel("U" Dimension")25Heavy duty dc10A, 125 Vac or dc,V_8 HP, 125 Vac or dc0404"21/2"26(7)Sealed environment proof15A, 125/250 Vac0606"41/2"27High temperature 300^{\circ}F15A, 125/250 Vac12012"101/2"28(6)Manual reset trip onincreasing15A, 125/250 Vac3"21/2"29(6)Manual reset trip ondecreasing15A, 125/250 Vac3"21/2"31Low level (gold) contacts1A, 125 Vac3"5 - OPTIONS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 SS                                    |  |
| 21Ammonia service5A, 125/250 Vac22(e)Hermetically sealed switch,<br>narrow deadband5A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac24(1)General purpose15A, 125/250/480 Vac<br>½A, 125 Vdc25Heavy duty dc10A, 125 Vac or dc,<br>½A, 250 Vdc; 6A, 30 Vdc25Heavy duty dc10A, 125 Vac or dc,<br>½A, 125 Vac or dc26Sealed environment proof15A, 125/250 Vac27High temperature 300°F15A, 125/250 Vac28(e)Manual reset trip on<br>increasing15A, 125/250 Vac29(e)Manual reset trip on<br>decreasing15A, 125/250 Vac31Low level (gold) contacts1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | oring                                   |  |
| 22(6)Hermetically sealed switch,<br>narrow deadband5A, 125/250 Vac23Heavy duty ac22A, 125/250 Vac24(1)General purpose15A, 125/250/480 Vac<br>$\frac{1}{2A}$ , 125 Vdc<br>$\frac{1}{4A}$ , 250 Vdc; 6A, 30 VdcOrder<br>$\frac{(*S'')}{Dimension}$ Minimum<br>Thermowel<br>("U" Dimension)25Heavy duty dc10A, 125 Vac or dc,<br>$\frac{1}{6}$ HP, 125 Vac or dc0404" $2\frac{1}{2}$ "26(7)Sealed environment proof15A, 125/250 Vac0606" $4\frac{1}{2}$ "27High temperature 300°F15A, 125/250 Vac15A, 125/250 Vac12012"10\frac{1}{2}"28(6)Manual reset trip on<br>increasing15A, 125/250 Vac31Low level (gold) contactsA, 125 Vac5 - OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rmor                                    |  |
| narrow deadband         Direct Mount           23         Heavy duty ac         22A, 125/250 Vac           24(1)         General purpose         15A, 125/250/480 Vac           ½A, 125 Vdc         ½A, 125 Vdc           ½A, 125 Vdc         10A, 125 Vac or dc,           ½A, 125 Vac or dc,         ½A, 125 Vac or dc,           ½B         Heavy duty dc           10A, 125 Vac or dc,         ½B           ½B         HP, 125 Vac or dc,           ½B         HP, 125/250 Vac           27         High temperature 300°F           15A, 125/250 Vac         990           28(5)         Manual reset trip on           increasing         15A, 125/250 Vac           29(5)         Manual reset trip on           decreasing         15A, 125/250 Vac           31         Low level (gold) contacts         1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |  |
| 23       Heavy duty ac       22A, 125/250 Vac         24(1)       General purpose       15A, 125/250/480 Vac       Order       "S"       Minimum         24(1)       General purpose       15A, 125/250/480 Vac       ½A, 125 Vdc       Order       "S"       Thermowel         24(1)       General purpose       15A, 125/250/480 Vac       ½A, 125 Vdc       Order       "S"       Thermowel         25       Heavy duty dc       10A, 125 Vac or dc       040       4"       2½"         26(7)       Sealed environment proof       15A, 125/250 Vac       060       6"       4½"         27       High temperature 300°F       15A, 125/250 Vac       090       9"       7½"         28(5)       Manual reset trip on decreasing       15A, 125/250 Vac       120       12"       10½"         29(5)       Manual reset trip on decreasing       15A, 125/250 Vac       S"       S"       2½"         31       Low level (gold) contacts       1A, 125 Vac       1A, 125 Vac       5 – OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |
| 24(1)       General purpose       15A, 125/250/480 Vac<br>½A, 125 Vdc       Order<br>½A, 125 Vdc       "S"       Thermowel<br>"U" Dimension         25       Heavy duty dc       10A, 125 Vac or dc,<br>½A HP, 125 Vac or dc       040       4"       2½"         26 <sup>(7)</sup> Sealed environment proof       15A, 125/250 Vac       060       6"       4½"         27       High temperature 300°F       15A, 125/250 Vac       090       9"       7½"         28 <sup>(6)</sup> Manual reset trip on<br>increasing       15A, 125/250 Vac       120       12"       10½"         29 <sup>(5)</sup> Manual reset trip on<br>decreasing       15A, 125/250 Vac       5 – OPTIONS       5 – OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |  |
| 2.1.1       Control of purpose       15/4, 125 Vdc       15/4, 125 Vdc       15/4, 125 Vdc $\frac{10}{\sqrt{A}}$ , 125 Vdc $\frac{10}{\sqrt{A}}$ , 125 Vdc $\frac{10}{\sqrt{A}}$ , 125 Vdc $\frac{10}{\sqrt{A}}$ , 125 Vdc         25       Heavy duty dc       10A, 125 Vac or dc, $\frac{10}{\sqrt{B}}$ HP, 125 Vac or dc $040$ $4"$ $2\frac{1}{2}"$ 26 <sup>(7)</sup> Sealed environment proof       15A, 125/250 Vac $060$ $6"$ $4\frac{1}{2}"$ 27       High temperature $300^\circ$ F       15A, 125/250 Vac $090$ $9"$ $7\frac{1}{2}"$ 28 <sup>(5)</sup> Manual reset trip on decreasing       15A, 125/250 Vac $030^{(9)}$ $3"$ $2\frac{1}{2}"$ 31       Low level (gold) contacts       1A, 125 Vac       1A, 125 Vac $5 - OPTIONS$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |
| 25       Heavy duty dc       10A, 125 Vac or dc, 1/6 HP, 125 Vac or dc, 1/6 HP, 125 Vac or dc       040       4"       2½"         26 <sup>(7)</sup> Sealed environment proof       15A, 125/250 Vac       060       6"       4½"         27       High temperature 300°F       15A, 125/250 Vac       090       9"       7½"         28 <sup>(6)</sup> Manual reset trip on increasing       15A, 125/250 Vac       120       12"       10½"         29 <sup>(6)</sup> Manual reset trip on decreasing       15A, 125/250 Vac       31       15A, 125/250 Vac       5-OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |  |
| 1/2         1/2         HP, 125 Vac or dc           26 <sup>(7)</sup> Sealed environment proof         15A, 125/250 Vac           27         High temperature 300°F         15A, 125/250 Vac           28 <sup>(5)</sup> Manual reset trip on increasing         15A, 125/250 Vac           29 <sup>(5)</sup> Manual reset trip on decreasing         15A, 125/250 Vac           31         Low level (gold) contacts         1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |  |
| 26 <sup>(7)</sup> Sealed environment proof         15A, 125/250 Vac           27         High temperature 300°F         15A, 125/250 Vac           28 <sup>(5)</sup> Manual reset trip on<br>increasing         15A, 125/250 Vac           29 <sup>(5)</sup> Manual reset trip on<br>decreasing         15A, 125/250 Vac           31         Low level (gold) contacts         1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |  |
| 27         High temperature 300°F         15A, 125/250 Vac           28 <sup>(5)</sup> Manual reset trip on<br>increasing         15A, 125/250 Vac           29 <sup>(5)</sup> Manual reset trip on<br>decreasing         15A, 125/250 Vac           31         Low level (gold) contacts         1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |  |
| 28 <sup>(5)</sup> Manual reset trip on<br>increasing         15A, 125/250 Vac         Remote Mount           29 <sup>(5)</sup> Manual reset trip on<br>decreasing         15A, 125/250 Vac         3"         2½"           31         Low level (gold) contacts         1A, 125 Vac         5 - OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
| increasing     030(9)     3"     2½"       29(5)     Manual reset trip on decreasing     15A, 125/250 Vac     5- OPTIONS       31     Low level (gold) contacts     1A, 125 Vac     5- OPTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |  |
| decreasing     5 – OPTIONS       31     Low level (gold) contacts     1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |
| 31 Low level (gold) contacts 1A, 125 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |  |
| 32     Hermetically sealed switch,<br>general purpose     11A, 125/250 Vac     Use table on page 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |  |
| 42         Hermetically sealed gold         1A, 125 Vac         6 - STANDARD TEMPERATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
| 50     Variable deadband     15A, 125/250 Vac     RANGE SELECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |
| UL/CSA Listed Dual (2 SPDT) Adjustable Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |
| 61 <sup>(7)</sup> Dual narrow deadband 15A, 125/250 Vac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |  |
| 62 <sup>(7)</sup> Dual sealed environment         15A, 125/250 Vac         -40 to 60         -40 to 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |  |
| Diamond         Diamond <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |  |
| 63         Dual high temp. 300°F         15A, 125/250 Vac         75 to 205         20 to 95           64         Dual general purpose         15A, 125/250/480 Vac         150 to 260         65 to 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |  |
| 64         Dual general purpose         15A, 125/250/480 Vac         150 to 260         65 to 125           ½A, 125 Vdc         235 to 375         110 to 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ——————————————————————————————————————— |  |
| 1/2A, 123 Vdc         200 to 573         110 to 130           1/4A, 250 Vdc         350 to 525         175 to 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |  |
| 65         Dual ammonia service         5A, 125/250 Vac         500 to 750 <sup>(2)</sup> 260 to 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |  |
| 67 <sup>(4,6)</sup> Dual hermetically sealed         5A, 125/250 Vac         NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ]                                       |  |
| switch, narrow deadband 1 Standard switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |  |
| 68 <sup>(4)</sup> Dual hermetically sealed         11A, 125/250 Vac         2 Available with remote mount thermal systems only.           3 Dual switches are 2 SPDT snap-action switches, not independent of the systems | ntly                                    |  |
| switch, general purpose 5A, 30 Vdc adjustable.<br>4 Wires cannot be terminated inside T400 switch enclosure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |  |
| 70         Dual low level gold contacts         1A, 125 Vac         5 Not available with Type 700 enclosure.           6 Estimated dc rating, 2.5A, 28 Vdc (not UL listed).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |  |
| 71(4)       Dual hermetically sealed switch, gold contacts       1A, 125 Vac       7 Estimated dc rating, 0.4A, 120 Vdc (not UL listed).         8 Not available on 350 to 525°F.       9 Consult factory on remote mount for bulb lengths other than 3."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |  |

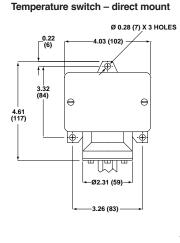


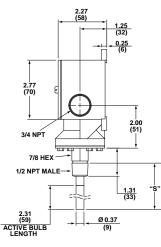
# **B-Series Switches – Temperature**

#### **OPTIONAL FEATURES AND ACCESSORIES**

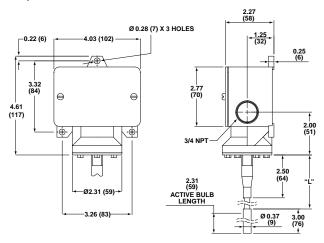
|      | B-SERIES SWIT                                                                  | CH OPTIONS   |              |
|------|--------------------------------------------------------------------------------|--------------|--------------|
|      |                                                                                | Appicable Sw | vitch Series |
|      |                                                                                | Temperature  |              |
| Code | Description                                                                    | All Ranges   | Notes        |
| XBX  | 1/2" Male NPT Bushing                                                          | •            |              |
| XCH  | Chained Cover                                                                  | •            |              |
| XC8  | CSA Approval                                                                   | •            | 1            |
| XCN  | ATEX Directive 94/9/EC                                                         | •            | 2            |
| XFP  | Fungus Proofing                                                                | •            |              |
| XFS  | Factory Adjusted Setpoint                                                      | •            | 3            |
| XJK  | Left Conduit Connection                                                        | •            | 4            |
| XJL  | <sup>3</sup> ⁄4″ to <sup>1</sup> ⁄2″ Reducing Bushing                          | •            |              |
| XJM  | Metric Electrical Conduit Connection M20 x 1.5                                 | •            |              |
| XK3  | Terminal Block (700 Series only)                                               | •            | 5            |
| XLE  | 6 foot Leads on the Micro Switch                                               | •            |              |
| XNH  | Tagging Stainless Steel                                                        | •            |              |
| XNN  | Paper Tag                                                                      | •            |              |
| XPK  | Pilot Light(s) Top Mounted                                                     | •            | 6            |
| ХРМ  | <sup>3</sup> / <sub>4</sub> " Sealed Conduit Connection<br>with 16" Lead Wires | •            |              |
| XTM  | 2" Pipe Mounting Bracket                                                       | •            |              |
| XUX  | IECEx Rating (700 Series only)                                                 | •            |              |

#### NOTES:

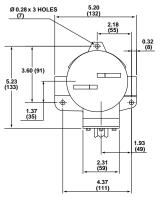

- Standard on 400 Series.
   700 Series only.
   Advise static or working pressure for differential pressure switches.
   Standard on 700 Series. N/A with DPDT element on 400 Series.
   Terminal Blocks standard with 700 dual switches.
   N/A on 700 Series.

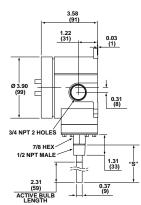

€x d II2 GD Ex d IIC T6 Gb Ex t IIIC T85° C Db IP 6X (Ta = −20°C to +60°C)



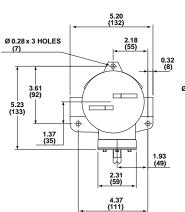

# **B-Series Temperature Switches**

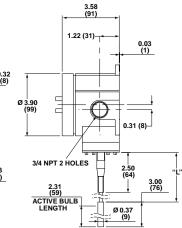
#### **Dimensions – 400 Series**

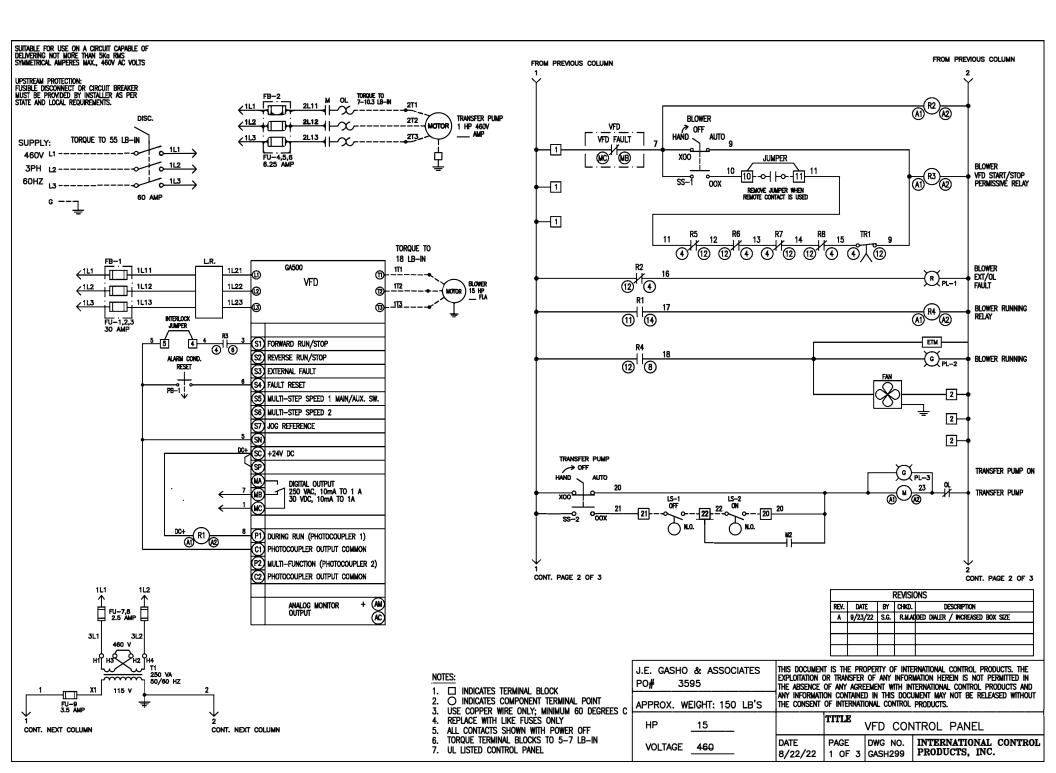


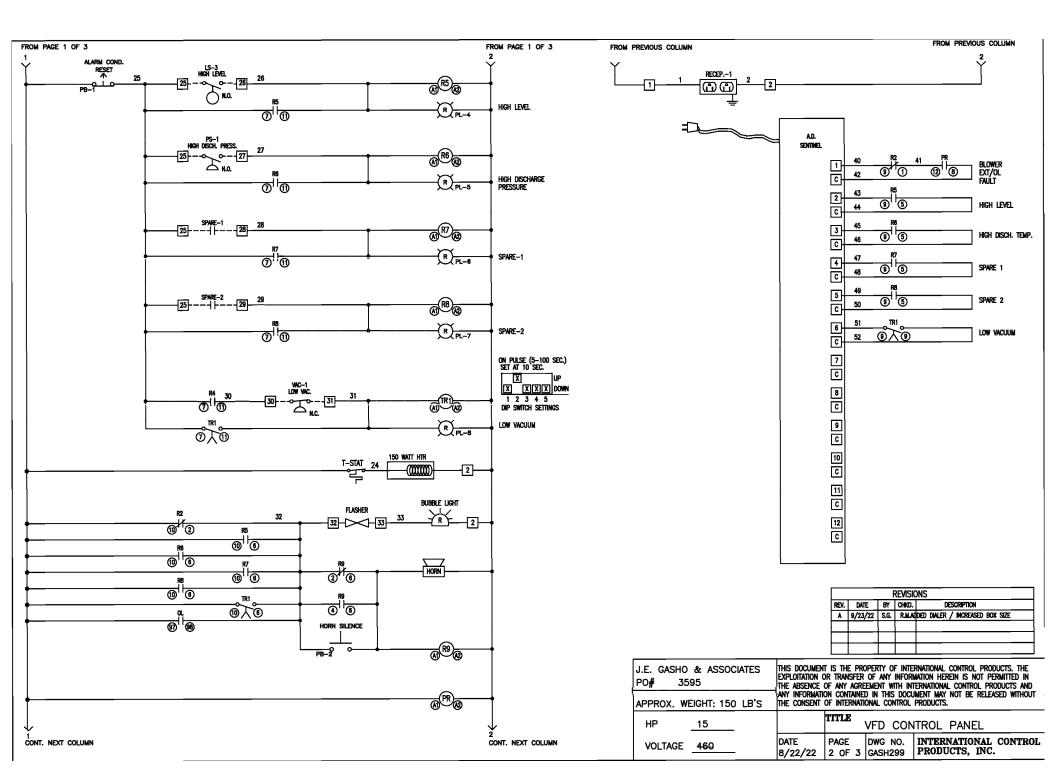




Temperature switch - remote mount





Temperature switch – direct mount




Temperature switch - remote mount









| BILL OF MATERALS           TEL 0T         UBC         MFC         DBCORFION         MFT NUMBER           1         TO KAG         STCE         300001 NBM XR ENCLOSURE         SEC-30250           3         I DECL         SSCE         22/27 STEE BOL RINK         SSC-30250           4         1         DECL         SSCE         22/27 STEE BOL RINK         SSC-50250           5         1         FRM         HUMAND         DECLOSURE TRUE ROL RINK         SSC-F0260           5         1         FRM         HUMAND         DECLOSURE TRUE ROL RINK         SSC-F0260           6         1         FRM         HUMAND         DECLOSURE TRUE         FR42000138K           7         DSC.         A88         ROM ASS I FUE ROL RINKE         OFESAL           9         1         DSC.         A88         NOM ASS I FUE ROL RINKE         OFESAL           10         1         FP-1         MSSEN         30 AMP CASS I FUE ROL RINKE         OFESAL           11         1         DRADER NA SA ALSS I FUE ROL RINKE         OFESAL         OSESAL           11         1         DRADER NA SA ALSS I FUE ROL RINKE         OFESAL         OSESAL           11         NO RINKING SA AME E CONTICING <th></th>                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| I       I       DOUL       SEE       SOUDD(1) NEM SR ENCLOSURE       SEE-SOE2D(1)/P         2       1       DNL       SSE       77/27 STEEL BOX PMIL       SSE-OFX02LSUP         3       ID NL       SSE       77/27 STEEL BOX PMIL       SSE-OFX02LSUP         4       1       DNL       SSE       77/27 STEEL BOX PMIL       SSE-OFX02LSUP         5       1       PMI       HWMOND       94 CONSTRANCE       SSE-OFX02LSUP         5       1       FNM       HWMOND       94 CONSTRANCE       PF420007586K         7       DSSC.       A68       NOAL ST SSE CONSTRANCE       ONESAL         9       1       DSSC.       A68       NOAL ST SSE STATZ       ONESAL         10       16       FP-1       HERSIN       39 SOUDANET NUTE       ODESAL       ATSON         11       3       NU12,3       HERSIN       39 SOU ANS 10 SOUDANCE NUTE       ODESAL       ATSON         12       1       VTD       MERTIX       159 PV VDS 3       PLSE       DOUSSUME       SOUZANT       SOUZANT<                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| 1       DOCL       SCC       20/27 STEL BXCN NMEL       SCC - SXP30         3       1       DACL       SCE       7/24/27 STEL BXCN NMEL       SCE - SXP30         4       1       DACL       SCE       PRAUCOK ATUCHAMENT       SCE - SXP30         5       1       PANL       SSE       PRAUCOK ATUCHAMENT       SCE - SXP30         7       DSC.       ABB       OKOK ATUCHAMENT       SCE - SXP300       PRAUDONSBK         7       DSC.       ABB       OKOK ATUCHAMENT       SCE - SXP300       PRAUDONSBK         9       10       DSC.       ABB       NON-RESE DOSC. SMICH       OKR33       PRAUDONSBK         111       3       R11_2,3       MERSEN       30 30A (LSS of FIGE BLOCK       603381       OKR33       PRAUDONSHICT SWHT         121       1. VF0       MERTEK       129 PV PD       OCOSS1160       OCOSS1160       OC       OC </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| 3       1       ENCL       SCE       27/27 STEL DEAD FRONT DOOR       SCE-DF30EJ30LP         4       1       DNCL       SCE       PRUCON ATTCHMENT       SCE-DF30EJ30LP         5       1       FNN       HHAMAND       94 Core       PRUCON ATTCHMENT       SCE-DF30EJ30LP         6       1       DNCL       SCE       PRUCON ATTCHMENT       SCE-DF30EJ30LP       SCE-DF30EJ30LP         7       DOSC.       ABB       Core       PR4250007388K       Pre4250007388K       Pre425001388K         9       1       DSC.       ABB       DEALSSEE FLIER       Pre425001388K       OUSSAILD       OSSAILD         9       1       DSC.       ABB       DEALSS JETEE       OTSSAILD       OSSAILD       OSSAILD         11       3       FUL2.3       MERSEN       30 AMP CLASS J FLIEE       OTSSAILD       OCSAILD       OCSAILD       OC       OC <thoc< th="">       OC       OC       O</thoc<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| 3       1       CML       Sole       1/2/1/3 filled body from tools       Sole-of-output         4       1       ENCL       Sole       1/2/1/3 filled body from tools       Sole-of-output         5       1       FNN       HAMILOND       94 CML FNN       PF2400003788K         6       1       FNN       HAMILOND       94 CML FNN       PF2400003788K         7       DISC.       ABB       60A SP NON-FUSED DSC. SWITCH       OTB0F3         8       1       DISC.       ABB       DISCONNECT WAULE       OHESDAL         9       1       DISC.       ABB       DISCONNECT WAULE       OHESDAL         10       1       FB-1       MORSEN       32 OAL (ASS J FUSE BLOCK)       OD000318K         11       3       FU12.3       MORSEN       32 OAL (ASS J FUSE BLOCK)       OD02-3-440300-3F42         12       1       MORTEX       LIBP REFU       OC (-3-440300-3F42       OC         12       1       MORSEN       32 OAL (ASS C FUSE BLOCK)       30223R         15       1       FB-2       MORSEN       ABB       RCD (K, TULIST HARD         19       2       SS-12       ABB       RCDK F TU2N (GR       MITT30-4         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| S       1       FAN       HAMACND       94 CPM       FAN       FP42500013R8K         6       1       FAN       HAMACND       ENCLOSUE RUTE       FP42500013R8K       FP42500013R8K         7       DSC.       ABB       NEM X3 DECONNECT HANDLE       OTERSA         8       1       DSC.       ABB       DESCONNECT HANDLE       ORESA/L         9       1       DSC.       ABB       DESCONNECT HANDLE       ORESA/L         10       1       FP-1       MERSEN       35 AD ALSS J FUSE BLOCK       AD300-JS742         12       1       VPD       IMMERTEX       LED RAMTE KORAD       ILP CASS J FUSE BLOCK       DEC3-440300-JS742         13       1       MERTEX       LED RAMTE KORAD       ILP CASS J FUSE BLOCK       DEC3-440300-JS742         15       1       FP-2       MERTEX       LED RAMTE KORAD       MIT CABLE       OF7-2-000R-IN         16       3       FU4.5.6       BUSSAMAN       6.25 AMP CLASS C FUSE       RNO-R-6 1/4       ST02/2       REG                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 拍                           |
| 6       1       FM       HAMMOND       ENCLOSURE FUTER       PFA400003R8K         7       055C.       A68       60A 3P NON-FUSED DSC. SWITCH       OTBOF3         9       1       DISC.       A68       DSCONNECT HANDL       OTBOF3         10       1       FP-1       HEREN       39 X0 CLSS J FUSE       AUSSITIO       OTBOF3         11       3       FU1_2,3       MERSIN       30 AMP CLSS J FUSE       AUSON       ODD051         11       3       FU1_2,3       MERSIN       30 AMP CLSS J FUSE       AUSON       ODD053         12       1       VP0       INNETTIX       LIDE RAUTE REVEAU WITH CAUSE       OFE-2-040300-3F42         15       1       FB-2       MERSIN       30 AMP CLSS C FUSE BLOCK       303232R         15       1       FB-2       MERSIN       3P X0A CLSS C FUSE BLOCK       303232R         16       3       FU4_5.6       BLSMANN CLSS C FUSE BLOCK       303232R         17       1       M       SELENS       6 AMP EC CONTACTOR       372015-14061         18       1       0.L       SELENS       6 AMP EC CONTACTOR       372015-14061         18       1       0.L       SELENS       0.005       37201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AIR FLOW                    |
| 6       1       FAM       FAMALON       ENCLUSE: FILLER       PFAMOUOUSER         7       DOSC.       ABB       NO.3 P* NN-INSID DOSC. SWITCH       Off005 3         8       1       DOSC.       ABB       NO.3 P* NN-INSID DOSC. SWITCH       Off005 3         9       1       DSC.       ABB       DDSCONNECT HWDLE       OHBS2A         9       1       DSC.       ABB       DDSCONNECT HWDLE       OHBS2A         10       1       FP-1       MIRSEN       30 AUP CLASS J FUSE       ODC-3-440300-3742         11       3       FU1,23       MIRSEN       30 AUP CLASS J FUSE       ODC-3-440300-3742         13       1       VTD       NVERTEX       LID RAMITE KCYPAD WITH CABLE       OPC-3-40300-3742         15       1       FP-2       MIRSEN       6 AWP CLASS CC FUSE       ROC X       30323R         16       3       FU4,5,6       BUSSIAWIN       6.25 AWP CLASS CC FUSE       ROC X000RT         19       2       SS-1,2       ABB       GEEN F.F. PLOT LUATT - 120V       CL-100R         12       2       PL-2,3       ABB       BUCK FLUSH P.B. (1 N.0,1 MC)       MP1-108-10         12       2       1       PB-1       ABB       BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 9       1       DISC.       ABB       DISCONNECT SHAFT       OXSEX180         10       1       RB-1       MERSEN       3P 30A CASS J FUSE BLOCK       60006SJ         11       3       RV12,3       MERSEN       3D AMP CASS J FUSE       AT30N         12       1       VFD       INVERTEX       15HP VFD       ODE-3-440300-3F42         13       1       VFD       INVERTEX       LED REMOTE KETPAD WITH CABLE       OPT-2-0PORT-IN         14       1       LR.       AD       UNIC REACTOR       IPT-4-0POIS       SIZE II       SIZE II       SIZE II       SIZE III       SIZE IIII SIZE IIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>G</b>                    |
| 9       1       DISC.       ABB       DISCONNECT SHAFT       OXSEX180         10       1       RB-1       MERSEN       3P 30A CASS J FUSE BLOCK       60006SJ         11       3       RV12,3       MERSEN       3D AMP CASS J FUSE       AT30N         12       1       VFD       INVERTEX       15HP VFD       ODE-3-440300-3F42         13       1       VFD       INVERTEX       LED REMOTE KETPAD WITH CABLE       OPT-2-0PORT-IN         14       1       LR.       AD       UNIC REACTOR       IPT-4-0POIS       SIZE II       SIZE II       SIZE II       SIZE III       SIZE IIII SIZE IIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ų · · · · · ·               |
| ID         I         FB-1         MERSEN         3P 30A CLASS J FUSE         BOOKS           111         3         FU1,2,3         MERSEN         30 AMP CLASS J FUSE         ATSON           12         1         VFD         INMERTEX         139P VFD         ODE-3-440300-3F42           13         1         VFD         INMERTEX         LDD RENOTE KCPPA0 WITH CABLE         OPT-2-0PORT-N           14         1         LR         AD         UNE RECTOR         LR-4015           15         1         FB-2         MERSEN         37 93A CLASS CC FUSE         NO-8-6 1/4           16         3         FU4,5.6         BUSSMANN         6.25 MIP CLOSS CC FUSE         NO-8-6 1/4           19         2         SS-12         ABB         3 POS.S.S. SPRO. RT. L TO C (2 N.0.)         MSS7-108-20           20         6         PL-1,4,5,6,7,8         ABB         RED F.V. PLOT LIGHT - 120V         CL-1000           21         2         PB-1         ABB         BLACK FUSH P.B. (1 N.0.)         MP1-108-11           24         1         HORN         NGRAM         AUARH HORN - 120V AC         ATH158AR           25         1         BUBBLE         NGRAM         BLACK FUSH P.B. (1 N.0.)         MP1-108-11 <td></td>                                                                                                                                                                                                                                                                                                                                                                                         |                             |
| 11       3       FU1,2,3       MERSEN       30 AMP CLASS J FUSE       ATION         12       1       VFD       INVERTEX       15/HP VFD       ODE-3-440300-3F42         13       1       VFD       INVERTEX       LDD REMOTE KLYPA DWHT CABLE       OPF-2-OPORT-IN         14       1       L.R.       AD       LINE REACTOR       LR-4015         15       1       FB-2       MERSEN       3P 30A CLSS CC FUSE BLOCK       3032.R         16       3       FU4,5.6       BUSSMANN       6.25 AMP CLASS CC FUSE       FNQ-F-6.1/46.1         18       1       OL       SEMENS       OVERLOAD RELAY (1.8-2.5A)       3RU2126-1C80         19       2       SS-1.2       ABB       3 FOS.S.S. SPRG. RET. L TO C (2 N.O.)       MSSS7-108-20         20       6       PL-14,5.6.7,8       ABB       RCE DF.V. PLIOT LIGHT - 120V       CL-1000R         21       2       PB-1       ABB       BLOCK FLUSH P.B. (1 N.O.)       MP1-10B-11         23       1       PB-2       ABB       BLOCK FLUSH P.B. (1 N.O.)       MP1-10B-10         24       1       HORN       NORAM       ALARM HORN - 120V AC       ETN-120-ART-75         27       1       T1       EAGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 12       1       VFD       INVERTEX       15HP VFD       ODE-3-440300-3F42         13       1       VFD       INVERTEX       LD RENOTE KEYPAD WITH CABLE       OPT-2-0F0RT-IN         14       1       LR.       AD       LINE REACTOR       LR-4015         15       1       FB-2       MERSEN       S 303 23R         16       3       FU4,5,6       BUSSMANN       6.25 AMP CLASS CC FUSE       PNO-R-6 1/4         17       1       M       SEMENS       6 AMP EC CONTACTOR       3372015-14661         18       1       OL       SEMENS       0 OFELOND RELY (1.8-2.5A)       3802126-1680         19       2       SS-1.2       ABB       RED FV. PILOT LIGHT - 120V       CL-100R         21       2       PL-1.4,5,5,7.8       ABB       GREEN F.V. PILOT LIGHT - 120V       CL-100R         22       1       PB-2       ABB       BLACK FLUSH P.B. (1 N.0.)       MP1-10B-10         24       1       HORN       INGRAM       AURH HORN - 120V AC       A11158AR         25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       EIN-120-AFT-75         27       1       T1       EXTON       250MA CONTROL TRANSFORMER       C02205027B                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 13       1       UD       INPERTOR       LD REARCY       ILP AUXIENT         14       1       LR       AD       UNE REACTOR       LR-4015         15       1       FB-2       MERSEN       3P 30A CLASS CC FUSE       INQ-R-6 1/4         17       1       M       SIBLENIS       6 AMP IEC CONTACTOR       3RT2015-1AK61         18       1       OL       SIBLENIS       0 AMP IEC CONTACTOR       3RT2015-1AK61         18       1       OL       SIBLENIS       0 AMP IEC CONTACTOR       3RT20126-1C80         20       6       PL-1.4,5,6,7,8       ABB       RED F.V. PILOT LIGHT - 120V       CL-100R         21       2       PL-2.3       ABB       GREEN F.V. PILOT LIGHT - 120V       CL-100R         22       1       PB-1       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-11         23       1       PB-2       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-10         24       1       HORN       INGRAM       ALARM HORN       FLOW AC       LV25RED         26       1       FLASHER       ATC DN.       RASHER RELAY - 120V AC       ETM-120-AFT-75       FA         27       1       T1       EXTON       2.5 AMP C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| 13       1       UD       INPERTOR       LD REARCY       ILP AUXIENT         14       1       LR       AD       UNE REACTOR       LR-4015         15       1       FB-2       MERSEN       3P 30A CLASS CC FUSE       INQ-R-6 1/4         17       1       M       SIBLENIS       6 AMP IEC CONTACTOR       3RT2015-1AK61         18       1       OL       SIBLENIS       0 AMP IEC CONTACTOR       3RT2015-1AK61         18       1       OL       SIBLENIS       0 AMP IEC CONTACTOR       3RT20126-1C80         20       6       PL-1.4,5,6,7,8       ABB       RED F.V. PILOT LIGHT - 120V       CL-100R         21       2       PL-2.3       ABB       GREEN F.V. PILOT LIGHT - 120V       CL-100R         22       1       PB-1       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-11         23       1       PB-2       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-10         24       1       HORN       INGRAM       ALARM HORN       FLOW AC       LV25RED         26       1       FLASHER       ATC DN.       RASHER RELAY - 120V AC       ETM-120-AFT-75       FA         27       1       T1       EXTON       2.5 AMP C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
| 15       1       FB-2       MERSEN       3P 30A CLASS CC FUSE       BLOCK       30323R         16       3       FU4,5,6       BUSSMANN       6.25 AMP CLASS CC FUSE       FNQ-R-6 1/4         17       1       M       SIELENS       6 AMP EC CONTACTOR       3372015-1AK61         18       1       OL       SIEMENS       0 VERICAD RELAY (1.8-2.5A)       3RU2126-1C800         19       2       SS-12       ABB       3 CPC.SS. S.FR. RET. L TO C (2 N.0.)       M3557-108-20         20       6       PL-1,4,5,6,7,8       ABB       RED F.V. PILOT LIGHT - 120V       CL-100R         21       2       PL-2,3       ABB       BLACK FLUSH P.B. (1 N.0.)       MP1-108-11         23       1       PB-1       ABB       BLACK FLUSH P.B. (1 N.0.)       MP1-108-10         24       1       HORN       INGRAM       ALXR HORN - 120V AC       H158AR         25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       LV25RED         26       1       FLASHER       ATC DW.       FLASHER RELAY - 120V AC       LV25RED         26       1       FLASHER       ATC DW.       Z5 AMP CLASS CC FUSE       ATRE 1/2         28       2       FU3,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |
| 16       3       FU4,5,6       BUSSMANN       6.25 AMP CLASS CC FUSE       FN0-R-6 1/4         17       1       M       SIEMENS       6 AMP IEC CONTACTOR       3RT2015-1AK61         18       1       OL       SIEMENS       0/VERLOAD RELAY (1.8-2.5A)       3RU2126-1C80         19       2       SS-1,2       ABB       3 POS. SS. SPRG. RET. L TO C (2 N.O.)       M3SS7-10B-20         20       6       PL-1,4,5,6,7,8       ABB       GREEN F.V. PILOT LIGHT - 120V       CL-100G         21       2       PL-2, 3       ABB       GREEN F.V. PILOT LIGHT - 120V       CL-100G         22       1       PB-1       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-11         23       1       PB-2       ABB       BLACK FLUSH P.B. (1 N.O.)       MP1-10B-10         24       1       HORN       INGRAM       ALARM HORN - 120V AC       AL25RED         25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       LV25RED         26       1       FLASHER       AIC DN.       FLASHER RELAY - 120V AC       EIN-2-AFT-75         27       1       T1       EATOM       2500A CONTROL TRANSFORMER       C020267B         28       2       FU-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 17       1       M       SIGNATION       State Contractore       Streps         17       1       M       SIGNATION       State Contractore       Streps       Strep       Streps       Streps                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |
| Image: transformed balanceOblicate of transformed to the largeOblicate of transformed to the largeImage: transformed to th |                             |
| Image: transformed balanceOblicate of transformed to the largeOblicate of transformed to the largeImage: transformed to th |                             |
| 206PL-1.4.5.6.7.8ABBRED F.V. PILOT LIGHT - 120VCL-100R212PL-2.3ABBGREEN F.V. PILOT LIGHT - 120VCL-100G221PB-1ABBBLACK FLUSH P.B. (1 N.O./1 N.C.)MP1-10B-11231PB-2ABBBLACK FLUSH P.B. (1 N.O.)MP1-10B-10241HORNINGRAMALARM HORN - 120V ACAH1158AR251BUBBLEINGRAMBUBBLE LIGHT - 120V ACLX25RED261FLASHERATC DIV.FLASHER RELAY - 120V ACETN-120-AFT-75271T1EATON250VA CONTROL TRANSFORMERC025022FB282FU-7,8MERSEN2.5 AMP CLASS CC FUSEATDR2 1/2291FIU-9MERSEN3.5 AMP TIME DELAY FUSETRM3 1/2301R1FINDER1PUE RELAY - 24V DC38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 206PL-1,4,5,6,7,8ABBRED F.V. PILOT LIGHT - 120VCL-100R $21$ 2PL-2,3ABBGREEN F.V. PILOT LIGHT - 120VCL-100G $22$ 1PB-1ABBBLACK FLUSH P.B. (1 N.O./1 N.C.)MP1-10B-11 $23$ 1PB-2ABBBLACK FLUSH P.B. (1 N.O.)MP1-10B-10 $24$ 1HORNINGRAMALARM HORN - 120V ACAH1158AR $25$ 1BUBBLEINGRAMBUBBLE LIGHT - 120V ACAH1158AR $25$ 1BUBBLEINGRAMBUBBLE LIGHT - 120V ACLX25RED $26$ 1FLASHERATC DW.FLASHER RELAY - 120V ACEIN-120-AFT-75 $27$ 1T1EATON250VA CONTROL TRANSFORMERC0250E2FB $28$ 2FU-7,8MERSEN2.5 AMP CLASS CC FUSEATDR2 1/2 $29$ 1FU-9MERSEN3.5 AMP TIME DELAY FUSETRM3 1/2 $30$ 1R1FINDER1 POLE RELAY - 24V DC38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| L1L2ILERestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRestRest </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |
| Label in the second stateLabel in the second stateLabel in the second state231PB-2ABBBLACK FLUSH P.B. (1 N.O.)MP1-10B-10241HORNINGRAMALARM HORN - 120V ACAH1158AR251BUBBLEINGRAMBUBBLE LIGHT - 120V ACLX25RED261FLASHERATC DV.FLASHER RELAY - 120V ACETN-120-AFT-75271T1EATON250VA CONTROL TRANSFORMERC0250E2FB282FU-7,8MERSEN2.5 AMP CLASS CC FUSEATDR2 1/2291FU-9MERSEN3.5 AMP TIME DELAY FUSETRN3 1/2301R1FINDER1 POLE RELAY - 24V DC38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                           |
| 23       1       PB-2       ABB       BLACK PLOSH PLO. (1 NO.)       MP1-10B-10         24       1       HORN       INGRAM       ALARM HORN - 120V AC       AH1158AR         25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       LX25RED         26       1       FLASHER       ATC DV.       FLASHER RELAY - 120V AC       ETN-120-AFT-75         27       1       T1       EATON       250VA CONTROL TRANSFORMER       C025022FB         28       2       FU-7,8       MERSEN       2.5 AMP CLASS CC FUSE       ATDR2 1/2         29       1       FU-9       MERSEN       3.5 AMP TIME DELAY FUSE       TRN3 1/2         30       1       R1       FINDER       1 POLE RELAY - 24V DC       38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |
| L1       I       Hora       PErtain Hora       PErtain Hora       PErtain Hora       PErtain Hora         25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       LX25RED         26       1       FLASHER       ATC DV.       FLASHER RELAY - 120V AC       ETN-120-AFT-75         27       1       T1       EATON       250VA CONTROL TRANSFORMER       C0250E2FB         28       2       FU-7,8       MERSEN       2.5 AMP CLASS CC FUSE       ATDR2 1/2         29       1       FU-9       MERSEN       3.5 AMP TIME DELAY FUSE       TRN3 1/2         30       1       R1       FINDER       1 POLE RELAY - 24V DC       38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 25       1       BUBBLE       INGRAM       BUBBLE LIGHT - 120V AC       LX25RED         26       1       FLASHER       ATC DN.       FLASHER RELAY - 120V AC       ETN-120-AFT-75         27       1       T1       EATON       250VA CONTROL TRANSFORMER       C0250E2FB         28       2       FU-7,8       MERSEN       2.5 AMP CLASS CC FUSE       ATDR2 1/2         29       1       FU-9       MERSEN       3.5 AMP TIME DELAY FUSE       TRM3 1/2         30       1       R1       FINDER       1 POLE RELAY - 24V DC       38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 27         1         T1         EATON         250VA CONTROL TRANSFORMER         C0250E2FB           28         2         FU-7,8         MERSEN         2.5 AMP CLASS CC FUSE         ATDR2 1/2           29         1         FU-9         MERSEN         3.5 AMP TIME DELAY FUSE         TRM3 1/2           30         1         R1         FINDER         1         POLE RELAY - 24V DC         38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 28         2         FU-7,8         MERSEN         2.5 AMP CLASS CC FUSE         ATDR2 1/2           29         1         FU-9         MERSEN         3.5 AMP TIME DELAY FUSE         TRM3 1/2           30         1         R1         FINDER         1 POLE RELAY - 24V DC         38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ¥                           |
| 29         1         FU-9         MERSEN         3.5 AMP TIME DELAY FUSE         TRM3 1/2           30         1         R1         FINDER         1 POLE RELAY - 24V DC         38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 30         1         R1         FINDER         1         POLE         RELAY         -         24V         DC         38.51.7.024.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 31 6 R2,4,5,6,7,8 FINDER 4 POLE RELAY – 120V 55.34.8.120.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 32         6         R2,4,5,6,7,8         FINDER         4         POLE         RELAY         SOCKET         94.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |
| 33         3         R3,9,PR         FINDER         2         POLE         RELAY         -         120V         56.32.8.120.0040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |
| 34     3     R3.9,PR     FINDER     2     POLE     RELAY     SOCKET     96.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |
| 35         1         TR1         FINDER         2         POLE         TIMER         -         120V         85.02.0.125.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |
| 36     1     TR1     FINDER     2     POLE TIMER SOCKET     94.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |
| 37         1         HTR         STEGO         150 WATT HTR         028009-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ı                           |
| 38     1     T-STAT     STEGO     HEATER     T-STAT     011409-00       REV.     DATE     BY     CHK0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DESCRIPTION                 |
| 39 1 RECEPT COMMERCIAL ELEC. 1 GANG BOX WSB350G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 40 1 RECEPT GFCI GFCI RECEPTACLE TGMT20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 41 1 A.D. SENSAPHOINE SENTINEL CELLULAR MONITORING SYSTEM SCD-1200-4G_SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |
| 42 27 T.B.'S PHOENIX TERMINAL BLOCK 3004362                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |
| 43 1 T.B.'S PHOENIX TERMINAL BLOCK END COVER 3003020 J.E. GASHO & ASSOCIATES THIS DOCUMENT IS THE PROPERTY OF INTERNAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |
| 44     2     T.B.'S     PHOENIX     DIN RAIL END RETAINER     0800886       44     2     T.B.'S     PHOENIX     DIN RAIL END RETAINER     0800886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ional Control Products and  |
| 45 2 GROUND BURNDY 14-2 AWG GROUND LUG DIA2 ANY INFORMATION CONTAINED IN THIS DOCUMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAY NOT BE RELEASED WITHOUT |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| HP <u>15</u> VFD CONTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | )L PANEL                    |
| VOLTAGE 460 DATE PAGE DWG NO. IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ERNATIONAL CONTROL          |
| VOLTAGE         460         DATE         FAGE         DWG NO.         IN           8/22/22         3 OF 3         GASH299         PP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DUCTS, INC.                 |

APPENDIX L SSDS INSPECTION LOG

|                                                                 | SSDS MONITORING INSPECTION FORM |                        |                                                        |                                                        |                                         |  |  |  |
|-----------------------------------------------------------------|---------------------------------|------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------|--|--|--|
|                                                                 |                                 |                        | 0 46th Street<br>ueens, NY                             |                                                        |                                         |  |  |  |
| Inspector Name:                                                 |                                 | ¥                      | Date:                                                  |                                                        |                                         |  |  |  |
| Time In:                                                        |                                 |                        | Time Out:                                              |                                                        |                                         |  |  |  |
| General                                                         |                                 |                        |                                                        |                                                        |                                         |  |  |  |
| Weather:                                                        | Temperature:                    |                        | Barometric Pres                                        | ssure:                                                 |                                         |  |  |  |
| When was the last rain e                                        | When was the last rain event?   |                        |                                                        |                                                        |                                         |  |  |  |
| Is the blower currently op                                      | perating? Yes / No              |                        |                                                        |                                                        |                                         |  |  |  |
| If no, please list reason/a                                     |                                 |                        |                                                        |                                                        |                                         |  |  |  |
| Any evidence of system                                          | tampering, vandalism            | l or damage in th      | e first floor equip                                    | oment room? -                                          |                                         |  |  |  |
| Is air discharging from th                                      | e exhaust piping to th          | ne roof? -             |                                                        |                                                        |                                         |  |  |  |
| Any evidence of system                                          | tampering, vandalism            | i, or damage to tl     | he exhaust stack                                       | -</td <td></td>                                        |                                         |  |  |  |
| Were all cleanout/sampli                                        | ng port caps securely           | attached prior to      | o system testing                                       | ? -                                                    |                                         |  |  |  |
| If no, list location and cor                                    | ntact Proiect Manage            | r/Proiect Director     | r.                                                     |                                                        |                                         |  |  |  |
|                                                                 |                                 | ·····j                 |                                                        |                                                        |                                         |  |  |  |
| Is the concrete floor slab                                      | overlying all of the S          | SDS piping runs        | intact? -                                              |                                                        |                                         |  |  |  |
|                                                                 |                                 |                        |                                                        |                                                        |                                         |  |  |  |
| If no, list location and cor                                    | ntact Project Manage            | r/Project Director     | r.                                                     |                                                        |                                         |  |  |  |
|                                                                 |                                 | SSD                    | S Operations                                           |                                                        |                                         |  |  |  |
| Monitoring Point (MP)<br>or Riser (R)<br>Identification         | Location                        | Flow Rate <sup>1</sup> | Applied<br>Vacuum <sup>1</sup><br>in. H <sub>2</sub> O | Induced<br>Vacuum <sup>2</sup><br>in. H <sub>2</sub> O | Notes                                   |  |  |  |
| MP-1                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| MP-2                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| MP-3                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| MP-4                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| MP-5                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| MP-6                                                            |                                 | NA                     | NA                                                     |                                                        |                                         |  |  |  |
| R-1                                                             |                                 |                        |                                                        | NA                                                     |                                         |  |  |  |
| R-2                                                             |                                 |                        |                                                        | NA                                                     |                                         |  |  |  |
| R-3                                                             |                                 |                        |                                                        | NA                                                     |                                         |  |  |  |
| R-4                                                             |                                 |                        |                                                        | NA                                                     |                                         |  |  |  |
| R-5                                                             | R-5 NA                          |                        |                                                        |                                                        |                                         |  |  |  |
| Comments: Combined                                              | d applied vacuum on             | VR-1 riser =           |                                                        |                                                        |                                         |  |  |  |
| Notes:<br>1. Normal system flow ra<br>be obtained from each ris |                                 |                        | d vacuum readin                                        | gs range from 1                                        | to 15 in. $H_2O$ . System readings will |  |  |  |
|                                                                 |                                 |                        | mum of 0.004 in.                                       | H <sub>2</sub> O. System rea                           | adings will be obtained from each       |  |  |  |
| monitoring point (MP-1 th<br>3. If observations are co          | hrough MP-6).                   |                        |                                                        | 2                                                      | and prepare corrective action plan, if  |  |  |  |
| necessary.<br>in. of $H_2O$ - inches of wat                     | ter                             |                        |                                                        |                                                        |                                         |  |  |  |
| cfm - cubic feet per minute                                     |                                 |                        |                                                        |                                                        |                                         |  |  |  |

NA - not applicable

APPENDIX M SSDS SHUTDOWN LOG

### SSDS System Shutdown Log TRACKING FORM

22-60 46th Street, Queens, NY

| Date     | Time  | Message | Unusual conditions on arrival | Restart<br>successful? | Description of persistant problem(s) |
|----------|-------|---------|-------------------------------|------------------------|--------------------------------------|
| MM/DD/YY | HH:MM | Alarm   | fan shut down.                | Yes                    |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |

APPENDIX N SVE INSPECTION AND SAMPLING LOGS

|                | ΜΟΝΤ                                                           | SVE INSPECTION<br>THLY SOIL VAPOR EXTRACTION<br>22-60 46th Street, Qu | ON SYSTEM INSPECTION                                              |  |
|----------------|----------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Inspector Nan  | ne:                                                            | Date:                                                                 |                                                                   |  |
| Time IN:       |                                                                | Time OUT:                                                             |                                                                   |  |
| -              |                                                                | GENERAL                                                               |                                                                   |  |
| Weather:       | Temperature:                                                   | Barometric<br>Pressure:                                               | Equipment<br>Room<br>Temperature:                                 |  |
| When was the   | last rain event?                                               |                                                                       |                                                                   |  |
|                | wer currently operating? Yes /<br>T PROJECT MANAGER and        | ′ No (circle one)<br>please list reason/alarm conditio                | n:                                                                |  |
| What is the VF | D setting?                                                     |                                                                       |                                                                   |  |
| lf under 30 l  | Hz, ALERT PROJECT MANA                                         | GER:                                                                  |                                                                   |  |
|                | in the knockout tank gauge be<br>T PROJECT MANAGER and         | How the low-high float sensor? Y manually drain knockout tank         | ′es / No (circle one)                                             |  |
|                | p working? Yes / No (circle o<br>T PROJECT MANAGER.            | ne)                                                                   |                                                                   |  |
| -              | um full? Yes / No (circle one)<br>owledge alarm on panel and A | LERT PROJECT MANAGER.                                                 |                                                                   |  |
| Any evidence o | of system tampering, vandalis                                  | n or damage? Yes / No (circle o                                       | one)                                                              |  |
| -              | PROJECT MANAGER and pl                                         |                                                                       | ·····,                                                            |  |
| Any evidence o | of system tampering, vandalisr                                 | n or damage to the exhaust stac                                       | k? Yes / No (circle one)                                          |  |
| If yes, ALERT  | PROJECT MANAGER and pl                                         | ease note findings:                                                   |                                                                   |  |
|                |                                                                | completed along with the samplin                                      | g log for each sampling event.<br>GAC - Granular Activated Carbon |  |
| Comments:      | ization Deteotor, ppin - parts p                               | er minion, ττς - ποι applicable, C                                    |                                                                   |  |
|                |                                                                | Emergency Contact Information                                         |                                                                   |  |
|                | Name                                                           | Title                                                                 | Contact Number<br>646-388-9576 (office)                           |  |
| ļ              | Adrianna Bosco                                                 | AKRF Project Manager                                                  | 914-874-3358 (cell)<br>646-388-9865 (office)                      |  |
|                | Ashutosh Sharma                                                | AKRF Deputy Project Manager                                           | 347-249-0652 (cell)                                               |  |
|                | Emanuel Kokinakis                                              | Owner's Representative                                                | 718-932-6342 (office)                                             |  |

|                                         | MONT                                                  | HLY SOIL VAPO                                                  | E INSPECTION<br>R EXTRACTION<br>46th Street, Qu | N SYSTEM IN   | ISPECTION                                                       |
|-----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------|---------------|-----------------------------------------------------------------|
| CALL                                    | PROJECT MAN                                           | AGER IF READIN                                                 | SVE Operatio                                    |               | TYPICAL RANGE (IN GRAY)                                         |
| Pre-Blower Inlet Temperat               |                                                       | Post-Blower Out                                                |                                                 |               | Knockout Tank Vacuum (Inches of water<br>column):<br>0-90 inH2O |
| Pre-filter Vacuum (Inches<br>0-90 inH2O | of water column):                                     | Post-filter Vacuu<br>0-90 inH2O                                | m (Inches of wa                                 | ater column): | Post-Blower Pressure (Inches of water column):<br>0-90 inH2O    |
| GAC Influent PID (ppm):                 |                                                       | GAC Intermediate PID (ppm):<br>Less than GAC Influent PID      |                                                 |               | GAC Effluent PID (ppm):<br>0 ppm                                |
| Monitoring<br>Location                  | Vacuum<br>Reading<br>"H2O<br>Between 0 and 90<br>"H2O | Air Flow<br>Reading<br>"H2O<br>Between 0.000 and<br>0.050 "H2O | Air Flow<br>Reading<br>CFM                      |               | Notes                                                           |
| SVE-01                                  |                                                       |                                                                |                                                 |               |                                                                 |
| SVE-02                                  |                                                       |                                                                |                                                 |               |                                                                 |
| SVE-03                                  |                                                       |                                                                |                                                 |               |                                                                 |
| SVE-04                                  |                                                       |                                                                |                                                 |               |                                                                 |
| SVE-05                                  |                                                       |                                                                |                                                 |               |                                                                 |
| SVE-06                                  |                                                       |                                                                |                                                 |               |                                                                 |

| Inspector Na               | me:        |              |          | Date:      |                     |           |       |
|----------------------------|------------|--------------|----------|------------|---------------------|-----------|-------|
| Time IN: Time OUT:         |            |              |          |            |                     |           |       |
| Location                   | Start Time | Start Vacuum | End Time | End Vacuum | PID Field<br>Screen | Sample ID | Notes |
| SVE Carbon<br>Influent     |            |              |          |            |                     |           |       |
| SVE Carbon<br>Intermediate |            |              |          |            |                     |           |       |
| SVE Carbon<br>Effluent     |            |              |          |            |                     |           |       |
| Comments:                  |            |              |          |            |                     |           |       |
|                            |            |              |          |            |                     |           |       |
|                            |            |              |          |            |                     |           |       |

APPENDIX O SVE SHUTDOWN LOG

## SVE System Shutdown Log TRACKING FORM

22-60 46th Street, Queens, NY

| Date     | Time  | Message | Unusual conditions on arrival | Restart<br>successful? | Description of persistant problem(s) |
|----------|-------|---------|-------------------------------|------------------------|--------------------------------------|
| MM/DD/YY | HH:MM | Alarm   | fan shut down.                | Yes                    | High Temperature                     |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |
|          |       |         |                               |                        |                                      |

APPENDIX P Responsibilities of Owner and Remedial Party and Site Management Inspection Form

#### **Responsibilities**

The responsibilities for implementing the Site Management Plan (SMP) for the 22-60 46<sup>th</sup> Street Site (the Site), number 241244 are divided between the site owner(s) and a Remedial Party, as defined below. The owner is currently listed as:

MD45 Developers LLC 48-02 25<sup>th</sup> Avenue, Suite 400 Queens, NY 11103

**Solely for the purposes of this document and based upon the facts related to a particular site and the remedial program being carried out**, the term Remedial Party (RP) refers to any of the following: certificate of completion holder, volunteer, applicant, responsible party, and, in the event the New York State Department of Environmental Conservation (NYSDEC) is carrying out remediation or Site management, NYSDEC and/or an agent acting on its behalf. The RP is:

MD45 Developers LLC 48-02 25<sup>th</sup> Avenue, Suite 400 Queens, NY 11103

Nothing on this page shall supersede the provisions of an Environmental Easement, Consent Order, Consent Decree, agreement, or other legally binding document that affects rights and obligations relating to the Site.

#### Site Owner's Responsibilities:

- The owner shall follow the provisions of the SMP as they relate to future construction and excavation at the Site.
- In accordance with a periodic time frame determined by NYSDEC, the owner shall periodically certify, in writing, that all Institutional Controls set forth in an Environmental Easement remain in place and continue to be complied with. The owner shall provide a written certification to the RP, upon the RP's request, in order to allow the RP to include the certification in the Site's Periodic Review Report (PRR) certification to NYSDEC.
- In the event the Site is delisted, the owner remains bound by the Environmental Easement and shall submit, upon request by NYSDEC, a written certification that the Environmental Easement is still in place and has been complied with.
- The owner shall grant access to the Site to the RP and NYSDEC and its agents for the purposes of performing activities required under the SMP and assuring compliance with the SMP.
- The owner is responsible for assuring the security of the remedial components located on its property to the best of its ability. In the event that damage to the remedial components or vandalism is evident, the owner shall notify the Site's RP and NYSDEC in accordance with the timeframes indicated in Section 1.4 of the SMP Notifications.
- In the event some action or inaction by the owner adversely impacts the Site, the owner must notify the Site's RP and NYSDEC in accordance with the timeframes indicated in Section 1.4 of the SMP Notifications.
- The owner must notify the RP and NYSDEC of any change in ownership of the Site property (identifying the tax map numbers in any correspondence) and provide contact information for the new owner of the Site property. 6 NYCRR Part 375 contains notification requirements applicable to any construction or activity changes and changes in ownership. Among the

notification requirements is the following: 60 days prior written notification must be made to NYSDEC. Notification is to be submitted to the NYSDEC Division of Environmental Remediation's Site Control Section. Notification requirements for a change in use are detailed in Section 1.4 of the SMP. A 60-Day Advance Notification Form and Instructions are found at <a href="http://www.dec.ny.gov/chemical/76250.html">http://www.dec.ny.gov/chemical/76250.html</a>.

• In accordance with the tenant notification law, within 15 days of receipt, the owner must supply a copy of any vapor intrusion data that is produced with respect to structures and that exceeds the New York State Department of Health (NYSDOH) or United States Occupational Safety and Health Administration (OSHA) guidelines on the Site, whether produced by NYSDEC, the RP, or owner, to the tenants on the property. The owner must otherwise comply with the tenant and occupant notification provisions of Environmental Conservation Law Article 27, Title 24.

#### **Remedial Party's Responsibilities**

- The RP must follow the SMP provisions regarding any construction and/or excavation it undertakes at the Site.
- The RP shall report to NYSDEC all activities required for remediation, operation, maintenance, monitoring, and reporting. Such reporting includes, but is not limited to, periodic review reports and certifications, electronic data deliverables, corrective action work plans and reports, and updated SMPs.
- Before accessing the Site property to undertake a specific activity, the RP shall provide the owner with advanced notification that shall include an explanation of the work expected to be completed. The RP shall provide to (i) the owner, upon the owner's request, (ii) NYSDEC, and (iii) other entities, if required by the SMP, a copy of any data generated during the Site visit and/or any final report produced.
- If NYSDEC determines that an update of the SMP is necessary, the RP shall update the SMP and obtain final approval from NYSDEC. Within 5 business days after NYSDEC approval, the RP shall submit a copy of the approved SMP to the owner(s).
- The RP shall notify NYSDEC and the owner of any changes in RP ownership and/or control and of any changes in the party/entity responsible for the operation, maintenance, and monitoring of and reporting with respect to any remedial system (Engineering Controls). The RP shall provide contact information for the new party/entity. Such activity constitutes a Change of Use pursuant to 375-1.11(d) and requires 60-day prior notice to NYSDEC. A 60-Day Advance Notification Form and Instructions are found at http://www.dec.ny.gov/chemical/76250.html.
- The RP shall notify NYSDEC of any damage to or modification of the systems as required under Section 1.4 of the SMP.
- Prior to a change in use that impacts the remedial system or requirements and/or responsibilities for implementing the SMP, the RP shall submit to NYSDEC for approval an amended SMP.
- Any change in use, change in ownership, change in Site classification (*e.g.*, delisting), reduction or expansion of remediation, and other significant changes related to the Site may result in a change in responsibilities and, therefore, necessitate an update to the SMP and/or

updated legal documents. The RP shall contact the Department to discuss the need to update such documents.

Change in RP ownership and/or control and/or Site ownership does not affect the RP's obligations with respect to the Site unless a legally binding document executed by NYSDEC releases the RP of its obligations.

Future Site owners and RPs and their successors and assigns are required to carry out the activities set forth above.

#### AKRF, Inc.

#### **Annual Site-Wide Inspection**

#### **Overview of Annual Site-Wide Inspection requirements:**

1) General Site conditions at time of inspection;

2) SMP-related Site Activities being conducted, upcoming SMP-related tasks;

3) Institutional Control (IC) Checklist (SMP, FMP maintained on-Site, routine SMP tasks being conducted);

4) Evaluation of Engineering Controls; and

5) Site Documentation.

#### 1) General Site conditions at time of inspection:

| NAME:                                                   | DATE:                   |
|---------------------------------------------------------|-------------------------|
| TIME:                                                   | WEATHER:                |
| Annual Inspection or Emergency Inspection (if emergency | gency, specify nature)? |
| Notes:                                                  |                         |
|                                                         |                         |

#### 2) Are any SMP-related site activities currently being conducted (SSDS and SVE Operation)?

Notes/Details:

YES

NO

#### 3) IC Checklist (SMP maintained on-Site, routine SMP tasks being conducted)

| Copy of SMP on-Site?                                             | TES |  |
|------------------------------------------------------------------|-----|--|
| Building Use Still Consistent with SMP (Restricted Residential)? | TES |  |

### Have the required SMP tasks been conducted during the reporting period?

SSDS inspections/monitoring

SVE system monitoring

Quarterly groundwater monitoring/sampling

| Notes: |      |      |      |
|--------|------|------|------|
|        |      | <br> | <br> |
|        | <br> | <br> | <br> |
|        | <br> | <br> |      |
|        | <br> | <br> | <br> |
|        |      |      |      |

#### 4) Evaluation of ECs

| Environmental Control Type: SVE System                                                                                                      | l     |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| Is the SVE system currently operating?<br>If no, describe reason/alarm condition(s):                                                        | T YES | NO |
| Are the various gauges and components of system and the digital control panel clean?                                                        | T YES | NO |
| Have any problems occurred that require corrective action to the treatment system components or well access manifolds?<br>If yes, describe: | T YES | NO |

SVE System operations have also been documented using the applicable inspections logs (see attached) that will be provided as part of the PRR.

Notes:\_\_\_\_\_

| Environmental Control Type: Active SSD                                                                                              | S     |    |
|-------------------------------------------------------------------------------------------------------------------------------------|-------|----|
| Are there any unusual odors, spills or leaks near the SSDS piping in the basement?<br>If yes, describe source and plans for repair: | YES   | NO |
| Are the above grade components of the SSDS clean?                                                                                   | T YES |    |
| Is the SSDS blower running?<br>If yes, describe:                                                                                    | VES   | NO |
| Any evidence of SSDS piping tampering, vandalism or damage on the SSDS piping or system components?<br>If yes, describe:            | T YES | NO |

Notes:\_\_\_\_\_

#### 5) Site documentation

Including updates regarding notification to NYSDEC regarding any changes to Site conditions/operations, routine reporting to NYSDEC, etc.).

Notes: