

Property Solutions INC.

Environmental & Engineering Consulting

323 New Albany Road • Moorestown, New Jersey 08057 • 856-813-3000 • Fax 856-813-1068

LIMITED PHASE II SUBSURFACE INVESTIGATION

of

Zavas Property
27-50 First Street
Block 490, Lot 11
Astoria, Queens County, New York 11102

Prepared for:

Halletts A Development Company, LLC
c/o Robert Schenkel
Linque Realty Services, Inc.
301 Route 17 North, Suite 900
Rutherford, New Jersey 07070

Prepared by:

Property Solutions Incorporated
323 New Albany Road
Moorestown, New Jersey 08057

Date: June 24, 2008
Revised Date: July 16, 2008
Revised Date: September 15, 2008
Final: October 22, 2008

Property Solutions Project No. 20080635

SERVING YOUR NEEDS NATIONWIDE FROM OUR OFFICES IN:

PHILA • NY • CHICAGO • LA • DALLAS • PORTLAND • ATLANTA • BALTIMORE

Property Solutions INC.

Environmental & Engineering Consulting

323 New Albany Road • Moorestown, New Jersey 08057 • 856-813-3000 • Fax 856-813-1068

LIMITED PHASE II SUBSURFACE INVESTIGATION

of

Zavas Property
27-50 First Street
Block 490, Lot 11
Astoria, Queens County, New York 11102

Prepared for:

Halletts A Development Company, LLC
c/o Robert Schenkel
Linque Realty Services, Inc.
301 Route 17 North, Suite 900
Rutherford, New Jersey 07070

Prepared by:

Property Solutions Incorporated
323 New Albany Road
Moorestown, New Jersey 08057

Dated: October 22, 2008

Property Solutions Project No. 20080635

Ryan Barrett
Ryan Barrett
Environmental Scientist

Tim Clackett
Tim Clackett
Regional Manager

Kevin J. Billings, P.E.
Kevin J. Billings, P.E.
Senior Vice President

TABLE OF CONTENTS

SECTION	PAGE
EXECUTIVE SUMMARY	
1.0 INTRODUCTION	1
1.1 PURPOSE	1
1.2 SCOPE OF WORK	2
1.3 SPECIAL TERMS AND CONDITIONS	3
1.4 RELIANCE	3
2.0 BACKGROUND INFORMATION	3
2.1 PROPERTY LOCATION	3
2.2 PROPERTY DESCRIPTION	4
2.3 PROPERTY OPERATIONS	4
2.4 PROPERTY HISTORY	5
3.0 PHYSICAL SETTINGS	5
3.1 TOPOGRAPHY/REGIONAL DRAINAGE	5
3.2 SOILS	5
3.3 UNDERLYING FORMATION	6
3.4 GROUNDWATER	6
4.0 FIELD INVESTIGATION ACTIVITIES	6
4.1 FIELD ACTIVITIES	6
4.2 SAMPLING METHODS	8
4.3 ANALYTICAL LABORATORY INFORMATION	10
4.4 FIELD DATA COLLECTION	11
5.0 REGULATORY STANDARDS	12
6.0 EXPLORATION RESULTS	13
6.1 AOC-Z-01 – WOOD DIPPING	13
6.2 AOC-Z-02 - LUMBER	14
6.3 AOC-Z-03 - FILL	15
6.4 AOC-Z-04- SEDIMENT AND SURFACE WATER	16
6.5 AOC-Z-05- CONCRETE	17
6.6 AOC-Z-06- SVOCs AND METALS	18
6.7 AOC-Z-07- UST	19
7.0 CONCLUSIONS	20
8.0 RECOMMENDATIONS	22

9.0	REFERENCES	23
-----	------------------	----

APPENDICES

APPENDIX A MAPS AND PLANS

- Topo Map
- ALTA Survey
- Property Diagram
- AOC Diagram – aerial overlay
- Boring Diagram
- Contamination Diagrams

APPENDIX B PROPERTY PHOTOGRAPHS

APPENDIX C GEOPHYSICAL REPORT

APPENDIX D SOIL BORING LOGS

APPENDIX E ANALYTICAL RESULTS SUMMARY TABLES

- Soils
- Groundwater
- Surface Water

APPENDIX F ANALYTICAL DATA

APPENDIX G PROFESSIONAL QUALIFICATIONS

EXECUTIVE SUMMARY

This Limited Phase II Subsurface Investigation (SI) has been prepared by Property Solutions Incorporated (Property Solutions), on behalf of Halletts A Development Company, LLC, c/o Robert Schenkel, Linque Realty Services, Inc., for the Zavas portion of the Halletts Point A portfolio located at 27-50 First Street in Astoria, Queens County, New York 11102 (subject property).

This Limited Phase II Subsurface Investigation (Property Solutions project numbers 20080635 and 20081166) was performed based on the findings and recommendations presented in the revised Draft Phase I Environmental Assessment (EA) prepared by Property Solutions and dated June 5, 2008 (Property Solutions project number 20080014). At the client's request, this scope of work was reduced from the original proposed scope of work in order to provide a likely and worst case opinion of probable cost. The Phase I EA identified the following areas of concern (AOCs):

AOC #	AOC Name	Description
AOC-Z-01	Wood Dipping	Former 60,000-gallon Tank labeled Wood Dipping Tank
AOC-Z-02	Lumber	Wood Drying Operations (Wood Storage Building)
AOC-Z-03	Fill	Fill Material
AOC-Z-04	Sediment	Sediment and Surface Water
AOC-Z-05	Concrete	Concrete encountered during Phase II SI
AOC-Z-06	SVOCs & Metals	Elevated SVOCs & Metals identified during Phase II SI
AOC-Z-07	UST	5,000-gallon fuel oil storage UST (reportedly removed)

The Limited Phase II SI was performed to determine the potential presence/absence of subsurface contamination in the AOCs.

On February 26, 2008 and April 30, 2008, Property Solutions coordinated with TPI Environmental Inc. (TPI) of New Hope, Pennsylvania to perform a geophysical survey to clear the proposed soil boring locations of subsurface utilities and assess the accessible portions of the subject property for subsurface anomalies. Property Solutions also coordinated TPI to advance a total of nine soil borings (SB-01 through SB-09) and AWT Environmental Services of Sayreville, New Jersey on May 1, 2008, to advance three test pits (TP-01 through TP-03) at the subject property. The following is a summary of the scope of work completed for the Limited Phase II Site Investigation:

AOC #	AOC Name	No. of Borings/ Test Pits per AOC	No. of solid*/aqueous Samples per AOC
AOC-Z-01	Wood Dipping	2/0	2/0
AOC-Z-02	Lumber	1/0	1/0
AOC-Z-03	Fill**	3/2	3/0
AOC-Z-04	Sediment	1/0	0/2
AOC-Z-05	Concrete	0/3	3/0
AOC-Z-06	SVOCs & Metals	2/0	2/1
AOC-Z-07	UST***	0/0	0/0

* Samples were collected at the surface and at two foot intervals. Based on field observations, the AOC being investigated, or PID values the soil samples at a pre-determined depth or with the highest PID value were analyzed immediately. The remaining samples were placed on hold. Based on lab results, some of the samples on hold were released for analysis.

** As fill material was identified to cover large portions of the subject property through additional historical research and borings/test pits
20080635

advanced during the Phase II SI, borings installed and samples collected to address other AOCs may overlap the fill material AOCs.

*** Property Solutions was provided with a FDNY record regarding a 5,000-gallon fuel-oil storage tank listed to have been present at the address of the subject property. The record was provided to Property Solutions subsequent to Phase II field activities and therefore, no specific field investigations were performed to date regarding AOC-Z-07.

Samples collected were submitted to Phoenix Labs of Manchester, Connecticut (New York Certification number 11301) for analysis. Samples collected from each AOC were analyzed for various parameters. Based on a review of the analytical laboratory data reported, concentrations of contaminants of concern were detected at concentrations greater than the applicable New York State Department of Environmental Conservation (NYSDEC) criterion. The following table summarizes the contaminant class detected above the applicable NYSDEC criteria for each AOC.

AOC #	AOC Name	Contaminant Class in Soils	Contaminant Class in Aqueous
AOC-Z-01	Wood Dipping	SVOCs & Metals (0635-SB-02)	NA
AOC-Z-02	Lumber	SVOCs (0635-SB-01)	NA
AOC-Z-03	Fill	NA	NA
AOC-Z-04	Sediment	NA	Metals (0635-SW-03 & 1166-SW-01)
AOC-Z-05	Concrete	NA	Concrete
AOC-Z-06	SVOCs & Metals	SVOCs & Metals (1166-SB-07)	SVOCs & Metals (1166-SB-07)
AOC-Z-06	SVOCs & Metals	SVOCs (1166-SB-08)	NA
AOC-Z-07	UST	NI	NI

SVOCs - Semi-volatile organic compounds

VOCs - Volatile organic compounds

NA - Not applicable – no contaminants detected above applicable NYSDEC criteria

NI – Not Investigated - AOC-Z-07 not investigated as part of initial scope of work. See Section 6.7 for more information regarding this AOC

Based on the results of this Limited Phase II SI, Property Solutions has the following AOC specific conclusions and recommendations:

AOC #	AOC Name	Conclusions and Recommendations
AOC-Z-01	Wood Dipping	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC are likely related to the historical fill present on the subject property and not from a specific release associated with the former wood dipping operations of the subject property. TCLP analysis revealed the soil (sampled from SB-09) to be non-hazardous. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that the contamination be delineated in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-02	Lumber	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC is likely related to the historical fill present on the subject property and not from a specific release associated with the former lumber operations of the subject property. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that the contamination be delineated in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-03	Fill	No contaminants were detected above applicable NYSDEC criteria (RR SCO). As this AOC revealed no evidence of contamination, Property Solutions recommends that site characterization be completed for this AOC in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-04	Sediment	No sediment samples were able to be collected. No contaminants were detected above applicable NYSDEC criteria (AWQS) for the surface water samples collected with the exception of copper and mercury. A filtered surface water sample was also analyzed which revealed a non-detect concentration of mercury and concentration of copper an order of magnitude less than the initial result. The metals detected may be due to

		naturally occurring conditions or the result of historic or current uses from other areas in the East River watershed, which is a highly urbanized area. As indicated, no sediment was encountered along the shoreline for sample collection and analysis. Historical charts and property investigations reveal a sharp drop off from the subject property to the channel bottom in the East River. Historical information reveals the channel to consist of bedrock. The location of the nearest sediments is unknown, but based on this information they would not be representative of potential impacts from the subject property. Groundwater samples collected at the subject property do not indicate dissolved concentrations of metals in groundwater. Therefore, based upon the known data, there is no established direct connection between the mercury and copper soil contamination to water and sediments.
AOC-Z-05	Concrete	No environmental concerns identified with AOC-Z-05. Concrete was determined to be part of a historic structure. No further investigation is warranted at this time.
AOC-Z-06	SVOCs & Metals	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC is likely related to the historical fill present on the subject property and not from a specific release associated with the former operations of the subject property. The metal contamination detected in unfiltered and filtered groundwater samples is expected to be due to turbidity and/or background concentrations. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that additional sampling be conducted in order to confirm the contamination is associated with historic fill and not former operations and to delineate the contamination in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-07	UST	AOC-Z-07 was not investigated as part of initial scope of work. Property Solutions has requested FDNY and NYCDOB documentation and is awaiting responses. The actual location of the UST is unknown. As this AOC was not previously investigated, Property Solutions recommends that as structural and vehicular obstructions are ultimately removed from the subject property for redevelopment, an additional geophysical survey be conducted in the areas that were inaccessible during the initial field investigations for this Phase II. Pending receipt of documentation which may reveal the former location of the 5,000-gallon heating oil UST reportedly removed from the subject property in 2003, further investigation may be warranted.

Based on the results of this Limited Phase II SI, Property Solutions has the following general recommendations/steps to be performed as part of the redevelopment of the subject property:

- Apply for and be accepted into the NYSDEC BCP, and then perform the following in accordance with the BCP;
- Complete the Site Characterization;
- Perform a Remedial Investigation;
- Prepare Site Characterization and Remedial Investigation (SC/RI) report for submittal to NYSDEC;
- Perform Remedy Selection;
- Prepare Remedial Action Selection (RAS) report for submittal to NYSDEC;
- If accepted, the NYSDEC publicly notices the RAS in the Environmental Notice Bulletin for public comment;
- Prepare Remedial Action/Remedial Design (RA/RD) Workplan;
- Implement RA or Interim Remedial Measures (IRMs);
- Perform RA performance compliance sampling;
- Prepare Institution Controls documents;
- Prepare RA schedule and progress reports for submittal to NYSDEC;

- Prepare RA report (RAR) for submittal to NYSDEC;
- Prepare the operation, maintenance and monitoring (OM&M) program report;
- Prepare final project evaluation report for submittal to NYSDEC and request Site Closeout;
- NYSDEC provides site closeout; and
- Implement the OM&M program.

1.0 INTRODUCTION

1.1 Purpose

Property Solutions Incorporated (Property Solutions) has conducted a Limited Phase II Subsurface Investigation (SI) of the Zavas portion of the Halletts Point A portfolio located at 27-50 First Street in Astoria, Queens County, New York 11102 (subject property) at the request of Halletts A Development Company, LLC, c/o Robert Schenkel, Linque Realty Services, Inc.

This Limited Phase II Subsurface Investigation (Property Solutions project numbers 20080635 and 20081166) was performed based on the findings and recommendations made in the revised Draft Phase I Environmental Assessment (EA) prepared by Property Solutions and dated June 5, 2008 (Property Solutions project number 20080014). At the client's request, this scope of work was reduced from the original proposed scope of work in order to provide a likely and worst case opinion of probable cost. The Phase I EA identified the following areas of concern (AOCs):

AOC #	AOC Name	Description
AOC-Z-01	Wood Dipping	Former 60,000-gallon Tank labeled Wood Dipping Tank
AOC-Z-02	Lumber	Wood Drying Operations (Wood Storage Building)
AOC-Z-03	Fill	Fill Material
AOC-Z-04	Sediment	Sediment and Surface Water
AOC-Z-05	Concrete	Concrete encountered during Phase II SI
AOC-Z-06	SVOCs & Metals	Elevated SVOCs & Metals identified during Phase II SI
AOC-Z-07	UST*	5,000-gallon fuel oil storage UST (reportedly removed)

* Property Solutions was provided with a FDNY record regarding a 5,000-gallon fuel-oil storage tank listed to have been present at the address of the subject property. The record was provided to Property Solutions subsequent to Phase II field activities and therefore, no specific field investigations were performed to date regarding AOC-Z-07.

The following is a brief description of each AOC as identified in the Phase I EA prepared by Property Solutions and dated June 5, 2008 (Property Solutions project number 20080014):

AOC-Z-01 (Wood Dipping): Based on Property Solutions' review of the 1936 Sanborn fire insurance map, a 60,000-gallon tank labeled "wood dipping" was situated in the northeast corner of the subject property.

AOC-Z-02 (Lumber): Based on Property Solutions' review of Sanborn fire insurance maps, historic wood dipping operations and lumber storage were present on the subject property.

AOC-Z-03 (Fill): Review of a map dated 1873 revealed that the southwestern shoreline, adjacent to the East River, has been extended since 1873, indicating fill material is also located along the southwestern shoreline.

AOC-Z-04 (Sediment): Based on the New York State Department of Environmental Conservation [Draft DER-10: Technical Guidance for Site Investigation and Remediation](#), dated December 25, 002, Section 3.8, and the proximity of the East River to the subject property, Property Solutions recommended the collection and analysis of surface water and sediment samples from the East River, adjacent to the subject property, as part of the Limited Phase II Subsurface Investigation.

AOC-Z-05 (Concrete): During the Phase II Subsurface Investigation, Property Solutions directed a certified contractor to advance two test pits on the subject property along the southern property boundary in the fill AOC. During the advancement, concrete was encountered at approximately one foot bgs. The concrete slab could not be penetrated. Property Solutions attempted to advance another test pit ten feet farther to the south where another concrete slab was 20080635

encountered.

AOC-Z-06 (SVOCs & Metals): Property Solutions advanced an additional two soil borings (SB-07 and SB-08) in order to further investigate the SVOC and metals contaminants detected in AOC-Z-01. The soil boring were advanced along the western boundary of the subject property near the East River to obtain groundwater downgradient of AOC-Z-01.

AOC-Z-07 (UST): Property Solutions was provided with a FDNY record regarding a 5,000-gallon fuel oil storage tank listed to have been present at the address of the subject property. The location of the tank was not specified on the record and no record of storage tanks was identified during a review of fire insurance maps, NYSDEC records, NYCDEP records, NYCDDB records, or the environmental database.

Property Solutions was contracted by Halletts A Development Company, LLC, c/o Robert Schenkel, Linque Realty Services, Inc., to determine the potential presence/absence of subsurface contamination in the AOCs.

1.2 Scope of Work

Property Solutions performed the following Scope of Work:

1. Property Solutions coordinated with a certified consultant to perform a geophysical survey in accessible areas (areas not covered by materials, vehicles, or other immovable objects) in order to assess the subject property for subsurface features and clear borings of utilities.
2. Coordinated with a New York-certified driller to contact the utility mark-out.
3. Property Solutions prepared a Health and Safety Plan for use by Property Solutions personnel during the investigation.
4. Coordinated with a New York-certified analytical laboratory for analysis of the environmental samples collected during this subsurface investigation.
5. Coordinated with the certified driller to advance soil borings at the subject property in the vicinity of the areas of concern. The soil borings were advanced utilizing hydraulic push technology (Geoprobe). All environmental sampling equipment was decontaminated prior to the advancement of each boring.
6. During advancement of the soil borings and test pits, continuous soil evaluation took place. The samples were logged and field screened with a photoionization detector (PID) for the presence of organic vapors. The PID was calibrated to a known isobutylene standard prior to the sampling event.
7. Soil samples were collected from each soil boring/test pit. The samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York-certified laboratory for analysis.

8. When groundwater was encountered, a pre-packed piezometer was be placed in designated soil borings and grab groundwater samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York-certified laboratory for analysis. The pre-packed piezometers were converted to monitoring wells.
9. Collected surface water samples from the East River along the western boundary of the subject property. The samples were collected in laboratory-supplied containers, stored on ice, and submitted under chain-of-custody to a New York-certified laboratory for analysis.
10. Property Solutions compared the analytical results to applicable soil and groundwater cleanup standards.
11. Property Solutions prepared a plan identifying the locations of the soil borings based upon field measurements taken during the limited subsurface investigation.
12. Property Solutions prepared this summary report to document the activities and findings of this limited subsurface investigation.

1.3 Special Terms and Conditions

This Phase II Subsurface Investigation was prepared in accordance with the stated and agreed upon Scope of Work. No other special terms and conditions are applicable to this Phase II Subsurface Investigation.

1.4 Reliance

This report has been prepared for the sole benefit of Halletts A Development Company, LLC, LEG Astoria, LLC, Linque Realty Services, Inc., Grosvenor Investment Management US Inc., GIM PA Partners LP, Halletts M, LLC, Astoria Equities 2000, LLC, and one lender to be named for each property, and may not be relied upon by any other person or entity without the written authorization of Property Solutions.

2.0 BACKGROUND INFORMATION

2.1 Property Location

Property Location	
Property Name	Zavas Property
Property Address	27-50 First Street
Property Town, County, State, Zip	Astoria, Queens County, New York 11102
Property Tax Identification	Block 490, Lot 11 (Property Research Partners, LLC [PRP])
Property Topographic Quadrangle	<u>Central Park, New York – New Jersey</u>
Nearest Intersection	First Street and 27 th Avenue

Property Location	
Area Description	Highly developed commercial residential and industrial

An excerpt from the USGS 7.5-minute series topographic quadrangle map of Central Park, New York – New Jersey, locating the subject property, is included in Appendix A.

2.2 Property Description

Property Information	
Property Ownership Name	Zavas Realty Corporation (PRP)
Date of Acquisition	April 16, 2007 (PRP)
Property Acreage	1.139 acres (PRP)
Property Shape	Rectangular
Property Use	Storage of building materials
Number of Buildings	Zero (only building material storage racks)
Number of Stories	Not applicable
Construction Date	Not applicable
Building Square Footage	Not applicable
Basement/Slab-on-grade	Not applicable
Number of Units	Not applicable
Ceiling Finishes	Not applicable
Floor Finishes	Not applicable
Wall Finishes	Not applicable
HVAC (Energy Source & Type of System)	Not applicable
Renovation Date	None
Renovation Description	Not applicable
Vehicular Access	First Street
Other Improvements	Concrete pad
Property Coverage	Paved parking area with building materials

A property diagram of the subject property is included in Appendix A.

2.3 Property Operations

Zavas Realty Corporation leases the subject property to Allied Building Products, who utilizes the subject property for storage of commercial building supplies.

No industrial or manufacturing operations were observed at the subject property at the time of the property visit.

No environmental concerns were identified at the subject property based on the operations observed during the property visit.

2.4 Property History

Based on a review of the historical sources, the subject property consisted of residential dwellings prior to its development as an industrial property. Also throughout its industrial uses, lofts were still present at the subject property. As an industrial property the following companies/operations were revealed to have occurred at the subject property: iron works, coal yard, marble company, Star Ribbon Manufacturing Company, Morey & Company Machinists, National Rayon Company (yarn). Lang and Lewin Mill, lumber storage, Pearl-Wick Corporation Hamper Manufacturing, Nassau Bottle Supply, AM Bronze Company, and Sanitol Sanitary Corporation.

3.0 PHYSICAL SETTINGS

3.1 Topography/Regional Drainage

Topographic Quadrangle Name	<u>Central Park, New York – New Jersey</u>
Property Elevation	Approximately 10 to 20 feet above mean sea level
Surface Gradient	West toward the East River
Property Drainage	Stormwater system and the East River
Regional Drainage	West to the East River which adjoins the subject property
Closest Perennial Water body	East River which adjoins the subject property to the west

A copy of the USGS 7.5-minute series topographic quadrangle map of Central Park, New York – New Jersey, is included in Appendix A.

3.2 Soils

Information Source	<u>Soils of New York Landscapes (Cline & Marshall)</u>
Date of Information Source	1989
Soil Name	Urban Land
Description: Urban Land is found in highly built up areas of New York County. The soils and foundation material are highly variable. Urban structures and works cover so much of this land type that the identification of the soils is not practical. Most areas have been smoothed and the original soil materials have been disturbed, filled over, or otherwise destroyed (re-arranged) prior to construction.	
Expected depth to bedrock	Greater than 60 inches

3.3 Underlying Formation

Information Source	The University of the State of New York – The State Department of Education
Title of Publication	Geologic Map of New York – Lower Hudson Street
Date of Publication	1970
Name of Unit	Inwood Marble, OCi

Description of Unit: The formation is included with the Wappinger and Stockbridge groups, consistent with a Poughquag quartzite and metamorphic equivalent. The formation consists of dolomite marble, calcschist, granulite, and quartzite overlain by calcite marble. The inwood marble formation typically grades into underlying patchy Lower Quartzite of the early Cambrian age.

3.4 Groundwater

Information Source	United States Geological Survey
Title of Publication	Ground Water Atlas for the United States Segment 12
Date of Publication	1995
Underlying Aquifer	Crystalline rock aquifer

Description: This type of aquifer covers most of the northeastern United States. In New York, the aquifer is made up of igneous and metamorphic rocks which have a very small porosity rate. Because the hydraulic conductivity of the crystalline rocks is very low, the water does not penetrate the spaces between the mineral crystals but travels through secondary fractures and joints in the bedrock. These aquifers receive recharge directly from outcrop areas or indirectly through overlying glacial deposits. The depth of this aquifer generally ranges anywhere between 25 and 400 feet and may even exceed 600 feet. The crystalline rock aquifer contains high concentrations of iron.

Expected Depth to Shallow Groundwater	Approximately 9-14 feet bgs
Information Source	Previous reports and Property Solutions Phase II field investigations
Expected Direction of Shallow Groundwater Flow	West towards the East River
Information Source	USGS

4.0 FIELD INVESTIGATION ACTIVITIES

4.1 Field Activities

Field activities commenced on February 26, 2008, when Mr. Ryan Barrett, Environmental Scientist of Property Solutions, arrived at the subject property at 8:00 AM to begin subsurface investigation activities. Weather conditions at the time of the field activities consisted of cloudy skies with an approximate outside air temperature of 30 degrees Fahrenheit. Property Solutions returned to the subject property again for further field investigations on April 30, 2008, when Mr. Ryan Barrett, Environmental Scientist, arrived on the subject property at approximately 2:00 PM for further investigations and additional sampling of the areas of concern. On May 1, 2008, Mr. Andrew Pinkerton, Environmental Consultant with Property Solutions, arrived at the subject property at 8:00

AM to advance test pits in AOC-Z-05. Weather conditions at the time of the April 30, 2008 and May 1, 2008 property visits consisted of mostly sunny skies with an approximate outside air temperature of 60 degrees Fahrenheit.

Prior to the start of the field investigation, Property Solutions coordinated with TPI Environmental Inc. (TPI) of New Hope, Pennsylvania to perform a geophysical survey to clear the proposed soil boring locations of subsurface utilities and assess the accessible portions of the subject property for subsurface anomalies. The geophysical survey was completed using ground-penetrating radar (GPR), line locating equipment, and electromagnetic detection equipment. The geophysical survey was completed using Ground Penetrating Radar (GPR), Fisher TW6 electromagnetic metal detection (TW6 EM), a Geonics EM61-MK2 Time – Domain Electromagnetic Detector unit (EM61), radio frequency line locating (RF), and magnetics.

The EM61 device radiates a polarized electromagnetic wave from a transmitter antenna into the earth and receives the reflected transmission via a receiving antenna. Radar reflections occur when the radio waves encounter a change in velocity or attenuation. The collection of GPR data was performed by pulling the antenna along grid lines while the positions of each radar reading were recorded with an odometer. The GPR data was recorded digitally in a portable computer for instant display and subsequent processing.

TPI informed Property Solutions that the proposed locations of the soil borings were clear of subsurface utilities. TPI also performed a geophysical survey on the subject property in order to investigate the presence and/or absence of USTs or structural related anomalies which could be observed on the subject property. According to the Geophysical Report prepared by TPI and dated April 17, 2008, the results of the geophysical survey indicate that no “UST like” EM or GPR anomalies were detected in the areas surveyed. Two metallic EM anomalies (Anomaly 1) and a water line (Anomaly 2) were detected during the EM61 survey. Further investigation of the anomalies indicates that they are most likely not related to a UST. TPI stated that the cross hatching pattern observed with Anomaly 1 is indicative of reinforced concrete just below the asphalt layer. The 8-foot by 8-foot metallic EM anomaly and 2-foot by 5-foot GPR anomaly detected in the north and west portions of the subject property, respectively, are expected to be related to a water line that transects the subject property according to the TPI Geophysical Report.

The complete TPI Geophysical Report is located in Appendix C.

Property Solutions also coordinated with TPI, a certified driller, to advance nine soil borings at the subject property utilizing a Geoprobe to investigate the areas of concern. Soil samples were collected at two foot intervals from the borings advanced. A pre-packed well was placed into soil boring SB-07 to facilitate in the collection of a grab groundwater sample.

Property Solutions coordinated with AWT Environmental Services, Inc. (AWT) of Sayreville, New Jersey to advance test pits utilizing a Caterpillar 750 backhoe in the designated areas of concern. On March 17, 2008, AWT attempted to advance two test pits on the Zavas subject property along the southern property boundary in the fill AOC (AOC-Z-03). During the advancement of test pit (TP-05), a concrete slab was encountered at approximately one foot bgs and the concrete slab could not

be penetrated with the backhoe. AWT attempted to excavate an additional test pit (TP-06) approximately ten feet farther to the south of TP-05. A concrete slab was also encountered at approximately one foot below grade surface. A soil sample was not collected from test pit TP-06. On May 1, 2008, AWT returned to advance three test pits (TP-01, TP-02, and TP-03) with a hammer-equipped back hoe on the subject property to further investigate AOC-Z-03 and also to evaluate the thickness and possible extent of coverage of the subgrade concrete slab (AOC-Z-05).

One surface water sample, SW-03, was collected from the shoreline of the East River in the vicinity of the southwest corner of the subject property. On May 1, 2008, Property Solutions collected an additional two surface water samples 1166-SW-01 and 1166-SW-02. The surface water sample was collected by accessing the shoreline of the East River as it adjoins the western boundary of the subject property. Property Solutions collected surface water from approximately three to four feet from the shoreline in laboratory-supplied glassware.

The soil, groundwater, and surface water samples collected during this investigation were collected in laboratory-supplied glassware, stored on ice, and submitted under chain-of-custody to Phoenix Laboratories, a New York-certified laboratory (certification number 11301) for analysis.

Field activities performed by Property Solutions were conducted in general accordance with Draft Division of Environmental Remediation (DER)-10 Technical Guidance For Site Investigation and Remediation (DER-10) document dated December 25, 2002 and NYSDEC 6 New York Codified Rules and Regulations (NYCRR) Part 375 Environmental Remediation Program effective December 14, 2006 .

Soil boring, test pit, and surface water location maps are included in Appendix A.

4.2 Sampling Methods

Property Solutions coordinated with TPI, a certified Geoprobe operator, to advance the soil borings for the collection of the representative subsurface samples. TPI utilizes a track-mounted hydraulic push probe (Geoprobe), which advances a four-foot long stainless steel "Macro-Core" sampler. Per each four-foot advancement, a dedicated, disposable polybutyl acetate liner is used in which the samples are held for field assessment. Prior to advancement of each boring, the Geoprobe operator decontaminated the cutting shoe using a mixture of liquinox and water. The Geoprobe operator also inserted a dedicated disposable macro-core liner in each stainless steel sampling tube to prevent cross contamination of the soils encountered.

The equipment utilized by Property Solutions to transfer the soil to the sampling jar was disposed of upon completion of each sampling event and Property Solutions field personnel utilized disposable latex gloves during sample collection and whenever they were in contact with the soils.

The following table is a summary of the soil borings advanced during this investigation:

Soil Boring	Depth (ft.)	Boring Advanced To	Area of Concern Addressed
SB-01	6	Refusal	AOC-Z-02 - Lumber
SB-02	6	Refusal	AOC-Z-01 - Wood Dipping
SB-03	9.5	Refusal	AOC-Z-03 - Fill
SB-04	6	Refusal	AOC-Z-03 - Fill
SB-05	6	Refusal	AOC-Z-03 - Fill
SB-06	7	Refusal	AOC-Z-02 - Lumber
SB-07	14	Refusal / Groundwater	AOC-Z-06 - SVOCs & Metals
SB-08	8	Refusal	AOC-Z-06 - SVOCs & Metals
SB-09	8	Refusal	AOC-Z-01 - Wood Dipping

The following table is a summary of the test pits advanced during this investigation.

Soil Boring	Depth (ft.)	Boring Advanced To	Area of Concern Addressed
TP-01	8	Groundwater	AOC-Z-05 - Concrete
TP-02	10	Groundwater	AOC-Z-05 - Concrete
TP-03	8	Groundwater	AOC-Z-05 - Concrete
TP-05	0.5	Refusal	AOC-Z-03 - Fill
TP-06	0.5	Refusal	AOC-Z-03 - Fill

* No TP-04

The soil-groundwater interface was encountered in boring SB-07 at a depth of approximately 10 feet below ground surface (bgs). Soil boring SB-07 was advanced to a depth of 14 feet bgs to refusal and to facilitate in the collection of a groundwater sample via a temporary well screen. One grab groundwater sample was collected utilizing a dedicated disposable polyethylene groundwater baler during the investigation. Groundwater was not encountered in the remaining soil borings prior to reaching refusal.

Property Solutions coordinated the installation of one permanent one-inch monitoring well in the SVOCs and Metals area of concern (AOC-Z-06). This monitoring well was installed by TPI. TPI utilized a track-mounted Geoprobe 6610DT equipped with a 66-inch probe cylinder with 5-foot probe rods. The direct push probe uses a GH60 soil probing hammer and was advanced to a depth of approximately 14 feet bgs. The well was finished within the overburden with a prepacked screen. The prepacked screen consists of a standard slotted PVC well screen pipe surrounded by stainless steel mesh. Sand is packed between the slotted PVC and the stainless steel mesh. The prepacked well screen was one-inch (inner diameter) by 2.5-inch (outer diameter). The 2.5-inch outer diameter prepack well assembly uses one-inch Schedule 40 PVC riser pipe and is installed with 3.25-inch outer diameter probe rods. The well assembly is lowered into the probe rod string with threaded PVC riser pipe.

The well installed in SB-07 was finished with approximately five feet of well screen and approximately nine feet of casing. The void surrounding the screens was filled with No. 1 Morie sand and the well was grouted with neat cement and bentonite. The sand barrier installed directly above the well screen prevents grout from entering the screens. With the barrier in place, granular bentonite is then installed in the annulus to form a well seal. Well seal and grouting methods meet EPA and ASTM D-5092 method requirements. The well was finished with a flush-mount well protector and cover.

Sampling methods performed by Property Solutions were conducted in general accordance with Draft Division of Environmental Remediation (DER)-10 Technical Guidance For Site Investigation and Remediation (DER-10) document dated December 25, 2002 and NYSDEC 6 New York Codified Rules and Regulations (NYCRR) Part 375 Environmental Remediation Program effective December 14, 2006 (Part 375).

Photographs documenting the field activities are included in Appendix B.

A field log was maintained for each boring and test pit which details the observed soil conditions and field activities. A copy of the soil boring field log is included in Appendix D.

4.3 Analytical Laboratory Information

The soil, groundwater, and surface water samples were submitted under chain of custody to Phoenix Laboratory located in Manchester, Connecticut (Phoenix). Phoenix is certified by the State of New York to analyze samples collected in the State of New York (certification number 11301).

The environmental samples were collected in laboratory-cleaned and supplied containers and stored on ice prior to delivery to Phoenix. As each sample was collected, the sampling containers were labeled. The label denoted the name of the subject property, the sample location, the time and date the sample was collected, any preservatives added to the sample, and the analysis required for each sample. The information from each label was transferred onto the chain of custody form provided by Phoenix. Upon completion of the fieldwork, the soil samples were delivered under chain of custody to Phoenix, for analysis.

The following table summarizes the number of soil, groundwater, and surface water samples collected from each area of concern and the respective parameters and USEPA Method each sample was analyzed for:

Area of Concern			VOCs 624/8260	SVOCs 8270/625	PCBs 8082/608	Pesticides 8081	Formaldehyde 8315A	Phenolics 9066/420.1	pH 150.1	TAL / TCLP Metals	TCLP/RCRA CHAR.	Hexa/Tri Chromium	TOC 9060/415.2	Soil Boring/Test Pit No.
AOC No.	AOC Name	Matrix												
AOC-Z-01	Wood Dipping	Soil	1	1	-	1	1	1	-	1	1	-	-	SB-02, SB-09
AOC-Z-02	Lumber	Soil	1	1	-	1	1	1	1	1	-	-	-	SB-01, SB-06*
AOC-Z-03	Fill	Soil	1	1	1	1	-	-	1	1	-	-	-	SB-03, SB-04*, SB-05*, TP-5*, TP-06*
AOC-Z-04	Sediment	SW	1	1	1	1	1	1		2		2	1	SW-01, SW-02
AOC-Z-05	Concrete	Soil	-	3	-	-	-	-	-	3	-	-	-	TP-01, TP-02, TP-03
AOC-Z-06	SVOCs/Metals	Soil	2	2	-	-	-	-	-	2	-	-	-	SB-07, SB-08
AOC-Z-06	SVOCs/Metals	GW	-	-	-	-	-	-	-	1	-	-	-	SB-07
AOC-Z-07	UST	N/A	-	-	-	-	-	-	-	-	-	-	-	N/A

* - Samples not analyzed

SW – Surface water

GW – Groundwater

N/A – Not applicable. AOC-Z-07 was not investigated as part of the scope of work for field investigations. See Section 6.7 for more information.

Analytical results were provided to Property Solutions by Phoenix in electronic format.

Per the agreed upon scope of work, no laboratory-prepared trip blanks or field blanks were collected or analyzed as part of this investigation.

4.4 Field Data Collection

Property Solutions field logged the soil borings continuously to determine property specific lithology. A field log was maintained for each boring detailing the observed soil conditions and drilling procedures. A copy of the soil boring field log is located in Appendix C.

Property Solutions field screened each soil boring for the presence of total volatile organic compounds (VOCs) using a MiniRAE 2000 photoionization detector (PID) with a 10.6 electron-volt (eV) lamp. The PID is a trace gas analyzer calibrated to an isobutylene standard, which is capable of detecting total volatile organic vapor concentrations to a lower limit of approximately one part per million (ppm).

During the field screening, no organic vapors were identified in the soils from soil borings SB-01 through SB-09. No organic vapors were identified in the soils from test pits TP-01 through TP-06. The PID reading for each boring and depth measured was 0.0 ppm. Complete PID readings for each individual boring were recorded at one-foot intervals and are presented on the boring logs located in Appendix C.

5.0 REGULATORY STANDARDS

Analytical results of the soil samples collected were compared to the NYSDEC Soil Cleanup Objectives (SCOs) listed in 6 New York Codified Rules and Regulations (NYCRR) Part 375 – Environmental Remediation Programs dated December 14, 2006 (Part 375). NYSDEC SCOs listed in Technical and Administrative Guidance Memorandum (TAGM) 4046 – Determination of Soil Cleanup Objectives and Cleanup Levels dated January 1994 (TAGM 4046), were also provided, however TAGM 4046 is being phased out by NYSDEC. Field activities and sampling procedures were conducted in general accordance with Draft Division of Environmental Remediation (DER)-10 Technical Guidance For Site Investigation and Remediation (DER-10) document dated December 25, 2002 and NYSDEC 6 New York Codified Rules and Regulations (NYCRR) Part 375 Environmental Remediation Program effective December 14, 2006 (Part 375).

Provided that the intended future use of the subject property includes a mixed-use residential and commercial retail development, it is expected that the Restricted-Residential (RR) SCOS list in Part 375 are the most appropriate standards for which to compare the soil analytical data as reported by the certified laboratory for this property. The definition for RR as defined by the Part 375 is as follows:

Restricted-Residential: With restrictions (easements, engineering and institutional controls), only considered where common ownership or single owner of site: apartment complexes, townhouse developments, mixed-use high rise developments. **Prohibits:** vegetable gardens, single-family housing. **Includes:** Residences, day care facilities, schools, colleges, nursing homes, elder care, and long-term health facilities.

As the subject property is located adjacent or in the immediate vicinity of the East River, Property Solutions also compared the analytical results of the soil samples analyzed to the SCOs for the Protection of Ecological Resources (POER) and for the Protection of Groundwater (POW).

It should be noted that as per Part 375 6.7 (a) and (b), the SCOs presented in Part 375 do not account for the concentrations of contaminants in soil relative to the soil vapor or vapor intrusion and adjacent sediments and surface water attributable to the remedial site. Vapor intrusion, sediment, and surface water issues are to be addressed during the Remedial Investigation (RI) and considered as part of the Remedial Action Selection (RAS) process.

Analytical results of the water samples collected were compared to the NYSDEC 6 NYCRR Part 703.5 - Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations, dated August 1999 (Part 703.5) and NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values and Groundwater Effluent Limitations, dated June 1998.

Analytical results of the groundwater samples collected were compared to the AWQS for GA water bodies. Class GA water is fresh groundwater. The best usage of Class GA waters is as a source of

potable water supply.

Based on a review of NYSDEC 6 NYCRR Part 890 New York City Waters, Table 1 and the NYSDEC online Environmental Resource Mapper, the NYSDEC classifies the portion of the East River in the vicinity of the Famitech and Zavas subject properties as a Class I Saline Surface Water body and designated as Waters Index Number 0.3-10.1. Analytical results of the surface water samples collected were compared to the AWQS for Class I saline surface waters. The best usages of Class I waters are secondary contact recreation and fishing. These waters shall be suitable for fish propagation and survival.

6.0 EXPLORATION RESULTS

6.1 AOC-Z-01 – Wood Dipping

On February 26, 2008, Property Solutions advanced one soil boring, SB-02, at the subject property to investigate AOC-Z-01. The soil boring was advanced to a depth of approximately six (6) feet below ground surface (bgs), where refusal was encountered. Groundwater was not encountered during the advancement of this soil boring. According to the TPI Geophysical Report dated April 17, 2008, the results of the geophysical survey indicate that no “UST like” EM or GPR anomalies were detected in the areas surveyed for AOC-Z-01. The soils observed during field investigations consisted of a brown and dark brown silty sand and sandy silt with prevalent fine to coarse gravel.

Three soil samples were collected from SB-02 for a total of three soil samples (0635-SB-(0-2)-02, 0635-SB-(2-4)-02, and 0635-SB-(4-6)-02). Soil sample 0635-SB-(2-4)-02 was immediately released to the laboratory and analyzed for volatile organic compounds (VOCs) by USEPA Method 8260B, semi-volatile organic compounds (SVOCs) by USEPA Method 8270D, pesticides by USEPA Method 8081, formaldehyde by USEPA Method 8315A, pH by USEPA Method 150.1, and Target Analyte List (TAL) metals/Target Compound List (TCL) metals by USEPA Methods 200.7, 6010, and 7471. Based on the initial results, soil samples 0635-SB-(0-2)-02 and 0635-SB-(4-6)-02 were additionally analyzed for SVOCs and the metals copper, lead, and mercury.

Review of the analytical results revealed pesticides, VOCs, and formaldehyde were non-detect in soil sample 0635-SB-(2-4)-02. Soil sample 0635-SB-(4-6)-02 was non-detect for SVOCs.

Further review of the analytical results revealed the SVOCs benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene were detected in soil sample 0635-SB-(0-2)-02 at concentrations above the RR SCO. The analytical results also revealed the SVOCs benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, chrysene, and indeno(1,2,3-cd)pyrene were detected in the soil sample 0635-SB-(2-4)-02 at concentrations above the RR SCO.

The compound chrysene was detected in soil sample 0635-SB-(0-2)-02 at a concentration above the NYSDEC Restricted Use Soil Cleanup Objective Protection of Public Health Residential Soil Cleanup Objective (R SCO) and the NYSDEC Unrestricted Use Soil Cleanup Objective (U SCO).
20080635

Review of the analytical results also revealed the metals copper, lead, and mercury were detected in soil sample 0635-SB-(2-4)-02. The analytical results also revealed lead and copper were detected in soil sample 0635-SB-(0-2)-02. The concentrations of these metals detected in the two samples are above the RR SCO for copper, lead, and mercury.

Further review of the metals results revealed chromium was detected in soil sample 0635-SB-(2-4)-02 at a concentration above the NYSDEC Protection of Public Health, Protection of Groundwater (POW) SCO and above the NYSDEC Protection of Public Health, Protection of Ecological Resources (POER) SCO. In addition, copper was detected in soil sample 0635-SB-(4-6)-02 at a concentration above the POER SCO objective.

On April 30, 2008, Property Solutions advanced one soil boring (SB-09) immediately adjacent to the previously installed boring (SB-02) in this area of concern. Soil boring SB-09 was advanced to a depth of 9 feet bgs where refusal was encountered. One soil sample (1166-SB-(2-4)-09) was analyzed for Toxicity Characteristic Leaching Procedure (TCLP) waste classification and full Resource Conservation and Recovery Act (RCRA) characterization. The United States Environmental Protection Agency (USEPA) Code of Federal Regulations (CFR) 40 CFR §261.24 outlines the 40 contaminants utilized for TCLP analysis tests including the Maximum Concentration of Contaminants for Toxicity Characteristics (MCCT). Property Solutions compared the analytical results of 1166-SB-(2-4)-09 to the MCCT standards.

The analytical results revealed that soil sample 1166-SB-(2-4)-09 was non-detect for TCLP pesticides, TCLP herbicides, TCLP VOCs, and TCLP SVOCs (acid/base neutrals). All TCLP metals (silver, arsenic, barium, cadmium, chromium, lead, selenium, and mercury) were either non-detect (detected below the laboratory detection limit) or below the USEPA MCCT standards and are therefore considered non-hazardous.

The analytical results classified the soil sample 1166-SB-(2-4)-09 as non-reactive, non-reactive with sulfides/cyanides, non-corrosive, and having a flashpoint greater than 200 degrees Fahrenheit (flashpoint below 140 degrees Fahrenheit is classified as hazardous according to the USEPA MCCT standards). The consistency of the soil from soil sample 1166-SB-(2-4)-09 was reported to be 88 percent solid and as having a pH of 8.41 (USEPA MCCT standards consider an aqueous pH less than 2 or greater than 12.5 to be corrosive). Based on the above information, the soils pertaining to this area of concern are expected to be classified as non-hazardous.

6.2 AOC-Z-02 - Lumber

On February 26, 2008, Property Solutions advanced two soil borings, SB-01 and SB-06, at the northwest portion of the subject property to investigate AOC-Z-02. The soil borings were advanced to a depth of approximately six (6) feet bgs and seven (7) feet bgs, respectively, where refusal was encountered. Groundwater was not encountered during the advancement of these soil borings. According to the TPI Geophysical Report dated April 17, 2008, the results of the geophysical survey indicate that no "UST like" EM or GPR anomalies were detected in the areas surveyed for AOC-Z-01. The soils observed during field investigations for SB-01 consisted of a brown and dark brown

silty sand and sandy silt with prevalent fine to coarse gravel. Some concrete and brick were observed at shallow depths beneath the asphalt surface layer. The soils observed in soil boring SB-06 during field investigations consisted of alternating layers of varying types and colors of sands and gravel.

Three soil samples were collected from each soil boring for a total of six (6) soil samples (0635-SB-(sample depths)-01, and 0635-SB-(sample depths)-06). Soil sample 0635-SB-(0-2)-01 was immediately released to the laboratory and analyzed for VOCs, SVOCs, pesticides, formaldehyde, and TAL metals/TCL metals. Based on the initial results, soil samples 0635-SSB-(0-2)-01 and 0635-SB-(4-6)-01 were additionally analyzed for SVOCs

Review of the analytical results revealed pesticides, VOCs, and formaldehyde were not detected in soil sample 0635-SB-(0-2)-01. Soil sample 0635-SB-(4-6)-01 was non-detect for SVOCs.

Further review of the analytical results revealed the SVOC benzo(a)anthracene was detected in soil sample 0635-SB-(0-2)-01. The analytical results also revealed the SVOCs benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, and indeno(1,2,3-cd)pyrene were detected in soil sample 0635-SB-(2-4)-01. These concentrations are above the RR SCO for benzo(a)pyrene, benzo(b)fluoranthene, benzo(a)anthracene, and indeno(1,2,3-cd)pyrene.

The compound chrysene was detected in soil sample 0635-SB-(0-2)-01 and 0635-SB-(2-4)-01. These concentrations are above chrysene R SCO but below the RR SCO.

Review of the metals results revealed chromium, copper, lead, and nickel were detected in soil sample 0635-SB-(0-2)-01 at concentrations above the respective compounds' POER SCO, and chromium was detected above the POW SCO.

6.3 AOC-Z-03 - Fill

On February 26, 2008, Property Solutions advanced three soil borings, SB-03 through SB-05, at the southern portion of the subject property to investigate AOC-Z-03. The soil borings were advanced to a depth of approximately 9.5 feet bgs, six (6) feet bgs, and six (6) feet bgs, respectively, where refusal was encountered. Groundwater was not encountered during the advancement of these soil borings. According to the TPI Geophysical Report dated April 17, 2008, the results of the geophysical survey indicate that no "UST like" EM or GPR anomalies were detected in the areas surveyed for AOC-Z-01. The soils observed during field investigations for SB-03 through SB-05 consisted of fine black gravel, sand, and brick at the shallow depths, with dark brown and black gravelly silt occupying the deeper depth intervals. Fill material including brick, ash, and some wood believed to be associated with the historical piers, were observed at the lower depth intervals of SB-03 and SB-05.

A minimum of three soil samples were collected from each soil boring for a total ten soil samples (0635-SB-(sample depths)-03 through 0635-SB-(sample depths)-05). Soil sample 0635-SB-(6-8)-03 was released to the laboratory for analysis and analyzed for VOCs, SVOCs, pesticides, PCBs, pH, and TAL/TCL metals.

Review of the analytical results revealed PCBs were non-detect in soil sample 0635-SB-(6-8)-03.

Review of the analytical results also revealed the VOCs 1,2,4-trimethylbenzene, ethylbenzene, and toluene, were detected at concentrations above the respective compounds U SCO and POW SCO but below each respective RR SCO. Total xylenes were also detected at a concentration above the U SCO, POW SCO, and POER SCO for total xylenes but below the RR SCO.

Review of the analytical results revealed the pesticide toxaphene was detected at 16 ppm. However, the NYCDEC does not have an applicable standard for this compound.

Further review of the analytical results revealed the SVOCs 3&4 methylphenol and naphthalene were detected in soil sample 0635-SB-(6-8)-03. NYSDEC does not have a RR SCO standard for 3&4 methylphenol. The concentration of naphthalene is above its R SCO and POW SCO, but below the RR SCO for naphthalene.

Review of the metals results revealed chromium, copper, lead, and nickel were detected in soil sample 0635-SB-(0-2)-01 at concentrations above the POER SCOs, and chromium was detected above the POW SCO.

On March 17, 2008, Property Solutions attempted to advance two test pits on the Zavas subject property along the southern property boundary in the fill AOC. During the advancement of test pit (TP-05) a concrete slab was encountered at approximately one foot bgs and the concrete slab could not be penetrated with the backhoe. The discovery of this concrete slab warranted an additional investigation and area of concern (AOC-Z-05) to investigate the thickness, extent, and possible source or historical use of the concrete slab. Further investigation of this concrete discovered during field investigations is discussed in Section 6.5.

6.4 AOC-Z-04- Sediment and Surface Water

A sediment sample was intended to be obtained, with the presumption that the sediment would be accessible without the use of a boat. Property Solutions was unable to collect sediment from the bank of the East River, due to the river bank consisting of large rocks adjacent to the concrete bulkhead as accessed from the subject property.

One surface water sample, SW-03, was collected from the shoreline of the East River in the vicinity of the southwest corner of the subject property. The surface water sample SW-03 was analyzed for VOCs, SVOCs, PCBs, pesticides, TAL/TCL metals, formaldehyde, TOC, and phenols. The analytical results indicated that the sample was non-detect for VOCs, SVOCs, PCBs, pesticides, phenols, and formaldehyde.

Review of the metals results revealed copper was detected at a concentration of 0.1 ppm. This concentration is above the NYSDEC Protection for Fish Propagation (saline waters) standards for copper which is 0.0034 ppm. The metal mercury was also detected at a concentration of 0.0003 ppm. This concentration is above the NYSDEC Protection for Human Consumption of Fish (saline

waters) standard and Protection for Aesthetic (saline waters) standard for mercury which are 0.0000007 ppm and 0.0000026 ppm, respectively.

On May 1, 2008, Property Solutions collected two additional surface water samples 1166-SW-01 and 1166-SW-02. Surface water sample 1166-SW-02 was placed on hold and sample 1166-SW-01 was analyzed for filtered (dissolved) TAL/TCL metals, as well as filtered and unfiltered hexavalent and trivalent chromium.

Review of the analytical results revealed that the concentration of copper detected (0.006 ppm) was above the NYSDEC Protection for Fish Propagation (saline waters) standard for copper, which is 0.0034 ppm in the filtered surface water sample. The analytical results revealed that the filtered and unfiltered trivalent and hexavalent chromium were non-detect (below the respective laboratory detection limits). As indicated above, the concentration of copper was significantly lower in the filtered sample compared to the unfiltered sample. Although these samples were collected at different times, the elevated concentration of copper in the unfiltered sample is expected to be due to turbidity or suspended particles in the East River water. The dissolved concentration of copper is likely due to naturally occurring conditions or the result of historic or current uses from other areas in the East River watershed, which is a highly urbanized area.

As indicated, no sediment was encountered along the shoreline for sample collection and analysis. Historical charts and property investigations reveal a sharp drop off from the subject property to the channel bottom in the East River. Historical information reveals the channel to consist of bedrock. The location of the nearest sediments is unknown, but based on this information they would not be representative of potential impacts from the subject property. Groundwater samples collected at the subject property do not indicate dissolved concentrations of metals in groundwater. Therefore, based upon the known data, there is no established direct connection between the mercury and copper soil contamination to water and sediments.

6.5 AOC-Z-05- Concrete

On March 17, 2008, Property Solutions attempted to advance two test pits on the subject property along the southern property boundary in the fill AOC. During the advancement of test pit (TP-05) a concrete slab was encountered at approximately one foot bgs and the concrete slab could not be penetrated with the backhoe. Therefore, no samples were collected from the test pit as a sample collected at this shallow depth would not be representative of the fill material in this AOC. Property Solutions attempted to excavate an additional test pit (TP-06) approximately ten feet farther to the south of TP-05. A concrete slab was also encountered at approximately one foot below grade surface. A soil sample was not collected from test pit TP-06. The analytical results for the soil boring previously advanced in this area of concern (SB-03) revealed the VOCs 1,2,4-trimethylbenzene, ethylbenzene, toluene, and xylenes were detected slightly above the U SCO as well as the POW SCO. However, no VOCs were detected above the RR SCO.

According to the TPI Geophysical Report, the results of the geophysical survey indicate that no “UST like” EM or GPR anomalies were detected in the areas surveyed. Two metallic EM anomalies (Anomaly 1) and a water line (Anomaly 2) were detected during the EM61 survey. Further

investigation of the anomalies indicates that they are most likely not related to a UST. TPI stated that the cross hatching pattern observed with Anomaly 1 is indicative of reinforced concrete just below the asphalt layer. The 8-foot by 8-foot metallic EM anomaly and 2-foot by 5-foot GPR anomaly detected in the north and west portions of the subject property, respectively, are expected to be related to a water line that transects the subject property according to the TPI Geophysical Report.

On May 1, 2008, Property Solutions advanced three test pits (TP-01, TP-02, and TP-03) with a hammer-equipped back hoe on the subject property to further investigate AOC-Z-03. Test pits TP-01 and TP-03 were advanced to a depth of 8 feet bgs, and test pit TP-02 was advanced to a depth of 10 feet bgs. The fill material was observed to consist primarily of brick, ash, sandy silt, and gravel. Some wood was also observed and are potentially associated with the prior pier constructions and shipping activities which had historically been associated with the subject property. A concrete slab approximately 4 inches thick was observed approximately one to two feet bgs and is expected to be associated with the former historical building that had previously occupied the subject property. Groundwater was encountered during the advancement of the test pits at approximately 9 feet bgs. No groundwater samples were collected.

Ten soil samples were collected and two soil samples (1166-TP-01-(6-8) and 1166-TP-02-(8-10) were submitted to the certified analytical laboratory to be analyzed for SVOCs and TAL/TCL metals.

Review of the analytical results revealed that no SVOCs were detected in soil sample 1166-TP-01-(6-8). The SVOCs benzo(a)pyrene, benzo(b)fluoranthene, benz(a)anthracene, chrysene, and indeno(1,2,3,-cd)pyrene were detected in soil sample 1166-TP-02-(8-10) at concentrations above the RR SCO. The compounds benzo(b)fluoranthene and benz(a)anthracene were also detected above the POW SCO.

Further review of the analytical results revealed that the metals chromium, copper, and lead were detected above the POER SCO in soil sample 1166-TP-01-(6-8), while chromium, mercury, and selenium were detected above the POW SCO. Lead was detected above the RR SCO in soil sample 1166-TP-01-(6-8). The metals chromium, copper, and lead, were detected above the POER SCO in soil sample 1166-TP-02-(8-10). Chromium was also detected above the POW SCO in soil sample 1166-TP-02-(8-10).

6.6 AOC-Z-06- SVOCs and Metals

On April 30, 2008, Property Solutions advanced an additional two borings (SB-07 and SB-08) in order to further investigate the contaminants detected in AOC-Z-01. Property Solutions advanced borings SB-07 and SB-08 along the western boundary of the subject property near the East River in an attempt to obtain groundwater in an expected downgradient location of AOC-Z-01. Soil boring SB-07 was advanced to a depth of 14 feet bgs and groundwater was encountered at approximately 10 feet bgs. Soil boring SB-08 was advanced to a depth of 8 feet bgs. No groundwater was encountered in soil boring SB-08. Eleven soil samples were collected from soil borings SB-07 and SB-08. Two soil samples (1166-SB-(10-12)-07 and 1166-SB-(6-8)-08) collected from the borings were analyzed for VOCs, SVOCs, and TAL/TCL metals.

Review of the analytical results revealed that no VOCs were detected in soil samples 1166-SB-(10-12)-07 and 1166-SB-(6-8)-08 with the exception of isopropyl toluene in soil sample 1166-SB-(10-12)-07, which was detected above the most stringent NYSDEC SCO.

The SVOCs benzo(a)pyrene, benzo(b)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected in soil sample 1166-SB-(10-12)-07 at concentrations above their respective RR SCO. Benzo(b)fluoranthene and chrysene were also detected above the POW SCO in soil sample 1166-SB-(10-12)-07. The SVOCs benzo(a)pyrene and benzo(b)fluoranthene were also detected above the RR SCO in soil sample 1166-SB-(6-8)-08, with benzo(b)fluoranthene and chrysene also detected above the POW SCO.

Review of the analytical results revealed that the metals copper and lead were detected in soil sample 1166-SB-(10-12)-07 at concentrations above the RR SCO. The metals chromium, copper, and lead were also detected above the POER SCO, with chromium and lead also detected above the POW SCO in soil sample 1166-SB-(10-12)-07. The metals chromium, copper, and lead were also detected in soil sample 1166-SB-(6-8)-08 at concentrations above the POER SCO. Chromium was also detected above the POW SCO in soil sample 1166-SB-(6-8)-08.

A permanent prepack well was installed in SB-07 and one groundwater sample was collected from soil boring SB-07. Groundwater sample 1166-SB-07-GW-(7.9) was analyzed for VOCs, SVOCs, and filtered and unfiltered TAL/TCL metals.

Review of the analytical results revealed that no VOCs were detected in groundwater sample 1166-SB-07-GW-(7.9) above the NYSDEC AWQS. No SVOCs were detected above the AWQS with the exception of chrysene.

Further review of the analytical results revealed that the unfiltered metals arsenic, chromium, and copper were detected above the AWQS in the unfiltered groundwater sample 1166-SB-07-GW-(7.9). Iron, magnesium, manganese, and sodium were detected at concentrations above the AWQS in the filtered groundwater sample 1166-SB-07-GW-(7.9).

6.7 AOC-Z-07- UST

Subsequent to Phase II field investigations and subsurface evaluation, Property Solutions was provided with a FDNY record regarding a 5,000-gallon fuel-oil storage tank listed to have been present at the address of the subject property. The record indicates that the tank was sealed and removed as of September 5, 2003. Property Solutions contacted Ms. Donnie Jones, Public Records Representative for the FDNY, for further information. According to Ms. Jones, the sealed and removed status signifies that the licensed individual who performed that tank closure would have submitted a confirmation of affidavit to the department certifying that the tank was pumped dry, opened, observed/cleaned, then filled with inert material and sealed. Additionally, the associated vent pipes and fill lines would have been purged clean and sealed off as well.

The location of the tank was not specified on the record. No information regarding this UST was 20080635

provided by the owner or operator of the subject property. No indication of storage tanks were observed during review of fire insurance maps, NYSDEC records, NYCDEP records, NYCDOB records, or the environmental database. During the Phase I property visit and Phase II field investigations, no evidence of fill ports or tank vents were observed to be extruding from the ground surface or cut off and capped at the ground surface level. Property Solutions requested the FDNY to search their archives for a hard copy file regarding this UST, however, Ms. Jones specified that in a majority of cases, after the tank has been closed off and a confirmation of affidavit submitted for the closure operation, effectively closing the site record, the files are discarded. Property Solutions has also re-engaged the NYCDOB in an attempt to obtain any as-built drawings that may exist for the subject property, and any pre-demolition surveys that may have been submitted in order to obtain the demolition permit provided by the NYCDOB to Sano Construction in October 2001, which may reveal the past location of the storage tank. Upon receipt, this information will be reviewed and forwarded.

TPI also performed a geophysical survey on the subject property in order to investigate the presence and/or absence of any USTs or structural related anomalies which could be observed on the subject property. According to the Geophysical Report prepared by TPI and dated April 17, 2008, the results of the geophysical survey indicate that no "UST like" EM or GPR anomalies were detected in the areas surveyed. The complete TPI geophysical report is located in Appendix C.

Property Solutions recommends that as structural and vehicular obstructions are ultimately removed from the subject property for redevelopment, an additional geophysical survey be conducted in the areas that were inaccessible during the initial field investigations for this Phase II. Pending receipt of documentation which may reveal the former location of the 5,000-gallon heating oil UST reportedly removed from the subject property in 2003, further investigation may be warranted.

7.0 CONCLUSIONS

This Limited Phase II SI was performed to determine the potential presence/absence of subsurface contamination at the subject property in the AOCs.

The following table summarizes the contaminant class detected above the NYSDEC RR SCO or AWQS for each AOC.

AOC #	AOC Name	Contaminant Class in Soils	Contaminant Class in Aqueous
AOC-Z-01	Wood Dipping	SVOCs & metals (0665-SB-02)	NA
AOC-Z-02	Lumber	SVOCs (0665-SB-01)	NA
AOC-Z-03	Fill	NA	NA
AOC-Z-04	Sediment	NA	Metals (0665-SB-03)
AOC-Z-05	Concrete	NA	Concrete
AOC-Z-06	SVOCs & Metals	SVOCs & metals (1166-SB-07)	SVOCs & metals (1166-SB-07)
AOC-Z-06	SVOCs & Metals	SVOCs (1166-SB-08)	NA
AOC-Z-07	UST	NI	NI

SVOCs - Semi-volatile organic compounds

VOCs - Volatile organic compounds

NA - Not applicable – no contaminants detected above applicable NYSDEC criteria

NI – Not Investigated - AOC-Z-07 not investigated as part of initial scope of work. See Section 6.7 for more information regarding this AOC

Based on the results of this Limited Phase II SI, Property Solutions has the following AOC specific conclusions and recommendations:

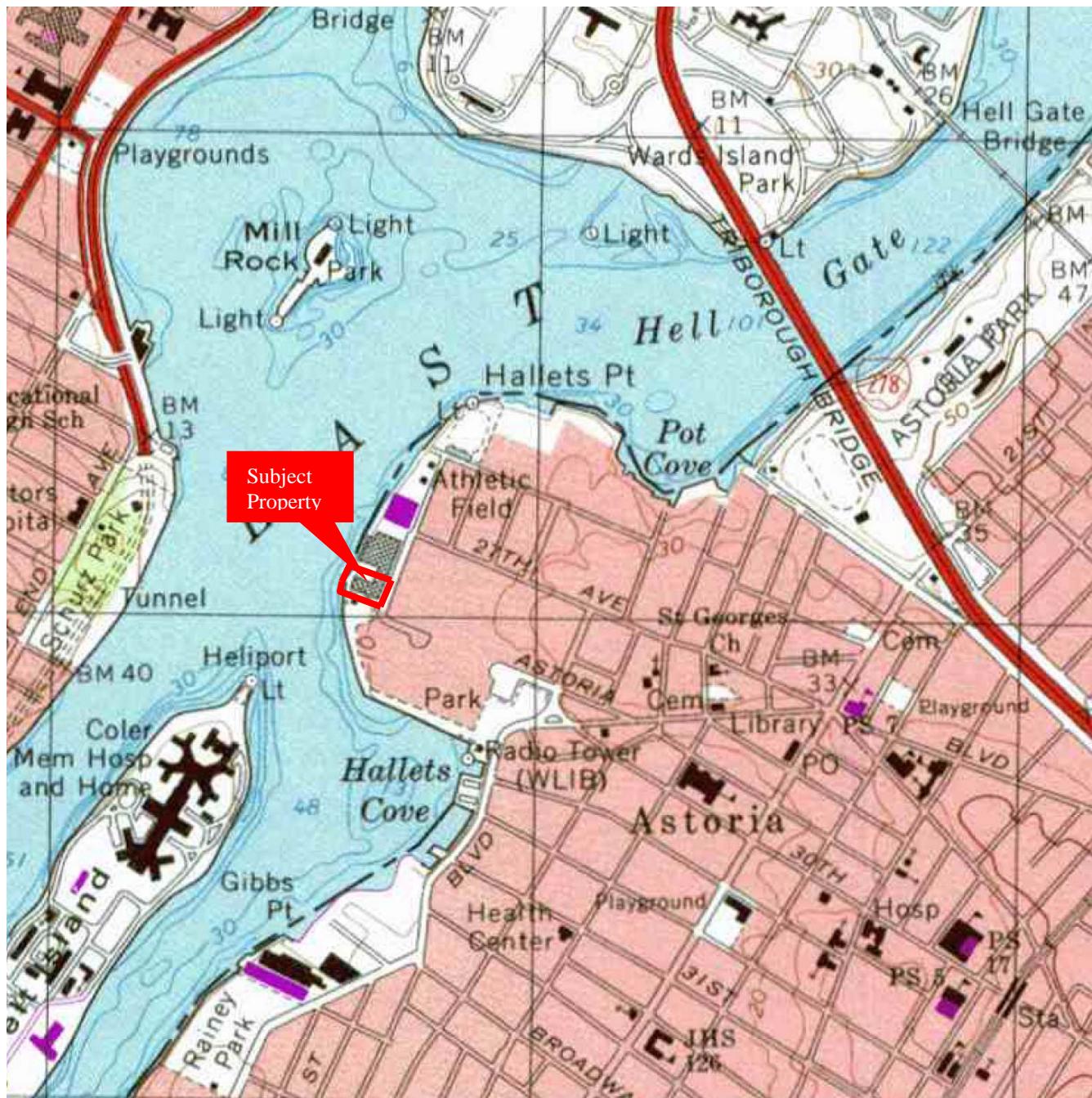
AOC #	AOC Name	Conclusions and Recommendations
AOC-Z-01	Wood Dipping	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC are likely related to the historical fill present on the subject property and not from a specific release associated with the former wood dipping operations of the subject property. TCLP analysis revealed the soil (sampled from SB-09) to be non-hazardous. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that the contamination be delineated in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-02	Lumber	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC is likely related to the historical fill present on the subject property and not from a specific release associated with the former lumber operations of the subject property. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that the contamination be delineated in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-03	Fill	No contaminants were detected above applicable NYSDEC criteria (RR SCO). As this AOC revealed no evidence of contamination, Property Solutions recommends that site characterization be completed for this AOC in accordance with NYSDEC regulations in order to meet the requirements for the BCP.
AOC-Z-04	Sediment	No sediment samples were able to be collected. No contaminants were detected above applicable NYSDEC criteria (AWQS) for the surface water samples collected with the exception of copper and mercury. A filtered surface water sample was also analyzed which revealed a non-detect concentration of mercury and concentration of copper an order of magnitude less than the initial result. The metals detected may be due to naturally occurring conditions or the result of historic or current uses from other areas in the East River watershed, which is a highly urbanized area. As indicated, no sediment was encountered along the shoreline for sample collection and analysis. Historical charts and property investigations reveal a sharp drop off from the subject property to the channel bottom in the East River. Historical information reveals the channel to consist of bedrock. The location of the nearest sediments is unknown, but based on this information they would not be representative of potential impacts from the subject property. Groundwater samples collected at the subject property do not indicate dissolved concentrations of metals in groundwater. Therefore, based upon the known data, there is no established direct connection between the mercury and copper soil contamination to water and sediments.
AOC-Z-05	Concrete	No environmental concerns identified with AOC-Z-05. Concrete was determined to be part of a historic structure. No further investigation is warranted at this time.
AOC-Z-06	SVOCs & Metals	Based on field investigations and the analytical results, it is believed that the SVOCs and metals contamination identified in this AOC is likely related to the historical fill present on the subject property and not from a specific release associated with the former operations of the subject property. The metal contamination detected in unfiltered and filtered groundwater samples is expected to be due to turbidity and/or background concentrations. As contamination was revealed to be present in the area of this AOC, Property Solutions recommends that additional sampling be conducted in order to confirm the contamination is associated with historic fill and not former operation and to delineate the contamination in accordance with NYSDEC regulations

		in order to meet the requirements for the BCP.
AOC-Z-07	UST	AOC-Z-07 not investigated as part of initial scope of work. Property Solutions has requested FDNY and NYCDOB documentation and is awaiting responses. The actual location of the UST is unknown. As this AOC was not previously investigated, Property Solutions recommends that as structural and vehicular obstructions are ultimately removed from the subject property for redevelopment, an additional geophysical survey be conducted in the areas that were inaccessible during the initial field investigations for this Phase II. Pending receipt of documentation which may reveal the former location of the 5,000-gallon heating oil UST reportedly removed from the subject property in 2003, further investigation may be warranted.

8.0 RECOMMENDATIONS

Based on the results of this Limited Phase II SI, Property Solutions has the following general recommendations/steps to be performed as part of the redevelopment of the subject property:

- Apply for and be accepted into the NYSDEC BCP, and then perform the following in accordance with the BCP;
- Complete the Site Characterization;
- Perform a Remedial Investigation;
- Prepare Site Characterization and Remedial Investigation (SC/RI) report for submittal to NYSDEC;
- Perform Remedy Selection;
- Prepare Remedial Action Selection (RAS) report for submittal to NYSDEC;
- If accepted, the NYSDEC publicly notices the RAS in the Environmental Notice Bulletin for public comment;
- Prepare Remedial Action/Remedial Design (RA/RD) Workplan;
- Implement RA or Interim Remedial Measures (IRMs);
- Perform RA performance compliance sampling;
- Prepare Institution Controls documents;
- Prepare RA schedule and progress reports for submittal to NYSDEC;
- Prepare RA report (RAR) for submittal to NYSDEC;
- Prepare the operation, maintenance and monitoring (OM&M) program report;
- Prepare final project evaluation report for submittal to NYSDEC and request Site Closeout;
- NYSDEC provides site closeout; and
- Implement the OM&M program.


9.0 REFERENCES

1. United States Geological Survey's 7.5-minute topographic quadrangle map of Central Park, New York - New Jersey.
2. Soils of New York Landscapes (Cline & Marshall).

3. Ground Water Atlas for the United States Segment 12, dated 1995, and produced by the United States Geological Survey.
4. Geologic Map of New York-Lower Hudson Sheet, dated 1970, and produced by the University of the State of New York.
5. United States Department of the Interior, National Wetland Inventory Map for Central Park, New York - New Jersey.
6. National Water Summary 1986 – Hydrologic Events and Groundwater Quality, dated 1988, produced by the United States Geological Survey.
7. Aerial photographs provided by Google Earth.
8. New York State Department of Environmental Conservation (NYSDEC) Draft Division of Environmental Remediation (DER)-10 Technical Guidance For Site Investigation and Remediation (DER-10) document dated December 25, 2002.
9. NYSDEC 6 New York Codified Rules and Regulations (NYCRR) Part 375 Environmental Remediation Program effective December 14, 2006 (Part 375).
10. NYSDEC Technical and Administrative Guidance Memorandum (TAGM) 4046 – Determination of Soil Cleanup Objectives and Cleanup Levels dated January 1994 (TAGM 4046).
11. NYSDEC 6 NYCRR Part 703.5 - Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations, dated August 1999 (Part 703.5)
12. NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values and Groundwater Effluent Limitations, dated June 1998.

APPENDIX A

MAPS AND PLANS

1995 US DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY 7.5' TOPOGRAPHIC QUADRANGLE

Property Solutions Inc.

Zavas Property
27-50 1st Street
Astoria, Queens County, NY
11102

Project No.: 20070635

Topo Quad Name: Central Park, New York

Property Boundaries are Approximate

EAST
RIVER

ALLIED
INTERIORS

SUBJECT
PROPERTY

1ST STREET

ASTORIA
HOUSES
APARTMENTS

HALLETS
POINT
PLAYGROUND

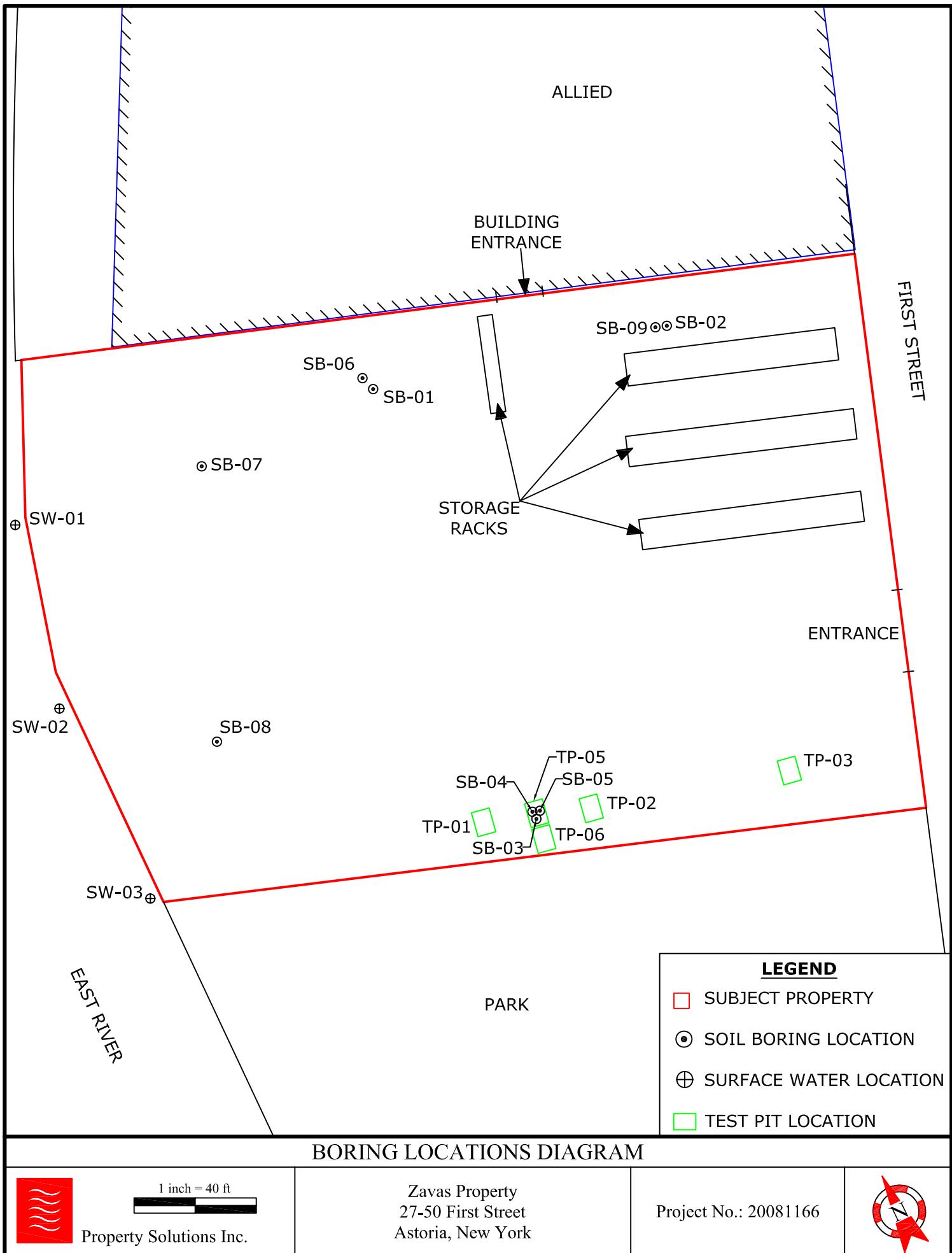
PROPERTY DIAGRAM

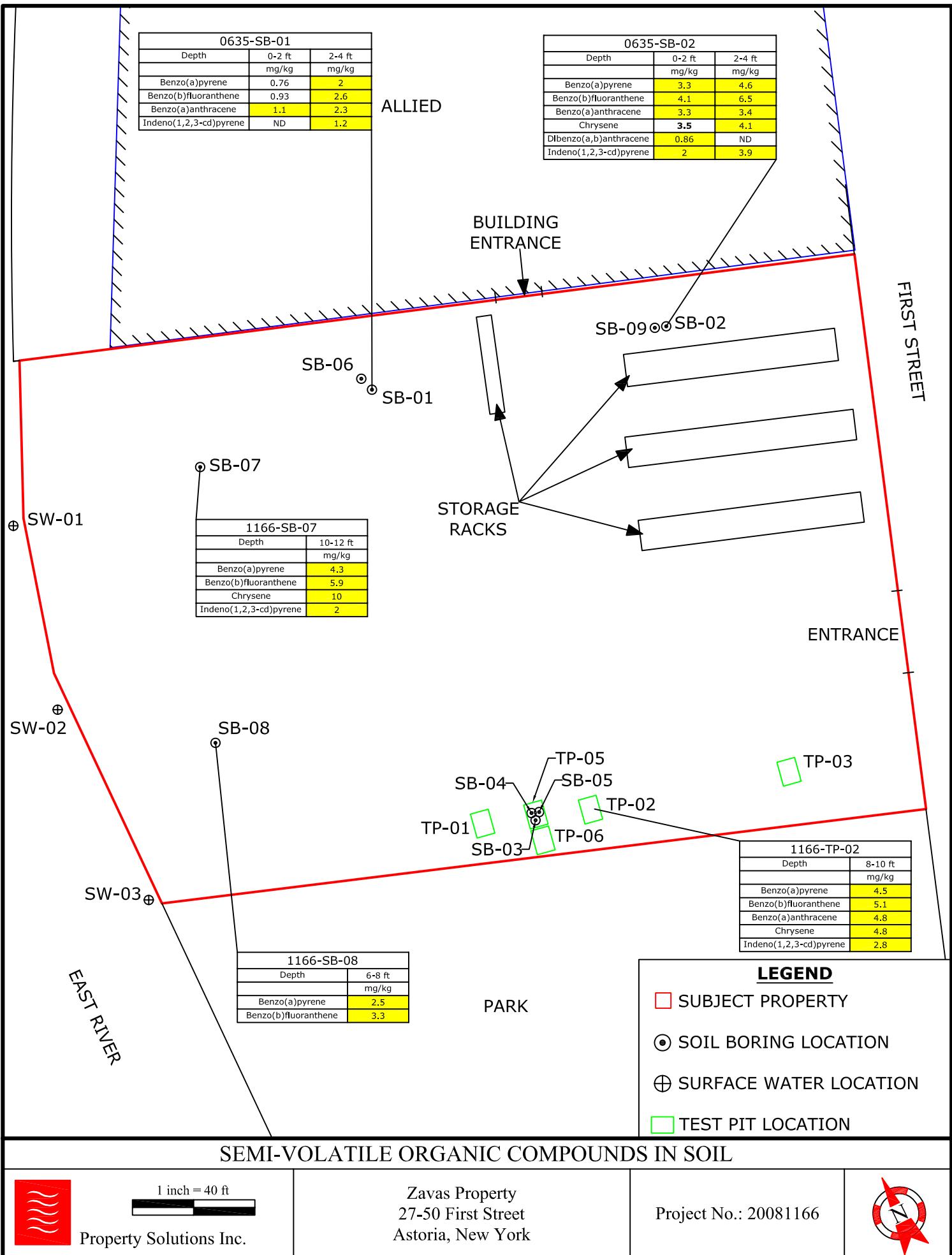
Property Solutions Inc.

Zavas Property
27-50 First Street
Astoria, New York

Project No.: 20080635

BORING LOCATION DIAGRAM


1 inch ≈ 50ft


Property Solutions Inc.

Zavas Property
27-50 First Street
Astoria, New York

Project No.: 20081166

ALLIED

0635-SB-02	
Depth	2-4 ft
	mg/kg
Copper	293
Lead	733
Mercury	1.4

1166-SB-07	
Depth	10-12 ft
	mg/kg
Copper	1,140
Lead	4,370

BUILDING
ENTRANCE

SB-09 ◎ SB-02

SB-06 ◎ ◎ SB-01

STORAGE
RACKS

FIRST STREET

⊕ SW-01

⊕ SW-02

EAST RIVER

SB-08

SW-03

TP-05
SB-05
SB-04
TP-01
SB-03
TP-02
TP-06

TP-03

PARK

LEGEND

 SUBJECT PROPERTY

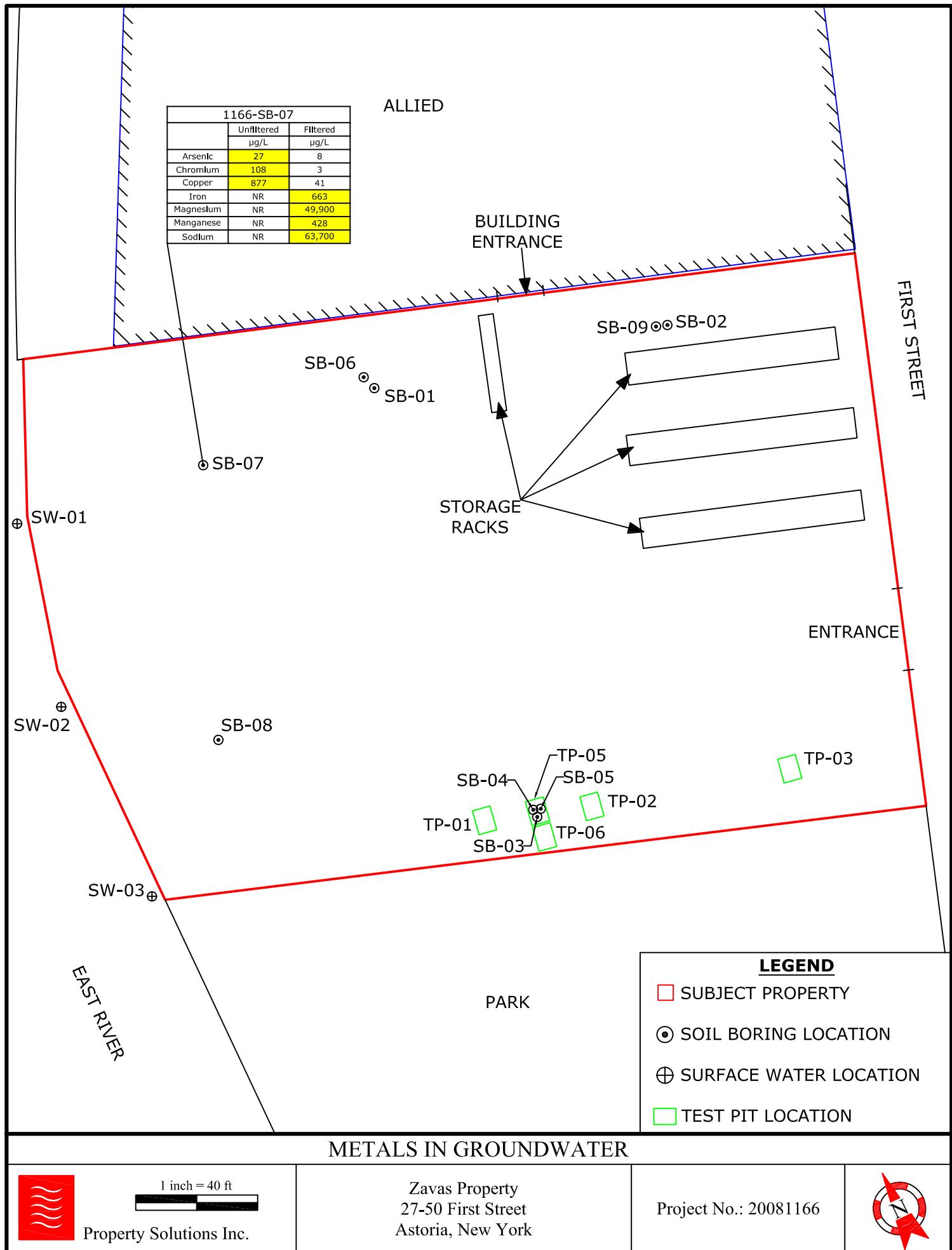
 SOIL BORING LOCATION

 SURFACE WATER LOCATION

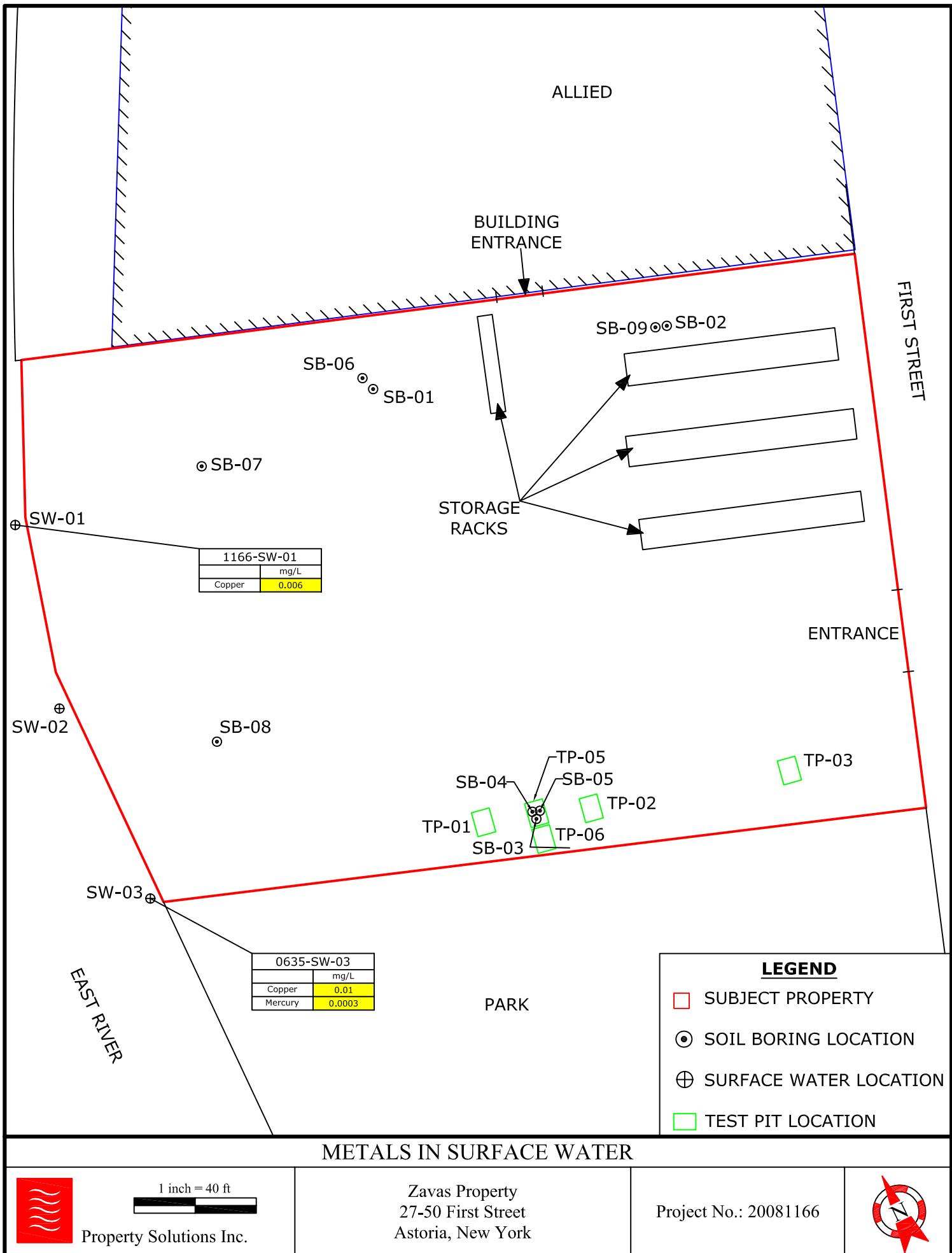
 TEST PIT LOCATION

METALS IN SOIL

1 inch = 40 ft



Property Solutions Inc.


Zavas Property
27-50 First Street
Astoria, New York

Project No.: 20081166

APPENDIX B

PROPERTY PHOTOGRAPHS

PHOTO 1.

Western portion of the subject property along the East River.

PHOTO 2.

Western boundary of the subject property adjoining the East River.

PHOTO 3.

Southern portion of the subject property.

Property Solutions Inc.
Project No.: 20080635

PHOTO 4.

Mark-out for soil boring SB-03.

PHOTO 5.

Drilling soil boring SB-03.

PHOTO 6.

Core sample from soil boring SB-03.

Property Solutions Inc.
Project No.: 20080635

PHOTO 7.

Drilling soil boring SB-04.

PHOTO 8.

Soil boring SB-05.

PHOTO 9.

Core samples from soil boring SB-04 (left) and soil boring SB-05 (right).

Property Solutions Inc.
Project No.: 20080635

PHOTO 10.

Core samples from soil boring SB-05.

PHOTO 11.

Drilling soil boring SB-01.

PHOTO 12.

Soil boring SB-01.

Property Solutions Inc.
Project No.: 20080635

PHOTO 13.

Core sample from SB-01.

PHOTO 14.

Core sample from SB-01.

PHOTO 15.

Drilling soil boring SB-06.

Property Solutions Inc.
Project No.: 20080635

PHOTO 16.

Core sample from SB-06.

PHOTO 17.

Core sample from SB-06.

PHOTO 18.

Photo description.

Property Solutions Inc.
Project No.: 20080635

PHOTO 19.

Drilling soil boring SB-02.

PHOTO 20.

Core sample from SB-02.

PHOTO 21.

Core sample from SB-02.

Property Solutions Inc.
Project No.: 20080635

PHOTO 22.

Drilling soil boring SB-07 during additional drilling on April 30, 2008.

PHOTO 23.

Core sample from SB-07.

PHOTO 24.

Core sample from SB-07 indicating presence of groundwater.

Property Solutions Inc.
Project No.: 20080635

PHOTO 25.

Pre-pack well installed in soil boring SB-07.

PHOTO 26.

Well in SB-07 indicating proximity to East River.

PHOTO 27.

Drilling soil boring SB-08.

Property Solutions Inc.
Project No.: 20080635

PHOTO 28.

Soil boring SB-08.

PHOTO 29.

Core sample from SB-08.

PHOTO 30.

Drilling soil boring SB-09.

Property Solutions Inc.
Project No.: 20080635

PHOTO 31.

Core sample from SB-09.

Property Solutions Inc.
Project No.: 20080635

APPENDIX C

GEOPHYSICAL REPORT

April 17, 2008

Tim Clackett
Property Solutions, Inc.
323 New Albany Rd.
Moorestown, NJ 08057

Project: Geophysical Survey – Zavas and Southern Famitech – Astoria, Queens, NY

Dear Tim;

The following is a brief letter report detailing the results of the geophysical survey performed at the above referenced site. Site maps and/or pertinent ground penetrating radar (GPR) transects are contained in the report and Appendix A. It would be helpful to review Appendix A and the site maps when reading this report. TPI's standard practice is to indicate the results of the geophysical survey by marking all identified utility lines, tanks, and GPR anomalies etc. with chalk, paint or flags. It should be noted that this report is a means of transferring data and results of data interpretation, which was performed during the time allotted for the fieldwork. As indicated in TPI's quote, more thorough data post processing and reporting services are available at the client's discretion. These services may or may not be warranted depending on the scope and purpose of the geophysical survey.

Geophysical Survey Results

TPI Environmental, Inc. (TPI) was contracted by Property Solutions, Inc. (client) to scan areas of concern (AOC) at the above referenced location and clear soil borings. The site consists of a construction material supply warehouse, a parking area to the north, and a supply yard to the south as indicated on Figure 1 and the client's Property Diagram 2 (Exhibit I in the Appendix). Upon arrival to the site on February 20, 2008, TPI reviewed the site history with the client and performed a site walk to search for any evidence of USTs, former structures, and to review one call mark outs/utility locations. Based on the review of the site history, the seven AOCs listed on Exhibit 1, the northern parking lot, and the sidewalk were designated for the geophysical survey. During the site walk the following areas of interest were noted;

- No visual evidence of an UST or former structure related AOCs-F-3, 5, 8 or AOCs Z-1-4 was found on-site.
- No utilities were marked inside the building and telephone, gas and electric were marked outside.

Geophysical surveys are typically accomplished by employing the following techniques; GPR, Fisher TW6 electromagnetic metal detection (TW6 EM), a Geonics EM61-MK2 Time – Domain Electromagnetic Detector unit (EM61), radio frequency line locating (RF), and magnetics. The EM61 is a high power, high sensitivity metal detector capable of detecting both ferrous and non-ferrous metal. The TW6 EM unit sounds an audible alarm in the presence of a large mass of metal such as an UST. A description and discussion of these geophysical methods as well as

TPI's standard procedures for performing geophysical surveys is found in Appendix A. In general, "blind surveys" are typically performed by initially scanning the site with a TW6 EM unit and/or an EM61 unit and noting areas of relatively high EM response. Then locations with high EM response are further investigated with GPR. Known utilities are typically traced with the RF unit, GPR, and the TW6 EM unit depending on the size, matrix and conductive properties of the line. EM units are typically not effective and practical in areas underlain with reinforced concrete and/or the presence of ubiquitous metallic objects.

During EM61 surveys the EM response is sampled at four time positions at each survey point (every 0.62-feet). These four readings allow for the discrimination of targets based on target size, shape, material, and orientation. Furthermore the EM61 is designed in such a way that it is possible to distinguish deeper objects from shallow ones. In channel D mode the system suppresses near surface targets that may mask the response of deeper more important targets. This feature is useful when the purpose of the survey is to locate deeper targets, such as USTs, in the presence of near surface metallic objects.

The geophysical survey at this site was accomplished with the EM61 and GPR units. The EM61 unit was used to scan the northern parking lot and data collected during the survey was retained on a data recorder, processed, and presented on a map for the report (Figure 2). In general all areas inside and outside the building, with the exception of the northern parking lot, were either underlain with reinforced concrete or covered with metallic objects (vehicles, storage racks, materials etc.) and therefore could not be investigated with the EM61 unit. The GPR survey was performed over metallic anomalies identified during the EM surveys, the sidewalks, and in vicinity of the AOCs. Results of the geophysical survey were marked on the ground with paint and maps of the survey results are contained in this report and Appendix A. Results of the geophysical survey are as follows;

- Utilities were traced and marked as indicated on Figure 1. The soil borings and a test pits were scanned, moved as needed, and marked for drilling/excavating.
- EM61 Results – Northern Parking Lot - Two metallic EM anomalies and a water line were detected during the EM61 survey as indicated on Figure 1, Figure 2, and discussed further in the table below. Further investigation of the two anomalies indicates that they are most likely not related to an UST.

Anomaly	GPR and EM Description (See GPR Images in Appendix A)	GP R#
1	15' x 10' metallic EM anomaly shown on Figure 2. Evidence of a cross hatching pattern similar to reinforced concrete is evident just below the asphalt layer. No "UST like" anomaly detected.	283
2	8' x 8' metallic EM anomaly shown on Figure 2. 2' and 5' long metallic GPR anomalies were detected in the north and west transects respectively. This anomaly may be related to the water line. No "UST like" anomaly detected.	285 286

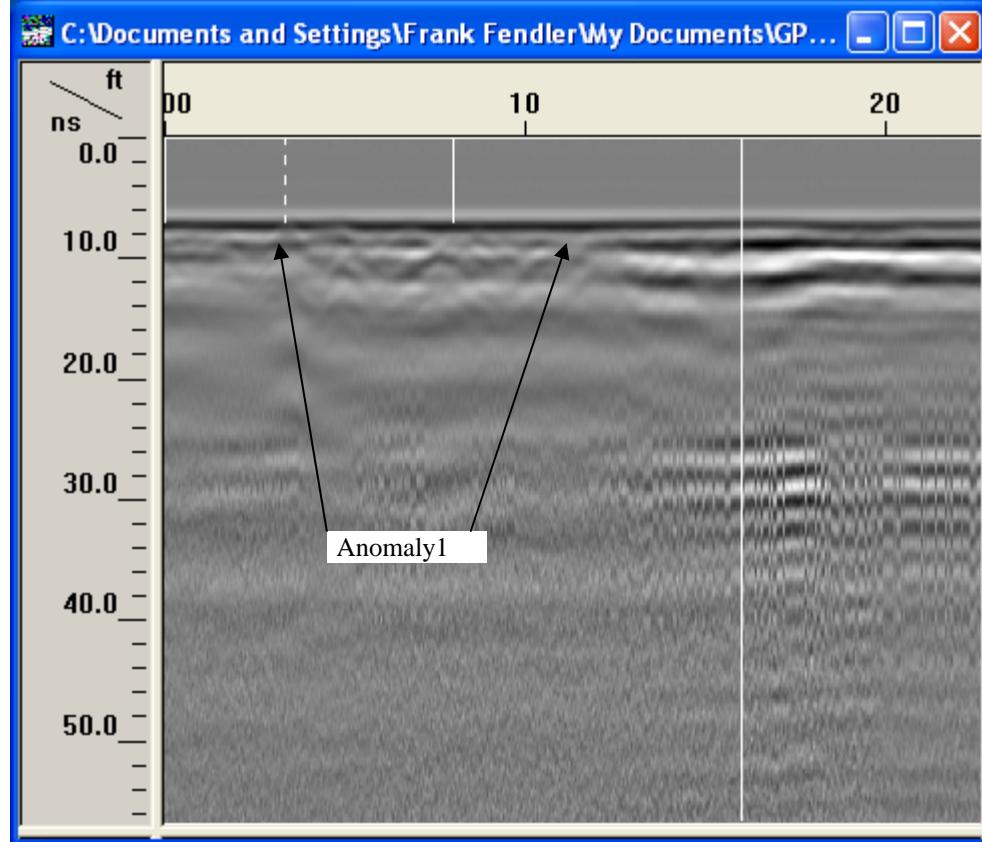
- GPR Results – AOCs F-3, F-5, F-8, Z-1, and the sidewalk were surveyed with GPR as discussed below.

AOC	GPR and EM Description (See GPR Images in Appendix A)	GP R#
F-3	South Machine Shop - Numerous GPR scans were performed over this area and no significant anomalies were detected.	148
F-5	Drains – Concrete floor drains were observed in the Allied bldg. (see Exhibit I). GPR scans confirm that that lines between the drains are still present. A 5' x 5' excavation anomaly was detected in transect 144.	144 147
F-8	UST2 – A 3K UST was reportedly removed from this area. Numerous GPR scans were performed over this area and no “UST like” anomalies were detected.	160
Z-1	Wood Dipping – Numerous GPR transects were performed across the former location of the 60,000 gallon tank. Other then a large reinforced concrete slab under asphalt no other significant anomalies were detected.	158
Z-2	Lumber - No specific area to scan or survey.	NA
Z-3 & Z-4	Fill and Sediment - No specific area to scan or survey.	NA
Sidewalk	This area was scanned with the GPR unit and no significant anomalies were detected.	NA

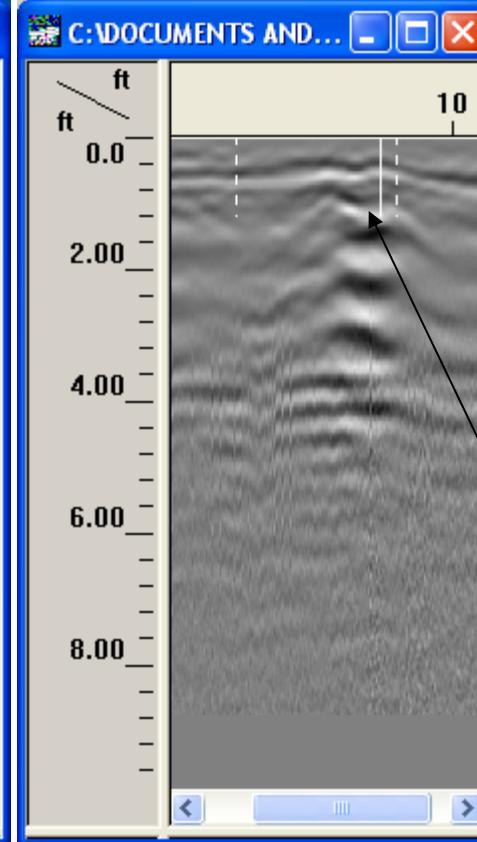
- Results of the geophysical survey indicate that no “UST like” EM or GPR anomalies were detected in the areas surveyed.

Due to the subjective nature of geophysical surveys in general, TPI typically recommends excavating suspect anomalies in order to conclusively confirm or deny the presence of an UST. Based upon the results of this geophysical survey, TPI recommends excavating or advancing borings in the vicinity of the anomalies 1 and 2. TPI completes non-intrusive geophysical surveys using equipment and techniques representing best available technology. TPI does not accept responsibility for survey limitations due to inherent technological limitations or unforeseen and varying site-specific conditions. In practical terms, TPI serves to reduce the risk of encountering subsurface utilities during excavation operations or greatly increase the chance of locating man made subsurface objects depending on the goal of the project.

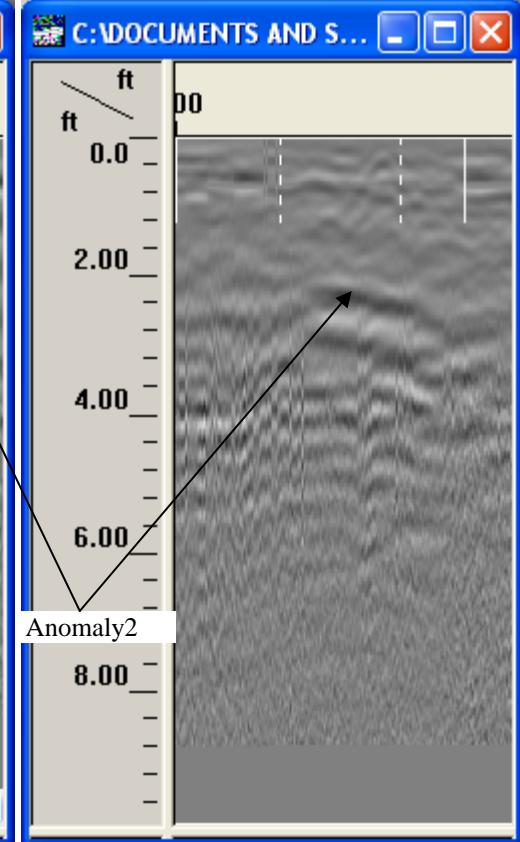
If you should require additional information or have any questions, please do not hesitate to contact me at the above phone number or email me at ffendler@tpienv.com.


Sincerely,

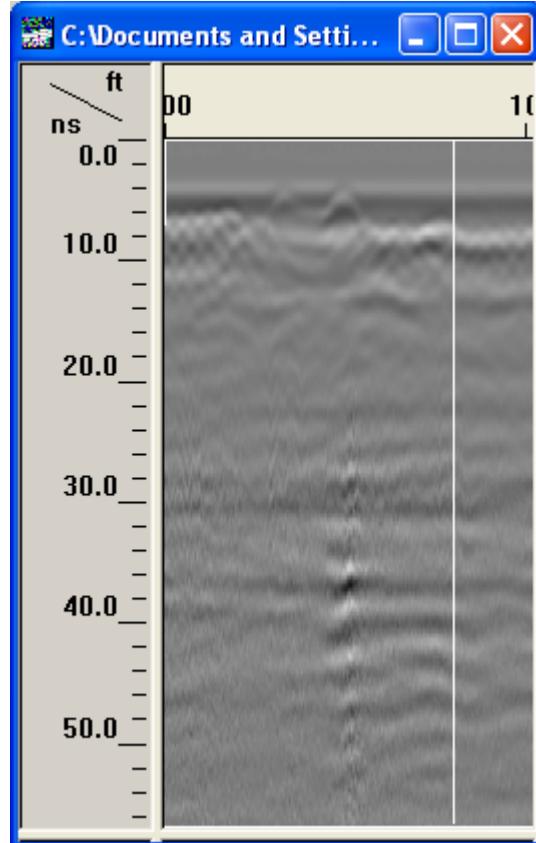
Frank Fendler, M.S, P.G.
President


Appendix A

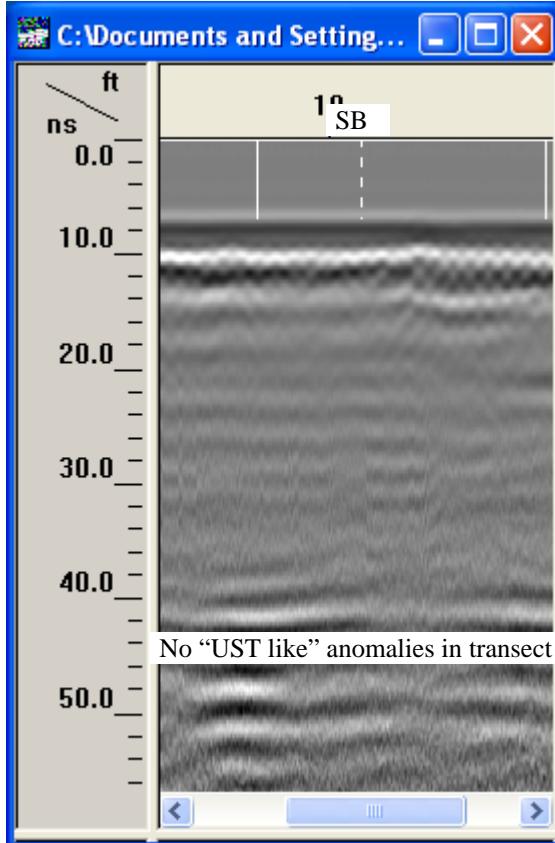
Geophysical Survey Data & Results


GPR TRANSECT 283
West Across Anomaly1

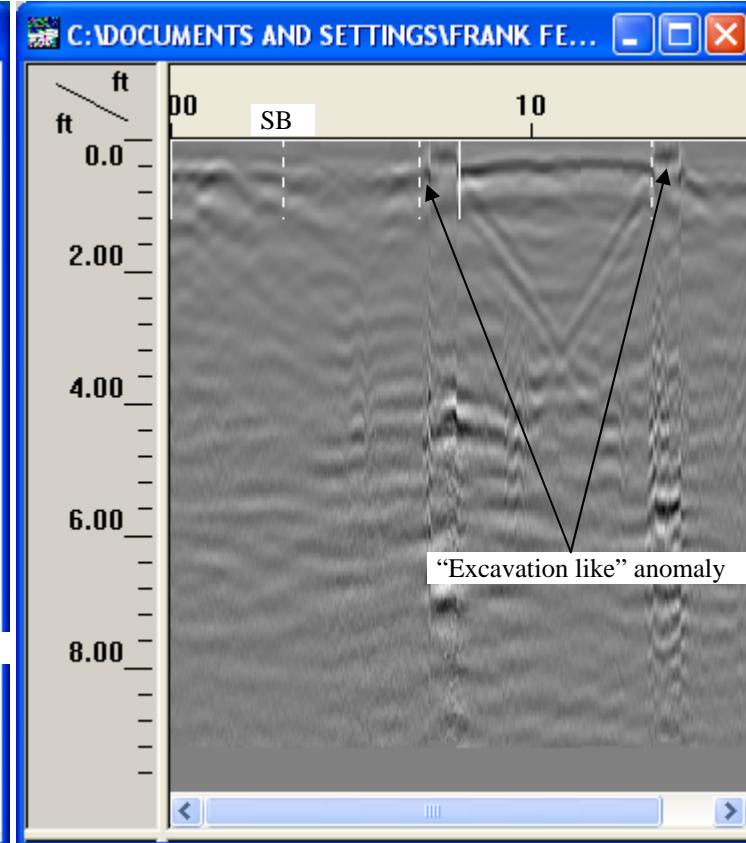
GPR TRANSECT 286
North Across Anomaly2


GPR TRANSECT 285
West Across Anomaly2

Note: See Figure 1 for transect location

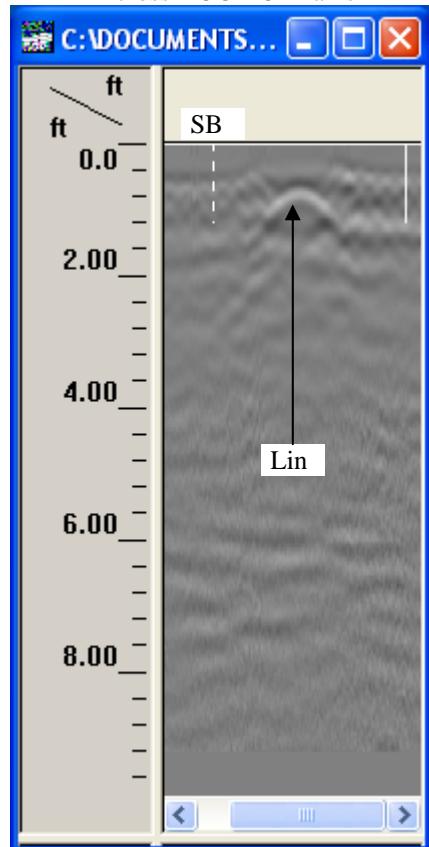

GPR TRANSECT 148

Across AOC F-3 Machine South

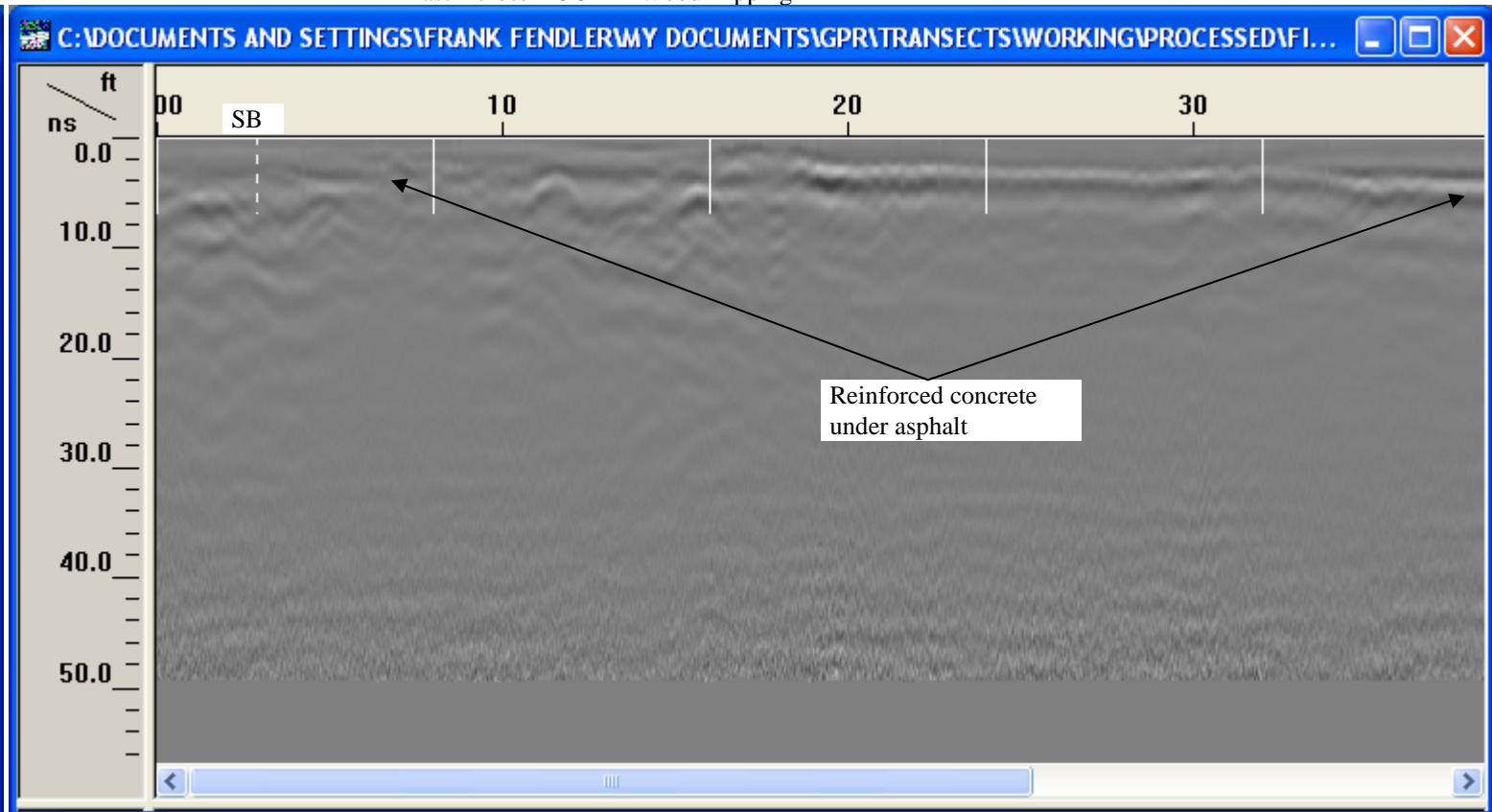

GPR TRANSECT 160

West Across AOC F-8 UST2

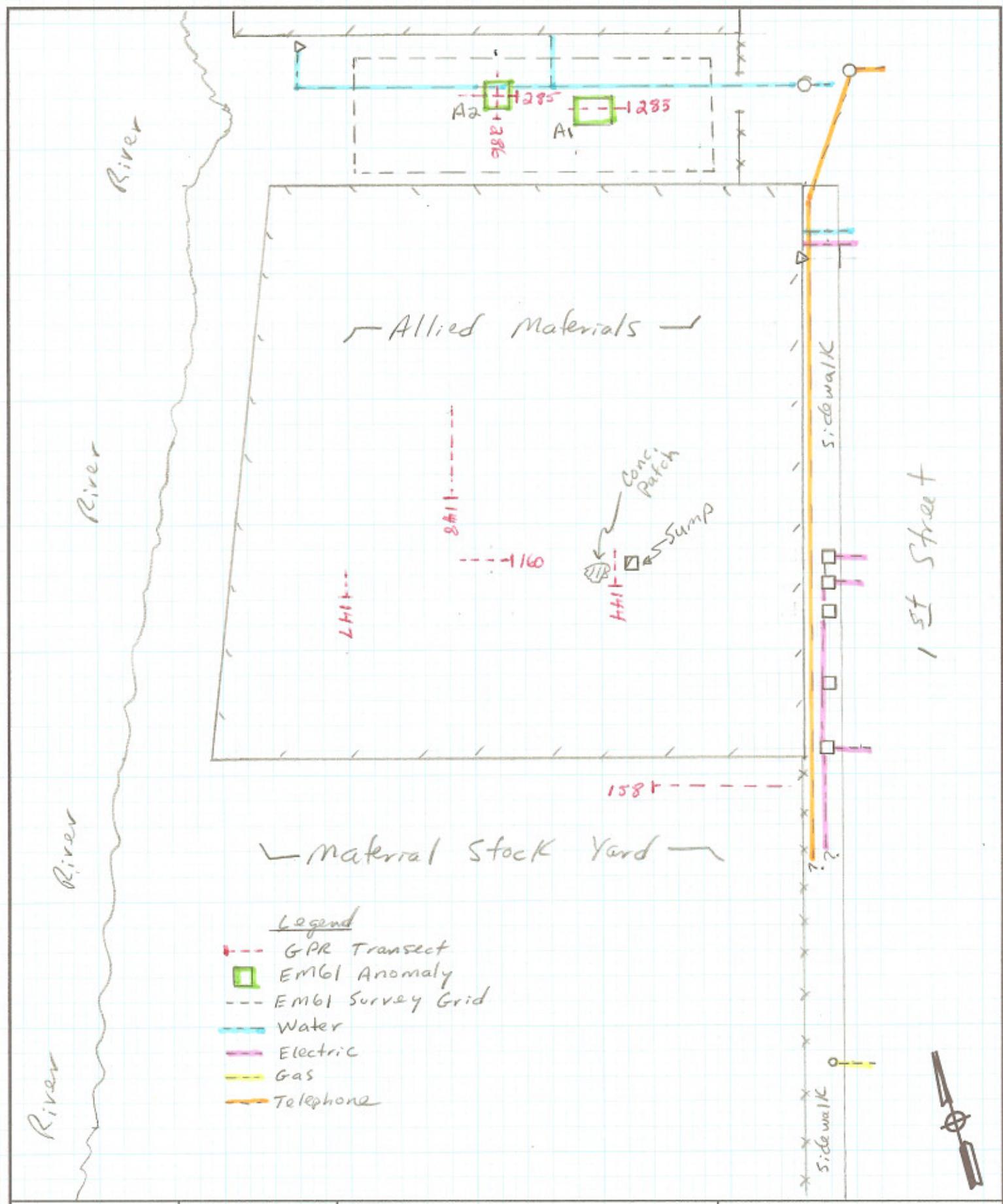
GPR TRANSECT 144


Across AOC F-5 Drains

Note: See Figure 1 for transect location

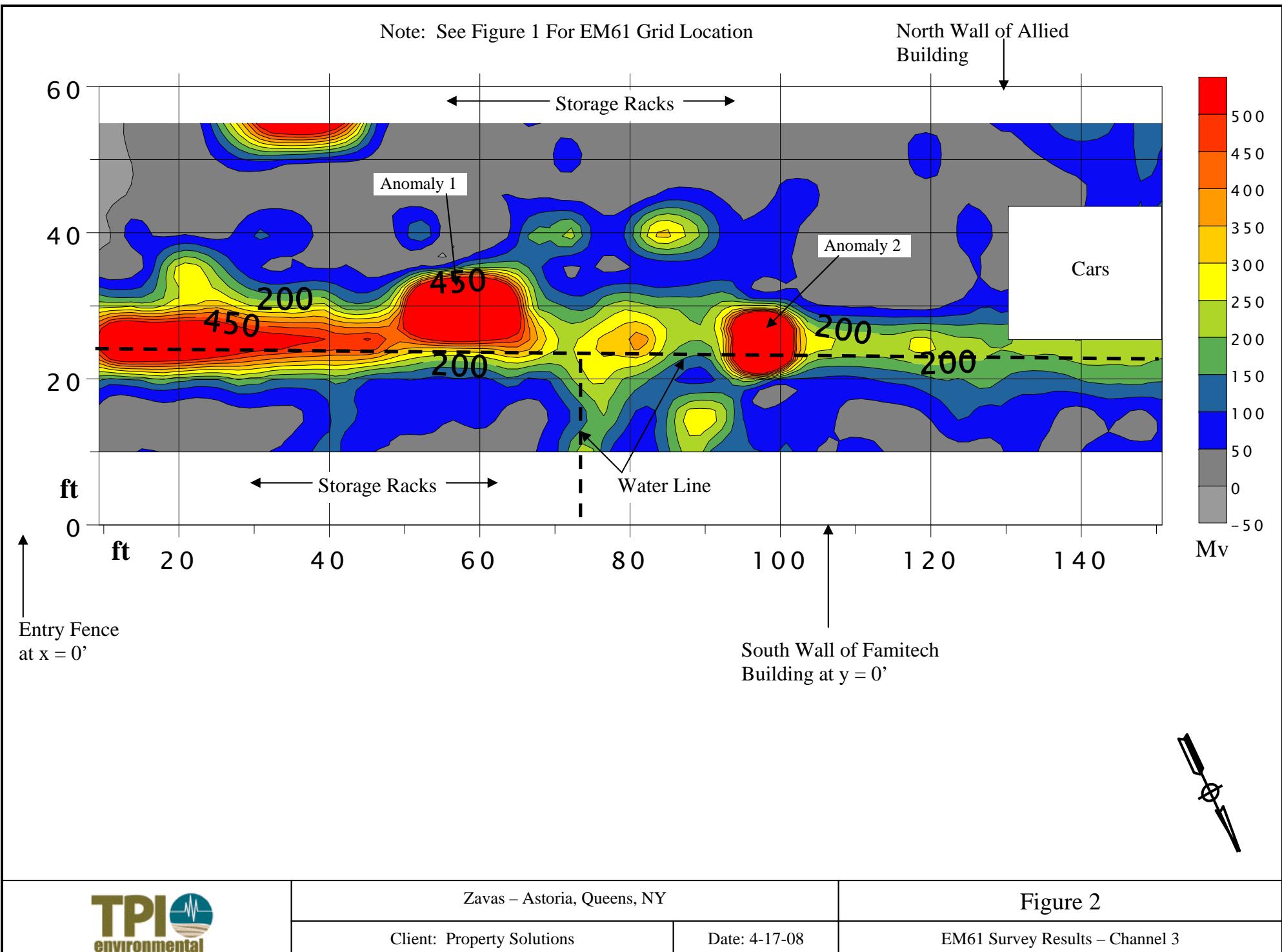

GPR TRANSECT 147

Across AOC F-5 Drains



GPR TRANSECT 158

East Across AOC Z-1 Wood Dipping



Note: See Figure 1 for transect location

TPI environmental	Scale 0 50'	Zavas - Astoria, Queens, NY	Figure 1
		Client: Property Solutions	Date: 4-14-08

Geophysical Survey Results

PROPERTY DIAGRAM 2 - PROPOSED BORING LOCATION P22750 REV.1

1 inch = 50ft

Property Solutions Inc.

Zavas Property
27-50 First Street
Astoria, New York

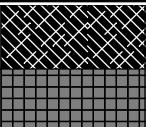
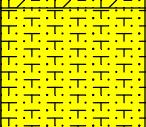
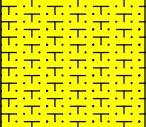
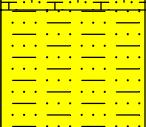
Project No.: 20080014

APPENDIX D

SOIL BORING LOGS

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068





FIELD BOREHOLE LOG

BORING NO.: **0635-SB-01**
TOTAL DEPTH: **6 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION			
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental		
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller		
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600		
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe		
BORING LOCATION:	Northwest portion of subject property	SAMPLING METHODS:	Grab		
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett		
		HAMMER WT./DROP:	NA		

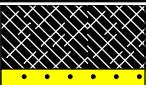
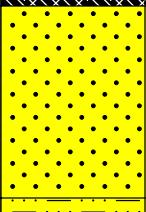
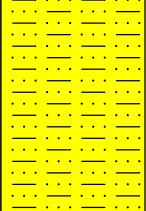
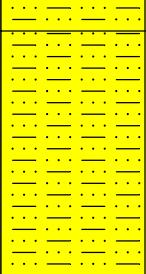
☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-01				
			Concrete, sand, and fine gravel					
			Brick and sand			0		
			Brown, dark brown, light brown, grey, and red silty sand	0635-SB (2-4)-01		0		
			Dark brown and light brown sandy silt	0635-SB (4-6)-01		0		
5			Silty sand with black gravelly fill material			0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068





FIELD BOREHOLE LOG

BORING NO.: **0635-SB-02**
TOTAL DEPTH: **6 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION			
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental		
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller		
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600		
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe		
BORING LOCATION:	Southern boundary of subject property	SAMPLING METHODS:	Grab		
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett		
		HAMMER WT./DROP:	NA		

☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-02				
			Brown and dark brown silty sand and gravel			0		
			Black and dark brown sandy silt and coarse gravel	0635-SB (2-4)-02		0		
5			Light brown sandy silt and fine gravel	0635-SB (4-6)-02		0		
						0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068

FIELD BOREHOLE LOG

BORING NO.: **0635-SB-03**
TOTAL DEPTH: **9.5 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION			
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental		
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller		
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600		
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe		
BORING LOCATION:	Southern boundary of subject property	SAMPLING METHODS:	Grab		
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett		
		HAMMER WT./DROP:	NA		

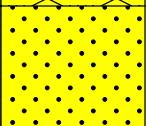
☒ Water level during drilling

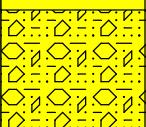
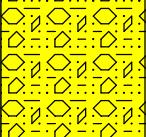
☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-03				
			Angular gravel with some silt and sand					
			Alternating tan and dark brown silty sand			0		
			Crushed brick	0635-SB (2-4)-03				
			Dark brown and light brown sandy silt			0		
5			Dark brown and black fill material,gravel,ash, fine silt	0635-SB (4-6)-03		0		
			Black fill material,gravel,ash	0635-SB (6-8)-03		0		
			Dark brown and black fill material,gravel,fine silt and sand	0635-SB (8-9.5)-03		0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068





FIELD BOREHOLE LOG

BORING NO.: **0635-SB-04**
TOTAL DEPTH: **6 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION			
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental		
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller		
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600		
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe		
BORING LOCATION:	Southern boundary of subject property	SAMPLING METHODS:	Grab		
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett		
		HAMMER WT./DROP:	NA		

☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-04				
			Fine black gravel and sand					
			Alternating tan and dark brown silty sand			0		
			Coarse gravel	0635-SB (2-4)-04				
			Dark brown and light brown sandy silt			0		
5			Dark brown and black gravelly silt	0635-SB (4-6)-04		0		
						0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068

FIELD BOREHOLE LOG

BORING NO.: **0635-SB-05**
TOTAL DEPTH: **6 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION				
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental			
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller			
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600			
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe			
BORING LOCATION:	Southern boundary of subject property	SAMPLING METHODS:	Grab			
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett			
		HAMMER WT./DROP:	NA			

☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-05				
			Fine black gravel and sand					
			Alternating tan and dark brown silty sand			0		
			Brick	0635-SB (2-4)-05				
			Dark brown and light brown sandy silt			0		
			Dark brown and black gravelly silt	0635-SB (4-6)-05				
5			Fill material including brick and wood			0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08054
Phone: 856-813-3000 Fax: 856-813-1068

FIELD BOREHOLE LOG

BORING NO.: **0635-SB-06**
TOTAL DEPTH: **7 ft bgs**

PROJECT INFORMATION		DRILLING INFORMATION			
PROJECT NO.:	20080635	DRILLING CO.:	TPI Environmental		
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller		
PROJECT NAME:	Zavas	RIG TYPE:	Geogrobe 6600		
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe		
BORING LOCATION:	Southern boundary of subject property	SAMPLING METHODS:	Grab		
DATE STARTED:	2/26/2008	FIELD PERSONNEL:	Ryan Barrett		
		HAMMER WT./DROP:	NA		

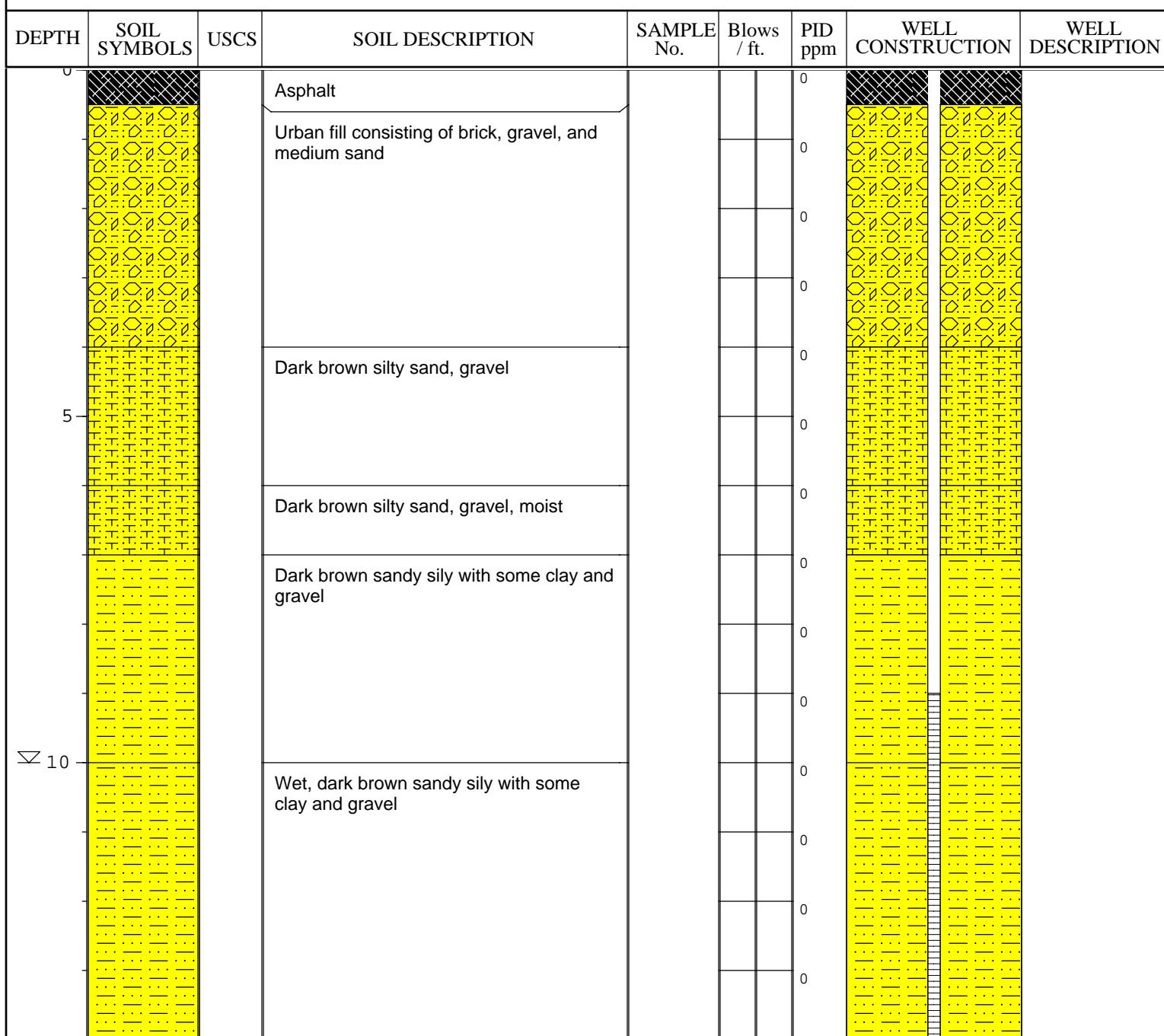
☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt	0635-SB (0-2)-06				
			Fine black gravel and sand					
			Red and dark brown silty sand and fine gravel			0		
			Black and grey sand and fine gravel			0		
			Light and dark brown silty sand with fine and coarse gravel	0635-SB (2-4)-06		0		
			Dark and light brown sandy silt, black silty sand and gravel			0		
			Dark brown and black silty sand and fine gravel			0		
			Brownish-gray sand silt with some gravel			0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068


FIELD BOREHOLE LOG

BORING NO.: **SB-07**
TOTAL DEPTH: **14 ft**

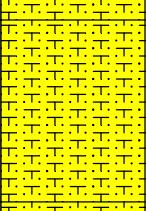
PROJECT INFORMATION		DRILLING INFORMATION				
PROJECT NO.:	20081166	DRILLING CO.:	TPI Environmental			
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller			
PROJECT NAME:	Zavas	RIG TYPE:	Geoprobe 6600			
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe			
BORING LOCATION:	Eastern portion of subject property near East River	SAMPLING METHODS:	Grab			
DATE STARTED:	4/30/2008	FIELD PERSONNEL:	Ryan Barrett			
		HAMMER WT./DROP:	NA			

☒ Water level during drilling

☒ Water level in completed well

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068


FIELD BOREHOLE LOG

BORING NO.: **SB-08**
TOTAL DEPTH: **8 ft**

PROJECT INFORMATION		DRILLING INFORMATION					
PROJECT NO.:	20081166	DRILLING CO.:	TPI Environmental				
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Heath Kneller				
PROJECT NAME:	Zavas	RIG TYPE:	Geoprobe 6600				
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Geoprobe				
BORING LOCATION:	Eastern portion of subject property near East River	SAMPLING METHODS:	Grab				
DATE STARTED:	4/30/2008	FIELD PERSONNEL:	Ryan Barrett				
		HAMMER WT./DROP:	NA				

☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt			0		
			Urban fill consisting of brick, gravel, and medium sand			0		
5			Dark brown silty sand, gravel, fill material			0		
			Dark brown silty sand, gravel, moist			0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068

FIELD BOREHOLE LOG

BORING NO.: **SB-09**

TOTAL DEPTH: 8 ft

PROJECT INFORMATION

DRILLING INFORMATION

PROJECT NO.: 20081166
CLIENT: Linque Realty Services, Inc.
PROJECT NAME: Zavas
SITE LOCATION: 27-50 First Street
BORING LOCATION: Northwestern portion of subject property
immediately adjacent to SB-02
DATE STARTED: 4/30/2008 **COMPLETED:** 4/30/2008

DRILLING CO.: TPI Environmental
DRILLER: Heath Kneller
RIG TYPE: Geoprobe 6600
DRILLING METHOD: Geoprobe
SAMPLING METHODS: Grab
FIELD PERSONNEL: Ryan Barrett
HAMMER WT./DROP: NA

☒ Water level during drilling

■ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt			0		
			Urban fill consisting of brick, gravel, and medium sand			0		
5			Dark brown silty sand, gravel, fill material			0		
			Dark brown silty sand, gravel, moist			0		

NOTES: Drilling advanced to 8 feet to collect sample from 2-4 feet for TCLP

Page 1 of 1

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068

FIELD BOREHOLE LOG

BORING NO.: **TP-01**
TOTAL DEPTH: **7 ft**

PROJECT INFORMATION		DRILLING INFORMATION						
PROJECT NO.:	20081166	DRILLING CO.:	AWT Environmental Services, Inc.					
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Mario Postorino					
PROJECT NAME:	Zavas	RIG TYPE:	Back Hoe 310					
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Excavation - test pit					
BORING LOCATION:	Southern portion of subject property east of SB-04	SAMPLING METHODS:	Grab					
DATE STARTED:	5/1/2008	FIELD PERSONNEL:	Andrew Pinkerton					
COMPLETED:	5/1/2008	HAMMER WT./DROP:	NA					

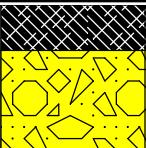
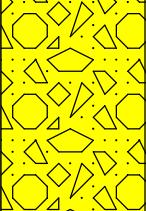
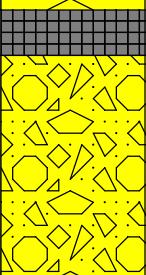
☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt			0		
			Urban fill consisting of brick, gravel, and medium sand			0		
						0		
						0		
						0		
						0		
5			Concrete slab			0		
			Urban fill consisting of gravel, brick, wood, silty sand			0		
						0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068




FIELD BOREHOLE LOG

BORING NO.: **TP-02**
TOTAL DEPTH: **7 ft**

PROJECT INFORMATION		DRILLING INFORMATION						
PROJECT NO.:	20081166	DRILLING CO.:	AWT Environmental Services, Inc.					
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Mario Postorino					
PROJECT NAME:	Zavas	RIG TYPE:	Back Hoe 310					
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Excavation - test pit					
BORING LOCATION:	Southern portion of subject property west of SB-05	SAMPLING METHODS:	Grab					
DATE STARTED:	5/1/2008	FIELD PERSONNEL:	Andrew Pinkerton					
COMPLETED:	5/1/2008	HAMMER WT./DROP:	NA					

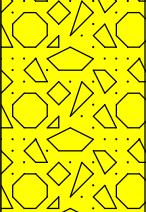
☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt Urban fill consisting of brick, gravel, and medium sand			0		
4.5			Concrete slab Urban fill consisting of gravel, brick, wood, silty sand			0		
5						0		

Property Solutions INC.

Environmental & Engineering Consulting
323 New Albany Road, Moorestown, NJ 08057
Phone: 856-813-3000 Fax: 856-813-1068


FIELD BOREHOLE LOG

BORING NO.: **TP-03**
TOTAL DEPTH: **7 ft**

PROJECT INFORMATION		DRILLING INFORMATION						
PROJECT NO.:	20081166	DRILLING CO.:	AWT Environmental Services, Inc.					
CLIENT:	Linque Realty Services, Inc.	DRILLER:	Mario Postorino					
PROJECT NAME:	Zavas	RIG TYPE:	Back Hoe 310					
SITE LOCATION:	27-50 First Street	DRILLING METHOD:	Excavation - test pit					
BORING LOCATION:	Southwestern portion of subject property near entrance from First Street	SAMPLING METHODS:	Grab					
DATE STARTED:	5/1/2008	FIELD PERSONNEL:	Andrew Pinkerton					
		HAMMER WT./DROP:	NA					

☒ Water level during drilling

☒ Water level in completed well

DEPTH	SOIL SYMBOLS	USCS	SOIL DESCRIPTION	SAMPLE No.	Blows / ft.	PID ppm	WELL CONSTRUCTION	WELL DESCRIPTION
0			Asphalt Urban fill consisting of brick, gravel, and medium sand			0		
5			Concrete slab Urban fill consisting of gravel, brick, wood, silty sand			0		

APPENDIX E
ANALYTICAL RESULTS
SUMMARY TABLES

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Volatile Organic Compounds in Soil

Compound	R SCO (mg/kg) (1)	U SCO (mg/kg) (2)	Restricted Use Soil Cleanup Objectives (3)				POER	POW	0635-SB-(0-2)-01 (mg/kg)	0635-SB-(2-4)-02 (mg/kg)	0635-SB-(6-8)-03 (mg/kg)	1166-SB-(10-12)-07 (mg/kg)	1166-SB-(6-8)-08 (mg/kg)							
			Protection of Public Health																	
			R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)														
1,1,1,2-Tetrachloroethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	ND	ND	ND	ND	ND	ND							
1,1,1-Trichloroethane	0.8	0.68	100	100	500	1000	NS	0.68	ND	ND	ND	ND	ND							
1,1,2,2-Tetrachloroethane	0.6	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,1,2-Trichloroethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,1-Dichloroethane	0.2	0.27	19	26	240	480	NS	0.27	ND	ND	ND	ND	ND							
1,1-Dichloroethene	0.4	0.33	100	100	500	1000	NS	0.33	ND	ND	ND	ND	ND							
1,1-Dichloropropane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
1,1-Dichloropropene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,2,3-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,2,3-trichloropropene	0.4	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,2,4-trichlorobenzene	3.4	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,2,4-Trimethylbenzene	N/A	3.6	47	52	190	380	NS	3.6	ND	ND	4.1§	ND	ND							
1,2-Dibromo-3-chloropropane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
1,2-Dichlorobenzene	7.9	1.1	100	100	500	1000	NS	1.1	ND	ND	ND	ND	ND							
1,2-Dichloroethane	0.1	0.02	2.3	3.1	30	60	10	0.02	ND	ND	ND	ND	ND							
1,2-Dichloroethene (cis)	N/A	0.25	59	100	500	1000	NS	0.25	NR	NR	NR	ND	ND							
1,2-Dichloroethene (trans)	0.3	0.19	100	100	500	1000	NS	0.19	NR	NR	NR	ND	ND							
1,3,5-Trimethylbenzene	N/A	8.4	47	52	190	380	NS	N/A	ND	ND	0.66	ND	ND							
1,3-Dichlorobenzene	1.6	2.4	17	49	280	560	NS	2.4	ND	ND	ND	ND	ND							
1,3-Dichloropropene (cis)	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
1,3-Dichloropropene (trans)	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
1,4-Dichlorobenzene	8.5	1.8	9.8	13	130	250	20	1.8	ND	ND	ND	ND	ND							
1,4-Dioxane	N/A	0.1	9.8	13	130	250	0.1	0.1	NR	NR	NR	ND	ND							
113 Freon (1,1,2 Trichloro-1,2,2 Trifluoroethane)	6	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
1,3-Dichloropropane	0.3	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
2,2-Dichloropropane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
2-Butanone	0.3	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
2-Chlorotoluene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
2-Hexanone	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
2-Isopropyltoluene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	2.7	ND	ND							
4-Chlorotoluene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
4-Methyl-2-Pentanone	1	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Acetone	0.2	0.05	100	100	500	1000	2.2	0.05	ND	ND	ND	ND	ND							
Acetylnitrile	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Benzene	0.06	0.06	2.9	4.8	44	89	70	0.06	ND	ND	ND	ND	ND							
Benzoic Acid	2.7	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR	ND	ND							
Bromobenzene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Bromochloromethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Bromodichloromethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Bromoform	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Bromomethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Carbon Disulfide	2.7	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Carbon Tetrachloride	0.6	0.76	1.4	2.4	22	44	NS	0.76	ND	ND	ND	ND	ND							
Chlorobenzene	1.7	1.1	100	100	500	1000	40	1.1	ND	ND	ND	ND	ND							
Chloroethane	1.9	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Chloroform	0.3	0.37	10	49	350	700	12	0.37	ND	ND	ND	ND	ND							
Chloromethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Dibromochloromethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Dibromoethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Dibromomethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Dichlorodifluoromethane	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Ethylbenzene	5.5	1	30	41	390	780	NS	1	ND	ND	2.7§	ND	ND							
Hexachlorobenzene	N/A	0.33	0.33	1.2	6	12	NS	3.2	NR	NR	NR	ND	ND							
Hexachlorobutadiene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	ND	ND	ND							
Isopropylbenzene	N/A	N/A	N/A	N/A	N/A	N/A	NS	N/A	ND	ND	3.7	ND	ND							

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Volatile Organic Compounds in Soil

Compound	R SCO (mg/kg) (1)	U SCO (mg/kg) (2)	Restricted Use Soil Cleanup Objectives (3)				POER	POW	0635-SB-(0-2)-01 (mg/kg)	0635-SB-(2-4)-02 (mg/kg)	0635-SB-(6-8)-03 (mg/kg)	1166-SB-(10-12)-07 (mg/kg)	1166-SB-(6-8)-08 (mg/kg)							
			Protection of Public Health																	
			R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)														
m&p-Xylene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	5.9	ND	ND							
Methyl Ethyl Ketone	N/A	0.12	100	100	500	1000	100	0.12	ND	ND	ND	ND	ND							
Methyl t-butyl ether (MTBE)	N/A	0.93	62	100	500	1000	NS	0.93	ND	ND	ND	ND	ND							
Methylene chloride	0.1	0.5	51	100	50	1000	12	0.05	ND	ND	ND	ND	ND							
Naphthalene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	15	ND	ND							
n-Butylbenzene	N/A	12	100	100	500	1000	N/A	N/A	NR	NR	NR	ND	ND							
n-Propylbenzene	N/A	3.9	100	100	500	1000	NS	3.9	ND	ND	ND	ND	ND							
o-Xylene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	4.2	ND	ND							
p-Isopropyltoluene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	34	4.2	ND							
sec-Butylbenzene	N/A	11	100	100	500	1000	NS	11	ND	ND	ND	ND	ND							
Styrene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND							
tert-Butylbenzene	N/A	5.9	100	100	500	1000	NS	5.9	ND	ND	ND	ND	ND							
Tetrachloroethene	1.4	1.3	5.5	19	150	300	2	1.3	ND	1	ND	ND	ND							
Tetrahydrofuran (THF)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND							
Toluene	1.5	0.7	100	100	500	1000	36	0.7	ND	ND	1.2 §	ND	ND							
trans-1,4-dichloro-2-butene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND							
Trichloroethene	0.7	0.47	10	21	200	400	2	0.47	ND	ND	ND	ND	ND							
Trichlorofluoroethane	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND							
Trichlorofluoromethane	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND							
Vinyl chloride	0.2	0.02	0.21	0.9	13	27	NS	0.02	ND	ND	ND	ND	ND							
Xylenes	1.2	0.26	100	100	500	1000	0.26	1.6	ND	ND	10.00 §	ND	ND							

(1) Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (TAGM 4046), dated January 24, 1994, set to expire

(2) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives, effective December 14, 2006

(3) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, effective December 14, 2006

mg/kg - milligrams per kilogram, or parts per million

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

Bold with Red Background - Concentration above Restricted Use Soil Cleanup Objectives Protection of Public Health, Restricted Residential standard

Green Outline - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Ecological Resource

§ - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Groundwater

R SCO - Recommended Soil Cleanup Objective (TAGM)

U SCO - Unrestricted Use Soil Cleanup Objective

R - Residential

RR - Restricted Residential

C - Commercial

I - Industrial

POER - Protection of Ecological Resources

POW - Protection of Groundwater

Compound	R SCO (mg/kg) (1)	U SCO (mg/kg) (2)	Restricted Use Soil Cleanup Objectives (3)				POER	POW	0635-SB-(0-2)-01 (mg/kg)	0635-SB-(2-4)-01 (mg/kg)	0635-SB-(4-6)-01 (mg/kg)	0635-SB-(0-2)-02 (mg/kg)	0635-SB-(2-4)-02 (mg/kg)	0635-SB-(4-6)-02 (mg/kg)	1166-SB-(10-12)-07 (mg/kg)	1166-SB-(6-8)-08 (mg/kg)	1166-TP-01-(6-8) (mg/kg)	1166-TP-02-(8-10) (mg/kg)													
			Protection of Public Health																												
			R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)																									
1,2,4,5-Tetrachlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
1,2,4-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
1,2-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
1,3-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
1,4-Dichlorobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,3-Dinitrotoluene	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR												
2,4,5-Trichlorophenol	0.1	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,4,6-Trichlorophenol	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,4-Dichlorophenol	0.4	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,4-Dimethylphenol	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,4-Dinitrophenol	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2,6-Dinitrotoluene	1	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2-Chlorophenol	0.8	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2-Chloronaphthalene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2-methylnaphthalene	36.4	N/A	N/A	N/A	N/A	N/A	0.9	ND	ND	ND	ND	ND	1.7	0.74	ND	ND	ND	ND	ND												
2-Methylphenol	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2-Nitroaniline	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
2-Nitrophenol	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
3&4 Methylphenol (m&p-cresol)	N/A	0.33	34	100	500	1000	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
3,3'-Dichlorobenzidine	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
3-Nitroaniline	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Chloroaniline	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Bromophenyl phenyl ether	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Chloro-3-methylphenol	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Chlorophenol phenyl ether	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Methylphenol	0.9	N/A	N/A	N/A	N/A	N/A	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR												
4-Nitroaniline	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
4-Nitrophenol	MDL	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Acenaphthene	50 ***	20	100	100	500	1000	20	98	1.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Acenaphthylene	41	100	100	100	500	1000	NS	107	ND	ND	ND	ND	2.9	2.2	ND	ND	ND	ND	ND												
Acetophenone	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Aniline	0.1	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Anthracene	50 ***	100	100	100	500	1000	NS	1000	1.3	0.72	ND	ND	ND	ND	4.3	3.2	ND	0.82	ND												
Azobenzene	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Benzidine	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Benz(a) a pyrene	MDL	1	1	1	1	1.1	2.6	22	0.76	2	ND	3.3	4.6	ND	4.3	2.5	0.46	4.5	ND												
Benz(b) fluoranthene	1.1	1	1	1	5.6	11	NS	1.7	0.93	2.6	ND	4.5	6.5	ND	5.9	3.5	0.61	5.1	ND												
Benz(g,l) perylene	50 ***	100	100	100	500	1000	NS	1000	ND	1.2	ND	2.2	4.2	ND	1.7	0.8	ND	2.9	ND												
Benz(k) fluoranthene	1.1	0.8	1	3.9	5.6	110	NS	1.7	0.61	0.81	ND	1.4	2.3	ND	2.2	1.6	ND	1.6	ND												
Benz(a) anthracene	MDL	1	1	1	5.6	11	NS	1	1.1	1.1	ND	3.5	3.5	ND	3.5	3.4	ND	3.3	0.51												
Benzic acid	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Bis(2-chloroethyl)ether	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Bis(2-chloroethoxy)methane	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
Bis(2-chloroisopropyl)ether	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND												
bis(2-ethylhexyl)phthalate	50 ***																														

Compound	R SCO (mg/kg) (1)	EB (mg/kg)	U SCO (mg/kg) (2)	Restricted Use Soil Cleanup Objectives (3)				0635-SB- (0-2)-01 (mg/kg)	0635-SB-(2- 4)-02 (mg/kg)	0635-SB-(6- 8)-03 (mg/kg)			
				Protection of Public Health									
				R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)						
Aluminum	SB	33000	N/A	N/A	N/A	N/A	N/A	7090	13500	24900			
Antimony	SB	N/A	N/A	N/A	N/A	N/A	N/A	4.9	ND (< 4.2 J)	ND (< 4.3 J)			
Arsenic	7.5 or SB	3-12**	13	16	16	16	13	16	4.2	8.8			
Barium	300 or SB	15-600	350	400	400	10000	433	820	71	167			
Beryllium	0.16 or SB	0.0-1.75	7.2	14	72	590	2700	10	47	ND (< 0.30 J)			
Cadmium	1 or SB	0.1-1	2.5	2.5	4.3	9.3	60	4	7.5	ND (< 0.37 J)			
Calcium	SB	130-35,000***	N/A	N/A	N/A	N/A	N/A	N/A	51300	43500			
Chromium	10 or SB	1.5-40**	N/A	N/A	N/A	N/A	N/A	0.4(4) or 41(5)	19(4)	205\$			
Cobalt	30 or SB	2.5-60**	N/A	N/A	N/A	N/A	N/A	N/A	11.9	8.72			
Copper	25 or SB	1-50	50	270	270	270	10000	50	1720	78.3			
Cyanide	***	N/A	27	27	27	10000	N/A	40	NR	NR			
Iron	2,000 or SB	2,000-550,000	N/A	N/A	N/A	N/A	N/A	N/A	17900	22800			
Lead	SB ****	****	63	400	400	1000	3900	63	450	195			
Magnesium	SB	100-5,000	N/A	N/A	N/A	N/A	N/A	N/A	10400	4780			
Manganese	SB	50-5,000	1600	2000	2000	10000	10000	1600	2000	163			
Mercury	0.1	0.001-0.2	0.18	0.81	0.81	2.8	5.7	0.18(6)	0.73(7)	0.17			
Nickel	13 or SB	0.5-25	30	140	310	310	10000	30	130	120			
Potassium	SB	8,500-43,000**	N/A	N/A	N/A	N/A	N/A	N/A	1460	1740			
Selenium	2 or SB	0.1-3.9	3.9	36	180	1500	6800	3.9	1	ND (< 1.9 J)			
Silver	SB	N/A	2	36	180	1500	6800	2	8.3	ND (< 0.37 J)			
Sodium	SB	6,000-8,000	N/A	N/A	N/A	N/A	N/A	N/A	51.6	312			
Thallium	SB	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND (< 3.7 J)	ND (< 4.2 J)			
Vanadium	150 or SB	1-300	N/A	N/A	N/A	N/A	N/A	N/A	21.3	30.9			
Zinc	20 or SB	9-50	109	2200	10000	10000	10000	109	2480	71.5			
									306	88.1			

(1) Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (TAGM 4046), dated January 24, 1994, set to expire

(2) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives, effective December 14, 2006

(3) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, effective December 14, 2006

(4) = Standard for Chromium (hexavalent)

(5) = Standard for Chromium (trivalent)

(6) = Pertains to inorganic salt form of Mercury only

(7) = Pertains to elemental form of Mercury only

mg/kg - milligrams per kilogram, or parts per million

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

J - Sample detected below laboratory detection limit

Bold - Concentration above standard

Bold with Red Background - Concentration above Restricted Use Soil Cleanup Objectives Protection of Public Health, Restricted Residential standard

Green Outline - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Ecological Resources

\$ - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Groundwater

R SCO - Recommended Soil Cleanup Objective (TAGM)

U SCO - Unrestricted Use Soil Cleanup Objective

R - Residential

RR - Restricted Residential

C - Commercial

I - Industrial

POER - Protection of Ecological Resources

POW - Protection of Groundwater

EB - Eastern USA Background

Note: Some forms of metal salts such as Aluminum Phosphide, Calcium Cyanide, Potassium Cyanide, Copper cyanide, Silver cyanide, Sodium cyanide,

Zinc phosphide, Thallium salts, Vanadium pentoxide and Chromium (VI) compounds are more toxic in nature. Please refer to the USEPA HEASTs

SB is site background

N/A is not available

CRDL is contract required detection limit which is approx. 10 times the CRDL for water.

** New York State background

*** Some forms of Cyanide are complex and very stable while other forms are pH dependent and hence are very unstable. Site-specific form(s) of Cyanide should be taken into

**** Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or

near highways are much higher and typically range from 200-500 ppm.

***** Recommended soil cleanup objectives are average background concentrations as reported in a 1984 survey of reference material by E. Carol McGovern, NYSDEC.

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Polychlorinated Biphenyls (PCBs) in Soil

Compound	R SCO (mg/kg) (1)	U SCO (mg/kg) (2)	Restricted Use Soil Cleanup Objectives (3)				0635-SB-(0 2)-01 (mg/kg)	0635-SB-(2 4)-02 (mg/kg)	0635-SB- (6-8)-03 (mg/kg)		
			Protection of Public Health				POER	POW			
			R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)					
PCB-1016	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1221	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1232	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1242	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1248	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1254	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1260	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1262	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
PCB-1268	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	ND
Total PCBs	1 (Surface)	0.1	1	1	1	25	1	3.2	NR	NR	ND
	10 (sub-surf)								NR	NR	ND

(1) Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (TAGM 4046), dated January 24, 1994, set to expire

(2) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives, effective December 14, 2006

(3) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, effective December 14, 2006

mg/kg - milligrams per kilogram, or parts per million

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

Bold with Red Background - Concentration above Restricted Use Soil Cleanup Objectives Protection of Public Health, Restricted Residential standard

Green Outline - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Ecological Resources

§ - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Groundwater

R SCO - Recommended Soil Cleanup Objective (TAGM)

U SCO - Unrestricted Use Soil Cleanup Objective

R - Residential

RR - Restricted Residential

C - Commercial

I - Industrial

POER - Protection of Ecological Resources

POW - Protection of Groundwater

Compound	R SCO (mg/kg) ⁽¹⁾	U SCO (mg/kg) ⁽²⁾	Restricted Use Soil Cleanup Objectives ⁽³⁾				POER	POW	0635-SB-(0) 2)-01 (mg/kg)	0635-SB- (2-4)-02 (mg/kg)	0635-SB-(6) 8)-03 (mg/kg)					
			Protection of Public Health													
			R (mg/kg)	RR (mg/kg)	C (mg/kg)	I (mg/kg)										
2,4,5-T	1.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR					
2,4-D	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR					
4,4'-DDD	2.9	0.0033	2.6	13	92	180	0.0033	14	ND	ND	ND					
4,4'-DDE	2.1	0.0033	1.8	8.9	62	120	0.0033	17	ND	ND	ND					
4,4'-DDT	2.1	N/A	1.7	7.9	47	94	0.0033	136	ND	ND	ND					
Alachlor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND					
Aldrin	0.041	0.005	0.019	0.097	0.68	1.4	0.14	0.19	ND	ND	ND					
alpha- BHC	0.11	0.02	0.097	0.48	3.4	6.8	0.04	0.02	ND	ND	ND					
beta - BHC	0.2	0.036	0.072	0.36	3	14	0.6	0.09	ND	ND	ND					
Chlordane	0.54	0.094	0.91	4.2	24	47	1.3	2.9	ND	ND	ND					
delta - BHC	0.3	0.04	100	100	500	1000	0.04	0.25	ND	ND	ND					
Dibenzofuran	N/A	7	14	59	350	1000	NS	210	NR	NR	NR					
Dibenz-P-dioxins (PCDD) 2,3,7,8 TCDD	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR					
Dieldrin	0.044	0.005	0.039	0.2	1.4	2.8	0.006	0.25	ND	ND	ND					
Endosulfan I	0.9	2.4	4.8	24	200	920	NS	102	ND	ND	ND					
Endosulfan II	0.9	2.4	4.8	24	200	920	NS	102	ND	ND	ND					
Endosulfan Sulfate	1	2.4	4.8	24	200	920	NS	1000	ND	ND	ND					
Endrin	0.1	0.014	2.2	11	89	410	0.014	0.06	ND	ND	ND					
Endrin aldehyde	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND					
Endrin keytöne	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND					
gamma - BHC (Lindane)	0.06	0.01	0.28	1.3	9.2	23	6	0.1	ND	ND	ND					
gamma - chlordane	0.54	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR					
Heptachlor	0.1	0.042	0.42	2.1	15	29	0.14	0.38	ND	ND	ND					
Heptachlor epoxide	0.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND					
Methoxychlor	***	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND					
Mitotane	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NR	NR	NR					
Parathion	1.2	N/A	N/A	N/A	N/A	N/A	NS	N/A	NR	NR	NR					
Silvex	0.7	3.8	58	100	500	1000	NS	3.8	NR	NR	NR					
Toxaphene	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND	ND	16					

(1) Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels (TAGM 4046), dated January 24, 1994, set to expire

(2) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives, effective December 14, 2006

(3) 6 NYCRR Part 375 - Environmental Remediation Programs, Table 375-6.8(b): Restricted Use Soil Cleanup Objectives, effective December 14, 2006

mg/kg - milligrams per kilogram, or parts per million

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

Bold with Red Background - Concentration above Restricted Use Soil Cleanup Objectives Protection of Public Health, Restricted Residential standard**Green Outline - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Ecological Resources**

§ - Concentration above the Restricted Use Soil Cleanup Objective for Protection of Groundwater

R SCO - Recommended Soil Cleanup Objective (TAGM)

U SCO - Unrestricted Use Soil Cleanup Objective

R - Residential

RR - Restricted Residential

C - Commercial

I - Industrial

POER - Protection of Ecological Resources

POW - Protection of Groundwater

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Metals in Groundwater

Compound	AWQS (groundwater) (1)	1166-SB-07- GW-(7.9) (ug/L) unfiltered	1166-SB-07- GW-(7.9) (ug/L) filtered
Aluminum	N/A	2,360	710
Antimony	3	NR	ND (< 5 J)
Arsenic	25	27	8
Barium	1000	277	60
Beryllium	3	ND (< 1 J)	ND (< 1 J)
Cadmium	5	ND (< 1 J)	ND (< 1 J)
Calcium	N/A	166	120
Chromium	50	108	3
Cobalt	N/A	20	ND (< 1 J)
Copper	200	877	41
Cyanide	200	NR	NR
Iron	300*	35,800	663
Lead	25	1,760	138
Magnesium	35000	84,800	49,900
Manganese	300*	1,480	428
Mercury	0.7	ND (< 0.5 J)	0.2
Nickel	100	66	5
Potassium	N/A	37,000	31,000
Selenium	10	ND (< 10 J)	ND (< 10 J)
Silver	50	ND (< 1 J)	ND (< 1 J)
Sodium	20000	709,000	63,700
Thallium	0.5	ND (< 2 J)	ND (< 5 J)
Vanadium	N/A	111	33
Zinc	2000	204	10

ug/L - micrograms per liter, or parts per billion

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards (AWQS) and Guidance Values, TOGS

1.1.1 (ambient values), June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Metals in Groundwater

J - Concentration detected below the laboratory detection limit

* - Applies to the sum of Iron and Manganese

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Volatile Organic Compounds in Groundwater

Compound	AWQS (groundwater) (1)	1166-SB-07-GW-(7.9) (ug/L)
1,1,1-Trichloroethane	5.0*	ND
1,1,2,2-tetrachloroethane	5.0*	ND
1,1,2-Trichloroethane	1.00	ND
1,1-Dichloroethane	5.0*	ND
1,1-Dichloroethene	5.0*	ND
1,2-Dichlorobenzene	N/A	ND
1,2-Dichloroethane	0.60	ND
1,2-Dichloropropane	1.00	ND
1,2-Dichlorobenzene	3.00**	ND
1,4-Dichlorobenzene	3.00**	ND
2-Chlorethyl vinyl ether	N/A	ND
Acrolein	5.0*	ND
Benzene	1.00	ND
Bromodichloromethane	50.00	ND
Bromoform	50.00	ND
Bromomethane	5.0*	ND
Carbon tetrachloride	5.00	ND
Chlorobenzene	5.0*	ND
Chloroethane	5.0*	ND
Chloroform	7.00	ND
Chloromethane	N/A	ND
cis-1,2-Dichloroethene	5.0*	ND
cis-1,2-Dichloropropene	N/A	ND
Dibromochloromethane	50.00	ND
Ethylbenzene	5.0*	ND
m&p-Xylene	5.0*	ND
Methyl t-butyl ether (MTBE)	N/A	ND
Methylene chloride	5.0*	ND
Naphthalene	10.00	0.007
o-Xylene	N/A	ND
p-Isopropyltoluene	N/A	0.022
Tetrachloroethene	5.0*	ND
Toluene	5.0*	ND
trans-1,2-Dichloroethene	5.0*	ND
trans-1,3-Dichloropropene	0.40***	ND

Zavas**27-50 First Street, Astoria, Queens County, New York 11102****Property Solutions Project Number 20080635****Volatile Organic Compounds in Groundwater**

Trichloroethene	5.0*	ND
Trichlorofluoromethane	5.0*	ND
Vinyl chloride	2.00	ND

ug/L - micrograms per liter, or parts per billion

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values),
June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent

* - The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in this Table) applies to this substance.

** - Applies to the sum of 1,2-, 1,3-, and 1,4-

*** - Applies to the sum of cis- and trans-1,2-dichloropropene

Zavas

27-50 First Street, Astoria, Queens County, New York 11102
 Property Solutions Project Number 20080635

Base Neutrals and Acid Compounds in Groundwater

Compound	AWQS (groundwater) (1)	1166-SB-07-GW-(7.9) (μ g/L)
1,2,4-Trichlorobenzene	N/A	ND
1,2-Dichlorobenzene	3.00	ND
1,2-Diphenylhydrazine	ND*	ND
1,3-Dichlorobenzene	3.00	ND
1,4-Dichlorobenzene	3.00	ND
2,4,6-Trichlorophenol	N/A	ND
2,4-Dichlorophenol	5.0**	ND
2,4-Dimethylphenol	50.00	ND
2,4-Dinitrophenol	10.00	ND
2,4-Dinitrotoluene	5.0**	ND
2,6-Dinitrotoluene	5.0**	ND
2-Chlorophenol	N/A	ND
2-Nitrophenol	N/A	ND
3,3-Dichlorobenzidine	N/A	ND
4,6-Dinitro-2-methylphenol	N/A	ND
4-Chlorophenyl phenyl ether	N/A	ND
4-Nitrophenol	N/A	ND
Acenaphthene	20.00	ND
Acenaphthylene	N/A	0.032
Anthracene	50.00	0.012
Benzidine	5.0**	ND
Benz(a)anthracene	0.00	ND
Benzo(a)pyrene	ND	ND
Benzo(b)fluoranthene	0.00	ND
Benzo(g,h,i)perylene	N/A	ND
Benzo(k)fluoranthene	0.00	ND
Benzyl butyl phthalate	N/A	ND
Bis(2-chloroethoxy)methane	5.0**	ND
Bis(2-chloroethyl)ether	1.00	ND
Bis(2-chloroisopropyl)ether	N/A	ND
Bis(2-ethylhexyl)phthalate	5.00	ND
Chrysene	0.002	0.011
Di-n-butylphthalate	N/A	ND
Di-n-octylphthalate	N/A	ND
Dibenz(a,h)anthracene	N/A	ND
Diethyl phthalate	50.00	ND
Dimethylphthalate	N/A	ND
Fluoranthene	50.00	ND
Fluorene	50.00	0.01
Hexachlorobenzene	0.04	ND
Hexachlorobutadiene	0.50	ND
Hexachlorocyclopentadiene	5.0**	ND
Hexachloroethane	5.0**	ND
Indeno(1,2,3-cd)pyrene	N/A	ND
Isophorone	50.00	ND
N-Nitrosodi-b-propylamine	N/A	ND
N-Nitrosodimethylamine	N/A	ND
N-Nitrosodiphenylamine	N/A	ND
Naphthalene	10.00	ND
Nitrobenzene	0.40	ND
Pentachlorophenol	1.0***	ND
Phenanthrene	50.00	0.073
Phenol	1.0***	ND
Pyrene	50.00	0.014

ug/L - micrograms per liter, or parts per billion

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values), June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent

* Applies to the sum of 1,1- and 1,2-diphenylhydrazine (CAS Nos. 530-50-7 and 122-66-7, respectively).

** The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.

*** Refers to the sum of Phenolic compounds

1.0*** - The principal organic contaminant standard for groundwater of 5 ug/L applies to this substance.
 0.011 - Concentration above standard

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Metals in Surface Water

Compound	Protection for Human Consumption of Fish (saline waters)(1)	Protection for Fish Propogation (saline waters)(1)	Protection for Fish Survival (saline waters)(1)	Widlife Protection (saline waters)(1)	Protection for Aesthetic (saline waters)(1)	0635-SW-03 (mg/L)	1166-SW-01 (mg/L)
Aluminum	N/A	N/A	N/A	N/A	N/A	0.995	0.995
Antimony	N/A	N/A	N/A	N/A	N/A	ND (< 0.005 J)	ND (< 0.01 J)
Arsenic	N/A	0.036*	N/A	N/A	N/A	0.01	ND (< 0.004 J)
Barium	N/A	N/A	N/A	N/A	N/A	0.015	0.012
Beryllium	N/A	N/A	N/A	N/A	N/A	ND (< 0.001 J)	ND (< 0.001 J)
Cadmium	N/A	0.077	N/A	N/A	N/A	ND (< 0.001 J)	ND (< 0.001 J)
Calcium	N/A	N/A	N/A	N/A	N/A	262	246
Chromium	N/A	N/A	N/A	N/A	N/A	ND (< 0.001 J)	ND (< 0.001 J)
Disolved, Trivalent chromium	N/A	N/A	N/A	N/A	N/A	NR	ND (< 0.01 J)
chromium	N/A	0.05	N/A	N/A	N/A	NR	ND (< 0.01 J)
Cobalt	N/A	N/A	N/A	N/A	N/A	ND (< 0.02 J)	ND (< 0.001 J)
Copper	N/A	0.0034	N/A	N/A	N/A	0.01	0.006
Cyanide	N/A	0.001	N/A	N/A	N/A	NR	NR
Iron	N/A	N/A	N/A	N/A	N/A	1.38	0.049
Lead	N/A	0.008	N/A	N/A	N/A	ND (< 0.002 J)	ND (< 0.002 J)
Magnesium	N/A	N/A	N/A	N/A	N/A	812	740
Manganese	N/A	N/A	N/A	N/A	N/A	0.101	0.034
Mercury	0.0000007	N/A	N/A	N/A	0.0000026**	0.0003	ND (< 0.0002 J)
Nickel	N/A	0.0082	N/A	N/A	N/A	ND (< 0.001 J)	ND (< 0.001 J)
Potassium	N/A	N/A	N/A	N/A	N/A	376	327
Selenium	N/A	N/A	N/A	N/A	N/A	ND (< 0.01 J)	ND (< 0.01 J)
Silver	N/A	N/A	N/A	N/A	N/A	ND (< 0.001 J)	ND (< 0.001 J)
Sodium	N/A	N/A	N/A	N/A	N/A	6860	5610
Thallium	N/A	N/A	N/A	N/A	N/A	ND (< 0.002 J)	ND (< 0.005 J)
Vanadium	N/A	N/A	N/A	N/A	N/A	0.064	0.054
Zinc	N/A	0.066	N/A	N/A	N/A	< 0.20	0.012
Total Organic Carbon	N/A	N/A	N/A	N/A	N/A	2.8	NR

mg/kg - milligrams per kilogram, or parts per million

MDL - Method detection limit

N/A - No applicable standard

NS - Not specified

NR - Sample not analyzed for parameter

ND - Non-detect

J - Sample detected below laboratory reporting limit

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values),

June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent

* - Dissolved arsenic form

** - Applies to dissolved form

Compound	Protection for Human Consumption of Fish (saline waters)(1)	Protection for Fish Propogation (saline waters)(1)	Protection for Fish Survival (saline waters)(1)	Wildlife Protection (saline waters)(1)	Protection for Aesthetic (saline waters)(1)	0635-SW-03 (ug/L)
2,4,5-T	N/A	N/A	N/A	N/A	N/A	NR
2,4-D	N/A	N/A	N/A	N/A	N/A	NR
4,4'-DDD	N/A	8x10 ⁽⁵⁾	N/A	*	N/A	ND
4,4'-DDE	N/A	7x10 ⁽⁻⁶⁾	N/A	*	N/A	ND
4,4'-DDT	N/A	1x10 ⁽⁻⁵⁾	N/A	1.1x10 ⁽⁻⁵⁾	N/A	ND
Alachlor	N/A	N/A	N/A	N/A	N/A	NR
Aldrin	N/A	0.001**	N/A	N/A	N/A	ND
alpha- BHC	N/A	0.002	N/A	N/A	N/A	ND
beta - BHC	N/A	0.007	N/A	N/A	N/A	ND
Chlordane	N/A	2x10 ⁽⁻⁵⁾	N/A	N/A	N/A	ND
delta - BHC	N/A	0.008	N/A	N/A	N/A	ND
Dibenzofuran	N/A	N/A	N/A	N/A	N/A	NR
Dibenzo-P-dioxins (PCDD) 2,3,7,8 TCDD	N/A	N/A	N/A	N/A	N/A	NR
Dieldrin	N/A	0.001**	N/A	N/A	N/A	ND
Endosulfan I	N/A	0.001***	N/A	N/A	N/A	ND
Endosulfan II	N/A	0.001***	N/A	N/A	N/A	ND
Endosulfan Sulfate	N/A	N/A	N/A	N/A	N/A	ND
Endrin	0.002	N/A	N/A	N/A	N/A	ND
Endrin aldehyde	N/A	N/A	N/A	N/A	N/A	ND
Endrin keytone	N/A	N/A	N/A	N/A	N/A	NR
gamma - BHC (Lindane)	N/A	0.008	N/A	N/A	N/A	ND
gamma - chlordane	N/A	N/A	N/A	N/A	N/A	NR
Heptachlor	2x10 ⁽⁻⁴⁾	N/A	N/A	N/A	N/A	ND
Heptachlor epoxide	3x10 ⁽⁻⁴⁾	N/A	N/A	N/A	N/A	ND
Methoxychlor	N/A	N/A	N/A	N/A	N/A	ND
Mitotane	N/A	N/A	N/A	N/A	N/A	NR
Parathion	N/A	N/A	N/A	N/A	N/A	NR
Silvex	N/A	N/A	N/A	N/A	N/A	NR
Toxaphene	N/A	0.005	N/A	N/A	N/A	ND
PCB-1016	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1221	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1232	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1242	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1248	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1254	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND
PCB-1260	1x10 ^{(-6)****}	N/A	N/A	1.2x10 ^{(-4)****}	N/A	ND

ug/L - micrograms per liter or parts per billion

N/A - No applicable standard

NR - Sample not analyzed for parameter

ND - Non-detect

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values), June 1998 and 6 NYCRR Part 703:

Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations. The East River is Water Classification I - saline surface water.

* - Applies to the sum of 4,4'-DDD, 4,4'-DDE, and 4,4'-DDT

** - Applies to the sum of Aldrin and Dieldrin

*** - Standard for Endosulfan (CAS 115-29-7)

**** - Applies to the sum of Polychlorinated biphenyls (PCBs)

Zavas

27-50 First Street, Astoria, Queens County, New York 11102

Property Solutions Project Number 20080635

Volatile Organic Compounds in Surface Water

Compound	Protection for Human Consumption of Fish (saline waters)(1)	Protection for Fish Propogation (saline waters)(1)	Protection for Fish Survival (saline waters)(1)	Widlife Protection (saline waters)(1)	Protection for Aesthetic (saline waters)(1)	0635-SW-03 (ug/L)
1,1,1-Trichloroethane	N/A	N/A	N/A	N/A	N/A	ND
1,1,2,2-tetrachloroethane	N/A	N/A	N/A	N/A	N/A	ND
1,1,2-Trichloroethane	N/A	N/A	N/A	N/A	N/A	ND
1,1-Dichloroethane	N/A	N/A	N/A	N/A	N/A	ND
1,1-Dichloroethene	N/A	N/A	N/A	N/A	N/A	ND
1,2-Dichlorobenzene	N/A	5*	N/A	N/A	N/A	ND
1,2-Dichloroethane	N/A	N/A	N/A	N/A	N/A	ND
1,2-Dichloropropane	N/A	N/A	N/A	N/A	N/A	ND
1,2-Dichlorobenzene	N/A	5*	N/A	N/A	N/A	ND
1,2-Dichlorobenzene	N/A	5*	N/A	N/A	N/A	ND
2-Chlorethyl vinyl ether	N/A	N/A	N/A	N/A	N/A	ND
Acrolein	N/A	N/A	N/A	N/A	N/A	ND
Benzene	10	190	N/A	N/A	N/A	ND
Bromodichloromethane	N/A	N/A	N/A	N/A	N/A	ND
Bromoform	N/A	N/A	N/A	N/A	N/A	ND
Bromomethane	N/A	N/A	N/A	N/A	N/A	ND
Carbon tetrachloride	N/A	N/A	N/A	N/A	N/A	ND
Chlorobenzene	N/A	5	N/A	N/A	N/A	ND
Chloroethane	N/A	N/A	N/A	N/A	N/A	ND
Chloroform	N/A	N/A	N/A	N/A	N/A	ND
Chloromethane	N/A	N/A	N/A	N/A	N/A	ND
cis-1,2-Dichloroethene	N/A	N/A	N/A	N/A	N/A	ND
cis-1,2-Dichloropropene	N/A	N/A	N/A	N/A	N/A	ND
Dibromochloromethane	N/A	N/A	N/A	N/A	N/A	ND
Ethylbenzene	N/A	N/A	N/A	N/A	N/A	ND
m&p-Xylene	N/A	19**	170**	N/A	N/A	ND
Methyl t-butyl ether (MTBE)	N/A	N/A	N/A	N/A	N/A	ND
Methylene chloride	200	N/A	N/A	N/A	N/A	ND
o-Xylene	N/A	N/A	N/A	N/A	N/A	ND
Tetrachloroethene	1	N/A	N/A	N/A	N/A	ND
Toluene	6000	92	N/A	N/A	N/A	ND
trans-1,2-Dichloroethene	N/A	N/A	N/A	N/A	N/A	ND
trans-1,3-Dichloropropene	N/A	N/A	N/A	N/A	N/A	ND
Trichloroethene	40	N/A	N/A	N/A	N/A	ND
Trichlorofluoromethane	N/A	N/A	N/A	N/A	N/A	ND
Vinyl chloride	N/A	N/A	N/A	N/A	N/A	ND

ug/L - micrograms per liter or parts per billion

N/A - No applicable standard

ND - Non-detect

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values),
June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent

* - Applies to the sum of 1,2-, 1,2-, and 1,4-dichlorobenzene

** - Applies to the sum of 1,2-, 1,2-, and 1,4-xylene

Compound	Protection for Human Consumption of Fish (saline waters)(1)	Protection for Fish Propogation (saline waters)(1)	Protection for Fish Survival (saline waters)(1)	Wildlife Protection (saline waters)(1)	Protection for Aesthetic (saline waters)(1)	0635-SW-03 (ug/L)
1,2,4-Trichlorobenzene	N/A	N/A	N/A	N/A	N/A	ND
1,2-Dichlorobenzene	N/A	5.0*	N/A	N/A	N/A	ND
1,2-Diphenylhydrazine	N/A	N/A	N/A	N/A	N/A	ND
1,3-Dichlorobenzene	N/A	5.0*	N/A	N/A	N/A	ND
1,4-Dichlorobenzene	N/A	5.0*	N/A	N/A	N/A	ND
2,4,6-Trichlorophenol	N/A	N/A	N/A	N/A	N/A	ND
2,4-Dichlorophenol	N/A	N/A	N/A	N/A	N/A	ND
2,4-Dimethylphenol	1000	N/A	N/A	N/A	N/A	ND
2,4-Dinitrophenol	400	N/A	N/A	N/A	N/A	ND
2,4-Dinitrotoluene	N/A	N/A	N/A	N/A	N/A	ND
2,6-Dinitrotoluene	N/A	N/A	N/A	N/A	N/A	ND
2-Chlorophenol	N/A	N/A	N/A	N/A	N/A	ND
2-Nitrophenol	N/A	N/A	N/A	N/A	N/A	ND
3,3-Dichlorobenzidine	N/A	N/A	N/A	N/A	N/A	ND
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	N/A	N/A	ND
4-Chlorophenyl phenyl ether	N/A	N/A	N/A	N/A	N/A	ND
4-Nitrophenol	N/A	N/A	N/A	N/A	N/A	ND
Acenaphthene	N/A	6.6	60	N/A	N/A	ND
Acenaphthylene	N/A	N/A	N/A	N/A	N/A	ND
Anthracene	N/A	N/A	N/A	N/A	N/A	ND
Benzidine	N/A	N/A	N/A	N/A	N/A	ND
Benz(a)anthracene	N/A	N/A	N/A	N/A	N/A	ND
Benzo(a)pyrene	N/A	N/A	N/A	N/A	N/A	ND
Benzo(b)fluoranthene	N/A	N/A	N/A	N/A	N/A	ND
Benzo(g,h,i)perylene	N/A	N/A	N/A	N/A	N/A	ND
Benzo(k)fluoranthene	N/A	N/A	N/A	N/A	N/A	ND
Benzyl butyl phthalate	N/A	N/A	N/A	N/A	N/A	ND
Bis(2-chloroethoxy)methane	N/A	N/A	N/A	N/A	N/A	ND
Bis(2-chloroethyl)ether	N/A	N/A	N/A	N/A	N/A	ND
Bix(2-chloroisopropyl)ether	N/A	N/A	N/A	N/A	N/A	ND
Bis(2-ethylhexyl)phthalate	N/A	N/A	N/A	N/A	N/A	ND
Chrysene	N/A	N/A	N/A	N/A	N/A	ND
Di-n-butylphthalate	N/A	N/A	N/A	N/A	N/A	ND
Di-n-octylphthalate	N/A	N/A	N/A	N/A	N/A	ND
Dibenz(a,h)anthracene	N/A	N/A	N/A	N/A	N/A	ND
Diethyl phthalate	N/A	N/A	N/A	N/A	N/A	ND
Dimethylphthalate	N/A	N/A	N/A	N/A	N/A	ND
Fluoranthene	N/A	N/A	N/A	N/A	N/A	ND
Fluorene	N/A	2.5	N/A	N/A	N/A	ND
Hexachlorobenzene	3x10 ⁻⁵	N/A	N/A	N/A	N/A	ND
Hexachlorobutadiene	0.01	0.3	N/A	N/A	N/A	ND
Hexachlorocyclopentadiene	N/A	0.07	N/A	N/A	N/A	ND
Hexachloroethane	0.6	N/A	N/A	N/A	N/A	ND
Indeno(1,2,3-cd)pyrene	N/A	N/A	N/A	N/A	N/A	ND
Isophorone	N/A	N/A	N/A	N/A	N/A	ND
N-Nitrosodi-b-propylamine	N/A	N/A	N/A	N/A	N/A	ND
N-Nitrosodimethylamine	N/A	N/A	N/A	N/A	N/A	ND
N-Nitrosodiphenylamine	N/A	N/A	N/A	N/A	N/A	ND
Naphthalene	N/A	16	140	N/A	N/A	ND
Nitrobenzene	N/A	N/A	N/A	N/A	N/A	ND
Pentachlorophenol	N/A	N/A	N/A	N/A	N/A	ND
Phenanthrene	N/A	1.5	14	N/A	N/A	ND
Phenol	N/A	N/A	N/A	N/A	N/A	ND
Pyrene	N/A	N/A	N/A	N/A	N/A	ND

ug/L - micrograms per liter or parts per billion

N/A - No applicable standard

ND - Non-detect

Bold - Concentration above standard

(1) - Table 1, New York State Ambient Water Quality Standards and Guidance Values, TOGS 1.1.1 (ambient values),

June 1998 and 6 NYCRR Part 703: Surface Water and Groundwater Quality Standards and Groundwater Effluent

* - Applies to the sum of 1,2-, 1,2-, and 1,4-dichlorobenzene

Zavas
27-50 First Street, Astoria, Queens County, New York 11102
Property Solutions Project Number 20080635

Toxicity Characteristic Leaching Procedure (TCLP) and RCRA Characterization

Compound	EPA Hazardous Waste No.	MCCTC ¹ (mg/L)	1166-SB-(2-4)-09 (mg/L)
TCLP Metals			
Arsenic	D004	5	0.02
Barium	D005	100	0.70
Chromium	D007	5	ND (< 0.01 LDL)
Cadmium	D006	1	ND (< 0.05 LDL)
Lead	D008	5	ND (< 0.036 LDL)
Mercury	D009	0.2	ND (< 0.001 LDL)
Selenium	D010	1	ND (< 0.05 LDL)
Silver	D011	5	ND (< 0.01 LDL)
TCLP Pesticides			
4,4'-DDD	U060	0.087	ND
4,4'-DDE	NL	0.087	ND
4,4'-DDT	U061	0.087	ND
a-BHC	NL	NL	ND
Alachor	NL	NL	ND
Aldrin	NL	NL	ND
b-BHC	NL	NL	ND
Chlordane	D020	0.03	ND
d-BHC	NL	NL	ND
Dieledrin	NL	NL	ND
Endosulfan I	NL	NL	ND
Endosulfan II	NL	NL	ND
Endosulfan Sulfate	NL	NL	ND
Endrin	D012	0.02	ND
Endrin Aldehyde	NL	NL	ND
g-BHC (Lindane)	D013	0.4	ND
Heptachlor	D031	0.008	ND
Heptachlor epoxide	D031	0.008	ND
Methoxychlor	D014	10	ND
Toxaphene	D015	0.5	ND
TCLP Volatiles			
1,1-Dichloroethylene	D029	0.7	ND
1,2-Dichloroethane	D028	0.5	ND
Benzene	D018	0.5	ND
Carbon tetrachloride	NL	0.5	ND
Chlorobenzene	NL	100	ND
Chloroform	NL	6	ND
Methyl ethyl ketone	D035	200	ND
Tetrachloroethane	D039	0.7	ND
Trichloroethene	D040	0.5	ND
Vinyl chloride	D043	0.2	ND
TCLP Semi-volatiles			
1,4-Dichlorobenzene	D027	7.5	ND
2,4,5-Trichlorophenol	D041	400	ND
2,4,6-Trichlorophenol	D042	2	ND
2,4-Dinitrotoluene	D030	0.13	ND
2-Methylphenol (o-cresol)	D023	200	ND
3&4-Methylphenol(m&p cresol)	D024/D025	200	ND
Hexachlorobenzene	D032	0.13	ND
Hexachlorobutadiene	D033	0.5	ND
Hexachloroethane	D034	3	ND
Nitrobenzene	D036	2	ND
Pentachlorophenol	D037	100	ND
Phenanthrene	NL	NL	ND
Phenol	NL	NL	ND
Pyrene	NL	NL	ND
Pyridine	D038	5	ND
Corrosivity (pH)²	D002	<2 or > 12.4	8.41
Ignitability (flash point)²	D001	<140 °F	> 200 °F (passed)
Reactivity²	D003	Positive/Negative	Negative
Reactivity (cyanide)²	N/A	N/A	ND (< 1.2 LDL)*
Reactivity (Sulfide)²	N/A	N/A	ND (< 20 LDL)*

mg/L - milligrams per liter or parts per million

N/A - No applicable standard

ND - Non-detect

Bold - Concentration above standard

NL - Compound not listed in the USEPA 40 contaminants outlined in CFR 40 §261.24

LDL - Laboratory Detection Limit

MCCTC = Maximum Concentration of Contaminants for Toxicity Characteristic

¹ Contaminants and regulatory levels (MCCTC) derived from The Code of Federal Regulations (CFR) 40 CFR §261.24. The TCLP analysis determines

² Additional criteria and characteristics may apply which pertain to listings and classifications in other Federal government agencies

* Measured in milligrams per kilogram

APPENDIX F

ANALYTICAL DATA

SOILS

Wednesday, March 12, 2008

**Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837**

**Client ID: 20080635-ZAVAST
Sample ID#s: AQ02575 - AQ02576, AQ02580, AQ02582**

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

NY Lab Registration #11301

RI Lab Registration #63

NH Lab Registration #213693-A,B

ME Lab Registration #CT-007

NJ Lab Registration #CT-003

PA Lab Registration #68-03530

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 12, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: **SOIL**
 Location Code: **PROPSOLN**
 Rush Request: **RUSH24HR**
 P.O. #:

Custody Information

Collected by: **RB**
 Received by: **LP**
 Analyzed by: see "By" below

Date

Time

02/26/08 **10:00**

02/28/08 **16:00**

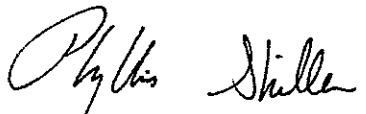
SDG I.D.: GAQ02563

Phoenix I.D.: AQ02575

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-01

Parameter	Result	RL	Units	Date	Time	By	Reference
Percent Solid	91		%	03/10/08		X/EG	E160.3
Soil Ext. for Semi- Vol	Completed			03/10/08		SJ/ED	SW3545
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dichlorophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dimethylphenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrophenol	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2-Chloronaphthalene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2-Chlorophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2-Methylnaphthalene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	720	ug/Kg	03/11/08		KCA	SW 8270
2-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
2-Nitrophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	720	ug/Kg	03/11/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	860	ug/Kg	03/11/08		KCA	SW 8270
3-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	720	ug/Kg	03/11/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	860	ug/Kg	03/11/08		KCA	SW 8270
4-Chloroaniline	ND	860	ug/Kg	03/11/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	720	ug/Kg	03/11/08		KCA	SW 8270
4-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
4-Nitrophenol	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthylene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Acetophenone	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Aniline	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Anthracene	720	720	ug/Kg	03/11/08		KCA	SW 8270
Azobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Benz(a)anthracene	2300	720	ug/Kg	03/11/08		KCA	SW 8270
Benzidine	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Benzo(a)pyrene	2000	720	ug/Kg	03/11/08		KCA	SW 8270
Benzo(b)fluoranthene	2600	720	ug/Kg	03/11/08		KCA	SW 8270
Benzo(ghi)perylene	1200	720	ug/Kg	03/11/08		KCA	SW 8270
Benzo(k)fluoranthene	810	720	ug/Kg	03/11/08		KCA	SW 8270
Benzoic acid	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Benzyl butyl phthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Carbazole	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Chrysene	2200	720	ug/Kg	03/11/08		KCA	SW 8270
Di-n-butylphthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Di-n-octylphthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Dibenzofuran	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Diethyl phthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Dimethylphthalate	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Fluoranthene	4900	720	ug/Kg	03/11/08		KCA	SW 8270
Fluorene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobutadiene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Hexachloroethane	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	1200	720	ug/Kg	03/11/08		KCA	SW 8270
Isophorone	ND	720	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	720	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	720	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Naphthalene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Nitrobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Pentachloronitrobenzene	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Pentachlorophenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Phenanthrene	2800	720	ug/Kg	03/11/08		KCA	SW 8270
Phenol	ND	720	ug/Kg	03/11/08		KCA	SW 8270
Pyrene	4000	720	ug/Kg	03/11/08		KCA	SW 8270
Pyridine	ND	720	ug/Kg	03/11/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	87		%	03/11/08		KCA	SW 8270
% 2-Fluorobiphenyl	73		%	03/11/08		KCA	SW 8270
% 2-Fluorophenol	68		%	03/11/08		KCA	SW 8270
% Nitrobenzene-d5	66		%	03/11/08		KCA	SW 8270
% Phenol-d5	71		%	03/11/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
% Terphenyl-d14	72		%	03/11/08		KCA	SW 8270

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

March 12, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 12, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: **SOIL**
 Location Code: **PROPSOLN**
 Rush Request: **RUSH24HR**
 P.O. #:

Custody Information

Collected by: **RB**
 Received by: **LP**
 Analyzed by: **see "By" below**

Date

02/26/08 **10:00**
02/28/08 **16:00**

Time

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02576

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-01

Parameter	Result	RL	Units	Date	Time	By	Reference
Percent Solid	89		%	03/10/08		X/EG	E160.3
Soil Ext. for Semi- Vol	Completed			03/10/08		SJ/ED	SW3545
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dichlorophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dimethylphenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrophenol	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2-Chloronaphthalene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2-Chlorophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2-Methylnaphthalene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	730	ug/Kg	03/11/08		KCA	SW 8270
2-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
2-Nitrophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	730	ug/Kg	03/11/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	870	ug/Kg	03/11/08		KCA	SW 8270
3-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	730	ug/Kg	03/11/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	870	ug/Kg	03/11/08		KCA	SW 8270
4-Chloroaniline	ND	870	ug/Kg	03/11/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	730	ug/Kg	03/11/08		KCA	SW 8270
4-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
4-Nitrophenol	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthylene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Acetophenone	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Aniline	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Anthracene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Azobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benz(a)anthracene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzidine	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzo(a)pyrene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzo(b)fluoranthene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzo(ghi)perylene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzo(k)fluoranthene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Benzoic acid	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Benzyl butyl phthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Carbazole	ND	2100	ug/Kg	03/11/08		KCA	SW 8270
Chrysene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Di-n-butylphthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Di-n-octylphthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Dibenzofuran	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Diethyl phthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Dimethylphthalate	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Fluoranthene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Fluorene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobutadiene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Hexachloroethane	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Isophorone	ND	730	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	730	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	730	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Naphthalene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Nitrobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Pentachloronitrobenzene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Pentachlorophenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Phenanthrene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Phenol	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Pyrene	ND	730	ug/Kg	03/11/08		KCA	SW 8270
Pyridine	ND	730	ug/Kg	03/11/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	60		%	03/11/08		KCA	SW 8270
% 2-Fluorobiphenyl	54		%	03/11/08		KCA	SW 8270
% 2-Fluorophenol	42		%	03/11/08		KCA	SW 8270
% Nitrobenzene-d5	52		%	03/11/08		KCA	SW 8270
% Phenol-d5	48		%	03/11/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
% Terphenyl-d14	55		%	03/11/08		KCA	SW 8270

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

March 12, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

<u>Sample Information</u>		<u>Custody Information</u>		<u>Date</u>	<u>Time</u>
Matrix:	SOIL	Collected by:	RB	02/26/08	10:00
Location Code:	PROPSOLN	Received by:	LP	02/28/08	16:00
Rush Request:	RUSH##	Analyzed by:	see "By" below		
P.O. #:					

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02574

Laboratory Data

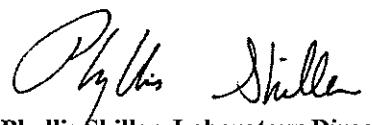
Client ID: 20080635-ZAVAST 0635-SB-(0-2)-01

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.37	0.37	mg/Kg	02/29/08		A/E	SW6010
Aluminum	7090	7.5	mg/Kg	03/04/08		EK	SW6010
Arsenic	4.2	0.7	mg/Kg	02/29/08		A/E	SW6010
Barium	71.0	0.37	mg/Kg	02/29/08		A/E	SW6010
Beryllium	< 0.30	0.30	mg/Kg	02/29/08		A/E	SW6010
Calcium	51300	7.5	mg/Kg	03/04/08		EK	6010/200.7
Cadmium	< 0.37	0.37	mg/Kg	02/29/08		A/E	SW6010
Cobalt	11.9	0.37	mg/Kg	02/29/08		A/E	SW6010
Chromium	205	0.37	mg/Kg	02/29/08		A/E	SW6010
Copper	78.3	0.37	mg/kg	02/29/08		A/E	SW6010
Iron	17900	3.7	mg/Kg	03/04/08		EK	SW6010
Mercury	0.17	0.08	mg/kg	02/29/08		RS	SW-7471
Potassium	1460	0.7	mg/Kg	02/29/08		A/E	SW6010
Magnesium	10400	3.7	mg/Kg	03/04/08		EK	SW6010
Manganese	163	0.37	mg/Kg	02/29/08		A/E	SW6010
Sodium	51.6	3.7	mg/Kg	02/29/08		A/E	SW6010
Nickel	120	0.37	mg/Kg	02/29/08		A/E	SW6010
Lead	195	0.37	mg/Kg	02/29/08		A/E	SW6010
Antimony	4.9	3.7	mg/Kg	02/29/08		A/E	SW6010
Selenium	< 1.9	1.9	mg/Kg	02/29/08		A/E	SW6010
Thallium	< 3.7	3.7	mg/Kg	02/29/08		A/E	SW6010
Vanadium	21.3	0.37	mg/Kg	02/29/08		A/E	6010
Zinc	71.5	0.37	mg/Kg	02/29/08		A/E	SW6010
Percent Solid	89		%	02/28/08		X/TJB	E160.3
Phenolics	< 0.75	0.75	mg/Kg	03/03/08		LK	SW9065
Formaldehyde Prep for HPLC	Completed			02/29/08		Z	
Mercury Digestion	Completed			02/29/08		K	SW7471
Soil Ext. for Pesticide	Completed			02/28/08		SB/D	3545
Soil Ext. for Semi- Vol	Completed			02/28/08		SB/ED	SW3545
Total Metals Digest	Completed			02/28/08		AG/T	SW846 - 3050

Parameter	Result	RL	Units	Date	Time	By	Reference	
Formaldehyde	2400	2200	ug/kg	03/02/08		JH	SW8315	1
Volatiles								
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1,1-Trichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1,2-Trichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1-Dichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,1-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2,3-Trichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2,3-Trichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2,4-Trichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2,4-Trimethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2-Dichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,2-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,3,5-Trimethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,3-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,3-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
1,4-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
2,2-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
2-Chlorotoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
2-Hexanone	ND	1300	ug/Kg	02/29/08		R/J	SW8260	
2-Isopropyltoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
4-Chlorotoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
4-Methyl-2-pentanone	ND	1300	ug/Kg	02/29/08		R/J	SW8260	
Acetone	ND	5000	ug/Kg	02/29/08		R/J	SW8260	
Acrylonitrile	ND	500	ug/Kg	02/29/08		R/J	SW8260	
Benzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Bromobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Bromochloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Bromodichloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Bromoform	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Bromomethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Carbon Disulfide	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Carbon tetrachloride	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Chlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Chloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Chloroform	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Chloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
cis-1,2-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
cis-1,3-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Dibromochloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Dibromoethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Dibromomethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Dichlorodifluoromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Ethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Hexachlorobutadiene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Isopropylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
m&p-Xylene	ND	250	ug/Kg	02/29/08		R/J	SW8260	
Methyl Ethyl Ketone	ND	1500	ug/Kg	02/29/08		R/J	SW8260	

Parameter	Result	RL	Units	Date	Time	By	Reference
Methyl t-butyl ether (MTBE)	ND	500	ug/Kg	02/29/08		R/J	SW8260
Methylene chloride	ND	250	ug/Kg	02/29/08		R/J	SW8260
n-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
n-Propylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Naphthalene	ND	250	ug/Kg	02/29/08		R/J	SW8260
o-Xylene	ND	250	ug/Kg	02/29/08		R/J	SW8260
p-Isopropyltoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
sec-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Styrene	ND	250	ug/Kg	02/29/08		R/J	SW8260
tert-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Tetrachloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	500	ug/Kg	02/29/08		R/J	SW8260
Toluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Total Xylenes	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Trichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Trichlorofluoromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Vinyl chloride	ND	250	ug/Kg	02/29/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	101		%	02/29/08		R/J	SW8260
% Bromofluorobenzene	92		%	02/29/08		R/J	SW8260
% Dibromofluoromethane	90		%	02/29/08		R/J	SW8260
% Toluene-d8	102		%	02/29/08		R/J	SW8260
Pesticides							
4,4' -DDD	ND	36	ug/Kg	02/29/08		KCA	SW8081
4,4' -DDE	ND	36	ug/Kg	02/29/08		KCA	SW8081
4,4' -DDT	ND	36	ug/Kg	02/29/08		KCA	SW8081
a-BHC	ND	18	ug/Kg	02/29/08		KCA	SW8081
Alachlor	ND	18	ug/Kg	02/29/08		KCA	SW8081
Aldrin	ND	5.6	ug/Kg	02/29/08		KCA	SW8081
b-BHC	ND	18	ug/Kg	02/29/08		KCA	SW8081
Chlordane	ND	74	ug/Kg	02/29/08		KCA	SW8081
d-BHC	ND	18	ug/Kg	02/29/08		KCA	SW8081
Dieldrin	ND	5.6	ug/Kg	02/29/08		KCA	SW8081
Endosulfan I	ND	18	ug/Kg	02/29/08		KCA	SW8081
Endosulfan II	ND	36	ug/Kg	02/29/08		KCA	SW8081
Endosulfan sulfate	ND	36	ug/Kg	02/29/08		KCA	SW8081
Endrin	ND	36	ug/Kg	02/29/08		KCA	SW8081
Endrin aldehyde	ND	36	ug/Kg	02/29/08		KCA	SW8081
Endrin ketone	ND	36	ug/Kg	02/29/08		KCA	SW8081
g-BHC	ND	18	ug/Kg	02/29/08		KCA	SW8081
Heptachlor	ND	11	ug/Kg	02/29/08		KCA	SW8081
Heptachlor epoxide	ND	18	ug/Kg	02/29/08		KCA	SW8081
Methoxychlor	ND	180	ug/Kg	02/29/08		KCA	SW8081
Toxaphene	ND	180	ug/Kg	02/29/08		KCA	SW8081
<u>QA/QC Surrogates</u>							
% DCBP	90		%	02/29/08		KCA	SW8081
% TCMX	86		%	02/29/08		KCA	SW8081

Parameter	Result	RL	Units	Date	Time	By	Reference
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
1,2,4-Trichlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
1,2-Dichlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
1,3-Dichlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
1,4-Dichlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,4,5-Trichlorophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,4,6-Trichlorophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,4-Dichlorophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,4-Dimethylphenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,4-Dinitrophenol	ND	590	ug/Kg	02/29/08		HM	SW 8270
2,4-Dinitrotoluene	ND	370	ug/Kg	02/29/08		HM	SW 8270
2,6-Dinitrotoluene	ND	370	ug/Kg	02/29/08		HM	SW 8270
2-Chloronaphthalene	ND	370	ug/Kg	02/29/08		HM	SW 8270
2-Chlorophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
2-Methylnaphthalene	900	370	ug/Kg	02/29/08		HM	SW 8270
2-Methylphenol (o-cresol)	ND	370	ug/Kg	02/29/08		HM	SW 8270
2-Nitroaniline	ND	590	ug/Kg	02/29/08		HM	SW 8270
2-Nitrophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	370	ug/Kg	02/29/08		HM	SW 8270
3,3'-Dichlorobenzidine	ND	440	ug/Kg	02/29/08		HM	SW 8270
3-Nitroaniline	ND	590	ug/Kg	02/29/08		HM	SW 8270
4,6-Dinitro-2-methylphenol	ND	1100	ug/Kg	02/29/08		HM	SW 8270
4-Bromophenyl phenyl ether	ND	370	ug/Kg	02/29/08		HM	SW 8270
4-Chloro-3-methylphenol	ND	440	ug/Kg	02/29/08		HM	SW 8270
4-Chloroaniline	ND	440	ug/Kg	02/29/08		HM	SW 8270
4-Chlorophenyl phenyl ether	ND	370	ug/Kg	02/29/08		HM	SW 8270
4-Nitroaniline	ND	590	ug/Kg	02/29/08		HM	SW 8270
4-Nitrophenol	ND	1100	ug/Kg	02/29/08		HM	SW 8270
Acenaphthene	1400	370	ug/Kg	02/29/08		HM	SW 8270
Acenaphthylene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Acetophenone	ND	370	ug/Kg	02/29/08		HM	SW 8270
Aniline	ND	1100	ug/Kg	02/29/08		HM	SW 8270
Anthracene	1300	370	ug/Kg	02/29/08		HM	SW 8270
Azobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Benz(a)anthracene	1100	370	ug/Kg	02/29/08		HM	SW 8270
Benzidine	ND	370	ug/Kg	02/29/08		HM	SW 8270
Benzo(a)pyrene	760	370	ug/Kg	02/29/08		HM	SW 8270
Benzo(b)fluoranthene	930	370	ug/Kg	02/29/08		HM	SW 8270
Benzo(ghi)perylene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Benzo(k)fluoranthene	610	370	ug/Kg	02/29/08		HM	SW 8270
Benzoic acid	ND	1100	ug/Kg	02/29/08		HM	SW 8270
Benzyl butyl phthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Bis(2-chloroethoxy)methane	ND	370	ug/Kg	02/29/08		HM	SW 8270
Bis(2-chloroethyl)ether	ND	370	ug/Kg	02/29/08		HM	SW 8270
Bis(2-chloroisopropyl)ether	ND	370	ug/Kg	02/29/08		HM	SW 8270
Bis(2-ethylhexyl)phthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Carbazole	ND	1100	ug/Kg	02/29/08		HM	SW 8270
Chrysene	1400	370	ug/Kg	02/29/08		HM	SW 8270
Di-n-butylphthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Di-n-octylphthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Dibenz(a,h)anthracene	ND	370	ug/Kg	02/29/08		HM	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
Dibenzofuran	ND	370	ug/Kg	02/29/08		HM	SW 8270
Diethyl phthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Dimethylphthalate	ND	370	ug/Kg	02/29/08		HM	SW 8270
Fluoranthene	1400	370	ug/Kg	02/29/08		HM	SW 8270
Fluorene	980	370	ug/Kg	02/29/08		HM	SW 8270
Hexachlorobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Hexachlorobutadiene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Hexachlorocyclopentadiene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Hexachloroethane	ND	370	ug/Kg	02/29/08		HM	SW 8270
Indeno(1,2,3-cd)pyrene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Isophorone	ND	370	ug/Kg	02/29/08		HM	SW 8270
N-Nitrosodi-n-propylamine	ND	370	ug/Kg	02/29/08		HM	SW 8270
N-Nitrosodimethylamine	ND	370	ug/Kg	02/29/08		HM	SW 8270
N-Nitrosodiphenylamine	ND	370	ug/Kg	02/29/08		HM	SW 8270
Naphthalene	1100	370	ug/Kg	02/29/08		HM	SW 8270
Nitrobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Pentachloronitrobenzene	ND	370	ug/Kg	02/29/08		HM	SW 8270
Pentachlorophenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
Phenanthrene	12000	1800	ug/Kg	02/29/08		HM	SW 8270
Phenol	ND	370	ug/Kg	02/29/08		HM	SW 8270
Pyrene	3100	370	ug/Kg	02/29/08		HM	SW 8270
Pyridine	ND	370	ug/Kg	02/29/08		HM	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	113		%	02/29/08		HM	SW 8270
% 2-Fluorobiphenyl	75		%	02/29/08		HM	SW 8270
% 2-Fluorophenol	81		%	02/29/08		HM	SW 8270
% Nitrobenzene-d5	71		%	02/29/08		HM	SW 8270
% Phenol-d5	80		%	02/29/08		HM	SW 8270
% Terphenyl-d14	83		%	02/29/08		HM	SW 8270

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

 Phyllis Shiller, Laboratory Director
 March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O. #:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

02/26/08 10:00

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02575

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-01

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.:#:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

02/26/08 10:00
02/28/08 16:00

Time

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02576

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-01

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 12, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: **SOIL**
 Location Code: **PROPSOLN**
 Rush Request: **RUSH24HR**
 P.O. #:

Custody Information

Collected by: **RB**
 Received by: **LP**
 Analyzed by: see "By" below

Date

Time

SDG I.D.: GAQ02563

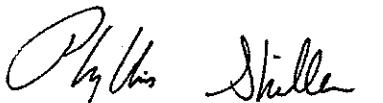
Phoenix I.D.: AQ02580

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(0-2)-02

Parameter	Result	RL	Units	Date	Time	By	Reference
Copper	105	0.34	mg/kg	03/11/08		M/E	SW6010
Mercury	1.29	0.11	mg/kg	03/11/08		RS	SW-7471
Lead	645	3.4	mg/Kg	03/11/08		EK	SW6010
Percent Solid	89		%	03/10/08		X/EG	E160.3
Mercury Digestion	Completed			03/11/08		D	SW7471
Soil Ext. for Semi- Vol	Completed			03/10/08		SJ/ED	SW3545
Total Metals Digest	Completed			03/10/08		AG/T	SW846 - 3050
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dichlorophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dimethylphenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrophenol	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2-Chloronaphthalene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2-Chlorophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2-Methylnaphthalene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	740	ug/Kg	03/11/08		KCA	SW 8270
2-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
2-Nitrophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	740	ug/Kg	03/11/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	890	ug/Kg	03/11/08		KCA	SW 8270
3-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	2200	ug/Kg	03/11/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
4-Bromophenyl phenyl ether	ND	740	ug/Kg	03/11/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	890	ug/Kg	03/11/08		KCA	SW 8270
4-Chloroaniline	ND	890	ug/Kg	03/11/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	740	ug/Kg	03/11/08		KCA	SW 8270
4-Nitroaniline	ND	1200	ug/Kg	03/11/08		KCA	SW 8270
4-Nitrophenol	ND	2200	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthylene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Acetophenone	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Aniline	ND	2200	ug/Kg	03/11/08		KCA	SW 8270
Anthracene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Azobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Benz(a)anthracene	3300	740	ug/Kg	03/11/08		KCA	SW 8270
Benzidine	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Benzo(a)pyrene	3300	740	ug/Kg	03/11/08		KCA	SW 8270
Benzo(b)fluoranthene	4100	740	ug/Kg	03/11/08		KCA	SW 8270
Benzo(ghi)perylene	2200	740	ug/Kg	03/11/08		KCA	SW 8270
Benzo(k)fluoranthene	1400	740	ug/Kg	03/11/08		KCA	SW 8270
Benzoic acid	ND	2200	ug/Kg	03/11/08		KCA	SW 8270
Benzyl butyl phthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Carbazole	ND	2200	ug/Kg	03/11/08		KCA	SW 8270
Chrysene	3500	740	ug/Kg	03/11/08		KCA	SW 8270
Di-n-butylphthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Di-n-octylphthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Dibenz(a,h)anthracene	860	740	ug/Kg	03/11/08		KCA	SW 8270
Dibenzofuran	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Diethyl phthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Dimethylphthalate	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Fluoranthene	7300	740	ug/Kg	03/11/08		KCA	SW 8270
Fluorene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobutadiene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Hexachloroethane	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	2000	740	ug/Kg	03/11/08		KCA	SW 8270
Isophorone	ND	740	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	740	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	740	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Naphthalene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Nitrobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Pentachloronitrobenzene	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Pentachlorophenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Phenanthrene	2700	740	ug/Kg	03/11/08		KCA	SW 8270
Phenol	ND	740	ug/Kg	03/11/08		KCA	SW 8270
Pyrene	6200	740	ug/Kg	03/11/08		KCA	SW 8270
Pyridine	ND	740	ug/Kg	03/11/08		KCA	SW 8270


QA/QC Surrogates

Parameter	Result	RL	Units	Date	Time	By	Reference
% 2,4,6-Tribromophenol	84		%	03/11/08		KCA	SW 8270
% 2-Fluorobiphenyl	67		%	03/11/08		KCA	SW 8270
% 2-Fluorophenol	65		%	03/11/08		KCA	SW 8270
% Nitrobenzene-d5	61		%	03/11/08		KCA	SW 8270
% Phenol-d5	69		%	03/11/08		KCA	SW 8270
% Terphenyl-d14	70		%	03/11/08		KCA	SW 8270

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

March 12, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 12, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH24HR
 P.O.:#:

Custody Information

Collected by: RB
 Received by: LP
 Analyzed by: see "By" below

Date 02/26/08

Time 10:30

Date 02/28/08

Time 16:00

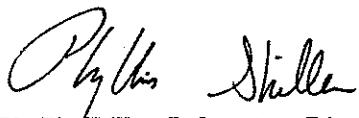
SDG I.D.: GAQ02563

Phoenix I.D.: AQ02582

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-02

Laboratory Data

Parameter	Result	RL	Units	Date	Time	By	Reference
Copper	61.7	0.36	mg/kg	03/11/08		M/E	SW6010
Mercury	0.37	0.10	mg/kg	03/11/08		RS	SW-7471
Lead	18.4	0.36	mg/Kg	03/11/08		M/E	SW6010
Percent Solid	93		%	03/10/08		X/EG	E160.3
Mercury Digestion	Completed			03/11/08		D	SW7471
Soil Ext. for Semi- Vol	Completed			03/10/08		SJ/ED	SW3545
Total Metals Digest	Completed			03/10/08		AG/T	SW846 - 3050
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dichlorophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dimethylphenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrophenol	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2-Chloronaphthalene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2-Chlorophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2-Methylnaphthalene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	700	ug/Kg	03/11/08		KCA	SW 8270
2-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
2-Nitrophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	700	ug/Kg	03/11/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	840	ug/Kg	03/11/08		KCA	SW 8270
3-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	2000	ug/Kg	03/11/08		KCA	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
4-Bromophenyl phenyl ether	ND	700	ug/Kg	03/11/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	840	ug/Kg	03/11/08		KCA	SW 8270
4-Chloroaniline	ND	840	ug/Kg	03/11/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	700	ug/Kg	03/11/08		KCA	SW 8270
4-Nitroaniline	ND	1100	ug/Kg	03/11/08		KCA	SW 8270
4-Nitrophenol	ND	2000	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Acenaphthylene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Acetophenone	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Aniline	ND	2000	ug/Kg	03/11/08		KCA	SW 8270
Anthracene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Azobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benz(a)anthracene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzidine	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzo(a)pyrene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzo(b)fluoranthene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzo(ghi)perylene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzo(k)fluoranthene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Benzoic acid	ND	2000	ug/Kg	03/11/08		KCA	SW 8270
Benzyl butyl phthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Carbazole	ND	2000	ug/Kg	03/11/08		KCA	SW 8270
Chrysene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Di-n-butylphthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Di-n-octylphthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Dibenzofuran	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Diethyl phthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Dimethylphthalate	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Fluoranthene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Fluorene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorobutadiene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Hexachloroethane	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Isophorone	ND	700	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	700	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	700	ug/Kg	03/11/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Naphthalene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Nitrobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Pentachloronitrobenzene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Pentachlorophenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Phenanthrene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Phenol	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Pyrene	ND	700	ug/Kg	03/11/08		KCA	SW 8270
Pyridine	ND	700	ug/Kg	03/11/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							

Parameter	Result	RL	Units	Date	Time	By	Reference
% 2,4,6-Tribromophenol	76		%	03/11/08		KCA	SW 8270
% 2-Fluorobiphenyl	68		%	03/11/08		KCA	SW 8270
% 2-Fluorophenol	65		%	03/11/08		KCA	SW 8270
% Nitrobenzene-d5	63		%	03/11/08		KCA	SW 8270
% Phenol-d5	70		%	03/11/08		KCA	SW 8270
% Terphenyl-d14	66		%	03/11/08		KCA	SW 8270

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

March 12, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 13, 2008

QA/QC Data

SDG ID.: GAQ02563

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 94942, Sample No: AQ05162 (AQ02580, AQ02582)								
ICP Metals - Soil								
Copper	BDL	24.7	94.7	97.0	2.4	93.9	96.2	2.4
Lead	BDL	57.5	82.2	84.6	2.9	>130	NR	NC
QA/QC Batch 95077, Sample No: AQ05739 (AQ02580, AQ02582)								
Mercury	BDL	NC	95.4	95.9	0.5	NC	NC	NC

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

March 13, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 13, 2008

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 95024, Sample No: AQ02601 (AQ02575, AQ02576, AQ02580, AQ02582)							
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	73.0	61.0	17.9	77.0	78.0	1.3
1,2,4-Trichlorobenzene	ND	70.0	59.0	17.1	74.0	74.0	0.0
1,2-Dichlorobenzene	ND	70.0	58.0	18.8	73.0	72.0	1.4
1,3-Dichlorobenzene	ND	64.0	54.0	16.9	67.0	65.0	3.0
1,4-Dichlorobenzene	ND	67.0	56.0	17.9	70.0	68.0	2.9
2,4,5-Trichlorophenol	ND	89.0	70.0	23.9	96.0	98.0	2.1
2,4,6-Trichlorophenol	ND	78.0	62.0	22.9	79.0	82.0	3.7
2,4-Dichlorophenol	ND	79.0	64.0	21.0	82.0	85.0	3.6
2,4-Dimethylphenol	ND	56.0	44.0	24.0	60.0	63.0	4.9
2,4-Dinitrophenol	ND	<30	N/A	NC	<30	N/A	NC
2,4-Dinitrotoluene	ND	81.0	64.0	23.4	79.0	82.0	3.7
2,6-Dinitrotoluene	ND	76.0	62.0	20.3	77.0	80.0	3.8
2-Chloronaphthalene	ND	75.0	61.0	20.6	77.0	77.0	0.0
2-Chlorophenol	ND	71.0	59.0	18.5	74.0	74.0	0.0
2-Methylnaphthalene	ND	75.0	64.0	15.8	87.0	83.0	4.7
2-Methylphenol (o-cresol)	ND	70.0	57.0	20.5	74.0	74.0	0.0
2-Nitroaniline	ND	>130	121	NC	111	>130	NC
2-Nitrophenol	ND	79.0	62.0	24.1	83.0	81.0	2.4
3&4-Methylphenol (m&p-cresol)	ND	72.0	59.0	19.8	77.0	75.0	2.6
3,3'-Dichlorobenzidine	ND	N/A	N/A	NC	N/A	N/A	NC
3-Nitroaniline	ND	>130	105	NC	91.0	108	17.1
4,6-Dinitro-2-methylphenol	ND	61.0	36.0	51.5	59.0	49.0	18.5
4-Bromophenyl phenyl ether	ND	80.0	64.0	22.2	84.0	82.0	2.4
4-Chloro-3-methylphenol	ND	81.0	65.0	21.9	85.0	87.0	2.3
4-Chloroaniline	ND	93.0	80.0	15.0	59.0	70.0	17.1
4-Chlorophenyl phenyl ether	ND	80.0	65.0	20.7	78.0	81.0	3.8
4-Nitroaniline	ND	75.0	61.0	20.6	78.0	81.0	3.8
4-Nitrophenol	ND	79.0	58.0	30.7	78.0	85.0	8.6
Acenaphthene	ND	77.0	62.0	21.6	78.0	77.0	1.3
Acenaphthylene	ND	74.0	62.0	17.6	78.0	79.0	1.3
Acetophenone	ND	69.0	59.0	15.6	72.0	70.0	2.8
Aniline	ND	N/A	N/A	NC	N/A	N/A	NC
Anthracene	ND	77.0	65.0	16.9	82.0	85.0	3.6
Azobenzene	ND	81.0	65.0	21.9	76.0	80.0	5.1
Benz(a)anthracene	ND	82.0	66.0	21.6	111	98.0	12.4
Benzidine	ND	N/A	N/A	NC	N/A	N/A	NC
Benzo(a)pyrene	ND	81.0	67.0	18.9	104	98.0	5.9
Benzo(b)fluoranthene	ND	78.0	64.0	19.7	107	96.0	10.8

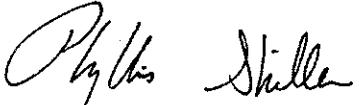
QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Benzo(ghi)perylene	ND	94.0	79.0	17.3	110	107	2.8
Benzo(k)fluoranthene	ND	75.0	61.0	20.6	79.0	82.0	3.7
Benzoic acid	ND	N/A	N/A	NC	N/A	N/A	NC
Benzyl butyl phthalate	ND	81.0	68.0	17.4	87.0	86.0	1.2
Bis(2-chloroethoxy)methane	ND	71.0	59.0	18.5	73.0	70.0	4.2
Bis(2-chloroethyl)ether	ND	67.0	56.0	17.9	67.0	66.0	1.5
Bis(2-chloroisopropyl)ether	ND	69.0	58.0	17.3	71.0	69.0	2.9
Bis(2-ethylhexyl)phthalate	ND	75.0	65.0	14.3	79.0	78.0	1.3
Carbazole	ND	92.0	76.0	19.0	97.0	103	6.0
Chrysene	ND	82.0	68.0	18.7	107	99.0	7.8
Di-n-butylphthalate	ND	81.0	68.0	17.4	79.0	83.0	4.9
Di-n-octylphthalate	ND	93.0	74.0	22.8	87.0	89.0	2.3
Dibenz(a,h)anthracene	ND	94.0	77.0	19.9	101	100	1.0
Dibenzofuran	ND	79.0	63.0	22.5	80.0	83.0	3.7
Diethyl phthalate	ND	84.0	69.0	19.6	83.0	84.0	1.2
Dimethylphthalate	ND	81.0	65.0	21.9	80.0	78.0	2.5
Fluoranthene	ND	82.0	69.0	17.2	112	111	0.9
Fluorene	ND	77.0	64.0	18.4	76.0	81.0	6.4
Hexachlorobenzene	ND	84.0	70.0	18.2	81.0	83.0	2.4
Hexachlorobutadiene	ND	76.0	64.0	17.1	81.0	79.0	2.5
Hexachlorocyclopentadiene	ND	63.0	39.0	47.1	63.0	54.0	15.4
Hexachloroethane	ND	67.0	57.0	16.1	72.0	68.0	5.7
Indeno(1,2,3-cd)pyrene	ND	92.0	76.0	19.0	106	105	0.9
Isophorone	ND	73.0	61.0	17.9	74.0	75.0	1.3
N-Nitrosodi-n-propylamine	ND	73.0	62.0	16.3	75.0	75.0	0.0
N-Nitrosodimethylamine	ND	57.0	48.0	17.1	60.0	59.0	1.7
N-Nitrosodiphenylamine	ND	83.0	65.0	24.3	85.0	87.0	2.3
Naphthalene	ND	72.0	61.0	16.5	78.0	76.0	2.6
Nitrobenzene	ND	73.0	61.0	17.9	76.0	76.0	0.0
Pentachloronitrobenzene	ND	83.0	71.0	15.6	84.0	87.0	3.5
Pentachlorophenol	ND	91.0	62.0	37.9	123	120	2.5
Phenanthrene	ND	80.0	66.0	19.2	112	98.0	13.3
Phenol	ND	73.0	62.0	16.3	75.0	76.0	1.3
Pyrene	ND	80.0	65.0	20.7	110	109	0.9
Pyridine	ND	50.0	44.0	12.8	57.0	48.0	17.1
% 2,4,6-Tribromophenol	82	89.0	65.0	31.2	97.0	96.0	1.0
% 2-Fluorobiphenyl	68	69.0	54.0	24.4	69.0	70.0	1.4
% 2-Fluorophenol	64	67.0	52.0	25.2	68.0	69.0	1.5
% Nitrobenzene-d5	64	68.0	55.0	21.1	70.0	68.0	2.9
% Phenol-d5	69	71.0	56.0	23.6	71.0	72.0	1.4
% Terphenyl-d14	66	68.0	54.0	23.0	71.0	78.0	9.4

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference


LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller
Phyllis Shiller, Laboratory Director
March 13, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

March 12, 2008

SDG I.D.: GAQ02563

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: **SOIL**
 Location Code: **PROPSOLN**
 Rush Request: **RUSH##**
 P.O.#:

Custody Information

Collected by: **RB**
 Received by: **LP**
 Analyzed by: **see "By" below**

Date

Time

02/26/08

10:30

02/28/08

16:00

SDG ID.: GAQ02563

Phoenix ID.: AQ02581

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-02

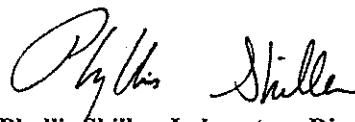
Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.42	0.42	mg/Kg	02/29/08		A/E	SW6010
Aluminum	13500	8.4	mg/Kg	03/04/08		EK	SW6010
Arsenic	8.8	0.8	mg/Kg	02/29/08		A/E	SW6010
Barium	167	0.42	mg/Kg	02/29/08		A/E	SW6010
Beryllium	0.67	0.34	mg/Kg	02/29/08		A/E	SW6010
Calcium	43500	8.4	mg/Kg	03/04/08		EK	6010/200.7
Cadmium	0.43	0.42	mg/Kg	02/29/08		A/E	SW6010
Cobalt	8.72	0.42	mg/Kg	02/29/08		A/E	SW6010
Chromium	28.0	0.42	mg/Kg	02/29/08		A/E	SW6010
Copper	293	4.2	mg/kg	03/04/08		EK	SW6010
Iron	22800	4.2	mg/Kg	03/04/08		EK	SW6010
Mercury	1.40	0.09	mg/kg	02/29/08		RS	SW-7471
Potassium	1740	0.8	mg/Kg	02/29/08		A/E	SW6010
Magnesium	4780	0.42	mg/Kg	02/29/08		A/E	SW6010
Manganese	244	0.42	mg/Kg	02/29/08		A/E	SW6010
Sodium	312	4.2	mg/Kg	02/29/08		A/E	SW6010
Nickel	20.9	0.42	mg/Kg	02/29/08		A/E	SW6010
Lead	733	4.2	mg/Kg	03/04/08		EK	SW6010
Antimony	< 4.2	4.2	mg/Kg	02/29/08		A/E	SW6010
Selenium	< 2.1	2.1	mg/Kg	02/29/08		A/E	SW6010
Thallium	< 4.2	4.2	mg/Kg	02/29/08		A/E	SW6010
Vanadium	30.9	0.42	mg/Kg	02/29/08		A/E	6010
Zinc	306	4.2	mg/Kg	03/04/08		EK	SW6010
Percent Solid	81		%	02/28/08		X/TJB	E160.3
pH	8.32	0.10	PH	02/29/08	22:30	CD	4500-H B/9045
Phenolics	< 0.75	0.75	mg/Kg	03/03/08		LK	SW9065
Formaldehyde Prep for HPLC	Completed			02/29/08		Z	
Mercury Digestion	Completed			02/29/08		K	SW7471
Soil Ext. for Pesticide	Completed			02/28/08		SB/D	3545
Soil Ext. for Semi- Vol	Completed			03/03/08		J/E	SW3545

Parameter	Result	RL	Units	Date	Time	By	Reference
Total Metals Digest	Completed			02/28/08		AG/T	SW846 - 3050
Formaldehyde	< 2500	2500	ug/kg	03/02/08		JH	SW8315
Volatiles							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	02/29/08		R/J	SW8260
2-Chlorotoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
2-Hexanone	ND	1300	ug/Kg	02/29/08		R/J	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
4-Chlorotoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	1300	ug/Kg	02/29/08		R/J	SW8260
Acetone	ND	5000	ug/Kg	02/29/08		R/J	SW8260
Acrylonitrile	ND	500	ug/Kg	02/29/08		R/J	SW8260
Benzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Bromobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Bromochloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Bromodichloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Bromoform	ND	250	ug/Kg	02/29/08		R/J	SW8260
Bromomethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Carbon Disulfide	ND	250	ug/Kg	02/29/08		R/J	SW8260
Carbon tetrachloride	ND	250	ug/Kg	02/29/08		R/J	SW8260
Chlorobenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Chloroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Chloroform	ND	250	ug/Kg	02/29/08		R/J	SW8260
Chloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Dibromochloromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Dibromoethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Dibromomethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Dichlorodifluoromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Ethylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Hexachlorobutadiene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Isopropylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
m&p-Xylene	ND	250	ug/Kg	02/29/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Methyl Ethyl Ketone	ND	1500	ug/Kg	02/29/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	500	ug/Kg	02/29/08		R/J	SW8260
Methylene chloride	ND	250	ug/Kg	02/29/08		R/J	SW8260
n-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
n-Propylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Naphthalene	ND	250	ug/Kg	02/29/08		R/J	SW8260
o-Xylene	ND	250	ug/Kg	02/29/08		R/J	SW8260
p-Isopropyltoluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
sec-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Styrene	ND	250	ug/Kg	02/29/08		R/J	SW8260
tert-Butylbenzene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Tetrachloroethene	1000	250	ug/Kg	02/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	500	ug/Kg	02/29/08		R/J	SW8260
Toluene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Total Xylenes	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	02/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Trichloroethene	ND	250	ug/Kg	02/29/08		R/J	SW8260
Trichlorofluoromethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg	02/29/08		R/J	SW8260
Vinyl chloride	ND	250	ug/Kg	02/29/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	99		%	02/29/08		R/J	SW8260
% Bromofluorobenzene	84		%	02/29/08		R/J	SW8260
% Dibromofluoromethane	95		%	02/29/08		R/J	SW8260
% Toluene-d8	93		%	02/29/08		R/J	SW8260
<u>Pesticides</u>							
4,4' -DDD	ND	39	ug/Kg	03/03/08		KCA	SW8081
4,4' -DDE	ND	39	ug/Kg	03/03/08		KCA	SW8081
4,4' -DDT	ND	39	ug/Kg	03/03/08		KCA	SW8081
a-BHC	ND	20	ug/Kg	03/03/08		KCA	SW8081
Alachlor	ND	20	ug/Kg	03/03/08		KCA	SW8081
Aldrin	ND	6.1	ug/Kg	03/03/08		KCA	SW8081
b-BHC	ND	20	ug/Kg	03/03/08		KCA	SW8081
Chlordane	ND	81	ug/Kg	03/03/08		KCA	SW8081
d-BHC	ND	20	ug/Kg	03/03/08		KCA	SW8081
Dieldrin	ND	6.1	ug/Kg	03/03/08		KCA	SW8081
Endosulfan I	ND	20	ug/Kg	03/03/08		KCA	SW8081
Endosulfan II	ND	39	ug/Kg	03/03/08		KCA	SW8081
Endosulfan sulfate	ND	39	ug/Kg	03/03/08		KCA	SW8081
Endrin	ND	39	ug/Kg	03/03/08		KCA	SW8081
Endrin aldehyde	ND	39	ug/Kg	03/03/08		KCA	SW8081
Endrin ketone	ND	39	ug/Kg	03/03/08		KCA	SW8081
g-BHC	ND	20	ug/Kg	03/03/08		KCA	SW8081
Heptachlor	ND	12	ug/Kg	03/03/08		KCA	SW8081
Heptachlor epoxide	ND	20	ug/Kg	03/03/08		KCA	SW8081
Methoxychlor	ND	200	ug/Kg	03/03/08		KCA	SW8081
Toxaphene	ND	200	ug/Kg	03/03/08		KCA	SW8081
<u>QA/QC Surrogates</u>							
% DCBP	82		%	03/03/08		KCA	SW8081

Parameter	Result	RL	Units	Date	Time	By	Reference
% TCMX	73		%	03/03/08		KCA	SW8081
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,4-Dichlorophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,4-Dimethylphenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,4-Dinitrophenol	ND	640	ug/Kg	03/04/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2-Chloronaphthalene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2-Chlorophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2-Methylnaphthalene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	400	ug/Kg	03/04/08		KCA	SW 8270
2-Nitroaniline	ND	640	ug/Kg	03/04/08		KCA	SW 8270
2-Nitrophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	400	ug/Kg	03/04/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	480	ug/Kg	03/04/08		KCA	SW 8270
3-Nitroaniline	ND	640	ug/Kg	03/04/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	1200	ug/Kg	03/04/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	400	ug/Kg	03/04/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	480	ug/Kg	03/04/08		KCA	SW 8270
4-Chloroaniline	ND	480	ug/Kg	03/04/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	400	ug/Kg	03/04/08		KCA	SW 8270
4-Nitroaniline	ND	640	ug/Kg	03/04/08		KCA	SW 8270
4-Nitrophenol	ND	1200	ug/Kg	03/04/08		KCA	SW 8270
Acenaphthene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Acenaphthylene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Acetophenone	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Aniline	ND	1200	ug/Kg	03/04/08		KCA	SW 8270
Anthracene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Azobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Benz(a)anthracene	3400	400	ug/Kg	03/04/08		KCA	SW 8270
Benzidine	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Benzo(a)pyrene	4600	400	ug/Kg	03/04/08		KCA	SW 8270
Benzo(b)fluoranthene	6500	400	ug/Kg	03/04/08		KCA	SW 8270
Benzo(ghi)perylene	4200	400	ug/Kg	03/04/08		KCA	SW 8270
Benzo(k)fluoranthene	2300	400	ug/Kg	03/04/08		KCA	SW 8270
Benzoic acid	ND	1200	ug/Kg	03/04/08		KCA	SW 8270
Benzyl butyl phthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Carbazole	ND	1200	ug/Kg	03/04/08		KCA	SW 8270
Chrysene	4100	400	ug/Kg	03/04/08		KCA	SW 8270
Di-n-butylphthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
Di-n-octylphthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Dibenzofuran	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Diethyl phthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Dimethylphthalate	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Fluoranthene	2800	400	ug/Kg	03/04/08		KCA	SW 8270
Fluorene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Hexachlorobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Hexachlorobutadiene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Hexachloroethane	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	3900	400	ug/Kg	03/04/08		KCA	SW 8270
Isophorone	ND	400	ug/Kg	03/04/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	400	ug/Kg	03/04/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	400	ug/Kg	03/04/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Naphthalene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Nitrobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Pentachloronitrobenzene	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Pentachlorophenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Phenanthrene	570	400	ug/Kg	03/04/08		KCA	SW 8270
Phenol	ND	400	ug/Kg	03/04/08		KCA	SW 8270
Pyrene	3100	400	ug/Kg	03/04/08		KCA	SW 8270
Pyridine	ND	400	ug/Kg	03/04/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	102		%	03/04/08		KCA	SW 8270
% 2-Fluorobiphenyl	73		%	03/04/08		KCA	SW 8270
% 2-Fluorophenol	69		%	03/04/08		KCA	SW 8270
% Nitrobenzene-d5	67		%	03/04/08		KCA	SW 8270
% Phenol-d5	74		%	03/04/08		KCA	SW 8270
% Terphenyl-d14	77		%	03/04/08		KCA	SW 8270


1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller
Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 10:30

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02582

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-02

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 05, 2008

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	SDG I.D.: GAQ02563
QA/QC Batch 94297, Sample No: AQ02418 (AQ02566, AQ02574, AQ02581)								
ICP Metals - Soil								
Aluminum	BDL	48.4	111	>130	NC	NC	NC	NC
Antimony	BDL	NC	79.5	87.8	9.9	65.3	68.6	4.9
Arsenic	BDL	NC	82.2	87.0	5.7	74.0	78.5	5.9
Barium	BDL	40.9	78.9	92.2	15.5	71.1	75.2	5.6
Beryllium	BDL	NC	75.8	90.9	18.1	65.0	70.6	8.3
Cadmium	BDL	NC	95.3	91.9	3.6	87.7	90.6	3.3
Calcium	BDL	119	>130	42.2	NC	-77.8	>130	NC
Chromium	BDL	29.7	74.9	92.5	21.0	63.8	69.5	8.6
Cobalt	BDL	NC	76.6	92.2	18.5	65.6	71.4	8.5
Copper	BDL	39.2	79.5	93.4	16.1	68.9	75.0	8.5
Iron	BDL	40.0	121	>130	NC	NC	NC	NC
Lead	BDL	25.6	92.0	91.2	0.9	83.7	87.0	3.9
Magnesium	0.97	35.6	79.4	104	26.8	67.7	>130	NC
Manganese	BDL	37.1	78.4	93.8	17.9	42.6	63.8	39.8
Nickel	BDL	37.3	75.8	91.5	18.8	64.1	69.9	8.7
Potassium	0.9	53.5	79.3	96.1	19.2	98.1	123	22.5
Selenium	BDL	NC	81.6	79.8	2.2	76.0	80.6	5.9
Silver	BDL	NC	115	91.4	22.9	109	112	2.7
Sodium	13.8	NC	94.0	102	8.2	80.8	91.2	12.1
Thallium	BDL	NC	98.1	88.4	10.4	90.5	93.3	3.0
Vanadium	BDL	29.1	80.0	93.6	15.7	66.1	73.8	11.0
Zinc	BDL	33.1	90.1	88.4	1.9	83.9	84.9	1.2
QA/QC Batch 94416, Sample No: AQ02500 (AQ02566, AQ02574, AQ02581)								
Mercury	BDL	NC	96.2	97.1	0.9	112	90.3	21.5

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director
 March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 05, 2008

Parameter	QA/QC Data				SDG I.D.: GAQ02563			
	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 94616, Sample No: AQ02574 (AQ02574, AQ02581)								
Phenols	BDL	NC	106			102		
QA/QC Batch 94401, Sample No: AQ02637 (AQ02566)								
pH		0.0	99.8					
QA/QC Batch 94482, Sample No: AQ02907 (AQ02581)								
pH		0.1	99.4					

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

March 05, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 05, 2008

QA/QC Data

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	SDG I.D.: GAQ02563 RPD
-----------	-------	----------	-----------	------------	-------------	-----------------	---------------------------

QA/QC Batch 94286, Sample No: AQ02141 (AQ02566, AQ02574, AQ02581)

Pesticides

4,4'-DDD	ND	58.0	106	58.5	121	114	6.0
4,4'-DDE	ND	73.0	126	53.3	>130	117	NC
4,4'-DDT	ND	72.0	115	46.0	125	110	12.8
a-BHC	ND	69.0	106	42.3	108	106	1.9
a-Chlordane	ND	68.0	114	50.5	121	108	11.4
Alachlor	ND	N/A	N/A	NC	N/A	N/A	NC
Aldrin	ND	72.0	109	40.9	111	104	6.5
b-BHC	ND	70.0	104	39.1	109	104	4.7
Chlordane	ND	N/A	N/A	NC	N/A	N/A	NC
d-BHC	ND	62.0	94.0	41.0	100	89.0	11.6
Die�drin	ND	81.0	122	40.4	106	98.0	7.8
Endosulfan I	ND	68.0	94.0	32.1	102	98.0	4.0
Endosulfan II	ND	59.0	101	52.5	108	103	4.7
Endosulfan sulfate	ND	69.0	105	41.4	105	104	1.0
Endrin	ND	69.0	105	41.4	121	105	14.2
Endrin aldehyde	ND	84.0	>130	NC	>130	119	NC
Endrin ketone	ND	72.0	115	46.0	115	111	3.5
g-BHC	ND	71.0	108	41.3	109	108	0.9
g-Chlordane	ND	69.0	105	41.4	112	98.0	13.3
Heptachlor	ND	72.0	107	39.1	109	105	3.7
Heptachlor epoxide	ND	69.0	109	44.9	113	109	3.6
Methoxychlor	ND	67.0	109	47.7	126	121	4.0
Toxaphene	ND	N/A	N/A	NC	N/A	N/A	NC
% DCBP	39	65.0	98.0	40.5	96.0		
% TCMX	38	67.0	99.0	38.6	100	97.0	3.0

QA/QC Batch 94288, Sample No: AQ02175 (AQ02566, AQ02574, AQ02581)

Semivolatiles

1,2,4,5-Tetrachlorobenzene	ND	64.0		72.0	72.0	0.0
1,2,4-Trichlorobenzene	ND	65.0		73.0	73.0	0.0
1,2-Dichlorobenzene	ND	65.0		70.0	70.0	0.0
1,3-Dichlorobenzene	ND	63.0		68.0	68.0	0.0
1,4-Dichlorobenzene	ND	64.0		69.0	69.0	0.0
2,4,5-Trichlorophenol	ND	66.0		76.0	76.0	0.0
2,4,6-Trichlorophenol	ND	65.0		76.0	76.0	0.0
2,4-Dichlorophenol	ND	66.0		72.0	72.0	0.0
2,4-Dimethylphenol	ND	46.0		<30	<30	NC
2,4-Dinitrophenol	ND	<30		<30	<30	NC

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
2,4-Dinitrotoluene	ND	73.0			74.0	74.0	0.0
2,6-Dinitrotoluene	ND	73.0			78.0	78.0	0.0
2-Chloronaphthalene	ND	71.0			79.0	79.0	0.0
2-Chlorophenol	ND	66.0			66.0	66.0	0.0
2-Methylnaphthalene	ND	69.0			77.0	77.0	0.0
2-Methylphenol (o-cresol)	ND	62.0			47.0	47.0	0.0
2-Nitroaniline	ND	111			86.0	86.0	0.0
2-Nitrophenol	ND	64.0			67.0	67.0	0.0
3&4-Methylphenol (m&p-cresol)	ND	66.0			50.0	50.0	0.0
3,3'-Dichlorobenzidine	ND	N/A			N/A	N/A	NC
3-Nitroaniline	ND	79.0			55.0	55.0	0.0
4,6-Dinitro-2-methylphenol	ND	48.0			<30	<30	NC
4-Bromophenyl phenyl ether	ND	73.0			81.0	81.0	0.0
4-Chloro-3-methylphenol	ND	66.0			70.0	70.0	0.0
4-Chloroaniline	ND	59.0			<30	<30	NC
4-Chlorophenyl phenyl ether	ND	71.0			80.0	80.0	0.0
4-Nitroaniline	ND	74.0			78.0	78.0	0.0
4-Nitrophenol	ND	48.0			78.0	78.0	0.0
Acenaphthene	ND	68.0			76.0	76.0	0.0
Acenaphthylene	ND	70.0			76.0	76.0	0.0
Acetophenone	ND	65.0			71.0	71.0	0.0
Aniline	ND	N/A			N/A	N/A	NC
Anthracene	ND	73.0			85.0	85.0	0.0
Azobenzene	ND	72.0			76.0	76.0	0.0
Benz(a)anthracene	ND	73.0			93.0	93.0	0.0
Benzidine	ND	N/A			N/A	N/A	NC
Benzo(a)pyrene	ND	72.0			91.0	91.0	0.0
Benzo(b)fluoranthene	ND	73.0			103	103	0.0
Benzo(ghi)perylene	ND	74.0			63.0	63.0	0.0
Benzo(k)fluoranthene	ND	75.0			84.0	84.0	0.0
Benzoic acid	ND	N/A			N/A	N/A	NC
Benzyl butyl phthalate	ND	73.0			75.0	75.0	0.0
Bis(2-chloroethoxy)methane	ND	68.0			75.0	75.0	0.0
Bis(2-chloroethyl)ether	ND	65.0			71.0	71.0	0.0
Bis(2-chloroisopropyl)ether	ND	74.0			79.0	79.0	0.0
Bis(2-ethylhexyl)phthalate	ND	80.0			73.0	73.0	0.0
Carbazole	ND	90.0			98.0	98.0	0.0
Chrysene	ND	74.0			90.0	90.0	0.0
Di-n-butylphthalate	ND	74.0			78.0	78.0	0.0
Di-n-octylphthalate	ND	75.0			67.0	67.0	0.0
Dibenz(a,h)anthracene	ND	76.0			67.0	67.0	0.0
Dibenzofuran	ND	70.0			77.0	77.0	0.0
Diethyl phthalate	ND	73.0			78.0	78.0	0.0
Dimethylphthalate	ND	72.0			78.0	78.0	0.0
Fluoranthene	ND	78.0			119	119	0.0
Fluorene	ND	71.0			79.0	79.0	0.0
Hexachlorobenzene	ND	75.0			78.0	78.0	0.0
Hexachlorobutadiene	ND	64.0			74.0	74.0	0.0
Hexachlorocyclopentadiene	ND	46.0			<30	<30	NC

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Hexachloroethane	ND	64.0			66.0	66.0	0.0
Indeno(1,2,3-cd)pyrene	ND	76.0			69.0	69.0	0.0
Isophorone	ND	72.0			78.0	78.0	0.0
N-Nitrosodi-n-propylamine	ND	67.0			72.0	72.0	0.0
N-Nitrosodimethylamine	ND	60.0			63.0	63.0	0.0
N-Nitrosodiphenylamine	ND	79.0			83.0	83.0	0.0
Naphthalene	ND	67.0			76.0	76.0	0.0
Nitrobenzene	ND	67.0			71.0	71.0	0.0
Pentachloronitrobenzene	ND	73.0			74.0	74.0	0.0
Pentachlorophenol	ND	50.0			86.0	86.0	0.0
Phenanthrene	ND	74.0			101	101	0.0
Phenol	ND	68.0			67.0	67.0	0.0
Pyrene	ND	75.0			112	112	0.0
Pyridine	ND	52.0			52.0	52.0	0.0
% 2,4,6-Tribromophenol	80	76.0			88.0	88.0	0.0
% 2-Fluorobiphenyl	64	63.0			69.0	69.0	0.0
% 2-Fluorophenol	71	67.0			64.0	64.0	0.0
% Nitrobenzene-d5	64	61.0			66.0	66.0	0.0
% Phenol-d5	70	68.0			68.0	68.0	0.0
% Terphenyl-d14	70	68.0			76.0	76.0	0.0

Comment:

No LCSD was reported for this batch.

QA/QC Batch 94287, Sample No: AQ02418 (AQ02566)

Polychlorinated Biphenyls

PCB-1016	ND	111	80.0	32.5	63.0	114	57.6
PCB-1221	ND						
PCB-1232	ND						
PCB-1242	ND						
PCB-1248	ND						
PCB-1254	ND						
PCB-1260	ND	112	81.0	32.1	64.0	111	53.7
PCB-1262	ND						
PCB-1268	ND						
% DCBP (Surrogate Rec)	85	94.0	66.0	35.0	50.0	84.0	50.7
% TCMX (Surrogate Rec)	83	90.0	66.0	30.8	52.0	86.0	49.3

QA/QC Batch 94380, Sample No: AQ02532 (AQ02574, AQ02581)

Formaldehyde

Formaldehyde	ND				98.0	107	8.8
--------------	----	--	--	--	------	-----	-----

QA/QC Batch 94517, Sample No: AQ02736 (AQ02566, AQ02574, AQ02581)

Volatiles

1,1,1,2-Tetrachloroethane	ND	101	101	0.0	92.0	93.0	1.1
1,1,1-Trichloroethane	ND	103	99.0	4.0	98.0	96.0	2.1
1,1,2,2-Tetrachloroethane	ND	96.0	106	9.9	25.0	11.0	77.8
1,1,2-Trichloroethane	ND	106	101	4.8	90.0	86.0	4.5
1,1-Dichloroethane	ND	103	98.0	5.0	89.0	86.0	3.4
1,1-Dichloroethene	ND	83.0	80.0	3.7	72.0	67.0	7.2
1,1-Dichloropropene	ND	112	102	9.3	86.0	85.0	1.2

QA/QC Data

SDG LD.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,2,3-Trichlorobenzene	ND	114	109	4.5	40.0	46.0	14.0
1,2,3-Trichloropropane	ND	105	121	14.2	94.0	83.0	12.4
1,2,4-Trichlorobenzene	ND	115	110	4.4	36.0	39.0	8.0
1,2,4-Trimethylbenzene	ND	107	103	3.8	73.0	77.0	5.3
1,2-Dibromo-3-chloropropane	ND	>130	129	NC	111	105	5.6
1,2-Dichlorobenzene	ND	104	99.0	4.9	61.0	64.0	4.8
1,2-Dichloroethane	ND	106	98.0	7.8	80.0	82.0	2.5
1,2-Dichloropropane	ND	104	97.0	7.0	87.0	88.0	1.1
1,3,5-Trimethylbenzene	ND	104	102	1.9	77.0	79.0	2.6
1,3-Dichlorobenzene	ND	108	100	7.7	57.0	58.0	1.7
1,3-Dichloropropane	ND	106	107	0.9	87.0	90.0	3.4
1,4-Dichlorobenzene	ND	104	105	1.0	52.0	53.0	1.9
2,2-Dichloropropane	ND	105	99.0	5.9	98.0	94.0	4.2
2-Chlorotoluene	ND	104	103	1.0	77.0	78.0	1.3
2-Hexanone	ND	121	103	16.1	113	118	4.3
2-Isopropyltoluene	ND	108	102	5.7	71.0	77.0	8.1
4-Chlorotoluene	ND	106	107	0.9	65.0	68.0	4.5
4-Methyl-2-pentanone	ND	112	103	8.4	105	108	2.8
Acetone	ND	101	85.0	17.2	90.0	83.0	8.1
Acrolein	ND	108	118	8.8	110	107	2.8
Acrylonitrile	ND	108	110	1.8	102	94.0	8.2
Benzene	ND	107	97.0	9.8	87.0	87.0	0.0
Bromobenzene	ND	104	105	1.0	72.0	72.0	0.0
Bromochloromethane	ND	107	103	3.8	91.0	87.0	4.5
Bromodichloromethane	ND	104	99.0	4.9	87.0	86.0	1.2
Bromoform	ND	108	110	1.8	91.0	88.0	3.4
Bromomethane	ND	86.0	91.0	5.6	83.0	73.0	12.8
Carbon Disulfide	ND	89.0	82.0	8.2	56.0	54.0	3.6
Carbon tetrachloride	ND	106	95.0	10.9	92.0	93.0	1.1
Chlorobenzene	ND	106	97.0	8.9	73.0	80.0	9.2
Chloroethane	ND	91.0	77.0	16.7	71.0	75.0	5.5
Chloroform	ND	104	102	1.9	87.0	84.0	3.5
Chloromethane	ND	106	<70	NC	69.0	93.0	29.6
cis-1,2-Dichloroethene	ND	106	103	2.9	87.0	82.0	5.9
cis-1,3-Dichloropropene	ND	109	105	3.7	82.0	77.0	6.3
Dibromochloromethane	ND	107	106	0.9	95.0	92.0	3.2
Dibromoethane	ND	111	108	2.7	84.0	83.0	1.2
Dibromomethane	ND	106	102	3.8	81.0	79.0	2.5
Dichlorodifluoromethane	ND	80.0	<70	NC	82.0	96.0	15.7
Ethylbenzene	ND	110	99.0	10.5	78.0	86.0	9.8
Hexachlorobutadiene	ND	108	97.0	10.7	37.0	39.0	5.3
Isopropylbenzene	ND	129	126	2.4	88.0	88.0	0.0
m&p-Xylene	ND	110	97.0	12.6	76.0	87.0	13.5
Methyl ethyl ketone	ND	120	106	12.4	118	110	7.0
Methyl t-butyl ether (MTBE)	ND	95.0	93.0	2.1	85.0	81.0	4.8
Methylene chloride	ND	93.0	82.0	12.6	67.0	70.0	4.4
n-Butylbenzene	ND	109	104	4.7	48.0	51.0	6.1
n-Propylbenzene	ND	110	107	2.8	73.0	73.0	0.0
Naphthalene	ND	116	123	5.9	74.0	74.0	0.0

QA/QC Data

SDG LD.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
o-Xylene	ND	114	94.0	19.2	80.0	92.0	14.0
p-Isopropyltoluene	ND	112	105	6.5	67.0	70.0	4.4
sec-Butylbenzene	ND	99.0	92.0	7.3	65.0	69.0	6.0
Styrene	ND	115	101	13.0	71.0	79.0	10.7
tert-Butylbenzene	ND	108	104	3.8	80.0	83.0	3.7
Tetrachloroethene	ND	104	98.0	5.9	87.0	90.0	3.4
Tetrahydrofuran (THF)	ND	110	110	0.0	106	102	3.8
Toluene	ND	108	91.0	17.1	80.0	84.0	4.9
trans-1,2-Dichloroethene	ND	87.0	86.0	1.2	63.0	58.0	8.3
trans-1,3-Dichloropropene	ND	109	109	0.0	71.0	65.0	8.8
trans-1,4-dichloro-2-butene	ND	101	124	20.4	73.0	60.0	19.5
Trichloroethene	ND	100	97.0	3.0	128	140	9.0
Trichlorofluoromethane	ND	96.0	87.0	9.8	71.0	69.0	2.9
Trichlorotrifluoroethane	ND	87.0	81.0	7.1	71.0	69.0	2.9
Vinyl chloride	ND	86.0	71.0	19.1	68.0	72.0	5.7
% 1,2-dichlorobenzene-d4	106	99.0	99.0	0.0	99.0	101	2.0
% Bromofluorobenzene	99	102	95.0	7.1	98.0	105	6.9
% Dibromofluoromethane	97	94.0	100	6.2	99.0	91.0	8.4
% Toluene-d8	105	103	93.0	10.2	96.0	100	4.1

QA/QC Batch 94530, Sample No: AQ03151 (aq02566, AQ02574)

Volatiles

1,1,1,2-Tetrachloroethane	ND	109	107	1.9	74.0	84.0	12.7
1,1,1-Trichloroethane	ND	104	106	1.9	87.0	91.0	4.5
1,1,2,2-Tetrachloroethane	ND	101	99.0	2.0	5.3	NC	3
1,1,2-Trichloroethane	ND	103	105	1.9	69.0	80.0	14.8
1,1-Dichloroethane	ND	101	98.0	3.0	76.0	82.0	7.6
1,1-Dichloroethene	ND	79.0	75.0	5.2	61.0	66.0	7.9
1,1-Dichloropropene	ND	110	114	3.6	76.0	80.0	5.1
1,2,3-Trichlorobenzene	ND	114	124	8.4	30.0	30.0	0.0
1,2,3-Trichloropropane	ND	119	109	8.8	65.0	82.0	23.1
1,2,4-Trichlorobenzene	ND	111	126	12.7	27.0	29.0	7.1
1,2,4-Trimethylbenzene	ND	107	115	7.2	65.0	69.0	6.0
1,2-Dibromo-3-chloropropane	ND	129	>130	NC	77.0	89.0	14.5
1,2-Dichlorobenzene	ND	104	110	5.6	44.0	48.0	8.7
1,2-Dichloroethane	ND	100	103	3.0	68.0	76.0	11.1
1,2-Dichloropropane	ND	98.0	102	4.0	75.0	80.0	6.5
1,3,5-Trimethylbenzene	ND	107	113	5.5	69.0	73.0	5.6
1,3-Dichlorobenzene	ND	110	114	3.6	41.0	46.0	11.5
1,3-Dichloropropane	ND	112	108	3.6	67.0	80.0	17.7
1,4-Dichlorobenzene	ND	110	113	2.7	37.0	42.0	12.7
2,2-Dichloropropane	ND	108	107	0.9	85.0	91.0	6.8
2-Chlorotoluene	ND	109	114	4.5	64.0	69.0	7.5
2-Hexanone	ND	122	130	6.3	91.0	108	17.1
2-Isopropyltoluene	ND	107	115	7.2	68.0	71.0	4.3
4-Chlorotoluene	ND	111	119	7.0	52.0	58.0	10.9
4-Methyl-2-pentanone	ND	101	112	10.3	88.0	96.0	8.7
Acetone	ND	97.0	96.0	1.0	82.0	90.0	9.3
Acrolein	ND	109	107	1.9	90.0	100	10.5

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Acrylonitrile	ND	109	104	4.7	76.0	86.0	12.3
Benzene	ND	100	102	2.0	110	108	1.8
Bromobenzene	ND	111	111	0.0	54.0	61.0	12.2
Bromochloromethane	ND	109	110	0.9	72.0	78.0	8.0
Bromodichloromethane	ND	103	106	2.9	71.0	80.0	11.9
Bromoform	ND	115	111	3.5	64.0	76.0	17.1
Bromomethane	ND	95.0	77.0	20.9	66.0	78.0	16.7
Carbon Disulfide	ND	81.0	80.0	1.2	45.0	49.0	8.5
Carbon tetrachloride	ND	102	110	7.5	84.0	87.0	3.5
Chlorobenzene	ND	102	107	4.8	61.0	64.0	4.8
Chloroethane	ND	73.0	82.0	11.6	65.0	66.0	1.5
Chloroform	ND	107	101	5.8	73.0	82.0	11.6
Chloromethane	ND	<70	98.0	NC	80.0	61.0	27.0
cis-1,2-Dichloroethene	ND	112	107	4.6	70.0	78.0	10.8
cis-1,3-Dichloropropene	ND	109	108	0.9	62.0	72.0	14.9
Dibromochloromethane	ND	122	113	7.7	72.0	85.0	16.6
Dibromoethane	ND	114	116	1.7	63.0	74.0	16.1
Dibromomethane	ND	105	106	0.9	62.0	71.0	13.5
Dichlorodifluoromethane	ND	<70	78.0	NC	84.0	76.0	10.0
Ethylbenzene	ND	103	113	9.3	70.0	72.0	2.8
Hexachlorobutadiene	ND	102	116	12.8	40.0	43.0	7.2
Isopropylbenzene	ND	>130	>130	NC	78.0	82.0	5.0
m&p-Xylene	ND	101	115	13.0	70.0	70.0	0.0
Methyl ethyl ketone	ND	111	114	2.7	94.0	106	12.0
Methyl t-butyl ether (MTBE)	ND	91.0	86.0	5.6	72.0	83.0	14.2
Methylene chloride	ND	83.0	87.0	4.7	60.0	62.0	3.3
n-Butylbenzene	ND	107	116	8.1	46.0	47.0	2.2
n-Propylbenzene	ND	107	116	8.1	64.0	63.0	1.6
Naphthalene	ND	128	>130	NC	46.0	48.0	4.3
o-Xylene	ND	98.0	112	13.3	74.0	72.0	2.7
p-Isopropyltoluene	ND	109	119	8.8	63.0	65.0	3.1
sec-Butylbenzene	ND	98.0	104	5.9	62.0	65.0	4.7
Styrene	ND	106	114	7.3	59.0	59.0	0.0
tert-Butylbenzene	ND	109	117	7.1	75.0	77.0	2.6
Tetrachloroethene	ND	103	110	6.6	76.0	79.0	3.9
Tetrahydrofuran (THF)	ND	106	104	1.9	86.0	96.0	11.0
Toluene	ND	97.0	108	10.7	76.0	76.0	0.0
trans-1,2-Dichloroethene	ND	84.0	79.0	6.1	51.0	59.0	14.5
trans-1,3-Dichloropropene	ND	108	110	1.8	52.0	59.0	12.6
trans-1,4-dichloro-2-butene	ND	124	103	18.5	35.0	59.0	51.1
Trichloroethene	ND	101	107	5.8	119	123	3.3
Trichlorofluoromethane	ND	83.0	83.0	0.0	59.0	66.0	11.2
Trichlorotrifluoroethane	ND	81.0	80.0	1.2	63.0	68.0	7.6
Vinyl chloride	ND	<70	75.0	NC	64.0	62.0	3.2
% 1,2-dichlorobenzene-d4	102	97.0	99.0	2.0	97.0	101	4.0
% Bromofluorobenzene	86	97.0	102	5.0	102	97.0	5.0
% Dibromofluoromethane	99	96.0	93.0	3.2	92.0	100	8.3
% Toluene-d8	93	94.0	100	6.2	100	96.0	4.1

QA/QC Data

SDG I.D.: GAQ02563

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
-----------	-------	----------	-----------	------------	-------------	-----------------	-----

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

March 05, 2008

SDG I.D.: GAQ02563

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O.#:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

Time

02/26/08 10:30

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02580

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(0-2)-02

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Wednesday, March 05, 2008

**Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837**

**Client ID: 20080635-ZAVAST
Sample ID#s: AQ02563 - AQ02582**

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink, appearing to read "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

**CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
NY Lab Registration #11301
RI Lab Registration #63
NH Lab Registration #213693-A,B
ME Lab Registration #CT-007
NJ Lab Registration #CT-003
PA Lab Registration #68-03530**

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 **8:30**
02/28/08 **16:00**

Time

SDG I.D.: GAQ02563
Phoenix I.D.: AQ02563

Client ID: 20080635-ZAVAST 0635-SB-(0-2)-03

Laboratory Data

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O.#:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 8:30

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02564

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-03

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller
Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O. #:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

02/26/08 8:30

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02565

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-03

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: **SOIL**
 Location Code: **PROPSOLN**
 Rush Request: **RUSH##**
 P.O. #:

Custody Information

Collected by: **RB**
 Received by: **LP**
 Analyzed by: see "By" below

Date

02/26/08 **8:30**
02/28/08 **16:00**

Time

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02566

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(6-8)-03

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.43	0.43	mg/Kg	02/29/08		EK	SW6010
Aluminum	24900	8.7	mg/Kg	03/04/08		EK	SW6010
Arsenic	< 0.9	0.9	mg/Kg	02/29/08		EK	SW6010
Barium	237	0.43	mg/Kg	02/29/08		EK	SW6010
Beryllium	< 0.35	0.35	mg/Kg	02/29/08		EK	SW6010
Calcium	2040	0.9	mg/Kg	02/29/08		EK	6010/200.7
Cadmium	< 0.43	0.43	mg/Kg	02/29/08		EK	SW6010
Cobalt	18.1	0.43	mg/Kg	02/29/08		EK	SW6010
Chromium	220	0.43	mg/Kg	02/29/08		EK	SW6010
Copper	182	0.43	mg/kg	02/29/08		EK	SW6010
Iron	31400	4.3	mg/Kg	03/04/08		EK	SW6010
Mercury	< 0.07	0.07	mg/kg	02/29/08		RS	SW-7471
Potassium	8960	8.7	mg/Kg	03/04/08		EK	SW6010
Magnesium	17000	4.3	mg/Kg	03/04/08		EK	SW6010
Manganese	146	0.43	mg/Kg	02/29/08		EK	SW6010
Sodium	735	43	mg/Kg	03/04/08		EK	SW6010
Nickel	71.2	0.43	mg/Kg	02/29/08		EK	SW6010
Lead	150	0.43	mg/Kg	02/29/08		EK	SW6010
Antimony	< 4.3	4.3	mg/Kg	02/29/08		EK	SW6010
Selenium	< 2.2	2.2	mg/Kg	02/29/08		EK	SW6010
Thallium	< 4.3	4.3	mg/Kg	02/29/08		EK	SW6010
Vanadium	93.6	0.43	mg/Kg	02/29/08		EK	6010
Zinc	88.1	0.43	mg/Kg	02/29/08		EK	SW6010
Percent Solid	80		%	02/28/08		X/TJB	E160.3
pH	7.50	0.10	PH	02/28/08	23:00	CD	4500-H B/9045
Mercury Digestion	Completed			02/29/08		K	SW7471
Soil Extraction for PCB	Completed			02/28/08		SB/D	SW3545
Soil Ext. for Pesticide	Completed			02/28/08		SB/D	3545
Soil Ext. for Semi- Vol	Completed			02/28/08		SB/ED	SW3545
Total Metals Digest	Completed			02/28/08		AG/T	SW846 - 3050

Parameter	Result	RL	Units	Date	Time	By	Reference
Volatiles							
1,1,1,2-Tetrachloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1,1-Trichloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1,2-Trichloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloroethene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,1-Dichloropropene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2,3-Trichloropropane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2,4-Trimethylbenzene	4100	500	ug/Kg	02/29/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,2-Dichloropropane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,3,5-Trimethylbenzene	660	500	ug/Kg	02/29/08		R/J	SW8260
1,3-Dichlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,3-Dichloropropane	ND	500	ug/Kg	02/29/08		R/J	SW8260
1,4-Dichlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
2,2-Dichloropropane	ND	500	ug/Kg	02/29/08		R/J	SW8260
2-Chlorotoluene	ND	500	ug/Kg	02/29/08		R/J	SW8260
2-Hexanone	ND	2500	ug/Kg	02/29/08		R/J	SW8260
2-Isopropyltoluene	2700	500	ug/Kg	02/29/08		R/J	SW8260
4-Chlorotoluene	ND	500	ug/Kg	02/29/08		R/J	SW8260
4-Methyl-2-pentanone	ND	2500	ug/Kg	02/29/08		R/J	SW8260
Acetone	ND	10000	ug/Kg	02/29/08		R/J	SW8260
Acrylonitrile	ND	1000	ug/Kg	02/29/08		R/J	SW8260
Benzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Bromobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Bromochloromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Bromodichloromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Bromoform	ND	500	ug/Kg	02/29/08		R/J	SW8260
Bromomethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Carbon Disulfide	ND	500	ug/Kg	02/29/08		R/J	SW8260
Carbon tetrachloride	ND	500	ug/Kg	02/29/08		R/J	SW8260
Chlorobenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Chloroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Chloroform	ND	500	ug/Kg	02/29/08		R/J	SW8260
Chloromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	500	ug/Kg	02/29/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Dibromochloromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Dibromoethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Dibromomethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Dichlorodifluoromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Ethylbenzene	2700	500	ug/Kg	02/29/08		R/J	SW8260
Hexachlorobutadiene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Isopropylbenzene	3700	500	ug/Kg	02/29/08		R/J	SW8260
m&p-Xylene	5900	500	ug/Kg	02/29/08		R/J	SW8260
Methyl Ethyl Ketone	ND	3000	ug/Kg	02/29/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	1000	ug/Kg	02/29/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Methylene chloride	ND	500	ug/Kg	02/29/08		R/J	SW8260
n-Butylbenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
n-Propylbenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Naphthalene	15000	500	ug/Kg	02/29/08		R/J	SW8260
o-Xylene	4200	500	ug/Kg	02/29/08		R/J	SW8260
p-Isopropyltoluene	34000	1000	ug/Kg	02/29/08		R/J	SW8260
sec-Butylbenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Styrene	ND	500	ug/Kg	02/29/08		R/J	SW8260
tert-Butylbenzene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Tetrachloroethene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	1000	ug/Kg	02/29/08		R/J	SW8260
Toluene	1200	500	ug/Kg	02/29/08		R/J	SW8260
Total Xylenes	10000	500	ug/Kg	02/29/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	500	ug/Kg	02/29/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	500	ug/Kg	02/29/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	1000	ug/Kg	02/29/08		R/J	SW8260
Trichloroethene	ND	500	ug/Kg	02/29/08		R/J	SW8260
Trichlorofluoromethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Trichlorotrifluoroethane	ND	500	ug/Kg	02/29/08		R/J	SW8260
Vinyl chloride	ND	500	ug/Kg	02/29/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	97		%	02/29/08		R/J	SW8260
% Bromofluorobenzene	82		%	02/29/08		R/J	SW8260
% Dibromofluoromethane	90		%	02/29/08		R/J	SW8260
% Toluene-d8	104		%	02/29/08		R/J	SW8260

Polychlorinated Biphenyls

PCB-1016	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1221	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1232	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1242	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1248	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1254	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1260	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1262	ND	410	ug/Kg	02/29/08		KCA	SW 8082
PCB-1268	ND	410	ug/Kg	02/29/08		KCA	SW 8082
<u>QA/QC Surrogates</u>							
% DCBP	89		%	02/29/08		KCA	SW 8082
% TCMX	85		%	02/29/08		KCA	SW 8082

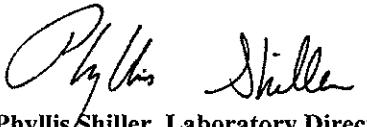
Pesticides

4,4' -DDD	ND	39	ug/Kg	02/29/08		K\M	SW8081
4,4' -DDE	ND	39	ug/Kg	02/29/08		K\M	SW8081
4,4' -DDT	ND	39	ug/Kg	02/29/08		K\M	SW8081
a-BHC	ND	20	ug/Kg	02/29/08		K\M	SW8081
Alachlor	ND	20	ug/Kg	02/29/08		K\M	SW8081
Aldrin	ND	6.1	ug/Kg	02/29/08		K\M	SW8081
b-BHC	ND	20	ug/Kg	02/29/08		K\M	SW8081
Chlordane	ND	80	ug/Kg	02/29/08		K\M	SW8081
d-BHC	ND	20	ug/Kg	02/29/08		K\M	SW8081
Dieldrin	ND	6.1	ug/Kg	02/29/08		K\M	SW8081
Endosulfan I	ND	20	ug/Kg	02/29/08		K\M	SW8081

Parameter	Result	RL	Units	Date	Time	By	Reference
Endosulfan II	ND	39	ug/Kg	02/29/08		K\M	SW8081
Endosulfan sulfate	ND	39	ug/Kg	02/29/08		K\M	SW8081
Endrin	ND	39	ug/Kg	02/29/08		K\M	SW8081
Endrin aldehyde	ND	39	ug/Kg	02/29/08		K\M	SW8081
Endrin ketone	ND	39	ug/Kg	02/29/08		K\M	SW8081
g-BHC	ND	20	ug/Kg	02/29/08		K\M	SW8081
Heptachlor	ND	12	ug/Kg	02/29/08		K\M	SW8081
Heptachlor epoxide	ND	20	ug/Kg	02/29/08		K\M	SW8081
Methoxychlor	ND	200	ug/Kg	02/29/08		K\M	SW8081
Toxaphene	16000	200	ug/Kg	02/29/08		K\M	SW8081
<u>QA/QC Surrogates</u>							
% DCBP	61		%	02/29/08		K\M	SW8081
% TCMX	93		%	02/29/08		K\M	SW8081
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,4-Dichlorophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,4-Dimethylphenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,4-Dinitrophenol	ND	6700	ug/Kg	02/29/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2-Chloronaphthalene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2-Chlorophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
2-Methylnaphthalene	10000	4200	ug/Kg	02/29/08		KCA	SW 8270
2-Methylphenol (o-cresol)	4200	4200	ug/Kg	02/29/08		KCA	SW 8270
2-Nitroaniline	ND	6700	ug/Kg	02/29/08		KCA	SW 8270
2-Nitrophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	8300	4200	ug/Kg	02/29/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	5000	ug/Kg	02/29/08		KCA	SW 8270
3-Nitroaniline	ND	6700	ug/Kg	02/29/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	12000	ug/Kg	02/29/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	5000	ug/Kg	02/29/08		KCA	SW 8270
4-Chloroaniline	ND	5000	ug/Kg	02/29/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
4-Nitroaniline	ND	6700	ug/Kg	02/29/08		KCA	SW 8270
4-Nitrophenol	ND	12000	ug/Kg	02/29/08		KCA	SW 8270
Acenaphthene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Acenaphthylene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Acetophenone	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Aniline	ND	12000	ug/Kg	02/29/08		KCA	SW 8270
Anthracene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Azobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benz(a)anthracene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benzidine	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benzo(a)pyrene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
Benzo(b)fluoranthene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benzo(ghi)perylene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benzo(k)fluoranthene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Benzoic acid	ND	12000	ug/Kg	02/29/08		KCA	SW 8270
Benzyl butyl phthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Carbazole	ND	12000	ug/Kg	02/29/08		KCA	SW 8270
Chrysene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Di-n-butylphthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Di-n-octylphthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Dibenzofuran	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Diethyl phthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Dimethylphthalate	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Fluoranthene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Fluorene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Hexachlorobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Hexachlorobutadiene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Hexachloroethane	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Isophorone	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Naphthalene	52000	4200	ug/Kg	02/29/08		KCA	SW 8270
Nitrobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Pentachloronitrobenzene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Pentachlorophenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Phenanthrene	9000	4200	ug/Kg	02/29/08		KCA	SW 8270
Phenol	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Pyrene	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
Pyridine	ND	4200	ug/Kg	02/29/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	*Diluted Out		%	02/29/08		KCA	SW 8270
% 2-Fluorobiphenyl	*Diluted Out		%	02/29/08		KCA	SW 8270
% 2-Fluorophenol	*Diluted Out		%	02/29/08		KCA	SW 8270
% Nitrobenzene-d5	*Diluted Out		%	02/29/08		KCA	SW 8270
% Phenol-d5	*Diluted Out		%	02/29/08		KCA	SW 8270
% Terphenyl-d14	*Diluted Out		%	02/29/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
-----------	--------	----	-------	------	------	----	-----------


1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

The regulatory hold time for pH is immediately. This pH was performed in the laboratory and may be considered outside of hold-time.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 8:30

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02567

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(8-9.5)-03

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O.#:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 9:15

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02568

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(0-2)-04

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O.#:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 9:15
02/28/08 16:00

Time

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02569

Laboratory Data

Client ID: **20080635-ZAVAST 0635-SB-(2-4)-04**

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O. #:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

02/26/08 9:15

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02570

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-04

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 **9:40**

02/28/08 **16:00**

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02571

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(0-2)-05

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Atta: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O. #:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

02/26/08 9:40

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02572

Laboratory Data

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-05

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller
Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date

02/26/08 9:40

Time

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02573

Client ID: 20080635-ZAVAST 0635-SB-(4-6)-05

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O.#:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: see "By" below

Date

Time

02/26/08 **10:15**

02/28/08 **16:00**

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02577

Laboratory Data

Client ID: **20080635-ZAVAST 0635-SB-(0-2)-06**

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: **SOIL**
Location Code: **PROPSOLN**
Rush Request: **RUSH##**
P.O. #:

Custody Information

Collected by: **RB**
Received by: **LP**
Analyzed by: **see "By" below**

Date **Time**

02/26/08 **10:15**
02/28/08 **16:00**

SDG I.D.: GAQ02563
Phoenix I.D.: AQ02578

Client ID: 20080635-ZAVAST 0635-SB-(2-4)-06

Laboratory Data

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 05, 2008

FOR: Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O. #:

Custody Information

Collected by: RB
Received by: LP
Analyzed by: see "By" below

Date

Time

02/26/08 10:15

02/28/08 16:00

SDG I.D.: GAQ02563

Phoenix I.D.: AQ02579

Client ID: 20080635-ZAVAST 0635-SB-(4-7)-06

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director
March 05, 2008

Tuesday, May 06, 2008

Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Client ID: ZAVAS
Sample ID#s: AQ25248

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

NY Lab Registration #11301

RI Lab Registration #63

NH Lab Registration #213693-A,B

ME Lab Registration #CT-007

NJ Lab Registration #CT-003

PA Lab Registration #68-03530

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 06, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166

Custody Information

Collected by: _____
 Received by: LB
 Analyzed by: see "By" below

Date 04/30/08 Time 17:15

Date 05/02/08 Time 17:00

SDG I.D.: GAQ25243

Phoenix I.D.: AQ25248

Laboratory Data

Client ID: ZAVAS 1166-SB-(10-12)-07

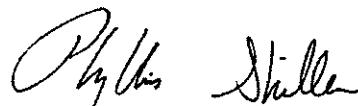
Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	0.96	0.35	mg/Kg	05/03/08		A/E	SW6010
Aluminum	5250	7.0	mg/Kg	05/04/08		J/E	SW6010
Arsenic	3.4	0.7	mg/Kg	05/03/08		A/E	SW6010
Barium	75.3	0.35	mg/Kg	05/03/08		A/E	SW6010
Beryllium	< 0.28	0.28	mg/Kg	05/03/08		A/E	SW6010
Calcium	18000	7.0	mg/Kg	05/04/08		J/E	6010/200.7
Cadmium	< 0.35	0.35	mg/Kg	05/03/08		A/E	SW6010
Cobalt	6.18	0.35	mg/Kg	05/03/08		A/E	SW6010
Chromium	21.6	0.35	mg/Kg	05/03/08		A/E	SW6010
Copper	1140	3.5	mg/kg	05/04/08		J/E	SW6010
Iron	12800	3.5	mg/Kg	05/04/08		J/E	SW6010
Mercury	< 0.08	0.08	mg/kg	05/05/08		RS	SW-7471
Potassium	1690	7.0	mg/Kg	05/04/08		J/E	SW6010
Magnesium	7160	3.5	mg/Kg	05/04/08		J/E	SW6010
Manganese	137	0.35	mg/Kg	05/03/08		A/E	SW6010
Sodium	174	3.5	mg/Kg	05/03/08		A/E	SW6010
Nickel	13.4	0.35	mg/Kg	05/03/08		A/E	SW6010
Lead	4370	3.5	mg/Kg	05/04/08		J/E	SW6010
Antimony	< 3.5	3.5	mg/Kg	05/03/08		A/E	SW6010
Selenium	< 1.8	1.8	mg/Kg	05/03/08		A/E	SW6010
Thallium	< 3.5	3.5	mg/Kg	05/03/08		A/E	SW6010
Vanadium	19.3	0.35	mg/Kg	05/03/08		A/E	6010
Zinc	50.6	0.35	mg/Kg	05/03/08		A/E	SW6010
Percent Solid	85		%	05/02/08		X/AAS	E160.3
Mercury Digestion	Completed			05/05/08		E	SW7471
Soil Ext. for Semi- Vol	Completed			05/02/08		IS/D/E	SW3545
Total Metals Digest	Completed			05/02/08		AG/B	SW846 - 3050
Volatiles							
1,1,1,2-Tetrachloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,1,1-Trichloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
1,1,2,2-Tetrachloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,1,2-Trichloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,1-Dichloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,1-Dichloroethene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,1-Dichloropropene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2,3-Trichloropropane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2-Dichlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2-Dichloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,2-Dichloropropane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,3-Dichlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,3-Dichloropropane	ND	250	ug/Kg	05/04/08		R/J	SW8260
1,4-Dichlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
2,2-Dichloropropane	ND	250	ug/Kg	05/04/08		R/J	SW8260
2-Chlorotoluene	ND	250	ug/Kg	05/04/08		R/J	SW8260
2-Hexanone	ND	1300	ug/Kg	05/04/08		R/J	SW8260
2-Isopropyltoluene	ND	250	ug/Kg	05/04/08		R/J	SW8260
4-Chlorotoluene	ND	250	ug/Kg	05/04/08		R/J	SW8260
4-Methyl-2-pentanone	ND	1300	ug/Kg	05/04/08		R/J	SW8260
Acetone	ND	5000	ug/Kg	05/04/08		R/J	SW8260
Acrylonitrile	ND	500	ug/Kg	05/04/08		R/J	SW8260
Benzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Bromobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Bromochloromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Bromodichloromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Bromoform	ND	250	ug/Kg	05/04/08		R/J	SW8260
Bromomethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Carbon Disulfide	ND	250	ug/Kg	05/04/08		R/J	SW8260
Carbon tetrachloride	ND	250	ug/Kg	05/04/08		R/J	SW8260
Chlorobenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Chloroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Chloroform	ND	250	ug/Kg	05/04/08		R/J	SW8260
Chloromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	250	ug/Kg	05/04/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Dibromochloromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Dibromoethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Dibromomethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Dichlorodifluoromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Ethylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Hexachlorobutadiene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Isopropylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
m&p-Xylene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Methyl Ethyl Ketone	ND	1500	ug/Kg	05/04/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	500	ug/Kg	05/04/08		R/J	SW8260
Methylene chloride	ND	250	ug/Kg	05/04/08		R/J	SW8260
n-Butylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
n-Propylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Naphthalene	ND	250	ug/Kg	05/04/08		R/J	SW8260
o-Xylene	ND	250	ug/Kg	05/04/08		R/J	SW8260
p-Isopropyltoluene	4200	250	ug/Kg	05/04/08		R/J	SW8260
sec-Butylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Styrene	ND	250	ug/Kg	05/04/08		R/J	SW8260
tert-Butylbenzene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Tetrachloroethene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	500	ug/Kg	05/04/08		R/J	SW8260
Toluene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Total Xylenes	ND	250	ug/Kg	05/04/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	250	ug/Kg	05/04/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	250	ug/Kg	05/04/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	500	ug/Kg	05/04/08		R/J	SW8260
Trichloroethene	ND	250	ug/Kg	05/04/08		R/J	SW8260
Trichlorofluoromethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Trichlorotrifluoroethane	ND	250	ug/Kg	05/04/08		R/J	SW8260
Vinyl chloride	ND	250	ug/Kg	05/04/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	103		%	05/04/08		R/J	SW8260
% Bromofluorobenzene	100		%	05/04/08		R/J	SW8260
% Dibromofluoromethane	90		%	05/04/08		R/J	SW8260
% Toluene-d8	104		%	05/04/08		R/J	SW8260
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dichlorophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dimethylphenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dinitrophenol	ND	620	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2-Chloronaphthalene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2-Chlorophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2-Methylnaphthalene	1700	390	ug/Kg	05/04/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	390	ug/Kg	05/04/08		KCA	SW 8270
2-Nitroaniline	ND	620	ug/Kg	05/04/08		KCA	SW 8270
2-Nitrophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	390	ug/Kg	05/04/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	460	ug/Kg	05/04/08		KCA	SW 8270
3-Nitroaniline	ND	620	ug/Kg	05/04/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	390	ug/Kg	05/04/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	460	ug/Kg	05/04/08		KCA	SW 8270
4-Chloroaniline	ND	460	ug/Kg	05/04/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	390	ug/Kg	05/04/08		KCA	SW 8270
4-Nitroaniline	ND	620	ug/Kg	05/04/08		KCA	SW 8270
4-Nitrophenol	ND	1100	ug/Kg	05/04/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
Acenaphthene	2900	390	ug/Kg	05/04/08		KCA	SW 8270
Acenaphthylene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Acetophenone	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Aniline	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Anthracene	4300	390	ug/Kg	05/04/08		KCA	SW 8270
Azobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Benz(a)anthracene	8500	3900	ug/Kg	05/04/08		KCA	SW 8270
Benzidine	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Benzo(a)pyrene	4300	390	ug/Kg	05/04/08		KCA	SW 8270
Benzo(b)fluoranthene	5900	390	ug/Kg	05/04/08		KCA	SW 8270
Benzo(ghi)perylene	1700	390	ug/Kg	05/04/08		KCA	SW 8270
Benzo(k)fluoranthene	2200	390	ug/Kg	05/04/08		KCA	SW 8270
Benzoic acid	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Benzyl butyl phthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Carbazole	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Chrysene	10000	3900	ug/Kg	05/04/08		KCA	SW 8270
Di-n-butylphthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Di-n-octylphthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Dibenz(a,h)anthracene	970	390	ug/Kg	05/04/08		KCA	SW 8270
Dibenzofuran	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Diethyl phthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Dimethylphthalate	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Fluoranthene	7200	3900	ug/Kg	05/04/08		KCA	SW 8270
Fluorene	2000	390	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorobutadiene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Hexachloroethane	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	2000	390	ug/Kg	05/04/08		KCA	SW 8270
Isophorone	ND	390	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	390	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	390	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Naphthalene	950	390	ug/Kg	05/04/08		KCA	SW 8270
Nitrobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Pentachloronitrobenzene	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Pentachlorophenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Phenanthrene	34000	3900	ug/Kg	05/04/08		KCA	SW 8270
Phenol	ND	390	ug/Kg	05/04/08		KCA	SW 8270
Pyrene	9600	3900	ug/Kg	05/04/08		KCA	SW 8270
Pyridine	ND	390	ug/Kg	05/04/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	96		%	05/04/08		KCA	SW 8270
% 2-Fluorobiphenyl	82		%	05/04/08		KCA	SW 8270
% 2-Fluorophenol	67		%	05/04/08		KCA	SW 8270
% Nitrobenzene-d5	66		%	05/04/08		KCA	SW 8270
% Phenol-d5	69		%	05/04/08		KCA	SW 8270
% Terphenyl-d14	70		%	05/04/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
-----------	--------	----	-------	------	------	----	-----------


1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

Elevated reporting limits for volatiles due to the presence of non-target compounds.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 06, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 06, 2008

QA/QC Data

SDG I.D.: GAQ25243

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 99977, Sample No: AQ24969 (AQ25248)								
ICP Metals - Soil								
Aluminum	BDL	1.80	79.0	87.8	10.6	NC	NC	NC
Antimony	BDL	NC	91.2	103	12.2	76.8	78.9	2.7
Arsenic	BDL	NC	77.9	84.0	7.5	80.9	84.2	4.0
Barium	BDL	2.50	87.4	96.2	9.6	94.2	97.4	3.3
Beryllium	BDL	NC	85.8	94.3	9.4	89.5	91.1	1.8
Cadmium	BDL	NC	86.8	94.6	8.6	89.0	92.4	3.7
Calcium	0.5	14.5	86.9	89.3	2.7	NC	NC	NC
Chromium	BDL	5.30	85.4	96.6	12.3	89.8	92.1	2.5
Cobalt	BDL	5.60	91.4	101	10.0	90.2	94.2	4.3
Copper	BDL	0.60	89.3	97.9	9.2	93.4	99.3	6.1
Iron	BDL	2.40	93.3	101	7.9	NC	NC	NC
Lead	BDL	15.6	85.4	92.6	8.1	99.8	92.8	7.3
Magnesium	BDL	12.6	83.2	91.9	9.9	NC	NC	NC
Manganese	BDL	14.2	95.7	104	8.3	96.5	95.1	1.5
Nickel	BDL	3.40	90.2	99.7	10.0	90.1	93.6	3.8
Potassium	BDL	12.2	92.4	103	10.8	69.4	62.7	10.1
Selenium	BDL	NC	74.2	80.4	8.0	73.2	75.6	3.2
Silver	BDL	NC	86.2	94.6	9.3	92.5	96.1	3.8
Sodium	BDL	4.20	104	104	0.0	-92.9	-114	NC
Thallium	BDL	NC	88.5	96.0	8.1	87.6	90.6	3.4
Vanadium	BDL	6.10	90.2	99.3	9.6	90.1	93.4	3.6
Zinc	BDL	15.7	83.9	91.9	9.1	90.4	89.3	1.2
QA/QC Batch 100056, Sample No: AQ25237 (AQ25248)								
Mercury	BDL	NC	104	105	1.0	>125	124	NC

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director
 May 06, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 06, 2008

QA/QC Data

SDG I.D.: GAQ25243

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 100173, Sample No: AQ24783 (aq25248)							
Volatiles							
1,1,1,2-Tetrachloroethane	ND	86	78	9.8	73	76	4.0
1,1,1-Trichloroethane	ND	97	83	15.6	81	85	4.8
1,1,2,2-Tetrachloroethane	ND	81	80	1.2	85	79	7.3
1,1,2-Trichloroethane	ND	91	83	9.2	82	79	3.7
1,1-Dichloroethane	ND	102	88	14.7	85	88	3.5
1,1-Dichloroethene	ND	103	88	15.7	82	86	4.8
1,1-Dichloropropene	ND	97	82	16.8	78	85	8.6
1,2,3-Trichlorobenzene	ND	84	71	16.8	39	49	22.7
1,2,3-Trichloropropane	ND	88	87	1.1	79	72	9.3
1,2,4-Trichlorobenzene	ND	79	<70	NC	38	47	21.2
1,2,4-Trimethylbenzene	ND	96	79	19.4	42	49	15.4
1,2-Dibromo-3-chloropropane	ND	72	<70	NC	60	61	1.7
1,2-Dichlorobenzene	ND	92	79	15.2	60	70	15.4
1,2-Dichloroethane	ND	88	79	10.8	73	74	1.4
1,2-Dichloropropane	ND	101	89	12.6	83	89	7.0
1,3,5-Trimethylbenzene	ND	97	80	19.2	68	81	17.4
1,3-Dichlorobenzene	ND	92	79	15.2	60	69	14.0
1,3-Dichloropropane	ND	91	85	6.8	79	77	2.6
1,4-Dichlorobenzene	ND	88	77	13.3	56	66	16.4
2,2-Dichloropropane	ND	89	73	19.8	71	74	4.1
2-Chlorotoluene	ND	97	83	15.6	71	83	15.6
2-Hexanone	ND	<70	<70	NC	12	12	0.0
2-Isopropyltoluene	ND	99	82	18.8	70	84	18.2
4-Chlorotoluene	ND	94	81	14.9	61	72	16.5
4-Methyl-2-pentanone	ND	80	73	9.2	43	42	2.4
Acetone	ND	<70	<70	NC	30	25	18.2
Acrolein	ND	82	75	8.9	74	63	16.1
Acrylonitrile	ND	92	82	11.5	48	39	20.7
Benzene	ND	100	88	12.8	80	87	8.4
Bromobenzene	ND	94	83	12.4	67	76	12.6
Bromochloromethane	ND	96	84	13.3	82	82	0.0
Bromodichloromethane	ND	85	76	11.2	71	75	5.5
Bromoform	ND	<70	<70	NC	47	46	2.2
Bromomethane	ND	88	78	12.0	74	58	24.2
Carbon Disulfide	ND	105	87	18.8	68	75	9.8
Carbon tetrachloride	ND	93	<70	NC	73	84	14.0
Chlorobenzene	ND	98	84	15.4	70	78	10.8
Chloroethane	ND	117	85	31.7	79	95	18.4

QA/QC Data

SDG I.D.: GAQ25243

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Chloroform	ND	98	87	11.9	83	83	0.0
Chloromethane	ND	119	81	38.0	63	84	28.6
cis-1,2-Dichloroethene	ND	104	90	14.4	82	85	3.6
cis-1,3-Dichloropropene	ND	84	77	8.7	63	65	3.1
Dibromochloromethane	ND	70	<70	NC	61	62	1.6
Dibromoethane	ND	88	81	8.3	71	70	1.4
Dibromomethane	ND	86	78	9.8	77	77	0.0
Dichlorodifluoromethane	ND	106	77	31.7	51	62	19.5
Ethylbenzene	ND	101	83	19.6	70	83	17.0
Hexachlorobutadiene	ND	91	73	22.0	49	61	21.8
Isopropylbenzene	ND	99	81	20.0	73	88	18.6
m&p-Xylene	ND	103	84	20.3	59	67	12.7
Methyl ethyl ketone	ND	75	<70	NC	29	26	10.9
Methyl t-butyl ether (MTBE)	ND	85	75	12.5	79	76	3.9
Methylene chloride	ND	104	82	23.7	83	87	4.7
n-Butylbenzene	ND	92	74	21.7	43	58	29.7
n-Propylbenzene	ND	97	81	18.0	60	77	24.8
Naphthalene	ND	84	88	4.7	25	31	21.4
o-Xylene	ND	100	81	21.0	70	83	17.0
p-Isopropyltoluene	ND	98	80	20.2	64	77	18.4
sec-Butylbenzene	ND	94	77	19.9	62	76	20.3
Styrene	ND	99	81	20.0	50	62	21.4
tert-Butylbenzene	ND	102	83	20.5	78	92	16.5
Tetrachloroethene	ND	98	83	16.6	75	82	8.9
Tetrahydrofuran (THF)	ND	83	80	3.7	87	74	16.1
Toluene	ND	100	82	19.8	75	84	11.3
trans-1,2-Dichloroethene	ND	99	86	14.1	76	79	3.9
trans-1,3-Dichloropropene	ND	80	76	5.1	60	60	0.0
trans-1,4-dichloro-2-butene	ND	<70	71	NC	49	41	17.8
Trichloroethene	ND	99	85	15.2	75	82	8.9
Trichlorofluoromethane	ND	98	82	17.8	73	77	5.3
Trichlorotrifluoroethane	ND	100	84	17.4	76	81	6.4
Vinyl chloride	ND	114	84	30.3	69	84	19.6
% 1,2-dichlorobenzene-d4	99	100	100	0.0	101	102	1.0
% Bromofluorobenzene	90	97	94	3.1	92	94	2.2
% Dibromofluoromethane	100	94	100	6.2	102	95	7.1
% Toluene-d8	96	103	100	3.0	100	103	3.0

QA/QC Batch 99965, Sample No: AQ25029 (AQ25248)

Semivolatiles

1,2,4,5-Tetrachlorobenzene	ND	79	72	9.3	35	79	77.2
1,2,4-Trichlorobenzene	ND	79	73	7.9	35	79	77.2
1,2-Dichlorobenzene	ND	73	69	5.6	34	73	72.9
1,3-Dichlorobenzene	ND	73	66	10.1	33	70	71.8
1,4-Dichlorobenzene	ND	72	66	8.7	32	71	75.7
2,4,5-Trichlorophenol	ND	96	85	12.2	41	104	86.9
2,4,6-Trichlorophenol	ND	85	77	9.9	39	91	80.0
2,4-Dichlorophenol	ND	85	78	8.6	38	88	79.4
2,4-Dimethylphenol	ND	39	48	20.7	<30	56	NC

QA/QC Data

SDG I.D.: GAQ25243

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
2,4-Dinitrophenol	ND	<30	<30	NC	<30	<30	NC
2,4-Dinitrotoluene	ND	94	87	7.7	38	98	88.2
2,6-Dinitrotoluene	ND	86	80	7.2	39	92	80.9
2-Chloronaphthalene	ND	82	73	11.6	36	82	78.0
2-Chlorophenol	ND	77	74	4.0	36	80	75.9
2-Methylnaphthalene	ND	80	73	9.2	35	80	78.3
2-Methylphenol (o-cresol)	ND	71	70	1.4	34	76	76.4
2-Nitroaniline	ND	>130	>130	NC	87	>130	NC
2-Nitrophenol	ND	94	84	11.2	45	98	74.1
3&4-Methylphenol (m&p-cresol)	ND	71	67	5.8	<30	70	NC
3,3'-Dichlorobenzidine	ND	N/A	N/A	NC	N/A	N/A	NC
3-Nitroaniline	ND	>130	>130	NC	>130	>130	NC
4,6-Dinitro-2-methylphenol	ND	44	42	4.7	40	83	69.9
4-Bromophenyl phenyl ether	ND	88	82	7.1	38	89	80.3
4-Chloro-3-methylphenol	ND	83	80	3.7	39	90	79.1
4-Chloroaniline	ND	>130	>130	NC	71	>130	NC
4-Chlorophenyl phenyl ether	ND	84	75	11.3	37	87	80.6
4-Nitroaniline	ND	100	90	10.5	43	100	79.7
4-Nitrophenol	ND	98	94	4.2	44	114	88.6
Acenaphthene	ND	82	73	11.6	35	82	80.3
Acenaphthylene	ND	78	71	9.4	35	80	78.3
Acetophenone	ND	71	64	10.4	31	69	76.0
Aniline	ND	N/A	N/A	NC	N/A	N/A	NC
Anthracene	ND	82	78	5.0	37	86	79.7
Azobenzene	ND	76	72	5.4	37	81	74.6
Benz(a)anthracene	ND	85	78	8.6	41	89	73.8
Benzidine	ND	N/A	N/A	NC	N/A	N/A	NC
Benzo(a)pyrene	ND	87	81	7.1	41	91	75.8
Benzo(b)fluoranthene	ND	90	84	6.9	45	97	73.2
Benzo(ghi)perylene	ND	83	75	10.1	40	83	69.9
Benzo(k)fluoranthene	ND	96	85	12.2	45	100	75.9
Benzoic acid	ND	N/A	N/A	NC	N/A	N/A	NC
Benzyl butyl phthalate	ND	92	79	15.2	41	91	75.8
Bis(2-chloroethoxy)methane	ND	80	73	9.2	34	79	79.6
Bis(2-chloroethyl)ether	ND	73	69	5.6	34	72	71.7
Bis(2-chloroisopropyl)ether	ND	79	75	5.2	36	80	75.9
Bis(2-ethylhexyl)phthalate	ND	89	81	9.4	41	91	75.8
Carbazole	ND	93	96	3.2	47	115	84.0
Chrysene	ND	85	79	7.3	40	88	75.0
Di-n-butylphthalate	ND	85	80	6.1	37	89	82.5
Di-n-octylphthalate	ND	79	78	1.3	37	82	75.6
Dibenz(a,h)anthracene	ND	86	80	7.2	39	84	73.2
Dibenzofuran	ND	87	77	12.2	36	87	82.9
Diethyl phthalate	ND	84	80	4.9	38	88	79.4
Dimethylphthalate	ND	83	78	6.2	39	87	76.2
Fluoranthene	ND	89	85	4.6	44	103	80.3
Fluorene	ND	80	75	6.5	35	85	83.3
Hexachlorobenzene	ND	90	84	6.9	40	90	76.9
Hexachlorobutadiene	ND	87	77	12.2	37	84	77.7

QA/QC Data

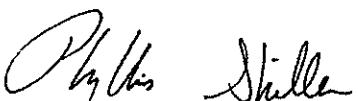
SDG I.D.: GAQ25243

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Hexachlorocyclopentadiene	ND	64	59	8.1	<30	45	NC
Hexachloroethane	ND	76	70	8.2	33	73	75.5
Indeno(1,2,3-cd)pyrene	ND	84	77	8.7	40	84	71.0
Isophorone	ND	77	74	4.0	37	78	71.3
N-Nitrosodi-n-propylamine	ND	75	69	8.3	34	75	75.2
N-Nitrosodimethylamine	ND	71	66	7.3	32	69	73.3
N-Nitrosodiphenylamine	ND	110	106	3.7	50	116	79.5
Naphthalene	ND	80	72	10.5	34	77	77.5
Nitrobenzene	ND	76	72	5.4	37	78	71.3
Pentachloronitrobenzene	ND	88	86	2.3	42	94	76.5
Pentachlorophenol	ND	55	54	1.8	41	102	85.3
Phenanthrene	ND	85	78	8.6	38	89	80.3
Phenol	ND	79	72	9.3	35	78	76.1
Pyrene	ND	86	83	3.6	42	100	81.7
Pyridine	ND	65	60	8.0	<30	63	NC
% 2,4,6-Tribromophenol	101	105	95	10.0	47	115	84.0
% 2-Fluorobiphenyl	67	83	71	15.6	33	79	82.1
% 2-Fluorophenol	76	77	70	9.5	35	77	75.0
% Nitrobenzene-d5	75	76	71	6.8	35	78	76.1
% Phenol-d5	75	81	72	11.8	34	79	79.6
% Terphenyl-d14	79	87	81	7.1	35	94	91.5

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference


LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director
May 06, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

May 06, 2008

SDG I.D.: GAQ25243

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

Wednesday, May 07, 2008

**Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837**

**Client ID: ZAVAS
Sample ID#s: AQ25283**

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

**Phyllis Shiller
Laboratory Director**

**CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
NY Lab Registration #11301
RI Lab Registration #63
NH Lab Registration #213693-A,B
ME Lab Registration #CT-007
NJ Lab Registration #CT-003
PA Lab Registration #68-03530**

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 07, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166

Custody Information

Collected by: _____
 Received by: LB
 Analyzed by: see "By" below

Date 04/30/08 Time 18:18

Date 05/02/08 Time 17:00

Laboratory Data

SDG I.D.: GAQ25280

Phoenix I.D.: AQ25283

Client ID: ZAVAS 1166-SB-(6-8)-08

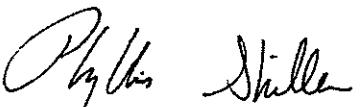
Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.34	0.34	mg/Kg	05/03/08		A/E	SW6010
Aluminum	8200	6.8	mg/Kg	05/04/08		J/E	SW6010
Arsenic	3.3	0.7	mg/Kg	05/03/08		A/E	SW6010
Barium	103	0.34	mg/Kg	05/03/08		A/E	SW6010
Beryllium	0.32	0.27	mg/Kg	05/03/08		A/E	SW6010
Calcium	29400	6.8	mg/Kg	05/04/08		J/E	6010/200.7
Cadmium	< 0.34	0.34	mg/Kg	05/03/08		A/E	SW6010
Cobalt	9.03	0.34	mg/Kg	05/03/08		A/E	SW6010
Chromium	28.5	0.34	mg/Kg	05/03/08		A/E	SW6010
Copper	230	3.4	mg/kg	05/04/08		J/E	SW6010
Iron	22200	3.4	mg/Kg	05/04/08		J/E	SW6010
Mercury	0.24	0.09	mg/kg	05/05/08		RS	SW-7471
Potassium	2360	0.7	mg/Kg	05/03/08		A/E	SW6010
Magnesium	5790	0.34	mg/Kg	05/03/08		A/E	SW6010
Manganese	216	0.34	mg/Kg	05/03/08		A/E	SW6010
Sodium	587	34	mg/Kg	05/06/08		EK	SW6010
Nickel	27.8	0.34	mg/Kg	05/03/08		A/E	SW6010
Lead	253	0.34	mg/Kg	05/03/08		A/E	SW6010
Antimony	< 3.4	3.4	mg/Kg	05/03/08		A/E	SW6010
Selenium	< 1.7	1.7	mg/Kg	05/03/08		A/E	SW6010
Thallium	< 3.4	3.4	mg/Kg	05/03/08		A/E	SW6010
Vanadium	36.8	0.34	mg/Kg	05/03/08		A/E	6010
Zinc	116	0.34	mg/Kg	05/03/08		A/E	SW6010
Percent Solid	89		%	05/02/08		X/AAS	E160.3
Mercury Digestion	Completed			05/05/08		E	SW7471
Soil Ext. for Semi- Vol	Completed			05/02/08		IS/D/E	SW3545
Total Metals Digest	Completed			05/02/08		AG/B	SW846 - 3050
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
1,1,2,2-Tetrachloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/Kg	05/03/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/Kg	05/03/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/Kg	05/03/08		R/J	SW8260
2-Hexanone	ND	25	ug/Kg	05/03/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/Kg	05/03/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/Kg	05/03/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/Kg	05/03/08		R/J	SW8260
Acetone	ND	100	ug/Kg	05/03/08		R/J	SW8260
Acrylonitrile	ND	10	ug/Kg	05/03/08		R/J	SW8260
Benzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Bromobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Bromochloromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Bromodichloromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Bromoform	ND	5	ug/Kg	05/03/08		R/J	SW8260
Bromomethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Carbon Disulfide	ND	5	ug/Kg	05/03/08		R/J	SW8260
Carbon tetrachloride	ND	5	ug/Kg	05/03/08		R/J	SW8260
Chlorobenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Chloroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Chloroform	ND	5	ug/Kg	05/03/08		R/J	SW8260
Chloromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/Kg	05/03/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Dibromochloromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Dibromoethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Dibromomethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Dichlorodifluoromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Ethylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Hexachlorobutadiene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Isopropylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
m&p-Xylene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Methyl Ethyl Ketone	ND	30	ug/Kg	05/03/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/Kg	05/03/08		R/J	SW8260
Methylene chloride	ND	5	ug/Kg	05/03/08		R/J	SW8260
n-Butylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
n-Propylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Naphthalene	ND	5	ug/Kg	05/03/08		R/J	SW8260
o-Xylene	ND	5	ug/Kg	05/03/08		R/J	SW8260
p-Isopropyltoluene	ND	5	ug/Kg	05/03/08		R/J	SW8260
sec-Butylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Styrene	ND	5	ug/Kg	05/03/08		R/J	SW8260
tert-Butylbenzene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Tetrachloroethene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/Kg	05/03/08		R/J	SW8260
Toluene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Total Xylenes	ND	5	ug/Kg	05/03/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/Kg	05/03/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/Kg	05/03/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/Kg	05/03/08		R/J	SW8260
Trichloroethene	ND	5	ug/Kg	05/03/08		R/J	SW8260
Trichlorofluoromethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/Kg	05/03/08		R/J	SW8260
Vinyl chloride	ND	5	ug/Kg	05/03/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	100		%	05/03/08		R/J	SW8260
% Bromofluorobenzene	91		%	05/03/08		R/J	SW8260
% Dibromofluoromethane	66**		%	05/03/08		R/J	SW8260
% Toluene-d8	99		%	05/03/08		R/J	SW8260
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dichlorophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dimethylphenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dinitrophenol	ND	590	ug/Kg	05/04/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2-Chloronaphthalene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2-Chlorophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2-Methylnaphthalene	740	370	ug/Kg	05/04/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	370	ug/Kg	05/04/08		KCA	SW 8270
2-Nitroaniline	ND	590	ug/Kg	05/04/08		KCA	SW 8270
2-Nitrophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	370	ug/Kg	05/04/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	440	ug/Kg	05/04/08		KCA	SW 8270
3-Nitroaniline	ND	590	ug/Kg	05/04/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	370	ug/Kg	05/04/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	440	ug/Kg	05/04/08		KCA	SW 8270
4-Chloroaniline	ND	440	ug/Kg	05/04/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	370	ug/Kg	05/04/08		KCA	SW 8270
4-Nitroaniline	ND	590	ug/Kg	05/04/08		KCA	SW 8270
4-Nitrophenol	ND	1100	ug/Kg	05/04/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
Acenaphthene	2200	370	ug/Kg	05/04/08		KCA	SW 8270
Acenaphthylene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Acetophenone	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Aniline	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Anthracene	3200	370	ug/Kg	05/04/08		KCA	SW 8270
Azobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Benz(a)anthracene	3300	370	ug/Kg	05/04/08		KCA	SW 8270
Benzidine	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Benzo(a)pyrene	2500	370	ug/Kg	05/04/08		KCA	SW 8270
Benzo(b)fluoranthene	3300	370	ug/Kg	05/04/08		KCA	SW 8270
Benzo(ghi)perylene	800	370	ug/Kg	05/04/08		KCA	SW 8270
Benzo(k)fluoranthene	1600	370	ug/Kg	05/04/08		KCA	SW 8270
Benzoic acid	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Benzyl butyl phthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Carbazole	ND	1100	ug/Kg	05/04/08		KCA	SW 8270
Chrysene	3600	370	ug/Kg	05/04/08		KCA	SW 8270
Di-n-butylphthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Di-n-octylphthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Dibenz(a,h)anthracene	480	370	ug/Kg	05/04/08		KCA	SW 8270
Dibenzofuran	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Diethyl phthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Dimethylphthalate	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Fluoranthene	3900	370	ug/Kg	05/04/08		KCA	SW 8270
Fluorene	1700	370	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorobutadiene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Hexachloroethane	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	900	370	ug/Kg	05/04/08		KCA	SW 8270
Isophorone	ND	370	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	370	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	370	ug/Kg	05/04/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Naphthalene	450	370	ug/Kg	05/04/08		KCA	SW 8270
Nitrobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Pentachloronitrobenzene	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Pentachlorophenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Phenanthrene	27000	1800	ug/Kg	05/04/08		KCA	SW 8270
Phenol	ND	370	ug/Kg	05/04/08		KCA	SW 8270
Pyrene	5200	370	ug/Kg	05/04/08		KCA	SW 8270
Pyridine	ND	370	ug/Kg	05/04/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	92		%	05/04/08		KCA	SW 8270
% 2-Fluorobiphenyl	76		%	05/04/08		KCA	SW 8270
% 2-Fluorophenol	55		%	05/04/08		KCA	SW 8270
% Nitrobenzene-d5	65		%	05/04/08		KCA	SW 8270
% Phenol-d5	59		%	05/04/08		KCA	SW 8270
% Terphenyl-d14	67		%	05/04/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
-----------	--------	----	-------	------	------	----	-----------


1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

**Poor surrogate recovery was observed due to matrix interference.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 07, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 07, 2008

QA/QC Data

SDG I.D.: GAQ25280

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 99977, Sample No: AQ24969 (AQ25283)								
ICP Metals - Soil								
Aluminum	BDL	1.80	79.0	87.8	10.6	NC	NC	NC
Antimony	BDL	NC	91.2	103	12.2	76.8	78.9	2.7
Arsenic	BDL	NC	77.9	84.0	7.5	80.9	84.2	4.0
Barium	BDL	2.50	87.4	96.2	9.6	94.2	97.4	3.3
Beryllium	BDL	NC	85.8	94.3	9.4	89.5	91.1	1.8
Cadmium	BDL	NC	86.8	94.6	8.6	89.0	92.4	3.7
Calcium	0.5	14.5	86.9	89.3	2.7	NC	NC	NC
Chromium	BDL	5.30	85.4	96.6	12.3	89.8	92.1	2.5
Cobalt	BDL	5.60	91.4	101	10.0	90.2	94.2	4.3
Copper	BDL	0.60	89.3	97.9	9.2	93.4	99.3	6.1
Iron	BDL	2.40	93.3	101	7.9	NC	NC	NC
Lead	BDL	15.6	85.4	92.6	8.1	99.8	92.8	7.3
Magnesium	BDL	12.6	83.2	91.9	9.9	NC	NC	NC
Manganese	BDL	14.2	95.7	104	8.3	96.5	95.1	1.5
Nickel	BDL	3.40	90.2	99.7	10.0	90.1	93.6	3.8
Potassium	BDL	12.2	92.4	103	10.8	69.4	62.7	10.1
Selenium	BDL	NC	74.2	80.4	8.0	73.2	75.6	3.2
Silver	BDL	NC	86.2	94.6	9.3	92.5	96.1	3.8
Sodium	BDL	4.20	104	104	0.0	-92.9	-114	NC
Thallium	BDL	NC	88.5	96.0	8.1	87.6	90.6	3.4
Vanadium	BDL	6.10	90.2	99.3	9.6	90.1	93.4	3.6
Zinc	BDL	15.7	83.9	91.9	9.1	90.4	89.3	1.2
QA/QC Batch 100056, Sample No: AQ25237 (AQ25283)								
Mercury	BDL	NC	104	105	1.0	>125	124	NC

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director
May 07, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 07, 2008

QA/QC Data

SDG I.D.: GAQ25280

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 100173, Sample No: AQ24783 (aq25283)							
Volatiles							
1,1,1,2-Tetrachloroethane	ND	86	78	9.8	73	76	4.0
1,1,1-Trichloroethane	ND	97	83	15.6	81	85	4.8
1,1,2,2-Tetrachloroethane	ND	81	80	1.2	85	79	7.3
1,1,2-Trichloroethane	ND	91	83	9.2	82	79	3.7
1,1-Dichloroethane	ND	102	88	14.7	85	88	3.5
1,1-Dichloroethene	ND	103	88	15.7	82	86	4.8
1,1-Dichloropropene	ND	97	82	16.8	78	85	8.6
1,2,3-Trichlorobenzene	ND	84	71	16.8	39	49	22.7
1,2,3-Trichloropropane	ND	88	87	1.1	79	72	9.3
1,2,4-Trichlorobenzene	ND	79	<70	NC	38	47	21.2
1,2,4-Trimethylbenzene	ND	96	79	19.4	42	49	15.4
1,2-Dibromo-3-chloropropane	ND	72	<70	NC	60	61	1.7
1,2-Dichlorobenzene	ND	92	79	15.2	60	70	15.4
1,2-Dichloroethane	ND	88	79	10.8	73	74	1.4
1,2-Dichloropropane	ND	101	89	12.6	83	89	7.0
1,3,5-Trimethylbenzene	ND	97	80	19.2	68	81	17.4
1,3-Dichlorobenzene	ND	92	79	15.2	60	69	14.0
1,3-Dichloropropane	ND	91	85	6.8	79	77	2.6
1,4-Dichlorobenzene	ND	88	77	13.3	56	66	16.4
2,2-Dichloropropane	ND	89	73	19.8	71	74	4.1
2-Chlorotoluene	ND	97	83	15.6	71	83	15.6
2-Hexanone	ND	<70	<70	NC	12	12	0.0
2-Isopropyltoluene	ND	99	82	18.8	70	84	18.2
4-Chlorotoluene	ND	94	81	14.9	61	72	16.5
4-Methyl-2-pentanone	ND	80	73	9.2	43	42	2.4
Acetone	ND	<70	<70	NC	30	25	18.2
Acrolein	ND	82	75	8.9	74	63	16.1
Acrylonitrile	ND	92	82	11.5	48	39	20.7
Benzene	ND	100	88	12.8	80	87	8.4
Bromobenzene	ND	94	83	12.4	67	76	12.6
Bromochloromethane	ND	96	84	13.3	82	82	0.0
Bromodichloromethane	ND	85	76	11.2	71	75	5.5
Bromoform	ND	<70	<70	NC	47	46	2.2
Bromomethane	ND	88	78	12.0	74	58	24.2
Carbon Disulfide	ND	105	87	18.8	68	75	9.8
Carbon tetrachloride	ND	93	<70	NC	73	84	14.0
Chlorobenzene	ND	98	84	15.4	70	78	10.8
Chloroethane	ND	117	85	31.7	79	95	18.4

QA/QC Data

SDG I.D.: GAQ25280

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Chloroform	ND	98	87	11.9	83	83	0.0
Chloromethane	ND	119	81	38.0	63	84	28.6
cis-1,2-Dichloroethene	ND	104	90	14.4	82	85	3.6
cis-1,3-Dichloropropene	ND	84	77	8.7	63	65	3.1
Dibromochloromethane	ND	70	<70	NC	61	62	1.6
Dibromoethane	ND	88	81	8.3	71	70	1.4
Dibromomethane	ND	86	78	9.8	77	77	0.0
Dichlorodifluoromethane	ND	106	77	31.7	51	62	19.5
Ethylbenzene	ND	101	83	19.6	70	83	17.0
Hexachlorobutadiene	ND	91	73	22.0	49	61	21.8
Isopropylbenzene	ND	99	81	20.0	73	88	18.6
m&p-Xylene	ND	103	84	20.3	59	67	12.7
Methyl ethyl ketone	ND	75	<70	NC	29	26	10.9
Methyl t-butyl ether (MTBE)	ND	85	75	12.5	79	76	3.9
Methylene chloride	ND	104	82	23.7	83	87	4.7
n-Butylbenzene	ND	92	74	21.7	43	58	29.7
n-Propylbenzene	ND	97	81	18.0	60	77	24.8
Naphthalene	ND	84	88	4.7	25	31	21.4
o-Xylene	ND	100	81	21.0	70	83	17.0
p-Isopropyltoluene	ND	98	80	20.2	64	77	18.4
sec-Butylbenzene	ND	94	77	19.9	62	76	20.3
Styrene	ND	99	81	20.0	50	62	21.4
tert-Butylbenzene	ND	102	83	20.5	78	92	16.5
Tetrachloroethene	ND	98	83	16.6	75	82	8.9
Tetrahydrofuran (THF)	ND	83	80	3.7	87	74	16.1
Toluene	ND	100	82	19.8	75	84	11.3
trans-1,2-Dichloroethene	ND	99	86	14.1	76	79	3.9
trans-1,3-Dichloropropene	ND	80	76	5.1	60	60	0.0
trans-1,4-dichloro-2-butene	ND	<70	71	NC	49	41	17.8
Trichloroethene	ND	99	85	15.2	75	82	8.9
Trichlorofluoromethane	ND	98	82	17.8	73	77	5.3
Trichlorotrifluoroethane	ND	100	84	17.4	76	81	6.4
Vinyl chloride	ND	114	84	30.3	69	84	19.6
% 1,2-dichlorobenzene-d4	99	100	100	0.0	101	102	1.0
% Bromofluorobenzene	90	97	94	3.1	92	94	2.2
% Dibromofluoromethane	100	94	100	6.2	102	95	7.1
% Toluene-d8	96	103	100	3.0	100	103	3.0

QA/QC Batch 99965, Sample No: AQ25029 (AQ25283)

Semivolatiles

1,2,4,5-Tetrachlorobenzene	ND	79	72	9.3	35	79	77.2
1,2,4-Trichlorobenzene	ND	79	73	7.9	35	79	77.2
1,2-Dichlorobenzene	ND	73	69	5.6	34	73	72.9
1,3-Dichlorobenzene	ND	73	66	10.1	33	70	71.8
1,4-Dichlorobenzene	ND	72	66	8.7	32	71	75.7
2,4,5-Trichlorophenol	ND	96	85	12.2	41	104	86.9
2,4,6-Trichlorophenol	ND	85	77	9.9	39	91	80.0
2,4-Dichlorophenol	ND	85	78	8.6	38	88	79.4
2,4-Dimethylphenol	ND	39	48	20.7	<30	56	NC

QA/QC Data

SDG I.D.: GAQ25280

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
2,4-Dinitrophenol	ND	<30	<30	NC	<30	<30	NC
2,4-Dinitrotoluene	ND	94	87	7.7	38	98	88.2
2,6-Dinitrotoluene	ND	86	80	7.2	39	92	80.9
2-Chloronaphthalene	ND	82	73	11.6	36	82	78.0
2-Chlorophenol	ND	77	74	4.0	36	80	75.9
2-Methylnaphthalene	ND	80	73	9.2	35	80	78.3
2-Methylphenol (o-cresol)	ND	71	70	1.4	34	76	76.4
2-Nitroaniline	ND	>130	>130	NC	87	>130	NC
2-Nitrophenol	ND	94	84	11.2	45	98	74.1
3&4-Methylphenol (m&p-cresol)	ND	71	67	5.8	<30	70	NC
3,3'-Dichlorobenzidine	ND	N/A	N/A	NC	N/A	N/A	NC
3-Nitroaniline	ND	>130	>130	NC	>130	>130	NC
4,6-Dinitro-2-methylphenol	ND	44	42	4.7	40	83	69.9
4-Bromophenyl phenyl ether	ND	88	82	7.1	38	89	80.3
4-Chloro-3-methylphenol	ND	83	80	3.7	39	90	79.1
4-Chloroaniline	ND	>130	>130	NC	71	>130	NC
4-Chlorophenyl phenyl ether	ND	84	75	11.3	37	87	80.6
4-Nitroaniline	ND	100	90	10.5	43	100	79.7
4-Nitrophenol	ND	98	94	4.2	44	114	88.6
Acenaphthene	ND	82	73	11.6	35	82	80.3
Acenaphthylene	ND	78	71	9.4	35	80	78.3
Acetophenone	ND	71	64	10.4	31	69	76.0
Aniline	ND	N/A	N/A	NC	N/A	N/A	NC
Anthracene	ND	82	78	5.0	37	86	79.7
Azobenzene	ND	76	72	5.4	37	81	74.6
Benz(a)anthracene	ND	85	78	8.6	41	89	73.8
Benzidine	ND	N/A	N/A	NC	N/A	N/A	NC
Benzo(a)pyrene	ND	87	81	7.1	41	91	75.8
Benzo(b)fluoranthene	ND	90	84	6.9	45	97	73.2
Benzo(ghi)perylene	ND	83	75	10.1	40	83	69.9
Benzo(k)fluoranthene	ND	96	85	12.2	45	100	75.9
Benzoic acid	ND	N/A	N/A	NC	N/A	N/A	NC
Benzyl butyl phthalate	ND	92	79	15.2	41	91	75.8
Bis(2-chloroethoxy)methane	ND	80	73	9.2	34	79	79.6
Bis(2-chloroethyl)ether	ND	73	69	5.6	34	72	71.7
Bis(2-chloroisopropyl)ether	ND	79	75	5.2	36	80	75.9
Bis(2-ethylhexyl)phthalate	ND	89	81	9.4	41	91	75.8
Carbazole	ND	93	96	3.2	47	115	84.0
Chrysene	ND	85	79	7.3	40	88	75.0
Di-n-butylphthalate	ND	85	80	6.1	37	89	82.5
Di-n-octylphthalate	ND	79	78	1.3	37	82	75.6
Dibenz(a,h)anthracene	ND	86	80	7.2	39	84	73.2
Dibenzofuran	ND	87	77	12.2	36	87	82.9
Diethyl phthalate	ND	84	80	4.9	38	88	79.4
Dimethylphthalate	ND	83	78	6.2	39	87	76.2
Fluoranthene	ND	89	85	4.6	44	103	80.3
Fluorene	ND	80	75	6.5	35	85	83.3
Hexachlorobenzene	ND	90	84	6.9	40	90	76.9
Hexachlorobutadiene	ND	87	77	12.2	37	84	77.7

QA/QC Data

SDG I.D.: GAQ25280

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Hexachlorocyclopentadiene	ND	64	59	8.1	<30	45	NC
Hexachloroethane	ND	76	70	8.2	33	73	75.5
Indeno(1,2,3-cd)pyrene	ND	84	77	8.7	40	84	71.0
Isophorone	ND	77	74	4.0	37	78	71.3
N-Nitrosodi-n-propylamine	ND	75	69	8.3	34	75	75.2
N-Nitrosodimethylamine	ND	71	66	7.3	32	69	73.3
N-Nitrosodiphenylamine	ND	110	106	3.7	50	116	79.5
Naphthalene	ND	80	72	10.5	34	77	77.5
Nitrobenzene	ND	76	72	5.4	37	78	71.3
Pentachloronitrobenzene	ND	88	86	2.3	42	94	76.5
Pentachlorophenol	ND	55	54	1.8	41	102	85.3
Phenanthrene	ND	85	78	8.6	38	89	80.3
Phenol	ND	79	72	9.3	35	78	76.1
Pyrene	ND	86	83	3.6	42	100	81.7
Pyridine	ND	65	60	8.0	<30	63	NC
% 2,4,6-Tribromophenol	101	105	95	10.0	47	115	84.0
% 2-Fluorobiphenyl	67	83	71	15.6	33	79	82.1
% 2-Fluorophenol	76	77	70	9.5	35	77	75.0
% Nitrobenzene-d5	75	76	71	6.8	35	78	76.1
% Phenol-d5	75	81	72	11.8	34	79	79.6
% Terphenyl-d14	79	87	81	7.1	35	94	91.5

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

May 07, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

May 07, 2008

SDG I.D.: GAQ25280

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

Thursday, May 08, 2008

Attn: R. Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Client ID: ZAVAS/FAMTECH/ASTORIA/EQUITIES
Sample ID#s: AQ25313 - AQ25315

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
NY Lab Registration #11301
RI Lab Registration #63
NH Lab Registration #213693-A,B
ME Lab Registration #CT-007
NJ Lab Registration #CT-003
PA Lab Registration #68-03530

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 08, 2008

FOR: Attn: R. Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166-11

Custody Information

Collected by: _____
 Received by: LB
 Analyzed by: see "By" below

Date 04/30/08 Time 16:45

Date 05/02/08 Time 17:00

SDG I.D.: GAQ25313

Phoenix I.D.: AQ25313

Laboratory Data

Client ID: ZAVAS/FAMTECH/ASTORIA/EQUITIES 1166-SB-(2-4)-09

Parameter	Result	RL	Units	Date	Time	By	Reference
TCLP Silver	< 0.010	0.010	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Arsenic	0.021	0.010	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Barium	0.70	0.30	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Cadmium	< 0.050	0.050	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Chromium	< 0.010	0.010	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Lead	0.036	0.015	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Selenium	< 0.050	0.050	mg/L	05/03/08		A/E	E1311/SW6010
TCLP Mercury	< 0.001	0.001	mg/L	05/05/08		RS	E1311/E245.1
Percent Solid	88		%	05/02/08		X/aas	E160.3
Corrosivity	Negative	NONE	None	05/02/08		CD	SM 2330
Flash Point	>200	200	degree F	05/05/08		CD	SW846 - 1010
Ignitability	Passed	140	deg F	05/05/08		CD	SW846 - 1010
pH - Soil	8.41	0.10	PH	05/05/08		CD	4500-H B/9045
Reactivity Cyanide	< 1.1	1.1	mg/Kg	05/06/08		M/G	SW 846-7.3
Reactivity Sulfide	< 20	20	mg/Kg	05/06/08		M/G	SW846-7.3
Reactivity	Negative			05/06/08		M/G	SW 846-7.3
TCLP Digestion Mercury	Completed			05/05/08		E	E1311/7470
TCLP Herbicides Extraction	Completed			05/06/08		O/E	SW8150 Mod
TCLP Extraction for Metals	Completed			05/02/08		D	EPA 1311
TCLP Extraction for Organics	Completed			05/02/08		D	1311
TCLP Pesticides Extraction	Completed			05/06/08		K	SW3510/3520
TCLP Semi-Volatile Extraction	Completed			05/06/08		O/K	SW3510/3520
TCLP Extraction Volatiles.	Completed			05/05/08		D	EPA 1311
TCLP Metals Digestion	Completed			05/03/08		D	SW846 - 3005
TCLP Pesticides							
4,4'-DDD	ND	0.1	ug/L	05/07/08		KCA	SW 8081
4,4'-DDE	ND	0.1	ug/L	05/07/08		KCA	SW 8081
4,4'-DDT	ND	0.1	ug/L	05/07/08		KCA	SW 8081
a-BHC	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Alachlor	ND	0.05	ug/L	05/07/08		KCA	SW 8081

Parameter	Result	RL	Units	Date	Time	By	Reference
Aldrin	ND	0.05	ug/L	05/07/08		KCA	SW 8081
b-BHC	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Chlordane	ND	0.3	ug/L	05/07/08		KCA	SW 8081
d-BHC	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Dieldrin	ND	0.1	ug/L	05/07/08		KCA	SW 8081
Endosulfan I	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Endosulfan II	ND	0.1	ug/L	05/07/08		KCA	SW 8081
Endosulfan Sulfate	ND	0.1	ug/L	05/07/08		KCA	SW 8081
Endrin	ND	0.1	ug/L	05/07/08		KCA	SW 8081
Endrin Aldehyde	ND	0.1	ug/L	05/07/08		KCA	SW 8081
g-BHC (Lindane)	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Heptachlor	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Heptachlor epoxide	ND	0.05	ug/L	05/07/08		KCA	SW 8081
Methoxychlor	ND	0.2	ug/L	05/07/08		KCA	SW 8081
Toxaphene	ND	1.0	ug/L	05/07/08		KCA	SW 8081
<u>QA/QC Surrogates</u>							
%DCBP (Surrogate Rec)	97		%	05/07/08		KCA	SW 8081
%TCMX (Surrogate Rec)	96		%	05/07/08		KCA	SW 8081

TCLP Volatiles

1,1-Dichloroethylene	ND	50	ug/L	05/06/08		R/J	SW 8260
1,2-Dichloroethane	ND	50	ug/L	05/06/08		R/J	SW 8260
Benzene	ND	50	ug/L	05/06/08		R/J	SW 8260
Carbon tetrachloride	ND	50	ug/L	05/06/08		R/J	SW 8260
Chlorobenzene	ND	50	ug/L	05/06/08		R/J	SW 8260
Chloroform	ND	50	ug/L	05/06/08		R/J	SW 8260
Methyl ethyl ketone	ND	50	ug/L	05/06/08		R/J	SW 8260
Tetrachloroethene	ND	50	ug/L	05/06/08		R/J	SW 8260
Trichloroethene	ND	50	ug/L	05/06/08		R/J	SW 8260
Vinyl chloride	ND	50	ug/L	05/06/08		R/J	SW 8260
<u>QA/QC Surrogates</u>							
%4-Bromofluorobenzene (Surrogate)	90		%	05/06/08		R/J	SW 8260

TCLP Herbicides

2,4,5-TP (Silvex)	ND	5.0	ug/L	05/07/08		JRB	SW8151
2,4-D	ND	5.0	ug/L	05/07/08		JRB	SW8151
<u>QA/QC Surrogates</u>							
% DCAA	65		%	05/07/08		JRB	SW8151

TCLP Acid/Base-Neutral

1,4-Dichlorobenzene	ND	100	ug/L	05/07/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	100	ug/L	05/07/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	100	ug/L	05/07/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	100	ug/L	05/07/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	100	ug/L	05/07/08		KCA	SW 8270
3&4-Methylphenol (m&p-Cresol)	ND	100	ug/L	05/07/08		KCA	SW 8270
Hexachlorobenzene	ND	100	ug/L	05/07/08		KCA	SW 8270
Hexachlorobutadiene	ND	100	ug/L	05/07/08		KCA	SW 8270
Hexachloroethane	ND	100	ug/L	05/07/08		KCA	SW 8270
Nitrobenzene	ND	100	ug/L	05/07/08		KCA	SW 8270
Pentachlorophenol	ND	500	ug/L	05/07/08		KCA	SW 8270
Pyridine	ND	100	ug/L	05/07/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							

Parameter	Result	RL	Units	Date	Time	By	Reference
% 2,4,6-Tribromophenol	121		%	05/07/08		KCA	SW 8270
% 2-Fluorobiphenyl	87		%	05/07/08		KCA	SW 8270
% 2-Fluorophenol	69		%	05/07/08		KCA	SW 8270
% Nitrobenzene-d5	92		%	05/07/08		KCA	SW 8270
% Phenol-d5	74		%	05/07/08		KCA	SW 8270
% Terphenyl-d14	45		%	05/07/08		KCA	SW 8270

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

Ignitability is based solely on the results of the closed cup flashpoint analysis performed above.

Corrosivity is based solely on the pH analysis performed above.

The reactivity, reported above, is based only on the EPA Interim Guidance for Reactive Cyanide and Reactive Sulfide.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 08, 2008

TEST PITS

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by:
Received by: LB
Analyzed by: see "By" below

Date Time

05/01/08 0:00
05/02/08 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25220

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-01-(2-4)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: 05/01/08 0:00
Received by: LB 05/02/08 17:00
Analyzed by: see "By" below

Date **Time**

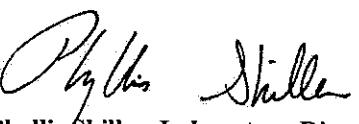
0:00

17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25221


Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-01-(4-6)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166

Custody Information

Collected by:
 Received by: LB
 Analyzed by: see "By" below

Date

Time

05/01/08 0:00
 05/02/08 17:00

Laboratory Data

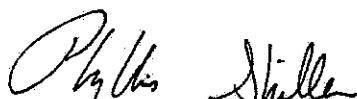
SDG I.D.: GAQ25219

Phoenix I.D.: AQ25222

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-01-(6-8)

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.37	0.37	mg/Kg	05/03/08		A/E	SW6010
Aluminum	7870	7.4	mg/Kg	05/04/08		J/E	SW6010
Arsenic	12.1	0.7	mg/Kg	05/03/08		A/E	SW6010
Barium	230	0.37	mg/Kg	05/03/08		A/E	SW6010
Beryllium	< 0.30	0.30	mg/Kg	05/03/08		A/E	SW6010
Calcium	15300	0.7	mg/Kg	05/03/08		A/E	6010/200.7
Cadmium	< 0.37	0.37	mg/Kg	05/03/08		A/E	SW6010
Cobalt	12.5	0.37	mg/Kg	05/03/08		A/E	SW6010
Chromium	36.7	0.37	mg/Kg	05/03/08		A/E	SW6010
Copper	233	3.7	mg/kg	05/04/08		J/E	SW6010
Iron	65900	3.7	mg/Kg	05/04/08		J/E	SW6010
Mercury	0.78	0.09	mg/kg	05/05/08		RS	SW-7471
Potassium	2100	0.7	mg/Kg	05/03/08		A/E	SW6010
Magnesium	4650	0.37	mg/Kg	05/03/08		A/E	SW6010
Manganese	526	0.37	mg/Kg	05/03/08		A/E	SW6010
Sodium	< 3.7	3.7	mg/Kg	05/03/08		A/E	SW6010
Nickel	25.5	0.37	mg/Kg	05/03/08		A/E	SW6010
Lead	924	0.37	mg/Kg	05/03/08		A/E	SW6010
Antimony	6.9	3.7	mg/Kg	05/03/08		A/E	SW6010
Selenium	2.4	1.8	mg/Kg	05/03/08		A/E	SW6010
Thallium	ND	3.7	mg/Kg	05/03/08		A/E	SW6010
Vanadium	30.8	0.37	mg/Kg	05/03/08		A/E	6010
Zinc	498	0.37	mg/Kg	05/03/08		A/E	SW6010
Percent Solid	89		%	05/02/08		X/AAS	E160.3
Mercury Digestion	Completed			05/05/08		E	SW7471
Soil Ext. for Semi- Vol	Completed			05/05/08		SU/D	SW3545
Total Metals Digest	Completed			05/02/08		AG/B	SW846 - 3050
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
1,2-Dichlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dichlorophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dimethylphenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dinitrophenol	ND	600	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2-Chloronaphthalene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2-Chlorophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2-Methylnaphthalene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	370	ug/Kg	05/06/08		KCA	SW 8270
2-Nitroaniline	ND	600	ug/Kg	05/06/08		KCA	SW 8270
2-Nitrophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	370	ug/Kg	05/06/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	450	ug/Kg	05/06/08		KCA	SW 8270
3-Nitroaniline	ND	600	ug/Kg	05/06/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	370	ug/Kg	05/06/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	450	ug/Kg	05/06/08		KCA	SW 8270
4-Chloroaniline	ND	450	ug/Kg	05/06/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	370	ug/Kg	05/06/08		KCA	SW 8270
4-Nitroaniline	ND	600	ug/Kg	05/06/08		KCA	SW 8270
4-Nitrophenol	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Acenaphthene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Acenaphthylene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Acetophenone	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Aniline	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Anthracene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Azobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Benz(a)anthracene	510	370	ug/Kg	05/06/08		KCA	SW 8270
Benzidine	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Benzo(a)pyrene	460	370	ug/Kg	05/06/08		KCA	SW 8270
Benzo(b)fluoranthene	610	370	ug/Kg	05/06/08		KCA	SW 8270
Benzo(ghi)perylene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Benzo(k)fluoranthene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Benzoic acid	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Benzyl butyl phthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Carbazole	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Chrysene	680	370	ug/Kg	05/06/08		KCA	SW 8270
Di-n-butylphthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Di-n-octylphthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Dibenzofuran	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Diethyl phthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Dimethylphthalate	ND	370	ug/Kg	05/06/08		KCA	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
Fluoranthene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Fluorene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorobutadiene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Hexachloroethane	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Isophorone	ND	370	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	370	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	370	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Naphthalene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Nitrobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Pentachloronitrobenzene	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Pentachlorophenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Phenanthrene	500	370	ug/Kg	05/06/08		KCA	SW 8270
Phenol	ND	370	ug/Kg	05/06/08		KCA	SW 8270
Pyrene	390	370	ug/Kg	05/06/08		KCA	SW 8270
Pyridine	ND	370	ug/Kg	05/06/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	121		%	05/06/08		KCA	SW 8270
% 2-Fluorobiphenyl	72		%	05/06/08		KCA	SW 8270
% 2-Fluorophenol	63		%	05/06/08		KCA	SW 8270
% Nitrobenzene-d5	72		%	05/06/08		KCA	SW 8270
% Phenol-d5	69		%	05/06/08		KCA	SW 8270
% Terphenyl-d14	36		%	05/06/08		KCA	SW 8270

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: **LB**
Received by: **LB**
Analyzed by: see "By" below

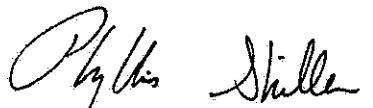
Date **Time**

05/01/08 0:00
05/02/08 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25223


Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-02-(2-4)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: **LB**
Received by: **LB**
Analyzed by: see "By" below

Date **Time**

05/01/08 0:00
05/02/08 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25224

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-02-(4-6)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: LB
Received by: LB
Analyzed by: see "By" below

Date

Time

05/01/08 0:00
05/02/08 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25225

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-02-(6-8)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: SOIL
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166

Custody Information

Collected by: LB
 Received by: LB
 Analyzed by: see "By" below

Date 05/01/08 0:00

Time 17:00

Laboratory Data

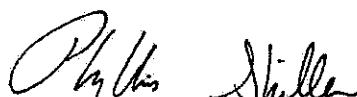
SDG I.D.: GAQ25219

Phoenix I.D.: AQ25226

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-02-(8-10)

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.35	0.35	mg/Kg	05/03/08		A/E	SW6010
Aluminum	7460	7.0	mg/Kg	05/04/08		J/E	SW6010
Arsenic	4.3	0.7	mg/Kg	05/03/08		A/E	SW6010
Barium	128	0.35	mg/Kg	05/03/08		A/E	SW6010
Beryllium	0.40	0.28	mg/Kg	05/03/08		A/E	SW6010
Calcium	5950	0.7	mg/Kg	05/03/08		A/E	6010/200.7
Cadmium	< 0.35	0.35	mg/Kg	05/03/08		A/E	SW6010
Cobalt	8.74	0.35	mg/Kg	05/03/08		A/E	SW6010
Chromium	35.9	0.35	mg/Kg	05/03/08		A/E	SW6010
Copper	68.1	3.5	mg/kg	05/04/08		J/E	SW6010
Iron	15700	3.5	mg/Kg	05/04/08		J/E	SW6010
Mercury	0.28	0.09	mg/kg	05/05/08		RS	SW-7471
Potassium	2020	0.7	mg/Kg	05/03/08		A/E	SW6010
Magnesium	3450	0.35	mg/Kg	05/03/08		A/E	SW6010
Manganese	205	0.35	mg/Kg	05/03/08		A/E	SW6010
Sodium	< 3.5	3.5	mg/Kg	05/03/08		A/E	SW6010
Nickel	24.4	0.35	mg/Kg	05/03/08		A/E	SW6010
Lead	232	0.35	mg/Kg	05/03/08		A/E	SW6010
Antimony	< 3.5	3.5	mg/Kg	05/03/08		A/E	SW6010
Selenium	< 1.8	1.8	mg/Kg	05/03/08		A/E	SW6010
Thallium	ND	3.5	mg/Kg	05/03/08		A/E	SW6010
Vanadium	27.6	0.35	mg/Kg	05/03/08		A/E	6010
Zinc	88.7	0.35	mg/Kg	05/03/08		A/E	SW6010
Percent Solid	85		%	05/02/08		X/AAS	E160.3
Mercury Digestion	Completed			05/05/08		E	SW7471
Soil Ext. for Semi- Vol	Completed			05/05/08		SU/E	SW3545
Total Metals Digest	Completed			05/02/08		AG/B	SW846 - 3050
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270

Parameter	Result	RL	Units	Date	Time	By	Reference
1,2-Dichlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dichlorophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dimethylphenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dinitrophenol	ND	610	ug/Kg	05/06/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2-Chloronaphthalene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2-Chlorophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2-Methylnaphthalene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	380	ug/Kg	05/06/08		KCA	SW 8270
2-Nitroaniline	ND	610	ug/Kg	05/06/08		KCA	SW 8270
2-Nitrophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	380	ug/Kg	05/06/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	460	ug/Kg	05/06/08		KCA	SW 8270
3-Nitroaniline	ND	610	ug/Kg	05/06/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	380	ug/Kg	05/06/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	460	ug/Kg	05/06/08		KCA	SW 8270
4-Chloroaniline	ND	460	ug/Kg	05/06/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	380	ug/Kg	05/06/08		KCA	SW 8270
4-Nitroaniline	ND	610	ug/Kg	05/06/08		KCA	SW 8270
4-Nitrophenol	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Acenaphthene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Acenaphthylene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Acetophenone	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Aniline	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Anthracene	820	380	ug/Kg	05/06/08		KCA	SW 8270
Azobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Benz(a)anthracene	4800	380	ug/Kg	05/06/08		KCA	SW 8270
Benzidine	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Benzo(a)pyrene	4500	380	ug/Kg	05/06/08		KCA	SW 8270
Benzo(b)fluoranthene	5100	380	ug/Kg	05/06/08		KCA	SW 8270
Benzo(ghi)perylene	2900	380	ug/Kg	05/06/08		KCA	SW 8270
Benzo(k)fluoranthene	1600	380	ug/Kg	05/06/08		KCA	SW 8270
Benzoic acid	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Benzyl butyl phthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Carbazole	ND	1100	ug/Kg	05/06/08		KCA	SW 8270
Chrysene	4800	380	ug/Kg	05/06/08		KCA	SW 8270
Di-n-butylphthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Di-n-octylphthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Dibenz(a,h)anthracene	840	380	ug/Kg	05/06/08		KCA	SW 8270
Dibenzofuran	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Diethyl phthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Dimethylphthalate	ND	380	ug/Kg	05/06/08		KCA	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
Fluoranthene	14000	1900	ug/Kg	05/06/08		KCA	SW 8270
Fluorene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorobutadiene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Hexachloroethane	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	2800	380	ug/Kg	05/06/08		KCA	SW 8270
Isophorone	ND	380	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	380	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	380	ug/Kg	05/06/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Naphthalene	430	380	ug/Kg	05/06/08		KCA	SW 8270
Nitrobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Pentachloronitrobenzene	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Pentachlorophenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Phenanthrene	5000	380	ug/Kg	05/06/08		KCA	SW 8270
Phenol	ND	380	ug/Kg	05/06/08		KCA	SW 8270
Pyrene	12000	1900	ug/Kg	05/06/08		KCA	SW 8270
Pyridine	ND	380	ug/Kg	05/06/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	96		%	05/06/08		KCA	SW 8270
% 2-Fluorobiphenyl	56		%	05/06/08		KCA	SW 8270
% 2-Fluorophenol	31		%	05/06/08		KCA	SW 8270
% Nitrobenzene-d5	67		%	05/06/08		KCA	SW 8270
% Phenol-d5	56		%	05/06/08		KCA	SW 8270
% Terphenyl-d14	40		%	05/06/08		KCA	SW 8270

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: _____
Received by: LB
Analyzed by: see "By" below

Date Time

05/01/08 0:00
05/02/08 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25227

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-03-(2-4)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by:
Received by: LB
Analyzed by: see "By" below

Date Time

05/01/08 0:00
05/02/08 17:00

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25228

Laboratory Data

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-03-(4-6)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Sample Information

Matrix: SOIL
Location Code: PROPSOLN
Rush Request: RUSH##
P.O.#: 20081166

Custody Information

Collected by: _____
Received by: LB
Analyzed by: see "By" below

Date Time

05/01/08 0:00
05/02/08 17:00

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25229

Laboratory Data

Client ID: ASTORIA FAMITECH & ZAVAS 1166-TP-03-(6-8)

Parameter	Result	RL	Units	Date	Time	By	Reference
On Hold	Pending						

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director
May 14, 2008

GROUNDWATER

Tuesday, May 13, 2008

Attn: Tim Biercz
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837

Client ID: ASTORIA FAMITECH & ZAVAS
Sample ID#s: AQ25219, AQ25222, AQ25226, AQ25230

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

CT Lab Registration #PH-0618

MA Lab Registration #MA-CT-007

NY Lab Registration #11301

RI Lab Registration #63

NH Lab Registration #213693-A,B

ME Lab Registration #CT-007

NJ Lab Registration #CT-003

PA Lab Registration #68-03530

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 14, 2008

FOR: Attn: Tim Biercz
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: GROUND WATER
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081166

Custody Information

Collected by: _____
 Received by: LB
 Analyzed by: see "By" below

Date 05/01/08 Time 0:00

Date 05/02/08 Time 17:00

Laboratory Data

SDG I.D.: GAQ25219

Phoenix I.D.: AQ25230

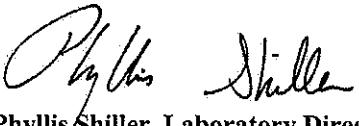
Client ID: ASTORIA FAMITECH & ZAVAS 1166-SB-07-GW-(7-9)

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.001	0.001	mg/L	05/03/08		J/E	6010/200.7
Aluminum	23.6	0.010	mg/L	05/03/08		J/E	6010/200.7
Arsenic	0.027	0.004	mg/L	05/03/08		J/E	6010/200.7
Barium	0.277	0.002	mg/L	05/03/08		J/E	6010/200.7
Beryllium	< 0.001	0.001	mg/L	05/03/08		J/E	6010/200.7
Calcium	166	0.10	mg/L	05/04/08		J/E	6010/200.7
Cadmium	< 0.001	0.001	mg/L	05/03/08		J/E	6010/200.7
Cobalt	0.020	0.002	mg/L	05/03/08		J/E	6010/200.7
Chromium	0.108	0.001	mg/L	05/03/08		J/E	6010/200.7
Copper	0.877	0.001	mg/L	05/03/08		J/E	6010/200.7
Silver (Dissolved)	< 0.001	0.001	mg/L	05/04/08		J/E	6010/200.7
Aluminum (Dissolved)	0.71	0.01	mg/L	05/04/08		J/E	6010/200.7
Arsenic (Dissolved)	0.008	0.004	mg/L	05/04/08		J/E	6010/200.7
Barium (Dissolved)	0.060	0.002	mg/L	05/04/08		J/E	6010/200.7
Beryllium (Dissolved)	< 0.001	0.001	mg/L	05/04/08		J/E	6010/200.7
Calcium (Dissolved)	120	0.10	mg/L	05/04/08		J/E	6010/200.7
Cadmium (Dissolved)	< 0.001	0.001	mg/L	05/04/08		J/E	6010/200.7
Cobalt (Dissolved)	< 0.001	0.001	mg/L	05/04/08		J/E	6010/200.7
Chromium (Dissolved)	0.003	0.001	mg/L	05/04/08		J/E	6010/200.7
Copper (Dissolved)	0.041	0.001	mg/L	05/04/08		J/E	6010/200.7
Iron (Dissolved)	0.663	0.002	mg/L	05/04/08		J/E	6010/200.7
Mercury (Dissolved)	< 0.0002	0.0002	mg/L	05/05/08		RS	SW-7470
Potassium (Dissolved)	31.0	0.1	mg/L	05/04/08		J/E	6010/200.7
Magnesium (Dissolved)	49.9	0.10	mg/L	05/04/08		J/E	6010/200.7
Manganese (Dissolved)	0.428	0.001	mg/L	05/04/08		J/E	6010/200.7
Sodium (Dissolved)	637	10	mg/L	05/05/08		EK	6010/200.7
Nickel (Dissolved)	0.005	0.001	mg/L	05/04/08		J/E	6010/200.7
Lead (Dissolved)	0.138	0.002	mg/L	05/04/08		J/E	6010/200.7
Antimony (Dissolved)	< 0.005	0.005	mg/L	05/04/08		J/E	6010/200.7
Selenium (Dissolved)	< 0.010	0.010	mg/L	05/04/08		J/E	6010/200.7

Parameter	Result	RL	Units	Date	Time	By	Reference
Thallium (Dissolved)	< 0.005	0.005	mg/L	05/05/08		RS	279.2
Vanadium (Dissolved)	0.033	0.002	mg/L	05/04/08		J/E	6010/200.7
Zinc (Dissolved)	0.01	0.002	mg/L	05/04/08		J/E	6010/200.7
Dissolved, Trivalent Chromium	0.003	0.01	mg/L	05/12/08		EK	Calculation
Iron	35.8	0.002	mg/L	05/03/08		J/E	6010/200.7
Mercury	< 0.0005	0.0005	mg/L	05/05/08		RS	7470/E245.1
Potassium	37.0	1.0	mg/L	05/04/08		J/E	6010/200.7
Magnesium	84.8	0.10	mg/L	05/04/08		J/E	6010/200.7
Manganese	1.48	0.001	mg/L	05/03/08		J/E	6010/200.7
Sodium	709	10	mg/L	05/05/08		EK	6010/200.7
Nickel	0.066	0.001	mg/L	05/03/08		J/E	6010/200.7
Lead	1.76	0.002	mg/L	05/03/08		J/E	6010/200.7
Antimony	< 0.005	0.005	mg/L	05/03/08		J/E	6010/200.7
Selenium	< 0.010	0.010	mg/L	05/03/08		J/E	6010/200.7
Thallium	< 0.002	0.002	mg/L	05/05/08		RS	SW7841/279.2
Trivalent Chromium	0.108	0.01	mg/L	05/12/08		EK	Calculation
Vanadium	0.111	0.002	mg/L	05/03/08		J/E	6010/200.7
Zinc	0.204	0.002	mg/L	05/03/08		J/E	6010/200.7
Dissolved Chromium, Hexavalent	< 0.01	0.01	mg/L	05/02/08		CD	S3500CRD
Chromium, Hexavalent	< 0.05	0.05	mg/L	05/02/08	23:00	CD	S3500CRD
Filtration	Completed			05/02/08		AG	0.45um Filter
Dissolved Mercury Digestion	Completed			05/05/08		E	SW7470
Mercury Digestion	Completed			05/05/08		E	7471/245.1
Semi-Volatile Extraction	Completed			05/02/08		O/K	SW3510/3520
Dissolved Metals Preparation	Completed			05/02/08		AG	SW846-3005
Total Metals Digestion	Completed			05/02/08		AG	
Volatiles							
1,1,1,2-Tetrachloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,1,1-Trichloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,1,2,2-Tetrachloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,1,2-Trichloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,1-Dichloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,1-Dichloroethene	ND	5	ug/L	05/06/08		R/J	SW8260
1,1-Dichloropropene	ND	5	ug/L	05/06/08		R/J	SW8260
1,2,3-Trichlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,2,3-Trichloropropane	ND	5	ug/L	05/06/08		R/J	SW8260
1,2,4-Trichlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,2,4-Trimethylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,2-Dibromo-3-chloropropane	ND	5	ug/L	05/06/08		R/J	SW8260
1,2-Dichlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,2-Dichloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
1,2-Dichloropropane	ND	5	ug/L	05/06/08		R/J	SW8260
1,3,5-Trimethylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,3-Dichlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
1,3-Dichloropropane	ND	5	ug/L	05/06/08		R/J	SW8260
1,4-Dichlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
2,2-Dichloropropane	ND	5	ug/L	05/06/08		R/J	SW8260
2-Chlorotoluene	ND	5	ug/L	05/06/08		R/J	SW8260
2-Hexanone	ND	25	ug/L	05/06/08		R/J	SW8260
2-Isopropyltoluene	ND	5	ug/L	05/06/08		R/J	SW8260
4-Chlorotoluene	ND	5	ug/L	05/06/08		R/J	SW8260
4-Methyl-2-pentanone	ND	25	ug/L	05/06/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Acetone	ND	50	ug/L	05/06/08		R/J	SW8260
Acrylonitrile	ND	10	ug/L	05/06/08		R/J	SW8260
Benzene	ND	5	ug/L	05/06/08		R/J	SW8260
Bromobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Bromochloromethane	ND	5	ug/L	05/06/08		R/J	SW8260
Bromodichloromethane	ND	5	ug/L	05/06/08		R/J	SW8260
Bromoform	ND	5	ug/L	05/06/08		R/J	SW8260
Bromomethane	ND	5	ug/L	05/06/08		R/J	SW8260
Carbon Disulfide	ND	5	ug/L	05/06/08		R/J	SW8260
Carbon tetrachloride	ND	5	ug/L	05/06/08		R/J	SW8260
Chlorobenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Chloroethane	ND	5	ug/L	05/06/08		R/J	SW8260
Chloroform	ND	5	ug/L	05/06/08		R/J	SW8260
Chloromethane	ND	5	ug/L	05/06/08		R/J	SW8260
cis-1,2-Dichloroethene	ND	5	ug/L	05/06/08		R/J	SW8260
cis-1,3-Dichloropropene	ND	5	ug/L	05/06/08		R/J	SW8260
Dibromochloromethane	ND	5	ug/L	05/06/08		R/J	SW8260
Dibromoethane	ND	5	ug/L	05/06/08		R/J	SW8260
Dibromomethane	ND	5	ug/L	05/06/08		R/J	SW8260
Dichlorodifluoromethane	ND	5	ug/L	05/06/08		R/J	SW8260
Ethylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Hexachlorobutadiene	ND	5	ug/L	05/06/08		R/J	SW8260
Isopropylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
m&p-Xylene	ND	5	ug/L	05/06/08		R/J	SW8260
Methyl Ethyl Ketone	ND	60	ug/L	05/06/08		R/J	SW8260
Methyl t-butyl ether (MTBE)	ND	10	ug/L	05/06/08		R/J	SW8260
Methylene chloride	ND	5	ug/L	05/06/08		R/J	SW8260
n-Butylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
n-Propylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Naphthalene	7	5	ug/L	05/06/08		R/J	SW8260
o-Xylene	ND	5	ug/L	05/06/08		R/J	SW8260
p-Isopropyltoluene	22	5	ug/L	05/06/08		R/J	SW8260
sec-Butylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Styrene	ND	5	ug/L	05/06/08		R/J	SW8260
tert-Butylbenzene	ND	5	ug/L	05/06/08		R/J	SW8260
Tetrachloroethene	ND	5	ug/L	05/06/08		R/J	SW8260
Tetrahydrofuran (THF)	ND	10	ug/L	05/06/08		R/J	SW8260
Toluene	ND	5	ug/L	05/06/08		R/J	SW8260
Total Xylenes	ND	5	ug/L	05/06/08		R/J	SW8260
trans-1,2-Dichloroethene	ND	5	ug/L	05/06/08		R/J	SW8260
trans-1,3-Dichloropropene	ND	5	ug/L	05/06/08		R/J	SW8260
trans-1,4-dichloro-2-butene	ND	10	ug/L	05/06/08		R/J	SW8260
Trichloroethene	ND	5	ug/L	05/06/08		R/J	SW8260
Trichlorofluoromethane	ND	5	ug/L	05/06/08		R/J	SW8260
Trichlorotrifluoroethane	ND	5	ug/L	05/06/08		R/J	SW8260
Vinyl chloride	ND	5	ug/L	05/06/08		R/J	SW8260
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	99		%	05/06/08		R/J	SW8260
% Bromofluorobenzene	96		%	05/06/08		R/J	SW8260
% Dibromofluoromethane	87		%	05/06/08		R/J	SW8260
% Toluene-d8	100		%	05/06/08		R/J	SW8260

Parameter	Result	RL	Units	Date	Time	By	Reference
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
1,2,4-Trichlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
1,2-Dichlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
1,3-Dichlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
1,4-Dichlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
2,4,5-Trichlorophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
2,4,6-Trichlorophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
2,4-Dichlorophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
2,4-Dimethylphenol	ND	10	ug/L	05/05/08		KCA	SW 8270
2,4-Dinitrophenol	ND	50	ug/L	05/05/08		KCA	SW 8270
2,4-Dinitrotoluene	ND	10	ug/L	05/05/08		KCA	SW 8270
2,6-Dinitrotoluene	ND	10	ug/L	05/05/08		KCA	SW 8270
2-Chloronaphthalene	ND	10	ug/L	05/05/08		KCA	SW 8270
2-Chlorophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
2-Methylnaphthalene	ND	10	ug/L	05/05/08		KCA	SW 8270
2-Methylphenol (o-cresol)	ND	10	ug/L	05/05/08		KCA	SW 8270
2-Nitroaniline	ND	50	ug/L	05/05/08		KCA	SW 8270
2-Nitrophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
3&4-Methylphenol (m&p-cresol)	ND	10	ug/L	05/05/08		KCA	SW 8270
3,3'-Dichlorobenzidine	ND	20	ug/L	05/05/08		KCA	SW 8270
3-Nitroaniline	ND	50	ug/L	05/05/08		KCA	SW 8270
4,6-Dinitro-2-methylphenol	ND	50	ug/L	05/05/08		KCA	SW 8270
4-Bromophenyl phenyl ether	ND	10	ug/L	05/05/08		KCA	SW 8270
4-Chloro-3-methylphenol	ND	20	ug/L	05/05/08		KCA	SW 8270
4-Chloroaniline	ND	20	ug/L	05/05/08		KCA	SW 8270
4-Chlorophenyl phenyl ether	ND	10	ug/L	05/05/08		KCA	SW 8270
4-Nitroaniline	ND	50	ug/L	05/05/08		KCA	SW 8270
4-Nitrophenol	ND	50	ug/L	05/05/08		KCA	SW 8270
Acenaphthene	32	10	ug/L	05/05/08		KCA	SW 8270
Acenaphthylene	ND	10	ug/L	05/05/08		KCA	SW 8270
Acetophenone	ND	10	ug/L	05/05/08		KCA	SW 8270
Aniline	ND	50	ug/L	05/05/08		KCA	SW 8270
Anthracene	12	10	ug/L	05/05/08		KCA	SW 8270
Azobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benz(a)anthracene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benzidine	ND	20	ug/L	05/05/08		KCA	SW 8270
Benzo(a)pyrene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benzo(b)fluoranthene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benzo(ghi)perylene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benzo(k)fluoranthene	ND	10	ug/L	05/05/08		KCA	SW 8270
Benzoic acid	ND	50	ug/L	05/05/08		KCA	SW 8270
Benzyl butyl phthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Bis(2-chloroethoxy)methane	ND	10	ug/L	05/05/08		KCA	SW 8270
Bis(2-chloroethyl)ether	ND	10	ug/L	05/05/08		KCA	SW 8270
Bis(2-chloroisopropyl)ether	ND	10	ug/L	05/05/08		KCA	SW 8270
Bis(2-ethylhexyl)phthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Carbazole	ND	50	ug/L	05/05/08		KCA	SW 8270
Chrysene	11	10	ug/L	05/05/08		KCA	SW 8270
Di-n-butylphthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Di-n-octylphthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Dibenz(a,h)anthracene	ND	10	ug/L	05/05/08		KCA	SW 8270


Parameter	Result	RL	Units	Date	Time	By	Reference
Dibenzofuran	ND	10	ug/L	05/05/08		KCA	SW 8270
Diethyl phthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Dimethylphthalate	ND	10	ug/L	05/05/08		KCA	SW 8270
Fluoranthene	ND	10	ug/L	05/05/08		KCA	SW 8270
Fluorene	10	10	ug/L	05/05/08		KCA	SW 8270
Hexachlorobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
Hexachlorobutadiene	ND	10	ug/L	05/05/08		KCA	SW 8270
Hexachlorocyclopentadiene	ND	10	ug/L	05/05/08		KCA	SW 8270
Hexachloroethane	ND	10	ug/L	05/05/08		KCA	SW 8270
Indeno(1,2,3-cd)pyrene	ND	10	ug/L	05/05/08		KCA	SW 8270
Isophorone	ND	10	ug/L	05/05/08		KCA	SW 8270
N-Nitrosodi-n-propylamine	ND	10	ug/L	05/05/08		KCA	SW 8270
N-Nitrosodimethylamine	ND	10	ug/L	05/05/08		KCA	SW 8270
N-Nitrosodiphenylamine	ND	10	ug/L	05/05/08		KCA	SW 8270
Naphthalene	ND	10	ug/L	05/05/08		KCA	SW 8270
Nitrobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
Pentachloronitrobenzene	ND	10	ug/L	05/05/08		KCA	SW 8270
Pentachlorophenol	ND	10	ug/L	05/05/08		KCA	SW 8270
Phenanthrene	73	10	ug/L	05/05/08		KCA	SW 8270
Phenol	ND	10	ug/L	05/05/08		KCA	SW 8270
Pyrene	14	10	ug/L	05/05/08		KCA	SW 8270
Pyridine	ND	10	ug/L	05/05/08		KCA	SW 8270
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	117		%	05/05/08		KCA	SW 8270
% 2-Fluorobiphenyl	56		%	05/05/08		KCA	SW 8270
% 2-Fluorophenol	65		%	05/05/08		KCA	SW 8270
% Nitrobenzene-d5	77		%	05/05/08		KCA	SW 8270
% Phenol-d5	70		%	05/05/08		KCA	SW 8270
% Terphenyl-d14	*NR		%	05/05/08		KCA	SW 8270

Comments:

* Poor surrogate recovery was observed for semivolatiles. The other surrogates associated with this sample were within QA/QC criteria. No further action was necessary.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

 Phyllis Shiller, Laboratory Director
 May 14, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 14, 2008

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 98092, Sample No: AQ18274 (AQ25230)								
Dissolved Metals								
Thallium	BDL	NC	108	108	0.0	93.2	93.0	0.2
QA/QC Batch 99676, Sample No: AQ23765 (AQ25230)								
Thallium	BDL		93.9	94.0	0.1	86.9	87.5	0.7
QA/QC Batch 100053, Sample No: AQ24490 (AQ25230)								
Mercury	BDL	NC	106	106	0.0	112	110	1.8
QA/QC Batch 99911, Sample No: AQ24688 (AQ25230)								
ICP Metals - Aqueous								
Aluminum	BDL	NC	92.4	93.0	0.6	93.7	92.6	1.2
Antimony	BDL	NC	93.6	94.3	0.7	95.1	94.2	1.0
Arsenic	BDL	NC	90.7	91.3	0.7	92.0	91.1	1.0
Barium	BDL	NC	99.2	100	0.8	101	99.4	1.6
Beryllium	BDL	NC	94.5	95.5	1.1	96.3	94.9	1.5
Cadmium	BDL	NC	95.3	96.3	1.0	97.8	96.4	1.4
Calcium	0.054	NC	92.1	92.6	0.5	94.3	92.8	1.6
Chromium	BDL	NC	94.2	95.2	1.1	95.7	94.9	0.8
Cobalt	BDL	NC	94.3	94.6	0.3	96.3	94.5	1.9
Copper	0.001	NC	95.5	96.1	0.6	97.0	95.6	1.5
Iron	0.010	NC	93.2	94.2	1.1	94.9	94.6	0.3
Lead	BDL	NC	94.1	94.3	0.2	95.6	94.3	1.4
Magnesium	BDL	NC	94.7	95.7	1.1	96.3	95.1	1.3
Manganese	BDL	NC	95.5	96.8	1.4	97.1	96.2	0.9
Nickel	BDL	NC	93.7	93.7	0.0	95.9	93.8	2.2
Potassium	BDL	NC	95.0	94.8	0.2	94.2	93.3	1.0
Selenium	BDL	NC	90.1	91.0	1.0	91.2	90.4	0.9
Silver	BDL	NC	94.6	95.0	0.4	96.0	94.6	1.5
Sodium	0.2	NC	115	113	1.8	101	99.0	2.0
Thallium	BDL	NC	91.8	92.7	1.0	93.4	92.5	1.0
Vanadium	BDL	NC	93.7	94.4	0.7	95.7	94.2	1.6
Zinc	BDL	NC	95.3	96.5	1.3	97.2	96.3	0.9

QA/QC Batch 99977, Sample No: AQ24969 (AQ25219, AQ25222, AQ25226)

ICP Metals - Soil

Aluminum	BDL	1.80	79.0	87.8	10.6	NC	NC	NC
Antimony	BDL	NC	91.2	103	12.2	76.8	78.9	2.7
Arsenic	BDL	NC	77.9	84.0	7.5	80.9	84.2	4.0
Barium	BDL	2.50	87.4	96.2	9.6	94.2	97.4	3.3

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Beryllium	BDL	NC	85.8	94.3	9.4	89.5	91.1	1.8
Cadmium	BDL	NC	86.8	94.6	8.6	89.0	92.4	3.7
Calcium	0.5	14.5	86.9	89.3	2.7	NC	NC	NC
Chromium	BDL	5.30	85.4	96.6	12.3	89.8	92.1	2.5
Cobalt	BDL	5.60	91.4	101	10.0	90.2	94.2	4.3
Copper	BDL	0.60	89.3	97.9	9.2	93.4	99.3	6.1
Iron	BDL	2.40	93.3	101	7.9	NC	NC	NC
Lead	BDL	15.6	85.4	92.6	8.1	99.8	92.8	7.3
Magnesium	BDL	12.6	83.2	91.9	9.9	NC	NC	NC
Manganese	BDL	14.2	95.7	104	8.3	96.5	95.1	1.5
Nickel	BDL	3.40	90.2	99.7	10.0	90.1	93.6	3.8
Potassium	BDL	12.2	92.4	103	10.8	69.4	62.7	10.1
Selenium	BDL	NC	74.2	80.4	8.0	73.2	75.6	3.2
Silver	BDL	NC	86.2	94.6	9.3	92.5	96.1	3.8
Sodium	BDL	4.20	104	104	0.0	NC	NC	NC
Thallium	BDL	NC	88.5	96.0	8.1	87.6	90.6	3.4
Vanadium	BDL	6.10	90.2	99.3	9.6	90.1	93.4	3.6
Zinc	BDL	15.7	83.9	91.9	9.1	90.4	89.3	1.2

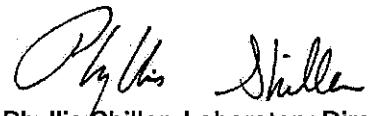
QA/QC Batch 100008, Sample No: AQ25232 (AQ25230)

ICP Metals - Dissolved

Aluminum	BDL	NC	88.0	87.5	0.6	59.4	62.0	4.3
Antimony	BDL	NC	88.6	88.0	0.7	101	102	1.0
Arsenic	BDL	NC	85.0	84.4	0.7	104	105	1.0
Barium	BDL	NC	94.2	93.5	0.7	95.2	96.2	1.0
Beryllium	BDL	NC	88.7	88.2	0.6	88.7	89.3	0.7
Cadmium	BDL	NC	93.7	92.9	0.9	87.9	88.7	0.9
Calcium	BDL	6.00	90.4	89.2	1.3	NC	NC	NC
Chromium	BDL	NC	91.6	90.7	1.0	88.0	89.0	1.1
Cobalt	BDL	NC	90.4	89.7	0.8	84.1	84.9	0.9
Copper	BDL	NC	91.5	90.8	0.8	103	104	1.0
Iron	BDL	NC	90.2	89.4	0.9	91.1	92.6	1.6
Lead	BDL	NC	90.2	89.4	0.9	87.0	87.2	0.2
Magnesium	BDL	0	95.0	94.6	0.4	NC	NC	NC
Manganese	BDL	122	92.1	91.8	0.3	93.9	94.7	0.8
Nickel	BDL	NC	89.6	89.0	0.7	81.3	82.3	1.2
Potassium	BDL	22.6	87.6	87.3	0.3	NC	NC	NC
Selenium	BDL	NC	82.5	81.8	0.9	98.2	97.9	0.3
Silver	BDL	NC	89.6	88.8	0.9	112	113	0.9
Sodium	BDL	3.50	89.4	88.4	1.1	NC	NC	NC
Thallium	BDL	NC	88.3	87.5	0.9	79.1	79.6	0.6
Vanadium	BDL	5.40	90.9	90.5	0.4	92.5	92.3	0.2
Zinc	BDL	NC	89.9	88.9	1.1	99.1	100	0.9

QA/QC Batch 100056, Sample No: AQ25237 (AQ25219, AQ25222, AQ25226)

Mercury	BDL	NC	104	105	1.0	>125	124	NC
---------	-----	----	-----	-----	-----	------	-----	----


QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
-----------	-------	------------	----------	-----------	------------	-------------	-----------------	-----

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria

Phyllis Shiller, Laboratory Director
May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 14, 2008

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 100037, Sample No: AQ25230 (AQ25230)								
Chromium, Hexavalent	BDL	NC	98.4			100		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

May 14, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

May 14, 2008

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 100185, Sample No: AQ24061 (aq25230)							
Volatiles							
1,1,1,2-Tetrachloroethane	ND	111	93	17.6	70	102	37.2
1,1,1-Trichloroethane	ND	111	95	15.5	67	105	44.2 3
1,1,2,2-Tetrachloroethane	ND	104	88	16.7	88	101	13.8
1,1,2-Trichloroethane	ND	98	93	5.2	88	95	7.7
1,1-Dichloroethane	ND	110	94	15.7	59	107	57.8 3
1,1-Dichloroethene	ND	85	101	17.2	118	84	33.7
1,1-Dichloropropene	ND	96	95	1.0	97	98	1.0
1,2,3-Trichlorobenzene	ND	128	104	20.7	94	90	4.3
1,2,3-Trichloropropane	ND	126	102	21.1	87	107	20.6
1,2,4-Trichlorobenzene	ND	92	84	9.1	82	76	7.6
1,2,4-Trimethylbenzene	ND	97	91	6.4	94	92	2.2
1,2-Dibromo-3-chloropropane	ND	125	97	25.2	74	107	36.5
1,2-Dichlorobenzene	ND	95	86	9.9	85	87	2.3
1,2-Dichloroethane	ND	99	96	3.1	87	95	8.8
1,2-Dichloropropane	ND	101	95	6.1	88	97	9.7
1,3,5-Trimethylbenzene	ND	100	92	8.3	92	92	0.0
1,3-Dichlorobenzene	ND	96	87	9.8	86	86	0.0
1,3-Dichloropropane	ND	111	93	17.6	80	103	25.1
1,4-Dichlorobenzene	ND	90	81	10.5	83	84	1.2
2,2-Dichloropropane	ND	126	<70	NC	33	112	109.0 3
2-Chlorotoluene	ND	98	89	9.6	91	93	2.2
2-Hexanone	ND	99	83	17.6	74	93	22.8
2-Isopropyltoluene	ND	103	92	11.3	90	91	1.1
4-Chlorotoluene	ND	100	91	9.4	90	91	1.1
4-Methyl-2-pentanone	ND	102	92	10.3	84	99	16.4
Acetone	ND	<70	75	NC	64	65	1.6
Acrolein	ND	94	87	7.7	54	65	18.5
Acrylonitrile	ND	113	92	20.5	70	105	40.0
Benzene	ND	94	95	1.1	93	92	1.1
Bromobenzene	ND	103	91	12.4	92	93	1.1
Bromochloromethane	ND	103	93	10.2	66	100	41.0 3
Bromodichloromethane	ND	103	95	8.1	86	98	13.0
Bromoform	ND	113	94	18.4	74	104	33.7
Bromomethane	ND	110	96	13.6	60	106	55.4
Carbon Disulfide	ND	97	101	4.0	75	90	18.2
Carbon tetrachloride	ND	116	86	29.7	57	109	62.7 3
Chlorobenzene	ND	99	94	5.2	93	94	1.1
Chloroethane	ND	103	73	34.1	86	97	12.0

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Chloroform	ND	99	99	0.0	87	95	8.8
Chloromethane	ND	110	88	22.2	88	102	14.7
cis-1,2-Dichloroethene	ND	95	101	6.1	97	92	5.3
cis-1,3-Dichloropropene	ND	106	83	24.3	62	99	46.0
Dibromochloromethane	ND	109	92	16.9	81	103	23.9
Dibromoethane	ND	106	87	19.7	71	104	37.7
Dibromomethane	ND	96	96	0.0	81	94	14.9
Dichlorodifluoromethane	ND	>130	>130	NC	133	128	3.8
Ethylbenzene	ND	102	96	6.1	93	95	2.1
Hexachlorobutadiene	ND	99	88	11.8	85	88	3.5
Isopropylbenzene	ND	101	94	7.2	96	99	3.1
m&p-Xylene	ND	100	96	4.1	95	93	2.1
Methyl ethyl ketone	ND	98	95	3.1	75	99	27.6
Methyl t-butyl ether (MTBE)	ND	105	88	17.6	61	100	48.4
Methylene chloride	ND	115	<70	NC	64	112	54.5
n-Butylbenzene	ND	93	86	7.8	87	84	3.5
n-Propylbenzene	ND	99	92	7.3	91	92	1.1
Naphthalene	ND	>130	121	NC	114	102	11.1
o-Xylene	ND	98	97	1.0	95	94	1.1
p-Isopropyltoluene	ND	103	92	11.3	90	91	1.1
sec-Butylbenzene	ND	93	85	9.0	92	94	2.2
Styrene	ND	96	93	3.2	91	92	1.1
tert-Butylbenzene	ND	102	93	9.2	95	96	1.0
Tetrachloroethene	ND	102	93	9.2	91	94	3.2
Tetrahydrofuran (THF)	ND	107	102	4.8	94	97	3.1
Toluene	ND	95	94	1.1	91	92	1.1
trans-1,2-Dichloroethene	ND	96	98	2.1	91	90	1.1
trans-1,3-Dichloropropene	ND	113	80	34.2	57	105	59.3
trans-1,4-dichloro-2-butene	ND	>130	<70	NC	35	107	101.4
Trichloroethene	ND	98	95	3.1	91	92	1.1
Trichlorofluoromethane	ND	121	105	14.2	74	111	40.0
Trichlorotrifluoroethane	ND	94	97	3.1	94	93	1.1
Vinyl chloride	ND	105	107	1.9	96	100	4.1
% 1,2-dichlorobenzene-d4	100	101	96	5.1	96	99	3.1
% Bromofluorobenzene	96	100	101	1.0	103	101	2.0
% Dibromofluoromethane	96	96	101	5.1	94	98	4.2
% Toluene-d8	100	97	100	3.0	100	98	2.0

QA/QC Batch 100548, Sample No: AQ24508 (aq25230)

Volatiles

1,1,1,2-Tetrachloroethane	ND	81	87	7.1	86	90	4.5
1,1,1-Trichloroethane	ND	89	94	5.5	92	99	7.3
1,1,2,2-Tetrachloroethane	ND	86	83	3.6	95	91	4.3
1,1,2-Trichloroethane	ND	90	95	5.4	96	98	2.1
1,1-Dichloroethane	ND	95	98	3.1	97	100	3.0
1,1-Dichloroethene	ND	96	100	4.1	100	105	4.9
1,1-Dichloropropene	ND	96	105	9.0	99	105	5.9
1,2,3-Trichlorobenzene	ND	82	93	12.6	83	96	14.5
1,2,3-Trichloropropane	ND	92	87	5.6	90	82	9.3

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,2,4-Trichlorobenzene	ND	80	91	12.9	82	92	11.5
1,2,4-Trimethylbenzene	ND	89	98	9.6	92	98	6.3
1,2-Dibromo-3-chloropropane	ND	<70	71	NC	76	78	2.6
1,2-Dichlorobenzene	ND	89	97	8.6	93	97	4.2
1,2-Dichloroethane	ND	85	89	4.6	86	89	3.4
1,2-Dichloropropane	ND	93	101	8.2	97	101	4.0
1,3,5-Trimethylbenzene	ND	88	96	8.7	91	96	5.3
1,3-Dichlorobenzene	ND	91	98	7.4	93	98	5.2
1,3-Dichloropropane	ND	90	93	3.3	96	96	0.0
1,4-Dichlorobenzene	ND	87	93	6.7	90	93	3.3
2,2-Dichloropropane	ND	78	87	10.9	76	89	15.8
2-Chlorotoluene	ND	92	99	7.3	95	101	6.1
2-Hexanone	ND	<70	<70	NC	60	63	4.9
2-Isopropyltoluene	ND	90	101	11.5	93	102	9.2
4-Chlorotoluene	ND	91	98	7.4	93	98	5.2
4-Methyl-2-pentanone	ND	73	80	9.2	80	80	0.0
Acetone	ND	<70	<70	NC	34	39	13.7
Acrolein	ND	77	77	0.0	54	49	9.7
Acrylonitrile	ND	84	86	2.4	90	88	2.2
Benzene	ND	96	104	8.0	100	105	4.9
Bromobenzene	ND	93	98	5.2	97	98	1.0
Bromochloromethane	ND	92	97	5.3	97	100	3.0
Bromodichloromethane	ND	80	89	10.7	84	89	5.8
Bromoform	ND	<70	<70	NC	65	66	1.5
Bromomethane	ND	95	98	3.1	91	101	10.4
Carbon Disulfide	ND	100	108	7.7	97	106	8.9
Carbon tetrachloride	ND	71	95	28.9	69	95	31.7
Chlorobenzene	ND	93	102	9.2	96	104	8.0
Chloroethane	ND	91	115	23.3	93	113	19.4
Chloroform	ND	96	96	0.0	97	96	1.0
Chloromethane	ND	93	122	27.0	97	124	24.4
cis-1,2-Dichloroethene	ND	101	103	2.0	104	107	2.8
cis-1,3-Dichloropropene	ND	83	87	4.7	88	88	0.0
Dibromochloromethane	ND	<70	73	NC	74	78	5.3
Dibromoethane	ND	88	92	4.4	94	94	0.0
Dibromomethane	ND	85	91	6.8	90	91	1.1
Dichlorodifluoromethane	ND	102	119	15.4	125	147	16.2
Ethylbenzene	ND	93	105	12.1	96	105	9.0
Hexachlorobutadiene	ND	83	94	12.4	84	95	12.3
Isopropylbenzene	ND	92	99	7.3	82	87	5.9
m&p-Xylene	ND	93	107	14.0	96	110	13.6
Methyl ethyl ketone	ND	<70	<70	NC	58	63	8.3
Methyl t-butyl ether (MTBE)	ND	80	84	4.9	79	81	2.5
Methylene chloride	ND	87	96	9.8	90	101	11.5
n-Butylbenzene	ND	87	99	12.9	88	96	8.7
n-Propylbenzene	ND	93	101	8.2	94	100	6.2
Naphthalene	ND	83	95	13.5	95	108	12.8
o-Xylene	ND	89	103	14.6	93	105	12.1
p-Isopropyltoluene	ND	89	100	11.6	92	97	5.3

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
sec-Butylbenzene	ND	83	93	11.4	93	102	9.2
Styrene	ND	91	104	13.3	93	104	11.2
tert-Butylbenzene	ND	91	101	10.4	93	102	9.2
Tetrachloroethene	ND	94	102	8.2	99	105	5.9
Tetrahydrofuran (THF)	ND	82	76	7.6	86	82	4.8
Toluene	ND	92	103	11.3	96	105	9.0
trans-1,2-Dichloroethene	ND	95	98	3.1	97	99	2.0
trans-1,3-Dichloropropene	ND	81	82	1.2	86	84	2.4
trans-1,4-dichloro-2-butene	ND	74	<70	NC	78	69	12.2
Trichloroethene	ND	93	101	8.2	97	102	5.0
Trichlorofluoromethane	ND	94	100	6.2	89	92	3.3
Trichlorotrifluoroethane	ND	93	100	7.3	92	99	7.3
Vinyl chloride	ND	96	115	18.0	103	120	15.2
% 1,2-dichlorobenzene-d4	100	100	98	2.0	99	100	1.0
% Bromofluorobenzene	98	91	97	6.4	94	98	4.2
% Dibromofluoromethane	91	99	90	9.5	101	93	8.2
% Toluene-d8	99	99	103	4.0	97	101	4.0

QA/QC Batch 100018, Sample No: AQ25215 (AQ25230)

Semivolatiles

1,2,4-Trichlorobenzene	ND	82	72	13.0
1,2-Dichlorobenzene	ND	77	69	11.0
1,2-Diphenylhydrazine	ND			
1,3-Dichlorobenzene	ND	72	65	10.2
1,4-Dichlorobenzene	ND	72	65	10.2
2,4,5-Trichlorophenol	ND	99	94	5.2
2,4,6-Trichlorophenol	ND	95	87	8.8
2,4-Dichlorophenol	ND	91	81	11.6
2,4-Dimethylphenol	ND	53	46	14.1
2,4-Dinitrophenol	ND	81	83	2.4
2,4-Dinitrotoluene	ND	85	80	6.1
2,6-Dichlorophenol	ND			
2,6-Dinitrotoluene	ND	91	84	8.0
2-Chloronaphthalene	ND	82	74	10.3
2-Chlorophenol	ND	74	66	11.4
2-Methylnaphthalene	ND	83	74	11.5
2-Methylphenol (o-cresol)	ND	76	69	9.7
2-Nitroaniline	ND	114	116	1.7
2-Nitrophenol	ND	87	77	12.2
3&4-Methylphenol (m&p-cresol)	ND	80	72	10.5
3,3'-Dichlorobenzidine	ND			
3-Nitroaniline	ND			
4,6-Dinitro-2-methylphenol	ND	78	77	1.3
4-Bromophenyl phenyl ether	ND	96	88	8.7
4-Chloro-3-methylphenol	ND	96	85	12.2
4-Chloroaniline	ND	74	63	16.1
4-Chlorophenyl phenyl ether	ND	91	84	8.0
4-Nitroaniline	ND	88	80	9.5
4-Nitrophenol	ND	103	103	0.0

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Acenaphthene	ND	83	76	8.8			
Acenaphthylene	ND	79	71	10.7			
Anthracene	ND	82	76	7.6			
Benz(a)anthracene	ND	87	83	4.7			
Benzidine	ND						
Benzo(a)pyrene	ND	80	75	6.5			
Benzo(b)fluoranthene	ND	81	76	6.4			
Benzo(ghi)perylene	ND	98	94	4.2			
Benzo(k)fluoranthene	ND	83	74	11.5			
Benzoic acid	ND						
Benzyl alcohol	ND						
Benzyl butyl phthalate	ND	83	78	6.2			
Bis(2-chloroethoxy)methane	ND	81	71	13.2			
Bis(2-chloroethyl)ether	ND	73	65	11.6			
Bis(2-chloroisopropyl)ether	ND	76	68	11.1			
Bis(2-ethylhexyl)phthalate	ND	85	80	6.1			
Chrysene	ND	89	84	5.8			
Di-n-butylphthalate	ND	72	67	7.2			
Di-n-octylphthalate	ND	92	87	5.6			
Dibenz(a,h)anthracene	ND	97	93	4.2			
Dibenzofuran	ND	82	75	8.9			
Diethyl phthalate	ND	88	80	9.5			
Dimethylphthalate	ND	86	80	7.2			
Fluoranthene	ND	74	72	2.7			
Fluorene	ND	87	81	7.1			
Hexachlorobenzene	ND	87	79	9.6			
Hexachlorobutadiene	ND	86	77	11.0			
Hexachlorocyclopentadiene	ND						
Hexachloroethane	ND	75	67	11.3			
Indeno(1,2,3-cd)pyrene	ND	97	90	7.5			
Isophorone	ND	82	73	11.6			
N-Nitrosodi-n-propylamine	ND	78	70	10.8			
N-Nitrosodimethylamine	ND	59	53	10.7			
N-Nitrosodiphenylamine	ND	99	94	5.2			
Naphthalene	ND	80	71	11.9			
Nitrobenzene	ND	81	72	11.8			
Pentachlorophenol	ND	121		NC			
Phenanthrene	ND	85	79	7.3			
Phenol	ND	76	68	11.1			
Pyrene	ND	75	71	5.5			
Pyridine	ND						
% 2,4,6-Tribromophenol	103	101	90	11.5			
% 2-Fluorobiphenyl	66	77	69	11.0			
% 2-Fluorophenol	62	69	61	12.3			
% Nitrobenzene-d5	74	77	70	9.5			
% Phenol-d5	66	75	67	11.3			
% Terphenyl-d14	61	66	63	4.7			

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 100087, Sample No: AQ26007 (AQ25219, AQ25222, AQ25226)							
Semivolatiles							
1,2,4,5-Tetrachlorobenzene	ND	77	80	3.8	69	70	1.4
1,2,4-Trichlorobenzene	ND	77	80	3.8	66	69	4.4
1,2-Dichlorobenzene	ND	72	75	4.1	61	61	0.0
1,3-Dichlorobenzene	ND	72	74	2.7	59	61	3.3
1,4-Dichlorobenzene	ND	72	75	4.1	61	63	3.2
2,4,5-Trichlorophenol	ND	95	95	0.0	88	89	1.1
2,4,6-Trichlorophenol	ND	81	85	4.8	75	81	7.7
2,4-Dichlorophenol	ND	86	89	3.4	82	89	8.2
2,4-Dimethylphenol	ND	47	50	6.2	54	57	5.4
2,4-Dinitrophenol	ND	43	54	22.7	<30	<30	NC
2,4-Dinitrotoluene	ND	72	75	4.1	81	82	1.2
2,6-Dinitrotoluene	ND	79	81	2.5	84	81	3.6
2-Chloronaphthalene	ND	76	78	2.6	72	75	4.1
2-Chlorophenol	ND	78	83	6.2	71	70	1.4
2-Methylnaphthalene	ND	83	85	2.4	79	75	5.2
2-Methylphenol (o-cresol)	ND	74	78	5.3	72	76	5.4
2-Nitroaniline	ND	>130	>130	NC	106	107	0.9
2-Nitrophenol	ND	74	78	5.3	68	73	7.1
3&4-Methylphenol (m&p-cresol)	ND	72	76	5.4	87	87	0.0
3,3'-Dichlorobenzidine	ND	N/A	N/A	NC	N/A	N/A	NC
3-Nitroaniline	ND	>130	>130	NC	>130	>130	NC
4,6-Dinitro-2-methylphenol	ND	70	83	17.0	35	<30	NC
4-Bromophenyl phenyl ether	ND	88	91	3.4	78	88	12.0
4-Chloro-3-methylphenol	ND	85	89	4.6	99	98	1.0
4-Chloroaniline	ND	>130	>130	NC	71	60	16.8
4-Chlorophenyl phenyl ether	ND	84	85	1.2	80	81	1.2
4-Nitroaniline	ND	91	94	3.2	80	80	0.0
4-Nitrophenol	ND	70	76	8.2	86	96	11.0
Acenaphthene	ND	77	78	1.3	72	77	6.7
Acenaphthylene	ND	76	77	1.3	73	74	1.4
Acetophenone	ND	74	77	4.0	70	70	0.0
Aniline	ND	N/A	N/A	NC	N/A	N/A	NC
Anthracene	ND	86	89	3.4	78	89	13.2
Azobenzene	ND	72	74	2.7	71	76	6.8
Benz(a)anthracene	ND	84	88	4.7	85	88	3.5
Benzidine	ND	N/A	N/A	NC	N/A	N/A	NC
Benzo(a)pyrene	ND	86	91	5.6	82	85	3.6
Benzo(b)fluoranthene	ND	87	93	6.7	81	90	10.5
Benzo(ghi)perylene	ND	98	93	5.2	73	73	0.0
Benzo(k)fluoranthene	ND	82	87	5.9	81	86	6.0
Benzoic acid	ND	N/A	N/A	NC	N/A	N/A	NC
Benzyl butyl phthalate	ND	85	88	3.5	83	85	2.4
Bis(2-chloroethoxy)methane	ND	77	82	6.3	72	74	2.7
Bis(2-chloroethyl)ether	ND	79	82	3.7	67	66	1.5
Bis(2-chloroisopropyl)ether	ND	77	80	3.8	63	66	4.7
Bis(2-ethylhexyl)phthalate	ND	87	90	3.4	88	87	1.1

QA/QC Data

SDG I.D.: GAQ25219

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Carbazole	ND	87	95	8.8	108	121	11.4
Chrysene	ND	85	88	3.5	84	88	4.7
Di-n-butylphthalate	ND	84	89	5.8	81	88	8.3
Di-n-octylphthalate	ND	89	95	6.5	92	93	1.1
Dibenz(a,h)anthracene	ND	104	101	2.9	77	79	2.6
Dibenzofuran	ND	72	74	2.7	79	82	3.7
Diethyl phthalate	ND	78	81	3.8	84	86	2.4
Dimethylphthalate	ND	79	81	2.5	77	83	7.5
Fluoranthene	ND	90	96	6.5	90	98	8.5
Fluorene	ND	84	84	0.0	80	84	4.9
Hexachlorobenzene	ND	83	88	5.8	75	81	7.7
Hexachlorobutadiene	ND	78	83	6.2	73	78	6.6
Hexachlorocyclopentadiene	ND	73	76	4.0	N/A	N/A	NC
Hexachloroethane	ND	68	73	7.1	58	61	5.0
Indeno(1,2,3-cd)pyrene	ND	97	96	1.0	78	77	1.3
Isophorone	ND	76	79	3.9	73	76	4.0
N-Nitrosodi-n-propylamine	ND	74	76	2.7	71	71	0.0
N-Nitrosodimethylamine	ND	59	63	6.6	56	51	9.3
N-Nitrosodiphenylamine	ND	113	116	2.6	105	112	6.5
Naphthalene	ND	80	83	3.7	75	75	0.0
Nitrobenzene	ND	70	76	8.2	65	66	1.5
Pentachloronitrobenzene	ND	81	85	4.8	79	80	1.3
Pentachlorophenol	ND	82	83	1.2	60	60	0.0
Phenanthrene	ND	87	92	5.6	91	100	9.4
Phenol	ND	88	92	4.4	97	95	2.1
Pyrene	ND	87	92	5.6	86	94	8.9
Pyridine	ND	50	57	13.1	49	48	2.1
% 2,4,6-Tribromophenol	57	86	88	2.3	78	86	9.8
% 2-Fluorobiphenyl	50	79	79	0.0	70	69	1.4
% 2-Fluorophenol	52	76	79	3.9	68	67	1.5
% Nitrobenzene-d5	53	70	73	4.2	66	68	3.0
% Phenol-d5	56	82	86	4.8	71	73	2.8
% Terphenyl-d14	49	84	87	3.5	72	77	6.7

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

May 14, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

May 14, 2008

SDG ID.: GAQ25219

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

SURFACE WATER

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

May 08, 2008

FOR: Attn: A. Pinkerton
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: GROUND WATER
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20081167

Custody Information

Collected by: _____
 Received by: LB
 Analyzed by: see "By" below

Date 04/30/08 Time 15:10

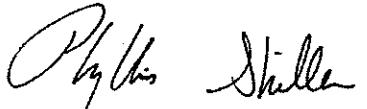
Date 04/30/08 Time 17:00

SDG I.D.: GAQ24392

Phoenix I.D.: AQ24399

Laboratory Data

Client ID: ASTORIA FAMITECH & SUPERSTEELS 1166-SW-01


Parameter	Result	RL	Units	Date	Time	By	Reference
Silver (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Aluminum (Dissolved)	< 0.01	0.01	mg/L	05/01/08		T/E	6010/200.7
Arsenic (Dissolved)	< 0.004	0.004	mg/L	05/01/08		T/E	6010/200.7
Barium (Dissolved)	0.012	0.002	mg/L	05/01/08		T/E	6010/200.7
Beryllium (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Calcium (Dissolved)	246	0.10	mg/L	05/02/08		J/E	6010/200.7
Cadmium (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Cobalt (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Chromium (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Copper (Dissolved)	0.006	0.001	mg/L	05/01/08		T/E	6010/200.7
Iron (Dissolved)	0.049	0.002	mg/L	05/01/08		T/E	6010/200.7
Mercury (Dissolved)	< 0.0002	0.0002	mg/L	05/01/08		RS	SW-7470
Potassium (Dissolved)	327	1.0	mg/L	05/02/08		J/E	6010/200.7
Magnesium (Dissolved)	740	1.0	mg/L	05/02/08		J/E	6010/200.7
Manganese (Dissolved)	0.034	0.001	mg/L	05/01/08		T/E	6010/200.7
Sodium (Dissolved)	5610	10	mg/L	05/02/08		J/E	6010/200.7
Nickel (Dissolved)	< 0.001	0.001	mg/L	05/01/08		T/E	6010/200.7
Lead (Dissolved)	< 0.002	0.002	mg/L	05/01/08		T/E	6010/200.7
Antimony (Dissolved)	< 0.005	0.005	mg/L	05/01/08		T/E	6010/200.7
Selenium (Dissolved)	< 0.010	0.010	mg/L	05/01/08		T/E	6010/200.7
Thallium (Dissolved)	< 0.005	0.005	mg/L	05/05/08		RS	279.2
Vanadium (Dissolved)	0.054	0.002	mg/L	05/01/08		T/E	6010/200.7
Zinc (Dissolved)	0.012	0.002	mg/L	05/01/08		T/E	6010/200.7
Dissolved, Trivalent Chromium	< 0.01	0.01	mg/L	05/05/08		EG	Calculation
Dissolved Chromium, Hexavalent	< 0.01	0.01	mg/L	04/30/08		CD	S3500CRD
Filtration	Completed			04/30/08		AG	0.45um Filter
Dissolved Mercury Digestion	Completed			05/01/08		D	SW7470
Dissolved Metals Preparation	Completed			04/30/08		AG	SW846-3005

Parameter	Result	RL	Units	Date	Time	By	Reference
-----------	--------	----	-------	------	------	----	-----------

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Level RL=Reporting Level

Phyllis Shiller, Laboratory Director

May 08, 2008

Tuesday, March 25, 2008

**Attn: Mr. Ryan Barrett
Property Solutions, Inc.
31A Northfield Avenue
Edison, NJ 08837**

**Client ID: 20080635 ZAVAS
Sample ID#s: AQ08308**

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

A handwritten signature in black ink that reads "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

**CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
NY Lab Registration #11301
RI Lab Registration #63
NH Lab Registration #213693-A,B
ME Lab Registration #CT-007
NJ Lab Registration #CT-003
PA Lab Registration #68-03530**

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 25, 2008

FOR: Attn: Mr. Ryan Barrett
 Property Solutions, Inc.
 31A Northfield Avenue
 Edison, NJ 08837

Sample Information

Matrix: WATER
 Location Code: PROPSOLN
 Rush Request: RUSH##
 P.O.#: 20080635

Custody Information

Collected by: _____
 Received by: LP
 Analyzed by: see "By" below

Date 03/17/08 Time 11:30

Date 03/18/08 Time 18:00

SDG I.D.: GAQ08308

Phoenix I.D.: AQ08308

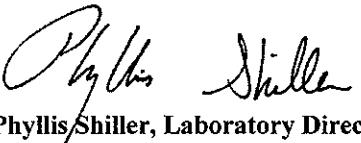
Laboratory Data

Client ID: 20080635 ZAVAS 0635-SW-03

Parameter	Result	RL	Units	Date	Time	By	Reference
Silver	< 0.001	0.001	mg/L	03/18/08		EK	6010/200.7
Aluminum	0.995	0.010	mg/L	03/18/08		EK	6010/200.7
Arsenic	0.01	0.004	mg/L	03/18/08		EK	6010/200.7
Barium	0.015	0.002	mg/L	03/18/08		EK	6010/200.7
Beryllium	< 0.001	0.001	mg/L	03/18/08		EK	6010/200.7
Calcium	262	0.10	mg/L	03/19/08		EK	6010/200.7
Cadmium	< 0.001	0.001	mg/L	03/18/08		EK	6010/200.7
Cobalt	< 0.002	0.002	mg/L	03/18/08		EK	6010/200.7
Chromium	< 0.001	0.001	mg/L	03/18/08		EK	6010/200.7
Copper	0.010	0.001	mg/L	03/18/08		EK	6010/200.7
Iron	1.38	0.002	mg/L	03/18/08		EK	6010/200.7
Mercury	0.0003	0.0002	mg/L	03/19/08		RS	7470/E245.1
Potassium	376	1.0	mg/L	03/19/08		EK	6010/200.7
Magnesium	812	1.0	mg/L	03/20/08		T/E	6010/200.7
Manganese	0.101	0.001	mg/L	03/18/08		EK	6010/200.7
Sodium	6860	100	mg/L	03/20/08		T/E	6010/200.7
Nickel	< 0.001	0.001	mg/L	03/18/08		EK	6010/200.7
Lead	< 0.002	0.002	mg/L	03/18/08		EK	6010/200.7
Antimony	< 0.005	0.005	mg/L	03/18/08		EK	6010/200.7
Selenium	< 0.010	0.010	mg/L	03/18/08		EK	6010/200.7
Thallium	< 0.002	0.002	mg/L	03/19/08		RS	SW7841/279.2
Vanadium	0.064	0.002	mg/L	03/18/08		EK	6010/200.7
Zinc	< 0.20	0.20	mg/L	03/20/08		T/E	6010/200.7
Phenolics	< 0.015	0.015	mg/L	03/20/08		L/G	E420.4
Total Organic Carbon	2.8	1.0	mg/L	03/19/08		JL	SM 5310B
Formaldehyde Prep for HPLC	Completed			03/19/08		O	
Mercury Digestion	Completed			03/19/08		D	7471/245.1
Semi-Volatile Extraction	Completed			03/18/08		O/K	SW3510/3520
PCB/Pesticide Extraction	Completed			03/19/08		O	SW3510/3520
Total Metals Digestion	Completed			03/18/08		AG	

Parameter	Result	RL	Units	Date	Time	By	Reference
Pesticides/PCB							
4,4'-DDD	ND	0.1	ug/L	03/21/08		MH	608
4,4'-DDE	ND	0.1	ug/L	03/21/08		MH	608
4,4'-DDT	ND	0.1	ug/L	03/21/08		MH	608
a-BHC	ND	0.05	ug/L	03/21/08		MH	608
Aldrin	ND	0.05	ug/L	03/21/08		MH	608
b-BHC	ND	0.05	ug/L	03/21/08		MH	608
Chlordane	ND	0.5	ug/L	03/21/08		MH	608
d-BHC	ND	0.05	ug/L	03/21/08		MH	608
Dieldrin	ND	0.1	ug/L	03/21/08		MH	608
Endosulfan I	ND	0.05	ug/L	03/21/08		MH	608
Endosulfan II	ND	0.1	ug/L	03/21/08		MH	608
Endosulfan Sulfate	ND	0.1	ug/L	03/21/08		MH	608
Endrin	ND	0.1	ug/L	03/21/08		MH	608
Endrin Aldehyde	ND	0.1	ug/L	03/21/08		MH	608
g-BHC (Lindane)	ND	0.05	ug/L	03/21/08		MH	608
Heptachlor	ND	0.1	ug/L	03/21/08		MH	608
Heptachlor Epoxide	ND	0.05	ug/L	03/21/08		MH	608
Methoxychlor	ND	0.5	ug/L	03/21/08		MH	608
PCB-1016	ND	0.5	ug/L	03/21/08		MH	608
PCB-1221	ND	0.5	ug/L	03/21/08		MH	608
PCB-1232	ND	0.5	ug/L	03/21/08		MH	608
PCB-1242	ND	0.5	ug/L	03/21/08		MH	608
PCB-1248	ND	0.5	ug/L	03/21/08		MH	608
PCB-1254	ND	0.5	ug/L	03/21/08		MH	608
PCB-1260	ND	0.5	ug/L	03/21/08		MH	608
Toxaphene	ND	1.0	ug/L	03/21/08		MH	608
QA/QC Surrogates							
%DCBP (Surrogate Rec)	81		%	03/21/08		MH	608
%TCMX (Surrogate Rec)	76		%	03/21/08		MH	608
Formaldehyde	< 100	100	ug/L	03/20/08		JH	SW8315
Volatiles							
1,1,1-Trichloroethane	ND	5	ug/L	03/21/08		R/J	E624
1,1,2,2-tetrachloroethane	ND	5	ug/L	03/21/08		R/J	E624
1,1,2-Trichloroethane	ND	5	ug/L	03/21/08		R/J	E624
1,1-Dichloroethane	ND	5	ug/L	03/21/08		R/J	E624
1,1-Dichloroethene	ND	5	ug/L	03/21/08		R/J	E624
1,2-Dichlorobenzene	ND	5	ug/L	03/21/08		R/J	E624
1,2-Dichloroethane	ND	5	ug/L	03/21/08		R/J	E624
1,2-Dichloropropane	ND	5	ug/L	03/21/08		R/J	E624
1,3-Dichlorobenzene	ND	5	ug/L	03/21/08		R/J	E624
1,4-Dichlorobenzene	ND	5	ug/L	03/21/08		R/J	E624
2-Chloroethyl vinyl ether	ND	5	ug/L	03/21/08		R/J	E624
Acrolein	ND	25	ug/L	03/21/08		R/J	E624
Benzene	ND	5	ug/L	03/21/08		R/J	E624
Bromodichloromethane	ND	5	ug/L	03/21/08		R/J	E624
Bromoform	ND	5	ug/L	03/21/08		R/J	E624
Bromomethane	ND	5	ug/L	03/21/08		R/J	E624
Carbon tetrachloride	ND	5	ug/L	03/21/08		R/J	E624
Chlorobenzene	ND	5	ug/L	03/21/08		R/J	E624
Chloroethane	ND	5	ug/L	03/21/08		R/J	E624

Parameter	Result	RL	Units	Date	Time	By	Reference
Chloroform	ND	5	ug/L	03/21/08		R/J	E624
Chloromethane	ND	5	ug/L	03/21/08		R/J	E624
cis-1,2-Dichloroethene	ND	5	ug/L	03/21/08		R/J	E624
cis-1,3-Dichloropropene	ND	5	ug/L	03/21/08		R/J	E624
Dibromochloromethane	ND	5	ug/L	03/21/08		R/J	E624
Ethylbenzene	ND	5	ug/L	03/21/08		R/J	E624
m&p-Xylene	ND	5	ug/L	03/21/08		R/J	E624
Methyl t-butyl ether (MTBE)	ND	10	ug/L	03/21/08		R/J	E624
Methylene chloride	ND	5	ug/L	03/21/08		R/J	E624
o-Xylene	ND	5	ug/L	03/21/08		R/J	E624
Tetrachloroethene	ND	5	ug/L	03/21/08		R/J	E624
Toluene	ND	5	ug/L	03/21/08		R/J	E624
trans-1,2-Dichloroethene	ND	5	ug/L	03/21/08		R/J	E624
trans-1,3-Dichloropropene	ND	5	ug/L	03/21/08		R/J	E624
Trichloroethene	ND	5	ug/L	03/21/08		R/J	E624
Trichlorofluoromethane	ND	5	ug/L	03/21/08		R/J	E624
Vinyl chloride	ND	5	ug/L	03/21/08		R/J	E624
QA/QC Surrogates							
% Bromofluorobenzene	97		%	03/21/08		R/J	E624
Base Neutrals & Acid Compounds							
1,2,4-Trichlorobenzene	ND	11	ug/L	03/20/08		KCA	E625
1,2-Dichlorobenzene	ND	11	ug/L	03/20/08		KCA	E625
1,2-Diphenylhydrazine	ND	11	ug/L	03/20/08		KCA	E625
1,3-Dichlorobenzene	ND	11	ug/L	03/20/08		KCA	E625
1,4-Dichlorobenzene	ND	11	ug/L	03/20/08		KCA	E625
2,4,6-Trichlorophenol	ND	11	ug/L	03/20/08		KCA	E625
2,4-Dichlorophenol	ND	11	ug/L	03/20/08		KCA	E625
2,4-Dimethylphenol	ND	11	ug/L	03/20/08		KCA	E625
2,4-Dinitrophenol	ND	54	ug/L	03/20/08		KCA	E625
2,4-Dinitrotoluene	ND	11	ug/L	03/20/08		KCA	E625
2,6-Dinitrotoluene	ND	11	ug/L	03/20/08		KCA	E625
2-Chloronaphthalene	ND	11	ug/L	03/20/08		KCA	E625
2-Chlorophenol	ND	11	ug/L	03/20/08		KCA	E625
2-Nitrophenol	ND	11	ug/L	03/20/08		KCA	E625
3,3-Dichlorobenzidine	ND	22	ug/L	03/20/08		KCA	E625
4,6-Dinitro-2-methylphenol	ND	54	ug/L	03/20/08		KCA	E625
4-Bromophenyl phenyl ether	ND	11	ug/L	03/20/08		KCA	E625
4-Chloro-3-methylphenol	ND	22	ug/L	03/20/08		KCA	E625
4-Chlorophenyl phenyl ether	ND	11	ug/L	03/20/08		KCA	E625
4-Nitrophenol	ND	54	ug/L	03/20/08		KCA	E625
Acenaphthene	ND	11	ug/L	03/20/08		KCA	E625
Acenaphthylene	ND	11	ug/L	03/20/08		KCA	E625
Anthracene	ND	11	ug/L	03/20/08		KCA	E625
Benz(a)anthracene	ND	11	ug/L	03/20/08		KCA	E625
Benzidine	ND	11	ug/L	03/20/08		KCA	E625
Benzo(a)pyrene	ND	11	ug/L	03/20/08		KCA	E625
Benzo(b)fluoranthene	ND	11	ug/L	03/20/08		KCA	E625
Benzo(ghi)perylene	ND	11	ug/L	03/20/08		KCA	E625
Benzo(k)fluoranthene	ND	11	ug/L	03/20/08		KCA	E625
Benzyl butyl phthalate	ND	11	ug/L	03/20/08		KCA	E625
Bis(2-chloroethoxy)methane	ND	11	ug/L	03/20/08		KCA	E625


Parameter	Result	RL	Units	Date	Time	By	Reference
Bis(2-chloroethyl)ether	ND	11	ug/L	03/20/08		KCA	E625
Bis(2-chloroisopropyl)ether	ND	11	ug/L	03/20/08		KCA	E625
Bis(2-ethylhexyl)phthalate	ND	11	ug/L	03/20/08		KCA	E625
Chrysene	ND	11	ug/L	03/20/08		KCA	E625
Di-n-butylphthalate	ND	11	ug/L	03/20/08		KCA	E625
Di-n-octylphthalate	ND	11	ug/L	03/20/08		KCA	E625
Dibenz(a,h)anthracene	ND	11	ug/L	03/20/08		KCA	E625
Diethyl phthalate	ND	11	ug/L	03/20/08		KCA	E625
Dimethylphthalate	ND	11	ug/L	03/20/08		KCA	E625
Fluoranthene	ND	11	ug/L	03/20/08		KCA	E625
Fluorene	ND	11	ug/L	03/20/08		KCA	E625
Hexachlorobenzene	ND	11	ug/L	03/20/08		KCA	E625
Hexachlorobutadiene	ND	11	ug/L	03/20/08		KCA	E625
Hexachlorocyclopentadiene	ND	11	ug/L	03/20/08		KCA	E625
Hexachloroethane	ND	11	ug/L	03/20/08		KCA	E625
Indeno(1,2,3-cd)pyrene	ND	11	ug/L	03/20/08		KCA	E625
Isophorone	ND	11	ug/L	03/20/08		KCA	E625
N-Nitrosodi-n-propylamine	ND	11	ug/L	03/20/08		KCA	E625
N-Nitrosodimethylamine	ND	11	ug/L	03/20/08		KCA	E625
N-Nitrosodiphenylamine	ND	11	ug/L	03/20/08		KCA	E625
Naphthalene	ND	11	ug/L	03/20/08		KCA	E625
Nitrobenzene	ND	11	ug/L	03/20/08		KCA	E625
Pentachlorophenol	ND	54	ug/L	03/20/08		KCA	E625
Phenanthrene	ND	11	ug/L	03/20/08		KCA	E625
Phenol	ND	11	ug/L	03/20/08		KCA	E625
Pyrene	ND	11	ug/L	03/20/08		KCA	E625
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	96		%	03/20/08		KCA	E625
% 2-Fluorobiphenyl	77		%	03/20/08		KCA	E625
% 2-Fluorophenol	65		%	03/20/08		KCA	E625
% Nitrobenzene-d5	70		%	03/20/08		KCA	E625
% Phenol-d5	77		%	03/20/08		KCA	E625
% Terphenyl-d14	31		%	03/20/08		KCA	E625

1 = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller

Phyllis Shiller, Laboratory Director
March 25, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 25, 2008

QA/QC Data

SDG ID.: GAQ08308

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
-----------	-------	---------	-------	--------	---------	----------	--------------	-----

QA/QC Batch 95490, Sample No: AQ06125 (AQ08308)

ICP Metals - Aqueous

Aluminum	BDL	4.9	98.6	99.4	0.8	107	107	0.0
Antimony	BDL	NC	102	103	1.0	105	105	0.0
Arsenic	BDL	NC	102	100	2.0	106	105	0.9
Barium	BDL	NC	103	104	1.0	101	101	0.0
Beryllium	BDL	NC	101	101	0.0	102	101	1.0
Cadmium	BDL	NC	101	103	2.0	101	101	0.0
Calcium	BDL	2.6	101	102	1.0	NC	NC	NC
Chromium	0.002	NC	99.9	101	1.1	99.4	99.1	0.3
Cobalt	BDL	NC	99.6	101	1.4	98.5	98.1	0.4
Copper	0.003	3.7	101	102	1.0	103	103	0.0
Iron	0.011	2.4	106	104	1.9	102	100	2.0
Lead	BDL	NC	99.5	100	0.5	99.4	100	0.6
Magnesium	BDL	2.2	100	100	0.0	NC	NC	NC
Manganese	BDL	2.1	102	101	1.0	98.7	99.2	0.5
Nickel	0.002	8.8	99.8	101	1.2	97.3	96.6	0.7
Potassium	BDL	2.0	98.8	97.8	1.0	93.1	91.2	2.1
Selenium	BDL	NC	92.8	93.5	0.8	97.9	97.5	0.4
Silver	BDL	NC	99.0	99.8	0.8	102	102	0.0
Sodium	BDL	2.0	101	99.2	1.8	NC	NC	NC
Vanadium	BDL	NC	100	101	1.0	100	100	0.0
Zinc	BDL	NC	101	102	1.0	104	105	1.0

Comment:

Some of the elements were detected in the method blank. A sample bias can not be ruled out for samples that have concentrations at a comparable level.

QA/QC Batch 95205, Sample No: AQ06588 (AQ08308)

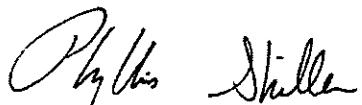
Thallium	BDL	NC	94.0	94.7	0.7	93.3	93.0	0.3
----------	-----	----	------	------	-----	------	------	-----

QA/QC Batch 95493, Sample No: AQ07807 (AQ08308)

Lead (Furnace)	BDL		101	101	0.0	105	105	0.0
----------------	-----	--	-----	-----	-----	-----	-----	-----

QA/QC Batch 95584, Sample No: AQ08313 (AQ08308)

Mercury	BDL	NC	98.6	93.4	5.4	83.1	80.2	3.6
---------	-----	----	------	------	-----	------	------	-----


QA/QC Data

SDG ID.: GAQ08308

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria

Phyllis Shiller, Laboratory Director
March 25, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 25, 2008

QA/QC Data

SDG LD.: GAQ08308

Parameter	Blank	Dup RPD	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	SDG LD.: GAQ08308
QA/QC Batch 95673, Sample No: AQ08307 (AQ08308)	BDL	NC	111			94.5		

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

March 25, 2008

Environmental Laboratories, Inc.
 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 25, 2008

QA/QC Data

SDG ID.: GAQ08308

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
QA/QC Batch 95482, Sample No: AQ07398 (AQ08308)							
Semivolatiles							
1,2,4-Trichlorobenzene	ND	86.0	85.0	1.2			
1,2-Dichlorobenzene	ND	82.0	78.0	5.0			
1,2-Diphenylhydrazine	ND						
1,3-Dichlorobenzene	ND	80.0	77.0	3.8			
1,4-Dichlorobenzene	ND	85.0	80.0	6.1			
2,4,5-Trichlorophenol	ND	91.0	95.0	4.3			
2,4,6-Trichlorophenol	ND	95.0	102	7.1			
2,4-Dichlorophenol	ND	92.0	87.0	5.6			
2,4-Dimethylphenol	ND		32.0	NC			
2,4-Dinitrophenol	ND	127		NC			
2,4-Dinitrotoluene	ND	86.0	90.0	4.5			
2,6-Dichlorophenol	ND						
2,6-Dinitrotoluene	ND	86.0	92.0	6.7			
2-Chloronaphthalene	ND	91.0	98.0	7.4			
2-Chlorophenol	ND	80.0	71.0	11.9			
2-Methylnaphthalene	ND	95.0	94.0	1.1			
2-Methylphenol (o-cresol)	ND	83.0	67.0	21.3			
2-Nitroaniline	ND	74.0	71.0	4.1			
2-Nitrophenol	ND	85.0	83.0	2.4			
3&4-Methylphenol (m&p-cresol)	ND	81.0	63.0	25.0			
3,3'-Dichlorobenzidine	ND						
3-Nitroaniline	ND	98.0	34.0	97.0			
4,6-Dinitro-2-methylphenol	ND	122		NC			
4-Bromophenyl phenyl ether	ND	106	106	0.0			
4-Chloro-3-methylphenol	ND	89.0	82.0	8.2			
4-Chloroaniline	ND	75.0		NC			
4-Chlorophenyl phenyl ether	ND	104	114	9.2			
4-Nitroaniline	ND	87.0	90.0	3.4			
4-Nitrophenol	ND	95.0	51.0	60.3			
Acenaphthene	ND	97.0	104	7.0			
Acenaphthylene	ND	89.0	93.0	4.4			
Anthracene	ND	103	101	2.0			
Benz(a)anthracene	ND	94.0	96.0	2.1			
Benzidine	ND						
Benzo(a)pyrene	ND	93.0	92.0	1.1			
Benzo(b)fluoranthene	ND	108	96.0	11.8			
Benzo(ghi)perylene	ND	101	109	7.6			
Benzo(k)fluoranthene	ND	98.0	99.0	1.0			

QA/QC Data

SDG ID.: GAQ08308

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Benzoic acid	ND						
Benzyl alcohol	ND						
Benzyl butyl phthalate	ND	53.0			NC		
Bis(2-chloroethoxy)methane	ND	90.0	86.0	4.5			
Bis(2-chloroethyl)ether	ND	82.0	77.0	6.3			
Bis(2-chloroisopropyl)ether	ND	97.0	88.0	9.7			
Bis(2-ethylhexyl)phthalate	ND	101	107	5.8			
Chrysene	ND	99.0	102	3.0			
Di-n-butylphthalate	ND	56.0			NC		
Di-n-octylphthalate	ND	97.0	100	3.0			
Dibenz(a,h)anthracene	ND	114	120	5.1			
Dibenzofuran	ND	95.0	97.0	2.1			
Diethyl phthalate	ND	37.0			NC		
Dimethylphthalate	ND	30.0			NC		
Fluoranthene	ND	107	104	2.8			
Fluorene	ND	104	113	8.3			
Hexachlorobenzene	ND	97.0	100	3.0			
Hexachlorobutadiene	ND	90.0	89.0	1.1			
Hexachlorocyclopentadiene	ND						
Hexachloroethane	ND	77.0	74.0	4.0			
Indeno(1,2,3-cd)pyrene	ND	108	112	3.6			
Isophorone	ND	87.0	85.0	2.3			
N-Nitrosodi-n-propylamine	ND	95.0	88.0	7.7			
N-Nitrosodimethylamine	ND	87.0	39.0	76.2			
N-Nitrosodiphenylamine	ND	77.0	74.0	4.0			
Naphthalene	ND	94.0	90.0	4.3			
Nitrobenzene	ND	83.0	79.0	4.9			
Pentachlorophenol	ND						
Phenanthrene	ND	106	105	0.9			
Phenol	ND	90.0	40.0	76.9			
Pyrene	ND	100	98.0	2.0			
Pyridine	ND	58.0			NC		
% 2,4,6-Tribromophenol	117	131	128	2.3			
% 2-Fluorobiphenyl	80	84.0	90.0	6.9			
% 2-Fluorophenol	75	80.0	53.0	40.6			
% Nitrobenzene-d5	74	76.0	73.0	4.0			
% Phenol-d5	78	86.0	39.0	75.2			
% Terphenyl-d14	97	103	102	1.0			

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 95531, Sample No: AQ07847 (AQ08308)

Formaldehyde

Formaldehyde ND 111 91.0 94.0 3.2

QA/QC Batch 95836, Sample No: AQ08307 (AQ08308)

Volatiles

1,1,1,2-Tetrachloroethane	ND	106	108	1.9	128	105	19.7
1,1,1-Trichloroethane	ND	109	102	6.6	151	105	35.9

QA/QC Data

SDG I.D.: GAQ08308

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
1,1,2,2-Tetrachloroethane	ND	106	105	0.9	132	107	20.9 3
1,1,2-Trichloroethane	ND	101	102	1.0	132	106	21.8 3
1,1-Dichloroethane	ND	109	106	2.8	161	106	41.2 3
1,1-Dichloroethene	ND	107	100	6.8	117	108	8.0
1,1-Dichloropropene	ND	113	106	6.4	110	108	1.8
1,2,3-Trichlorobenzene	ND	>130	126	NC	106	108	1.9
1,2,3-Trichloropropane	ND	103	102	1.0	133	102	26.4 3
1,2,4-Trichlorobenzene	ND	126	114	10.0	105	93.0	12.1
1,2,4-Trimethylbenzene	ND	106	106	0.0	98.0	97.0	1.0
1,2-Dibromo-3-chloropropane	ND	>130	117	NC	132	116	12.9
1,2-Dichlorobenzene	ND	108	108	0.0	95.0	99.0	4.1
1,2-Dichloroethane	ND	105	107	1.9	165	103	46.3 3
1,2-Dichloropropane	ND	105	105	0.0	163	105	43.3 3
1,3,5-Trimethylbenzene	ND	105	105	0.0	100	99.0	1.0
1,3-Dichlorobenzene	ND	108	111	2.7	91.0	99.0	8.4
1,3-Dichloropropane	ND	105	108	2.8	139	104	28.8 3
1,4-Dichlorobenzene	ND	110	110	0.0	90.0	101	11.5
2,2-Dichloropropane	ND	107	101	5.8	170	93.0	58.6 3
2-Chlorotoluene	ND	112	114	1.8	97.0	108	10.7
2-Hexanone	ND	96.0	102	6.1	248	110	77.1
2-Isopropyltoluene	ND	110	111	0.9	77.0	101	27.0
4-Chlorotoluene	ND	106	108	1.9	96.0	100	4.1
4-Methyl-2-pentanone	ND	96.0	97.0	1.0	258	113	78.2
Acetone	ND	73.0	<70	NC	177	78.0	77.6
Acrolein	ND	96.0	95.0	1.0	121	154	24.0
Acrylonitrile	ND	98.0	100	2.0	199	106	61.0
Benzene	ND	108	106	1.9	129	107	18.6
Bromobenzene	ND	104	108	3.8	97.0	100	3.0
Bromochloromethane	ND	106	104	1.9	122	105	15.0
Bromodichloromethane	ND	104	105	1.0	156	105	39.1 3
Bromoform	ND	107	109	1.9	166	107	43.2 3
Bromomethane	ND	115	104	10.0	132	121	8.7
Carbon Disulfide	ND	100	95.0	5.1	126	109	14.5
Carbon tetrachloride	ND	108	103	4.7	147	106	32.4 3
Chlorobenzene	ND	106	106	0.0	106	103	2.9
Chloroethane	ND	100	96.0	4.1	132	101	26.6
Chloroform	ND	109	107	1.9	144	106	30.4 3
Chloromethane	ND	117	108	8.0	196	112	54.5 3
cis-1,2-Dichloroethene	ND	106	101	4.8	123	103	17.7
cis-1,3-Dichloropropene	ND	101	102	1.0	149	95.0	44.3 3
Dibromochloromethane	ND	105	106	0.9	137	106	25.5 3
Dibromoethane	ND	101	104	2.9	137	105	26.4
Dibromomethane	ND	101	103	2.0	140	102	31.4 3
Dichlorodifluoromethane	ND	108	98.0	9.7	135	111	19.5
Ethylbenzene	ND	107	106	0.9	107	104	2.8
Hexachlorobutadiene	ND	113	111	1.8	127	100	23.8
Isopropylbenzene	ND	122	123	0.8	98.0	103	5.0
m&p-Xylene	ND	109	109	0.0	109	104	4.7
Methyl ethyl ketone	ND	98.0	94.0	4.2	246	115	72.6

QA/QC Data

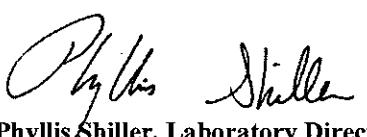
SDG I.D.: GAQ08308

Parameter	Blank	LCS %	LCSD %	LCS RPD	MS Rec %	MS Dup Rec %	RPD
Methyl t-butyl ether (MTBE)	ND						
Methylene chloride	ND	105	104	1.0	119	104	13.5
n-Butylbenzene	ND	78.0	73.0	6.6	105	79.0	28.3
n-Propylbenzene	ND	107	107	0.0	99.0	100	1.0
Naphthalene	ND	>130	127	NC	246	125	65.2
o-Xylene	ND	102	104	1.9	111	103	7.5
p-Isopropyltoluene	ND	109	109	0.0	95.0	100	5.1
sec-Butylbenzene	ND	99.0	98.0	1.0	98.0	100	2.0
Styrene	ND	105	106	0.9	101	90.0	11.5
tert-Butylbenzene	ND	106	105	0.9	101	101	0.0
Tetrachloroethene	ND	110	107	2.8	102	104	1.9
Tetrahydrofuran (THF)	ND	94.0	98.0	4.2	254	105	83.0
Toluene	ND	104	102	1.9	116	104	10.9
trans-1,2-Dichloroethene	ND	106	101	4.8	117	107	8.9
trans-1,3-Dichloropropene	ND	103	102	1.0	169	95.0	56.1
trans-1,4-dichloro-2-butene	ND	90.0	90.0	0.0	136	72.0	61.5
Trichloroethene	ND	104	102	1.9	106	104	1.9
Trichlorofluoromethane	ND	115	112	2.6	115	110	4.4
Trichlorotrifluoroethane	ND	104	96.0	8.0	114	108	5.4
Vinyl chloride	ND	109	100	8.6	150	115	26.4
% 1,2-dichlorobenzene-d4	100	98.0	100	2.0	104	100	3.9
% Bromofluorobenzene	97	99.0	100	1.0	132	102	25.6
% Dibromofluoromethane	96	99.0	98.0	1.0	121	102	17.0
% Toluene-d8	100	100	99.0	1.0	109	100	8.6

3 = This parameter is outside laboratory ms/msd specified limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference


LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Phyllis Shiller, Laboratory Director

March 25, 2008

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06040
Tel. (860) 645-1102 Fax (860) 645-0823

NY Temperature Narration

March 25, 2008

SDG I.D.: GAQ08308

The samples in this delivery group were received at 4C.
(Note acceptance criteria is above freezing up to 6C)

CHAINS OF CUSTODY

PHOENIX

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040
 Email: service@phoenixlabs.com Fax (860) 645-0823

Client Services (860) 645-8726

Customer: Empty Silos/bins
 Address: 323 New Hwy Rd.
Worchester, MA 01650

Project: 2av4s

Report to: R. Barrett

Invoice to: _____

Project P.O.: 20081166

Phone #: _____

Fax #: _____

Client Sample - Information - Identification

Sampler's Signature: Brian Date: _____

Matrix Code:

DW=drinking water

WW=wastewater

S=soil/solid.

O=other

SL=sludge

A=air

Phoenix Sample #	Customer Sample Identification	Sample Matrix	Date Sampled	Time Sampled
25280	1166-SB-(6-2)-08	Soil	4-16-08	1815
25281	1166-SB-(2-4)-08			
25282	1166-SB-(4-6)-08			
25283	1166-SB-(6-8)-08			

*

CHAIN OF CUSTODY RECORD

Data Delivery:

Fax #:

Email:

Temp 70 C Pg 1 of 1

Project P.O.: 20081166

Phone #: _____

Fax #: _____

Analysis Request

Sample ID: 2av4s

Sample Name: Empty Silos/bins

Sample Type: Soil

Sample Subtype: Soil

PHOENIX

Environmental Laboratories, Inc.

CHAIN OF CUSTODY RECORD

587 East Middle Turnpike, P.O. Box 370, Manchester, CT 06040
Email: service@phoenixlabs.com Fax (860) 645-0823

Customer: Project Solutions Inc.

Address: 323 New Albany Rd

Manchester, NS 08057

Client Services (860) 645-8726

Project: Abomin, Tom, Lech, and Zavos

Report to: A. Parkachan

Invoice to:

Data Delivery:

Fax #:

Email: 124444

Temp 45 Pg 1 of

Project P.O.: 20021166-20041167

Phone #:

Fax #:

955-873-3000

955-873-1044

GL VOA (VOC) 100ml

GL Soil Contaminant 15ml

GL Methanol 15ml

GL Acetone 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

GL H2SO4 250ml

GL Acetone 125ml

GL As 15ml

GL H2O2 100ml

GL As 15ml

GL HNO3 250ml

GL NaOH 250ml

<p

Bobbi - Phoenixlabs

From: Ryan Barrett [RBarrett@propertysolutionsinc.com]
Sent: Monday, March 10, 2008 2:28 PM
To: bobbi@phoenixlabs.com
Cc: johnm.phoenixlabs@verizon.net; Tim Clackett; Erin Regan; Richard Bapst
Subject: Astoria, NY - (Zavas & Famitech) - Please release these samples

Bobbi,

We need to release the following samples currently on hold for 24-hour TAT:

Sample No.*	Parameters	TAT	Project Number	Project name
2575	0635-SB-(2-4)-01	SVOCs (8270)	24-HOUR	20080635
2576	0635-SB-(4-6)-01	SVOCs (8270)	24-HOUR	20080635
2580	0635-SB-(0-2)-02	SVOCs (8270) *	24-HOUR	20080635
2582	0635-SB-(4-6)-02	SVOCs (8270) *	24-HOUR	20080635
2583	0663-SB-(0-2)-16	SVOCs (8270)	24-HOUR	Famitech
2584	0663-SB-(2-4)-16	SVOCs (8270)	24-HOUR	Famitech
2586	0663-SB-(0-2)-19	Copper	Immediate digest/5-day TAT	20080663
2587	0663-SB-(2-4)-19	Copper	Immediate digest/5-day TAT	Famitech

*All samples listed were collected on February 26, 2008 and were relinquished via COC dated February 27, 2008

I spoke to John Masculin and he informed me that the mark-up for pricing is 100% from standard TAT price. From the estimates that we have, that would indicate that SVOCs would be \$350.00 per sample. Can you confirm if this is accurate? Also, please let us know what the pricing would be for copper analysis. I know our TAL metals quote for standard TAT is \$111.00. Is it possible to do the digestion for metal analysis immediately and then have analysis on a 5-day TAT, or does the whole process need to be 24-Hour? Let me know. Thank you.

Ryan Barrett
Environmental Scientist

Property Solutions Inc.
323 New Albany Road
Moorestown, NJ 08057
(856)813-3000 Ext: 245
(856)813-1068 Fax
rbarrett@propertysolutionsinc.com

* See attached metals
Cu, Pb, Hg

Bobbi - Phoenixlabs

From: Ryan Barrett [RBarrett@propertysolutionsinc.com]
Sent: Monday, March 10, 2008 3:41 PM
To: Bobbi - Phoenixlabs
Subject: RE: Astoria, NY - (Zavas & Famitech) - Please release these samples

Bobbi,

See below. I would like to add some metals to two of the samples if it is not too late. Can you let me know?
Thanks

Sample No.*	Parameters	TAT	Project Number	Project name
0635-SB-(2-4)-01	SVOCs (8270)	24-HOUR	20080635	Zavas
0635-SB-(4-6)-01	SVOCs (8270)	24-HOUR	20080635	Zavas
0635-SB-(0-2)-02 <i>02580</i>	SVOCs (8270), Copper, Lead, Mercury	24-HOUR/Immediate digest/5-day TAT	20080635	Zavas
0635-SB-(4-6)-02 <i>02582</i>	SVOCs (8270), Copper, Lead, Mercury	24-HOUR/Immediate digest/5-day TAT	20080635	Zavas
0663-SB-(0-2)-16	SVOCs (8270)	24-HOUR	20080663	Famitech
0663-SB-(2-4)-16	SVOCs (8270)	24-HOUR	20080663	Famitech
0663-SB-(0-2)-19	Copper	Immediate digest/5-day TAT	20080663	Famitech
0663-SB-(2-4)-19	Copper	Immediate digest/5-day TAT	20080663	Famitech

Ryan Barrett
Environmental Scientist

Property Solutions Inc.
323 New Albany Road
Moorestown, NJ 08057
(856)813-3000 Ext: 245
(856)813-1068 Fax
rbarrett@propertysolutionsinc.com

From: Bobbi - Phoenixlabs [mailto:bobbi@phoenixlabs.com]
Sent: Monday, March 10, 2008 2:59 PM
To: Ryan Barrett
Subject: RE: Astoria, NY - (Zavas & Famitech) - Please release these samples

Ryan-
I will add these for you....We will digest the two samples tonight for you not a problem. The price for SVOCs is correct on 24hr TAT...the price for Copper, John will have to give to you. If you can't get ahold of him let me know.

APPENDIX G

PROFESSIONAL

QUALIFICATIONS

Ryan Barrett

ENVIRONMENTAL SCIENTIST

EDUCATION	Bachelor of Science, Biology The Pennsylvania State University University Park, Pennsylvania
ACCREDITATIONS	
Relevant Courses	Chemistry, Organic Chemistry, Engineering Mechanics, Field Ecology, Aquatic Ecology, Hydrology, Microbiology, Cell Biology, Oceanography
Career Related Experience	<i>Environmental Field Technician – Water Management</i> Experienced in ASTM sampling procedures for wastewater and groundwater sampling events.

SUMMARY OF QUALIFICATIONS

Mr. Barrett has performed Phase I Environmental Assessments in accordance with ASTM standards, which includes interpreting environmental database reports, interpreting historical information, field evaluation, and documentation through technical report writing.

REPRESENTATIVE PROJECT EXPERIENCE

Residential Apartment Complex – New Jersey

Preformed environmental assessments of apartment complexes located in North Long Branch, New Jersey and Eastampton, New Jersey. The assessments included the evaluation of chemical storage, aboveground storage tanks, underground storage tanks, asbestos-containing materials, lead-based paint, lead in drinking water, and radon sampling.

Retail buildings – Pennsylvania

Preformed an environmental assessment of a shopping center in Harrisburg, Pennsylvania and a retail commercial store in Bloomsburg, Pennsylvania. The assessment included the evaluation of chemical storage, aboveground storage tanks, underground storage tanks, and asbestos-containing materials. Mr. Barrett also evaluated the impact of an on-property dry-cleaning operation in Harrisburg, Pennsylvania.

Industrial building – Morrisville, Pennsylvania

Preformed an environmental assessment of a chemical manufacturing complex in Morrisville, Pennsylvania. The assessment included the evaluation of chemical storage, aboveground storage tanks, underground storage tanks, hazardous materials, and asbestos-containing materials.

Groundwater Sampling – New Jersey, Pennsylvania

Mr. Barrett has performed sampling events regarding the groundwater in various locations in New Jersey and Pennsylvania. The sampling included using procedures outlined by ASTM International standard D6771-02 Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Ground-Water Quality, and required a delivery of the samples to a state certified laboratory under a chain of custody. Mr. Barrett is also familiar with various sampling procedures regarding inside and outside facility wastewater and groundwater sampling such as influent/effluent sampling points, outfall discharge points, holding tanks, grease traps, clean-outs, and monitoring wells.

Andrew P. Pinkerton

ENVIRONMENTAL CONSULTANT

EDUCATION Masters of Science/Mineral Processing
The Pennsylvania State University
University Park, Pennsylvania

Bachelors of Science/Geo-Environmental Engineering
The Pennsylvania State University
University Park, Pennsylvania

ACCREDITATIONS Engineer-in-Training, 1999
OSHA 40-hour HAZWOPER Training

SUMMARY OF QUALIFICATIONS

Mr. Pinkerton has performed Phase I Environmental Assessments in accordance with ASTM standards and Phase II Subsurface Investigations in accordance with local, state and federal regulations. Mr. Pinkerton was also a Teaching Assistant for Contaminant Hydrology at the Pennsylvania State University in the spring of 2000.

REPRESENTATIVE PROJECT EXPERIENCE

Remedial Actions – Surface and Subsurface Spills in New Jersey

Performed Remedial Actions at properties where surface and subsurface soils had been impacted by petroleum compounds from above and underground storage tanks. Responsibilities included overseeing the excavation of contaminated soils, the collection of soil and groundwater samples, and the preparation of a Remedial Action report for submittal to the New Jersey Department of Environmental Protection.

Subsurface Investigations – Current and Former Dry Cleaners

Performed subsurface investigations on a variety of properties across the United States with active dry cleaners and properties where investigations of historical usage of property revealed the former presence of dry cleaners at the property. Responsibilities included developing investigation plans, collection of soil and groundwater samples, review of analytical results compared to various state action levels, and preparation of reports summarizing results and providing recommendations for further action.

Underground Storage Tank Subsurface Investigations

Performed subsurface investigations to evaluate potential impact of current and historical underground storage tanks in Pennsylvania, New Jersey, and New York on environmental conditions of subject properties. Responsibilities included development of sampling plans, field work, and preparation of technical documents discussing results of subsurface investigations and recommendations for further investigation and or remedial action.

Residential apartment complexes – Various locations, Pennsylvania, New Jersey, and Delaware

Performed environmental assessments of various residential apartment complexes, which included sampling drinking water, asbestos-containing materials, and lead-based paint, and performing short-term radon studies.

Retail centers – Various locations, Pennsylvania, New Jersey, and Delaware

Performed environmental assessments of retail centers located in various locations. The assessments included research of historical uses of the properties and environmental database reports, and evaluations of current operations, previous environmental reports, and asbestos-containing materials.

RALPH T. CAPONE, PG

TECHNICAL MANAGER

EDUCATION Bachelor of Science, Geology
Florida Atlantic University
Boca Raton, Florida

ACCREDITATIONS 40-hour Health & Safety Training
NJDEP Licensed Subsurface Evaluator
NJDEP Licensed Underground Storage Tank Closure
Professional Geologist - Delaware

SUMMARY OF QUALIFICATIONS

Mr. Capone has over 20 years of experience in managing and participating in environmental projects. Mr. Capone's experience includes: implementation and oversight for Phase I, Phase II and Phase III Environmental Site Assessments; underground storage tank closure; landfill investigations; Remedial Investigations/Feasibility Studies; and managing projects motivated by the New Jersey Department of Environmental Protection's (NJDEP's) Industrial Site Recovery Act (ISRA). Mr. Capone has developed and implemented soil and groundwater investigations and interpreted analytical data generated from these investigations. Mr. Capone has developed and implemented remediation strategies for addressing impacted soil and groundwater.

REPRESENTATIVE PROJECT EXPERIENCE

Various Landfill Investigations, New York City Department of Sanitation

Served as Project Manager for the New York City Department of Sanitation relative to the investigation of active and closed landfills located on Staten Island and Long Island, New York. Investigations included the installation of soil borings, geotechnical testing, in-situ testing, installation and sampling of monitoring wells, and conducting a drum removal to facilitate delisting a portion of a landfill from the New York State Department of Environmental Conservation.

Underground Storage Tank Management – Various Independent Oil Companies

Mr. Capone has managed all aspects of underground storage tank closure for multiple sites for several large independent oil companies. Closure activities entailed the removal of tanks, remediation of petroleum impacted soil and groundwater including installation of groundwater remediation systems and preparation of reports for submittal to state agencies.

Various ISRA Sites

Mr. Capone has served as Project Management for various sites subject to the NJDEP's ISRA Program. Responsibilities included conducting the initial site assessment, developing remedial strategies, and report preparation for achieving closure from the NJDEP.

Remedial Investigation/Feasibility Study, Legler Landfill, New Jersey

Prepared work plans, supervised field activities, and drafting the Remedial Investigation/Feasibility Study report for the remedial investigation conducted at the Legler Landfill Superfund site in Jackson, New Jersey. Work served as a basis for removal of the site from the superfund list.

Remediation - Emergency Response

Implementing emergency response activities in response to failed underground storage tank system and the resulting discharge of gasoline to surface water. Work included the complete installation of a groundwater pump and treat system less than three days following the detection of the discharge.

Brownfield Sites

Coordinated meetings with various State agencies for qualifying sites for Brownfield funding. Prepared Phase I Environmental Site Assessment/Preliminary Assessment, Site Investigation Reports, Remedial Investigation Workplans including cost estimates for remediation of the sites. Prepared Brownfield and Contaminated Site Remediation Act Redevelopment Agreements for approval by the New Jersey Commerce Economic Growth & Tourism Commission.

TIM CLACKETT

REGIONAL MANAGER

EDUCATION

Bachelors of Environmental Science and Geography
State University of New York at Buffalo
Buffalo, New York

ACCREDITATIONS

OSHA 40-hour HAZWOPER Training
NJDEP Cleanup Star
NJDEP Subsurface Evaluator
USEPA-AHERA Certified Asbestos Inspector and Management Planner
NJDHHS Lead Inspector/ Risk Assessor
OSHA Confined Space Entry Training
ACOE Wetlands Delineator Training

SUMMARY OF QUALIFICATIONS

Mr. Clackett has over seven years experience performing Phase I Environmental Assessments, Phase II Subsurface Investigations, and Regulatory Compliance Audits for commercial, residential, industrial, and institutional real estate transactions throughout the United States and Canada. Mr. Clackett is experienced in landfill closure compliance in accordance with federal and state regulations. Mr. Clackett has performed wetland delineations in accordance with the Army Corps of Engineers 1987 Manual. Mr. Clackett has conducted carbon monoxide modeling for various road improvement projects. Mr. Clackett has developed and implemented air, water, and soil sampling and analysis plans for various hazardous waste sites. In addition, Mr. Clackett has also provided such services as acting as a liaison between regulatory agencies and clients and proposal development.

REPRESENTATIVE PROJECT EXPERIENCE

Vacant Land – Kings Park, NY

Mr. Clackett performed an environmental assessment for a vacant parcel of land located in Kings Park, NY adjacent to a previously closed landfill. The assessment included an evaluation of prior use of the property, the collection of soil gas samples in areas suspected of being impacted by the adjacent landfill, and review of previous reports for the landfill.

Compliance Audit – Town of North Hempstead, NY

Mr. Clackett performed a hazardous material storage compliance audit for properties owned by the Town of North Hempstead. The assessment included an evaluation of Underground Storage Tanks (UST), Aboveground Storage Tanks (AST) and hazardous material storage areas for compliance with applicable federal, state and local regulations.

Landfill Closures, Various Locations

Mr. Clackett has performed several landfill closure investigations in Long Island and Staten Island, NY. The closure investigations included the design of sampling plans, the collection of representative air, soil and water samples and the submittal of closure documents to satisfy state regulations. Mr. Clackett has also performed quality assurance inspections for construction activities related to landfill closures.

Wetland Delineation – Putnam County, NY

Mr. Clackett performed a wetland delineation for a proposed courthouse in Putnam County, NY. The wetland delineation included the identification of wetland vegetation and soils in accordance with the Army Corp of Engineers 1987 Wetland Delineation Manual.

Carbon Monoxide Survey – Route 25, Centereach, NY

Mr. Clackett has performed a carbon monoxide survey of a section of Route 25 located in Centereach, NY for the NYS Department of Transportation. The carbon monoxide survey included modeling of carbon monoxide concentrations at critical locations using the USEPA designated Cal3QHC model. Modeling results were used in the design phase for the rehabilitation of the state owned roadway.

Other Project Experience

Mr. Clackett has overseen various monitoring well installations, soil gas surveys and underground soil probing projects. Based on the findings of the Phase II activities, Mr. Clackett has advised clients of remedial alternatives and provided cost estimations.

Mr. Clackett has performed many Phase I environmental due diligence evaluations of industrial, commercial, and residential properties for various lending institutions and private clients involving: historic research of property usage, bulk sampling for asbestos-containing materials and lead-based paint, radon and lead-in-drinking water, interpretation of environmental database reports, identification of potential contamination and liability based on research, interviews, field evaluation, and documentation through technical report writing.

KEVIN J. BILLINGS, P.E.

SENIOR VICE PRESIDENT

EDUCATION	Bachelor of Electrical Engineering Villanova University Villanova, Pennsylvania
ACCREDITATIONS	Professional Engineer – PA ENVIRONMENTAL EPA Accredited AHERA Asbestos Inspector & Management Planner 40-hour Health & Safety Training 8-hour Supervisor Training Air & Waste Management Association
HUD MAP TRAINING	Baltimore Philadelphia New York

SUMMARY OF QUALIFICATIONS

Mr. Billings background includes execution of environmental evaluations involving: Historic research of site usage, potential contamination identification, formulation of sampling and analysis plans, interpretation of analytical results, soil gas surveys, documentation through technical report writing; Resource Conservation and Recovery Act (RCRA) waste characterization; Industrial Waste management Audits; Toxic Substances Control Act (TSCA) Compliance Audits Recyclable Materials Research. Mr. Billings has completed 40-hour OSHA training and has performed infield testing on numerous occasions.

Mr. Billings has overseen and performed Hundreds of Phase I Environmental Assessments for HUD as well as HUD MAP Phase I Environmental Assessments.

Mr. Billings has also been involved with NEPA studies including Environmental Impact statements, Environmental Assessments, and Categorical Exclusions.

Mr. Billings has been specifically involved in performing HUD MAP Environmental Assessments in Arkansas, Illinois, New York, Indiana, Ohio, Colorado, Kentucky, Massachusetts, New Jersey, Maryland, South Carolina, Washington, Texas, California, Idaho, Oregon, and Rhode Island and overseen others.

Mr. Billings technically reviewed and developed the Environmental Scope of services and guide for Federal Home Loan Bank of Boston which follows the HUD MAP scope but has specific requirements for each of the New England states.

In addition to the Phase I Environmental Assessments for HUD, Mr. Billings has performed and overseen thousands of assessments for Fannie Mae and Freddie Mac.

Mr. Billings has also performed and overseen well over 10,000 Phase I Environmental Assessments in the last 10 years in all 50 states.

Mr. Billings has also performed Phase II Subsurface Investigations for HUD and asbestos consulting.

The below information relates to Mr. Billings' large Superfund scale remediation and investigation experience:

REPRESENTATIVE PROJECT EXPERIENCE

Front Royal, VA- NPL Site

Performed a review and evaluation of past environmental studies and remedial efforts undertaken at a large-scale industrial facility. Performed TSCA and site evaluations for bankruptcy court appointed trustee. Evaluations also included development of cost effective work plans for site remediation and power grid consolidation, saving approximately \$276,000 per year in electricity costs.

Marcus Hook, PA- NPL Site

Assisted in development of a detailed work plan for the removal of friable asbestos materials and developed a detailed work plan addressing PCB concerns on behalf of a client under an EPA administrative order at this site. Developed and implemented sampling and analysis plan for PCB contamination. EPA approved a cost-effective remediation plan encapsulating PCB contamination and foregoing supplementary sampling and analysis.

Emergency Response - Media, PA

Team leader and project manager representing Media Water Company. A release of heating oil to a creek immediately upgradient of the client's drinking water intake occurred, impacting a population of approximately 45,000. An immediate threat to human health was evident; therefore, a temporary intake line was installed upgradient of the impacted area, mitigating the potential for a local fire disaster.

Combined efforts with the responsible party's cleanup contractor put the water filtration plant on-line within 24 hours.

CERCLIS - Bensalem, PA

Project Management efforts involving site evaluation and remedial investigation of a one-hundred acre former Publiker Industries site. Investigations included ground penetrating radar surveys, installation of groundwater monitoring wells, advancement of soil borings, surface water and sediment sample collection, data evaluation, risk assessment, hazardous and non-hazardous waste remediation alternatives. The site was a former butadiene production plant that was located adjacent to another CERCLIS site identified as a wood preserving plant.

CERCLIS - Norristown, PA

Project Management of comprehensive site evaluation of former fiber/paper plant and former tenant that handled hazardous wastes.

State Superfund - Meadville, PA

Review and evaluation of previous reports and studies concerning the site. Performance of site inspection documenting current site conditions. After acceptance by State regulators, the site was redeveloped as an industrial/office park.

State Superfund - Paoli, PA

Project management and site construction management of remedial efforts of former research and development facility under order of PADER. Contamination, including hex and trivalent chromium, lead, and arsenic, as well as volatile organic compounds, was remediated.

Remediation - Carlisle Army Barracks, Carlisle, PA

Provided consulting engineering services for investigation of petroleum contamination related to underground storage tanks located at the barracks; development of corrective action plans, including removal/replacement of the USTs; and soil and groundwater remediation.

Remediation - Former Industrial Site/Fuel Distribution Center, Philadelphia, PA

Performed review and evaluation of historic site operations dating back to the late 1800s that led to the discovery of a former oil tank farm. Preliminary sampling revealed the presence of contamination. After the development of a sampling and analysis plan, using probabilistic methods of contaminant flow analysis, the type, source and extent of contamination was determined.