

2015 RERIODIC REVIEW REPORT

FORMER A.C. DUTTON LUMBER YARD DUTCHESS COUNTY, NEW YORK

NYSDEC Site # C314081

REPORTING PERIOD (December 30, 2014 - March 30, 2016)

prepared for:

THE O'NEIL GROUP – DUTTON, LLC 24 Hudson Street Hackensack, New Jersey 07601

prepared by:

SESI CONSULTING ENGINEERS 12A Maple Avenue Pine Brook, NJ 07058

April 2016

Project No.: 9039

PERIODIC REVIEW REPORT TABLE OF CONTENTS

PERIODIC REVIEW REPORTii
TABLE OF CONTENTSii
LIST OF ACRONYMSv
1.0 INTRODUCTION
1.1 Summary1
1.2 Effectiveness of Remedial Program1
1.3 Compliance2
1.4 Recommendations2
2.0 Site overview
2.1 Site Location and Description2
2.2 Site History
2.2.1 Remedial Investigation (RI) conducted at Site
Soil
Site-Related Groundwater4
Site-Related Soil Vapor Intrusion4
Underground Storage Tanks4
2.2.2 Description of Remedial Actions5
2.2.3 Removal of Contaminated Materials from the Site6
2.2.4 On-Site and Off-Site Treatment Systems8
2.2.5 Description of Residual Contamination8
2.2.6 Management of Residual Contamination through Engineering and Institutional Controls in the Environmental Easement8
3.0 Remedy performance, effectiveness, and protectiveness
4.0 IC/EC Plan compliance
4.1 IC/EC Requirements and Compliance10
4.2 IC/EC Certification11

5.0 Monitoring Plan Compliance	12
6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE	13
7.0 conclusions and recommendatioNS	14

LIST OF TABLES

Table 1.1A, 1.1B & 1.1C – Summary of Groundwater Analytical Data

LIST OF APPENDICES

Appendix A – Site Inspection Forms

- Appendix B Metes & Bounds and Environmental Easement
- Appendix C Laboratory Analytical Reports
- Appendix D NYSDEC Form for Soil Import (01/20/2015)
- Appendix E Site Inspection Photo Log
- Appendix F NYSDEC IC & EC Certification Form
- Appendix G Site Management Plan (SMP) Figures
- Appendix H Permits for this Reporting Period

LIST OF ACRONYMS

Acronym	Definition
AOC	Area of Concern
AST	Aboveground Storage Tank
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
bgs	below ground surface
CAMP	Community Air Monitoring Plan
C&D	Construction & Demolition Materials
COC	Contaminant of Concern
COPEC	Constituents of Potential Ecological Concern
CY	cubic yard
DER	Division of Environmental Remediation
DER-10	NYSDEC Technical Guidance for Site Investigation & Remediation
DUSR	Data Usability Summary Report
ECs	Engineering Controls
ECL	Environmental Conservation Law
ESA	Environmental Site Assessment
FER	Final Engineering Report
FWRIA	Fish and Wildlife Resources Impact Analysis
gpm	gallons per minute
HHEA	Human Health Exposure Assessment
ICs	Institutional Controls
MW	Monitoring Well
NYSDEC	New York State Department of Environmental Conservation
РСВ	Polychlorinated Biphenyls
PID	Photoionization Detector
ppm	parts per million
QAPP	Quality Assurance Project Plan
RA	Remedial Action

Acronym	Definition
RASR	Remedial Action Selection Report
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RDD	Remedial Design Document
RI	Remedial Investigation
RIR	Remedial Investigation Report
RIWP	Remedial Investigation Work Plan
SCG	Standards, Criteria, and Guidance
SCO	Soil Cleanup Objectives
SESI	SESI Consulting Engineers, PC
SMP	Site Management Plan
SSDS	Sub-Slab Depressurization System
SVOCs	Semi-Volatile Organic Compounds
S&W	S&W Redevelopment of North America, LLC.
TAGM	Technical and Administrative Guidance Memorandum
TAL	Target Analyte List
TOGS	Technical and Operations Guidance Series
USEPA	United States Environmental Protection Agency
UST	Underground Storage Tank
VOCs	Volatile Organic Compounds

1.0 INTRODUCTION

1.1 SUMMARY

This is the Periodic Review Report (PRR) for the period December 30, 2014 to March 30, 2016. The PRR is required as an element of the remedial program at the Former AC Dutton Lumber Yard (hereinafter referred to as the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index W# 1066-05-05, Site #C314081, which was executed on July 6, 2005 and last amended on February 4, 2011. The Site area is 11.8 acres; a Site location map is provided in Figure 1.1. Engineering Controls (ECs) have been constructed on the Site to prevent exposure to the remaining residual contamination during Site use. An Environmental Easement granted to the NYSDEC, and recorded with the Dutchess County Clerk, requires compliance with the Site Management Plan (SMP) dated December 2014 and all ECs and institutional controls (ICs) placed on the Site. The ICs place restrictions on Site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs.

This PRR reports the required inspection and monitoring activities that were conducted during the current reporting period. The inspection and monitoring were conducted to ensure compliance with all ECs and ICs required by the Environmental Easement and as stated in the SMP as approved by NYSDEC.

1.2 Effectiveness of Remedial Program

Residual contamination remains on the Site, which has been managed according to the requirements of the SMP to keep the Site safe for commercial and restricted residential uses.

The composite cover system remains intact on the site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination.

The semi-annual sampling of the monitoring well network to determine the effectiveness of the natural degradation of the residual contaminants of concern was

conducted in June 2015 and January 2016. No volatile organic compounds (VOCs) or semi VOCs (SVOCs) were detected during either of the sampling events. Arsenic was detected at levels that exceeded the NYSDEC effluent TOGS. However, chromium, which was detected in the pre-remediation sampling was non-detect (ND) in all wells in both sampling events. A summary of the analytical data for June 2015 and January 2016 sampling event is provided in Tables 1.1A through 1.1C.

The monitoring plan as required in the SMP is effective and protective of the human health and the environment.

1.3 Compliance

SESI completed a site inspection on February 3, 2016 to verify the integrity of the EC's in accordance with the Inspection Checklist provided in Appendix A.

The groundwater monitoring wells were sampled twice in the current reporting period: June 23, 2015 and January 26, 2016 and analyzed for Metals, VOCs and SVOCs, in accordance with the monitoring program in the SMP.

1.4 Recommendations

SESI has verified that the EC's and IC's developed for the site are in compliance with the SMP. SESI recommends continuing the monitoring of groundwater for metals only and discontinue the sampling for VOCs and SVOCs and reducing the monitoring frequency from semi yearly to yearly for the next reporting period. SESI recommends continuing the yearly monitoring of the cover system.

2.0 SITE OVERVIEW

2.1 Site Location and Description

The site is located in the City and Town of Poughkeepsie, County of Dutchess, New York and is comprised of two lots (City of Poughkeepsie Tax ID: 6062-59-766443 and Town of Poughkeepsie Tax ID: 6062-02-763508) on the City and Town of Poughkeepsie Tax Maps. The site is an approximately 11.8-acre area bounded by Hudson River Rowing Association Dock (owned by Vassar College) to the north, a former natural gas regulation station (owned by Central Hudson Gas & Electric) to the south, North Water Street to the east, and a 2.45 acre parcel along the Hudson River Bank owned by the State of New York to the west. Metes and Bounds of the Site and the Environmental Easement are included in Appendix B.

2.2 Site History

The Site was utilized for industrial use from the mid-19th century to 1995. Before 1913, uses of the Site included an iron works and a glass works at the southern portion of the property. Several kilns were associated with the glass works and kiln ash and slag was reportedly used as fill material on the site. The on-site pressure treatment of lumber using chromated copper arsenate (CCA) has reportedly began in 1966 by the A.C. Dutton Lumber Corporation and continued until 1995, when on-site operations ceased. During lumber processing activities, raw lumber was brought to the site by truck, boat, and rail. Lumber was processed in the on-site pressure treatment plants and then dried and stored outside. Complete site history can be found in the following documents:

- Phase I Investigation Report, dated November 1987, prepared by EnviroPlan Associates, Inc.
- Phase I Environmental Site Assessment, dated August 8, 2002, prepared by Ecosystems Strategies, Inc.;
- Summary Report of Sub-structure Investigations, dated October 3, 2002, prepared by Ecosystems Strategies, Inc.; and
- Summary Report of Supplemental Subsurface Investigation, dated November 25, 2002, prepared by Ecosystems Strategies Inc.

2.2.1 Remedial Investigation (RI) conducted at Site

Soil

The areas surrounding the two pre-existing pressure treatment buildings were the most highly impacted by metals contamination. Investigations showed impacts to deposit/soil in the interior collection drains of one of the pressure treatment buildings as high as 138,000 parts per million (ppm) of arsenic. Chromium and copper were detected in that same location at 98,600 ppm and 8,290 ppm, respectively. That was the maximum concentration of chromium detected at the site. The highest concentration of copper detected at the site was 30,700 ppm.

Surface soil - The entire site is impacted by arsenic, likely the result of storage of treated lumber in exposed areas. Concentrations of arsenic in surface soil identified during the RI ranged from non-detect to 811 ppm.

Subsurface soil- Subsurface soil was impacted by arsenic across the site. Concentrations tended to decrease with increasing depth and most impacts were limited to 1 foot below the ground surface with areas of deeper impacts to 3 feet. The soils in the vicinity of the chemical storage tanks in the pressure treatment buildings were impacted by arsenic and chromium to greater depths (8 feet or more). There were four areas of petroleum impacted soils. Soil samples from these areas showed very limited impacts by volatile organic compounds or semi-volatile organic compounds.

Site-Related Groundwater

Limited impacts to groundwater by metals were identified during the RI. Impacts were limited to isolated locations near the pressure treatment buildings. Contaminants associated with petroleum products (i.e., volatile organic compounds and semi-volatile organic compounds) were not detected during the RI in groundwater samples collected from the vicinity of the petroleum impacted areas.

Site-Related Soil Vapor Intrusion

There was no soil vapor intrusion investigation conducted on site due to the low levels of volatile organic compounds detected in the soil and groundwater.

Underground Storage Tanks

Four areas of known or suspected petroleum impacted soil have been documented on-site at the locations of known or suspected underground storage tanks (USTs). Limited associated groundwater contamination has also been documented. Petroleum impacted soils have been document at the following locations: south and southwest of the northern former pressure treatment plant building; under and around the large office building; immediately northeast of the southern former pressure treatment plant building; and, southwest of the former garage/automotive repair building at the southern end of the Site.

2.2.2 Description of Remedial Actions

The site was remediated in accordance with the NYSDEC-approved Remedial Design Work Plan (RDWP) dated May 2011, an Addendum to the approved RDWP, dated November 7, 2011, and a minor modification to the RDWP dated December 4, 2012.

The following is a summary of the Remedial Actions performed at the site:

- Excavation of asphalt/soil/fill/concrete exceeding the site specific guidance level of 300 mg/kg (ppm) for arsenic and restricted residential SCOs for other COCs. The guidance level for arsenic was modified by the NYSDEC during remediation and included the stipulation that a four foot barrier layer of clean fill be installed.
- 2. Removal of all CBS tanks, their contents, and associated CCS impacted debris;
- Scarification of the floor of the Southern Pressure Plant Building to a depth of ½" or until there was no visual evidence of staining;
- 4. Removal of five (5) petroleum bulk storage (PBS) tanks from the site;
- 5. Demolition of on-site structures;
- 6. Construction and maintenance of a soil cover system to prevent human exposure to remaining contaminated soil/fill remaining at the site will consist of 2 feet of clean soil, a demarcation layer and 4-6 feet of fill with slight PAH exceedance of the restricted residential SCO approved by the DEC. The cover will also include a minimum of 6-inch newly installed paving system or concrete during the site development into restricted-residential/commercial use;
- The site was dynamically compacted and any proposed buildings will be surcharged for settlement. This combined compaction will minimize the disturbance of the site soils because it will require shallower foundation.
- 8. Groundwater monitoring; 4 groundwater monitoring wells (MW) were installed on site after the completion of the remediation. The MWs will be

sampled semi-annually for the first year. Additional subsequent sampling will be decided based on the first year results.

- 9. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site;
- Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting.

2.2.3 Removal of Contaminated Materials from the Site

As part of Remedial Action, various contaminated materials were removed and disposed off-site over the period. The materials removed from the site and their quantities are listed in Table 2.1.

Material Removed	Volume of material Removed	Disposal Location	Disposal Period/Date
Non-Haz waste water from STP secondary containment area	21,625-gallons	Paradise Heating Oil	10/10/11 through 10/11/11
Hazardous CBS tank residue from tanks in NTP and STP	2,900-gallons	Pro-Teck	10/13/11
Non-Haz CBS/PBS tank residues from NTP and STP	1088-gallons diesel/fuel oil 100-gallons non-haz liquid 2,390 non-haz liquid	AB Oil Services	10/19/11 10/21/11 10/22/11
Scarification waste from STP	(39) 55-gallon drums scarification waste. (1) 55-gallon drum debris	Model City	10/08/2012
CCA contaminated a soil and concrete from NTP and STP (FO35 hazardous waste direct landfill disposal)	792.77 tons	Envirowaste of Ohio, Inc.	11/27/2012- 01/09/2013
CCA contaminated soil and concrete and CCA contaminated debris (STP only)	97.61 tons	Model city	10/08/2012
Hazardous FO35 liquid waste from sumps in NTP	(4) 55-gallon drums	Pro-Teck	05/2/2013
Cans of oil based paints found in on- site	(1) 55-gallon drum	Pro-Teck	05/2/2013

Table 2.1: Summary of materials removed for off-site disposal

2.2.4 On-Site and Off-Site Treatment Systems

No long-term treatment systems were required to be installed as part of the site remedy.

2.2.5 Description of Residual Contamination

- The excavation for metal contaminated soils was conducted to the site specific levels for arsenic, chromium and copper as specified in the SMP.
- A soil cap that ranges in thickness from 4 to 10 feet covers the entire site. The installed soil cap forms a capping system to cover the impacted soils and it acts as grading to raise the site above the flooding levels. The cap consists of 2-feet of clean soil that meets the restricted residential SCOs over a demarcation layer. The balance of the soils underneath the demarcation layer consists of soils that meet the restricted residential with few exceedances in the poly-aromatic hydrocarbons (PAHs) allowed and approved by the NYDEC.

Figures 1-7, 1-7B and 1-7C from SMP (provided in Appendix F) represent the contaminated soils remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs.

2.2.6 Management of Residual Contamination through Engineering and Institutional Controls in the Environmental Easement

The SMP lists the ECs and ICs required by the NYSDEC to manage the residual contamination present at this Site to protect public health and the environment in the future and keep the Site safe for reuse. The primary Engineering Controls at the site are: (1) a composite cover system comprised, from top to bottom, of a minimum of 24 inches of clean soil, a demarcation layer and 2-6 feet of soils that meet the restricted residential SCO with few PAH exceedances allowed and approved by the NYSDEC since the material is under the demarcation layer; and (2) monitoring of groundwater. The Applicant and Applicant's successors or assigns, must manage the controls and monitoring in full compliance with the terms of the remedial program.

3.0 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

The goal of the SMP is to manage the residual contamination at the site through implementation of ICs and ECs. At present, SESI is conducting monitoring/inspection of the ICs and ECs on the Site in accordance with the SMP dated December 2014.

The overall Site remedy was designed to ensure that residual soil contamination that remains on-site in fill materials below the two foot clean soil cap does not significantly exceed the more stringent of the applicable NYSDEC restricted residential SCO.

In order to monitor the effectiveness of the contaminant removal and the Site natural attenuation, an onsite monitoring well network is sampled on semi-annual basis. Table 1.1A, 1.1B and 1.1C provides a tabular summary of the groundwater monitoring results of the June 2015 and February 2016 sampling events. The groundwater samples did not result in any VOCs or SVOCs in both sampling events. Chromium, which was detected during the RI, resulted in ND in both sampling events for all wells. Arsenic resulted in exceedances of the NYSDEC groundwater effluent TOGS (16 ug/L) during the sampling event of February 2016 in two (2) wells (PR-MW2 and MW4). The monitoring well locations are depicted in Figure 1.3 of the SMP (provided in Appendix G). The laboratory analytical data packages are provided in Appendix C.

4.0 IC/EC PLAN COMPLIANCE

4.1 IC/EC Requirements and Compliance

Institutional Controls

The Institutional Controls (ICs) in-place at the site consist of (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to restricted residential, which will also permit commercial and industrial uses.

The land-use restriction remains in-place and is effective to prohibit the use of the site for anything other than the restricted residential. It also prohibits vegetable gardens and farming on the site.

The Monitoring Plan is intended as a means to observe the long-term effectiveness of the engineering controls at the site. If at any time, the results of the monitoring plan indicate that the site remedy is no longer effective or protective of human health, then ICs will be adjusted and/or added based on the monitoring data.

The SMP is intended to provide guidance for any and all intrusive activities on the site including building construction/expansion, utility line repair/construction and any new construction activities that will cause a disturbance of the soil beneath the demarcation layer. The Site Management Plan remains in-place and is effective.

Engineering Controls

The Engineering Controls (ECs) in-place at the Site consist of (1) site cover system, and (2) a monitoring well network.

The site cover system consists of a minimum 24 inches of clean soil, a demarcation layer and 2-6 feet of soils that meet the restricted residential SCO with few PAH exceedances allowed and approved by the NYSDEC since the material is under the demarcation layer. The objective of this is to prevent the public from being exposed to the residual contamination present beneath the soil cover. The site cover system remains in-place and is effective.

In January 2015, approximately 20,000 cubic yard (CY) of clean soil was imported to the Site for surcharge. SESI submitted a Request to Import Soil form as

required by DER-10 section 5.4(e) to NJDEP (Appendix D). The material was imported from Marist College in Poughkeepsie NY, after NYSDEC approval. The material was sampled in accordance with SMP. In February 2015, 10,000-15,000 CY of rock were imported on the Site for surcharge. The material was approved by the NYSDEC through a Request to Import Soil (Appendix D). The rock material was not sampled for chemical analysis because the sieve analysis resulted in less than 10% of the material passing #80 Sieve.

An onsite monitoring well network is in-place. The monitoring wells are sampled semi-annually to determine the effectiveness of the natural attenuation/degradation. The monitoring wells are all currently in-place and effective for their purpose.

4.2 IC/EC CERTIFICATION

The NYSDEC Institutional and Engineering Controls Certification Form has been completed and is included in Appendix E.

5.0 MONITORING PLAN COMPLIANCE

Monitoring Program	Frequency*	Matrix	Analysis
Cover System	Annual	Soil	Visual
Groundwater	Semi-annually for the current Reporting Period	Water	Metals, VOCs, SVOCs

Table 5.1: Monitoring Program Frequency

Monitoring Completed During Current Reporting Period

Inspection of Composite Cover System was conducted on February 3, 2016. Monitoring wells PR-MW-1, PR-MW-2, PR-MW-3 and PR-MW-4 were sampled on June 23, 2015 and January 26, 2016.

Comparison with Remedial Objectives

The remedial objectives for the composite cover system are being met. The cover system continues to be protective of the human health and the environment for the intended restricted residential use of the property. Fill material was imported to the Site for surcharging purposes from two different sources. In January 2015, approximately 20,000 cubic yard (CY) of clean soil was imported from Marist College Poughkeepsie NY and was sampled in accordance with approved SMP sampling frequency for soil import. A Soil Import/Reuse Form was submitted for NYSDEC approval before importing the material. In February 2015, 10,000-15,000 rock material was imported on Site after approval by the NYSDEC. The rock material did not require chemical analysis because the sieve analysis resulted in less than 10% of the material passing #80 Sieve.

The cover system was found intact during the visual inspection that was conducted on February 3, 2016. Photos of the inspection are included in Appendix E.

Chromium, VOCs and SVOCs were not detected in any of the wells during both sampling events. Two wells (PR-MW2 and MW4) resulted in arsenic levels that exceeded the NYSDEC TOGS effluent (16 ug/L) for groundwater during the January,

2016 sampling event. None of the wells exceeded the arsenic effluent TOGS during the June 2015 sampling event. Lead detects were resulted in wells PR-MW-1, PR-MW-2, and PR-MW-4 at levels below the effluent TOGS. Other metals such as aluminum, iron, and manganese resulted in levels that exceeded the effluent TOGS. A summary of the analytical data for June 2015 and January 2016 sampling event is provided in Tables 1.1A through 1.1C.

Monitoring Deficiencies

All aspects of the monitoring plan were in accordance with NYDEC applicable regulations.

Conclusions and Recommendations

All aspects of the remedial program appear to be meeting the site remedy design goal.

We recommend the following for the next reporting period:

- Groundwater monitoring: reduce the sampling frequency to annual in-lieu of semiannual and collect samples for metals only because only arsenic exceeded the effluent TOGS.
- Cover system: continue the annual visual inspection of the cover system.

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/ soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not applicable.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Compliance with the SMP

All aspects of the SMP including IC/EC and monitoring have met the requirements. The O&M is not required at this time for the site.

There are no new exposure pathways resulting in an unacceptable risk.

Performance and Effectiveness of the Remedy

The composite cover system remains intact on the site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination left onsite beneath the cover system.

The sampling of the monitoring well network is determining the effectiveness of the site ability to naturally degrade the contaminants of concern in groundwater.

The proposed annual monitoring plan for the cover system and groundwater monitoring are effective and protective of the previously approved overall site remedy.

Future PRR Submittals

We do not recommend any changes to the frequency of the PRR submittal at this time because IC's and EC's remain in-place and are effective. The next PRR will be submitted in February 2017.

Recommendations

We recommend the following for the next reporting period:

- Groundwater monitoring: reduce the sampling frequency to annual in-lieu of semiannual and collect samples for metals only because only arsenic exceeded the effluent TOGS.
- Cover system: continue the annual visual inspection of the cover system.

Table 1.1A: Analytical Resuklts for Metals Former A.C. Dutton Lumbe Yard Dutchess County. New York

							Duttiles	s County, N	ewittik									
Sample ID	NYS	PR-MW-1				PR-MW-2					PR-	MW-3		PR-MW-4				
Sample Date	Groundwater	6/23/	/2015	1/26/	2016	6/23	3/2015	1/26/	/2016	6/23	/2015	1/26/2016		6/23/2015		1/26/	6/2016	
Result	Effluent Limits	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	
Metals																		
Mercury	1.4	ND	0.7	ND	0.7	ND	0.7	ND	0.7	ND	0.7	ND	0.7	ND	0.7	ND	0.7	
Aluminum	2,000	14,000	200	11,000	200	580	200	5,400	200	ND	200	6,500	200	ND	200	11,000	200	
Barium	2,000	130	50	86	50	100	50	180	50	ND	50	78	50	ND	50	87	50	
Calcium	NA	120,000	5,000	100,000	5,000	86,000	5,000	61,000	5,000	52,000	5,000	120,000	5,000	43,000	5,000	43,000	5,000	
Chromium	11	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	
Copper	400	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	
Iron	600	19,000	300	17,000	300	9,100	300	38,000	300	ND	300	12,000	300	ND	300	26,000	300	
Magnesium	NA	26,000	5,000	21,000	5,000	7,600	5,000	10,000	5,000	7,800	5,000	32,000	5,000	7,100	5,000	13,000	5,000	
Manganese	600	610	40	490	40	3,100	40	3,600	40	ND	40	520	40	ND	40	1,400	40	
Nickel	200	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	
Potassium	NA	6,500	5,000	ND	5,000	ND	5,000	ND	5,000	ND	5,000	5,400	5,000	ND	5,000	ND	5,000	
Silver	100	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20	ND	20	
Sodium	NA	140,000	5,000	120,000	5,000	98,000	5,000	63,000	5,000	59,000	5,000	92,000	5,000	21,000	5,000	17,000	5,000	
Vanadium	NA	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	ND	50	
Zinc	5,000	1,100	50	600	50	ND	50	120	50	ND	50	260	50	ND	50	150	50	
Antimony	6	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	ND	3	
Arsenic	50	16	2	16	2	27	2	130	2	2.3	2	9.9	2	8.9	2	80	2	
Beryllium	NA	1.2	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	1.3	1	
Cadmium	10	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	
Cobalt	NA	6.3	2	7.2	2	ND	2	6	2	ND	2	4.5	2	ND	2	12	2	
Lead	50	47	3	33	3	ND	3	45	3	ND	3	19	3	ND	3	28	3	
Selenium	20	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	ND	10	
Thallium	NA	2.5	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	

Notes:

All results are in micrograms per liter (ug/L).

ND - Not Detected

Detected concentrations are highlighted.

Detected concentrations exceeding the water quality standards or groundwater effluent limits are highlighted and are in **BLOD**.

Table 1.1B: Analytical ResukIts for Volatile Organic Compounds (VOCs) Former A.C. Dutton Lumbe Yard Dutchess County, New York

Sample ID	NYS	PR-M	IW-1	PR-M	IW-1	PR-N	1W-2	PR-M	W-2	PR-M	W-3	PR-M	N-3	PR-MW-4		PR-M	W-4
Sample Date	Groundwater	6/23/	2015	1/26/	2016	6/23/	2015	1/26/	2016	6/23/2	2015	1/26/2	016	6/23/	2015	1/26/2	2016
Result	Effluent Limits	Result	RL	Result	RL	Result	RL	Result	RL								
Volatiles																	
1,1,1-Trichloroethane	NA	ND	1	ND	1	ND	1	ND	1								
1,1,2,2-Tetrachloroethane	NA	ND	1	ND	1	ND	1	ND	1								
1,1,2-Trichloro-1,2,2-trifluoroe	NA	ND	1	ND	1	ND	1	ND	1								
1,1,2-Trichloroethane	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
1,1-Dichloroethane	NA	ND	1	ND	1	ND	1	ND	1								
1,1-Dichloroethene	NA	ND	1	ND	1	ND	1	ND	1								
1,2,3-Trichlorobenzene	NA	ND	1	ND	1	ND	1	ND	1								
1,2,4-Trichlorobenzene	NA	ND	1	ND	1	ND	1	ND	1								
1,2-Dibromo-3-chloropropane	NA	ND	1	ND	1	ND	1	ND	1								
1,2-Dibromoethane	NA	ND	1	ND	1	ND	1	ND	1								
1,2-Dichlorobenzene	3	ND	1	ND	1	ND	1	ND	1								
1,2-Dichloroethane	0.6	ND	0.5	ND	0.5	ND	0.5	ND	0.5								
1,2-Dichloropropane	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1	ND	1
1,3-Dichlorobenzene	3	ND	1	ND	1	ND	1	ND	1								
1,4-Dichlorobenzene	3	ND	1	ND	1	ND	1	ND	1								
1,4-Dioxane	NA	ND	50	ND	50	ND	50	ND	50								
2-Butanone	NA	ND	1	ND	1	ND	1	ND	1								
2-Hexanone	NA	ND	1	ND	1	ND	1	ND	1								
4-Methyl-2-pentanone	NA	ND	1	ND	1	ND	1	ND	1								
Acetone	NA	ND	5	ND	5	ND	5	ND	5								
Benzene	1	ND	0.5	ND	0.5	ND	0.5	ND	0.5								
Bromochloromethane	NA	ND	1	ND	1	ND	1	ND	1								
Bromodichloromethane	NA	ND	1	ND	1	ND	1	ND	1								
Bromoform	NA	ND	1	ND	1	ND	1	ND	1								
Bromomethane	NA	ND	1	ND	1	ND	1	ND	1								
Carbon disulfide	120	ND	1	ND	1	ND	1	ND	1								
Carbon tetrachloride	5	ND	1	ND	1	ND	1	ND	1								
Chlorobenzene	NA	ND	1	ND	1	ND	1	ND	1								
Chloroethane	NA	ND	1	ND	1	ND	1	ND	1								
Chloroform	7	ND	1	ND	1	ND	1	ND	1								
Chloromethane	NA	ND	1	ND	1	ND	1	ND	1								
cis-1,2-Dichloroethene	NA	ND	1	ND	1	ND	1	ND	1								
cis-1,3-Dichloropropene	0.4	ND	1	ND	1	ND	1	ND	1								
Cyclohexane	NA	ND	1	ND	1	ND	1	ND	1								
Dibromochloromethane	NA	ND	1	ND	1	ND	1	ND	1								
Dichlorodifluoromethane	NA	ND	1	ND	1	ND	1	ND	1								
Ethylbenzene	NA	ND	1	ND	1	ND	1	ND	1								
Isopropylbenzene	NA	ND	1	ND	1	ND	1	ND	1								
m&p-Xylenes	NA	ND	1	ND	1	ND	1	ND	1								
Methyl Acetate	NA	ND	1	ND	1	ND	1	ND	1								
Methylcyclohexane	NA	ND	1	ND	1	ND	1	ND	1								
Methylene chloride	NA	ND	1	ND	1	ND	1	ND	1								
Methyl-t-butyl ether	NA	ND	0.5	ND	0.5	ND	0.5	ND	0.5								
o-Xylene	NA	ND	1	ND	1	ND	1	ND	1								
Styrene	5	ND	1	ND	1	ND	1	ND	1								
Tetrachloroethene	NA	ND	1	ND	1	ND	1	ND	1								
Toluene	NA	ND	1	ND	1	ND	1	ND	1								
trans-1,2-Dichloroethene	NA	ND	1	ND	1	ND	1	ND	1								
trans-1,3-Dichloropropene	0.4	ND	1	ND	1	ND	1	ND	1								
Trichloroethene	5	ND	1	ND	1	ND	1	ND	1								
Trichlorofluoromethane	NA	ND	1	ND	1	ND	1	ND	1								
Vinyl chloride	2	ND	1	ND	1	ND	1	ND	1								
Xylenes (Total)	NA	ND	1	ND	1	ND	1	ND	1								

Notes: All results are in micrograms per liter (ug/L). ND - Not Detected

NA - Not Available

Table 1.1C: Analytical Resuklts for Semivolatile Organic Compounds (SVOCs) Former A.C. Dutton Lumbe Yard Dutchess County, New York

Sample ID	r	1	PR-MV	W-1	PR-M	W-1	PR-M	IW-2	PR-M	1W-2	PR-MW-3		PR-MW-3		PR-M	W-4	PR-MW-4	
Sample Date	NYS Groundwater	NYS Water	6/23/2		1/26/2		6/23/		1/26/		6/23/		1/26/		6/23/		1/26/2	2016
Result	Effluent Limits	Quality Standards	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL	Result	RL
SemiVolatiles															-			
1,1'-Biphenyl	NA	NA	ND	2	ND	2	ND	2		2	ND	2	ND	2	ND	2	ND	2
1,2,4,5-Tetrachlorobenzene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2,3,4,6-Tetrachlorophenol	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2,4,5-Trichlorophenol	2	1	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2
2,4,6-Trichlorophenol	2	1	ND	0.5	ND	0.5	ND	0.5	ND ND	0.5	ND ND	2	ND ND	0.5	ND ND	0.5	ND	2
2,4-Dichlorophenol 2,4-Dimethylphenol	2	1	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
2,4-Dinitrophenol	2	1	ND	10	ND	10	ND	10		10	ND	10	ND	10	ND	10	ND	10
2,4-Dinitrotoluene	NA	5	ND	20	ND	20	ND	2		2	ND	2	ND	20	ND	2	ND	2
2,6-Dinitrotoluene	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2-Chloronaphthalene	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2-Chlorophenol	2	1	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2-Methylnaphthalene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2-Methylphenol	2	1	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
2-Nitroaniline	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
2-Nitrophenol	2	1	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
3&4-Methylphenol	2	1	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
3,3'-Dichlorobenzidine	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
3-Nitroaniline	NA 2	5	ND	2	ND	2	ND ND	2	ND ND	2	ND	2	ND	2	ND ND	2	ND ND	2
4,6-Dinitro-2-methylphenol 4-Bromophenyl-phenylether	2 NA	1 NA	ND ND	10	ND ND	10	ND ND	10		10	ND ND	10	ND ND	10	ND ND	10	ND ND	10
4-Chloro-3-methylphenol	2	1 1	ND	- 2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
4-Chloroaniline	NA	5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
4-Chlorophenyl-phenylether	NA	NA	ND	2.5	ND	0.5	ND	2	ND	2.3	ND	2	ND	2.5	ND	2.5	ND	2.5
4-Nitroaniline	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
4-Nitrophenol	2	1	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Acenaphthene	NA	20	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Acenaphthylene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Acetophenone	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Anthracene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Atrazine	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Benzaldehyde	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Benzo[a]anthracene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Benzo[a]pyrene	ND	ND	ND	2	ND	2	ND	2		2	ND	2	ND	2	ND	2	ND	2
Benzo[b]fluoranthene Benzo[g,h,i]perylene	NA NA	NA NA	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2
Benzolg,n,nperviene Benzolk)fluoranthene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
bis(2-Chloroethoxy)methane	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
bis(2-Chloroethyl)ether	1	1	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
bis(2-Chloroisopropyl)ether	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
bis(2-Ethylhexyl)phthalate	5	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Butylbenzylphthalate	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Caprolactam	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Carbazole	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Chrysene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Dibenzo[a,h]anthracene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Dibenzofuran	NA	NA	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Diethylphthalate	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Dimethylphthalate	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Di-n-butylphthalate	50	50	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Di-n-octylphthalate Fluoranthene	NA NA	NA NA	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2
Fluorantnene	NA	NA	ND	- 2	ND	2	ND	2		2	ND	2	ND	2	ND	2	ND	2
Hexachlorobenzene	0.04	0.04	ND	2	ND	2	ND	2		2	ND	2	ND	2	ND	2	ND	2
Hexachlorobutadiene	0.5	0.5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Hexachlorocyclopentadiene	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Hexachloroethane	NA	5	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Indeno[1,2,3-cd]pyrene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Isophorone	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Naphthalene	NA	NA	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
Nitrobenzene	0.4	0.4	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
N-Nitroso-di-n-propylamine	NA	NA	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5	ND	0.5
N-Nitrosodiphenylamine	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
Pentachlorophenol	2	1	ND	10	ND	10	ND	10		10	ND	10	ND	10		10	ND	10
Phenanthrene	NA	NA	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2	ND	2
pl l																		
Phenol Pyrene	2 NA	1 NA	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2	ND ND	2

Notes: All results are in micrograms per liter (ug/L). ND - Not Detected

NA - Not Available

APPENDIX A – SITE INSPECTION FORMS

INSPECTION CHECKLIST

FORMER AC DUTTON POUGHKEEPSIE , NEW YORK NYSDEC BCP No. C314081

SESI	CONSULTING ENGINEERS	spection Date: 02.03.2016
COMF	POSITE COVER SYSTEM	
-	Is the integrity of the cover system in tact?	Yes <u>X</u> No
-	Do the maintenance records indicate any invasive subsurface work has been completed after the last inspection?	e Yes No _ <u>X_</u>
-	Has any soil been removed or imported from the Site since the last inspection?	Yes <u>X</u> No
-	If soil has been disposed off-Site or imported, has this been completed in accordance with the NYSDEC approved Soil Management Plan for the Site?	Yes _ <u>X</u> _ No
-	If subsurface invasive work was undertaken, has the demarcation geotextile and the "clean soil cover" been restore	ed? Yes <u>X</u> No
-	Did a Professional Engineer or a qualified environmental professional (approved by the NYSDEC) oversee the above work?	Yes <u>X</u> No
-	Was NYSDEC notified of disturbances to the "Clean Soil Cover" ?	Yes No
-	List of all reported disturbances since last inspection:	
	<u>NONE</u>	
SUB-S	SLAB VENTING/DEPRESSURIZATION SYSTEM (SSDS) (WH	HEN NEEDED)
-	Is the SSDS operating as designed?	Yes No
-	Do the maintenance records indicate any problems since the last inspection (e.g., broken vent pipes, clogged sub-slab drainage pipes, odors reported by residents and others etc.)	Yes No
-	Did an inspection of the concrete slab above the SSDS indicate new cracks or other breaches (e.g., new utilities going through the slab, etc.)?	Yes No

-	Have the cracks been sealed?	Yes	No
-	Is the labeling associated with the system in tact?	Yes	No

INSPECTION CHECKLIST

FORMER AC DUTTON POUGHKEEPSIE , NEW YORK NYSDEC BCP No. C314081

SESI CONSULTING ENGINEERS	Inspection Date: 02.03.2016
- Has the annual indoor sampling been completed?	Yes No
 Has the NYSDEC been notified of any problem with the SSDS? 	Yes No
MONITORING WELL NETWORK	
- Are all the on-Site monitoring wells accessible for annual compliance sampling (i.e., they are not covered by soil, dumpsters, etc.)?	Yes <u>X</u> No
 Is the integrity of the flush-mount/stickup manhole covers And associated concrete pads intact? 	Yes <u>X</u> No
- Are the monitoring wells locked and the locks functioning	? Yes <u>X</u> No

INSPECTION CHECKLIST FORMER AC DUTTON POUGHKEEPSIE, NEW YORK NYSDEC BCP No. C314081

SESI CONSULTING ENGINEERS	nspection Date: 02.03.2016
COMPOSITE COVER SYSTEM	
- Is the integrity of the cover system in tact?	Yes <u>X</u> No
- Do the maintenance records indicate any invasive subsurfac work has been completed after the last inspection?	e Yes No _ <u>X</u> _
 Has any soil been removed or imported from the Site since the last inspection? 	Yes <u>X</u> No
 If soil has been disposed off-Site or imported, has this been completed in accordance with the NYSDEC approved Soil Management Plan for the Site? 	Yes <u>X</u> No
 If subsurface invasive work was undertaken, has the demarcation geotextile and the "clean soil cover" been restor 	red? Yes <u>X</u> No
 Did a Professional Engineer or a qualified environmental professional (approved by the NYSDEC) oversee the above work? 	Yes _ <u>X</u> _ No
 Was NYSDEC notified of disturbances to the "Clean Soil Cover" ? 	Yes No
- List of all reported disturbances since last inspection:	
<u>NONE</u>	

APPENDIX B – METES & BOUNDS AND ENVIRONMENTAL EASEMENT

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

SCHEDULE "A" PROPERTY DESCRIPTION

ALL that certain parcel of land with the buildings and improvements thereon erected, situate, lying and being partially in the City of Poughkeepsie and Town of Poughkeepsie, County of Dutchess and State of New York, being a portion of what is shown as Parcel A on a certain map entitled, "Subdivision of Property, A. C. Dutton Lumber Corporation" and filed as map number 7345 and being more particularly bounded and described as follows.

BEGINNING at a point on the northerly line of Dutchess Avenue in the City of Poughkeepsie at the southwesterly corner of a grant of lands underwater to Martin Hoffman by Letters Patent dated August 10, 1815 and recorded in the New York State Department of State in Book 26 of Patents at page 505; heading from said point of beginning along the easterly and northerly lines of the Hoffman Patent, N 05º 09' 22" E, a distance of 383.28 feet and S 84º50'38" E, a distance of 66.00 feet to a point on the westerly line of a grant of lands under water to John Delafield by Letters Patent dated September 22, 1836 and recorded in Book 31 of Patents at page 39; thence heading northerly along the same, N 05° 09' 22" E for a distance of 164.29 feet to a point on a grant of lands under water to Fallkill Iron Works by Letters Patent dated December 12, 1862 and recorded in Book 39 of Patents at page 128; thence heading westerly and northerly along the same, N 88° 15'38" W, a distance of 60.37 feet and N 06° 59' 22" E, a distance of 455.33 feet to a point on the southerly line of a grant of lands underwater to Henry D. Myers by Letters Patent dated March 26, 1870, recorded in Book 42 of Patents at page 1; thence heading northerly along the same, N 06° 59' 22" E, crossing the centerline of an underground creek known as "Kidney Creek", at 10.36 feet, said creek being the division line between the City of Poughkeepsie and the Town of Poughkeepsie and continuing in the Town of Poughkeepsie for a distance of 252.64 feet for a total distance of 263.00 feet and N 13° 05'38" W, a distance of 137.75 feet to a point at the southwesterly corner of Parcel B, f.m. 7354, land now or formerly of Vassar College (L1967 P625), said point also being the northwesterly corner of the herein described Easement; thence heading southeasterly along the lands of Vassar College, S 83° 53' 08" E, a distance of 336.58 feet to a point at the corner of the main portion of Parcel B and the North Water Street portion of Parcel B. said point also being the northeasterly corner of this described Easement; thence heading southerly along the westerly line of the North Water Street portion of lands of Vassar College, the following 9 courses:

1) A curve to the left having a radius of 252.11 feet, a length of 117.24 feet and a delta angle of 26° 38' 41" to a point;

2)S 20° 31' 42" E, a distance of 23.60 feet to a point;

3)A curve to the right having a radius of 71.25 feet, a length of 24.43 feet and a delta angle of 19° 38' 43" to a point;

4)S 00° 52' 32" E, crossing the centerline of the previously mentioned "Kidney Creek" at 268.41feet, said creek being the division line between the Town of Poughkeepsie and the City of Poughkeepsie and continuing in the City of Poughkeepsie for a distance of 156.59 feet for a total distance of 425.00 feet to a point;

5)A curve to the left having a radius of 296.26 feet, a length of 56.38 feet and a delta angle of 10° 54' 13" to a point;

6)S 11° 46' 42" E, a distance of 108.00 feet to a point;

7) A curve to the right having a radius of 474.30 feet, a length of 138.90 feet and a delta angle of 16° 46' 46" to a point;

Environmental Easement Page 9

8)S 04° 59' 58" W, a distance of 115.71 feet to a point;

9)A curve to the left having a radius of 894.65 feet, a length of 34.52 feet and a delta angle of 2° 12' 38" to a concrete monument found at the northwesterly corner of a City of Poughkeepsie Highway Taking area (L22009 P4466);

thence heading southerly along the Taking Line, the following 3 courses:

1)S 18° 10' 56" W, a distance of 26.90 feet to a concrete monument;

2)S 06° 54' 44" W, a distance of 50.77 feet to a concrete monument;

3)S 02° 09' 16" W, a distance of 52.32 feet to a concrete monument, said point being on the northerly line of the unimproved section of Hoffman Street;

thence heading northwesterly along Hoffman Street, N 74° 44' 52" W, a distance of 192.56 feet to a point at the northwesterly corner of Hoffman Street; thence heading southwesterly along Hoffman Street and lands now or formerly of Morrison (L22003 P10228) and Dubraski (L1590 P210), S 15° 15' 08" W, a distance of 310.00 feet to a point on the northerly line of the previously mentioned Dutchess Avenue, said point also being the southeasterly corner of the herein described Easement; thence heading northwesterly along the northerly line of Dutchess Avenue, N 74° 44' 52" W, a distance of 227.54 feet to the point and place of beginning.

CONTAINING 11.839 acres of land, more or less.

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this 20th day of <u>Tane</u>, 2014, between Owner(s) The O'Neill Group-Dutton LLC, having an office at 241 Hudson Street, Hackensack, County of Bergen, State of New Jersey (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of One Dutchess Avenue in the City of and Town of Poughkeepsie, County of Dutchess and State of New York, known and designated on the tax map of the County Clerk of Dutchess as tax map parcel numbers: Section City – 6062, Section Town - 6062 Block City – 59, Block Town - 02 Lot City – 766443, Lot Town – 763508, being the same as that property conveyed to Grantor by deed dated October 1, 2004, and recorded in the Dutchess County Clerk's Office in Liber and Page 02 2004 10889. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 11.839 +/- acres, and is hereinafter more fully described in the Land Title Survey dated September 17, 2013 and revised on September 23, 2013, April 24, 2014 and April 28, 2014 prepared by Larry L. Lynn, L.S., which will be attached to the Site Management Plan. The Controlled Property description is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Index Number: W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;

(4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the Dutchess County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

(5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(6) Data and information pertinent to Site Management of the Controlled

Environmental Easement Page 2

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;

(9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;

(10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential purposes as defined in $6NYCRR\ 375-1.8(g)(2)(i)$, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

¹ County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved by the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:

Site Number: C314081 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500

With a copy to:

Site Control Section

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

> Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

The O'Neill Group-Dutton, LLC: Print Name Date: Title

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

Grantor's Acknowledgment

Jersey STATE OF NEW WORK)) ss:) COUNTY OF Belgen

TERESA DONEGAN NOTARY PUBLIC OF NEW JERSEY ID # 2430446 My Commission Expires 2/26/2018

On the <u>14</u>¹⁶ day of <u>May</u>, in the year 20 14, before me, the undersigned, personally appeared <u>Bub</u> <u>O'Neill</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person upon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New Ybrk

Environmental Easement Page 7

County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner,

By:

Robert W. Schick, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ALBANY)

On the 20^{16} day of 20^{16} , in the year 20^{16} , before me, the undersigned, personally appeared Robert W. Schick, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designee of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her/ signature on the instrument, the individual, or the person upon behalf of which the/individual acted, executed the instrument.

tate of New York Not ry Public

David J. Chiusano Public, State of New York No. 01CH5032146 Gualified in Schenectady Country Commission Expires August 22, 20 County: Dutchess Site No: C314081 Brownfield Cleanup Agreement Index : W3-1066-05-05 as amended by NYSDEC Letter, dated December 15, 2010

SCHEDULE "A" PROPERTY DESCRIPTION

ALL that certain parcel of land with the buildings and improvements thereon erected, situate, lying and being partially in the City of Poughkeepsie and Town of Poughkeepsie, County of Dutchess and State of New York, being a portion of what is shown as Parcel A on a certain map entitled, "Subdivision of Property, A. C. Dutton Lumber Corporation" and filed as map number 7345 and being more particularly bounded and described as follows.

BEGINNING at a point on the northerly line of Dutchess Avenue in the City of Poughkeepsie at the southwesterly corner of a grant of lands underwater to Martin Hoffman by Letters Patent dated August 10, 1815 and recorded in the New York State Department of State in Book 26 of Patents at page 505; heading from said point of beginning along the easterly and northerly lines of the Hoffman Patent, N 05º 09' 22" E, a distance of 383.28 feet and S 84º50'38" E, a distance of 66.00 feet to a point on the westerly line of a grant of lands under water to John Delafield by Letters Patent dated September 22, 1836 and recorded in Book 31 of Patents at page 39; thence heading northerly along the same, N 05° 09' 22" E for a distance of 164.29 feet to a point on a grant of lands under water to Fallkill Iron Works by Letters Patent dated December 12, 1862 and recorded in Book 39 of Patents at page 128; thence heading westerly and northerly along the same, N 88° 15'38" W, a distance of 60.37 feet and N 06° 59' 22" E, a distance of 455.33 feet to a point on the southerly line of a grant of lands underwater to Henry D. Myers by Letters Patent dated March 26, 1870, recorded in Book 42 of Patents at page 1; thence heading northerly along the same, N 06° 59' 22" E, crossing the centerline of an underground creek known as "Kidney Creek", at 10.36 feet, said creek being the division line between the City of Poughkeepsie and the Town of Poughkeepsie and continuing in the Town of Poughkeepsie for a distance of 252.64 feet for a total distance of 263.00 feet and N 13° 05'38" W, a distance of 137.75 feet to a point at the southwesterly corner of Parcel B, f.m. 7354, land now or formerly of Vassar College (L1967 P625), said point also being the northwesterly corner of the herein described Easement; thence heading southeasterly along the lands of Vassar College, S 83° 53' 08" E, a distance of 336.58 feet to a point at the corner of the main portion of Parcel B and the North Water Street portion of Parcel B. said point also being the northeasterly corner of this described Easement; thence heading southerly along the westerly line of the North Water Street portion of lands of Vassar College, the following 9 courses:

1) A curve to the left having a radius of 252.11 feet, a length of 117.24 feet and a delta angle of 26° 38' 41" to a point;

2)S 20° 31' 42" E, a distance of 23.60 feet to a point;

3)A curve to the right having a radius of 71.25 feet, a length of 24.43 feet and a delta angle of 19° 38' 43" to a point;

4)S 00° 52' 32" E, crossing the centerline of the previously mentioned "Kidney Creek" at 268.41feet, said creek being the division line between the Town of Poughkeepsie and the City of Poughkeepsie and continuing in the City of Poughkeepsie for a distance of 156.59 feet for a total distance of 425.00 feet to a point;

5)A curve to the left having a radius of 296.26 feet, a length of 56.38 feet and a delta angle of 10° 54' 13" to a point;

6)S 11° 46' 42" E, a distance of 108.00 feet to a point;

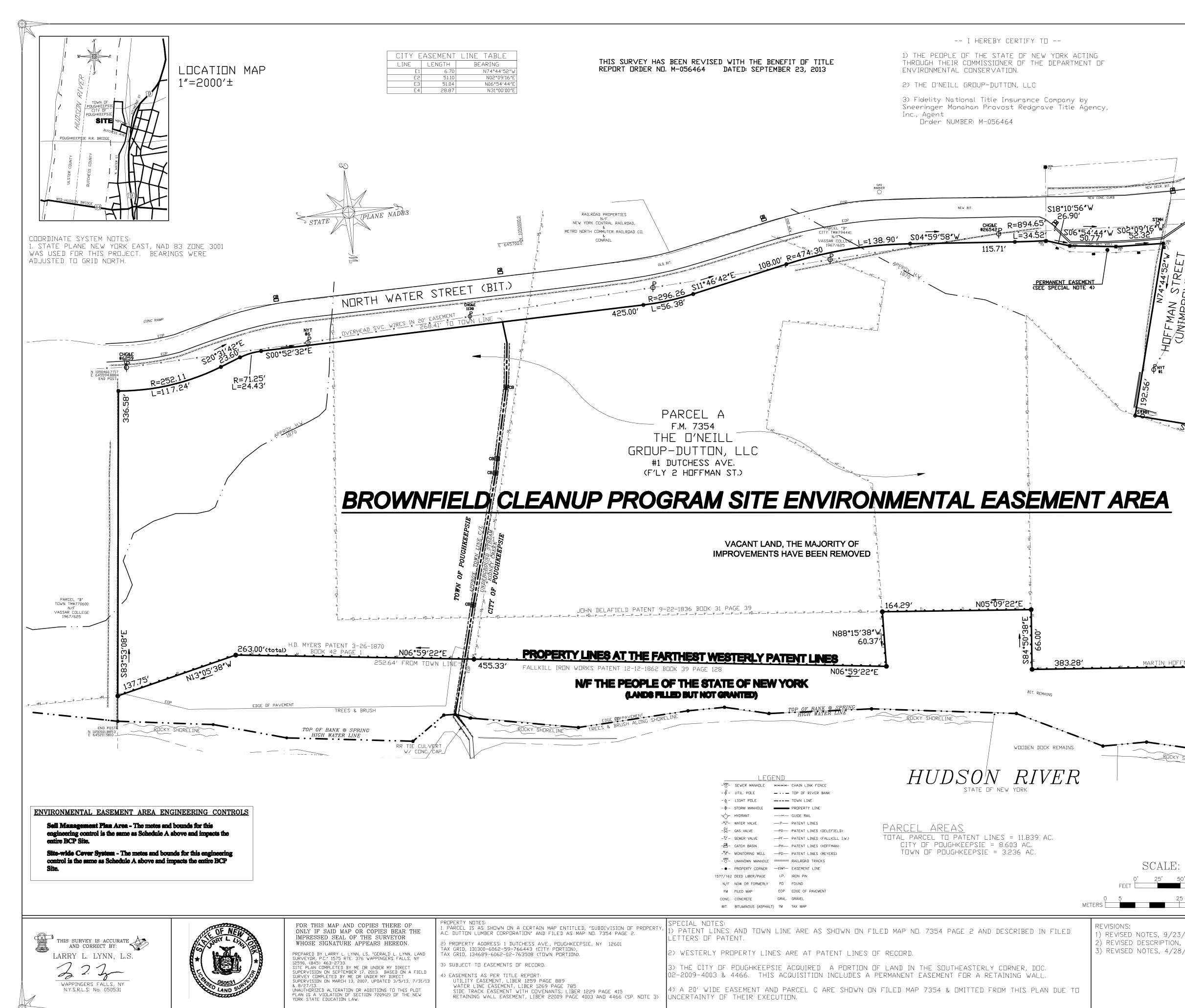
7) A curve to the right having a radius of 474.30 feet, a length of 138.90 feet and a delta angle of 16° 46' 46" to a point;

Environmental Easement Page 9

8)S 04° 59' 58" W, a distance of 115.71 feet to a point;

9)A curve to the left having a radius of 894.65 feet, a length of 34.52 feet and a delta angle of 2° 12' 38" to a concrete monument found at the northwesterly corner of a City of Poughkeepsie Highway Taking area (L22009 P4466);

thence heading southerly along the Taking Line, the following 3 courses:


1)S 18º 10' 56" W, a distance of 26.90 feet to a concrete monument;

2)S 06° 54' 44" W, a distance of 50.77 feet to a concrete monument;

3)S 02° 09' 16" W, a distance of 52.32 feet to a concrete monument, said point being on the northerly line of the unimproved section of Hoffman Street;

thence heading northwesterly along Hoffman Street, N 74° 44' 52" W, a distance of 192.56 feet to a point at the northwesterly corner of Hoffman Street; thence heading southwesterly along Hoffman Street and lands now or formerly of Morrison (L22003 P10228) and Dubraski (L1590 P210), S 15° 15' 08" W, a distance of 310.00 feet to a point on the northerly line of the previously mentioned Dutchess Avenue, said point also being the southeasterly corner of the herein described Easement; thence heading northwesterly along the northerly line of Dutchess Avenue, N 74° 44' 52" W, a distance of 227.54 feet to the point and place of beginning.

CONTAINING 11.839 acres of land, more or less.

underwater to Martin Hoffman by Letters Patent dated August 10, 1815 and recorded in the New York State Department of State in Book 26 of Patents at page 505; heading from said point of beginning along the easterly and northerly lines of the Hoffman Patent, N 05° 09' 22" E, a distance of 383.28 fest and S 84°50'38" E, a distance of 66.00 fest to a point on the westerly line of a grant of lands under water to John Delafis

etters Patent dated September 22, 1836 and recorded in Book 31 of Patents at page 39; thence heading northerly along the same, N 05* 09"

22" E for a distance of 164.29 feet to a point on a grant of lands under water to Falkill iron Works by Letters Patent dated December 12, 1862 and recorded in Book 39 of Patents at page 128; thence heading westerly and northerly along the same, N 86" 15'36" W, a distance of 60.37 feet and N 06" 59' 22" E, a distance of 455.33 feet to a point on the southerly line of a grant of lands underwater to Henry D. Myers by Letters Patent

and Town of Poughkeepsie, County of Dutchess and State of New York, being a portion of what is shown as Parcel A on a certain map entitled, "Subdivision of Property, A. C. Dutton Lumber Corporation" and filed as map number 7345 and being more particularly bounded and described as

bint on the northerly line of Dutchess Avenue in the City of Poughkeepsie at the southwe

ents thereon erected, altuate, lying and being partially in the City of Poughkeeps

sterly comer of a grant of lands

ALL that certain parcel of land with the buildings and imp

A

* * *	N 00° 59' 22" E, crossing i between the City of Pough total distance of 283.00 fe or formerly of Vassar Colit southeasterly along the lat and the North Water Street southerly along the wester 1) A curve to the left I 2) S 20° 31' 42" E, a (3) A curve to the right 4) S 00° 52' 32" E, or between the Town for a total distance 5) A curve to the left I 6) S 11° 46' 42" E, a (7) A curve to the left I 6) S 11° 46' 42" E, a (7) A curve to the left I 8) S 04° 59' 58" W, a 9) A curve to the left I the northwesterly of thence heading acutherly a 1) S 18° 10' 56" W, a 3) S 02° 00' 16" W, a Hoffman Street; thence heading northwest Street; thence heading ac S 15° 15' 06" W, a distance	the centerline of an underginkeepsie and the Town of P et and N 13° 05'38" W, a di ege (L1967 P625), eaid point inds of Vassar College, S 8 at portion of Parcel B, said p rhy line of the North Water S having a radius of 252.11 ft distance of 23.60 feet to a p t having a radius of 71.25 ft ossing the centerline of the of 425.00 feet to a point; having a radius of 298.28 ft distance of 108.00 feet to a t having a radius of 474.30 distance of 115.71 feet to a having a radius of 894.65 ft comer of a City of Poughke along the Taking Line, the f distance of 52.32 feet to a distance of 52.77 feet to a	est, a length of 24.43 feet and previously mentioned "Kidney City of Poughkeepsie and cont est, a length of 56.38 feet and point; feet, a length of 138.90 feet at a point; bet, a length of 34.52 feet and repsie Highway Taking area (Li following 3 courses: concrete monument; concrete monument; concrete monument; concrete monument; concrete monument; said point N 74° 44' 52" W, a distance of a Street and lende now or form on the northerly line of the prev	/ Creek", at 10.36 feet, a in the Town of Poughkee it at the southwesterly of y corner of the herein de .58 feet to a point at the enty corner of the describ ar College, the following : d a delta angle of 28° 38° / Creek" at 258.41 feet, inuing in the City of Poul a delta angle of 10° 54° 4 nd a delta angle of 10° 54° 4 a delta angle of 2° 12° 38 22009 P4486); it being on the northerly 1 f 192.56 feet to a point a enty of Morrison (L-22003 /ouely mentioned Dutch /ouely mentioned Dutch /ouely mentioned Dutch	aid creek being the divi pole for a distance of 2 ormer of Parcel B, f.m. 7 ecribed Easement; the corner of the main port bed Easement; thence i 9 courses: "41" to a point; asid creek being the dh ghiseopale for a distance 13" to a point; 6" 46" to a point; 6" to a concrete monun inte of the unimproved a t the northwesterly com 9 P10226) and Dubrask ces Avenue, asid point	52.64 feet for a '354, land now nce heading ion of Parcel B heading vision line e of 156.59 feet ment found at section of l (L1590 P210), also being the
	N 74° 44' 52° W, a distanc	e of 227.54 feet to the poin	ent; thence heading northwes t and place of beginning.	lerly along the northerly I	ine of Dutchees Avenu	9,
	CONTAINING 11.839 acr INTENDED to be an Envir	•	he entire premises conveyed i	o The O'Neill Group-Dui	lion. LLC from A. C. Du	tion Lumber
	Corporation by a certain d Filled Lands along the Hu	leed dated October 1, 2004 dean River not previouely G	and filed in the office of the D Franted by the State of New Y ce of the Dutchess County Cle	utchees County Clerk in ork and the Hoffman Stru	liber 22004 at page 10 est Taking area as desc	889, minus the
	CITY	TM#771405			<i>I</i> *∪ ≆	
151	5′08″W 22	N/F / IDRRISON 003/10228****	CITY TM#768392 N/F DUBRASKI 1590/210	CURB REMAIN	/ 1 * ¥ тм#е	T 1 F.M. 11198 CITY 5062-67-753348
	AY EOP	ROCK FACE		, Ci 1 00 1 42	HG&E/b 🐰	N/F N/F H.G.&.E. CORP.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°	310.0			
		ALP A			REMAINS	
		~	A _ A _ A	4,44,52		
			CAL SAL BASIS SAL SAL SAL SAL SAL SAL SAL SAL SAL SA	EG STMH	* */	
			38	- * + +		
						<u>م</u>
			ľ		мн { 	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			È			
			N05*09'22"E	AVENUE	CENTRAL HUI PDUGHKEEPSIE PLANT	
MAN _h F	PATENT 8-10-1815 B	ООК 26 РАДЕ 505 I			PPFHPPP	P P P P P .
		EASE	P.D.B.			
			1049108.637 645136.499		CITY	
				$\exists \int_{1}^{1} \frac{1}{1} \int_{1}^{1} \int_{1$	СПТ ТМ#6062-58-7393 N/F С.H.G.&.E. СДПР. 708/386	80
		GRAN	EL ENTRANCE			
SHOREL	INE		ЕПР		1049000.0	1
-11 1 11(	OX. LOW WATER LINE	TOP OF BANK @ SPR HICH WATER LINE	ING		9 Z E 645000.0	
	r					
1":	=50'	ΔΙ.ΤΑ / ⁻	DEC EASEM		LE SURV	ΈY
,	100'		PROP	ERTY OF		
	50	<u>THE C</u>	<u>)'NEILL GI</u>			LLC
			BCP SITE	E# C314 Iate in	081	
/13, L 4/24	_L 4/14, LL	THE C	CITY & TOWN		GHKEEPS	SIE
/14,			COUNTY C State of	)F DUTCHI ' NEW YO		
				ER 17, 20		

SHEET 1 OF 1

LLL

33 - 04

## APPENDIX C – LABORATORY ANALYTICAL REPORTS (ELECTRONIC)

# Hampton-Clarke Report Of Analysis

**Client:** SESI Consulting Engineers

**Project:** Poughkeepsie

HC Project #: 6012609

Sample ID: PR-MW-1 Collection Date: 1/26/2016 Lab#: AC89359-001 Receipt Date: 1/26/2016 Matrix: Aqueous Mercury (Water) 7470A Analyte DF Units RL Result Mercury 1 ug/l 0.70 ND Semivolatile Organics (no search) 8270 DF RL Units Analyte Result ND 1,1'-Bipheny 1 ug/l 2.0 ND 2.0 1,2,4,5-Tetrachlorobenzene 1 ug/l 2.0 ND 2,3,4,6-Tetrachlorophenol 1 ug/l 2,4,5-Trichlorophenol 1 ug/l 2.0 ND 2.4.6-Trichlorophenol 1 2.0 ND ug/l 2,4-Dichlorophenol 0.50 ND 1 ug/l 2,4-Dimethylphenol 1 ug/l 0.50 ND 2.4-Dinitrophenol ND 1 ug/l 10 2,4-Dinitrotoluene 1 2.0 ND ug/l 2,6-Dinitrotoluene 2.0 ND 1 ug/l 2-Chloronaphthalene 1 ug/l 2.0 ND ND 2-Chlorophenol 1 ug/l 2.0 2-Methylnaphthalene 2.0 ND 1 ug/l 2-Methylphenol 1 ug/l 0.50 ND ND 2-Nitroaniline 1 2.0 ug/l 2-Nitrophenol 1 ug/l 2.0 ND 3&4-Methylphenol 1 0.50 ND ug/l 3,3'-Dichlorobenzidine ND 1 ug/l 2.0 3-Nitroaniline 1 ug/l 2.0 ND 4,6-Dinitro-2-methylphenol 1 ug/l 10 ND 4-Bromophenyl-phenylether 1 ug/l 2.0 ND ND 4-Chloro-3-methylphenol 1 ug/l 2.0 ND 4-Chloroaniline 1 ug/l 0.50 4-Chlorophenyl-phenylether 2.0 ND 1 ug/l 2.0 4-Nitroaniline 1 ug/l ND 4-Nitrophenol 2.0 ND 1 ug/l Acenaphthene 2.0 ND 1 ug/l Acenaphthylene 1 ug/l 20 ND ND 2.0 Acetophenone 1 ug/l 2.0 ND Anthracene 1 ug/l Atrazine 1 ug/l 2.0 ND Benzaldehyde 1 ug/l 2.0 ND Benzo[a]anthracene 1 2.0 ND ug/l Benzo[a]pyrene 1 2.0 ND ug/l ND Benzo[b]fluoranthene 1 ug/l 20 Benzo[g,h,i]perylene 2.0 ND 1 ug/l Benzo[k]fluoranthene 1 ug/l 2.0 ND bis(2-Chloroethoxy)methane 1 ug/l 2.0 ND ND bis(2-Chloroethyl)ether 0.50 1 ug/l bis(2-Chloroisopropyl)ether ND 1 ug/l 2.0 bis(2-Ethylhexyl)phthalate 1 ug/l 2.0 ND ND Butylbenzylphthalate 1 ug/l 2.0 ND Caprolactam 1 2.0 ug/l Carbazole ND 1 ug/l 2.0 Chrysene 1 ug/l 2.0 ND ND Dibenzo[a,h]anthracene 1 ug/l 2.0 Dibenzofuran 1 ug/l 0.50 ND Diethylphthalate 1 ug/l 2.0 ND ND Dimethylphthalate 1 ug/l 2.0 ND Di-n-butylphthalate 1 ug/l 0.50 Di-n-octylphthalate 1 2.0 ND ug/l

Fluoranthene

Hexachlorobenzene

Fluorene

ug/l

ug/l

ug/l

20

2.0

2.0

1

1

1

ND

ND

ND

## Sample ID: PR-MW-1 Lab#: AC89359-001 Matrix: Aqueous

1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
1	ug/l	0.50		ND	
1	ug/l	2.0		ND	
1	ug/l	0.50		ND	
1	ug/l	2.0		ND	
1	ug/l	10		ND	
1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
1	ug/l	2.0		ND	
Conc.	Spike	Low Limit	High Limit	Recovery	Flags
41.79	50	30	130	84	
55.38	100	15	110	55	
37.75	50	30	130	75	
63.95	100	15	110	64	
38.32	50	30	130	77	
76.47	100	15	110	76	
	1 1 1 1 1 1 1 1 1 <b>Conc.</b> 41.79 55.38 37.75 63.95 38.32	1         ug/l           55.38         100           37.75         50           63.95         100           38.32         50	1         ug/l         2.0           1         ug/l         0.50           1         ug/l         0.50           1         ug/l         2.0           1         ug/l         0.50           1         ug/l         0.50           1         ug/l         2.0           1         ug/l         3.0           55.38         100         15           38.32         50         30	1         ug/l         2.0           1         ug/l         0.50           1         ug/l         2.0           1         ug/l         2.0           1         ug/l         0.50           1         ug/l         2.0           Conc         Spike         Low Limit         High Limit           41.79         50         30         130           55.38         100         15         110           38.32         50         30         130	1         ug/l         2.0         ND           1         ug/l         0.50         ND           1         ug/l         2.0         ND           1<

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	11000	
Barium	1	ug/l	50	86	
Calcium	1	ug/l	5000	100000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	17000	
Magnesium	1	ug/l	5000	21000	
Manganese	1	ug/l	40	490	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	120000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	600	

#### TAL Metals 6020

Analyte	DF	Units	RL	Result
Antimony	1	ug/l	3.0	ND
Arsenic	1	ug/l	2.0	16
Beryllium	1	ug/l	1.0	ND
Cadmium	1	ug/l	2.0	ND
Cobalt	1	ug/l	2.0	7.2
Lead	1	ug/l	3.0	33
Selenium	1	ug/l	10	ND
Thallium	1	ug/l	2.0	ND

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
reported to Dry Weight	Droi oot #	6040600		Dama 2 of 10

## Sample ID: PR-MW-1 Lab#: AC89359-001 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
4-Methyl-2-pentanone	1	ug/l	1.0		ND	
Acetone	1	ug/l	5.0		ND	
Benzene	1	ug/l	0.50		ND	
Bromochloromethane	1	ug/l	1.0		ND	
Bromodichloromethane	1	ug/l	1.0		ND	
Bromoform	1	ug/l	1.0		ND	
Bromomethane	1	ug/l	1.0		ND	
Carbon disulfide	1	ug/l	1.0		ND	
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.70	30	70	130	99	
Dibromofluoromethane	30.46	30	70	130	102	
Bromofluorobenzene	28.47	30	70	130	95	
1,2-Dichloroethane-d4	31.25	30	70	130	104	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
mivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1		2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
· · · ·		ug/l		
3&4-Methylphenol	1	ug/l	0.50	ND ND
3,3'-Dichlorobenzidine		ug/l	2.0	
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	-	2.0	ND
	1	ug/l		
Hexachloroethane		ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
Nitrohonzono	1	ug/l	2.0	ND
Nitrobenzene N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND

## Sample ID: PR-MW-2 Lab#: AC89359-002 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	50.75	50	30	130	101	
Phenol-d5	42.54	100	15	110	43	
Nitrobenzene-d5	45.59	50	30	130	91	
2-Fluorophenol	59.23	100	15	110	59	
2-Fluorobiphenyl	47.18	50	30	130	94	
2,4,6-Tribromophenol	92.95	100	15	110	93	

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	5400	
Barium	1	ug/l	50	180	
Calcium	1	ug/l	5000	61000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	38000	
Magnesium	1	ug/l	5000	10000	
Manganese	1	ug/l	40	3600	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	63000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	120	

#### TAL Metals 6020

DF	Units	RL	Result	
1	ug/l	3.0	ND	
1	ug/l	2.0	130	
1	ug/l	1.0	ND	
1	ug/l	2.0	ND	
1	ug/l	2.0	6.0	
1	ug/l	3.0	45	
1	ug/l	10	ND	
1	ug/l	2.0	ND	
	DF 1 1 1 1 1 1 1 1 1	1     ug/l       1     ug/l	1     ug/l     3.0       1     ug/l     2.0       1     ug/l     1.0       1     ug/l     2.0       1     ug/l     2.0       1     ug/l     3.0       1     ug/l     3.0       1     ug/l     10	1         ug/l         3.0         ND           1         ug/l         2.0         130           1         ug/l         1.0         ND           1         ug/l         2.0         ND           1         ug/l         2.0         6.0           1         ug/l         3.0         45           1         ug/l         10         ND

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: PR-MW-2 Lab#: AC89359-002 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	28.95	30	70	130	97	
Dibromofluoromethane	31.14	30	70	130	104	
Bromofluorobenzene	27.87	30	70	130	93	
1,2-Dichloroethane-d4	31.09	30	70	130	104	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
emivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	-	2.0	ND
		ug/l		ND
2,6-Dinitrotoluene	1	ug/l	2.0	
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
	1	-		
Anthracene		ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	-	0.50	ND
		ug/l		
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
	4	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ugn		
	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene		-		ND ND
Indeno[1,2,3-cd]pyrene Isophorone	1	ug/l	2.0	

## Sample ID: PR-MW-3 Lab#: AC89359-003 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	42.80	50	30	130	86	
Phenol-d5	36.31	100	15	110	36	
Nitrobenzene-d5	39.43	50	30	130	79	
2-Fluorophenol	52.71	100	15	110	53	
2-Fluorobiphenyl	41.33	50	30	130	83	
2,4,6-Tribromophenol	80.91	100	15	110	81	

#### TAL Metals 6010

				<b>B</b> ¹	
Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	6500	
Barium	1	ug/l	50	78	
Calcium	1	ug/l	5000	120000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	12000	
Magnesium	1	ug/l	5000	32000	
Manganese	1	ug/l	40	520	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	5400	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	92000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	260	

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	9.9	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	4.5	
Lead	1	ug/l	3.0	19	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: PR-MW-3 Lab#: AC89359-003 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.54	30	70	130	98	
Dibromofluoromethane	31.51	30	70	130	105	
Bromofluorobenzene	28.40	30	70	130	95	
1,2-Dichloroethane-d4	31.12	30	70	130	104	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
emivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
Nitrobenzene	1	ug/l	2.0	ND
N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND
· · · · · · · · · · · · · · · · · · ·	-			

## Sample ID: PR-MW-4 Lab#: AC89359-004 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

пцисоиз						
N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	39.97	50	30	130	80	
Phenol-d5	20.84	100	15	110	21	
Nitrobenzene-d5	37.73	50	30	130	75	
2-Fluorophenol	28.56	100	15	110	29	
2-Fluorobiphenyl	36.87	50	30	130	74	
2,4,6-Tribromophenol	49.68	100	15	110	50	

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	11000	
Barium	1	ug/l	50	87	
Calcium	1	ug/l	5000	43000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	26000	
Magnesium	1	ug/l	5000	13000	
Manganese	1	ug/l	40	1400	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	17000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	150	

#### TAL Metals 6020

DF	Units	RL	Result	
1	ug/l	3.0	ND	
1	ug/l	2.0	80	
1	ug/l	1.0	1.3	
1	ug/l	2.0	ND	
1	ug/l	2.0	12	
1	ug/l	3.0	28	
1	ug/l	10	ND	
1	ug/l	2.0	ND	
	DF 1 1 1 1 1 1 1 1 1 1 1	1     ug/l       1     ug/l	1     ug/l     3.0       1     ug/l     2.0       1     ug/l     1.0       1     ug/l     2.0       1     ug/l     2.0       1     ug/l     3.0       1     ug/l     3.0       1     ug/l     10	1     ug/l     3.0     ND       1     ug/l     2.0     80       1     ug/l     1.0     1.3       1     ug/l     2.0     ND       1     ug/l     2.0     ND       1     ug/l     3.0     28       1     ug/l     10     ND

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND
				<b>a</b>

## Sample ID: PR-MW-4 Lab#: AC89359-004 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.61	30	70	130	99	
Dibromofluoromethane	31.08	30	70	130	104	
Bromofluorobenzene	28.70	30	70	130	96	
1,2-Dichloroethane-d4	31.37	30	70	130	105	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0 2.0	ND ND
Benzaldehyde Benzo[a]anthracene	1	ug/l ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
			2.0	ND
Nitrobenzene	1	ug/l	2.0	ND

## Sample ID: DUP Lab#: AC89359-005 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	47.61	50	30	130	95	
Phenol-d5	44.88	100	15	110	45	
Nitrobenzene-d5	44.28	50	30	130	89	
2-Fluorophenol	62.74	100	15	110	63	
2-Fluorobiphenyl	44.63	50	30	130	89	
2,4,6-Tribromophenol	88.07	100	15	110	88	

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	15000	
Barium	1	ug/l	50	140	
Calcium	1	ug/l	5000	53000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	58	
Iron	1	ug/l	300	33000	
Magnesium	1	ug/l	5000	16000	
Manganese	1	ug/l	40	3000	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	16000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	220	

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	89	
Beryllium	1	ug/l	1.0	2.3	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	19	
Lead	1	ug/l	3.0	41	
Selenium	1	ug/l	10	14	
Thallium	1	ug/l	2.0	ND	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: DUP Lab#: AC89359-005 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.76	30	70	130	99	
Dibromofluoromethane	30.74	30	70	130	102	
Bromofluorobenzene	29.75	30	70	130	99	
1,2-Dichloroethane-d4	31.21	30	70	130	104	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	-	2.0	ND
		ug/l		
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
	1	-		ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	
bis(2-Chloroisopropyl)ether		ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	1	-		ND
Isophorone		ug/l	2.0	
Naphthalene Nitrobenzene	1	ug/l	0.50	ND ND
000007000				NU )
N-Nitroso-di-n-propylamine	1	ug/l ug/l	0.50	ND

#### Sample ID: FB_012616 Lab#: AC89359-006 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

ueous						
N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	45.47	50	30	130	91	
Phenol-d5	37.56	100	15	110	38	
Nitrobenzene-d5	41.06	50	30	130	82	
2-Fluorophenol	49.96	100	15	110	50	
2-Fluorobiphenyl	39.94	50	30	130	80	
2,4,6-Tribromophenol	78.21	100	15	110	78	

## TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	ND	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	ND	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/l	40	ND	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	ND	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: FB_012616 Lab#: AC89359-006 Matrix: Aqueous

## Collection Date: 1/26/2016 Receipt Date: 1/26/2016

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	29.54	30	70	130	98	
Dibromofluoromethane	30.51	30	70	130	102	
Bromofluorobenzene	29.40	30	70	130	98	
1,2-Dichloroethane-d4	31.34	30	70	130	104	

Analyte	DF	Units	s RL	Result	
,1,1-Trichloroethane	1	ug/l	1.0	ND	
,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND	
1,1,2-Trichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethane	1	ug/l	1.0	ND	
1,1-Dichloroethene	1	ug/l	1.0	ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND	
1,2-Dibromoethane	1	ug/l	1.0	ND	
1,2-Dichlorobenzene	1	ug/l	1.0	ND	
1.2-Dichloroethane	1	-	0.50	ND	
1,2-Dichloropropane	1	ug/l	1.0	ND	
		ug/l			
1,3-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dichlorobenzene	1	ug/l	1.0	ND	
1,4-Dioxane	1	ug/l	50	ND	
2-Butanone	1	ug/l	1.0	ND	
2-Hexanone	1	ug/l	1.0	ND	
4-Methyl-2-pentanone	1	ug/l	1.0	ND	
Acetone	1	ug/l	5.0	ND	
Benzene	1	ug/l	0.50	ND	
Bromochloromethane	1	ug/l	1.0	ND	
Bromodichloromethane	1	ug/l	1.0	ND	
Bromoform	1	ug/l	1.0	ND	
Bromomethane	1	ug/l	1.0	ND	
Carbon disulfide	1	ug/l	1.0	ND	
Carbon tetrachloride	1	ug/l	1.0	ND	
Chlorobenzene	1	ug/l	1.0	ND	
Chloroethane	1	ug/l	1.0	ND	
Chloroform	1	ug/l	1.0	ND	
Chloromethane	1	ug/l	1.0	ND	
cis-1,2-Dichloroethene	1	ug/l	1.0	ND	
cis-1,3-Dichloropropene	1	ug/l	1.0	ND	
Cyclohexane	1	ug/l	1.0	ND	
Dibromochloromethane	1	ug/l	1.0	ND	
Dichlorodifluoromethane	1	ug/l	1.0	ND	
Ethylbenzene	1	ug/l	1.0	ND	
Isopropylbenzene	1	ug/l	1.0	ND	
m&p-Xylenes	1	ug/l	1.0	ND	
	1	-	1.0	ND	
Methyl Acetate	1	ug/l		ND	
Methylcyclohexane		ug/l	1.0		
Methylene chloride	1	ug/l	1.0	ND	
Methyl-t-butyl ether	1	ug/l	0.50	ND	
o-Xylene	1	ug/l	1.0	ND	
Styrene	1	ug/l	1.0	ND	
Tetrachloroethene	1	ug/l	1.0	ND	
Toluene	1	ug/l	1.0	ND	
rans-1,2-Dichloroethene	1	ug/l	1.0	ND	
rans-1,3-Dichloropropene	1	ug/l	1.0	ND	
Trichloroethene	1	ug/l	1.0	ND	
Trichlorofluoromethane	1	ug/l	1.0	ND	
/inyl chloride	1	ug/l	1.0	ND	
Xylenes (Total)	1	ug/l	1.0	ND	
Surrogate	Conc.	Spike	Low Limit	High Limit Recovery	Flags
Foluene-d8	30.21	30	70	130 101	•
Dibromofluoromethane	30.08	30	70	130 100	
Bromofluorobenzene	29.64	30	70	130 99	

Additional Notes				apon Manga 10, 10 1/24/16:5	10) Relinquished by: Date Time		TB OT 1/22/16	5 FB-012616 0T 1	DUP Gw /26/16	PR-MW-4 OW 1/26/16 9:15 XX	PR-MW-3 Auritaria 11:40 X K	PR-mw-2 Gur iteble	-	Gral T	5) 6) Sample pos (G)	OL - Oil specify under item 9, Comments) (C)	DW - Drinking Water S - Soil A - Air Type GW - Ground Water SL - Sludge	Matrix Codes Sample	FOR LAB     7) Analysis (specify )       USE     ===> Check If Contingent ===>		Fund Dahan 2d) Quote/PO # (If Applicable):	Fund Dahan T	S , Oro 2c) Project Location (City/State):	Pine Brack NJ [2b) Project Mgr. Fuad	Company along CI	Customer     Customer information     Project information       1a) Customer     SESI Consulting Engineers     2a) Project     Project	8-00463   NY #11408   CT #PH-0671   KY #90124   DE	Ph (Service Center): 856-780-6057 Fax: 856-780-6056 A Women-Owned, Disadvantaged, Small Business Enterp	₹Ţ.	175 Route 46 West and 2 Madison Road, Fairfield, New Jersey 07004 Ph: 800-026-9992/ 1973-244-9770 Fax: 973-244-9787 1973-438-1458
High Contaminant Concentrations       Cooler Temperature         NJ LSRP Project (also check boxes above/right)       2 5 2 5 6         11) Sampler (print name):       J 5 50 // May g       Date: 1/26//6         Please note NUMBERED items. If not completed your analytical work may be delayed.       A fee of \$5/sample will be assessed for storage should sample not be activated for any analysis.	Check if applicable:	SPLP (BN, BNA, Metals)	BN or BNA (8270D SIM)	Undicate if low-level methods required to meet need to	Comments, Notes, Special F			2	2 2 3 3 3		2		2	Nor MeC En 0 HCI HXC Oth 9) Comments	DH Core DH 604 D3	8) # of Bottles			Analysis (specify methods & parameter lists)          <=== Check If Contingent <===	* Expedited TAT Not Always Available. Please Check with Lab.	Other: Electronic (PDF)	Category A	Dutchess Ave 5 Business Days (25%) Full / Category B EQuilS (specify below):	PA Reduced	3 Business Days (50%)* NY Reduced	2 Business Days (75%)* NJ Reduced Excel - NJ Regulatory	When Available: Data Summary	rise Turnaround Report Type	3) Reporting Requirements (Please	CHAIN OF CUSTODY 60/2607 Page 1 of 1

# Hampton-Clarke Report Of Analysis

**Client:** SESI Consulting Engineers

Project: Poughkeepsie

HC Project #: 5062324

Sample ID: PR-MW-1 Collection Date: 6/23/2015 Lab#: AC85686-001 Receipt Date: 6/23/2015 Matrix: Aqueous Mercury (Water) 7470A Analyte DF Units RL Result Mercury 1 ug/l 0.70 ND Semivolatile Organics (no search) 8270 DF RL Units Analyte Result ND 1,1'-Bipheny 1 ug/l 2.0 ND 2.0 1,2,4,5-Tetrachlorobenzene 1 ug/l 2.0 ND 2,3,4,6-Tetrachlorophenol 1 ug/l 2,4,5-Trichlorophenol 1 ug/l 2.0 ND 2.4.6-Trichlorophenol 1 2.0 ND ug/l 2,4-Dichlorophenol 0.50 ND 1 ug/l 2,4-Dimethylphenol 1 ug/l 0.50 ND 2.4-Dinitrophenol ND 1 ug/l 10 2,4-Dinitrotoluene 1 2.0 ND ug/l 2,6-Dinitrotoluene 2.0 ND 1 ug/l 2-Chloronaphthalene 1 ug/l 2.0 ND ND 2-Chlorophenol 1 ug/l 2.0 2-Methylnaphthalene 2.0 ND 1 ug/l 2-Methylphenol 1 ug/l 0.50 ND ND 2-Nitroaniline 1 2.0 ug/l 2-Nitrophenol 1 ug/l 2.0 ND 3&4-Methylphenol 1 0.50 ND ug/l 3,3'-Dichlorobenzidine ND 1 ug/l 2.0 3-Nitroaniline 1 ug/l 2.0 ND 4,6-Dinitro-2-methylphenol 1 ug/l 10 ND 4-Bromophenyl-phenylether 1 ug/l 2.0 ND ND 4-Chloro-3-methylphenol 1 ug/l 2.0 ND 4-Chloroaniline 1 ug/l 0.50 4-Chlorophenyl-phenylether 2.0 ND 1 ug/l 2.0 4-Nitroaniline 1 ug/l ND 4-Nitrophenol 2.0 ND 1 ug/l Acenaphthene 2.0 ND 1 ug/l Acenaphthylene 1 ug/l 20 ND ND 2.0 Acetophenone 1 ug/l 2.0 ND Anthracene 1 ug/l Atrazine 1 ug/l 2.0 ND Benzaldehyde 1 ug/l 2.0 ND Benzo[a]anthracene 1 2.0 ND ug/l Benzo[a]pyrene 1 2.0 ND ug/l ND Benzo[b]fluoranthene 1 ug/l 20 Benzo[g,h,i]perylene 2.0 ND 1 ug/l Benzo[k]fluoranthene 1 ug/l 2.0 ND bis(2-Chloroethoxy)methane 1 ug/l 2.0 ND ND bis(2-Chloroethyl)ether 0.50 1 ug/l bis(2-Chloroisopropyl)ether ND 1 ug/l 2.0 bis(2-Ethylhexyl)phthalate 1 ug/l 2.0 ND ND Butylbenzylphthalate 1 ug/l 2.0 ND Caprolactam 1 2.0 ug/l Carbazole ND 1 ug/l 2.0 Chrysene 1 ug/l 2.0 ND ND Dibenzo[a,h]anthracene 1 ug/l 2.0 Dibenzofuran 1 ug/l 0.50 ND Diethylphthalate 1 ug/l 2.0 ND ND Dimethylphthalate 1 ug/l 2.0 ND Di-n-butylphthalate 1 ug/l 0.50 Di-n-octylphthalate 1 2.0 ND ug/l ND Fluoranthene 1 ug/l 20 Fluorene 2.0 ND

Hexachlorobenzene

ug/l

ug/l

2.0

1

1

ND

## Sample ID: PR-MW-1 Lab#: AC85686-001 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

Hexachlorobutadiene	1	ug/l	2.0		ND	
Hexachlorocyclopentadiene	1	ug/l	2.0		ND	
Hexachloroethane	1	ug/l	2.0		ND	
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0		ND	
Isophorone	1	ug/l	2.0		ND	
Naphthalene	1	ug/l	0.50		ND	
Nitrobenzene	1	ug/l	2.0		ND	
N-Nitroso-di-n-propylamine	1	ug/l	0.50		ND	
N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	47.78	50	30	130	96	
Phenol-d5	36.00	100	15	110	36	
Nitrobenzene-d5	45.04	50	30	130	90	
2-Fluorophenol	49.52	100	15	110	50	
2-Fluorobiphenyl	46.23	50	30	130	92	
2,4,6-Tribromophenol	92.14	100	15	110	92	

#### TAL Metals 6010

Analyte	DF	Units	RL	Result
Aluminum	1	ug/l	200	14000
Barium	1	ug/l	50	130
Calcium	1	ug/l	5000	120000
Chromium	1	ug/l	50	ND
Copper	1	ug/l	50	ND
Iron	1	ug/l	300	19000
Magnesium	1	ug/l	5000	26000
Manganese	1	ug/l	40	610
Nickel	1	ug/l	50	ND
Potassium	1	ug/l	5000	6500
Silver	1	ug/l	20	ND
Sodium	1	ug/l	5000	140000
Vanadium	1	ug/l	50	ND
Zinc	1	ug/l	50	1100

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	16	
Beryllium	1	ug/l	1.0	1.2	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	6.3	
Lead	1	ug/l	3.0	47	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	2.5	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
reported to Dry Weight	Droi oot #	5060004		Dama 2 of 10

## Sample ID: PR-MW-1 Lab#: AC85686-001 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
4-Methyl-2-pentanone	1	ug/l	1.0		ND	
Acetone	1	ug/l	5.0		ND	
Benzene	1	ug/l	0.50		ND	
Bromochloromethane	1	ug/l	1.0		ND	
Bromodichloromethane	1	ug/l	1.0		ND	
Bromoform	1	ug/l	1.0		ND	
Bromomethane	1	ug/l	1.0		ND	
Carbon disulfide	1	ug/l	1.0		ND	
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.15	30	70	130	90	
Dibromofluoromethane	31.38	30	70	130	105	
Bromofluorobenzene	28.28	30	70	130	94	
1,2-Dichloroethane-d4	30.49	30	70	130	102	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0 2.0	ND ND
Benzaldehyde Benzo[a]anthracene	1	ug/l ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
Nitrobenzene	1	ug/l	2.0	ND
		-		ND

## Sample ID: PR-MW-2 Lab#: AC85686-002 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	49.36	50	30	130	99	
Phenol-d5	19.44	100	15	110	19	
Nitrobenzene-d5	43.27	50	30	130	87	
2-Fluorophenol	32.37	100	15	110	32	
2-Fluorobiphenyl	44.73	50	30	130	89	
2,4,6-Tribromophenol	95.15	100	15	110	95	

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	580	
Barium	1	ug/l	50	100	
Calcium	1	ug/l	5000	86000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	9100	
Magnesium	1	ug/l	5000	7600	
Manganese	1	ug/l	40	3100	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	98000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

#### TAL Metals 6020

DF	Units	RL	Result	
1	ug/l	3.0	ND	
1	ug/l	2.0	27	
1	ug/l	1.0	ND	
1	ug/l	2.0	ND	
1	ug/l	2.0	ND	
1	ug/l	3.0	ND	
1	ug/l	10	ND	
1	ug/l	2.0	ND	
	DF 1 1 1 1 1 1 1 1 1 1	1         ug/l           1         ug/l	1         ug/l         3.0           1         ug/l         2.0           1         ug/l         1.0           1         ug/l         2.0           1         ug/l         2.0           1         ug/l         3.0           1         ug/l         3.0           1         ug/l         10	1         ug/l         3.0         ND           1         ug/l         2.0         27           1         ug/l         1.0         ND           1         ug/l         2.0         ND           1         ug/l         2.0         ND           1         ug/l         3.0         ND           1         ug/l         10         ND

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: PR-MW-2 Lab#: AC85686-002 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.06	30	70	130	90	
Dibromofluoromethane	30.84	30	70	130	103	
Bromofluorobenzene	30.27	30	70	130	101	
1,2-Dichloroethane-d4	26.02	30	70	130	87	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	-	2.0	ND
4-Chlorophenyl-phenylether 4-Nitroaniline	1	ug/l ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
	1	-	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone Anthracene	1	ug/l	2.0	ND
		ug/l		
Atrazine	1	ug/l	2.0	ND
Benzeldehyde	1	ug/l	2.0	ND ND
Benzo[a]anthracene		ug/l		
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane		ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
Nitrobenzene	1	ug/l	2.0	ND
N-Nitroso-di-n-propylamine	1	ug/l	0.50	ND

## Sample ID: PR-MW-3 Lab#: AC85686-003 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	51.06	50	30	130	102	
Phenol-d5	18.17	100	15	110	18	
Nitrobenzene-d5	42.87	50	30	130	86	
2-Fluorophenol	31.30	100	15	110	31	
2-Fluorobiphenyl	44.61	50	30	130	89	
2,4,6-Tribromophenol	96.24	100	15	110	96	

#### TAL Metals 6010

DF	Units	RL	Result	
1	ug/l	200	ND	
1	ug/l	50	ND	
1	ug/l	5000	52000	
1	ug/l	50	ND	
1	ug/l	50	ND	
1	ug/l	300	ND	
1	ug/l	5000	7800	
1	ug/l	40	ND	
1	ug/l	50	ND	
1	ug/l	5000	ND	
1	ug/l	20	ND	
1	ug/l	5000	59000	
1	ug/l	50	ND	
1	ug/l	50	ND	
	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1     ug/l       1     ug/l	1     ug/l     200       1     ug/l     50       1     ug/l     300       1     ug/l     300       1     ug/l     5000       1     ug/l     5000	1         ug/l         200         ND           1         ug/l         50         ND           1         ug/l         5000         52000           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         500         ND           1         ug/l         300         ND           1         ug/l         5000         7800           1         ug/l         500         ND           1         ug/l         500         ND           1         ug/l         5000         ND           1         ug/l         20         ND           1         ug/l         5000         59000           1         ug/l         500         ND

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	2.3	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

## Sample ID: PR-MW-3 Lab#: AC85686-003 Matrix: Aqueous

## Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	26.85	30	70	130	89	
Dibromofluoromethane	30.46	30	70	130	102	
Bromofluorobenzene	30.58	30	70	130	102	
1,2-Dichloroethane-d4	25.57	30	70	130	85	

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.50	ND
2,4-Dimethylphenol	1	ug/l	0.50	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2.4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.50	ND
		-		
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.50	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.50	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	-	2.0	ND
		ug/l		
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.50	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.50	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.50	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
		-		
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.50	ND
Naphthalene Nitrobenzene	1 1	ug/l ug/l	0.50 2.0	ND ND

### Sample ID: PR-MW-4 Lab#: AC85686-004 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	49.86	50	30	130	100	
Phenol-d5	18.03	100	15	110	18	
Nitrobenzene-d5	47.99	50	30	130	96	
2-Fluorophenol	32.90	100	15	110	33	
2-Fluorobiphenyl	46.96	50	30	130	94	
2,4,6-Tribromophenol	99.62	100	15	110	100	

#### TAL Metals 6010

DF	Units	RL	Result	
1	ug/l	200	ND	
1	ug/l	50	ND	
1	ug/l	5000	43000	
1	ug/l	50	ND	
1	ug/l	50	ND	
1	ug/l	300	ND	
1	ug/l	5000	7100	
1	ug/l	40	ND	
1	ug/l	50	ND	
1	ug/l	5000	ND	
1	ug/l	20	ND	
1	ug/l	5000	21000	
1	ug/l	50	ND	
1	ug/l	50	ND	
	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1     ug/l       1     ug/l	1     ug/l     200       1     ug/l     50       1     ug/l     5000       1     ug/l     50       1     ug/l     50       1     ug/l     50       1     ug/l     300       1     ug/l     5000       1     ug/l     5000	1         ug/l         200         ND           1         ug/l         50         ND           1         ug/l         5000         43000           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         50         ND           1         ug/l         300         ND           1         ug/l         300         ND           1         ug/l         5000         7100           1         ug/l         50         ND           1         ug/l         500         ND           1         ug/l         500         ND           1         ug/l         5000         ND           1         ug/l         20         ND           1         ug/l         5000         21000           1         ug/l         50         ND

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	8.9	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

#### Volatile Organics (no search) 8260

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

### Sample ID: PR-MW-4 Lab#: AC85686-004 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.94	30	70	130	93	
Dibromofluoromethane	29.81	30	70	130	99	
Bromofluorobenzene	30.98	30	70	130	103	
1,2-Dichloroethane-d4	25.09	30	70	130	84	

#### Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
nivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.51	ND
2,4-Dimethylphenol	1	ug/l	0.51	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
2-Chloronaphthalene	1	ug/l	2.0	ND
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.51	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.51	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.51	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
Acetophenone	1	ug/l	2.0	ND
Anthracene	1	ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.51	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
Dibenzofuran	1	ug/l	0.51	ND
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.51	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
	1	ug/l	2.0	ND
Isophorone	<i>,</i>	~	o = :	A 177
Naphthalene	1	ug/l	0.51	ND
	1 1 1	ug/l ug/l ug/l	0.51 2.0 0.51	ND ND ND

### Sample ID: DUP Lab#: AC85686-005 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

ueous						
N-Nitrosodiphenylamine	1	ug/l	2.0		ND	
Pentachlorophenol	1	ug/l	10		ND	
Phenanthrene	1	ug/l	2.0		ND	
Phenol	1	ug/l	2.0		ND	
Pyrene	1	ug/l	2.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Terphenyl-d14	50.51	50	30	130	101	
Phenol-d5	20.95	100	15	110	21	
Nitrobenzene-d5	48.09	50	30	130	96	
2-Fluorophenol	35.74	100	15	110	36	
2-Fluorobiphenyl	49.29	50	30	130	99	
2,4,6-Tribromophenol	96.45	100	15	110	96	

### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	44000	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	ND	
Magnesium	1	ug/l	5000	7300	
Manganese	1	ug/l	40	ND	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	22000	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

#### TAL Metals 6020

DE				
DF	Units	RL	Result	
1	ug/l	3.0	ND	
1	ug/l	2.0	9.4	
1	ug/l	1.0	ND	
1	ug/l	2.0	ND	
1	ug/l	2.0	ND	
1	ug/l	3.0	ND	
1	ug/l	10	ND	
1	ug/l	2.0	ND	
	DF 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1         ug/l           1         ug/l	1         ug/l         3.0           1         ug/l         2.0           1         ug/l         1.0           1         ug/l         2.0           1         ug/l         2.0           1         ug/l         3.0           1         ug/l         3.0           1         ug/l         10	1         ug/l         3.0         ND           1         ug/l         2.0         9.4           1         ug/l         1.0         ND           1         ug/l         2.0         ND           1         ug/l         2.0         ND           1         ug/l         3.0         ND           1         ug/l         1.0         ND           1         ug/l         1.0         ND           1         ug/l         1.0         ND           1         ug/l         1.0         ND

#### Volatile Organics (no search) 8260

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

### Sample ID: DUP Lab#: AC85686-005 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.81	30	70	130	93	
Dibromofluoromethane	30.81	30	70	130	103	
Bromofluorobenzene	31.01	30	70	130	103	
1,2-Dichloroethane-d4	26.02	30	70	130	87	

### Mercury (Water) 7470A

Analyte	DF	Units	RL	Result
Mercury	1	ug/l	0.70	ND
emivolatile Organics (no search) 8270				
Analyte	DF	Units	RL	Result
1,1'-Biphenyl	1	ug/l	2.0	ND
1,2,4,5-Tetrachlorobenzene	1	ug/l	2.0	ND
2,3,4,6-Tetrachlorophenol	1	ug/l	2.0	ND
2,4,5-Trichlorophenol	1	ug/l	2.0	ND
2,4,6-Trichlorophenol	1	ug/l	2.0	ND
2,4-Dichlorophenol	1	ug/l	0.51	ND
2,4-Dimethylphenol	1	ug/l	0.51	ND
2,4-Dinitrophenol	1	ug/l	10	ND
2,4-Dinitrotoluene	1	ug/l	2.0	ND
2,6-Dinitrotoluene	1	ug/l	2.0	ND
	1	-	2.0	ND
2-Chloronaphthalene		ug/l		
2-Chlorophenol	1	ug/l	2.0	ND
2-Methylnaphthalene	1	ug/l	2.0	ND
2-Methylphenol	1	ug/l	0.51	ND
2-Nitroaniline	1	ug/l	2.0	ND
2-Nitrophenol	1	ug/l	2.0	ND
3&4-Methylphenol	1	ug/l	0.51	ND
3,3'-Dichlorobenzidine	1	ug/l	2.0	ND
3-Nitroaniline	1	ug/l	2.0	ND
4,6-Dinitro-2-methylphenol	1	ug/l	10	ND
4-Bromophenyl-phenylether	1	ug/l	2.0	ND
4-Chloro-3-methylphenol	1	ug/l	2.0	ND
4-Chloroaniline	1	ug/l	0.51	ND
4-Chlorophenyl-phenylether	1	ug/l	2.0	ND
4-Nitroaniline	1	ug/l	2.0	ND
4-Nitrophenol	1	ug/l	2.0	ND
Acenaphthene	1	ug/l	2.0	ND
Acenaphthylene	1	ug/l	2.0	ND
	1	-	2.0	ND
Acetophenone	1	ug/l		
Anthracene		ug/l	2.0	ND
Atrazine	1	ug/l	2.0	ND
Benzaldehyde	1	ug/l	2.0	ND
Benzo[a]anthracene	1	ug/l	2.0	ND
Benzo[a]pyrene	1	ug/l	2.0	ND
Benzo[b]fluoranthene	1	ug/l	2.0	ND
Benzo[g,h,i]perylene	1	ug/l	2.0	ND
Benzo[k]fluoranthene	1	ug/l	2.0	ND
bis(2-Chloroethoxy)methane	1	ug/l	2.0	ND
bis(2-Chloroethyl)ether	1	ug/l	0.51	ND
bis(2-Chloroisopropyl)ether	1	ug/l	2.0	ND
bis(2-Ethylhexyl)phthalate	1	ug/l	2.0	ND
Butylbenzylphthalate	1	ug/l	2.0	ND
Caprolactam	1	ug/l	2.0	ND
Carbazole	1	ug/l	2.0	ND
Chrysene	1	ug/l	2.0	ND
Dibenzo[a,h]anthracene	1	ug/l	2.0	ND
	1	-		ND
Dibenzofuran		ug/l	0.51	
Diethylphthalate	1	ug/l	2.0	ND
Dimethylphthalate	1	ug/l	2.0	ND
Di-n-butylphthalate	1	ug/l	0.51	ND
Di-n-octylphthalate	1	ug/l	2.0	ND
Fluoranthene	1	ug/l	2.0	ND
Fluorene	1	ug/l	2.0	ND
Hexachlorobenzene	1	ug/l	2.0	ND
Hexachlorobutadiene	1	ug/l	2.0	ND
Hexachlorocyclopentadiene	1	ug/l	2.0	ND
Hexachloroethane	1	ug/l	2.0	ND
Indeno[1,2,3-cd]pyrene	1	ug/l	2.0	ND
Isophorone	1	ug/l	2.0	ND
Naphthalene	1	ug/l	0.51	ND
Nitrobenzene	1	ug/l	2.0	ND
		-		
N-Nitroso-di-n-propylamine	1	ug/l	0.51	ND

#### Sample ID: FB-062315 Lab#: AC85686-006 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

40040							
N-Nitrosodiphenylamine	1	ug/l	2.0		ND		
Pentachlorophenol	1	ug/l	10		ND		
Phenanthrene	1	ug/l	2.0	ND			
Phenol	1	ug/l	2.0	ND			
Pyrene	1	ug/l	2.0		ND		
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags	
Terphenyl-d14	51.93	50	30	130	104		
Phenol-d5	20.01	100	15	110	20		
Nitrobenzene-d5	49.93	50	30	130	100		
2-Fluorophenol	34.66	100	15	110	35		
2-Fluorobiphenyl	49.42	50	30	130	99		
2,4,6-Tribromophenol	97.35	100	15	110	97		

#### TAL Metals 6010

Analyte	DF	Units	RL	Result	
Aluminum	1	ug/l	200	ND	
Barium	1	ug/l	50	ND	
Calcium	1	ug/l	5000	ND	
Chromium	1	ug/l	50	ND	
Copper	1	ug/l	50	ND	
Iron	1	ug/l	300	ND	
Magnesium	1	ug/l	5000	ND	
Manganese	1	ug/l	40	ND	
Nickel	1	ug/l	50	ND	
Potassium	1	ug/l	5000	ND	
Silver	1	ug/l	20	ND	
Sodium	1	ug/l	5000	ND	
Vanadium	1	ug/l	50	ND	
Zinc	1	ug/l	50	ND	

#### TAL Metals 6020

Analyte	DF	Units	RL	Result	
Antimony	1	ug/l	3.0	ND	
Arsenic	1	ug/l	2.0	ND	
Beryllium	1	ug/l	1.0	ND	
Cadmium	1	ug/l	2.0	ND	
Cobalt	1	ug/l	2.0	ND	
Lead	1	ug/l	3.0	ND	
Selenium	1	ug/l	10	ND	
Thallium	1	ug/l	2.0	ND	

#### Volatile Organics (no search) 8260

Analyte	DF	Units	RL	Result
1,1,1-Trichloroethane	1	ug/l	1.0	ND
1,1,2,2-Tetrachloroethane	1	ug/l	1.0	ND
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0	ND
1,1,2-Trichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethane	1	ug/l	1.0	ND
1,1-Dichloroethene	1	ug/l	1.0	ND
1,2,3-Trichlorobenzene	1	ug/l	1.0	ND
1,2,4-Trichlorobenzene	1	ug/l	1.0	ND
1,2-Dibromo-3-chloropropane	1	ug/l	1.0	ND
1,2-Dibromoethane	1	ug/l	1.0	ND
1,2-Dichlorobenzene	1	ug/l	1.0	ND
1,2-Dichloroethane	1	ug/l	0.50	ND
1,2-Dichloropropane	1	ug/l	1.0	ND
1,3-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dichlorobenzene	1	ug/l	1.0	ND
1,4-Dioxane	1	ug/l	50	ND
2-Butanone	1	ug/l	1.0	ND
2-Hexanone	1	ug/l	1.0	ND
4-Methyl-2-pentanone	1	ug/l	1.0	ND
Acetone	1	ug/l	5.0	ND
Benzene	1	ug/l	0.50	ND
Bromochloromethane	1	ug/l	1.0	ND
Bromodichloromethane	1	ug/l	1.0	ND
Bromoform	1	ug/l	1.0	ND
Bromomethane	1	ug/l	1.0	ND
Carbon disulfide	1	ug/l	1.0	ND

### Sample ID: FB-062315 Lab#: AC85686-006 Matrix: Aqueous

### Collection Date: 6/23/2015 Receipt Date: 6/23/2015

eous						
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
Isopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate	Conc.	Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.47	30	70	130	92	
Dibromofluoromethane	30.20	30	70	130	101	
Bromofluorobenzene	31.23	30	70	130	104	
1,2-Dichloroethane-d4	25.39	30	70	130	85	

#### Volatile Organics (no search) 8260

Analyte	DF	Units	RL		Result	
I,1,1-Trichloroethane	1	ug/l	1.0		ND	
,1,2,2-Tetrachloroethane	1	ug/l	1.0		ND	
1,1,2-Trichloro-1,2,2-trifluoroethane	1	ug/l	1.0		ND	
1,1,2-Trichloroethane	1	ug/l	1.0		ND	
1,1-Dichloroethane	1	ug/l	1.0		ND	
1,1-Dichloroethene	1	ug/l	1.0		ND	
1,2,3-Trichlorobenzene	1	ug/l	1.0		ND	
1,2,4-Trichlorobenzene	1	ug/l	1.0		ND	
1,2-Dibromo-3-chloropropane	1	ug/l	1.0		ND	
1,2-Dibromoethane	1	ug/l	1.0		ND	
1,2-Dichlorobenzene	1	ug/l	1.0		ND	
1.2-Dichloroethane	1	ug/l	0.50		ND	
1,2-Dichloropropane	1	ug/l	1.0		ND	
1,3-Dichlorobenzene	1	ug/l	1.0		ND	
1,4-Dichlorobenzene	1	-	1.0		ND	
		ug/l				
1,4-Dioxane 2-Butanone	1	ug/l	50		ND ND	
2-Butanone 2-Hexanone	1	ug/l				
		ug/l	1.0		ND	
4-Methyl-2-pentanone	1	ug/l	1.0		ND	
Acetone	1	ug/l	5.0		ND	
Benzene	1	ug/l	0.50		ND	
Bromochloromethane	1	ug/l	1.0		ND	
Bromodichloromethane	1	ug/l	1.0		ND	
Bromoform	1	ug/l	1.0		ND	
Bromomethane	1	ug/l	1.0		ND	
Carbon disulfide	1	ug/l	1.0		ND	
Carbon tetrachloride	1	ug/l	1.0		ND	
Chlorobenzene	1	ug/l	1.0		ND	
Chloroethane	1	ug/l	1.0		ND	
Chloroform	1	ug/l	1.0		ND	
Chloromethane	1	ug/l	1.0		ND	
cis-1,2-Dichloroethene	1	ug/l	1.0		ND	
cis-1,3-Dichloropropene	1	ug/l	1.0		ND	
Cyclohexane	1	ug/l	1.0		ND	
Dibromochloromethane	1	ug/l	1.0		ND	
Dichlorodifluoromethane	1	ug/l	1.0		ND	
Ethylbenzene	1	ug/l	1.0		ND	
lsopropylbenzene	1	ug/l	1.0		ND	
m&p-Xylenes	1	ug/l	1.0		ND	
Methyl Acetate	1	ug/l	1.0		ND	
Methylcyclohexane	1	ug/l	1.0		ND	
Methylene chloride	1	ug/l	1.0		ND	
Methyl-t-butyl ether	1	ug/l	0.50		ND	
o-Xylene	1	ug/l	1.0		ND	
Styrene	1	ug/l	1.0		ND	
Tetrachloroethene	1	ug/l	1.0		ND	
Toluene	1	ug/l	1.0		ND	
trans-1,2-Dichloroethene	1	ug/l	1.0		ND	
trans-1,3-Dichloropropene	1	ug/l	1.0		ND	
Trichloroethene	1	ug/l	1.0		ND	
Trichlorofluoromethane	1	ug/l	1.0		ND	
Vinyl chloride	1	ug/l	1.0		ND	
Xylenes (Total)	1	ug/l	1.0		ND	
Surrogate		Spike	Low Limit	High Limit	Recovery	Flags
Toluene-d8	27.31	30	70	130	91	
Dibromofluoromethane	30.32	30	70	130	101	
Bromofluorobenzene	29.15	30	70	130	97	
	_00	<b>*</b> *			0.	

	pton-Clarke, Inc. (WB 6 West and 2 Madison Road, Fairfi		•	004						СН	IAIN	I OF	CUS	STO	DY			50	(Lab l 62	32	ŶŶ	,	Ι		_	1of1
Ph: 800-42	6-9992   973-244-9770 Fax: 973-24	4-9787	973-439-14	458				alestare .			I	REC	ORI	)				3) I	Repo	rtinç	Rec	lnire	me	onts	(Pl	ease Circle)
Service Cer	nter: 137-D Gaither Drive, Mount La	urel, New	Jersey 08	054	-			1-Cla								Turnaround Report					<u>t Ty</u>	pe		Electronic Deliv.		
Ph (	Service Center): 856-780-6057 Fa				A Women-Owned, Disadvantaged, Small Business Enterprise					se	When Available: Data Summa						•			Hazsite/CSV						
	NELAC/NJ #07071   PA #	58-00463	3   NY #1140	08   CT #F	PH-067	71   K	Y #90	-									iness E	• •	-		Result		•	Vaste	"	EnviroData
4 - 1 -	Customer Informati	on			9-1	Project Information						iness E	• •	•	- H-	NJ Re					Excel - NJ Regulatory					
•	SESI Consulting Engineers				Z3)	2a) Project: Poughkee			psie							iness E	• •	·	-	NY Re		- ··· 9			Excel - NY Regulatory	
	12A Maple Avenue				25												iness E		•		PA Reduced					Excel - PA Regulatory EQuIS ( <u>specify below</u> ):
1	Pine Brook, NJ						ect Mgi			Dah							iness E siness	_	· ·	_	Full / C	-	Jry B	3		
1b) Email/Cell/F					<b>2</b> 6j	Proje		ation (	City/St	ate):		_	s Ave					Days	(Otanu	_	Catego			\ \	_	4-File/EZ/NYS/Reg. 2 or 5
1 C) Send Invoic					এন১	<b>0</b>			-141-1		FOU	giikee	epsie,	INT		Other				_ <b>L</b> _	Electro			_		Other:
1d) Send Repor	t to: Fuad Dahan				2Q)	Quot	e/PO #	ŧ (If Ap	plicab	ie):							*E)	cpedi	ed TA		Alway	ys Av	allan	ble.	Plea	se Check with Lab.
FOR LAB						T	7	Ana	ivsis	(spe	cify I	meth	ods &	para	mete	er list:	s)	18 - G. 17	<u></u>							
USE	===> Ch	eck li	f Conti	naenf	. ===	:>	- 1		<u> </u>	(-,				,			.,	<b>V</b> II	== C	he	ck II	r Co	onti	lino	len	t <===
ONLY	Matrix C	_	- SAUGU		Sam							-							-			~ ~		1	,, I	
	DW - Drinking Water S - Se		A - Air		Тур	•																				
•	GW - Ground Water SL - S	•																								
Batch #	WW - Waste Water OL - C OT - Other (please specify und		9 Comment	(a																	3)					
ACSYSTE			o, oominion	,	9 10		_	₹	Metals										#		s) Bottle	)S				
1		5)	6) Sa	mple		Ð	2	BNA	Me			i i					1		тÌ	Т	-	2	ŧŢ,		Ľ	
		Matrix	Date	Time	Composite	Grab (G)	TCL	TCL	TAL									None	MeOH	B	NaO L	H2SOA		HN03	Othei	9) Comments
Lab Sample #	4) Customer Sample ID			10.00			X	X	X									2		Ť				1	Ť	
-001	PR-MW-1	GW	6/23/2015			X					-	+								+		_		1		
-002	PR-MW-2	GW	6/23/2015	9:58	┠──┼	<u>X</u>	X	X	<u>X</u>		<u> </u>							2		+						
-003	PR-MW-3	GW	6/23/2015		┞─┤	×	X	X	X									2		+				1	_	
1-004	PR-MW-4	GW	6/23/2015	10:57		<u>×</u>	Х	X	X		<u> </u>	<u> </u>	ļ	-				2	_	+	3			1		
-00>	DUP	GW	6/23/2015	1		X	Х	X	X	L	<u> </u>							2		+	3	3	+	1	_	
-006	FB-062315	ОТ	6/23/2015	11:45		Х	Х	Х	Х									2			3	3	1	1	_	
	TB-062315	στ	623/15	1	·		★																$\perp$			
/			· .			wt	)./~	41.5																		
							-1	<i>t</i>																		
	•••																						Т			
10) Relinquis	shad by:		A	ccepte	d by:			1.4	D	ate	Тт	me	r		0	omm	onte	Not	ae S	nec	al Re	ani	rem	ant	e F	AZARDS
	-	_	~	ccepter						ale			Indica	ate if k	_	vel me				-						
do An	sha bavis		1	7		)			rÞ	31	11	bØ	meet	curre	nt gro	undwa										cts, indicate which be met:
- Agua	sha waars		$\top$	+	ightarrow				° #	εfi	1 ''	0-	(SPL			A (82	700 9	21883					JDE		2111	20
			1	Concession of the local division of the loca					ੱਕ	o G/2	E.					OC SI			)				JDE			
										-12	r—					I, BN							JDE			
													Chec	k if ap					_			<u>_</u> 0	the	r (s	pec	ify):
																pecif										A
Additional N	otoe			1996 - B. 199								A #1003-083-04				tamir Proje						bov	e/ric	ahስ		Cooler Temperature
Additional No	<u> 7169</u>												11)			print na	``		Nata					<u> </u>		ə: 6/23/2015
																					_		ur ar			work may be delayed.
																						-		-		ivated for any analysis.

## APPENDIX D – NYSDEC FORM FOR SOIL IMPORT (01/20/2015)

Electronic



## <u>NEW YORK STATE</u> DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# Request to Import/Reuse Fill or Soil



*This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.*

# **SECTION 1 – SITE BACKGROUND**

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

# SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

# **SECTION 3 - SAMPLING**

Provide a brief description of the number and type of samples collected in the space below:

*Example Text:* 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

## **SECTION 3 CONT'D - SAMPLING**

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

*Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.* 

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

# **SECTION 4 – SOURCE OF FILL**

Name of person providing fill and relationship to the source:

Location where fill was obtained:

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Provide a list of supporting documentation included with this request:

The information provided on this form is accurate and complete.

Signature

Date

Print Name

Firm



## <u>NEW YORK STATE</u> DEPARTMENT OF ENVIRONMENTAL CONSERVATION

# Request to Import/Reuse Fill or Soil



*This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.*

# **SECTION 1 – SITE BACKGROUND**

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

# SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

# **SECTION 3 - SAMPLING**

Provide a brief description of the number and type of samples collected in the space below:

*Example Text:* 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

## **SECTION 3 CONT'D - SAMPLING**

Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):

*Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.* 

If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.

# **SECTION 4 – SOURCE OF FILL**

Name of person providing fill and relationship to the source:

Location where fill was obtained:

Identification of any state or local approvals as a fill source:

If no approvals are available, provide a brief history of the use of the property that is the fill source:

Provide a list of supporting documentation included with this request:

The information provided on this form is accurate and complete.

Signature

Date

Print Name

Firm

## APPENDIX E – SITE INSPECTION PHOTO LOG





Photo 1: General view of the Site.



Photo 2: View of the Site during February 2016 Site Inspection.

PERIODIC REVIEW REPORT FORMER A.C. DUTTON LUMBE YARD DUTCHESS COUNTY, NEW YORK April 2016 SESI Job Number: 9039





Photo 3: General view of one of the monitoring wells at the Site.



Photo 4: Additional view of the Site.

PERIODIC REVIEW REPORT FORMER A.C. DUTTON LUMBE YARD DUTCHESS COUNTY, NEW YORK April 2016 SESI Job Number: 9039

## **APPENDIX F – NYSDEC – IC & EC CERTIFICATION FORM**



### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



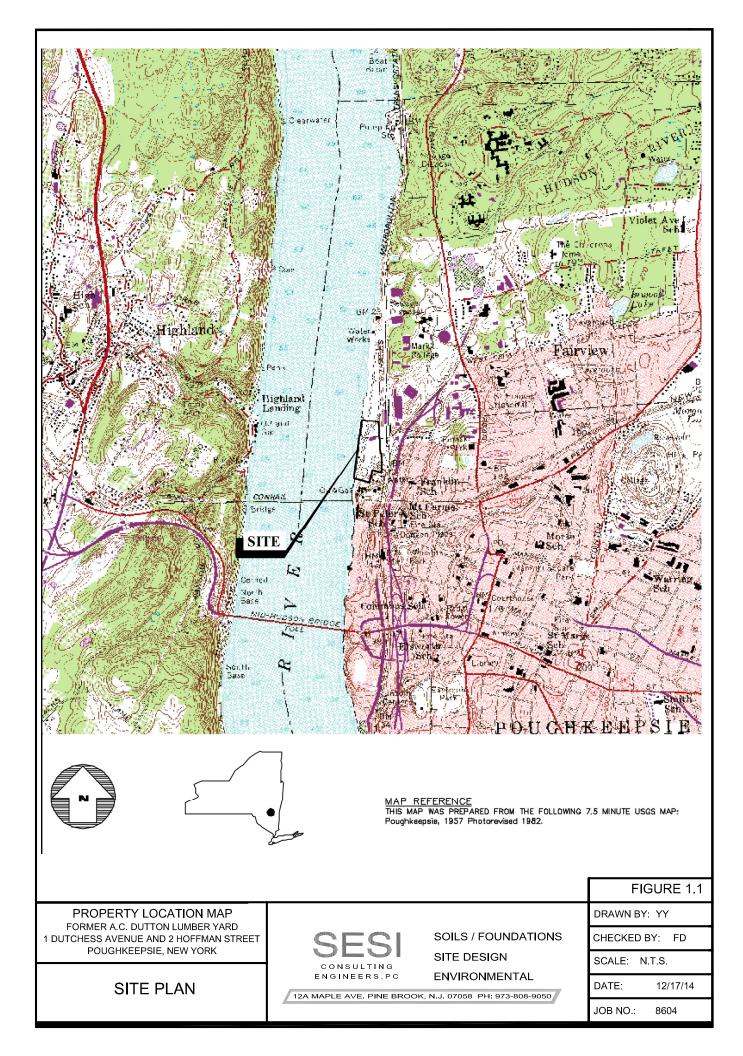
	te No. C314081	Box 1	
Si	te Name Former A.C. Dutton Lumber Yard		
Cit Co Sit	e Address: 1 Dutchess Avenue Zip Code: 12601 ty/Town: Poughkeepsie punty: Dutchess e Acreage: 11.8		
RE	porting Period: December 30, 2014 to March 30, 2016		
		YES	NO
1.	Is the information above correct?	×	
	If NO, include handwritten above or on a separate sheet.		
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		Ø
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		×
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?	X	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.		
5.	Is the site currently undergoing development?	-	X
			A
		Box 2	
			NO
6.	ls the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	Box 2	
		Box 2 YES	NO
	Restricted-Residential, Commercial, and Industrial	Box 2 YES	NO
7.	Restricted-Residential, Commercial, and Industrial Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and	Box 2 YES	NO

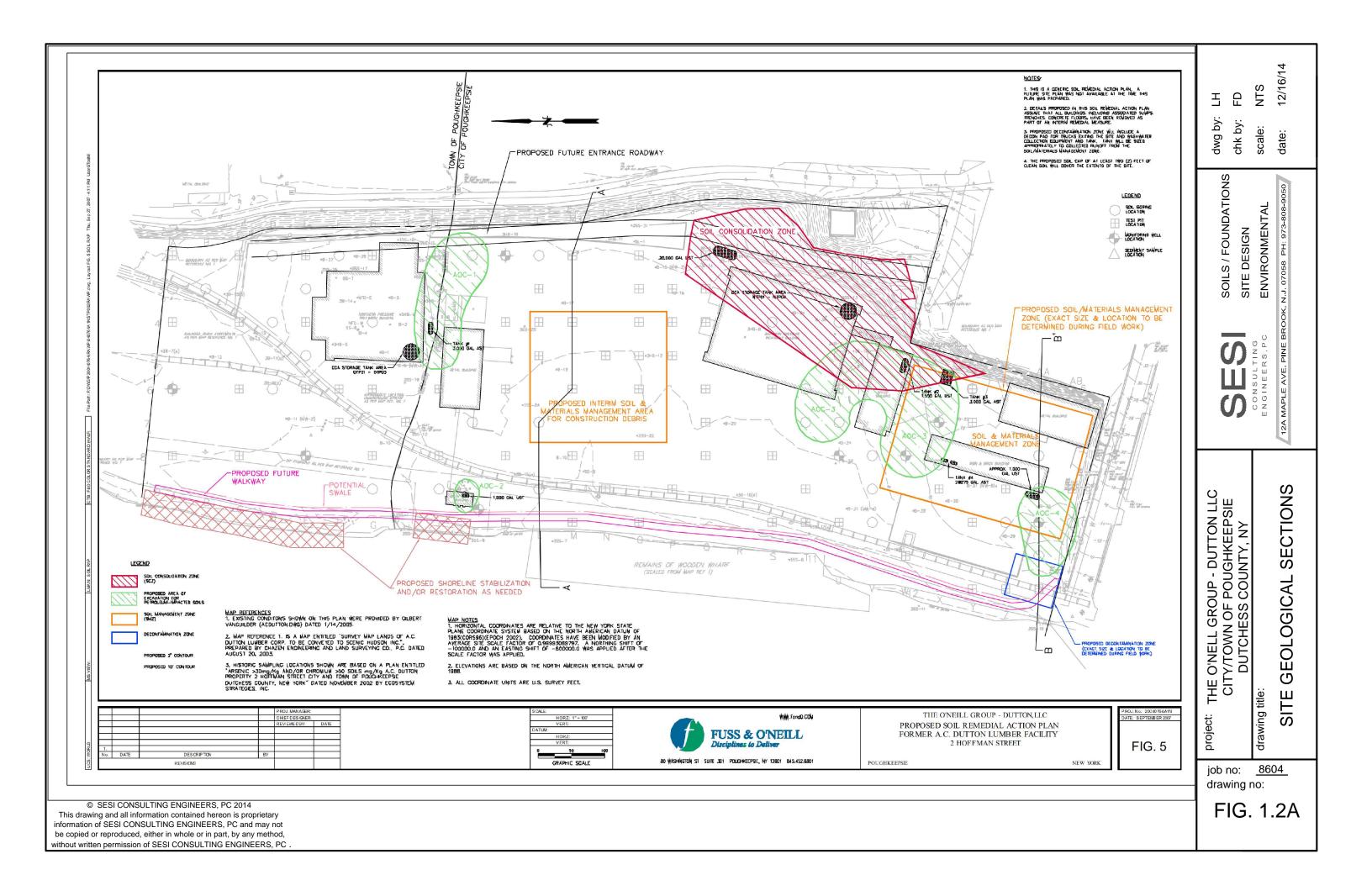
		Box 2A
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?	YES NO □ \⊉
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.	
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	× □
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.	
SITE	NO. C314081	Box 3
	Description of Institutional Controls	

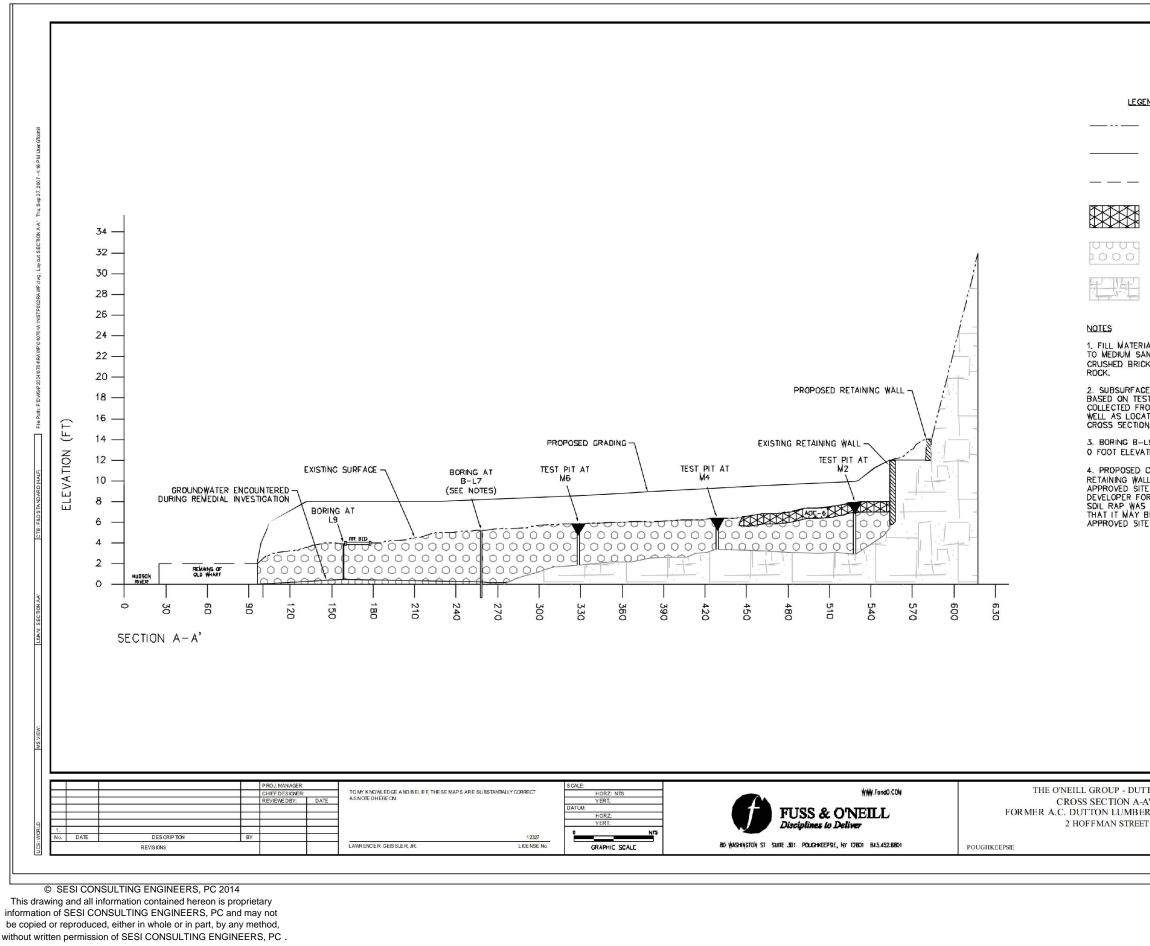
Baraal	0	
Parcel 6062-02-763508	<u>Owner</u> The O'Neill Group-Dutton, LLC	Institutional Control Site Management Plan
	The O Neill Gloup-Duiton, EEG	Ground Water Use Restriction
		Landuse Restriction
		Soil Management Plan
		Monitoring Plan
		IC/EC Plan
The property may be used for: described in 6 NYCRR Part 37	Restricted Residential as describe /5-1.8(g)(2)(iii) and Industrial as des	d in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as cribed in 6 NYCRR Part 375-1.8(g)(2)(iv);
determined by the NYSDOH of	r the Dutchess County Department	out necessary water quality treatment as of Health to render it safe for use as drinking water written approval to do so from the Department;
Groundwater monitoring must	be performed as defined in the SM	P;
The potential for vapor intrusion impacts that are identified must	on must be evaluated for any buildi t be monitored or mitigated;	ngs developed on the site, and any potential
All future activities on the prop accordance with the SMP;	perty that will disturb remaining con	aminated material must be conducted in
6062-59-766443	The O'Neill Group-Dutton, LLC	Site Management Plan
		Soil Management Plan
		Monitoring Plan
		IC/EC Plan
		Ground Water Use Restriction Landuse Restriction
The property may be used for: as described in 6 NYCRR Part	Restricted Residential as described 375-1.8(g)(2)(iii) and Industrial as c	in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial escribed in 6 NYCRR Part 375-1.8(g)(2)(iv);
determined by the NYSDOH or	the Dutchess County Department	but necessary water quality treatment as f Health to render it safe for use as drinking water written approval to do so from the Department;
Groundwater monitoring must	be performed as defined in the SM	D.
The potential for vapor intrusio impacts that are identified must	n must be evaluated for any buildin be monitored or mitigated;	gs developed on the site, and any potential
All future activities on the prope accordance with the SMP;	erty that will disturb remaining conta	minated material must be conducted in
Description of Engin	eering Controls	Box 4
Parcel	Engineering Control	
6062-02-763508	Cover System	
cover system placed over the s inches of clean soil. Asphalt pa	nation at the site is prevented by a s ite. This cover system is comprised vement, concrete-covered sidewalk lean soil in landscaped areas will b bed.	of a minimum of 24 s, and concrete
6062-59-766443	Cover System	
Exposure to remaining contamin cover system placed over the s	ation at the site is prevented by a s ite. This cover system is comprised	oil of a minimum of 24

.

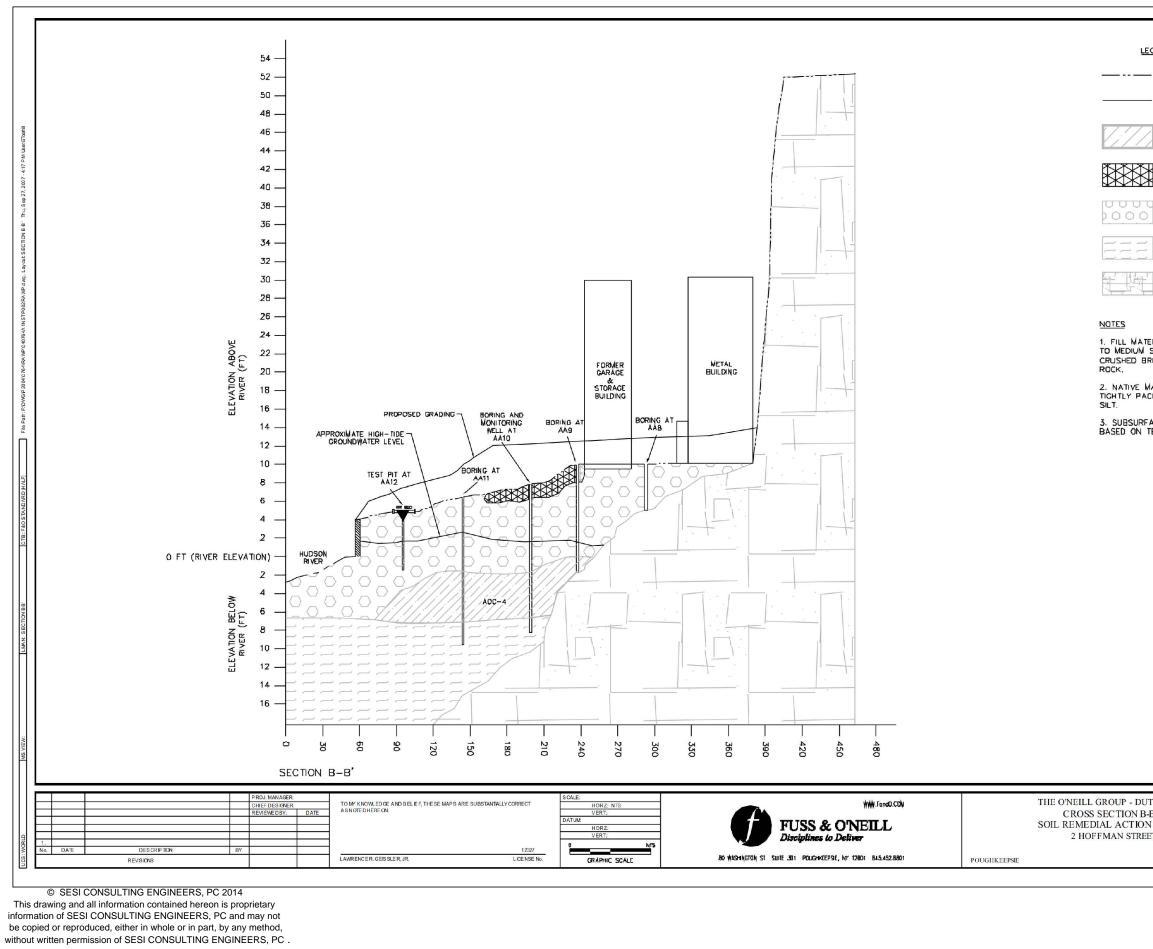
Parcel Engineering Control		
inches of clean soil. Asphalt pavement, concrete-covered sidewalks, and concrete		
building slabs and two-feet of clean soil in landscaped areas will be part of the covers system when the site is developed.		
system when the site is developed.		
		Box 5
Deviadia Deview Depart (DBB) Contification Statements		
Periodic Review Report (PRR) Certification Statements		
1. I certify by checking "YES" below that:		
T. Fortiny by checking TEO below that.		
a) the Periodic Review report and all attachments were prepared under the direction	n of, and	
reviewed by, the party making the certification;	, und	
b) to the best of my knowledge and belief, the work and conclusions described in th		
are in accordance with the requirements of the site remedial program, and generally		
	YES	NO
		-
	v	
2. If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for ea	ch Instit	utional
or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that a		utional
following statements are true:		
(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged	since th	e date that the
Control was put in-place, or was last approved by the Department;		
(b) nothing has occurred that would impair the ability of such Control, to protect public health	n and	
the environment;		
(a) concerns to the site will continue to be provided to the Department, to evolute the remark	in almalia	
(c) access to the site will continue to be provided to the Department, to evaluate the remedy evaluate the continued maintenance of this Control;	, incluair	ig access to
(d) nothing has occurred that would constitute a violation or failure to comply with the Site M	anagem	ent Plan for this
Control; and	anagom	
(e) if a financial assurance mechanism is required by the oversight document for the site, the	e mecha	nism remains valid
and sufficient for its intended purpose established in the document.		
	YES	NO
	$\sim$	
	¥	
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and		and the second sec
DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.		
A Corrective Measures Work Plan must be submitted along with this form to address th	ese issu	les.
	1	
	1	
4/13/	16	
Signature of Owner, Remedial Party or Designated Representative		•


44

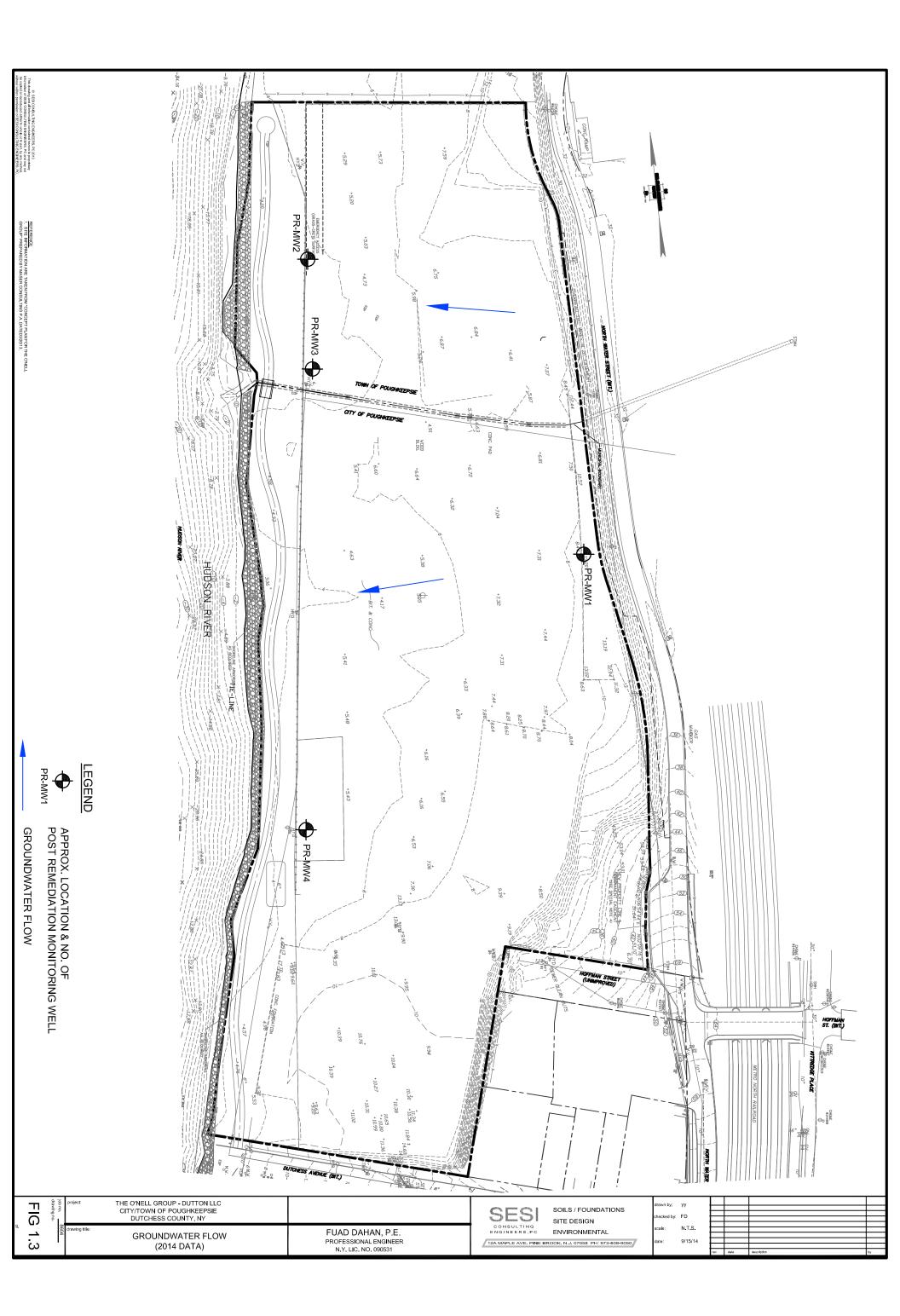

IC CERTIFICATIONS	
SITE NO. C314081	
	Box 6
	3
SITE OWNER OR DESIGNATED REPRESENTATIVE SIGN, I certify that all information and statements in Boxes 1,2, and 3 are true. I und statement made herein is punishable as a Class "A" misdemeanor, pursuant to Penal Law.	erstand that a false
Louis Kaufmen at The O'Neill Group print name at Correct business address am certifying as Ocom	HACKENSACK, W07
for the Site named in the Site Details Section of this form.	-112/11/p
Rendering Certification	

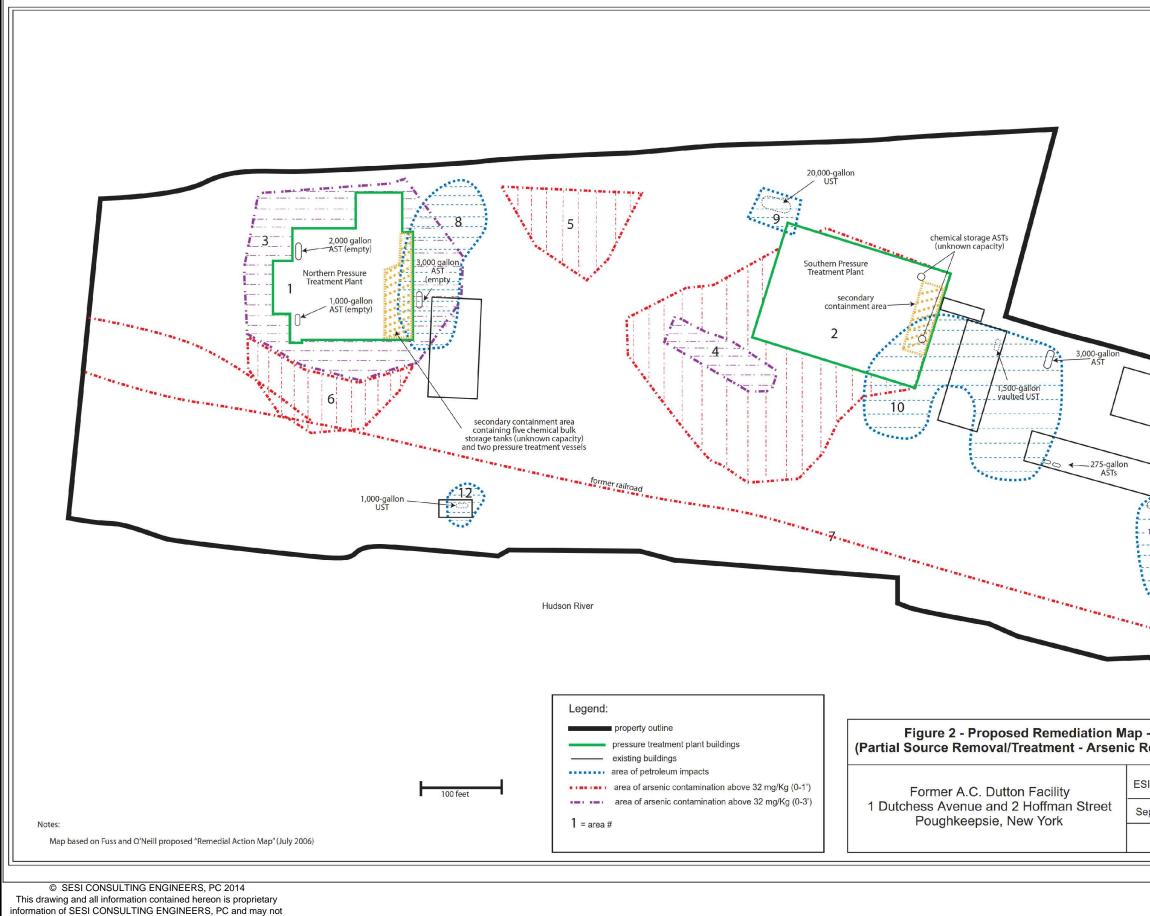

•

**IC/EC CERTIFICATIONS** Box 7 **Qualified Environmental Professional Signature** I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. SEST CONSULTING ENGINEERS, PC I FUND DAHAN at 12 A MARTE AVE, PINE BROK, NJ, print name print business address am certifying as a Qualified Environmental Professional for the <u>The O'NELL GROUP DUTTON, L</u>LC (Owner or Remedial Party) 4/13/2016 Signature of Qualified Environmental Professional Stamp Date the Owner or Remedial Party, Rendering Certification (Required for PE)


## **APPENDIX G– SMP Figures**

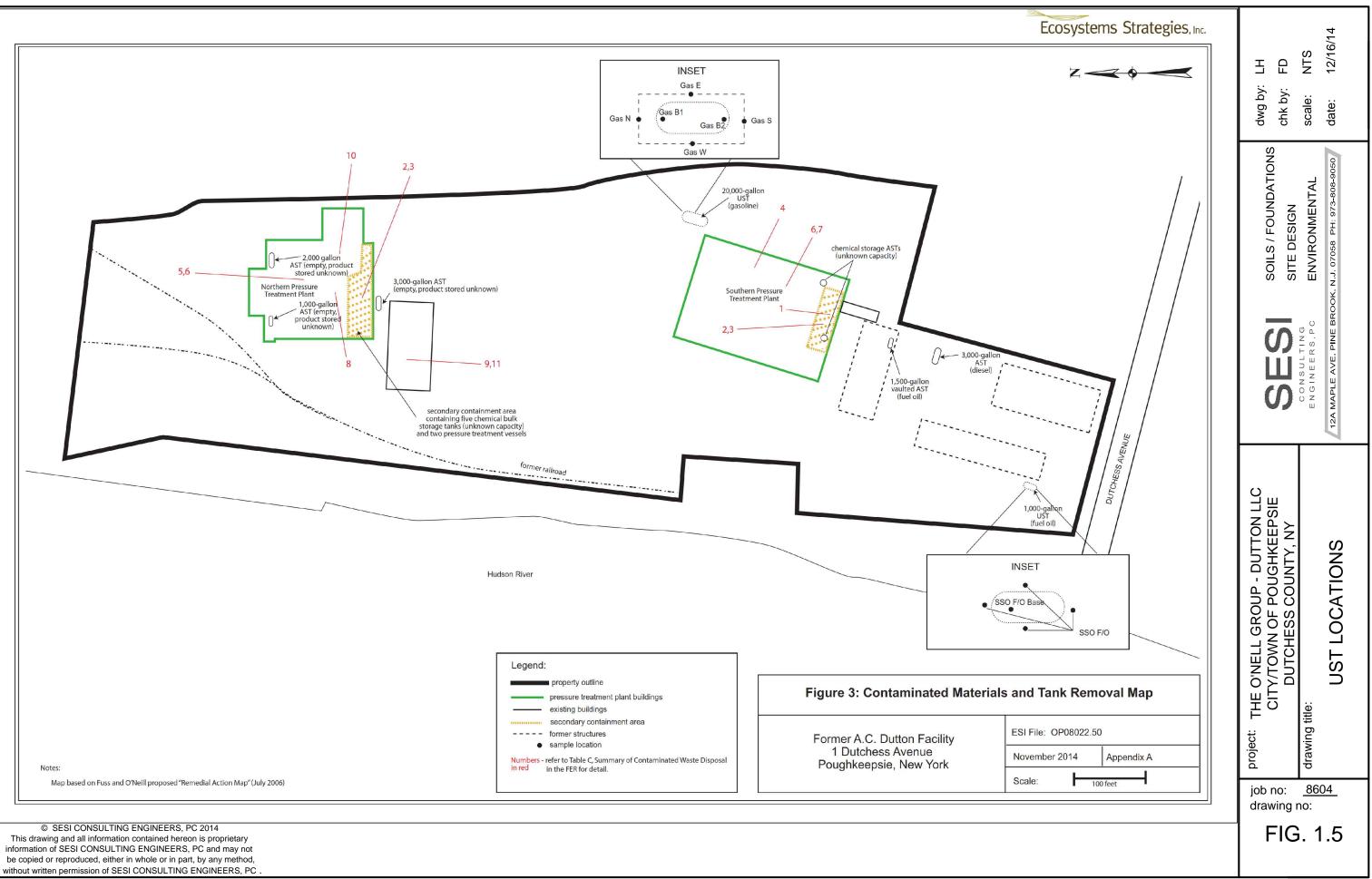


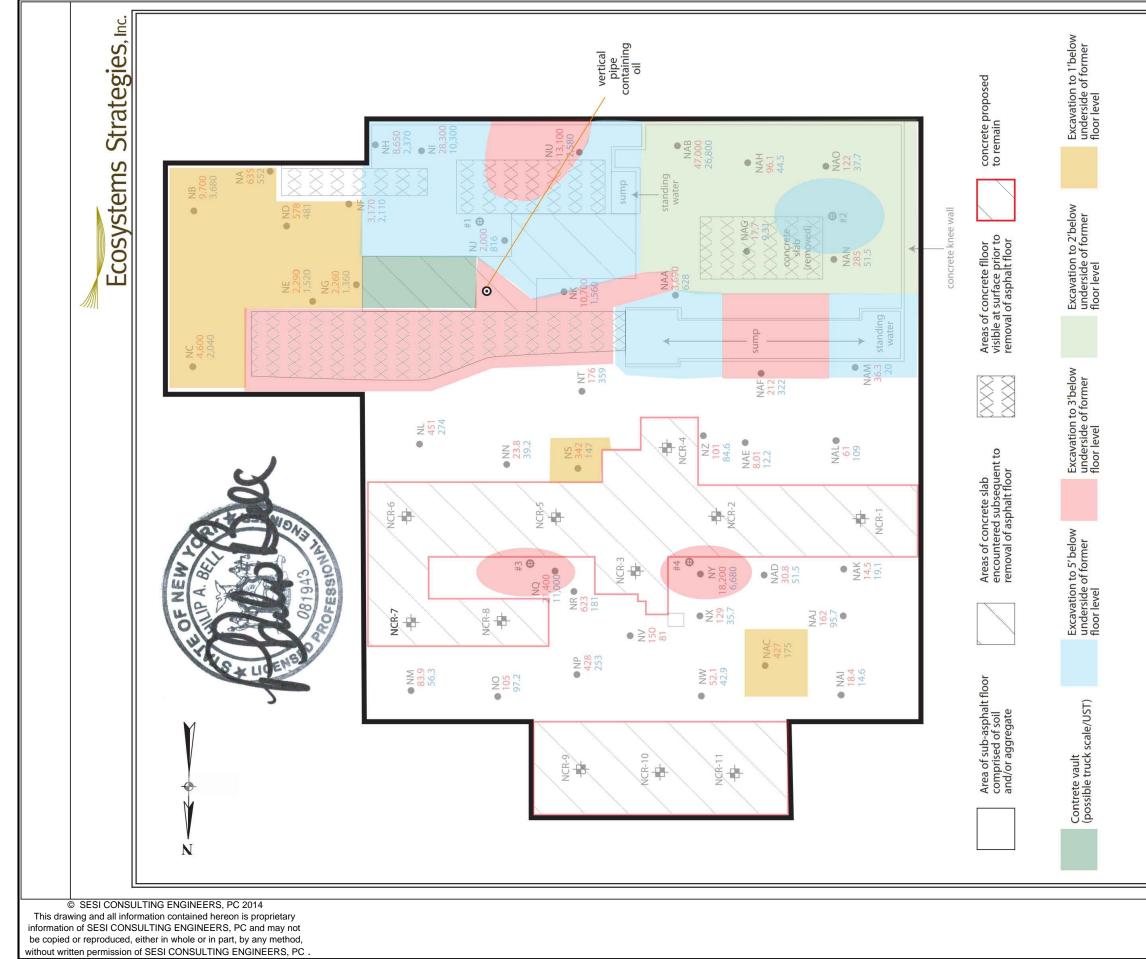



	\$/14
	LH FD NTS 12/16/14
END	dwg by: chk by: scale: date:
EXISTING SURFACE	σνυσ
PROPOSED SURFACE	SNC
APPROXIMATED ENTRANCE ROADWAY AND RAMPS INTO SITE	DATI TAL
ZONE OF METALS CONCENTRATIONS EXCEEDING ACTION LEVELS	SOILS / FOUNDATIONS SITE DESIGN ENVIRONMENTAL
FILL MATERIAL	E DE / F
BEDROCK	SITE SITE ENV
	ook,
HAL GENERALLY CONSISTS OF FINE AND, GRAVEL, SOLIDIFIED KILN ASH, CK, AND CRUSHED SHALE/BLAST	SOILS / SITE DI SITE DI ERS.PC ENVIRC
CE CONDITIONS ARE ESTIMATED ST PIT AND BORING DATA ROM THE LOCATIONS SHOWN, AS ATIONS IN THE VICINITY OF THIS DN.	
L9 EXTENDS 1.5 FEET BELOW THE ATION (RIVER ELEVATION).	12A M
CONDITIONS (RAMP, ROAD, & LL) ARE APPROXIMATED. NO TE PLAN IS AVAILABLE FROM THE OR PLANNING PURPOSES. THIS S DESIGNED IN GENERIC TERNS SO BE EASLY ADAPTABLE TO AN TE PLAN IN THE FUTURE. PLAN IN THE FUTURE. PROJ.MC. 2009/0764/APM DAT: SEPTEMBER 2007	Ct: THE O'NELL GROUP - DUTTON LLC CITY/TOWN OF POUGHKEEPSIE DUTCHESS COUNTY, NY ing title: SITE GEOLOGICAL SECTIONS
A' BR FACILITY ST FIG. 9A	project: TH C drawing title: SITE
NEW YORK	job no: <u>8604</u> drawing no:
	-
	FIG. 1.2B

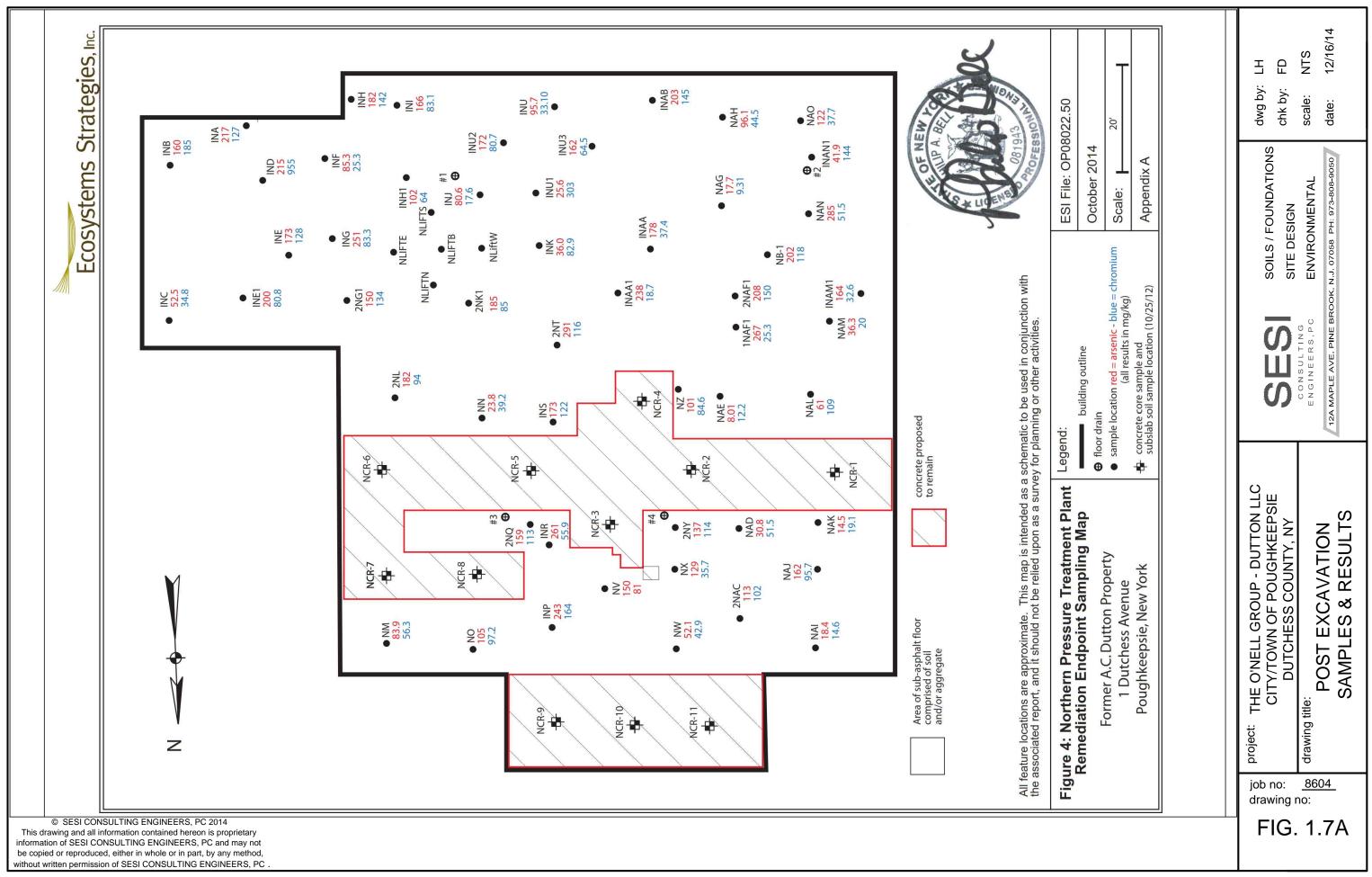


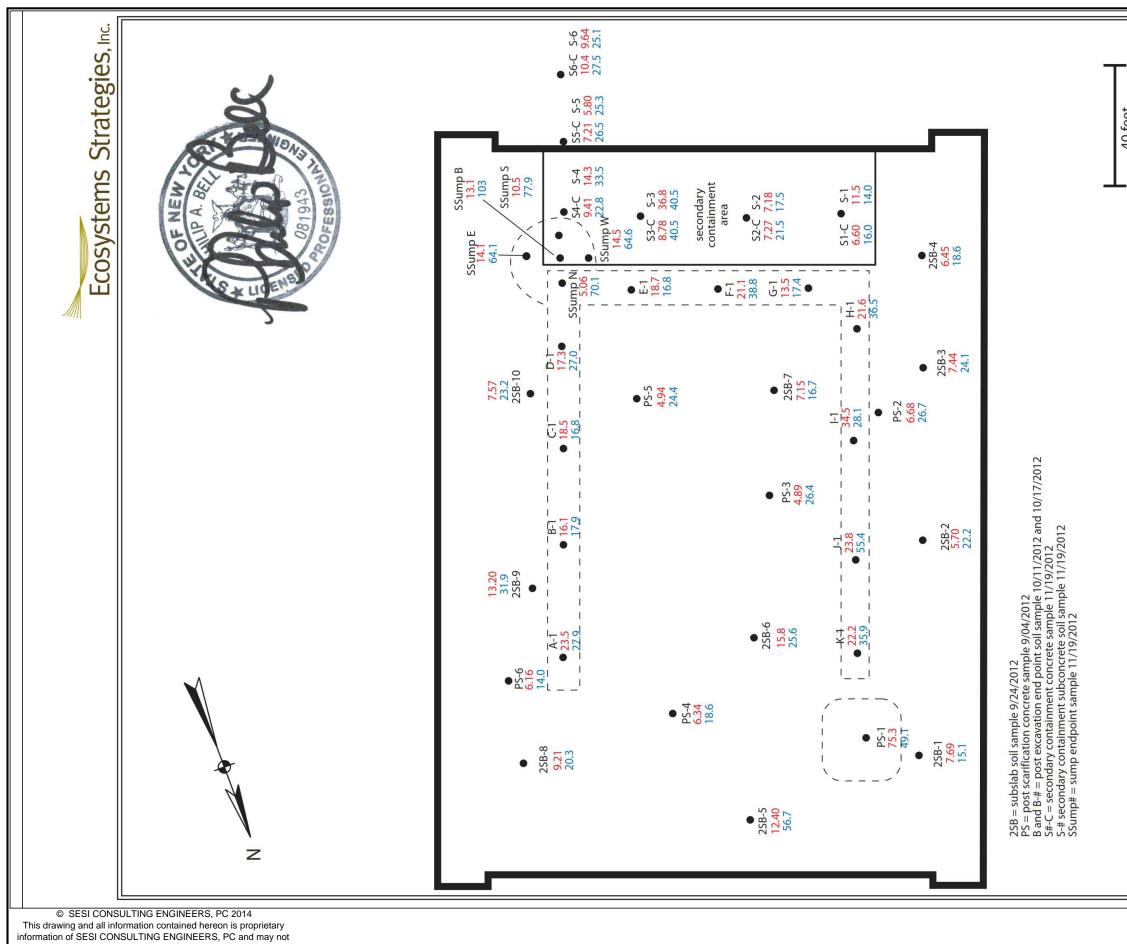

<u>egend</u> — Existing Surface	y: LH r: FD NTS 12/16/14
- PROPOSED SURFACE	dwg by: chk by: scale: date:
APPROXIMATE PETROLEUM-IMPACTED AREA OF CONCERN ZONE OF METALS CONCENTRATIONS EXCEEDING ACTION LEVELS	SOILS / FOUNDATIONS SITE DESIGN ENVIRONMENTAL
FILL MATERIAL	SOILS / FOUNDATION SITE DESIGN ENVIRONMENTAL J. 07058 PH: 973-808-9050
NATIVE MATERIAL	SOILS / FOUN SITE DESIGN ENVIRONMEN
BEDROCK	SOIL SITE ENV
TERIAL GENERALLY CONSISTS OF FINE SAND, GRAVEL, SOLIDIFIED KILN ASH, BRICK, AND CRUSHED SHALE/BLAST	SOILS / SOILS / SITE DE ETTING ERS.PC ENVIRC
MATERIAL GENERALLY CONSISTS OF ACKED LIGHT BROWN FINE SAND AND FACE CONDITIONS ARE ESTIMATED	A L C
TEST PIT AND BORING DATA.	
JTTON, LLC HB' N PLAN ET PROJ. No.: 2004/764/281 DATE: SEPTEMBER 2007 FIG. 9B	project: THE O'NELL GROUP - DUTTON LLC CITY/TOWN OF POUGHKEEPSIE DUTCHESS COUNTY, NY drawing title: SITE GEOLOGICAL SECTIONS
NEW YORK	job no: <u>8604</u> drawing no:
	FIG. 1.2C






be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS, PC

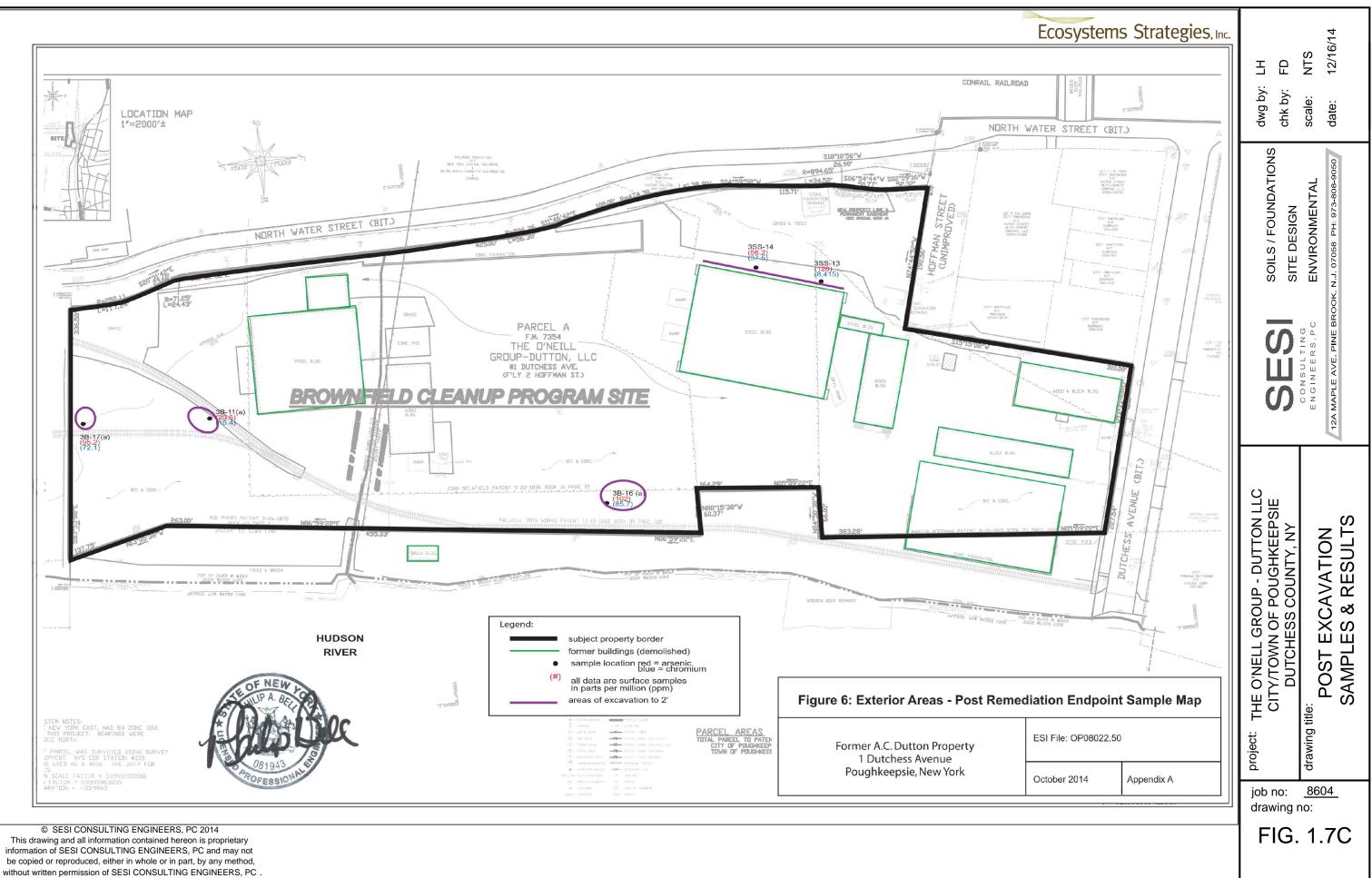

Z	dwg by: LH chk by: FD scale: NTS date: 12/16/14
	SOILS / FOUNDATIONS SOILS / FOUNDATIONS SITE DESIGN CONSULTING ENGINEERS, PC ENVIRONMENTAL ENVIRONMENTAL
SNUE	CONSULTING CONSULTING ENGINEERS, PC
DUTCHESS AVENUE	<pre>iect: THE O'NELL GROUP - DUTTON LLC CITY/TOWN OF POUGHKEEPSIE DUTCHESS COUNTY, NY wing title: 2008 INVESTIGATION RESULTS</pre>
- Excavation/Treatment emediated to SBL of 32 mg/kg) I File: OP08022.41 ptember 2008 Appendix B	project: THE O'I CITY/ CITY/ drawing title: 2008 INV
Ecosystems Strategies, Inc.	iob no: <u>8604</u> drawing no: FIG. 1.4






e are annrovimate. This man is intended as a scher

	rended as a s n as a surve)	for planning or other activities.		
	Figure 7 - Excavation Depths at NTP	Legend:	ESI File: OP08022.50	
		<ul> <li>floor drain</li> </ul>	October 2014	
	former A.C. Dutton Property 1 Durchess Avenue	<ul> <li>sample location red = arsenic - blue = chromium (all results in mg/kg)</li> </ul>	Scale: 20'	
	ork	<ul> <li>concrete core sample and subslab soil sample location (10/25/12)</li> </ul>	Appendix A	
dra			dwg bv:	
awing I FIC	CITY/TOWN OF POUGHKEEPSIE DUTCHESS COUNTY, NY	SOLS / FOUN	IDATIONS	
	gedrawing title:	CONSULTING ENGINEERS, PC ENVIRONMENTAL	JENTAL scale: NTS	
.6	EXCAVATION LOCATIONS & DEPTHS	C 12A MAPLE AVE. PINE BROOK, N.J. 07058 PH: 973-808-9050	: э73-808-9050 date: 12/16/14	4






be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS, PC

40 feet

	38022.50	1	),		dwg by: LH chk by: FD scale: NTS date: 12/16/14
	ESI File: OP08022.50	October 2014	Scale: 1" = 40'	Appendix A	SOILS / FOUNDATIONS SITE DESIGN ENVIRONMENTAL
unction with ies.			- blue = chromium	mg/kg)	SOILS / FOUNDAT SITE DESIGN ENVIRONMENTAL ROOK, N.J. 07058 PH: 973-808-5
ematic to be used in conj r planning or other activiti	Legend:			(all results in mg/kg)	SOLS / FOUNDATION SOLS / FOUNDATION SITE DESIGN CONSULTING ENGINE ERS, PC ENVIRONMENTAL IZA MAPLE AVE. PINE BROOK, N.J. 07058 PH: 973-808-9050
All feature locations are approximate. This map is intended as a schematic to be used in conjunction with the associated report, and it should not be relied upon as a survey for planning or other activities.		Post Remediation End Point Sampling Map	Street	Poughkeepsie, New York	project: THE O'NELL GROUP - DUTTON LLC CITY/TOWN OF POUGHKEEPSIE DUTCHESS COUNTY, NY drawing title: POST EXCAVATION SAMPLES & RESULTS
tt b		P			job no: <u>8604</u> drawing no: FIG. 1.7B



This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS, PC and may not be copied or reproduced, either in whole or in part, by any method,

## **APPENDIX H– PERMITS RECEIVED DURING THE REPORTING PERIOD**



## April 21, 2015

### 1 DUTCHESS AVENUE - SITE PLAN (FORMER DUTTON SITE)

Site Plan and Special Permit review regarding mixed-use transit oriented development totaling 300 residential units within the City of Poughkeepsie portion of the development on 10.82 acres on Dutchess Avenue at the former Dutton Lumber site. Applicant: The O'Neill Group, Dutchess Avenue Riverwalk, LLC and Dutchess Avenue Riverwalk North, LLC; Grid # 6062-59-766443; Zoned W; File# 2013-091

The applicant is proposing a new mixed use development with 300 residential units and 13,800 square feet of commercial space within the City of Poughkeepsie.

Public hearings were opened and adjourned on several occasions, beginning January 28, 2014. The Public Hearing was closed on August 26, 2014.

ZBA granted required area variances on March 10, 2015.

### **Resolution of Conditional Final Approval**

The Board hereby adopts the Findings Statement as attached for the submitted site plan as stated in the following resolution:

WHEREAS, the Planning Board has received a site plan prepared by Maser Consulting, P.A., for the proposed development, last revised January 30, 2015 for the mixed-use development at One Dutchess Avenue; and

WHEREAS, the Planning Board has received a Waterfront Greenway Trail Plan prepared by Maser Consulting, P.A., for the proposed development, last revised March 24, 2015.

WHEREAS, the Planning Board has received architectural elevations prepared by Liscum McCormack VanVoorhis, LLP, last dated October 27, 2014 for the mixed-use development at One Dutchess Avenue; and

WHEREAS, the Common Council, acting as lead agency conducted a SEQRA review for the project which included the initial rezoning of the property from Industrial (I-2) to Waterfront (W), the site plan and other associated approval; and

WHEREAS, the Planning Board was named as an involved agency in the SEQRA review as it is the agency responsible for granting site plan approval for the project; and

WHEREAS, the Common Council adopted a Final Environmental Impact Statement for the project on March 19, 2012.

WHEREAS, the Common Council adopted a SEQR Findings Statement and the Local Law that rezoned the subject property to the Waterfront District on May 7, 2012; and

WHEREAS, the applicant applied for site plan approval from the Planning Board on October 4, 2013; and

WHEREAS, the application was deemed complete on December 17, 2013; and

WHEREAS, a public hearing was opened for the project on January 28, 2014; and

WHEREAS, the Waterfront Advisory Committee made a determination of project consistency with the LWRP on March 25, 2014;

WHEREAS, the project documents and application were forwarded to Dutchess County Department of Planning and Development and a response received on July 10, 2014 indicating the application was a matter of local concern with comments; and

WHEREAS, the public hearing was closed on August 26, 2014; and

WHEREAS, the Zoning Board of Appeals granted required area variances on March 10, 2015 after issuing its own SEQR determination as it was not named as an involved agency in the original review by the Common Council;

NOW THEREFORE BE IT RESOLVED that the Planning Board hereby adopts the Findings Statement dated April 21, 2015.

Motion: <u>Abraham Santiago, IV</u> Second: <u>Naomi Goldberg</u> Carried: <u>7:0:0</u>

THEREFORE BE IT FURTHER RESOLVED that the Board grant final site plan and special permit approval for the mixed use development with 300 residential units and 13,800 square feet of commercial space within the City of Poughkeepsie with the following conditions:

Condition of Final Approval to be satisfied prior to Signing of the Site Plan:

- Satisfaction of Engineering Comments dated March 10, 2015.
- Provide Modified Plan set showing proposed mixed use development in the City of Poughkeepsie only, not showing the proposed development in the Town of Poughkeepsie. With the exception that the proposed development of the Waterfront Greenway Trail Plan will include the improvements in the City and the Town.
- Continued payment of escrow for Engineering and Legal Services.
- Documentation of approvals from Dutchess County/New York State Department of Health.
- Documentation that New York State has authorized the Applicant to enter onto its property and perform the work associated with the site plan and that it will be conveyed without conditions or restrictions other than to limit its use for public recreational purposes, or in the alternative proof that NYS has transferred legal title to it.

- Documentation from the State of New York confirming that title to the underwater lands will be transferred to [Interim Park Owner]
- Offer of cession from [Interim Park Owner] to City of Poughkeepsie for designated park lands in a form subject to approval by the City Attorney.
- Site plan should note that its regulated by DEC Easement.

## Condition of Final Approval prior to Initiation of any Site Work:

- Stormwater Pollution Prevention Plan NOI.
- Establishment of a performance bond in form satisfactory to the Corporation Counsel of the City of Poughkeepsie for the estimated improvement costs of approximately \$3,212,000 based on estimate prepared February 13, 2015 which will need to be revised to reflect changes to Waterfront Greenway Trail Plan. Bond shall be established in accordance with 19-6.1(e)(2)(i) for site improvements, including: Street base and paving; Concrete curb and gutters; Water mains, appurtenances and services; Storm sewers, appurtenances and services; Sanitary sewers, appurtenances and services; concrete sidewalks; Streetlights; Landscaping; Park Improvements; and such other site improvements as the Planning Board deems necessary to ensure proper development of the site.
- Establishment of development inspection escrow in an amount equal to 2% of the final performance bond amount. Inspection escrow currently estimated to be \$64,240.
- Documentation of approvals from Army Corp of Engineers.
- Documentation of approvals from New York State Department of Environmental Conservation.

# Condition of Final Approval prior to Issuance of Building Permit:

- Reimbursement to City in the amount of \$115,854.46 for cost of utility improvements completed for the benefit of the project related to the Hoffman Street Bridge Project.
- Proof that NYS has transferred legal title to the property.
- Documentation of revisions to FEMA Map.
- Prior to issuance of building permit for park site, site cleanup plan for Park Land approved by New York State Department of Environmental Conservation.
- Structural Review by Engineering of proposed retaining wall 4' or greater in height prior to approval of each phase within which applicable retaining wall exists.

# Condition of Final Approval prior to Issuance of 84th Certificate of Occupancy:

- Final sign off from DEC that Waterfront Greenway Trail site has been remediated.
- DEC approved monitoring plan for Park Land which provides that applicant do required testing and reporting on Park Land.
- Completion of Improvements shown on the Waterfront Greenway Trail Plan last revised March 24, 2015 consisting of improvements in both the City and Town of Poughkeepsie.

• Dedication to the City of Poughkeepsie, Land shown as "Town of Poughkeepsie Grant Area" and "City of Poughkeepsie Grant Area" on Submission Map O.G.S. #2287, last revised 2/12/15, which encompasses the Waterfront Greenway Trail.

Motion: <u>Abraham Santiago, IV</u> Second: <u>Naomi Goldberg</u> Carried: <u>7:0:0</u>