

Groundwater & Environmental Services, Inc.

63 E Main Street, Suite 3 Pawling, New York 12564

T. 866.839.5195

May 31, 2023

Mr. Michael Squire Division of Environmental Remediation, Remedial Bureau C New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233

Re: Site Management Plan, Version 2.0 1-45 Orangetown Shopping Center Orangeburg, New York Site #C344066

Dear Mr. Squire:

Enclosed is the *Site Management Plan* (SMP), *Version 2.0* for the above referenced site updated by Groundwater & Environmental Services, Inc. (GES) on behalf of UB Orangeburg, LLC. This document is required as an element of the remedial program at the Orangetown Shopping Center, located in the Town of Orangeburg, County of Rockland, New York under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). The SMP has been updated to reflect changes since the last SMP submittal, approved by the NYSDEC and New York State Department of Health (NYSDOH), incorporated within the next annual Periodic Review Report to be prepared by GES. The *SMP Version 2.0* reflects modifications requested by the NYSDEC and NYSDOH in the letter dated May 22, 2023.

If you have any questions or comments regarding this submittal, please contact me at (866) 839-5195, extension 3839.

Sincerely,

Groundwater & Environmental Services, Inc.

Michael DeGloria, P.G. Principal Project Manager

Monica Roth, UB Orangeburg, LLC (mroth@ubproperties.com)
 Miyun Sung, UB Orangeburg, LLC (msung@ubproperties.com)
 Renata Ockerby, New York State Department of Health (renata.ockerby@health.ny.gov)
 Maureen Schuck, New York State Department of Health (maureen.schuck@health.ny.gov)
 Hilton Soniker, Esg., JLJ Management (soniker@kamso.com)

Site Management Plan

1-45 Orangeburg (Orangetown) Shopping Center Rockland County Orangeburg, New York NYSDEC Site Number: C344066 *Version 2.0* Prepared for: UB Orangeburg, LLC 321 Railroad Avenue Greenwich, CT 06830 Prepared by: Groundwater & Environmental Services, Inc. 63 East Main Street, Suite 3 Pawling, New York 12564 TEL: 866-839-5195

www.gesonline.com

Revision Date			NYSDEC
No. Submitted		Summary of Revision	Approval Date
1	May 7, 2015	Modification to the Groundwater	May 23, 2015
		Sampling and Bio-Augmentation	
		System	
2	October 3, 2017	Modification to the Groundwater	November 15,
		Sampling program, Monitoring Well	2017
		and SSDS decommissioning	
	0 1 1 05 0040		N 5 0040
3	October 25, 2019	Modification to the Groundwater	November 5, 2019
		Sampling, Bio-Augmentation System,	
		and SSDS decommissioning	
4	May 21, 2022	Undeted Format Madification to the	
4	May 31, 2023	Updated Format, Modification to the	
		Groundwater Sampling, Bio-	
		Augmentation System, and SSDS	
		decommissioning	

Revisions to Final Approved Site Management Plan:

MAY 2023

CERTIFICATION STATEMENT

I <u>GENEVIEVE F. BOCK</u> certify that I am currently a NYS registered professional engineer as defined in 6 NYCRR Part 375 and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

P.E. DATE

Page ii

Table of Contents

1-45 Orangeburg (Orangetown) Shopping Center ROCKLAND COUNTY Orangeburg, NEW YORK SITE MANAGEMENT PLAN

Ac	ron	ıyms vii
ES	E	xecutive Summary1
1	11	NTRODUCTION4
	1.1	General4
	1.2	Revisions5
	1.3	Notifications5
2	S	UMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS
2	2.1	Site Location and Description7
2	2.2	Physical Setting7
		2.2.1 Land Use7
		2.2.2 Geology
		2.2.3 Hydrogeology
2	2.3	Investigation and Remedial History9
2	2.4	Remedial Action Objectives13
1	2.5	Remaining Contamination13
		2.5.1 Soil
		2.5.2 Sediment
		2.5.3 Groundwater14
		2.5.4 Surface Water
		2.5.5 Soil Vapor14
3	11	NSTITUTIONAL AND ENGINEERING CONTROL PLAN15
	3.1	General15
	3.2	Institutional Controls15
	3.3	Engineering Controls16
		3.3.1 Cover (or Cap)
		3.3.2 Bio-augmentation system17
		3.3.3 Criteria for Completion of Remediation/Termination of Remedial System
4	N	10NITORING AND SAMPLING PLAN

	4.1	General	.20
	4.2	Site-wide Inspection	.20
	4.3	Treatment System Monitoring and Sampling	.21
		4.3.1 Remediation System Monitoring	.21
		4.3.2 Remedial System Sampling	.22
	4.4	Post-Remediation Media Monitoring and Sampling	.22
		4.4.1 Soil Sampling	.22
		4.4.2 Sediment Sampling	.22
		4.4.3 Groundwater Sampling	.23
		4.4.4 Surface Water Sampling	.26
		4.4.5 Soil Vapor Sampling	.26
		4.4.6 Soil Vapor Intrusion Sampling	.26
		4.4.7 Monitoring and Sampling Protocol	.26
5	C	OPERATION AND MAINTENANCE PLAN	.27
	5.1	General	.27
	5.2	Remedial System (or other Engineering Control) Performance Criteria	.27
	5.3	Operation and Maintenance of Bio-Augmentation System	.27
		5.3.1 System Start-Up and Testing	.28
		5.3.2 Routine System Operation and Maintenance	.29
		5.3.3 Non-Routine Operation and Maintenance	.29
		5.3.4 System Monitoring Devices and Alarms	.29
		5.3.5 Fire Safety	. 30
6	F	PERIODIC ASSESSMENTS/EVALUATIONS	.31
	6.1	Climate Change Vulnerability Assessment	.31
	6.2	Green Remediation Evaluation	.31
		6.2.1 Timing of Green Remediation Evaluations	.32
		6.2.2 Remedial System	.32
		6.2.3 Building Operations	. 32
		6.2.4 Frequency of System Checks, Sampling, and Other Periodic Activities	.32
		6.2.5 Metrics and Reporting	.33
	6.3	Remedial System Optimization	.33
7	F	REPORTING REQUIREMENTS	.34

	7.1	Site Management Reports	.34
	7.2	Periodic Review Report	.35
	-	7.2.1 Certification of Institutional and Engineering Controls	.37
	7.3	Corrective Measures Work Plan	. 39
	7.4	Remedial Site Optimization Report	.39
8	R	EFERENCES	.39

Figures

- Figure 1 Site Location Map
- Figure 2 Site map
- Figure 3 Site Layout
- Figure 4 X Section Location Map
- Figure 5 X Section A-A'
- Figure 6 X Section B-B'
- Figure 7 Groundwater Monitoring Map April 18, 2022
- Figure 8 Sub-Slab Depressurization Configuration
- Figure 9 Bioaugmentation Injection Well Detail
- Figure 10 Monitoring Well and Lateral Well Configuration Map

Tables

- Table 1 Notifications
- Table 2 Remedial System Monitoring Requirements and Schedule
- Table 3 Post Remediation Sampling Requirements and Schedule
- Table 4 Monitoring Well Construction Details
- Table 5 Monitoring Well Sampling Parameters
- Table 6 Site Specific Constituent Of Concern Reporting Requirements
- Table 7: Routine Maintenance Schedule
- Table 8: Schedule of Interim Monitoring/Inspection Reports

Table 9 – Groundwater Elevation Data

Appendices

- Appendix A Environmental Easement
- Appendix B List of Contacts
- Appendix C Tax Map
- Appendix D Boring Logs
- Appendix E Soil SCOs
- Appendix F Groundwater SCGs
- Appendix G Excavation Work Plan
- Appendix H H&S Plan
- Appendix I Operations and Maintenance Manual
- Appendix J Site Management Forms

Acronyms

AS	Air Sparging	(
ASP	Analytical Services Protocol	C
BAS	Bio-Augmentation System	C
BCA	Brownfields Cleanup Agreement	C
BCP	Brownfields Cleanup Program	
bgs	Below Ground Surface	C
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act	F
CAMP	Community Air Monitoring Plan	F
C/D	Construction and Demolition	F
CFR	Code of Federal Regulation	F
CLP	Contract Laboratory Protocol	F
COC	Certificate of Completion	F
CO2	Carbon Dioxide	F
CP	Commissioner Policy	(
DER	Division of Environmental Remediation	C
DO	Dissolved Oxygen	0
DNAPL	Dense Non-Aqueous Phase Liquid	F
DUSR	Data Usability and Summary Report	F
EC	Engineering Control	F
ECL	Environmental Conservation Law	F
EIP	Electronic Interface Probe	F
ELAP	Environmental Laboratory Approval Program	F
EPA	Environmental Protection Agency	F
ERP	Environmental Restoration Program	5
EWP	Excavation Work Plan	5
FER	Final Engineering Report	5
FT	Feet	S
GES	Groundwater & Environmental Services, Inc.	5
GHG	Greenhouse Gas	5
GWE&T	Groundwater Extraction and Treatment	5
HASP	Health and Safety Plan	
HVAC	Heating, Venting, and Air Conditioning	S
IC	Institutional Control	5
in wc	Inches of Water Column	5
IRM	Interim Remedial Measure	S
JLJ	JLJ Management Company	Г
KLF	Kleinfelder	Г
mg/L	milligrams per liter	Г
MSL	Mean Sea Level	Г
NYCRR	New York Codes, Rules and Regulations	ι
NYS	New York State	ι
	New York State Department of	\
	Environmental Conservation	١
NYSDOH	New York State Department of Health	١

0.014	
O&M	Operation and Maintenance
OM&M	Operation, Monitoring, and Maintenance
ORP	Oxidation Reduction Potential
OSHA	Occupational Safety and Health Administration
OU	Operable Unit
PCB	Polychlorinated Biphenyls
PDB	passive diffusion bag
PE	Professional Engineer
PFAS	Per- and Polyfluoroalkyl Substances
PID	Photoionization Detector
PRP	Potential Responsible Party
PRR	Periodic Review Report
PSI	pound per square inch
QA/QC	Quality Assurance / Quality Control
QAPP	Quality Assurance Project Plan
QEP	Qualified Environmental Professional
RAO	Remedial Action Objective
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RP	Remedial Party
RSO	Remedial Site Optimization
SAC	State Assistance Criteria
SCG	Standard, Criteria, and Guidance
SCO	Soil Cleanup Objective
SMP	Site Management Plan
SOP	Standard Operating Procedure
SOW	Statement of Work
SPDES	State Pollutant Discharge Elimination System
SSD	Sub-slab Depressurization
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
SVOC	Semi-Volatile Organic Compound
TAL	Target Analyte List
TCL	Target Compound List
TCLP	Toxicity Characteristic Leachate Procedure
TOC	Total Organic Carbon
US	United States
UST	Underground Storage Tank
VCA	Voluntary Cleanup Agreement
VCP	Voluntary Cleanup Program
VOC	Volatile Organic Compound

ES Executive Summary

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan:

Site Identification:	Site #C344066		
	1-45 Orangeburg (Orangetown) Shopping Center		
	Orangeburg, New York		
Institutional Controls:	 The property may be used for commercial or industrial use. 		
	 The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Rockland County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department. 		
	 Groundwater and other environmental or public health monitoring must be performed as defined in this SMP. 		

	monitoring must be performed as defined in this SMP.
4	. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP.
5	 All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP.
6	. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP.
7	. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP.

Institutional Controls:	York with reasonable prior	sentatives of the State of New r notice to the property owner the restrictions identified by	
	any buildings developed ir	re 3 , and any potential impacts	
	10. Vegetable gardens and farming on the site are prohibited.		
	11. An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.		
	12. All ECs must be inspected at a frequency and in a manner defined in the SMP.		
Engineering Controls:	 Composite cover system p underlying pavement. 	 Composite cover system provided by Building #2 and the underlying pavement. 	
	2. Bio-augmentation system with the ability to provide treatment of impacted subsurface soil and groundwater.		
Inspections:		Frequency	
1. Comprehensive site-v	vide inspection	Annually	
2. Non-routine inspections following a natural disaster or an unforeseen failure of any of the ECs		As needed	

Monitoring:	Frequency
1. Composite cover system	Annually or during other (more frequent) inspections as time and conditions warrant
2. Bio-augmentation system	Based on annual TOC data collected from MW-5
 Groundwater Monitoring Wells MW-4, MW-5, and MW-8A 	Annually
Maintenance:	Frequency
1. Composite cover system maintenance	As needed
2. Bio-augmentation system maintenance	As needed
Reporting:	Frequency
1. Periodic Review Report	Annually

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

1 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the 1-45 Orangeburg (Orangetown) Shopping Center located in Orangeburg, New York (hereinafter referred to as the "Site"). See **Figures 1** and **2**. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP), Site No. C344066, which is administered by New York State Department of Environmental Conservation (NYSDEC or Department).

JLJ Management Company (hereinafter referred to as the "JLJ") entered into a Brownfields Cleanup Agreement (BCA) in January 2007 with the NYSDEC to remediate the site. A figure showing the site location and boundaries of this site is provided in **Figures 1** and **2**. The boundaries of the site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in **Appendix A**.

After completion of the remedial work, some contamination was left at this site, which is hereafter referred to as "remaining contamination". Institutional Controls and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Rockland County Clerk, requires compliance with this SMP and all ECs and ICs placed on the site.

This SMP was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion (COC).
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6 NYCRR Part 375 and the BCA (Index # A3-0563-0906; Site # C344066) for the site, and thereby subject to applicable penalties.

All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State. A list of contacts for persons involved with the site is provided in **Appendix B** of this SMP.

This SMP was prepared by Groundwater & Environmental Services, Inc. (GES), on behalf of UB Orangeburg, LLC, in accordance with the requirements of the NYSDEC's DER-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 2010, and the guidelines provided

by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the site.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. The NYSDEC can also make changes to the SMP or request revisions from the remedial party. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shutdown of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the site conditions. In accordance with the Environmental Easement for the site, the NYSDEC project manager will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER – 10 for the following reasons:

- 1. 60-day advance notice of any proposed changes in site use that are required under the terms of the BCA, 6 NYCRR Part 375 and/or Environmental Conservation Law.
- 2. 7-day advance notice of any field activity associated with the remedial program.
- 3. 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan. If the ground-intrusive activity qualifies as a change of use as defined in 6 NYCRR Part 375, the above mentioned 60-day advance notice is also required.
- 4. Notice within 48 hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- 5. Notice within 48 hours of any non-routine maintenance activities.
- 6. Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- 7. Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

8. At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP.

9. Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Table 1 below includes contact information for the above notifications. The information on this table will be updated as necessary to provide accurate contact information. A full listing of site-related contact information is provided in **Appendix B**.

Name	Contact Information	Required Notification**
Michael Squire, NYSDEC Project Manager	518-402-9662 michael.squire@dec.ny.gov	All Notifications
Amen Omorogbe, NYSDEC Project Manager's Supervisor	518-402-9662 amen.omorogbe@dec.ny.gov	All Notifications
Daniel Bendell, NYSDEC RHWRE	845-256-3151 daniel.bendell@dec.ny.gov	Notifications 1 and 8
Kelly Lewandowski, NYSDEC Site Control	518-402-9569 kelly.lewandowsk@dec.ny.gov	Notifications 1 and 8
Renata Ockerby, New York State Department of Health (NYSDOH) Project Manager	518-402-7860 renata.ockerby@health.ny.gov	Notifications 4, 6, and 7

Table 1: Notifications

* Note: Notifications are subject to change and will be updated as necessary.

** Note: Numbers in this column reference the numbered bullets in the notification list in this section

2 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The site is located in Orangeburg, Rockland County, New York and is identified as Section 74.10 Block 1 and Lot 67 on the Town of Orangetown, Rockland County, New York Tax Map (see **Appendix C**). The site is an approximately 1.2-acre portion of the approximately 11-acre parcel area and is bounded by Orangeburg Road followed by Town offices to the north, Highview Avenue followed by residential dwellings to the south, Oak Street followed by residential dwellings to the east, and Dutch Hill Road followed by commercial and office properties to the west (see **Figure 3** – Site Layout Map). The boundaries of the site are more fully described in **Appendix A** -Environmental Easement.

The owner(s) of the site parcel(s) at the time of issuance of this SMP is/are:

UB Orangeburg, LLC 321 Railroad Avenue Greenwich, CT 06830

2.2 Physical Setting

2.2.1 Land Use

The Site consists of the following: five (5) retail buildings and parking lot area. The Site is zoned commercial as a "community shopping district" on the Town of Orangetown Adopted Zoning Map (2018) and is currently utilized for commercial uses. Site occupants within the Environmental Easement area (see **Figure 3**) include retail businesses and restaurants (Stella Luna Pizza, Tip Top Stationary, Gorgeous K Salon, Hikaru Sushi Restaurant, The Academy of Martial Arts, Tobacco House, TZ Liquors, Verizon, and New China House).

The properties adjoining the Site and, in the neighborhood surrounding the Site primarily include commercial and residential properties. The properties immediately south of the Site include commercial and residential properties; the properties immediately north of the Site include commercial and residential properties; the properties immediately east of the Site include commercial and residential properties; and the properties to the west of the Site include commercial properties.

2.2.2 Geology

A *Remedial Investigation* (RI) Report presenting the findings of the RI was submitted to the NYSDEC and NYSDOH by Kleinfelder (KLF) in August 2008 and approved by the NYSDEC in August 2008. The following is derived from the RI Report (KLF 2008a):

According to Construction Plan Drawings obtained from Town of Orangeburg Building Department (reviewed in September 2004), prior to the construction of the shopping center the topography of the site was somewhat different. In particular, the contour of the eastern-most

portion of the property was lower than the current grade. Construction of the shopping center required an increase in the elevation to provide an improved, more level finished grade suitable for the planned buildings and to provide appropriate drainage. Thus, in the area behind Buildings #2 and #3, 5-10 feet of fill was placed to achieve the higher elevation, with the greatest amount of fill along the current end of pavement.

According to topography shown in Figure 1 (RI Report, KLF 2008a), the general topographic relief around the site is generally dipping to the east and south with a significant slope of 5-7%. Upon visual inspection, the site is a sloping parcel, with the topography of this block as follows:

- Along Orangeburg Road, the topography slopes downward from about 207-feet (ft) above mean sea level (msl) at the corner with Dutch Hill Road to about 160 ft msl at the corner with Oak Street.
- Similarly, the property slopes gently southward along Dutch Hill Road (from about 207-192 ft msl ending at the corner with Highview Avenue).
- Running diagonally then from northeast to southeast (at the corner of Oak St. and Highview Avenue) the property slopes from 207 to 130 ft msl, a drop of 77 ft.

The different soils at the site are components of the general soil map unit: Wethersfield-Cheshire-Urban Land. This soil unit is described by the NRCS (1990) as very deep soils that are welldrained formed in reddish acid glacial till derived mainly from reddish Triassic sandstone shale and conglomerate on smooth ridges of upland till, with a low to moderate slope (0-25%), and comprising areas of urban land (i.e., areas of impervious structures). According to the Rockland County soil survey (NRCS 1990, Map Sheet #24), the subject property contains the following Soil Map Units: Ux: Urban Land, WeB: Wethersfield Gravelly Silt Loam, and WuC: Wethersfield-Urban Land Complex.

Based on review of the NYS Geologic Map (NYSGS 1970), the Subject Property occurs in an area underlain by the lower Brunswick Formation of the Triassic-aged lowland Newark Group, generally consisting of reddish-brown shaley mudstone, with alternating layers of red-brown sandstone/arkose. The Brunswick formation presents a fractured bed dipping gradually westward at about 9°, with ridges and valleys running approximately north to south. This bedrock has a significant bedding of glacial till above it (NYSGS 1989 and Kummel 1990). The Subject Property is located on the steeper eastern side of one ridge, which serves as part of the dividing line between the Hackensack River and Hudson River watersheds in this area.

A geologic cross section is shown in **Figures 4** through **6**. Site specific boring logs are provided in **Appendix D**.

2.2.3 Hydrogeology

Depth to groundwater below the perched water table has been encountered at approximately 30-40 feet below ground surface (bgs). Depth measurements from well pairs (MW-8A/B) and triplets (MW-9A/B/C) indicate a vertical downward flow gradient on Site. An interpolation of the groundwater interface well groundwater elevations indicated a groundwater flow direction to the southeast.

A groundwater contour map from April 2022 is shown in **Figure 7**. Groundwater elevation data is provided in **Table 9** (Groundwater Gauging Table). Groundwater monitoring well construction is detailed on boring logs for monitoring wells which are provided in **Appendix D**.

2.3 Investigation and Remedial History

The following narrative provides a remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the site. Full titles for each of the reports referenced below are provided in Section 8.0 - References.

JLJ retained KLF to investigate the Site between 2007 and 2008 as described in the final RI report (KLF 2008a) and subsequent investigations discussed in the RI Addendum Report (KLF 2011f). Based upon the RI and RI Addendum findings, KLF concluded that the chlorinated solvent plume in groundwater along the eastern boundary of the site and soils containing residual contamination around the southeastern segment of the foundation of Building #2 and under the former Sparkle Cleaners requires remedial action. These investigations are summarized below.

From July through December 2007, KLF completed remedial investigation activities (KLF 2008a), which included:

- Installation of seven soil borings, which were completed as monitoring wells (MW-8A/-B, MW-9A/-B/-C, MW-11A/- B, MW-12A/-B/-C, MW-13, MW14, and MW-15) between September 25 and October 5, 2007. See Appendix B of the RI Report for the boring and well logs.
- Installation of three piezometers (PZ-4, PZ-5, and PZ-6) on October 2, 2007, slightly north of MW-5 to approximately 12 feet bgs using a hand Geoprobe. Screened intervals were placed at 12 to 7 feet bgs, 7 to 5 feet bgs, and 5 to 3 feet bgs, respectively.
- The first round of groundwater sampling was conducted prior to intrusive work in September 2007; these data guided the selection of boring/well locations for the RI. The second round involved the sampling of both previously existing and newly installed wells in October 2007. Each well was gauged for depth to water, depth to bottom, and for the presence of Dense Non-Aqueous Phase Liquid (DNAPL) using an electronic interface probe (EIP). Groundwater depth measurements collected during this investigation indicated groundwater flows in an easterly direction.
- A soil vapor intrusion assessment to evaluate the potential for soil vapor intrusion as an exposure pathway was conducted on July 12, 2007 and November 27 to December 6, 2007 at three general locations. These include the shops in Buildings #1 and #2 at Orangetown Shopping Center (on-site); the vacant tenant space in Orangetown Shopping Center (Building #3) south of Building #2 (on-site); and abutting off-site properties along Highview Avenue and Oak Street (off-site). Soil vapor, indoor air, and ambient outdoor air samples were collected from each building or building space. Soil, groundwater and on-site soil vapor samples collected during this investigation indicated the presence of chlorinated solvents. Chlorinated volatile organic compounds (VOCs) were detected in off-site ambient indoor and outdoor air samples; however, these detections do not

correlate with corresponding off-site soil vapor samples which indicate low to non-detectable concentrations of chlorinated VOCs.

Generally, the RI determined that that the chlorinated solvent (or VOC) plume in groundwater along the eastern boundary of the property, behind Building #2 and #3, constituted a situation requiring some action to:

- Remedy the source around the sewer line is shallow soil.
- Prevent creation of additional groundwater contamination.
- Prevent further migration and spread of groundwater contamination.
- Restore subsurface conditions to the extent possible.
- Prevent contact with or inhalation of volatiles from contaminated groundwater and monitor indoor air quality.

KLF completed additional remedial investigation activities (KLF 2011f), which included:

- Completion of well repairs to MW-7, MW-8, and MW-12D on May 22, 2008.
- Five (5) rounds of groundwater sampling and one well gauging event have occurred between November 2008 and August 2010. Groundwater samples have indicated the presence of chlorinated solvents. Concentrations of chlorinated solvents are highest along the eastern side of Building #2 proximate to the former Sparkle Cleaners. Analytical results of the ground water sampling events are summarized in Table 1a of the referenced report.
- Advancement of three soil borings (B-1, B-2, and B-3) to assess subsurface soil below Sparkle Cleaners was completed in February 2009. Analytical data indicated the presence of low concentrations of chlorinated solvents. The concentrations of some detected analytes in samples B-2 and B-3 were greater than the Protection of Groundwater standards. Analytical result of the sub-slab samples are summarized in Table 3 of the referenced report.
- Completion of several soil vapor assessments between February and October 2009. Soil vapor samples indicated the presence of vapor phase chlorinated solvents. Concentrations of chlorinated solvents were highest along the eastern side of Building #2 proximate to Sparkle Cleaners. Analytical results of the soil vapor and air assessment samples are summarized in Table 4 of the referenced report.
- Collection of eight surface soil samples (SS-1 through SS-8) along the wooded slope located east of the paved area to the rear of Building #2 in April 2010. These soil samples were collected at the request of the NYSDEC to evaluate the potential for exposure to Site-related chemicals. Metals, VOCs, and pesticides were either below laboratory reporting limits or below applicable regulatory criteria. Semi-volatile organic compounds (SVOCs) were detected in some soil samples at concentrations above the NYSDEC Restricted-Residential Use Soil Cleanup Objective and/or NYSDEC Restricted-Commercial Use Soil Cleanup Objective. Analytical results of the surface soil samples are summarized in Table 2 of the referenced report.

The RI Addendum (KLF 2011f) clarified that surface soils of the unpaved, sloping and heavily vegetated area of property between Building #2 and the residences on the west side of Oak Street did not contain concentrations of metals, pesticides, polychlorinated biphenyls (PCBs) or VOCs. It also concluded after further vapor testing that vapor intrusion remained a potential exposure pathway for Building #2.

Remediation at the Site began following the NYSDEC-approved set of interim remedial measures (IRMs) as described in the IRMWP (dated June 2008, revised August 2008, and approved November 4, 2008). The following outlines the IRMs and other remedial actions:

- Soil removal, completed as the first IRM during the first quarter of 2009, accomplished a focused soil excavation to treat the source area (see KLF 2011c).
- Two "mechanical" ECs:
 - Development and implementation of a vapor intrusion mitigation plan (specifically, a sub-slab depressurization systems [SSD systems]) at the former dry cleaner store (Sparkle Cleaners) and surrounding tenant spaces was accomplished as an IRM (between February 2010 and April 2011, see KLF 2011d).
- A third composite "soil" cover EC provided by Building #2 and macadam pavement behind the building to prevent direct contact with remaining soil and groundwater contamination.
- Execution and recording of an EE to restrict land use and prevent future exposure to contamination remaining at the Site (JLJ 2011, see Appendices A & B).
- Development and implementation of a SMP for long-term management of remaining contamination as required by the EE, which includes plans for: (1) the ICs and the ECs, (2) monitoring of the Site, EC systems and media, (3) operation and maintenance of the systems and components, and (4) regular reporting.

Source removal was completed in January 2009 (KLF 2011c). The excavation area was located around the faulty sewer pipe behind the Sparkle Cleaners shop in Building #2. The total depth of the excavation ranged from 3 to 4 feet and was limited by Building #2 to the west, and gas and sewer lines to the south and east, respectively. Three additional test pits were excavated to the south and east of the natural gas line to evaluate the lateral extent of residual impact observed in the southeastern corner of the excavation. During excavation, a perched water table was encountered which required dewatering. Water recovered from the excavation was pumped into a fractionation tank for temporary storage.

Fifty-two tons of soil was removed from the source area. Approximately 12.9 tons of soil was classified as hazardous waste and transported to Michigan Disposal Waste Treatment Plant. Approximately 39.53 tons of soil was classified as non-hazardous waste and transported to ESMI in New York. Additionally, 1,790 gallons of water was recovered from the excavation and transported as non-hazardous waste to Bridgeport United Recycling. The excavation area was backfilled with virgin crushed stone.

Although excavation of the source area was successful, some soil contamination remained in place underneath Building #2. Further excavation was limited by the building and presence of

active subsurface utilities (i.e., natural gas line); therefore, the bio-augmentation system was installed to treat the remaining soil and groundwater contamination and SSD systems were installed to mitigation potential vapor intrusion from remaining contamination in the southern portion of Building #2.

SSD systems were installed in the Sparkle Cleaners (currently a Verizon store), the Deli Spot (currently TZ Liquors), and New China House (KLF 2011d, see Figure 2) tenant spaced of Building #2. The SSD system configuration in Building #2 is included as **Figure 8**. The SSD systems were configured to create a negative pressure (relative to the indoor environment) within the area beneath the concrete floor slabs of the businesses within the southern portion of Building #2 thereby minimizing the potential for migration of contaminant vapor into the indoor air (KLF 2009).

The SSD systems were installed between February and May 2010, and were activated in May 2010. The systems as originally designed did not achieve the performance standard, and they were subsequently modified.

Additional SSD system performance testing was completed in June 2010 and a modified plan was prepared (KLF 2010b) and approved by NYSDEC in August 2010. KLF implemented the modifications between August and September 2010. KLF re-started the systems with additional blowers in place on September 29, 2010, and verified operation with another performance (vacuum response) test.

Late in 2010, KLF observed that ongoing heating, venting, and air conditioning (HVAC) issues in the building potentially affected the SSD system performance. These issues were the result of foundation leaking and back draft issues associated with furnaces and other fans. These issues were resolved in early 2011. KLF re-inspected the facility in March 2011 to verify resolution of the issues. In late March, KLF filled various foundation and wall cracks in an effort to increase vacuum under the slab. In late April 2011, three vapor-monitoring points were replaced in the New China Restaurant and another system check performed. This test verified that the system achieved measured vacuum greater than 0.0025 inches of water column (in wc) across the slab in the three tenant spaces. SSD system performances is summarized in Tables 2 through 4 of CCR #2 (KLF 2011d).

The SSD systems operated until the NYSDEC granted approval for permanent shutdown of the systems on July 29, 2015. The NYSDEC requested three (3) rounds of follow-up SVI sampling after the SSD systems were shut-down in March 2016. Following the completion of multiple soil vapor intrusion investigations (SVIs), the NYSDEC and NYSDOH approved a request to decommission the SSD systems at the former Deli Spot and the former Sparkle Cleaners in January 2017 and decommission the SSD system at the New China House in August 2019. In a letter dated June 2022, the NYSDEC wrote that additional SVI sampling is not warranted and that inhalation exposures are no longer a concern. Additionally, in the June 2022 letter, the NYSDEC wrote that the source had been adequately remediated and the idled SSD systems could be permanently shut-down and decommissioned.

The former Deli Spot SSD system was decommissioned in May 2017 and the New China House and former Sparkle Cleaners SSD systems were decommissioned in August 2022. SSD system

decommissioning activities included the removal of the system fans and associated extraction points, piping, and monitoring points.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document (Final Engineering Report, KLF 2011h) dated December 2011 are as follows:

Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

RAOs for Environmental Protection

- Restore ground water aquifer to pre-disposal/pre-release conditions, to the extent practicable.
- Remove the source of ground or surface water contamination.

Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

• Prevent migration of contaminants that would result in groundwater or surface water contamination.

Soil Vapor

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at a site.

2.5 Remaining Contamination

A *Final Engineering Report* (FER) was submitted to the NYSDEC and NYSDOH by KLF in December 2011. The contamination that remained at the site following remedial activities being completed is summarized in the FER (KLF 2011h).

2.5.1 Soil

The remedial excavation conducted in January 2009 removed impacted soils from the source area to the extent possible due to limitations by the building and presence of active utilities (i.e., natural gas line) in the subsurface. Excavation endpoint sampling results summarized in Table 4 of the Construction Completion Report #1 (CCR-1) by KLF in June 2011 (KLF 2011c) identifies some detectable chlorinated VOCs above groundwater protection soil cleanup objectives (SCOs) at select sampling locations within the excavation and/or test pits. None of the sample locations included in Table 4 of the CCR-1 (KLF 2011c) exceeded restricted commercial use SCOs.

Appendix E contains historic tables and figures from CCR-1 that summarizes the results of all soil samples collected that exceed the Unrestricted Use SCOs and the restricted commercial Use SCOs at the site after completion of remedial action.

2.5.2 Sediment

Not applicable.

2.5.3 Groundwater

As part of the remedial action, bio stimulant injection events were completed in 2010 and 2011 as summarized in the Construction Completion Report #3 (CCR-3) by KLF in August 2011 (KLF 2011e). Between a 10 and 25 percent solution of molasses (bio stimulant) was gravity fed into the injection system, which consisted of five (5) injection points (IP-1 through IP-4 and MW-3), between multiple injection events in 2010 and 2011. Approximately 950 gallons of solution was injected into the subsurface at the site.

A post injection/post remediation groundwater sampling event was completed on June 21, 2011 including monitoring wells MW-2, MW-3, MW-4, MW-5, MW-8A, and MW-8B as shown in Table 1 of CCR-3 (KLF 2011e). Laboratory results indicated samples collected from monitoring wells MW-2, MW-3, MW-4, MW-5, MW-8A, and MW-8B contained concentrations of VOCs, anions, and/or total metals detected above NYSDEC Standard, Criteria, and Guidance (SCG) values.

Appendix F contains historic tables from CCR-3 that summarize the results of all samples of groundwater that exceed the SCGs after completion of the remedial action.

2.5.4 Surface Water

Not applicable.

2.5.5 Soil Vapor

Soil vapor and ambient air sampling was conducted as part of the RI in July, November, and December 2007 (KLF 2008a) but soil vapor samples were not completed following the remedial action as part of the FER.

3 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC project manager.

This plan provides:

- A description of all IC/ECs on the site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the Excavation Work Plan (EWP) (as provided in Appendix G) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC project manager.

3.2 Institutional Controls

A series of ICs is required by the Remedial Action Work Plan (RAWP) to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to commercial or industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under this SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on **Figure 3**. These ICs are:

- The property may be used for: commercial or industrial use;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Rockland County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;

- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on **Figure 3**, and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the site are prohibited; and
- An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.

3.3 Engineering Controls

3.3.1 Cover (or Cap)

Exposure to remaining contamination at the site is prevented by a cover system placed over the site. This cover system is comprised of a minimum of one foot of lean soil, as defined by 6 NYCRR 375-6.7(d) for commercial use, placed over a demarcation layer, with the upper six inches of the soil of sufficient quality to maintain a vegetation layer. **Figure 3** presents the location of the cover system and applicable demarcation layers. The Excavation Work Plan (EWP) provided in **Appendix G** outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed. Procedures for the inspection of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) prepared for the site and provided in **Appendix H**. Any disturbance of the site's cover system must be overseen by a qualified environmental professional as defined in 6 NYCRR Part 375, a Professional Engineer (PE) who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State.

3.3.2 Bio-augmentation system

Because of the presence of residual contaminated soil and groundwater under Building #2, a bioaugmentation treatment system was designed (**Figure 9**). This treatment promotes in-situ microbial degradation of contaminants in saturated soil and groundwater. The addition of a biostimulant (molasses) to subsurface soil and groundwater act as an electron donor that stimulates metabolic reduction of chlorinated VOCs to ethene via microorganisms that have been detected at the site, as have bacteria of the genus Dehalococcoides (in MW-5 and MW-6) and Dehalobacter (in MW-5) (KLF 2008a, see Figure 3 for sampling locations).

Bio-augmentation injection points and manifold piping were installed after the source removal excavation between February and April 2010 and May 2012. The system includes the following components as shown on **Figures 9** and **10**:

- Four individual injection points each with flow control valve and stub ups for connection to the batch injection tank.
- One monitoring well (MW-3) converted for injection with conveyance piping, control valve, and stub up for connection to the batch injection tank.
- A north-south trending injection gallery located along the eastern edge of the macadam pavement behind Building #2 (see **Figure 9**), and made-up of nine injection wells/ points (IP-1 through IP-9).
- Three lateral injection points installed below the floor slab within the former Sparkle Cleaners (see **Figure 10**).

Baseline and post-injection sampling (from a network of monitoring wells), monitoring, and laboratory analysis provide the means to monitor treatment effectiveness. The first round of injections was completed in May, July, and November 2010 followed by monitoring events. The first round of treatment indicated bio-augmentation was enhancing biodegradation and dechlorination of the residual contaminants. The results also suggest that additional injections of electron donor solution would further enhance treatment. After discussions with NYSDEC, KLF proposed a revised injection approach, which was approved (KLF 2011b).

KLF interpreted the results of the second treatment round as confirmation that the approach would deliver effective remediation. De-chlorination occurred upon achieving appropriate geochemical conditions, as demonstrated to date (KLF 2011f). For this treatment to be ultimately effective, three modifications were required:

- Increase Spatial Distribution of Bio-stimulant the then current injection influence on geochemistry was too localized around the proximity of injection. Additional injection points were required to achieve greater distribution and better treatment efficacy. The additional injection points were installed by GES in May 2012.
- Manage pH although it is generally acceptable across the monitoring network, pH drop occurs at locations with elevated total organic carbon (TOC). The resulting need for a buffering agent to the injection solution was periodically required to mitigate this condition.

• Injection Flexibility – injection frequency and bio-stimulant volume and concentration needed to be flexible based on observed geochemical conditions. This required monitoring of conditions and subsequent adjustment of bio-stimulant injection.

Procedures for operating and maintaining the bio-augmentation system are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). The bio-augmentation system Operation, Maintenance, and Monitroing Plan for the site dated 2019 is **Appendix I** - Operations and Maintenance Manual. **Figure 3** shows the location of the ECs for the site.

3.3.3 Criteria for Completion of Remediation/Termination of Remedial System

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10. Unless waived by the NYSDEC, confirmation samples of applicable environmental media are required before terminating any remedial actions at the site. Confirmation samples require Category B deliverables and a Data Usability Summary Report (DUSR).

As discussed below, the NYSDEC may approve termination of a groundwater monitoring program. When a remedial party receives this approval, the remedial party will decommission all site-related monitoring, injection and recovery wells as per the NYSDEC CP-43 policy.

The remedial party will also conduct any needed site restoration activities, such as asphalt patching and decommissioning treatment system equipment. In addition, the remedial party will conduct any necessary restoration of vegetation coverage, trees and wetlands, and will comply with NYSDEC and United States Army Corps of Engineers regulations and guidance. Also, the remedial party will ensure that no ongoing erosion is occurring on the site.

3.3.3.1 Cover (or Cap)

The composite cover system is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with this SMP in perpetuity.

3.3.3.2 Bio-augmentation system

The active bio-augmentation treatment system will not be discontinued unless prior written approval is granted by the NYSDEC. Bio-augmentation treatment of groundwater will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be consistently below NYSDEC standards or have become asymptotic at an acceptable level over an extended period. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment, and/or control measures will be evaluated.

Conditions that warrant discontinuing the bio-augmentation treatment system include contaminant concentrations in groundwater that: (1) reach levels that are consistently below groundwater quality standards, (2) have become asymptotic to a low level over an extended period of time as accepted by the NYSDEC, or (3) the NYSDEC has determined that the

bio-augmentation treatment system has reached the limit of its effectiveness. This assessment will be based in part on post-remediation contaminant levels in groundwater collected from monitoring wells located throughout the Site. Systems will remain in place and operational until permission to discontinue their use is granted in writing by the NYSDEC.

A request to modify the bio-augmentation application plan was included in the July 2014 Periodic Review Report. Approval by the NYSDEC to reduce the bio-augmentation application to the monitoring well MW 5 area was received by GES on August 25, 2014. The NYSDEC also approved the reduction of monitoring the bio-augmentation system on an annual basis rather than quarterly in August 2019.

4 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC project manager. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the site are detailed below.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly groundwater standards and Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment;

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site-wide Inspection

Site-wide inspections will be performed at a minimum of once per year. These periodic inspections must be conducted when the ground surface is visible (i.e. no snow cover). Site-wide inspections will be performed by a qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. Modification to the frequency or duration of the inspections will require approval from the NYSDEC project manager. Site-wide inspections will also be performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in **Appendix J** – Site Management Forms. The form will compile sufficient information to assess the following:

• Compliance with all ICs, including site usage;

- An evaluation of the condition and continued effectiveness of ECs;
- General site conditions at the time of the inspection;
- Whether stormwater management systems, such as basins and outfalls, are working as designed;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that site records are up to date.

Inspections of all remedial components installed at the site will be conducted. A comprehensive site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If site records are complete and up to date.

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the site, verbal notice to the NYSDEC project manager must be given by noon of the following day. In addition, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the site by a qualified environmental professional, as defined in 6 NYCCR Part 375. Written confirmation must be provided to the NYSDEC project manager within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.3 Treatment System Monitoring and Sampling

4.3.1 Remediation System Monitoring

Monitoring of the bio-augmentation system will be performed on a routine basis, as identified in **Table 2** Remedial System Monitoring Requirements and Schedule (see below). The monitoring of remedial systems must be conducted by a qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager. A visual inspection of the complete system will be conducted during each monitoring event. Unscheduled inspections and/or sampling may take place when a suspected failure of the

bio-augmentation system has been reported or an emergency occurs that is deemed likely to affect the operation of the system. Bio-augmentation system components to be monitored include, but are not limited to, the components included in **Table 2** below.

Remedial System Component	Monitoring Parameter	Operating Range	Monitoring Schedule
Monitoring Well	pН	6-8 S.U.	Annual
MW-5	TOC	50-500 milligrams per liter (mg/L)	Annual

Table 2 – Remedial System Monitoring Requirements and Schedule

A complete list of components to be inspected is provided in the Inspection Checklist, provided in **Appendix J** - Site Management Forms. If any equipment readings are not within their specified operation range, any equipment is observed to be malfunctioning or the system is not performing within specifications; maintenance and repair, as per the Operation and Maintenance Plan, is required immediately.

4.3.2 Remedial System Sampling

Not applicable/Not available.

4.4 Post-Remediation Media Monitoring and Sampling

Samples shall be collected from the monitoring wells MW-4, MW-5, and MW-8A on an annual basis to assess the performance of the remediation. Sampling locations, required analytical parameters and schedule are provided in **Table 3** – Post Remediation Sampling Requirements and Schedule below. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager.

Sampling Location	Analytical Parameters	Schedule	
	VOCs (EPA Method 8260)		
Monitoring Well MW-4	Х	Annually	
Monitoring Well MW-5	Х	Annually	
Monitoring Well MW-8A	Х	Annually	

Table 3 – Post Remediation Sampling Requirements and Schedule

4.4.1 Soil Sampling

Not applicable/Not available.

4.4.2 Sediment Sampling

Not applicable/Not available.

4.4.3 Groundwater Sampling

Groundwater monitoring will be performed annually to assess the performance of the remedy. Modification to the frequency or sampling requirements will require approval from the NYSDEC project manager.

The network of monitoring wells has been installed to monitor upgradient, on-site and downgradient groundwater conditions at the site. However, historic changes to the site groundwater monitoring plan approved by the NYSDEC resulted in sampling of only three (3) monitoring wells onsite at this time.

Table 4 summarizes the wells identification number, as well as the purpose, location, depths, diameter and screened intervals of the wells. As part of the groundwater monitoring, three (3) on-site wells are sampled to evaluate the effectiveness of the remedial system. The remedial party will measure depth to the water table for each monitoring well in the network before sampling.

		Well	Well Construction Details			
Monitoring Well ID	Well Location	Diameter (inches)	Length of Casing	Length of Screen	Top of Screen	Bottom of Screen
					(feet bgs)	(feet bgs)
MW-4	On-site	2	34	10	34	44
MW-5	On-site	2	34	10	34	44
MW-8A	On-site	1	33	10	33	43

Table 4 – Monitoring Well Construction Details

Monitoring well construction logs are included in **Appendix D** of this document. A Site Map is included as **Figure 2** showing the location of monitoring wells within the monitoring well network.

All monitoring well sampling activities will be recorded in a field book and a groundwater-sampling log presented in **Appendix J**. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

Monitoring wells will be gauged for depth to water and the presence of DNAPL using an EIP. Selected monitoring wells will be sampled by purging up to three (3) well volumes from each well using disposable Teflon lined polyethylene bailers. Sample collection will be via bailers following completion of the purge. Purge water will be stored on-site in 55-gallon drums and transported for non-hazardous waste disposal at an off-site waste disposal facility.

During sampling, various parameters will be collected which include: pH, temperature, specific conductivity, dissolved oxygen (DO), oxidation reduction potential (ORP), and turbidity. Groundwater samples will be submitted for laboratory analysis of VOC including ethene by Environmental Protection Agency (EPA) method 8260D and method RSK-175. Additionally, groundwater samples are collected for the following: total metals analysis of iron and general chemistry analysis of Ferric/Ferrous Iron, Nitrate/Nitrite, Sulfate, and TOC. **Table 5** below summarizes the groundwater chemistry and analytical parameters each monitoring wells is sampled for on an annual basis. **Table 6** below summarizes the site-specific contaminants of concern that are analyzed by the laboratory and the minimum required reporting limits for each contaminant of concern and the NYSDEC SCG that must be met for each.

Table 5 – Monitoring Well Sampling Parameters

Sampling Location		Monitoring	Monitoring	Monitoring
		Well MW-4	Well MW-5	Well MW-8A
GW	рН	Х	Х	Х
Chemistry	Temperature	Х	Х	Х
	Specific Conductivity	Х	Х	Х
	DO	Х	Х	X X
	ORP	Х	Х	Х
	Turbidity	Х	X X	X X
Analytical Parameters	VOCs by Method SW846 8260D and Method RSK-175 (Ethene)	Х		
	Metals Analysis by Method SW846 6010D (Iron)	Х	Х	Х
	General Chemistry by Method EPA 300/SW846 9056 (Sulfate)	Х	Х	Х
	General Chemistry by Method SM3500FE B-11 (Ferric/Ferrous Iron)	Х	Х	Х
	General Chemistry by Method EPA 353.2/LACHAT, Method EPA 353.2/SM4500NO2B, and Method SM4500NO2 B-11 (Nitrate, Nitrate + Nitrite, Nitrite)	Х	Х	Х
	General Chemistry by Method SM5310 B-11 (TOC)	Х	Х	Х
	Schedule	Annually	Annually	Annually

Table 6 – Site Specific Constituent of Concern Reporting Requirements

Site Specific COCs	Minimum Report Limits	NYSDEC SCGs (µg/L)
Tetrachloroethene	1.0	5
Trichloroethene	1.0	5
Cis-1,2-	1.0	5
Dichloroethene		
Trans-1,2-	1.0	5
Dichloroethene		
1,1-	1.0	5
Dichloroethene		
Vinyl Chloride	1.0	2
Ethene	0.31	Not Applicable

On August 25, 2014 the NYSDEC approved termination of analyses for metals, pesticides and semi-volatile organic compounds (SVOCs). On August 4, 2017 the NYSDEC approved the termination of annual analyses for PCBs. On August 19, 2019, the NYSDEC approved collecting groundwater samples and parameter reading on an annual basis.

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC project manager will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of the NYSDEC project manager. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC project manager.

The sampling frequency may only be modified with the approval of the NYSDEC project manager. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC project manager.

Deliverables for the groundwater monitoring program are specified in Section 7.0 – Reporting Requirements.

4.4.4 Surface Water Sampling

Not applicable.

4.4.5 Soil Vapor Sampling

Not applicable.

4.4.6 Soil Vapor Intrusion Sampling

Not applicable.

4.4.7 Monitoring and Sampling Protocol

All sampling activities will be recorded in a field book and associated sampling log as provided in **Appendix J** - Site Management Forms. Other observations (e.g., groundwater monitoring well integrity) will be noted on the sampling log. The sampling log will serve as the inspection form for the monitoring network.

5 OPERATION AND MAINTENANCE PLAN

5.1 General

This Operation and Maintenance Plan provides a brief description of the measures necessary to operate, monitor and maintain the mechanical components of the remedy selected for the site. This Operation and Maintenance Plan:

- Includes the procedures necessary to allow individuals unfamiliar with the site to operate and maintain the bio-augmentation system;
- Will be updated periodically to reflect changes in site conditions or the manner in which the bio-augmentation systems are operated and maintained.

Further detail regarding the Operation and Maintenance of the bio-augmentation system is provided in **Appendix I** - Operation and Maintenance Manual. A copy of this Operation and Maintenance Manual, along with the complete SMP, is to be maintained at the site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of this SMP.

5.2 Remedial System (or other Engineering Control) Performance Criteria

The purpose of the bio-augmentation treatment system is to facilitate in-situ biodegradation of VOCs in groundwater and saturated soils. It has several components as shown on **Figure 9**.

- Four individual injection points each with flow control valve and stub up for connection to the batch injection tank.
- MW-3 converted for injection with conveyance piping, control valve, and stub up for connection to the batch injection tank.
- A north-south trending injection gallery located along the eastern edge of the macadam pavement behind Building #2 (see **Figure 3**), and made-up of nine injection wells/points.
- Three lateral injection points installed below the floor slab within the former Sparkle Cleaners (see **Figure 10**).

The performance of the bio-augmentation system is based on groundwater contaminant levels. Successful performance of the bio-augmentation system would be illustrated by contaminant concentrations in groundwater that are consistently below groundwater quality standards or have become asymptotic to a low level over an extended period of time. The detailed bio-augmentation treatment system Operation and Maintenance Manual is provided in **Appendix I**.

5.3 Operation and Maintenance of Bio-Augmentation System

The following sections provide a description of the operations and maintenance of the bioaugmentation system. Cut-sheets and as-built drawings for the bio-augmentation system are provided in **Appendix I** - Operations and Maintenance Manual.

5.3.1 System Start-Up and Testing

The bio-augmentation system (BAS) will only be used while GES personnel are on-site. Prior to an injection of molasses, buffered molasses, or buffer solution with the bio-augmentation system the following will be completed:

- Visual inspection of injection point wellheads, injection point stub-ups, flow control valves, conveyance piping, and batch injection tank.
- Ensure all hose connections are secure.
- Prime pump prior to injection.

Injections will be conducted as described in the Interim Remedial Measure (IRM) work plan, the RAWP or in accordance to a NYSDEC approved schedule. The procedure includes mixing of a solution within a portable batch tank and low-pressure injection [less than 10 pounds per square inch (PSI)] into the target injection points. Decision thresholds to determine if start-up of the bio-augmentation system is required and solution mixes are described below by geochemical goal:

- TOC: TOC results from the annual groundwater monitoring event will be evaluated based on the targeted TOC range (as described above). If the TOC results are below the target TOC range, an injection of 10% molasses solution may be conducted in injection points proximate to the monitoring well with low TOC.
- pH and TOC: If pH and TOC results from any groundwater monitoring event are below target TOC and pH ranges (as described above) an injection of sodium bicarbonate buffered 10% molasses solution may be conducted in injection points proximate to the monitoring well with low TOC and pH. The buffer strength will be calculated based on 50% of the required buffer (based on groundwater titration) for the theoretical water volume within the area of influence of the well or wells into which injection is being conducted. The theoretical water volume will be calculated based aquifer thickness at the injection location, 10-foot radius of influence, and 15% aquifer porosity. pH and TOC results will be evaluated on an annual basis to determine if an injection is required.
- If pH results from any groundwater monitoring event are below the target pH range (as described above) and TOC is within the target range an injection of a sodium bicarbonate solution may be conducted to correct pH. The buffer strength will be calculated based on 50% of the required buffer (based on groundwater titration) for the theoretical water volume within the area of influence of the well or wells into which injection is being conducted. The theoretical water volume will be calculated based aquifer thickness at the injection location, 10-foot radius of influence, and 15% aquifer porosity.

Following injection of solution into the aquifer, the BAS monitoring network will be sampled within two weeks following the injection procedure set forth above with the following exceptions.

- Laboratory analysis will be conducted only for TOC.
- If the injection event was of only sodium bi-carbonate the no laboratory analysis will be conducted.

Based on the results of the sampling in comparison to the geochemical goals established, either additional injection will be conducted or the BAS performance will be reevaluated based on the next routine annual sampling event.

The system testing described above will be conducted if, in the course of the bio-augmentation system lifetime, the system goes down or significant changes are made to the system and the system must be restarted.

5.3.2 Routine System Operation and Maintenance

On an annual basis, the following operation, maintenance, and monitoring (OM&M) of the bioaugmentation system will be completed:

- Gauging of BAS monitoring network wells.
- Ground water sampling with field parameter collection.
- pH adjustment titration for each monitoring point with field measured pH outside of the target range.
- Visual inspection of piping stub ups and monitoring network well road boxes and well pads, injection well road boxes and well pads.

A copy of an Operations and Maintenance Manual specific to the remedial systems should be provided in **Appendix I**, which will provide further detail on the above.

5.3.3 Non-Routine Operation and Maintenance

Non-routine operation and maintenance will be performed as a follow-up to deficiencies noted during the OM&M visits. If repairs cannot be readily made in the field, GES (or its subcontractors) will identify options to remedy the issue. If it appears that significant BAS modifications are required, NYSDEC will be notified prior to the commencement of any modification work.

Table 7 provides a summary and schedule of routine maintenance.

Routine Maintenance	Schedule
Gauging of BAS monitoring well network	Annually
Groundwater sampling with field parameter collection	Annually
pH adjustment titration	As needed based on field measured pH readings
Visual inspection	Annually
Injection event	As needed based on geochemical targets and groundwater concentrations, or as required by NYSDEC.

Table 7: Routine Maintenance Schedule

5.3.4 System Monitoring Devices and Alarms

Not applicable.

5.3.5 Fire Safety

Not applicable.

6 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

At this time the site is not subject to any potential vulnerabilities, and therefore, a vulnerability assessment has not been performed.

- Flood Plain: The site is not located in a flood plain, low-lying, or low-groundwater recharge area.
- Site Drainage and Storm Water Management: Site drainage does not appear to be an issue and an adequate storm water management system appears to be in place.
- Erosion: Evidence of erosion or areas of the site that may be susceptible to erosion are not present at the site.
- High Wind: The site is not susceptible to damage from wind or falling objects created by high wind.
- Electricity: Power loss would not impact any site equipment or operations at the site since the they are not present.
- Spill/Contaminant Release: The site is not susceptible to a spill or other contaminant release. No material that has the potential to spill is stored on the site.

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the site during site management, and as reported in the Periodic Review Report (PRR).

Due to the nature of the current conditions at the Site and the site management requirements, the opportunities for incorporating green remediation evaluations are limited but may include the following:

• Waste Generation: Three (3) monitoring wells are sampled on an annual basis and purge water and miscellaneous waste (bailers, string, etc.) are generated from monitoring well sampling activities. An opportunity to reduce purge water waste generated on an annual

basis is to utilize passive diffusion bag (PDB) as a method of no purge sampling. However, utilizing PDBs would not reduce the amount of miscellaneous waste generated since the PDBs need to be removed and discarded after each use.

- Energy usage: Not available.
- Emissions: Not available.
- Water usage: Not available.
- Land and/or ecosystems: Not available.

6.2.1 Timing of Green Remediation Evaluations

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken as part of a formal Remedial System Optimization (RSO), or at any time that the NYSDEC project manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities. Reporting of these modifications will be presented in the PRR.

6.2.2 Remedial System

Remedial systems will be operated properly considering the current site conditions to conserve materials and resources to the greatest extent possible. Consideration will be given to operating rates and use of reagents and consumables. Spent materials will be sent for recycling, as appropriate.

6.2.3 Building Operations

Structures including buildings and sheds will be operated and maintained to provide for the most efficient operation of the remedy, while minimizing energy, waste generation and water consumption.

6.2.4 Frequency of System Checks, Sampling, and Other Periodic Activities

Transportation to and from the Site, use of consumables in relation to visiting the Site in order to conduct system checks and/or collect samples, and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

- Reduced sampling frequencies: Sampling frequency has been reduced to annual visits.
- Reduced site visits and system checks: Site visits have been reduced to two (2) planned site visits per year to complete groundwater sampling activities, waste removal, and site inspection to verify condition of EC/ICs. Additionally, any GES technicians are equipped

with resources to complete maintenance and troubleshooting tasks the same day as site visits, if needed and possible, to reduce additional visits.

- Installation of remote sensing/operations and telemetry: Not applicable.
- Coordination/consolidation of activities to maximize foreman/labor time: As described above, site visits are coordinated so that multiple activities can be completed each site visit rather than requiring an individual site visit for each activity.
- Use of mass transit for site visits, where available: Not applicable.

6.2.5 Metrics and Reporting

Not available.

6.3 Remedial System Optimization

A Remedial Site Optimization (RSO) study will be conducted any time that the NYSDEC project manager or the remedial party requests in writing that an in-depth evaluation of the remedy is needed. An RSO may be appropriate if any of the following occur:

- The remedial actions have not met or are not expected to meet Remedial Action Objectives (RAOs) in the time frame estimated in the Decision Document;
- The management and operation of the remedial system is exceeding the estimated costs;
- The remedial system is not performing as expected or as designed;
- Previously unidentified source material may be suspected;
- Plume shift has potentially occurred;
- Site conditions change due to development, change of use, change in groundwater use, etc.;
- There is an anticipated transfer of the site management to another remedial party or agency; and
- A new and applicable remedial technology becomes available.

An RSO will provide a critique of a site's conceptual model, give a summary of past performance, document current cleanup practices, summarize progress made toward the site's cleanup goals, gather additional performance or media specific data and information and provide recommendations for improvements to enhance the ability of the present system to reach RAOs or to provide a basis for changing the remedial strategy.

The RSO study will focus on overall site cleanup strategy, process optimization and management with the intent of identifying impediments to cleanup and improvements to site operations to increase efficiency, cost effectiveness and remedial time frames. Green remediation technology and principals are to be considered when performing the RSO.

An RSO has not been conducted for this site at this time due to the current status of the remedy (bio-augmentation system with injections only conducted on an as needed basis).

7 REPORTING REQUIREMENTS

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in **Appendix J**. These forms are subject to NYSDEC revision. All site management inspection, maintenance, and monitoring events will be conducted by a qualified environmental professional as defined in 6 NYCRR Part 375, a PE who is licensed and registered in New York State, or a qualified person who directly reports to a PE who is licensed and registered in New York State.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format to the NYSDEC in accordance with the requirements of **Table 8** and summarized in the Periodic Review Report.

Table 6. Schedule of Interim Monitoring/Inspection Reports		
Task/Report	Reporting Frequency	
Non-Routine Letter	Within the month following a non-routine inspection or site visit	
Periodic Review Report	Annually, or as otherwise determined by the NYSDEC	

Table 8: Schedule of Interim Monitoring/Inspection Reports

* The frequency of events will be conducted as specified until otherwise approved by the NYSDEC project manager.

All interim monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and

• A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

7.2 Periodic Review Report

A PRR will be submitted to the NYSDEC project manager beginning sixteen (16) months after the COC is issued. After submittal of the initial Periodic Review Report, the next PRR shall be submitted annually to the NYSDEC project manager or at another frequency as may be required by the NYSDEC project manager. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in **Appendix A** -Environmental Easement. The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

 Identification, assessment and certification of all ECs/ICs required by the remedy for the site.

- Results of the required annual site inspections, fire inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- Identification of any wastes generated during the reporting period, along with waste characterization data, manifests, and disposal documentation.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These tables and figures will include a presentation of past data as part of an evaluation of contaminant concentration trends, including but not limited to:
 - Trend monitoring graphs that present groundwater contaminant levels from before the start of the remedy implementation to the most current sampling data;
 - Trend monitoring graphs depicting system influent analytical data on a per event and cumulative basis;
 - O&M data summary tables;
 - A current plume map for sites with remaining groundwater contamination; and
 - A groundwater elevation contour map for each gauging event.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A site evaluation, which includes the following:
 - The compliance of the remedy with the requirements of the site-specific RAWP, Record of Decision (ROD), or Decision Document;
 - The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
 - Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan;

- An evaluation of trends in contaminant levels in the affected media to determine if the remedy continues to be effective in achieving remedial goals as specified by the RAWP, ROD, or Decision Document; and
- The overall performance and effectiveness of the remedy.
- A performance summary for all treatment systems at the site during the calendar year, including information such as:
 - The number of days the system operated for the reporting period;
 - The average, high, and low flows per day;
 - The contaminant mass removed and the cost per pound of mass removed during the certification period and during the life of the treatment system;
 - A description of breakdowns and/or repairs along with an explanation for any significant downtime;
 - A description of the resolution of performance problems;
 - Alarm conditions;
 - Trends in equipment failure;
 - A summary of the performance, effluent and/or effectiveness monitoring; and
 - Comments, conclusions, and recommendations based on data evaluation. Recommendations must address how receptors would be impacted. Recommendations can include:
 - Proposals to address efficiency and costs such as: instituting remote operation, system changes to decrease maintenance costs and downtime, and system changes to decrease energy use; and
 - Proposals to modify or shut down a treatment system due to remediation completion, system performance or changed conditions. System shutdowns are addressed in Section 6.4 of DER-10.

7.2.1 Certification of Institutional and Engineering Controls

Following the last inspection of the reporting period, a Professional Engineer licensed to practice and registered in New York will prepare, and include in the Periodic Review Report, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the site, I certify that all of the following statements are true:

- The inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction;
- The institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;

- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement;
- The engineering control systems are performing as designed and are effective;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying Owner's Designated Site Representative for the site."

"I certify that the New York State Education Department has granted a Certificate of Authorization to provide Professional Engineering services to the firm that prepared this Periodic Review Report."

At the end of each certifying period, as determined by the NYSDEC project manager, the following certification will be provided to the NYSDEC project manager:

"For each institutional identified for the site, I certify that all of the following statements are true:

- The institutional control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- Use of the site is compliant with the environmental easement.
- The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as Owner's Designated Site Representative for the site."

- No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and
- The assumptions made in the qualitative exposure assessment remain valid.

The signed certification will be included in the Periodic Review Report.

The Periodic Review Report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager. The Periodic Review Report may also need to be submitted in hard-copy format if requested by the NYSDEC project manager.

7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control or failure to conduct site management activities, a Corrective Measures Work Plan will be submitted to the NYSDEC project manager for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC project manager.

7.4 Remedial Site Optimization Report

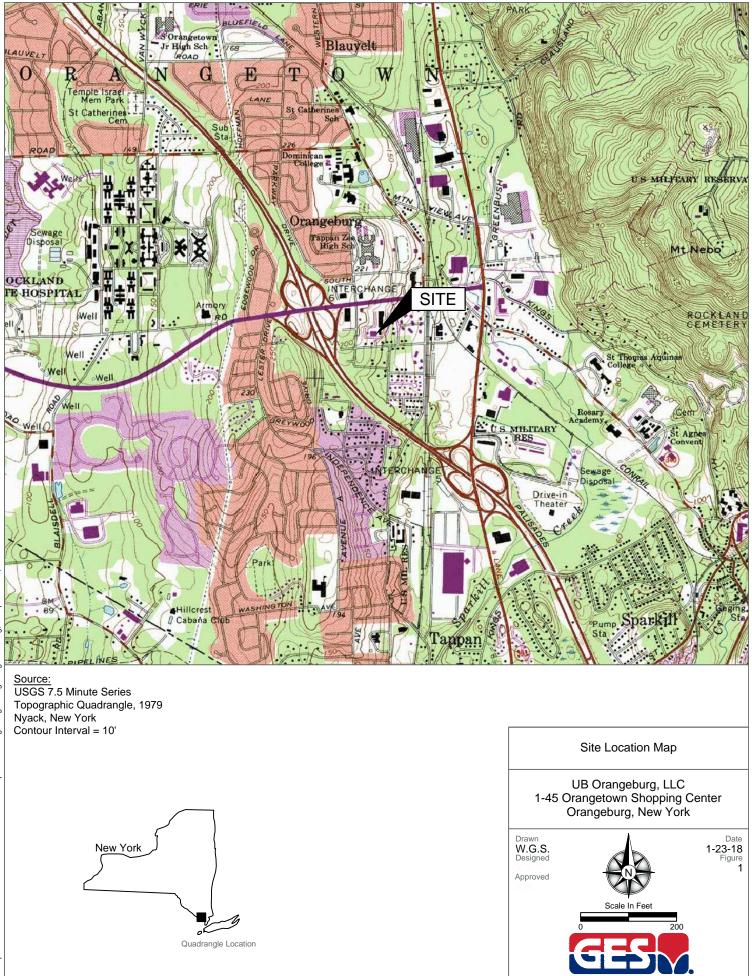
If an RSO is to be performed (see Section 6.3), upon completion of an RSO, an RSO report must be submitted to the NYSDEC project manager for approval. RSO report will document the research/ investigation and data gathering that was conducted, evaluate the results and facts obtained, present a revised conceptual site model and present recommendations. RSO recommendations are to be implemented upon approval from the NYSDEC. Additional work plans, design documents, HASPs etc., may still be required to implement the recommendations, based upon the actions that need to be taken. A final engineering report and update to the SMP may also be required.

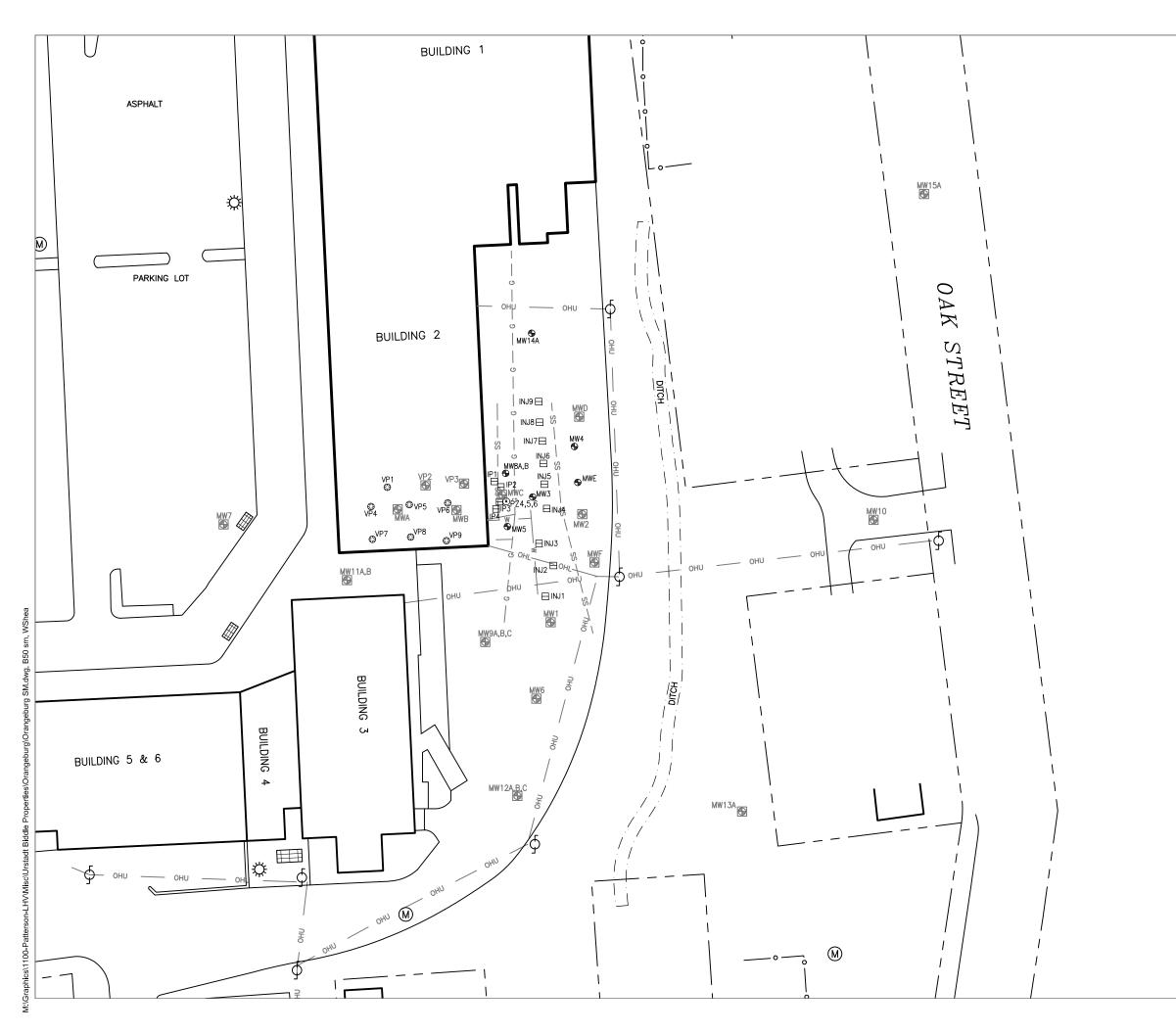
The RSO report will be submitted, in electronic format, to the NYSDEC project manager and the NYSDOH project manager.

8 REFERENCES

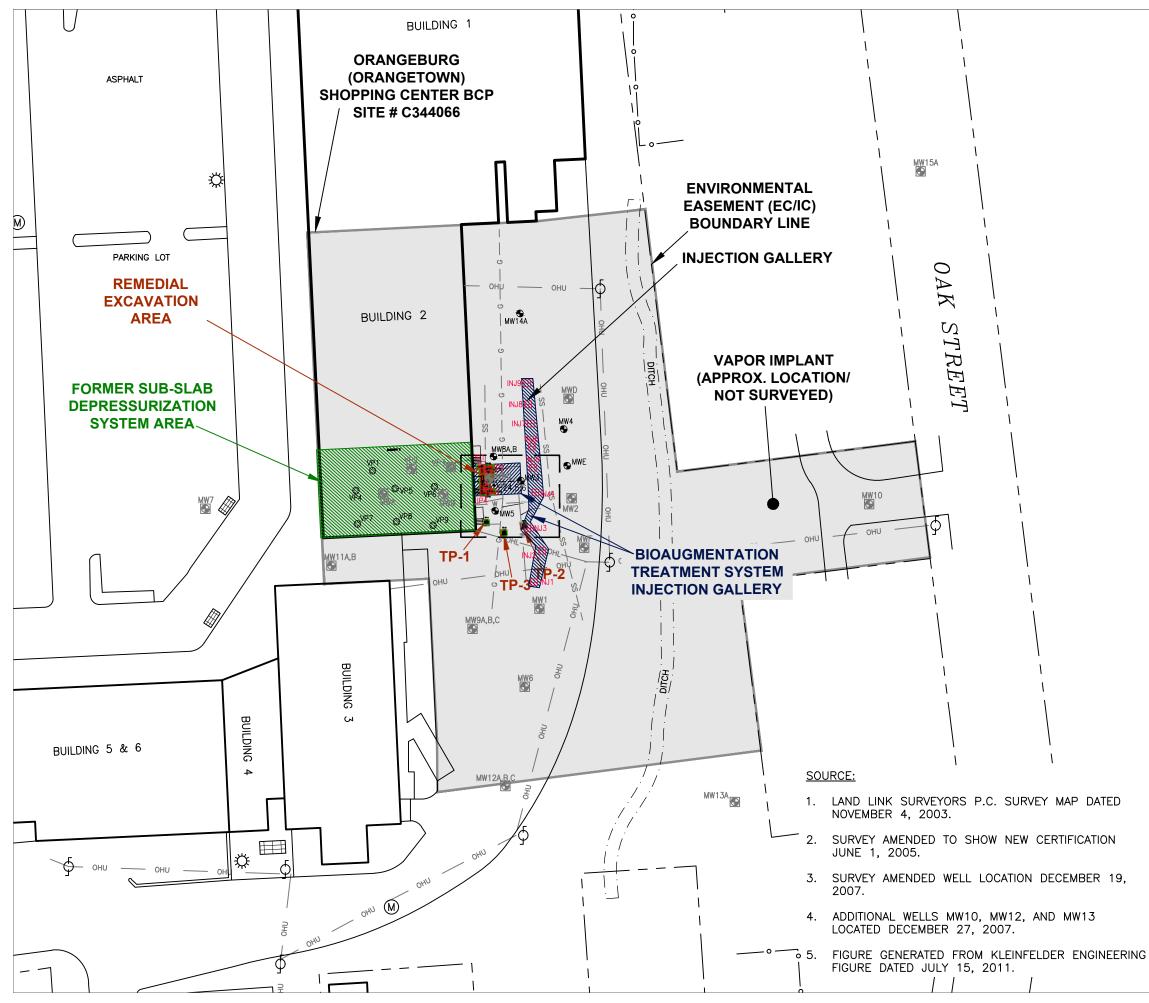
6 NYCRR Part 375, Environmental Remediation Programs. December 14, 2006.

NYSDEC DER-10 – "Technical Guidance for Site Investigation and Remediation".


- NYSDEC, 1998. Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 addendum).
- KLF, 2007a, Remedial Investigation Work Plan, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated July 2007
- KLF, 2008a, Remedial Investigation Report, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated May 2008, revised August 2008
- KLF, 2008b, Interim Remedial Measures Work Plan, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated June 2008, revised August 2008
- KLF, 2009, Design Letter Report Sub-SlabDepressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated September 2009
- KLF, 2010a, Bio-stimulation Injection System Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated January 29, 2010
- KLF, 2010b, Sub-Slab Depressurization System Design Revision Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated July 2010
- KLF, 2011a, Bio-stimulation Injection System Revision Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated April 1, 2011
- KLF, 2011b, Revised Underground Inject ion Plan Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated April 26, 2011
- KLF, 2011c, Construction Completion Report #1 Source Removal, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated June 2011
- KLF, 2011d, Construction Completion Report #2 Sub-Slab Depressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated August 2011
- KLF, 2011e, Construction Completion Report #3 Sub-Slab Depressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated August 2011
- KLF, 2011f, Remedial Investigation Addendum Report, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated July 2011

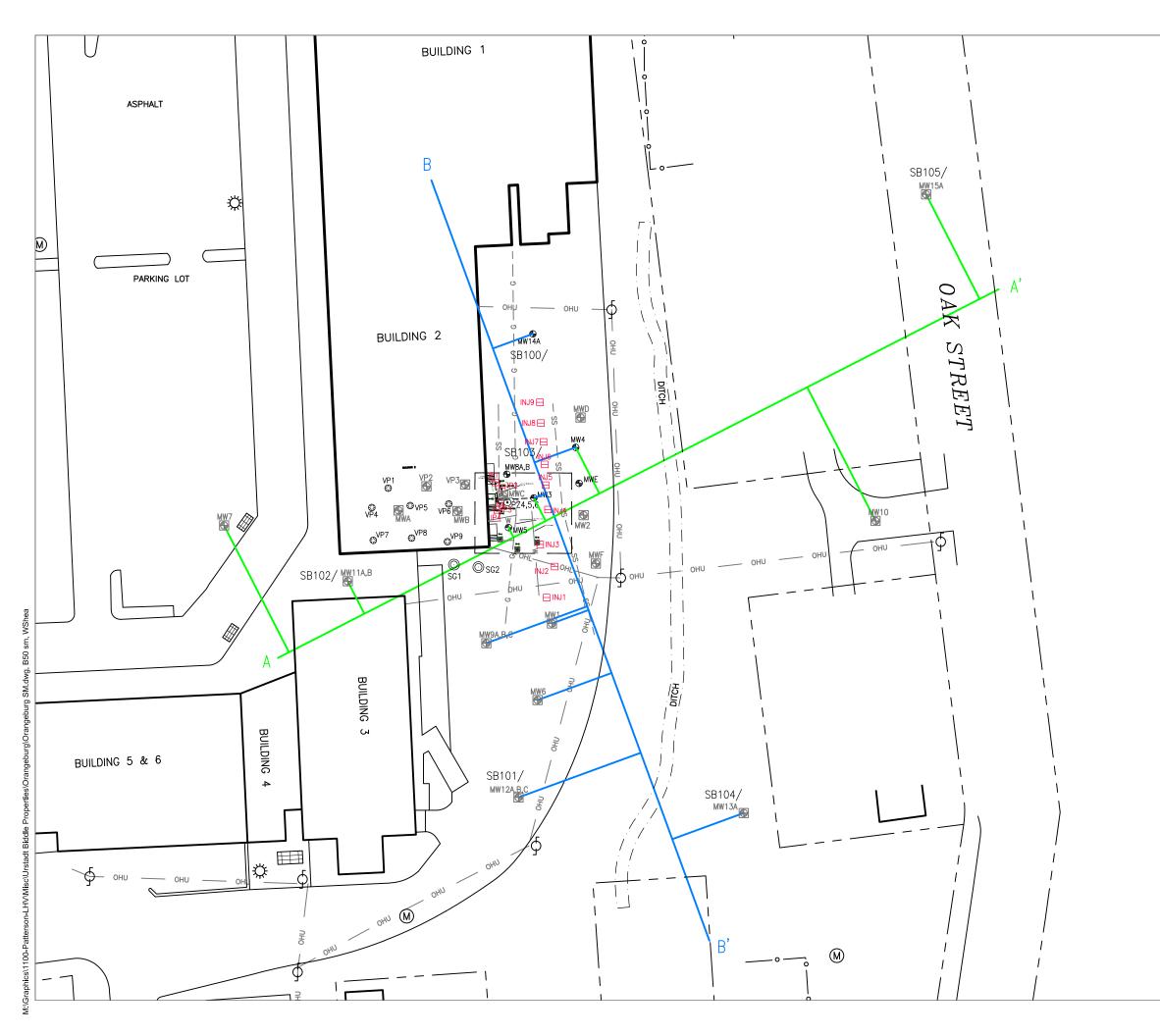


- KLF, 2011g, Site Management Plan, Final and Appendices, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated December 2011
- KLF, 2011h, Final Engineering Report, Final, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated December 2011



<u>LEGEND</u>

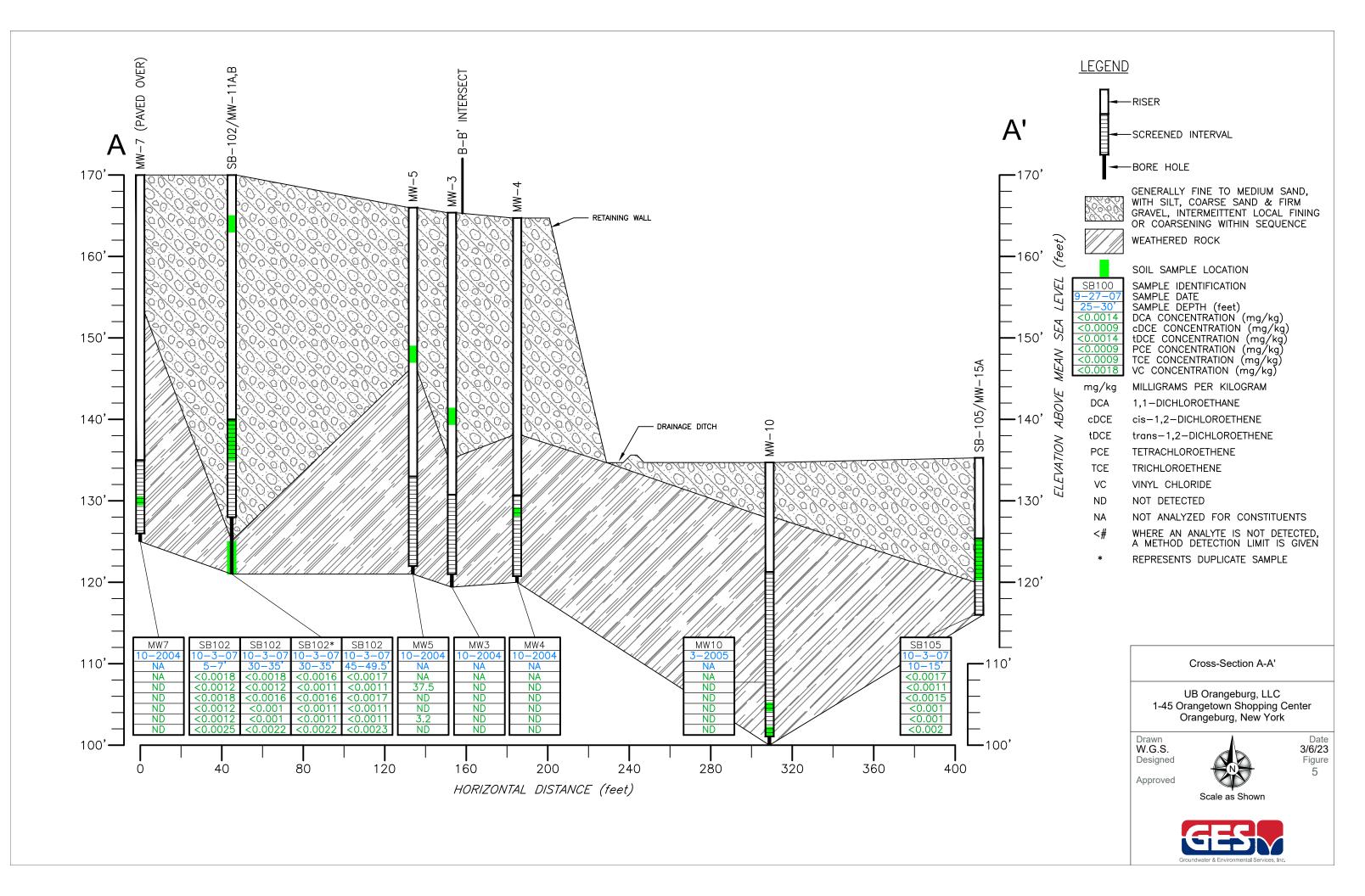
	PROPERTY BOUNDARY
o	CHAIN LINK FENCE
	CATCH BASIN
M	UTILITY MANHOLE
φ	UTILITY POLE
- \$	LIGHT POLE
¢	FIRE HYDRANT
•	MONITORING WELL
\square	INJECTION WELL
\bigcirc	DESTROYED MONITORING WELL
۲	PIEZOMETER
\odot	SOIL VAPOR EXTRACTION WELL
— ss — —	UNDERGROUND SANITARY SEWER LINE
OHU	OVERHEAD UTILITIES

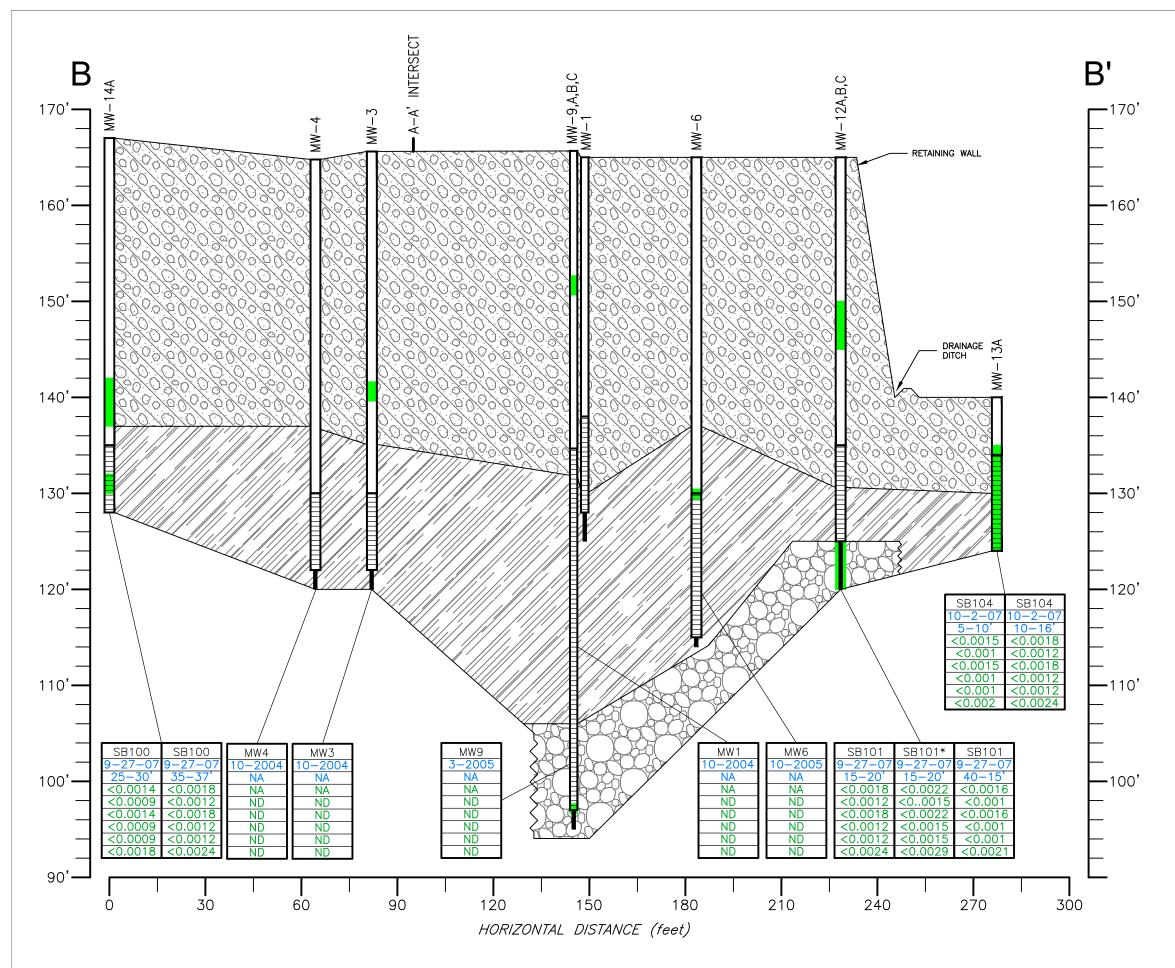

B50

LEGEND ---- PROPERTY BOUNDARY CHAIN LINK FENCE _ o ____ CATCH BASIN (M) UTILITY MANHOLE φ UTILITY POLE Ŷ LIGHT POLE ூ FIRE HYDRANT \bigcirc MONITORING WELL \square INJECTION WELL DESTROYED MONITORING WELL ulletPIEZOMETER €€ SOIL VAPOR EXTRACTION WELL UNDERGROUND SANITARY SEWER LINE — ss — — - OHU ---- OVERHEAD UTILITIES

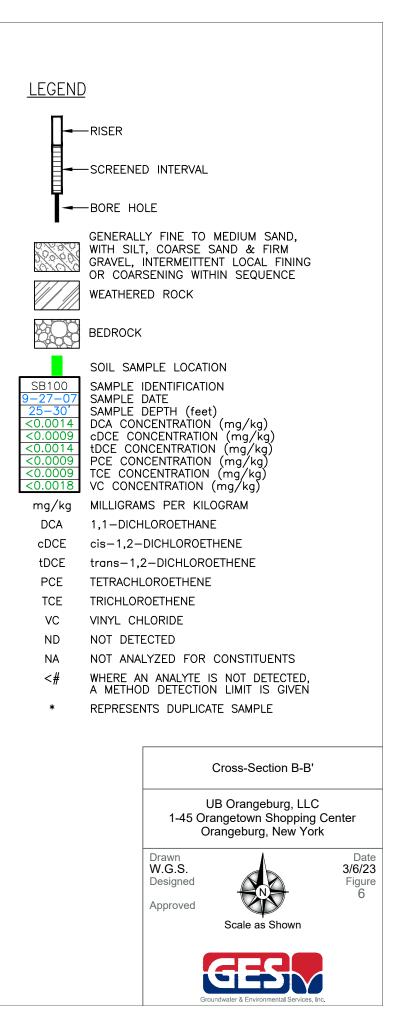
NOTES:

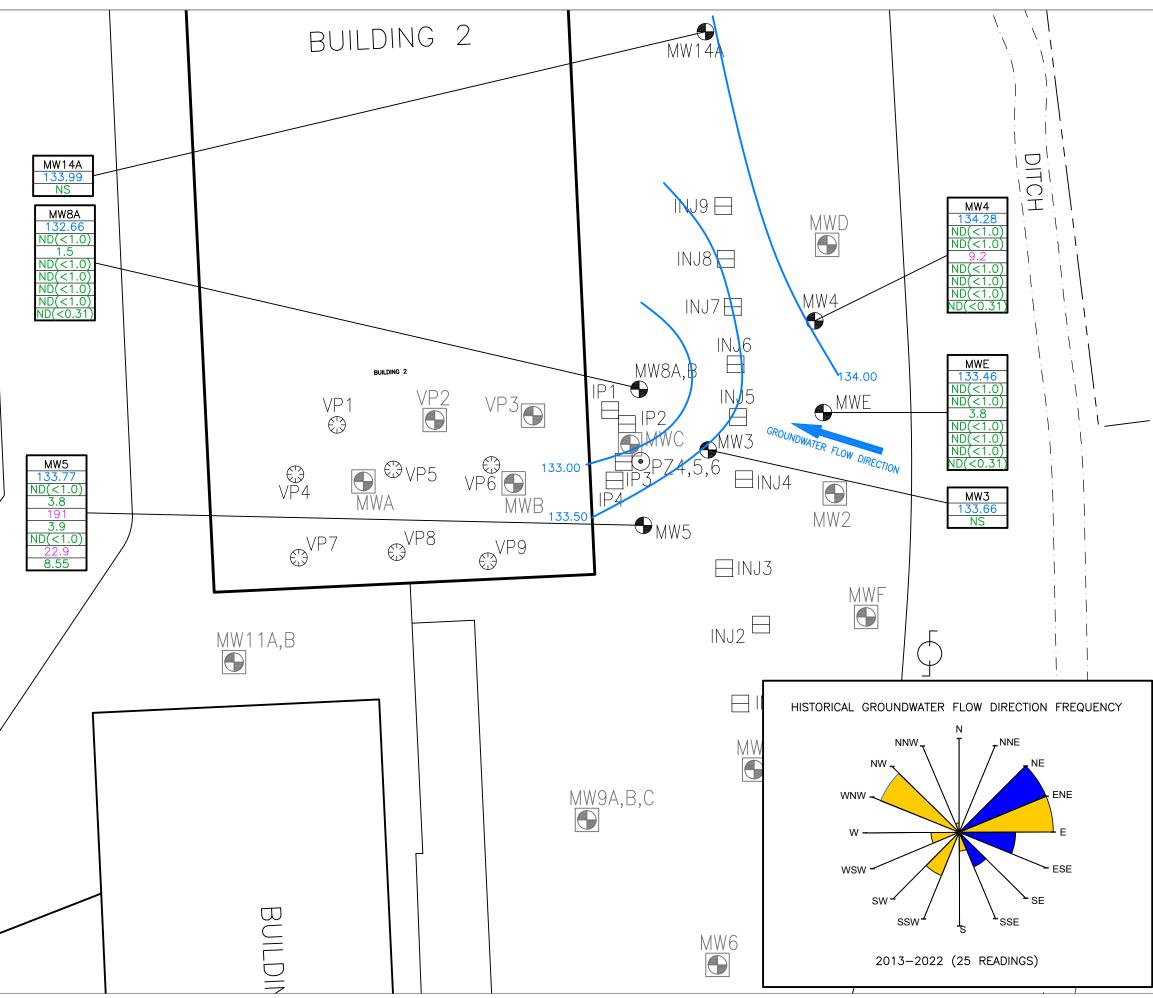
- 1. THE PREMISES SHOWN HEREON DESIGNATED AS LOT 1 ON A CERTAIN MAP ENTITLED "SUBDIVISION OF PROPERTY ORANGETOWN CENTER" AS FILED IN THE ROCKLAND COUNTY CLERK'S OFFICE ON FEBRUARY 26, 1990 AS MAP No. 6427 IN Book 111 Page 59 AND ARE DESCRIBED IN DEED RECORDED REEL 404, PAGE 2555.
- 2. THE DIMENSIONS SHOWN HEREON, FROM THE STRUCTURES TO THE PROPERTY LINE ARE NOT INTENDED TO BE USED FOR THE ERECTION OF FENCES, STRUCTURES OR ANY OTHER IMPROVEMENT.
- 3. ENCROACHMENTS BELOW GRADE AND/OR SUBSURFACE FEATURES, IF ANY, NOT LOCATED OR SHOWN HEREON.


Site Layout		
UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York		
Drawn T.P. Designed Approved		Date 05/23/23 Figure 3
	Scale In Feet	


<u>LEGEND</u>

	PROPERTY BOUNDARY
o	CHAIN LINK FENCE
	CATCH BASIN
M	UTILITY MANHOLE
ج	UTILITY POLE
\	LIGHT POLE
ŵ	FIRE HYDRANT
•	MONITORING WELL
\square	INJECTION WELL
\bigcirc	DESTROYED MONITORING WELL
\odot	PIEZOMETER
\odot	SOIL VAPOR EXTRACTION WELL
— ss — —	UNDERGROUND SANITARY SEWER LINE
OHU	OVERHEAD UTILITIES
	SOIL BORING

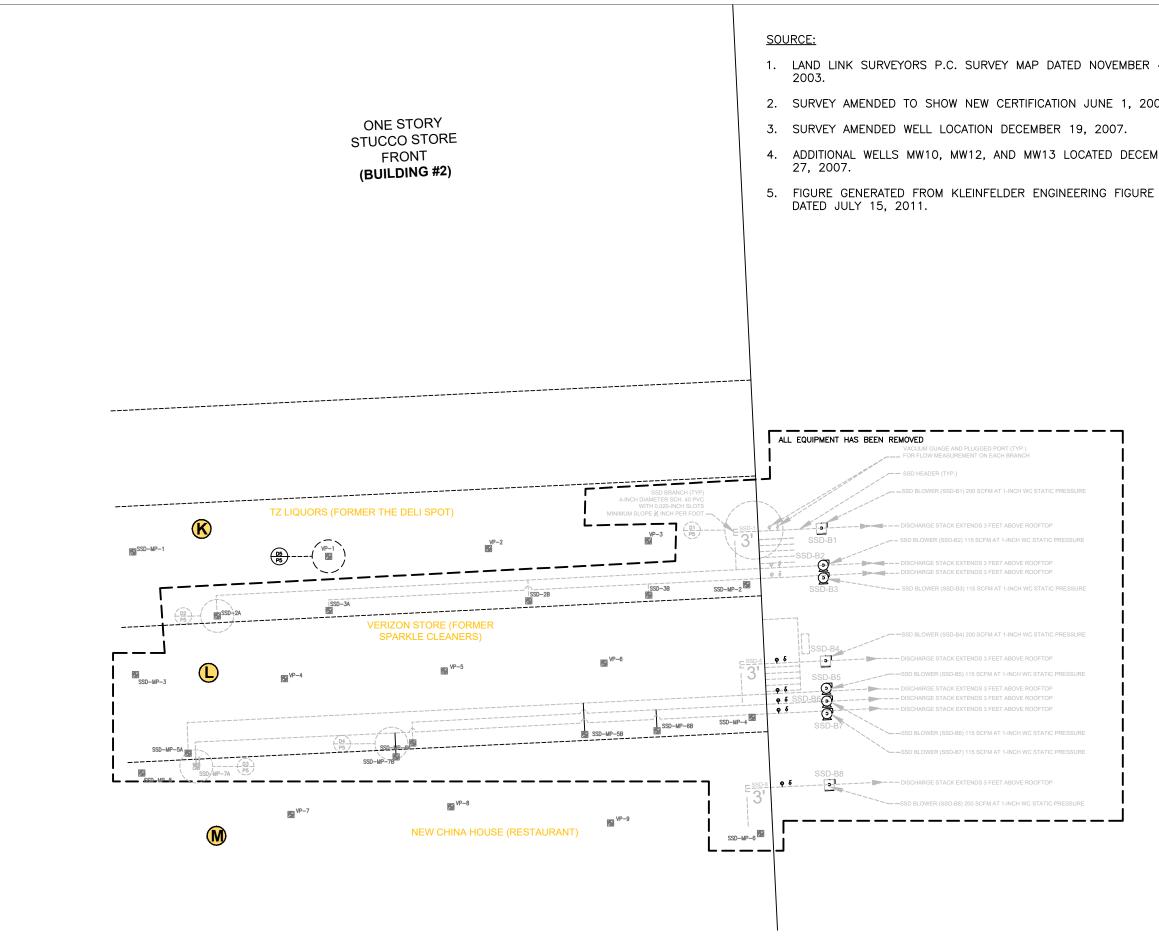




//:/Graphics/1100-Patterson-LHV/Misc/Urstadt Biddle Properties/Orangeburg/Orangeburg XS-AB.dwg, A-A', WShea

M:\Graphics\1100-Patterson-LHV\Misc\Urstadt Biddle Properties\Orangeburg\Orangeburg XS-AB.dwg, B-B', WShea

urg SM.dwg, B20 sm-st, WS \Orar ddle


LEGEND

LLGLIND	
	PROPERTY BOUNDARY
o	CHAIN LINK FENCE
	CATCH BASIN
℗ᠿ҈Ѽ	UTILITY MANHOLE
φ	UTILITY POLE
¢	LIGHT POLE
ŵ	FIRE HYDRANT
•	MONITORING WELL
\square	INJECTION WELL
\bigcirc	DESTROYED MONITORING WELL
\odot	PIEZOMETER
\odot	SOIL VAPOR EXTRACTION WELL
MW5 133.77 ND(<1.0) 3.8 191 3.9 ND(<1.0) 22.9 8.55	WELL IDENTIFICATION GROUNDWATER ELEVATION (feet) TETRACHLOROETHENE CONCENTRATION (ug/L) TRICHLOROETHENE CONCENTRATION (ug/L) CIS-1,2-DICHLOROETHENE CONCENTRATION (ug/L) TRANS-1,2-DICHLOROETHENE CONCENTRATION (ug/L) 1,1-DICHLOROETHENE CONCENTRATION (ug/L) VINYL CHLORIDE CONCENTRATION (ug/L) ETHENE CONCENTRATION (ug/L)
ug/L	MICROGRAMS PER LITER
ND	NOT DETECTED
<#	WHERE AN ANALYTE IS NOT DETECTED, A METHOD DETECTION LIMIT IS GIVEN
NS	NOT SAMPLED
-	NOT AVAILABLE
1~~_/	GROUNDWATER CONTOUR (feet)

NOTE:

VALUE SHADED PURPLE EXCEEDS NYSDEC TOGS 1.1.1 GWQS.

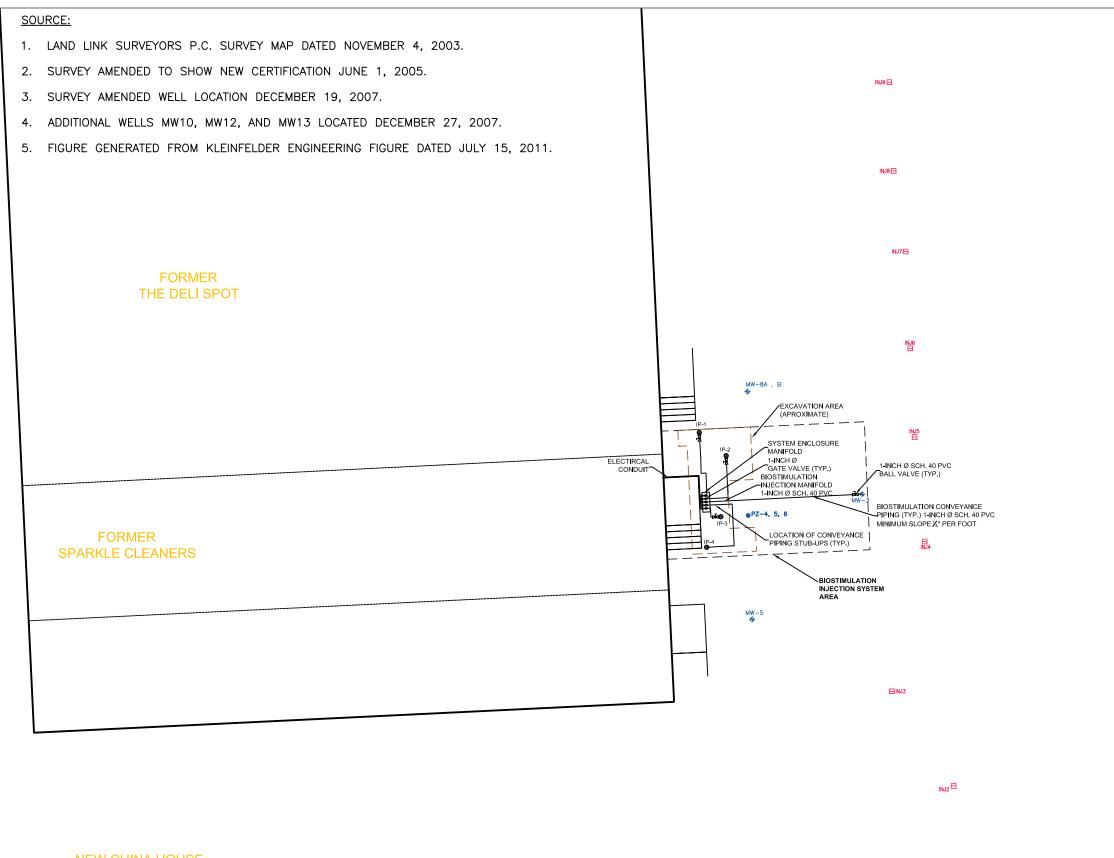
LEGEND

	SSD-MP-6 🔶	SUB-SLAB MONITORING PORT
4,	\$	SUB-SLAB VAPOR EXTRACTION WELL
005.		DETAIL NUMBER PLATE NUMBER
	9	SSD BLOWER (115 SCFM)
MBER	2	SSD BLOWER (200 SCFM)
	୧	VACUUM GAUGE
Ξ	ą	PLUGGED PORT
		ABANDONED/DESTROYED WELL

COMMERCIAL STORE ID TABLE (BUILDING #2)

ß	TZ LIQUORS (FORMER THE DELI SPOT)
L	VERIZON STORE (FORMER SPARKLE CLEANERS)
0	NEW CHINA HOUSE

Former Sub-Slab Depressurization Configuration	
UB Orangeburg, LLC	

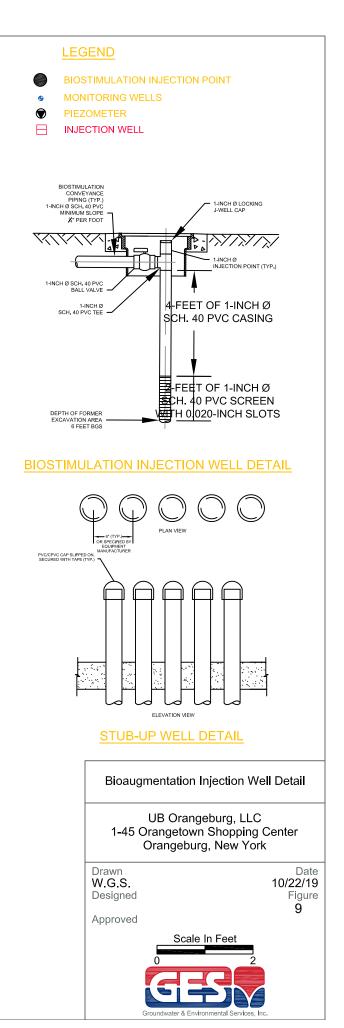

1-45 Orangetown Shopping Center Orangeburg, New York

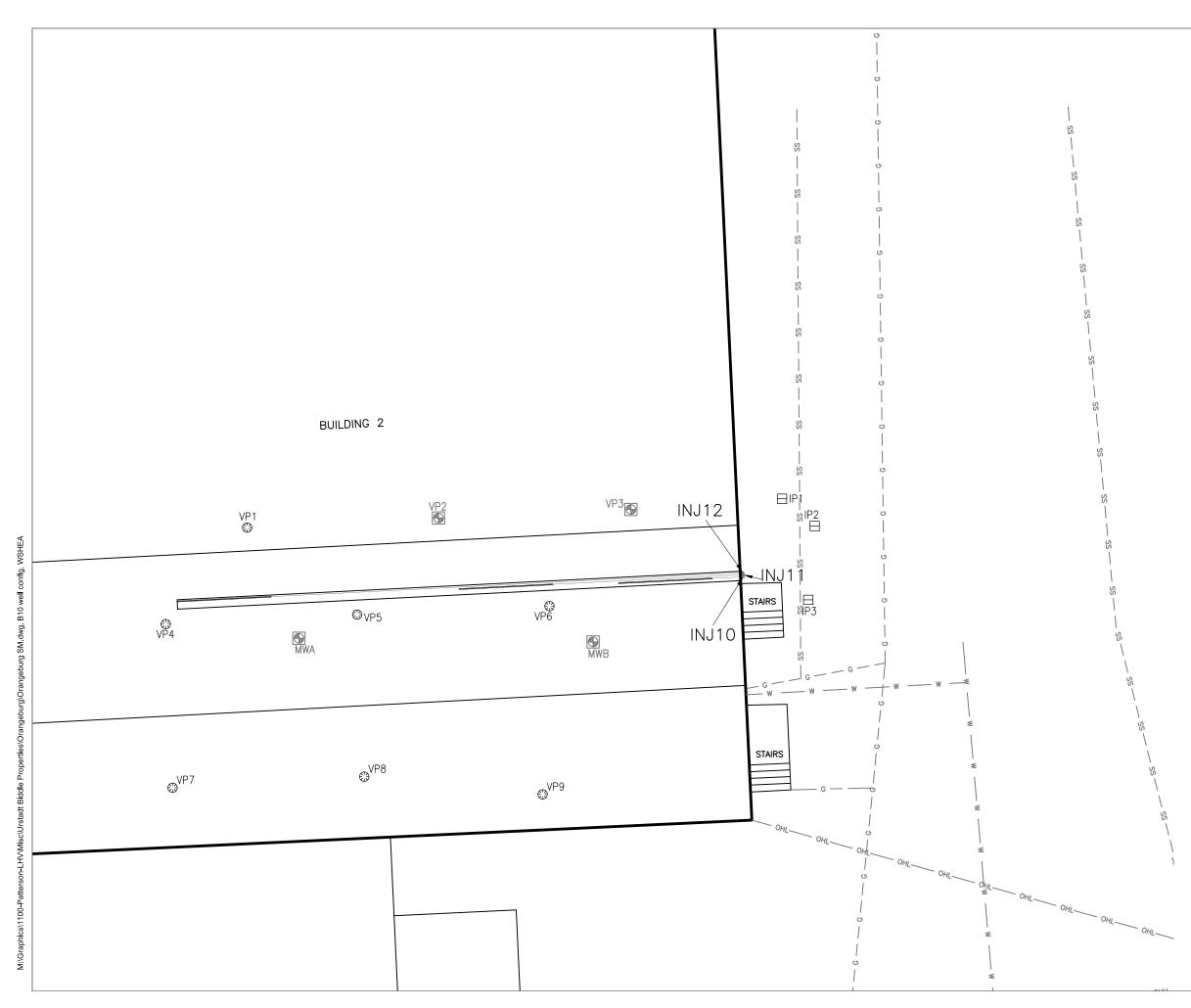
Drawn T.P. Designed
Approved

Date
05/29/23
Figure
8

Not to Scale

NEW CHINA HOUSE


B-well config, WSHEA


ills) dwg,

Irg (KLF

M:\G

⊟ INJ1

PROPOSED MONITORING WELL SOL VAPOR EXTRACTION WELL INLECTION WELL 10' LATERAL INJECTION PIPE 10' LATERAL INJECTION PIPE Monitoring Well and Lateral Well Configuration Map UB Orangeburg, LLC 145 Orangeburg, LLC 145 Orangeburg, New York VGash Approved VGash Dury Topological Participation Dury Topological Participation Dury Topological Participation	<u>LEGEND</u>	
INLECTION WELL 10 [°] LATERAL INJECTION PIPE INLECTION WELL INTEGRAL INJECTION PIPE		
10' LATERAL INJECTION PIPE Image: state of the state of t		
Monitoring Well and Lateral Well Configuration Map UB Orangeburg, LLC 14:5 Orangeburg, New York Orangeburg, New York WEGS, Sard Aproved		
Monitoring Well and Lateral Well Configuration Map UB Orangeburg, LLC 14:5 Orangeburg, New York Orangeburg, New York WEGS, Sard Aproved		
Monitoring Well and Lateral Well Configuration Map UB Orangeburg, LLC 1-45 Orangeburg, New York UB Orangeburg, New York Weigsned Aproved		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Scale In Feet		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Scale In Feet		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Scale In Feet		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Scale In Feet		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
Configuration Map UB Orangeburg, LLC 1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Configuration Map Drawn Shopping Center Orangeburg, New York Date 10/22/19 Figure 10		
1-45 Orangetown Shopping Center Orangeburg, New York Drawn W.G.S. Designed Approved Scale In Feet		Monitoring Well and Lateral Well Configuration Map
Drawn W.G.S. Designed Approved Scale In Feet		1-45 Orangetown Shopping Center
W.G.S. Designed Approved Scale In Feet		Drawn Date
		Designed Figure
Groundwater & Environmental Services, Inc.		Groundwater & Environmental Services, Inc.

Tables

Table 9GROUNDWATER ELEVATION DATA

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-3	3/22/2012	166.67	38.37	128.30	0.9
	6/28/2012	166.67	41.68	124.99	0.3
	8/13/2012	166.67	-	-	0
	8/31/2012	166.67	43.20	123.47	0
	10/1/2012	166.67	42.55	124.12	0
	11/19/2012	166.67	42.47	124.20	0
	1/14/2013	166.67	42.85	123.82	0
	2/28/2013	166.67	42.40	124.27	0
	3/26/2013	166.67	39.30	127.37	0
	4/23/2013	166.67	40.00	126.67	0
	6/25/2013	166.67	36.63	130.04	-
	12/11/2013	166.67	42.39	124.28	-
	1/15/2014	166.67	42.27	124.40	-
	3/5/2014	166.67	38.76	127.91	0
	4/10/2014	166.67	38.76	127.91	0
	5/19/2014	166.67	34.95	131.72	0
	6/18/2014	166.67	35.58	131.09	0
	7/24/2014	166.67	39.60	127.07	0
	10/10/2014	166.67	DRY	-	0
	3/27/2015	166.67	34.02	132.65	0
	5/11/2015	166.67	40.10	126.57	0
	8/17/2015	166.67	42.50	124.17	0
	11/11/2015	166.67	36.14	130.53	0
	3/7/2016	166.67	41.40	125.27	0
	6/23/2016	166.67	42.50	124.17	0
	9/7/2016	166.67	42.07	124.60	0
	11/18/2016	166.67	42.61	124.06	0
	3/3/2017	166.67	40.92	125.75	0
	6/22/2017	166.67	35.79	130.88	0.2
	12/5/2017	166.67	41.17	125.50	0
	3/26/2018	166.67	38.24	128.43	0
	9/19/2018	166.67	33.45	133.22	0
	12/19/2018	166.67	32.99	133.68	0
	3/12/2019	166.67	29.62	137.05	0
	5/13/2019	166.67	29.43	137.24	0
	3/10/2020	166.67	37.69	128.98	0
	4/30/2021	166.67	34.85	131.82	0
	4/18/2022	166.67	33.01	133.66	0
MW-4	3/21/2012	165.88	37.50	128.38	4.0
	6/28/2012	165.88	42.15	123.73	0.8
	8/13/2012	165.88	43.75	122.13	0
	8/31/2012	165.88	44.55	121.33	0
	10/1/2012	165.88	46.20	119.68	0
	11/19/2012	165.88	45.60	120.28	0
	1/14/2013	165.88	44.30	121.58	0
	2/28/2013	165.88	42.12	123.76	0

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-4	3/26/2013	165.88	38.85	127.03	0
(cont.)	4/23/2013	165.88	39.65	126.23	20.0
	6/25/2013	165.88	35.85	130.03	-
	12/11/2013	165.88	46.05	119.83	-
	1/15/2014	165.88	45.41	120.47	-
	3/5/2014	165.88	43.31	122.57	0
	4/10/2014	165.88	38.21	127.67	0
	5/19/2014	165.88	34.18	131.70	0
	6/18/2014	165.88	34.52	131.36	0
	7/23/2014	165.88	37.45	128.43	0
	10/10/2014	165.88	44.53	121.35	0
	1/26/2015	165.88	42.90	122.98	0
	3/27/2015	165.88	38.82	127.06	0
	5/11/2015	165.88	37.76	128.12	0
	8/17/2015	165.88	44.30	121.58	0
	11/11/2015	165.88	45.58	120.30	0
	3/7/2016	165.88	41.30	120.50	0
	6/23/2016	165.88	43.81	124.00	0
	9/7/2016	165.88	46.77	119.11	0
	11/18/2016	165.88	46.44	119.11	0
	3/3/2017	165.88	40.44	125.40	0
		165.88	35.16		0.1
	6/22/2017			130.72	
	9/7/2017	165.88	43.74	122.14	0
	12/5/2017	165.88	45.80	120.08	0
	3/26/2018	165.88	37.40	128.48	0
	6/7/2018	165.88	36.15	129.73	0
	9/19/2018	165.88	39.00	126.88	0
	12/19/2018	165.88	32.42	133.46	0
	3/12/2019	165.88	28.47	137.41	0
	5/13/2019	165.88	28.21	137.67	0
	3/10/2020	165.88	36.87	129.01	0
	4/30/2021	165.88	34.01	131.87	0
	4/18/2022	165.88	31.60	134.28	0
MW-5	3/21/2012	166.70	39.70	127.00	22.6
	6/28/2012	166.70	40.31	126.39	0.6
	8/13/2012	166.70	40.27	126.43	0.7
	8/31/2012	166.70	40.30	126.40	0
	10/1/2012	166.70	40.40	126.30	1.0
	11/19/2012	166.70	40.42	126.28	0
	1/14/2013	166.70	40.25	126.45	0
	2/28/2013	166.70	40.35	126.35	1.7
	3/26/2013	166.70	39.85	126.85	6.9
	4/23/2013	166.70	40.27	126.43	0
	6/25/2013	166.70	37.11	129.59	-
	12/11/2013	166.70	40.65	126.05	-
	1/15/2014	166.70	37.22	129.48	-
	3/5/2014	166.70	40.11	126.59	0
	4/10/2014	166.70	39.41	127.29	0
	5/19/2014	166.70	34.98	131.72	0

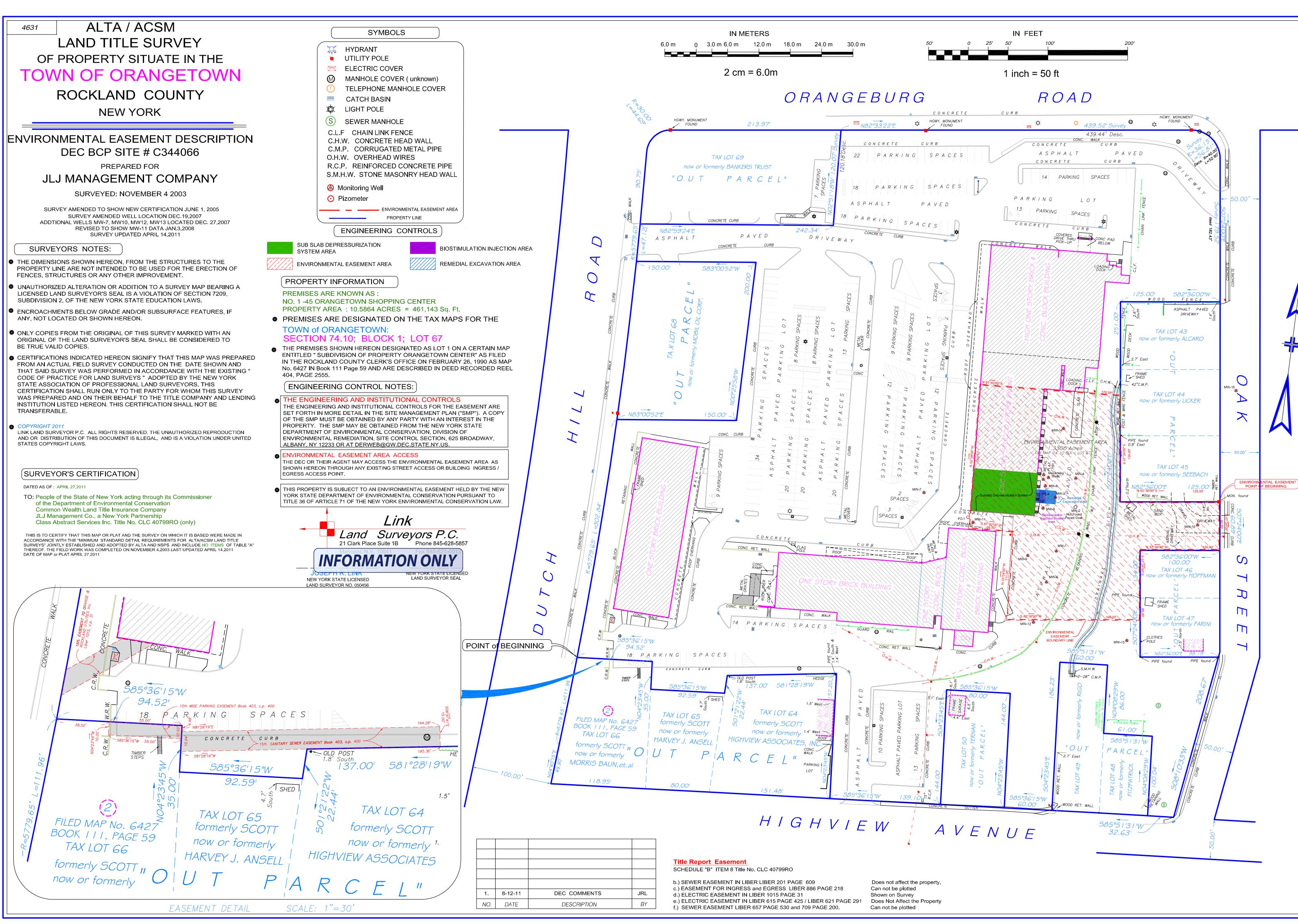
Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-5	6/18/2014	166.70	35.42	131.28	0
(cont.)	7/23/2014	166.70	38.44	128.26	0
	10/10/2014	166.70	40.55	126.15	0
	1/26/2015	166.70	39.01	127.69	0
	3/27/2015	166.70	34.77	131.93	0
	5/11/2015	166.70	38.76	127.94	0
	8/17/2015	166.70	41.32	125.38	0
	11/11/2015	166.70	40.81	125.89	0
	3/7/2016	166.70	40.60	126.10	0
	6/23/2016	166.70	41.26	125.44	0
	9/7/2016	166.70	41.16	125.54	0
	11/18/2016	166.70	41.26	125.44	0
	3/3/2017	166.70	40.75	125.95	0
	6/22/2017	166.70	35.65	131.05	0
	9/7/2017	166.70	40.95	125.75	0
	12/5/2017	166.70	41.10	125.60	0
	3/26/2018	166.70	38.64	128.06	0
	6/7/2018	166.70	37.26	129.44	0
	9/19/2018	166.70	35.91	130.79	0
	12/19/2018	166.70	33.70	133.00	0
	3/12/2019	166.70	29.85	136.85	0
	5/13/2019	166.70	29.70	137.00	0
	3/10/2020	166.70	38.08	128.62	0
	4/30/2021	166.70	35.15	131.55	0
	4/18/2022	166.70	32.93	133.77	0
MW-6	3/22/2012	166.14	36.85	129.29	0
	6/28/2012	166.14	41.41	124.73	0
	8/13/2012	166.14	41.11	125.03	0
	11/19/2012	166.14	47.15	118.99	0
	3/26/2013	166.14	39.65	126.49	0
	6/25/2013	166.14	36.61	129.53	-
	12/11/2013	166.14	49.83	116.31	-
	3/5/2014 5/19/2014	<u>166.14</u> 166.14	41.53 34.71	124.61	0
			-	131.43	_
	7/23/2014 3/27/2015	<u>166.14</u> 166.14	36.50 39.22	129.64 126.92	0
					-
MW-7	3/21/2012	171.49	39.30	132.19	0
	6/29/2012 8/13/2012	171.49	42.18 46.97	129.31	0
	8/13/2012 11/19/2012	<u> 171.49</u> 171.49	46.97	124.52 123.69	0
	3/26/2012	171.49	47.80	125.69	0
	4/23/2013	171.49	44.98	120.51	
	6/25/2013	171.49	38.30	133.19	-
	12/11/2013	171.49	47.27	124.22	-
	3/5/2014	171.49	46.16	124.22	- 0
	5/19/2014	171.49	37.32	134.17	0
	7/23/2014	171.49	39.74	134.17	0
	3/27/2015	171.49	44.72	126.77	0

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-8A	3/21/2012	166.15	41.90	124.25	38.0
	6/28/2012	166.15	42.00	124.15	43.5
	8/13/2012	166.15	DRY	-	34.6
	8/31/2012	166.15	41.80	124.35	24.0
	10/1/2012	166.15	42.10	124.05	12.2
	11/19/2012	166.15	42.40	123.75	39.4
	1/14/2013	166.15	42.95	123.13	0
	2/28/2013	166.15	42.60	123.55	37.6
	3/26/2013	166.15	-	-	0.1
	4/23/2013	166.15	42.05	124.10	35.5
	6/25/2013	166.15	39.95	126.20	-
	12/11/2013	166.15	41.80	124.35	-
	1/15/2014	166.15	42.68	123.47	_
	3/5/2014	166.15	42.63	123.52	0
	4/10/2014	166.15	39.67	126.48	0
	5/19/2014	166.15	42.83	123.32	0
	6/18/2014	166.15	37.12	129.03	0
	7/23/2014	166.15	42.05	124.10	0
	10/10/2014	166.15	DRY	124.10	0
	3/27/2015	166.15	40.31	125.84	0
	5/11/2015	166.15	42.08	124.07	0
	8/17/2015	166.15	42.30	124.07	0
	11/11/2015	166.15	41.82	123.03	0
	3/7/2016	166.15	41.80	124.35	0
	6/23/2016	166.15	41.00	124.33	0
	9/7/2016	166.15	41.91	124.24	0
	11/18/2016	166.15	41.90	124.25	0
	3/3/2017	166.15	41.60	124.35	0
	6/22/2017	166.15	36.69	124.43	0
	12/5/2017	166.15	41.45	124.70	0
	3/26/2018	166.15	38.91	127.24	0
	9/19/2018	166.15	40.40	125.75	0
	12/19/2018	166.15	33.94	132.21	0
	3/12/2019	166.15	30.30	135.85	0
	5/13/2019	166.15	29.64	136.51	0
	3/10/2020	166.15	38.31	127.84	0
	4/30/2021	166.15	35.56	130.59	0
	4/18/2022	166.15	33.49	132.66	0
MW-8B	3/21/2012	166.08	39.13	126.95	14.6
	6/28/2012	166.08	42.55	123.53	5.1
	8/13/2012	166.08	45.30	120.78	0.7
	8/31/2012	166.08	46.40	119.68	0
	10/1/2012	166.08	49.40	116.68	0.1
	11/19/2012	166.08	48.45	117.63	0
	1/14/2013	166.08	47.07	119.01	0
	2/28/2013	166.08	44.00	122.08	0
	3/26/2013	166.08	40.32	125.76	4.6
	4/23/2013	166.08	40.08	126.00	30.2
	6/25/2013	166.08	37.20	128.88	-

Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-8B	12/11/2013	166.08	49.63	116.45	-
(cont.)	1/15/2014	166.08	49.63	116.45	-
	3/5/2014	166.08	45.07	121.01	0
	4/10/2014	166.08	39.69	126.39	0
	5/19/2014	166.08	35.55	130.53	0
	6/18/2014	166.08	36.05	130.03	0
	7/23/2014	166.08	38.95	127.13	0
	10/10/2014	166.08	47.21	118.87	0
	3/27/2015	166.08	40.21	125.87	0
	5/11/2015	166.08	39.15	126.93	0
	8/17/2015	166.08	45.32	120.76	0
	11/11/2015	166.08	41.56	124.52	0
	3/7/2016	166.08	42.85	123.23	0
	6/23/2016	166.08	45.85	120.23	0
	9/7/2016	166.08	DRY	-	0
	11/18/2016	166.08	DRY	-	0
	3/3/2017	166.08	42.11	123.97	0
	6/22/2017	166.08	36.56	129.52	0
MW-10	3/21/2012	137.86	9.37	128.49	0
	6/29/2012	137.86	12.58	125.28	0
	8/13/2012	137.86		122.48	0
	11/19/2012	137.86	18.00	119.86	0
	3/26/2013	137.86	9.90	127.96	0
	6/25/2013	137.86	8.05	129.81	-
	12/11/2013	137.86	19.71	118.15	-
	3/5/2014	137.86	9.33	128.53	0
	4/10/2014	137.86	9.33	128.53	0
	5/19/2014	137.86	5.75	132.11	0
	7/23/2014	137.86	9.87	127.99	0
	10/10/2014	137.86	18.12	119.74	0
	3/27/2015	137.86	9.55	128.31	0
	5/11/2015	137.86	9.92	127.94	0
	8/17/2015	137.86	15.80	122.06	0
	11/11/2015	137.86	21.47	116.39	0
	3/7/2016	137.86	12.46	125.40	0
	6/23/2016	137.86	16.04	121.82	0
	9/7/2016	137.86	20.19	117.67	0
	11/18/2016	137.86	23.55	114.31	0
	3/3/2017	137.86	11.55	126.31	0
	6/22/2017	137.86	8.47	129.39	0
MW-E	12/5/2017	165.03	-	-	-
	3/26/2018	165.03	-	-	-
	9/19/2018	165.03	32.37	132.66	0
	12/19/2018	165.03	31.61	133.42	0
	3/12/2019	165.03	28.04	136.99	0
	5/13/2019	165.03	28.02	137.01	0
	3/10/2020	165.03	32.70	132.33	0

Table 9 GROUNDWATER ELEVATION DATA

Orangetown Shopping Center NYSDEC Site # C344066


Monitoring Well	Date	Top of Casing (ft)	Depth to Water (ft)	GW Elevation (ft)	Photoionizing Detector Reading (ppm)
MW-E	4/30/2021	165.03	32.65	132.38	0
(cont.)	4/18/2022	165.03	31.57	133.46	0
MW-14A	12/5/2017	166.49	33.68	132.81	0
	3/26/2018	166.49	34.61	131.88	0
	9/19/2018	166.49	41.25	125.24	0
	12/19/2018	166.49	32.93	133.56	0
	3/12/2019	166.49	-	-	0
	5/13/2019	167.49	27.64	139.85	0
	3/10/2020	167.49	37.91	129.58	0
	4/30/2021	167.49	36.27	131.22	0
	4/18/2022	167.49	33.50	133.99	0

Notes:

DRY	= No water in well to gauge
-	= Not available or measured
ft	= feet
ppm	= parts per million
GW	= groundwater
NSD	= No Survey Data

Appendix A – Environmental Easement

1.	8-12-11	DEC COMMENTS	JRL
NO.	DATE	DESCRIPTION	BY

PROPERTY DESCRIPTION

EET WIDE), THENCE ALONG THE LANDS NOW OR FORMERLY OF FITZPATRICK ON THE TWO (2) FOLLOWING

AND PARTLY ALONG THE LANDS NOW OR FORMERLY OF PERINI: THENCE THROUGH LOT NO. 2 AND THE TWO (2) FOLLOWING COURSES AND DISTANCES: ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND, WITH IMPROVEMENTS THEREON ERECTED, SITUATED AND LYING AND BEING IN FORMERLY JLJ Management Co., a New York Partnership as RECORDED IN REEL 404, PAGE 2555. AND BEING A PORTION OF LOT 1 THENCE RUNNING ALONG THE WESTERLY SIDE OF OAK STREET SOUTH 7°24'00" EAST 60.89 FEET TO THE DIVISION LINE BETWEEN JLJ THENCE ALONG SAID DIVISION LINE SOUTH 82° 36'00" WEST 100.00 FEET; THENCE CONTINUING ALONG SAID DIVISION LINE AND ALONG THE DIVISION LINE BETWEEN JLJ MANAGEMENT AND LAND NOW OR THENCE RUNNING THROUGH LANDS OF JLJ MANAGEMENT THE FOLLOWING FIVE (5) COURSES AND DISTANCES; THENCE RUNNING ALONG LAND OF UCKER AND CONTINUING ALONG LAND OF SEEBACH

SOUTH 7°24'00" WEST 134.00 FEET AND NORTH 82°36'00: EAST 125.00 FEET TO THE POINT AND PLACE OF BEGINNING.

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND, SITUATE, LYING AND BEING AT ORANGEBURG, IN THE TOWN OF ORANGETOWN, COUNTY OF ROCKLAND AND STATE OF NEW YORK, BEING MORE FULLY BOUNDED AND DESCRIBED AS FOLLOWS: BEGINNING AT A POINT IN THE EASTERLY LINE OF DUTCH HILL ROAD (100 FEET WIDE) SAID POINT BEING DISTANT. NORTH 04 DEGREES 40 MINUTES 15 SECONDS EAST, 49.90 FEET AND ALSO ALONG A CURVE TO THE LEFT, HAVING A RADIUS OF 5779.65 FEET, A DISTANCE OF 111.96 FEET, AS MEASURED ALONG THE EASTERLY LINE OF DUTCH HILL ROAD FROM THE INTERSECTION OF THE SAME WITH THE NORTHERLY LINE OF HIGHVIEW AVENUE (50 FEET WIDE) AND RUNS FROM SAID POINT OF BEGINNING: 1) ALONG A CURVE TO THE LEFT. HAVING A RADIUS OF 5779.65 FEET FOR A DISTANCE OF 302.84 FEET ALONG THE EASTERLY LINE OF DUTCH HILL ROAD, THENCE ALONG THE LANDS NOW OR FORMERLY OF MOBIL OIL CORP. ON THE THREE (3) FOLLOWING COURSES AND DISTANCES: 2) NORTH 83 DEGREES 00 MINUTES 52 SECONDS EAST, 150.00 FEET; 3) NORTH 00 DEGREES 25 MINUTES 58 SECONDS WEST, 200.00 FEET 4) SOUTH 83 DEGREES 00 MINUTES 52 SECONDS WEST, 150.00 FEET 5) ALONG A CURVE TO THE LEFT, HAVING A RADIUS OF 5779.65 FEET FOR A DISTANCE OF 47.12 FEET ALONG THE EASTERLY LINE OF DUTCH HILL ROAD, THENCE ALONG THE LANDS NOW OR FORMERLY OF BANKERS TRUST ON THE TWO (2) FOLLOWING COURSES AND DISTANCES: 6) NORTH 82 DEGREES 59 MINUTES 24 SECONDS EAST, 242.34 FEET 7) NORTH 02 DEGREES 51 MINUTES 18 SECONDS WEST, 120.07 FEET 8) NORTH 82 DEGREES 33 MINUTES 22 SECONDS EAST, 439.52 (ACTUAL) (439.44 FEET, DEED) ALONG THE SOUTHERLY LINE OF ORANGEBURG ROAD; 9) ALONG A CURVE TO THE RIGHT HAVING A RADIUS OF 36.15 (ACTUAL) (40.00 FEET, DEED) FOR A DISTANCE OF 56.81 FEET (ACTUAL) (52.90 FEET, DEED) TO THE WESTERLY LINE OF OAK STREET (50 FEET WIDE); 10) SOUTH 07 DEGREES 24 MINUTES 00 SECONDS EAST, 179.52 (ACTUAL) (182.43 FEET, DEED) ALONG THE WESTERLY LINE OF OAK STREET (50 FEET WIDE) 11) SOUTH 82 DEGREES 36 MINUTES 00 SECONDS WEST, 125.00 FEET ALONG THE LANDS NOW OR FORMERLY OF ALCARO; 12) SOUTH 07 DEGREES 24 MINUTES 00 SECONDS EAST, 251.00 FEET, PARTLY STILL ALONG THE LANDS OF SAID ALCARO, PARTLY ALONG THE LANDS NOW OR FORMERLY UCKER AND PARTLY ALONG THE LANDS NOW OR FORMERLY OF SEEBACH: 13) NORTH 82 DEGREES 36 MINUTES 00 SECONDS EAST, 125.00 FEET STILL ALONG THE LANDS EAST OF THE SAID SEEBACH 14) SOUTH 07 DEGREES 24 MINUTES 00 SECONDS EAST, 60.89 FEET ALONG THE WESTERLY LINE OF OAK STREET (50 FEET WIDE): 15) SOUTH 82 DEGREES 36 MINUTES 00 SECONDS WEST, 100.00 FEET ALONG THE LANDS NOW OR FORMERLY OF HOFFMAN 16) SOUTH 07 DEGREES 24 MINUTES 00 SECONDS EAST, 134.00 FEET, PARTLY STILL ALONG THE LANDS OF SAID HOFFMAN 17) NORTH 82 DEGREES 36 MINUTES 00 SECONDS EAST, 98.19 FEET STILL ALONG THE LANDS OF THE SAID PERINI; 18) SOUTH 08 DEGREES 10 MINUTES 33 SECONDS WEST, 208.67 FEET ALONG THE WESTERLY LINE OF OAK STREET (50 FEET 19) SOUTH 85 DEGREES 51 MINUTES 31 SECONDS WEST, 32.63 FEET ALONG THE NORTHERLY LINE OF HIGHVIEW AVENUE (50 DISTANCES: 20) NORTH 04 DEGREES 08 MINUTES 29 SECONDS WEST, 100.04 FEET; 21) SOUTH 85 DEGREES 51 MINUTES 31 SECONDS WEST, 61.00 FEET, THENCE ALONG THE LANDS NOW OR FORMERLY OF EIGO ON THE THREE (3) FOLLOWING COURSES AND DISTANCES: 22) NORTH 04 DEGREES 08 MINUTES 29 SECONDS WEST, 86.00 FEET; 23) SOUTH 85 DEGREE 51 MINUTES 31 SECONDS WEST, 60.00 FEET; 24) SOUTH 04 DEGREES 23 MINUTES 45 SECONDS EAST, 186.23 FEET; 25) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST, 60.00 FEET ALONG THE NORTHERLY LINE OF HIGHVIEW AVENUE (50 FEET WIDE), THENCE ALONG THE LANDS NOW OR FORMERLY OF TERNAN ON THE THREE (3) FOLLOWING COURSES AND DISTANCES: 26) NORTH 04 DEGREES 23 MINUTES 45 SECONDS WEST, 144.00 FEET; 27) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST, 80.00 FEET 28) SOUTH 04 DEGREES 23 MINUTES 45 SECONDS EAST, 144.00 FEET; 29) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST, 139.10 FEET ALONG THE NORTHERLY LINE OF HIGHVIEW AVENUE (50 FEET WIDE), THENCE ALONG THE LANDS NOW OR FORMERLY OF SCOTT ON THE FOUR (4) FOLLOWING COURSES AND DISTANCES: 30) NORTH 04 DEGREES 23 MINUTES 45 SECONDS WEST, 157.20 FEET; 31) SOUTH 81 DEGREES 28 MINUTES 19 SECONDS WEST, 137.00 FEET; 32) SOUTH 01 DEGREE 21 MINUTES 22 SECONDS WEST, 22.44 FEET; 33) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST, 92.59 FEET, THENCE ALONG LOT NO. 2 AND THROUGH THE LANDS OF B.B.H. & L HOLDING CORP. ON THE TWO (2) COURSES AND DISTANCES 34) NORTH 04 DEGREES 23 MINUTES 45 SECONDS WEST, 35.00 FEET; 35) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST, 94.52 FEET TO THE POINT OR PLACE OF BEGINNING. TOGETHER WITH AN EASEMENT FOR PARKING ON THE MINUTES DESCRIBED PARCEL; BEGINNING AT A POINT ON THE NORTHERLY LINE OF LOT NO. 2, AS SET FORTH ON MAP NO. 6427 BOOK 111 PAGE 59 FILED FEBRUARY 26, 1990, SAID POINT BEING DISTANT, NORTH 85 DEGREES 36 MINUTES 15 SECONDS EAST 39.52 FEET, AS MEASURED ALONG THE NORTHERLY LINE OF LOT NO. 2 FROM THE WESTERLY END OF THE COURSE RECITED AS (3) ABOVE AND RUNS FROM SAID POINT OF BEGINNING. 1) NORTH 85 DEGREES 36 MINUTES 15 SECONDS EAST FOR A DISTANCE OF 55.00 FEET ALONG THE NORTHERLY LINE OF LOT NO. 2; THENCE 2) SOUTH 4 DEGREES 23 MINUTES 45 SECONDS EAST FOR A DISTANCE OF 10.00 FEET ALONG THE EASTERLY LINE OF LOT NO. 3) SOUTH 85 DEGREES 36 MINUTES 15 SECONDS WEST FOR A DISTANCE OF 55.00 FEET; THENCE 4) NORTH 4 DEGREES 23 MINUTES 45 SECONDS FOR A DISTANCE OF 10.00 FEET TO THE POINT OR PLACE OF BEGINNING. **ENVIRONMENTAL EASEMENT AREA** THE TOWN OF ORANGETOWN, COUNTY OF ROCKLAND AND STATE OF NEW YORK. BEING A PORTION OF OF THE PROPERTY NOW OR ON A CERTAIN MAP ENTITLED " SUBDIVISION OF PROPERTY ORANGETOWN CENTER" AS FILED IN THE ROCKLAND COUNTY CLERK'S OFFICE ON FEBRUARY 26, 1990 AS MAP No. 6427 IN Book 111 Page 59. BBEGINNING AT A POINT ON THE WESTERLY SIDE OF OAK STREET WHERE THE SAME IS INTERSECTED BY THE DIVISION LINE BETWEEN LAND NOW OR FORMERLY JLJ MANAGEMENT ON THE SOUTH AND LAND NOW OR FORMERLY SEEBACH ON THE NORTH, SAID POINT ALSO BEING 430.52 FEET SOUTHERLY FROM THE SOUTHERLY END OF A CURVE HAVING A RADIUS OF 36.15 LENGTH OF 56.81 FEET CONNECTING THE SOUTHERLY SIDE OF ORANGEBURG ROAD AND THE WESTERLY SIDE OF OAK STREET. MANAGEMENT AND LAND NOW OR FORMERLY HOFFMAN; FORMERLY FARINI SOUTH 7°24'00" EAST 88.00 FEET. 1 SOUTH 82°36'00" WEST 168.00 FEET. 2. NORTH 3°04'00" WEST 111.00 FEET 3. SOUTH 87°02'00" WEST 56.00 FEET, 4. NORTH 2°58'00" WEST 182.10 FEET 5. NORTH 87°02'00" EAST 176.89 FEET TO THE WESTERLY SIDE OF LAND NOW OR FORMERLY UCKER Containing 1.3308 acres / 57,970 Sq. Ft. THE ABOVE DESCRIBED ENVIRONMENTAL EASEMENT AREA CONSISTS OF THE NYSDEC BROWNFIELD CLEANUP PROGRAM SITE AS INDICATED BELOW BCP SITE # C 344066 - THIS IS SUBJECT TO THE BROWNFIELD CLEANUP AGREEMENT (BCA) BETWEEN JLJ MANAGEMENT CO., A New York Partnership AND THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION AND COMPRISES A PORTION OF THE PROPERTY OF TAX ID OF MAP 74.10 * BLOCK 1 * LOT 67

ENVIRONMENTAL EASEMENT GRANTED PURSUANT TO ARTICLE 71, TITLE 36 OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this <u>//6</u> day of <u>Schrenhen</u>, 20<u>//</u>, between Owner(s) JLJ Management Co., a New York Partnership, having an office at 197 Trenor Drive, New Rochelle, County of Rockland, State of New York (the "Grantor"), and The People of the State of New York (the "Grantee."), acting through their Commissioner of the Department of Environmental Conservation (the "Commissioner", or "NYSDEC" or "Department" as the context requires) with its headquarters located at 625 Broadway, Albany, New York 12233.

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 1-45 Orangetown Shopping Center in the Town of Orangetown, County of Rockland and State of New York, known and designated on the tax map of the County Clerk of Rockland as tax map parcel numbers: Section 74.10 Block 1 Lot 67, being the same as that property conveyed to Grantor by deed dated April 4, 1990 recorded in the Rockland County Clerk's Office in Book 0404 at Page 2555, the Environmental Easement area of which comprising approximately 1.3308 \pm acres, and hereinafter more fully described in the Land Title Survey dated April 27, 2011 prepared by Joseph R. Link of Link Land Surveyors P.C., which will be attached to the Site Management Plan. The property description and survey (the "Controlled Property") is set forth in and attached hereto as Schedule A; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of human health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Brownfield Cleanup Agreement Number: A3-0563-0906, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement")

1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.

2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.

A. (1) The Controlled Property may be used for:

Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

(2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);

(3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP.

(4) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

(5) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

(6) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;

(7) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.

(8) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP.

(9) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.

B. The Controlled Property shall not be used for Residential or Restricted Residential purposes, and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.

C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.

E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation pursuant to Title 36 of Article 71 of the Environmental Conservation Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

G. Grantor covenants and agrees that it shall annually, or such time as NYSDEC may allow, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:

(1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).

(2) the institutional controls and/or engineering controls employed at such site:

(i) are in-place;

(ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and

(iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;

(3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;

(4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;

(5 the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;

(6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and

(7) the information presented is accurate and complete.

3. <u>Right to Enter and Inspect.</u> Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.

4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:

A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. <u>Enforcement</u>

A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.

B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.

Environmental Easement Page 4

C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.

D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.

6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to:	Site Number: C 344066 Office of General Counsel NYSDEC 625 Broadway Albany New York 12233-5500
With a copy to:	Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by

the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.

10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

Grantor: JLJ Management Co., a New York Partnership

DAFO Realty Corp., its General Partner

By: Thit house

Print Name: Hilton Soniker

Title: <u>President</u> Date: <u>9/2/11</u>

ODAF Realty Corp., its General Partner

By: Hill- knute

Print Name: Hilton Soniker

Title: Irasident Date: <u>9/2/11</u>

Grantor's Acknowledgment

STATE OF NEW YORK)) ss: COUNTY OF ∧ Y)

On the 2n day of \hat{J}_{μ} day definition \hat{J}_{μ} day definit \hat{J}_{μ} day day definit \hat{J}_{μ} day definition \hat{J}_{μ}

ublic - State of New York Notary

JEROME KAMERMAN Notary Public, State of New York No. 02KA7146175 Qualified in Westchester County Certificate Filed in New York County Commission Expires October 31, 20

STATE OF NEW YORK) COUNTY OF $\bigwedge \bigvee$)

On the 2nl day of 5c (tember, in the year 20 <u>l</u>), before me, the undersigned, personally appeared <u>Hitten Soniker</u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/they executed the same in his/her/their capacity(ies), and that by his/her/their signature(s) on the instrument, the individual(s), or the person whon behalf of which the individual(s) acted, executed the instrument.

Notary Public - State of New York

JEROME KAMERMAN Notary Public, State of New York No. 02KA7146175 Qualified in Westchester County Certificate Filed in New York County Commission Expires October 31, 20

Environmental Easement Page 7

THIS ENVIRONMENTAL EASEMENT IS HEREBY ACCEPTED BY THE PEOPLE OF THE STATE OF NEW YORK, Acting By and Through the Department of Environmental Conservation as Designee of the Commissioner.

By:

Dale A. Desnoyers, Director Division of Environmental Remediation

Grantee's Acknowledgment

STATE OF NEW YORK) COUNTY OF Allowy) ss:

On the <u>day of <u>Septensa</u></u>, in the year 20<u>11</u>, before me, the undersigned, personally appeared <u>day of <u>septensa</u></u>, personally known to me or proved to me on the basis of satisfactory evidence to be the individual(s) whose name is (are) subscribed to the within instrument and acknowledged to me that he/she/ executed the same in his/her/ capacity as Designce of the Commissioner of the State of New York Department of Environmental Conservation, and that by his/her signature on the instrument, the individual, or the person upon behalf of which the individual acted/executed the instrument.

Notary Public - State bf New

David J. Chiusano Notary Public, State of New York No. 01CH5032146 Qualified in Schenectady County, Commission Expires August 22, 20

SCHEDULE "A" ENVIRONMENTAL EASEMENT PROPERTY DESCRIPTION

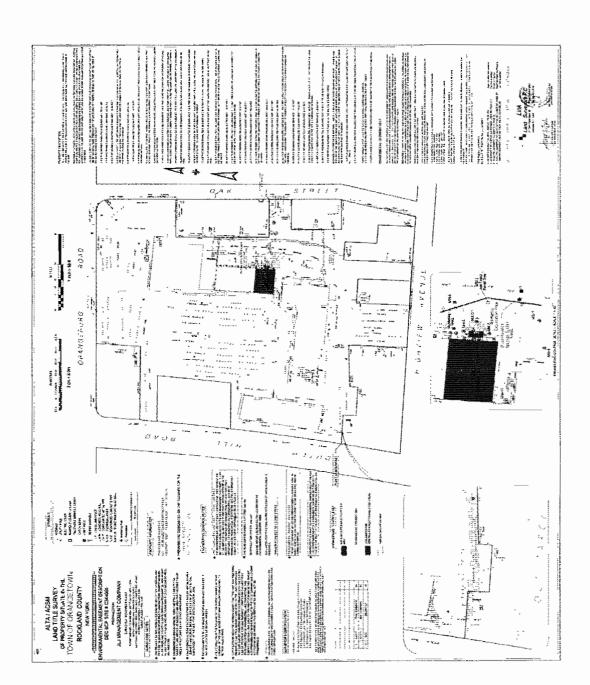
1-45 ORANGETOWN SHOPPING CENTER ORANGETOWN, COUNTY OF ROCKLAND, NY SECTION: 74.10 BLOCK: 1 LOT: 67

ALL THAT CERTAIN PLOT, PIECE OR PARCEL OF LAND, WITH IMPROVEMENTS THEREON ERECTED, SITUATED AND LYING AND BEING IN THE TOWN OF ORANGETOWN, COUNTY OF ROCKLAND AND STATE OF NEW YORK.

BEGINNING AT A POINT ON THE WESTERLY SIDE OF OAK STREET WHERE THE SAME IS INTERSECTED BY THE DIVISION LINE BETWEEN LAND NOW OR FORMERLY JLJ MANAGEMENT ON THE SOUTH AND LAND NOW OR FORMERLY SEEBACH ON THE NORTH, SAID POINT ALSO BEING 430.52 FEET SOUTHERLY FROM THE SOUTHERLY END OF A CURVE HAVING A RADIUS OF 36.15 LENGTH OF 56.81 FEET CONNECTING THE SOUTHERLY SIDE OF ORANGEBURG ROAD AND THE WESTERLY SIDE OF OAK STREET.

THENCE RUNNING ALONG THE WESTERLY SIDE OF OAK STREET SOUTH 7°24'00" EAST 60.89 FEET TO THE DIVISION LINE BETWEEN JLJ MANAGEMENT AND LAND NOW OR FORMERLY HOFFMAN;

THENCE ALONG SAID DIVISION LINE SOUTH 82° 36'00" WEST 100.00 FEET; THENCE CONTINUING ALONG SAID DIVISION LINE AND ALONG THE DIVISION LINE BETWEEN JLJ MANAGEMENT AND LAND NOW OR FORMERLY FARINI SOUTH 7°24"00" EAST 88.00 FEET.


THENCE RUNNING THROUGH LANDS OF JLJ MANAGEMENT THE FOLLOWING FIVE (5) COURSES AND DISTANCES;

- 1. SOUTH 82° 36' 00" WEST 168.00 FEET;
- 2. NORTH 3° 04' 00" WEST 111.00 FEET;
- 3. SOUTH 87° 02' 00" WEST 56.00 FEET;
- 4. NORTH 2° 58' 00" WEST 182.10 FEET;
- 5. NORTH 87° 02' 00" EAST 176.89 FEET TO THE WESTERLY SIDE OF LAND NOW OR FORMERLY UCKER

THENCE RUNNING ALONG LAND OF UCKER AND CONTINUING ALONG LAND OF SEEBACH SOUTH 7° 24" 00" WEST 134.00 FEET AND NORTH 82° 36" 00": EAST 125.00 FEET TO THE POINT AND PLACE OF BEGINNING.

CONTAINING 1.3308 ACRES / 57,970 SQ. FT.

SURVEY

Appendix B – List of Contacts

APPENDIX B – LIST OF SITE CONTACTS

Name

Monica Roth, Urstadt Biddle Properties Inc. Assistant Vice President/Environmental Manager Michael DeGloria, PG, GES Principal Project Manager

Genevieve Bock, PE, GES Regional Engineering Manager

Jessica Thomas, GES Project Remediation Specialist

Richard Brown, GES Regional Field Technician Manager

Michael Squire, NYSDEC Project Manager

Amen Omorogbe, NYSDEC Project Manager's Supervisor

Kelly Lewandowski, NYSDEC Site Control

Renata Ockerby, NYSDOH Project Manager

Phone/Email Address

203-863-8203 mroth@ubproperties.com

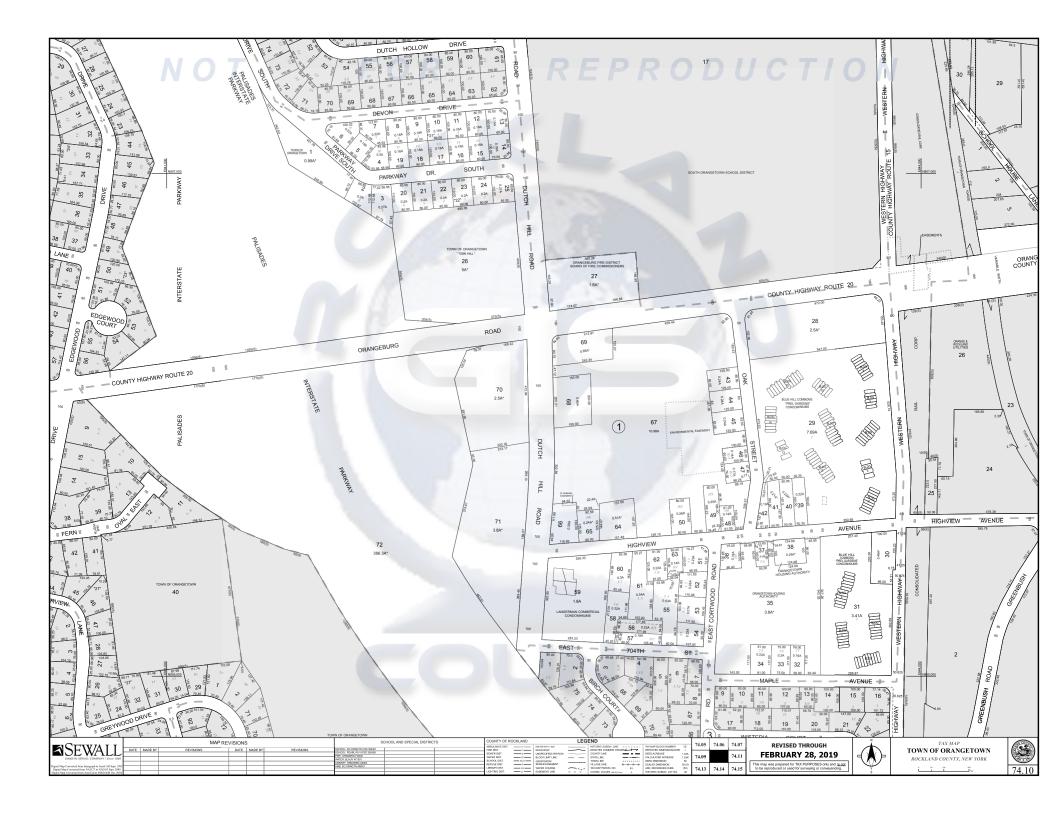
866-839-5195 ext. 3839 mdegloria@gesonline.com

800-360-9405 ext. 4302 gbock@gesonline.com

800-360-9405 ext. 4328 jthomas@gesonline.com

866-839-5195 ext. 3836 rbrown@gesonline.com

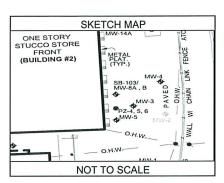
518-402-9662 michael.squire@dec.ny.gov


518-402-9662 amen.omorogbe@dec.ny.gov

518-402-9569 kelly.lewandowsk@dec.ny.gov

518-402-7860 renata.ockerby@health.ny.gov

Appendix C – Tax Map



Appendix D – Boring Logs

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-8 A, B

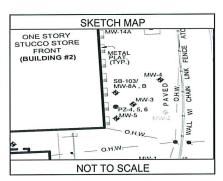
Project:	69972	Casing Elevation:	166.08' (B); 166.15' (A)
Client:	JLJ Management	Total Depth:	Deep 52'; Shallow 43'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-8 A, B	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Туре:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	September 28, 2007
Casing Length:	Deep 50'; Shallow 33'	Notes:	
Diameter:	1"		
Туре:	Schedule 40 PVC	Logged by: SC	Checked by: SC

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)		Well Diagram
	1 2 3 4 5	0-5	<1.0	-	-		Vacuum excavated 5YR 3/4, Dark reddish brown, moist, MEDIUM and FINE SAND, little coarse sand, trace fine gravel, trace coarse gravel		1 2 3 4 5	1'x 1' concrete pad 4" diameter roadbox
	6 7 MC-1 8	5-9	11.5	-	48/48		10YR 3/1, Very dark gray, damp, SILT and FINE SAND, little coarse sand, trace fine gravel		6 7 8 9	Grout 1" diameter PVC riser
1	0 MC-2	9-10	<1.0		12/12		7.5YR 4/6, Strong brown, wet, SILT and FINE SAND, little coarse gravel, trace fine gravel		10	
1 1 1 1 1 1 1 1 1	2 MC-3 3 4	10-14.5	8.5	-	54/54		5YR 4/4, Reddish brown, damp, FINE SAND, some medium sand, little coarse sand, little fine gravel		11 12 13 14 15	
1 1 1 1 2	7 MC-4 8 9	15-20	107.9		60/60		5YR 4/3, Reddish brown, damp, MEDIUM and FINE SAND, little coarse sand, trace fine gravel		16 17 18 19 20	
2 2 2 2 2	2 MC-5 3	20-24	29.4		48/48		5YR 4/4, Reddish brown, moist, MEDIUM and FINE SAND, little fine gravel, little coarse gravel 2.5YR 4/4, Reddish brown, dry to moist, MEDIUM SAND and COARSE GRAVEL, some coarse sand, little cobble,		21 22 23 24	
2	5 MC-6	24-25	17.1		12/12		trace clay	-	25	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-8 A, B

Project:	69972	Casing Elevation:	166.08' (B); 166.15' (A)
Client:	JLJ Management	Total Depth:	Deep 52'; Shallow 43'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-8 A, B	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Туре:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	September 28, 2007
Casing Length:	Deep 50'; Shallow 33'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC

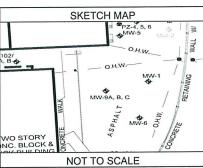

S	KETCH MAP	
ONE STORY STUCCO STORE FRONT (BUILDING #2)	MW-14A ■ METAL PLAT. ■ (TYP.)	(FENCE ATC
	MW-4 MW-8A,B MW-8A,B MW-3 MW-3 PZ-4,5,6 MW-5	WI CHAIN LINK
*	0.H.W.	MALL
NC	DT TO SCALE	

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
26 27 28 28 29 30	MC-7	25-30	16.5	-	60/60		2.5YR 4/4, Reddish brown, dry to moist, COARSE and FINE GRAVEL, some medium sand, some coarse sand, trace clay	26 27 28 29 30	Grout Bentonite Chips
31 32 33 34 35	MC-8	30-35	11.6	-	60/60		2.5YR 3/3, Dark reddish brown, moist to wet, COBBLE and FINE SAND, some coarse sand, some fine gravel trace clay	31 32 33 33 34 34 35	Bentonite Chips #2 Sand Pack (buffer)
36 37 38 39 40	MC-9	35-40	9.3		60/60		2.5YR 5/4, Dark reddish brown, moist, COBBLE and MEDIUM SAND, some fine gravel, little coarse sand	36 	T* diameter PVC riser 1* diameter 0.030 slot PVC screen
41 42 43 44 45	MC-10	40-45	NR		60/45		2.5YR 3/6, Dark red, wet to saturated, COBBLE, some fine sand, little coarse gravel	41 42 43 43 44 44 45	#2 Sand Pack (screen) #2 Sand Pack (screen)
46 47 48 48 49 50	MC-11	45-50	<1.0	-	60/60		2.5YR 3/6, Dark red, wet, COBBLE, weathered bedrock, trace medium sand	46 	# 2 Sand Pack

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-8 A, B

Project:	69972	Casing Elevation:	166.08' (B); 166.15' (A)
Client:	JLJ Management	Total Depth:	Deep 52'; Shallow 43'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-8 A, B	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Туре:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	September 28, 2007
Casing Length:	Deep 50'; Shallow 33'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC



Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
51 52	MC-12	50-52	<1.0		24/24		2.5YR 3/6, Dark red, wet to saturated, COBBLE, some fine sand, little coarse gravel	51 52	
53							End of boring @ 52.5' bgs	53	200000000000000000000000000000000000000
54								54	1" diameter 0.030 slot PVC screen
55								55	
56								56	
57								57	
58								58	
59								59	
60								60	
61								61	
62								62	
63								63	
64								64	
65 								65	
66								66	
67								68	
68 69								69	
70								70	
70 71								71	
72								72	
73								73	
74								74	
 								75	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-9 A, B, C

Project:	69972	Casing Elevation:	165.68' (A, B, C)
Client:	JLJ Management	Total Depth:	Deep 72'; Mid 57'; Shallow 41'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-9 A, B, C	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Mid 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Туре:	PVC	Start Date:	September 25, 2007
Slot Size:	0.030	End Date:	September 25, 2007
Casing Length:	Deep 70'; Mid 55'; Shallow 31'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
1 2 3 4 5 6 7 8 10 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 11 11 11 11							Core down to 72' bgs	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	Grout 1" diameter PVC riser

1-45 Orangetown Road, Orangeburg, NY

Project:

Client:

Location:

Screen Length:

Diameter:

Slot Size:

Casing Length:

Diameter:

Type:

Well ID:

69972

1"

PVC

0.030

1"

JLJ Management

Deep 2'; Mid 2'; Shallow 10'

Deep 70'; Mid 55'; Shallow 31'

MW-9 A, B, C

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Casing Elevation:

Total Depth:

Water Level:

Drilling Co.:

Driller:

Method:

Start Date:

End Date:

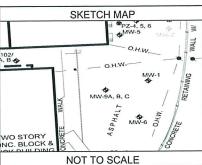
Notes:

165.68' (A, B, C)

Boart Longyear (BL)

September 25, 2007

September 25, 2007

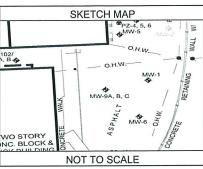

Sonic Drilling

~34'

Ben

Deep 72'; Mid 57'; Shallow 41'

Well Log MW-9 A, B, C

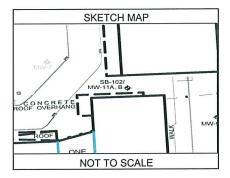


Diameter: Type:	1" Schedule	40 PVC				Logged by: SC Checked by: SC		NOT TO SCALE
Depth (ft.) Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50						Continuing to core down to 72' bgs	26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 50	Grout #2 Sand Pack (buffer) 0.030 slot PVC screen

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-9 A, B, C

Project:	69972	Casing Elevation:	165.68' (A, B, C)
Client:	JLJ Management	Total Depth:	Deep 72'; Mid 57'; Shallow 41'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-9 A, B, C	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Mid 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Туре:	PVC	Start Date:	September 25, 2007
Slot Size:	0.030	End Date:	September 25, 2007
Casing Length:	Deep 70'; Mid 55'; Shallow 31'	Notes:	
Diameter:	1"		
Туре:	Schedule 40 PVC	Logged by: SC	Checked by: SC

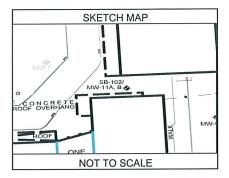


Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
							Continuing to core down to 72' bgs		Bentonite Chips 1" diameter PVC riser #2 Sand Pack (buffer) #2 Sand Pack (screen) #2 Sand Pack (buffer) #2 Sand Pack (buffer)
75								75	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-11 A, B

Project:	69972	Casing Elevation:	170.07' (A); 170.23' (B)
Client:	JLJ Management	Total Depth:	Deep 48.5'; Shallow 41'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~40'
Well ID:	MW-11 A, B	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Type:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	October 4, 2007
Casing Length:	Deep 47.5'; Shallow 31'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC



Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
1 2 3 4 5		0-5	NR	-			Vacuum excavated 7.5YR 2.5/3, Very dark brown, damp, MEDIUM and FINE SAND, little coarse gravel, trace fine gravel	1 2 3 4 5	1'x 1' concrete pad 4' diameter roadbox
6 7	MC-1	5-7	31.2	-	24/24		10YR 3/2, Very dark grayish brown, damp, FINE SAND, some medium sand, little coarse sand, little fine gravel	6 7	Grout
8 9 10	MC-2	7-10	18.3		36/36		5YR 3/4, Dark reddish brown, damp, MEDIUM SAND, some fine sand, little fine gravel, little coarse sand	8 9 10	riser
11 12 13 13 14 15	MC-3	10-15	11.3	-	60/60		2.5Y 4/3, Reddish brown, wet, MEDIUM and FINE SAND, some coarse sand, little fine gravel, trace silt	11 12 13 14 15	
16 17 18	MC-4	15-18	14.3		36/36		5YR 3/4, Dark reddish brown, damp, MEDIUM SAND, some fine sand, some coarse sand, little fine gravel, little coarse gravel	16 17 18	
19 20	MC-5	18-20	16.0	-	24/24		7.5YR 3/3, Dark brown, damp to wet, FINE SAND and COARSE GRAVEL, some cobbles, little fineg gravel, trace silt	19 20	
21 22 23 24 25	MC-6	20-25	27.2		60/60		5YR 3/3, Dark reddish brown, moist to damp, COARSE SAND, some medium sand, some cobbles, little fine gravel	21 22 23 24 24 25	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-11 A, B

Project:	69972	Casing Elevation:	170.07' (A); 170.23' (B)
Client:	JLJ Management	Total Depth:	Deep 48.5'; Shallow 41'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~40'
Well ID:	MW-11 A, B	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Shallow 10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Type:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	October 4, 2007
Casing Length:	Deep 47.5'; Shallow 31'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
26 27 28 28 29 30	MC-7	25-30	14.9		60/60		5YR 4/2, Dark reddish gray, moist, MEDIUM and COARSE SAND, some fine gravel, little coarse gravel	26 27 28 29 30	Grout
31 32 33 34 35	MC-8	30-35	37.8		60/60		7.5YR 4/3, Reddish brown, damp, MEDIUM and COARSE SAND, some fine gravel, little fine sand	31 32 33 33 34 34 35	(buffer)
36 37	MC-9	35-37	73.9		24/24		7.5YR 4/4, Brown, damp, MEDIUM and FINE SAND, some fine gravel, trace silt	36 37	
38 39 40	MC-10	37-40	26.4	-	36/36		2.5YR 3/6, Dark red, damp, FINE SAND, some silt, little fine gravel	38 39 40	1" diameter 0.030 slot PVC screen
41 42 43 44 45	MC-11	40-45	17.8		60/60		7.5YR 3/2, Dark brown, wet, FINE and MEDIUM SAND, some silt, little fine gravel, little coarse sand	41 42 43 43 44 44 45	Bentonite
46 46 47 48 49 50	MC-12	45-49.5	19.4		NR		5YR 4/6, Yellowish red, moist to damp, MEDIUM SAND and COBBLES, some weathered rock, little fine sand End of boring @ 49.5' bgs	46 47 48 49 50	#2 Sand Pack (buffer) #2 Sand Pack (screen)

1-45 Orangetown Road, Orangeburg, NY

Project:

Client:

Location:

Screen Length:

Well ID:

69972

JLJ Management

MW-12 A, B, C

Deep 2'; Mid 10'; Shallow 5'

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Casing Elevation:

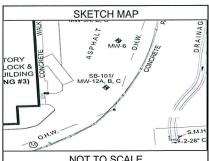
Total Depth:

Water Level:

Drilling Co.:

Driller:

165.1' (A); 165.0' (B, C)

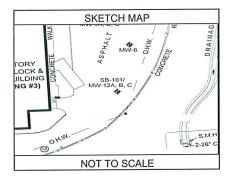

Boart Longyear (BL)

~34'

Ben

Deep 46'; Mid 40'; Shallow 16'

Well Log MW-12 A, B, C

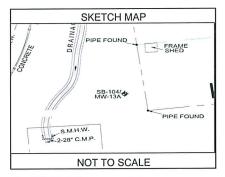


Screen Leng			nid 10°; Sha	IIOW 5			Driller: Ben				
Diameter:		1"					Method: Sonic Drilling	-			
Type:		PVC					Start Date: September 24, 2007				
Slot Size:		0.030		100 - 10 MIN			End Date: September 28, 2007				
Casing Leng			Mid 30'; Sh	allow 11'			Notes:	0.8	S.M.H		
Diameter:		1"						-0			
Type:		Schedule	40 PVC				Logged by: SC Checked by: SC		NOT TO SCALE		
		-									
Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram		
1 2 3 4 5		0-5	<1.0	-	-		Vacuum excavated 5Y 2.5/2, Dark reddish brown, damp to moist, FINE SAND, some silt, some medium sand, little coarse sand, trace fine gravel	1 2 3 4 5	1'x 1' concrete pad 4 diameter roadbox		
6 7 M 8 9 10	MC-1	5-10	<1.0		60/60		7.5YR 3/3, Dark brown, wet, FINE SAND, some silt, some medium sand, little coarse sand, little fine gravel	6 7 8 9 10	Grout 4 diameter roadbox Grout 4 diameter 1* diameter PVC riser Bentonite Chips #2 Sand Pack (buffer) #2 Sand Pack (screen) #2 Sand Pack (screen)		
11	MC-2	10-15	<1.0		60/60		7.5YR 4/4, Brown, damp, FINE SAND and SILT, little coarse sand, trace fine gravel	11 12 13 14	#2 Sand Pack (buffer)		
	MC-3	15-18 15-20	17.6 		 60/60	10000	Top 36": 7.5YR 3/1, Very dark gray, damp to wet, FINE SAN and SILT, little coarse sand, little fine gravel	ND 15 ND 16 17 18			
18 19 20		18-20	3.2		-		Bottom 24": 7.5YR 4/6, Strong brown, moist to dry, MEDIUM SAND, some coarse sand, little fine gravel, little fine sand				
21 22 M 23 24 25	MC-4	20-25	<1.0	-	60/60		5YR 3/4, Dark reddish brown, moist to damp, MEDIUM and COARSE SAND, some fine sand, little fine gravel	21 22 23 24 25	Bentonite Chips		

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log MW-12 A, B, C

Project:	69972	Casing Elevation:	165.1' (A); 165.0' (B, C)
Client:	JLJ Management	Total Depth:	Deep 46'; Mid 40'; Shallow 16'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~34'
Well ID:	MW-12 A, B, C	Drilling Co.:	Boart Longyear (BL)
Screen Length:	Deep 2'; Mid 10'; Shallow 5'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Type:	PVC	Start Date:	September 24, 2007
Slot Size:	0.030	End Date:	September 28, 2007
Casing Length:	Deep 44'; Mid 30'; Shallow 11'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC



Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
26 27 28 29	MC-5	25-30	<1.0	-	60/60		5YR 3/3, Dark reddish brown, moist to damp, MEDIUM SAND, some coarse sand, little fine gravel, little fine sand	26 27 28 29 29 30	Bentonite Chips
30 31 32 33 34 35	MC-6	30-35	<1.0		60/60		2.5YR 3/6, Dark red, moist, MEDIUM and COARSE SAND, some fine gravel, trace silt Weathered rock @ 33-35 bgs	31 32 33 34 35	1" diameter 0.030 siot PVC screen
36 37 38 39 40	MC-7	35-40	21.3		60/60		10R 3/6, Dark red, moist to damp, COARSE and MEDIUM SAND, some fine gravel, little cobble, trace silt, trace fine sand	36 37 38 39 39 40	(screen)
41 42 43 43 44 45	MC-8	40-45	NR		60/60		COMPETENT BEDROCK and COBBLE, little medium sand	41 42 43 43 44 44 45	#2 Sand Pack (buffer)
46 47 48 49 50							Advanced macrocore to 46' bgs End of boring @ 46' bgs - set well	46 47 48 48 49 50	(screen) 1" diameter 0.030 slot PVC screen

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log SB-104/MW-13

Project:	69972	Casing Elevation:	140.1'
Client:	JLJ Management	Total Depth:	16'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~10'
Well ID:	MW-13	Drilling Co.:	Boart Longyear (BL)
Screen Length:	8'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Type:	PVC	Start Date:	September 25, 2007
Slot Size:	0.030"	End Date:	September 28, 2007
Casing Length:	8'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
1 2 3 4 5		0-5	<1.0	-	_		Vacuum excavated 5YR 4/6, Yellowish red, dry, FINE SAND, some medium sand, trace coarse sand	1 2 3 4 5	roadbox Grout
6 7 8 9 10	MC-1	5-10	36.2		60/60		5YR 5/4, Reddish brown, dry, FINE and MEDIUM SAND, little fine gravel, little coarse sand	6 7 8 9 10	Bentonite Casing Seal #2 Sand Pack (buffer)
11 12 13 14 15 16		10-16	39.2		72/72		5YR 3/4, Dark reddish brown, moist to wet, FINE SAND, some silt, some weathered rock, little coarse sand	11 12 13 14 14 15 16	• #2 Sand Pack (screen)
16 17 18 19 20 21 22 23 24 25							End of boring @ 16' bgs	10 17 18 19 20 21 22 23 24 25	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log SB-100/MW-14

Project:	69972	Casing Elevation:	166.49'	SK
Client:	JLJ Management	Total Depth:	37.5'	
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~30'	
Well ID:	MW-14	Drilling Co.:	Boart Longyear (BL)	
Screen Length: 6'		Driller:	Ben	
Diameter:	1"	Method:	Sonic Drilling	
Туре:	PVC	Start Date:	September 27, 2007	ONE STORY STUCCO STORE
Slot Size:	0.030"	End Date:	September 27, 2007	FRONT (BUILDING #2)
Casing Length:	31.5'	Notes:		
Diameter:	1"			
Туре:	Schedule 40 PVC	Logged by: SC	Checked by: SC	NO

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
1 2 3 4 5		0-5		-			Vacuum excavated	1 2 3 4 5	roadbox
6 7 8 9 10	MC-1	5-10	<1.0	-	60/60		5YR 3/4, Dark reddish brown, moist, MEDIUM and FINE SAND, little coarse sand, trace fine gravel	6 7 8 9 10	1 ⁺ diameter PVC riser
11 12 13 13 14 15	MC-2	10-15	6.7	-	60/60		5YR 3/4, Dark reddish brown, moist, MEDIUM SAND, some fine sand, little coarse sand, little fine gravel	11 12 13 14 15	
16 17 18 19 20	MC-3	15-20	12.5		60/60		5YR 3/4, Dark reddish brown, moist, MEDIUM SAND, some coarse sand, some fine sand, little fine gravel	16 17 18 19 20	
21 22 23 24 25	MC-4	20-25	<1.0		60/60		7.5YR 4/6, Strong brown, moist, MEDIUM SAND, some fine sand, some coarse sand, little fine gravel	21 22 23 23 24 24 25	

1-45 Orangetown Road, Orangeburg, NY

Project:

Client:

Location:

Screen Length:

Diameter:

Slot Size:

Casing Length:

Diameter:

Type:

Well ID:

69972

MW-14

6'

1"

PVC

0.030"

31.5'

1"

JLJ Management

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Casing Elevation:

Total Depth:

Water Level:

Drilling Co.:

Driller:

Method:

Start Date:

End Date:

Notes:

166.49'

Boart Longyear (BL)

September 27, 2007

September 27, 2007

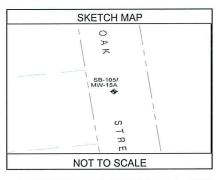
Sonic Drilling

37.5'

~30'

Ben

Well Log SB-100/MW-14



Type:		Schedule	40 PVC				Logged by: SC Checked by: SC		NOT TO SCALE
Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
26 27 28 29 30	MC-5	25-30	47.3		60/60		MEDIUM SAND and FINE GRAVEL, some coarse sand, little fine sand	26 27 28 29 30	Bentonite Chips
31 32 33 34 35	MC-6	30-35	16.9		60/60		2.5YR 2.5/4, Dark reddish brown, moist to wet, WEATHERED ROCK, some medium sand, little coarse sand	31 32 33 34 35	* #2 Sand Pack (buffer) • • • • • • • • • • • • • • • • • • •
36 37	MC-7	35-37.5	21.4		30/30		2.5YR 4/6, Red, moist, WEATHERED ROCK, some cobbles, little medium sand	 36 37	#2 Sand Pack (screen)
							End of boring @ 37.5' bgs	38 40 41 42 42 43 43 45 45 46 47 48 49 50	

99 Lamberton Road, Suite 201, Windsor, Connecticut 06095 + Phone: (860) 683-4200 + Fax: (860) 683-4206

Well Log SB-105/MW-15

Project:	69972	Casing Elevation:	135.39'
Client:	JLJ Management	Total Depth:	19.5'
Location:	1-45 Orangetown Road, Orangeburg, NY	Water Level:	~10'
Well ID:	MVV-15	Drilling Co.:	Boart Longyear (BL)
Screen Length:	10'	Driller:	Ben
Diameter:	1"	Method:	Sonic Drilling
Type:	PVC	Start Date:	October 2, 2007
Slot Size:	0.030"	End Date:	October 3, 2007
Casing Length:	9.5'	Notes:	
Diameter:	1"		
Type:	Schedule 40 PVC	Logged by: SC	Checked by: SC

Depth (ft.)	Sample ID	Depth Interval (feet)	PID Headspace (ppm)	Blows / 6"	Penetration / Recovery	Sample Interval	Soil/Geologic Description (modified Burmeister)	Depth (ft.)	Well Diagram
1 2 3 4 5		0-5	<1.0	-			Vacuum excavated 10YR 3/2, Dark brown, damp to wet, MEDIUM SAND, some coarse sand, little fine gravel, little fine sand	1 2 3 4 5	readbox
6 7 8 9 10		5-10	8.7		60/60		2.5YR 3/4, Dark reddish brown, damp, MEDIUM SAND, some coarse sand, little fine gravel, trace fine sand	6 7 8 9 10	1" diameter PVC riser Bentonite Casing Seal #2 #2 Sand Pack
11 12 13 14 15	MC-2	10-15	14.8	-	60/60		2.5YR 3/3, Dark reddish brown, damp to wet, MEDIUM SAND and FINE GRAVEL, some coarse sand	11 12 13 13 14 14 15	* [#2 Sand Pack (screen)
16 17 18 19 	MC-3	15-19	17.2		48/48		2.5YR 3/2, Dusky red, moist to dry, WEATHERED ROCK, some medium sand, some fine gravel Augered down to 19.5' bgs - set well	16 17 18 19	
20 21 22 23 23 24 25							End of boring @ 19.5' bgs	20 21 22 23 24 25	

Boring Log: TMW-1		
Project: Orangeburg Shopping Center	Surface Elevation (feet AMSL*):	
Project No.: 131022-1	TOC Elevation (feet AMSL*):	an a
Location: Orangeburg, NY	Total Depth (feet): 17	
Completion Date: 03/17/2004	Borehole Diameter (inches): 8.25	

	Sa	mple	Data	·	<u> </u>	Subsurface Profile	
		PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Construction
0-						Ground Surface	· · · · ·
-	i I		ł		ហំពាញ់ព	Asphalt	
- 2 						 Clayey Silt (ml) Reddish brown (5YR 4/3), some coarse gravel, brick and coal fragments; soft/stiff; slightly plastic; dry; fill (description from MW-1). Black cinders in 5 to 7-foot spoon 	
1-	l	1					
-			4	<u> </u>			
- 5-	1	0.0	2 2 2 2	35			
						Sandy Clay (cl) Brown (7.5YR 4/2), fine-grained; soft; plastic; moist/wet; fill.	
	2	0.0	1 I I	45			
1 1 - 1 - 1			an Algert The get				
1 1						Silt (ml) Reddish brown (5YR 4/3), trace clay, fine-grained sand, and angular gravel; soft/stiff; non-plastic; dry/moist; till.	
	3	- 0.0	10 12 18 14	95		Silty Sand (sm) Strong brown (7.5YR 4/6), fine to very fine-grained, some poorly sorted zones, trace	
1 1 1						rounded fine gravel; dense; dry/moist; <i>till</i> .	
ר ר ע		-					

Geologist(s): Erin Huntley Subcontractor: Parratt-Wolff, Inc. Driller/ Operator: Jim Lansing

Geoprobe 🗆 Rotosonic 🗆

* AMSL= Above mean sea level

Boring Log: TMW-2

Project: Orangeburg Shopping Center Surface Elevation (feet AMSL*): --Project No.: 131022-1TOC Elevation (feet AMSL*): --

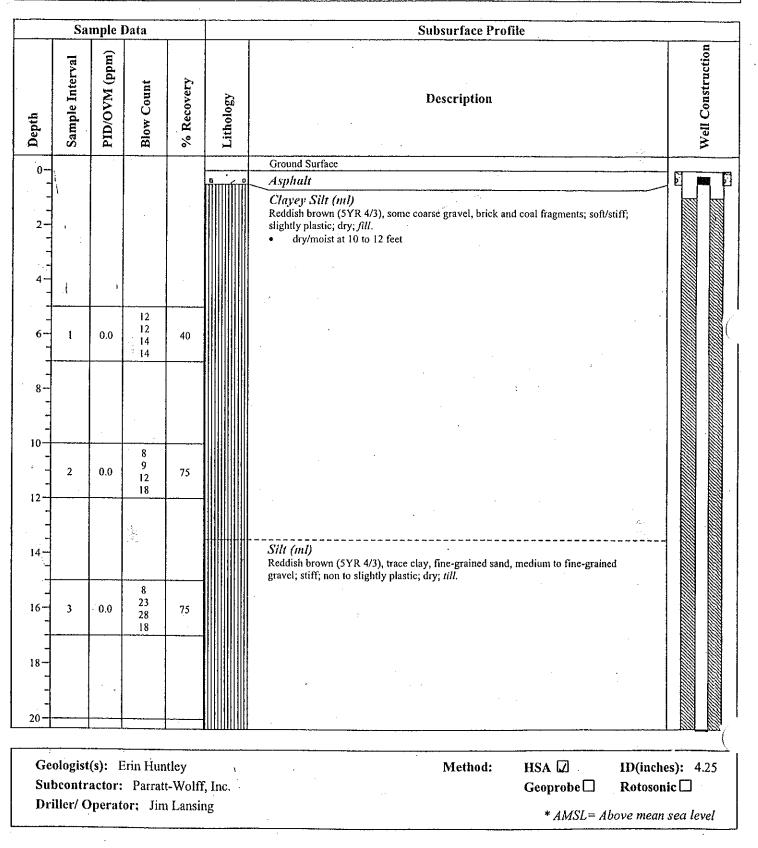
Location: Orangeburg, NY

Completion Date: 03/17/2004

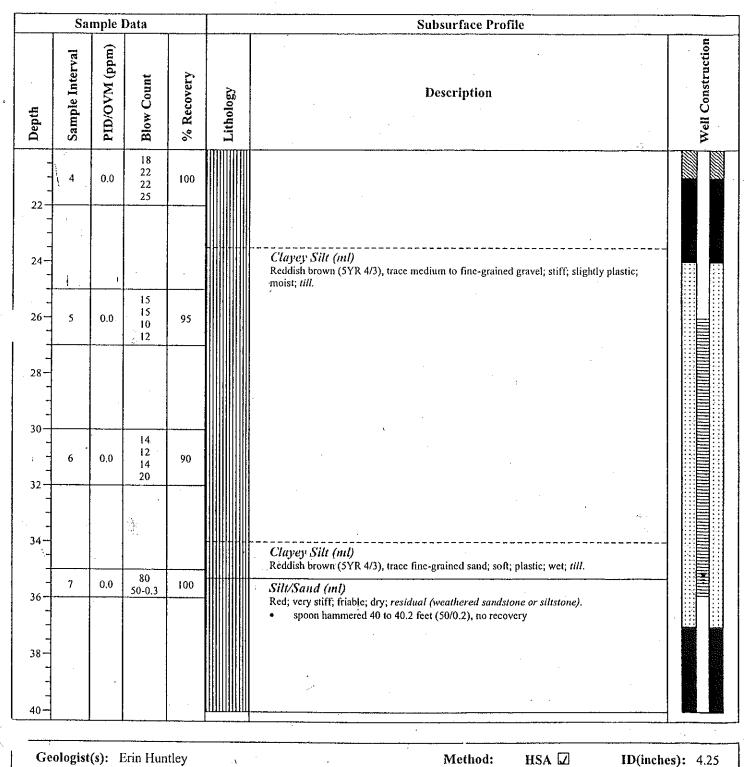
Borehole Diameter (inches): 8.25

Total Depth (feet): 9

	Sa	mple	Data		Subsurface Profile								
Depth	Sample Interval	PID/OVM (ppm)	Blow Count	% Recovery	Lithology	Description	Well Construction						
0						Ground Surface Asphalt Silt (ml) Reddish brown (5YR 4/3), trace clay and gravel; very stiff; non-plastic; dry/moist; till.							
6-	1	0.0	13 23 23 23 27	100									
- 8	2	0.0	13 50 50-0.3	100		Sandy Clay (cl) Strong brown (7.5YR 4/6), fine-grained, trace gravel; soft; plastic; moist/wet; till. Silt (ml)							
10- -						Strong brown (7.5YR 4/6), trace angular gravel; very stiff; non-plastic; dry; till.							


Geologist(s): Erin Huntley Subcontractor: Parratt-Wolff, Inc. Driller/ Operator: Jim Lansing

Method: HSA 🔽 Geoprobe 🗆


ID(inches): 4.25 Rotosonic 🗌

^{*} AMSL= Above mean sea level

Be	oring Log: MW-1		
	Project: Orangeburg Shopping Center	Surface Elevation (feet AMSL*):	
	Project No.: 131022-1	TOC Elevation (feet AMSL*):	
	Location: Orangeburg, NY	Total Depth (feet): 40	
	Completion Date: 03/18/2004	Borehole Diameter (inches): 8.25	

Boring Log: MW-1		
Project: Orangeburg Shopping	Center Surface Elevation (feet AMSL*):	
Project No.: 131022-1	TOC Elevation (feet AMSL*):	
Location: Orangeburg, NY	Total Depth (feet): 40	
Completion Date: 03/18/2004	Borehole Diameter (inches): 8.25	

Subcontractor: Parratt-Wolff, Inc. Driller/ Operator: Jim Lansing Rotosonic 🗌

* AMSL= Above mean sea level

EOLOGIC 1 Templo Hill Road, S one: (845) 561-9890	uto 100, Nov	v Windsor, NY		ΟΚΑΠ	UN .			Well Log MW-3		
roject: lient: ocation: lell ID: orehole lameter: VC Type: lot Size: asing Length: lameter:	0410794 RemVer Orangete MW-3 6* 2* 0.010 35' 2"					Casing Elevation: NA Total Depth: 46 ft bgs Water Level: 37.55 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow Stem/Air Rotary Start Date: 10-19-04 End Date: 10-20-04 Notes: * Denotes sample submitted for laboratory analysis Log by: CB Checked by: EC	Services Netfort Polen eterg & bothering.			
Depth (ft.) Sample Interval (feet)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (Inches)	Description	Depth (ft.)	Well Diagram		
1 2 3 4	0.0	0.0	0.0	Hand Clear	NA	Medium brown medium to fine SAND, (ittle Sifi and Cobbles, moist	1 2 3 4	P' Diam		
5'-10' 5'-10' 7 8 9	0.0	0.0	0.0	Auger	NA	Same as above	5 6 7 6 6 6 9			
10 11 11	0.0	0.0	0.0	8,8,14,25	6/24	Grayish brown CLAY with Silt, little subangutar Gravel, fractured Sandstone in tip, moist	10 1			
12 12'-14'	0.0	0.0	0.0	18,18,20,22	20/24	Reddish brown medium to fine SAND with Sill, little subangular Gravel, moist	12 13			
14 15	0.0	0.0	0.8	3,9,6,11	24/24	Medium reddish brown line SAND with Silt, little gravel, molst	14 			
16 17	0.0	0.0	1.3	15.28.30,31	20/24	Medium reddish brown medium to fine SAND with Silt, some fractured Sandstone, little subangular Gravel, dry	16 17			
18 19	0.0	0.0	0.0	10,26,30,29	4/24	Reddish brown medium to fine SAND with Silt, little subangular Gravel, some fractured Sandstone in tip, dry	18 19 			
20 20'-22'	0.9	10	3.6	7,11,16,21	12/24	Reddish brown medium to fine SAND, little subangular Gravel, dry	20 21			
22 23	3.0	10	6.7	22,24,19,21	16/24	Medium to light reddish brown medium SAND with Siit, kille subangular gravel, moist	22 23			
24	Continu	ed on follow		┟╺╾╴╾╴╺╸╺╴	·		24			

GEOLOGIĆ 84 Temple Hill Road, St hone: (845) 561-9890 J	uto 100, New	Windsor, NY		ORATIO	N			Well Log MW-3		
roject: lient: ocation: fell ID: orehole iameter: VC Type: lot Size: asing Length: iameter:	0410794 RemVer Orangeto MVV-3 6" 2" 0.010 35' 2"	own Plaza			· · · · · · · · · · · · · · · · · · ·	Casing Elevation: NA Total Depth: 46 ft bgs Water Level: 37.55 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow Stem/Air Rotary Start Date: 10-19-04 End Date: 10-20-04 Notes: * Denotes sample submitted for laboratory analysis Log by: CB Checked by: EC	Geologic Services Corporation			
Depth (ft.) Semple Interval (feet)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Biows / 6"	Recovery / Penetration (Inches)	Description	Depth (ft.)	Well Diagram		
24 * 24'-26' 25	3.6	5	12.0	10,16,13,12	16/24	Medium reddish brown medium SAND with Silt, little subangular gravel, moist	24 25			
26 26'-28' 27	3.9	7.5	1.8	10,10,9,8	10/24	(6") Medium reddish brown medium SAND with Sillt (4") Reddish brown medium to fine SAND with Silt, fractured Sandstone in tip, dry	<u>26</u> 27			
28 29 29 	2.3	7.5	5.6	5,17,28,50,3	16/21	Reddish brown medium to fine SAND, little subangular grvel, some pebbles, dry 4" medium brown CLAY with Sill, moist 1" fractured Sandstone in lip, dry	<u>29</u> 			
31 30'-46' 32	0.0	0.0	0.0	NA	NA	Boring completed utilizing air rotary technique to 46' bgs	<u>31</u> 32			
33 34 35						Medium reddish brown fine SAND with Sitt with in termittent layers of Sandstone, dry	<u>33</u> <u>34</u> <u>35</u>	Bentonite campani gro		
36 37 38				-			<u>36</u> <u>37</u> <u>38</u>			
39 40 41							<u>39</u> 40 41	2° Diarre PVC Scr		
42 43							<u>42</u> 	Aborin # 15and Pack		
44 45 46							<u>44</u> <u>45</u> 46	2 diamoter PVC diser		
						End of boring at 46 ft bgs				
	Notes: NA - Not A	wailable				· · · · · · · · · · · · · · · · · · ·				
	V	eet below Water Leve		surface						

Page 1 of 2

14 Tempio Hill F hone: (845) 561	Road, Sui 1-9890 Fi	Io 100, New ax: (845) 56	Windsor, NY 1-9857		PORATI	UN		Well Log MW-4		
roject: lient: ocation: /ell ID: orehole lameter: VC Type: lot Size: asing Leng lameter:		0410794 RemVer Orangeto MW-4 6" 2" 0.010 34' 2"					Casing Elevation: NA Total Depth: 45 ft bgs Water Level: 36.75 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow Stem/Air Rotary Start Date: 10-20-04 End Date: 10-20-04 Notes: * Denotes sample submitted for laboratory analysis Log by: CB Checked by:	Geologic Services Corporation		
Depth (ft.) Semnle	sample Interval (feet)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Description	ਦੇ ਸ਼ੁਰੂ ਲ		
1 2 3 4	0'-5'	0.0	0,0	0.0	Hand Clear	NA	Medium brown medium to fine SAND, with Silt and subangular gravel			
5 6 7 8 9	'-10'	0.0	0.0	0.0	Auger	NA .	Medium brown medium to fine SAND, with Silt and subangular gravel			
10 11 12 13 14	У-15 ⁻	0.0	0,0	0.0	Auger	NA	Medium brown medium to fine SAND, with Silt and subangular gravel	10 11 12 13 14		
16	7-17'	0.0	0.0	0.0	20,25,17,16	12/24	Medium redelsh brown medium SAND with Sitt, some subanguler gravel, tightly packed, moist			
18	'-19'	0.0	0.0	0.0	8.17.21.19	20/24	Medium reddish brown medium SAND with Sit, some subangular gravel, tightiy packed,crushed sandstone in tip			
_ 20	'-21'	0.0	0.0	0.0	14,23,25,32	20/24	Medium reddish brown medium to fine SAND with Sill, little subangular gravel, tighlly packed moist			
21 21' 22 23	'-23'	0.0	0.0	0.0	29,37,38,39	20/24	Same as above			
,		Continued	i on followin	u sheet		1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929 - 1929	الم المحالة المحمد المحمد التامية المحمد	23		

14 Templa Hil	il Road, Sui		Windsor, NY :		ORATIO	N			Well Log MW-4		
roject: lient: ocation: fell ID: orehole iameter: VC Type: lot Size: asing Ler iameter:		0410794 RemVer Orangeto MW-4 6" 2" 0.010 34' 2"	wn Plaza				Casing Elevation: NA Total Depth: 46 ft bgs Water Level: 36.75 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow Stem/Air Rolary Start Date: 10-20-04 End Date: 10-20-04 Notes: * Denotes sample submitted for laboratory analysis Log by: CB Checked by: EC	Geologic Services Corporation			
Depth (ft.)	Sample Interval (feet)	РСЕЛСЕ Headspace (ррт)	DCE Headspace (ppm)	PID Headspace (ppm)	Blcws / 6"	Recovery / Penetration (inches)	Description	Depth (ft.)	Well Diagram		
²³ 24	23'-25'	0,0	0.0	0.0	11,15,26,29	20/24	Reddish brown medium to fine SAND with Silt, little subangular gravel,moist, lightly packed	23 24			
25 26	25'-27'	0.0	0.0	0.0	60,38,22,25	0	No recovery	25 			
27 28 29 30	27'-45'	0.0	0.0.	0.0	Air Rotary	NA	Boring completed utilizing air rotary technique to 45' bgs Reddish brown medium to fine SAND with Silt and Intermittent layers of Sandstone	28 29 30			
31 32 33								31 32 33	Bentonit		
34 35 36	*NW	4 (36')						34 35 36	Cerrent gr		
37 38 39											
40 41 42								40 41 42	2'Diam PVC So		
43 44 45								43 44 45	Akore # ISan Pack 2 derrete PC rise		
		1	1	<u> </u>	<u> </u>	<u> </u>	End of boring at 45 ft bgs				
		Notes: NA - Nota	Avaitable			<u></u>					
		ft bgs - i	feet below Water Levi	-	l surface						

GEOLOGIC SERVICES CORPORATION 484 Temple Hill Road, Suita 100, New Windsor, NY 12553 Phone: (845) 561-9890 Fax: (845) 561-9857								Well Log MW-5		
Project: Client: Location: Well ID: Borehole Dlameter: PVC Type: Slot Size: Casing Length: Dlameter:	0410794 RemVer Orangetown Plaza MW-5 6" 2" 0.010 gth: 34' 2"					Casing Elevation: NA Total Depth: 45' ft bgs Water Level: 39.75 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow StenvAir Rotary Start Date: 10-21-04 End Date: 10-22-04 Notes: Denotes sample submitted for laboratory analysis Log by: CB	Geologic Services Corporation			
Depth (ft.) Sample	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (Inches)	Description	Depth (ft.)	Well Diagram		
	0.0)' 0.0	0.0	0.0	Hand Clear	NA NA	Medium redrish brown medium to fine SAND, with Sitt and subangular gravel, moist Same as above	-1 -2 -3 -4 -5 -6 -7 7 -8 -8 -9 -9 -10 -11 -12 -13	2" Diamete PVC Casin		
14 15 15 15-1	7' 15.0	20	3.1	28, 16, 17	12/24	Reddish brown medium SAND with Sit and some subangular gravel, tightly packed, moist	14 15 16			
17 17 18	19' 22.5	75_0	5.6	20,30,33,36	16/24	Same as above with crushed Sandstone in tip				
19 19-2	1' 12.0	25	0.0	50/4	3/4	Medium reddish brown fine SAND with Silt, crushed Sandstone in tip	19 20			
21 21'-4 22 23	5' 0.0	0.0	0.0	Air Rotary	NA	Boring completed utilizing air rotary technique to 45 bgs Reddish brown medium to fine SAND with Sill and Intermittent layers of Sandstone	21 22 23			
	Continu	ed on follow	ing sheet	la anna anna anna anna						

GEOL 484 Temple F Phone: (845)	सि Road, Su	te 100, New	Windsor, NY :		ORATIO	N		١	Well Log MW-5		
Project: Client: Location: Well ID: Borehole Diameter: PVC Type Slot Size: Casing Lo Diameter:	: angth:	0410794 RemVer Orangeto MW-5 6" 2" 0.010 34' 2"	wn Plaza				Casing Elevation: NA Total Depth: 45 ft bgs Water Level: 39.75 ft bgs Drilling Co.: ADT Drilling Co.: Mike Method: Hollow Stem/Air Rotary Start Date: 10-21-04 End Date: 10-22-04 Notes: * Denotes sample submitted for Iaboratory analysis Log by: CB Checked by: EC	Geologic Services Corporation			
Depth (ft.)	Sample Interval (fect)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Description	Depth (ft.)	Well Diagram		
23 24 25 26 27 28 29 30 31 30 31 32 33 33 34 35 36 37 36 37 38 39 40 41 41 42 43 44 45	21-45	0.0	0.0	0.0	Air Rotary	NA	Reddish brown medium to fine SAND with Silt and Intermittent layers of Sandstone	$\begin{array}{c} 23 \\ -24 \\ -25 \\ -26 \\ -27 \\ -28 \\ -29 \\ -30 \\ -31 \\ -33 \\ -33 \\ -33 \\ -33 \\ -34 \\ -35 \\ -36 \\ -37 \\ -38 \\ -39 \\ -40 \\ -41 \\ -41 \\ -42 \\ -43 \\ -44 \\ -45 \\ -44 \\ -45 \\ -45 \\ -5 \\ -5$	Bentanito / cernent grout PDiameter PVC Screen Pack Pack PVC riser		
		Notes: NA - Not / ft bgs - I	Wallable Teet below Water Leve	-	surface						

lient: Ren ocation: Ora ocation: Ora fell ID: MW orehole MW iameter: 6" VC Type: 2" lot Size: 0.01 asing Length: 35' iameter: 2" - - -	10	· · · · · · · · · · · · · · · · · · ·	ిత స్త్ర స్త్ర Auger	Kecovery / Perteration (incres)	Casing Elevation: NA Total Depth: 51 ft bgs Water Level: 38.25 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow StenvAir Rotary Start Date: 10-21-04 End Date: 10-22-04 Notes: Denotes sample submitted for laboratory analysis Log by: Log by: CB Checked by: EC Description Medium reddish brown medium to fine SAND, with Silt and subangular gravel, moist Same as above	(tt)	1 2 3.	Geologic Services Corporation
(1) (1) <th>0.0 0.0</th> <th>0.0</th> <th>Hand Clear</th> <th>NA</th> <th>Log by: CB Checked by: EC Description Medium reddish brown medium to fine SAND, with Silt and subangular gravel, moist</th> <th></th> <th>1 2 3.</th> <th>P'Sie Roade</th>	0.0 0.0	0.0	Hand Clear	NA	Log by: CB Checked by: EC Description Medium reddish brown medium to fine SAND, with Silt and subangular gravel, moist		1 2 3.	P'Sie Roade
0'-5' 0 1 2 3 4 5 5'-10' 0 6 7 8 7 8 7 8 10 11 12 13 13	0.0 0.0	0.0	Hand Clear	NA	Medium reddish brown medium to fine SAND, with Silt and subangular gravel, moist		1 2 3.	P Sie Reader
1 2 3 4 5 5'-10' 0 - - - - - - - - - - - - -					subangular gravel, moist			Roadt
5'-10' 0 - 6 - 7 - 7 - 8 - 9 - 9 - 10 - 10 - 11 - 12 - 12 - 13 - 13	0.0 0.0	0.0	Auger	NA	Same as above	5 6 7	5	
10'-16' 0	ł	1	ļ			8 9	9	
	0.0 0.0	0.0	Auger	NA	Same as above	10 11 11 12 13 14	1 2 3	ASSACT TALLAR MESA MESA METAL METAL MESA MESA MESA MESA MESA MESA MESA MESA
15 16 16	0.0 0.0	0.0	13,4,5,25	12/24	Mottled reddish brown medium to fine SAND with Sill and some subangular gravel, tightly packed, moist			
17 17'-19' C	0.0 0.0	0.0	25,24,18,17	18/24	Reddish brown medium to fine SAND with Silt	17 18		
19 19'-21' C 20'	0.0 0.0	0.0	5,10,21,40	20/24	Medium reddish brown medium to fine SAND with Siit, litte subangular gravel, dry, crushed Sandstone in tip.	19 20		
22	0.0 0.0	0.0	32,24,25,23	18/24	Same as above	21	2	
<u>23</u>	1	1				23	3[{{	

484 Temple I'hone: (845,		#e 100, N Fax: (845)	ew Windsor, I 561-9857		PORAT	ION	· · · · · · · · · · · · · · · · · · ·		Well Log MW-6
Project: Cliont; Location; Well ID; Borehole Diametor PVC Type Slot Size Casing L Diameter	: e; ongth:	041079 RemVe Orange MW-6 6" 2" 0.010 35' 2"		a			Casing Elevation: NA Total Depth: 51 ft bgs Water Level: 38.25 ft bgs Drilling Co.: ADT Driller: Mike Mothod: Hollow Stem/Air Rotary Start Date: 10-21-04 Notes: 7 Denotes sample submitted for Iaboratory analysis 21 https://doi.org/10.1011/j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j.j	с. 17 - же	Geologic Services Corporation
Depth (ft.)	Sample Interval (feet)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Biows / 6"	Recovery / Penetration (inches)	Log by: C8 Checked by: EC	Depth (ft.)	Well Diagram
23 24	23'-25'	0.0	0.0	0.0	10,13,19,31	20/24	Medium reddish brawn medium to fine SAND with Silt, fitte subangular gravel, tightly packed, moist	23 24	
25 26	25'-27'	0.0	0.0	0.0	20,27,33,35	22/24	Same as above	25 	
27 28	27'-29'	0.0	0.0	0.0	22,22,19,23	20/24	Same as above with crushed rock in tip		
29 30 31 32 33	29'-51'	0.0	0.0	0.0	Air Rolary	NA	Boring completed utilizing air rotary technique to 51° bgs Reddish brown medium to fine SAND with Sill and intermittent layers of Sandstone	30 31 31 32 33	
34 35 36 37	* MW-6	(34')			-		· · ·	3 35 36 37	Benionite / cement grout
38 39 40 41 41						· ·		38 39 40 -41 -41 -42	2' Diameter Provide the second
43 44 44 45 45 46								42 	Aktora # I Sand
								47 48 49 50	and a second sec
	. <u></u>		 				End boring at 51 ft bgs	51	PWC riser
		ft bgs	t Available - feet belc Water Leve		nd surface				

Page 1 of 2

4 Temple	Hill Road, Si		Windsor, NY		PORATIO	ON		Well Log MW-7		
roject: lient: RemVer occation: Orangetown Plaza fell ID: MW-7 orehole lameter: 6" VC Type: 2" lot Size: 0.010 asing Length: 35' lameter: 2"					· · · · · · · · · · · · · · · · · · ·		Casing Elevation: NA Total Depth: 45 ft bgs Water Level: 41.63 ft bgs Drilling Co.: ADT Driller: Mike Method: Hollow Stern/Air Rotary Start Date: 10-22-04 End Date: 10-22-04 Notes: * Denotes sample submitted for Iaboratory analysis Log by: CB Checked by: EC	Gaologic Services Corporation		
Depth (ft.)	Sample Interval (feet)	PCE/TCE Headspace (ppm)	DCE Headspace (ppm)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Description	ଞ୍ଚି Well Diagram		
1 2 3 4	0'-5'	0.0	0.0	0.0	Hand Clear	NA	Medium brown medium to fing SAND, with Silt and Pebbles, molst	- 1 - 2 - 3 - 4		
5 7 8 9	5'-10'	0.0	0.0	0.0	Auger	NA	Same as above			
_ ¹⁰ _ ¹¹	10'-12'	0.0	0.0	0.0	10,28,15,18	7/24	Medium reddish brown medium to fine SAND with Sitt, some subangular gravet, moist			
12 13	t2-14	0.0	0.0	0.0	16,24,29,28	24/24	Same as above, lightly packed			
- ¹⁴ - ¹⁵	14'-16'	0.0	0.0	0.0	5,12,13,21	20/24	Medium reddish brown medium SAND with Sitt, little subangular gravel, lightly packed, mottled light brown SAND in tip			
- ¹⁶ - ¹⁷	16'-18'	0.0	0.0	1.3	25,26,30,31	24/24	(12") Reddish brown medium SAND with Silt (2") Medium light brown, medium SAND with Silt (10") Medium reddish brown medium SAND with Silt, clayey silt in tip			
	18'-20'	0.0	0.0	0.0	11,28,27,47	24/24	Reddish brown medium to fine SAND with Sill, iillie subangular Gravel, some fractured Sandstone throughoul, dry			
20 21	20-22	0.0	0.0	0.0	50/4	0/4	No recovery			
22 23	22'-45'	0.0	0.0	0.0	Air Rotary	NA	Boring completed utilizing air rotary technique to 45 bgs			
24		┶┈┈┙	ed on followi		-			24[

GEOLOGIC SERVICES CORPORATION

GEOL	OGIC	SERV	ICES (CORF	PORATIO	ON		Well Log
484 Temple F Phone: (845)			e Windsor, NY 1-9857	12553				MW-7
Project:							Casing Elevation: NA	
Client:		RemVer					Total Depth: 45 ft bgs	
Location: Well ID:		Orangete MW-7	own Plaza				Water Level: 41.63 ft bgs Drilling Co.: ADT	
Borehole		19199-7					Driller: Mike	Geologic
Diameter:		6"					Method: Hollow Stem/Air Rolary	Services Corporation
РУС Туре	:	2"					Start Date: 10-22-04	 a. The end of the end of the transformer of the
Slot Size:		0.010					End Date: 10-22-04	
Casing Le Diameter:		35' 2"					Notes: * Denotes sample submitted for taboratory analysis	
utanietei /		<i>.</i>					Log by: CB Checked by: EC	
т		r	r	1				
Depth (ft.)	Sample Interval (feet)	PCE/TCE Headspace (ppm)	<u> </u>	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (Inches)	Description	(박) Well Diagram
23	23'-45'	0.0	0.0	0.0	Air Rolary	NA	Boring completed utilizing air rotary technique to 45' bgs	23
24		1	ļ		l		Reddish brown medium to fine SAND with Sill and	24
^/					l.		Intermittent layers of Sandstone	
25				1	l	1	1	25
		1		1	1	1		
26	•]	1			1		<u></u>
27				}	****			27
- 28		1			[- 28
- 29								29
					Ì			
30								<u>30</u>
- 31								31
32								
- 33								
- "								Bentonite /
34								34 Cerrent grout
— 35			}					35
			1					
36		ł						
- 37	. •							37
38						l		38
30			l					2* Diamotor
39				1		ł		39 PVC Screen
	* 2 41 4/ -			ł				
40	* MW-7	(40)	1		}			
41			1	1	[41 alt
					ł			
⁴²					ļ		·	42
43					1			43
_								Pack
44							L	44
						:		45
		L	· · · · · · · · · · · · · · · · · · ·			I		
							End boring at 45 ft bgs	
		Nates:						
		NA - Not						
		ftbgs-	feet below	v groun	d surface			
		.	Water Leve	3				

84 Temple	Hill Road, S		ew Windsor, I		PORATI	ON			Well Log MW-8
roject: 0410794CA flent: RemVer ocation: Orangeburg Shopping Center Vell ID: MW-8 creen Length: 40'				ing Cent	er	· · · · · · · · · · · · · · · · · · ·	Casing Elevation: 166.84' Total Depth: 70.5' Water Level: 36' Drilling Co.: Glacier Drilling Driller: Terry		
liameter		40	·····				Method: Hollow Stern/Air Rotary		Geologic Services
VC Type		Schedule	9 40				Start Date: 2/22/05		🕑 🥨 🥨 Corporation
ilot Size:		0.010					End Date: 2/23/05		the evidence of a real size of the
Casing Lo Diameter		28.5 4"					Notes: * Denotes sample submitted for taboratory analysis		
nameter	•.	4					Log by: JA Checked by: BW		
·····			,		·····		1	·····	······································
Depth (ft.)		odmpre IU	Sample Interval (feet)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Description	Depth (ft.)	Well Diagram
1 2 3 4 5 6			0'-5' 5'-7'	0.0	Air Knife 11-7-7-5	Air Knife	Light brown, Fine SAND and SILT, some m-c Sand, little coarse Gravel, fine Cobbles, trace Clay, no odor, wet	1 2 3 3 4 4 5 6	PVC R
~7 8 9			7'-9'	28.5	5-2-2-2	4"	Same as above (0'-5')	7 8 9	
- - - - - - - - - - - - - - - - - - -			9'-11' 11'-13'	20.0	2-9-9-9 6-14-21-14	3" 13"	Same as above (0-5') Light brown, reddish, Fine SANO, some Silt, fittle medium to coarse Sand, trace coarse Gravel, no odor, moist	10 11 12	
13 14			13'-15'	0.0	14-13-24-26	2"	Rock	<u>13</u> 14	
15 16			15'-17'	9.8	2-7-13-13	18*	Light brown/red Fine SAND, little medium to coarse Sand, trace fine Gravet, no odor, moist	15 16	
17 18			17'-19'	12.7	8-17-22-30	16"	Light brown/red Fine SAND, trace meldum to course Sand, homogenous, no odor, moist		
19 20			19'-21'	1.8	6-8-8-13	16"	Same as above (17'-19')	19 20 1	
21 22 23			21'-23'	11.3	16-27-80/5	12"	(21'-21.5') Some medium to coarse Sand layers Reddish brown Medium SAND, title fine Sand, trace fine Gravel and Silt, no odor, moist	21 22 23	
		Continued	i on followin	g sheat	PAR ARE CAL PLUE KC	1 anna 1100 anna	Anna hann bann bann bann bann bann bann b	- <u>-</u>	ha an ab ilite ra (Maid an an an a

84 Temple Hill Road, : Phone: (845) 561-9890			PORAT	ION			Well Log MW-8
Project:	0410794CA				Casing Elevation: 166.84'	T	
Client:	RemVer				Total Depth: 70.5'		
ocation:	Orangeburg Sho	pping Cent	ter		Water Level: 36'	1	
Well ID:	MW-8				Drilling Co.: Glacier Drilling		
Screen Length:	40'	• • • •			Driller: Terry	A.	Geologic
Diameter:	4 ⁴				Method: Hollow Stem/Air Rotary		Services Corporation
VC Type:	Schedule 40				Start Date: 2/22/05		entered a construction of the second se
Slot Size:	0.010				End Date: 2/23/05		
Casing Length:	28.5				Notes: * Denotes sample submitted for		
Diameter:	4"				laboratory analysis	1	
					Log by: JA Checked by: BW	1	
	I			·····	1=-2-7		
Depth (ft.)	Sample IU Sample	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Description	Depth (ft.)	Well Diagram
23						23	
24				ļ			Bentanile Seal
- 25						25	
²⁶ 27]		26	
-							
28							
29 . 						29	
30 31	30'	25.0	Air Rolary	Air Rolary	Light brown, reddish, Fine SAND, some medium Sand, trace		
- 32					fine Gravel and Silt, no odor, moist		
- 33						32	# 1 Sar
- 34						34	Pack
- 35						35	
	35 ⁻ 8 (35 ⁻)	85.1	Air Rolary	Air Rotary	Light brown/red SILT, some fine to modium Sand and Clay, trace fine Gravel, no odor, moist	36	
- 37					······································	37	
- 38							
39							
40							
- 41	40'	0.0	Air Rolary	Air Rotary	Red brown Fine to Medium SAND, crushed rock	<u>4</u> 1	4* Diamo 0.01 Skit / Screer
42				ł		42	
43						43	
44						44	
.		l		ł		45	

Tomple Hill ne: (845) 50	GIC SER Road, Suito 100, N 11-9690 Fax: (845)	law Windsor, 561-9857		PORATI		*		Well Log MW-8	-	(
oject: ent: cation: il ID: reen Len meter: C Type: ot Size: sing Len meter:	MW-8 gth: 40° 4" Schedul 0.010	ourg Shop	bing Cent	er		Casing Elevation: 166.84' Total Depth: 70.5' Water Level: 36' Drilling Co.: Glacier Drilling Driller: Terry Method: Hollow Stem/Air Rotary Start Date: 2/22/05 End Date: 2/23/05 Notes: * Denotes sample submitted for laboratory analysis		Geologic Services Corporation		
	<u></u>	ple (feet)	ac ac	ġ	ery / ation es)	Log by: JA Checked by: BW	Ê.	Well Diagram		
Depth (ft.)	Sample ID	Sample Interval (fect)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (Inches)	Description	Depth (ft.)			
45 46		45	0.0	Air Rotary	Air Rotary	Same as above (40'), wet	45 46			•
47 48 49							47 48 49			
50 51		50'	0.0	Air Rolary	Air Rotary	Same as above (40')	50 51			
52 53							<u>52</u> <u>53</u>			, ·
54 55 56	MW-8 (55')	55	0.0	Air Rotary	Air Rotary	Same as above (40')	5 55 56	4 Diamaier 001 Siet PVC		
57 58							57 58			
- ⁵⁹ - ⁶⁰ - 61							<u>59</u> 60 01			
62 63					- - -		<u>61</u> <u>62</u> <u>63</u>	Bi Sand Pack		
- ⁶⁴ - ⁶⁵	·						<u>64</u> 65			
. 60 . 67 . 68							66 		-	
69 70 ·						-	69 70	Sump.		
	lotes: BGS Below Gr NA Not Appli	ound Surfar	×			Encountered competent rock at approximately 70' BGS	71	}		
		ble Elevatio	n 	<u>.</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·				
						н. Н				(

EOLOĠI 4 Temple Hill Road one: (845) 561-989	Suite 100, N	ew Windsor, I		PORATI	ON				li Log W-9
oject:	0410794	CA				Casing Elevation: 166.94'	1		
lient:	RemVer	•				Total Depth: 72.5	}		
ocation:		urg Shopp	ing Cent	er ·		Water Level: 36'			
ell ID:	MW-9					Drilling Co.: Glacier Drilling	1		
reen Length:	40'					Driller: Teny			Geologic
lameter:	4*					Method: Hollow StenvAir Rotary			Services Corporation
/C Type:	Schedule	e 40				Start Date: 2/24/05	1000	contents count a s	www.corporate
ot Size:	0.010	·				End Date: 2/25/05 Notes: * Denotes sample submitted for			•
asing Length: lameter:	4"					laboratory analysis			
unicier.						Log by: JA Checked by: BW			
Depth (#.)	Sample ID	Sample Interval (feet)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (Inches)	Description	Depth (ft.)	Concrete Collar	ll Diagram
1		0'-5'	3.0	Air Knife	Air Knife	Light brown SILT, some fine Sand, little Clay, coarse Sand and fine Gravel, no odor, damp	1		PUT ROBO
2							2 3 4		
5 6 7		5'-7'	3.5	3-3-6-6	14"	Dark brown Fine SAND and SILT, little medium to coarse Sand, trace Clay, black @ 6'-6.5', no odor, moist	5 6 7		4* Dam PVC R
8		7'-9	2.6	7-11-13-15	6"	Dark brown/black Fine SAND and StLT, some medium Sand, trace Clay, no odor, moist	8		
9		9'-11'	2.0	9-7-7-12	24*	Dark brown SiLT, little fine Sand, trace Clay, homogenous, no odor, moist	9 10		
11 12		11'-13'	2.6	12-23-34-61	14"	Red brown SiLT, some fine Sand and coarse Gravel, little Cobbles, no odor, moist			
_	9 (13'-15')	13'-15'	76.6	3-13-13-15	20"	Light brown/red SILT and Fine SAND, little medium Sand, brace coarse Gravel, no odor, molst	13 14 		
15 16		15'-17'	75.1	24-10-10-13	16*	Red brown SILT, some fine Sand, trace fine to coarse Gravel, no odor, moist Rock at 15'	<u>15</u> 16		
17 18		17'-19'	31.1	28-24-24-22	18*	Red/brown Fine SAND and SILT, some medium Sand, trade fine to coarse Gravel and Clay, no odor, moist (17'-17.5') Layer of coarse Sand			Back
19 20		19'-21'	20.3	10-30-21-24	20"	Red brown Fine to Medium SAND, some Silt, little coarse Gravel, no odor, moist	19 		
21		21'-23'	6.9	31-17-20-21	18*	Rock at 19.5' and 21.5' Same as above (19'-21')	21		
23		d on followir	L	L	l		23		

84 Tempia H⊯Road,	C SERVICES Suite 100, New Windsor, Fax: (845) 561-9857		PORATI	ON		Well Log MW-9
Project: Dilent: Jocation: Well ID: Screen Length: Diameter: 2VC Type: Slot Size: Dasing Length: Diameter:	RemVer Total Depth: 72.5' cation: Orangeburg Shopping Center Water Level: 36' Sill ID: MW-9 Drilling Co.; Glacier E reen Length: 40' Driller: Terny ameter: 4" Method: Hollow S YC Type: Schedule 40 Start Date: 2/24/05 ot Size: 0.010 End Date: 2/25/05 sing Length: 31.5' Notes: * Denotes sample submitted for ameter: 4" taboratory analysis Log by: JA				Water Level: 36' Drilling Co.: Glacier Drilling Driller: Terry Method: Hollow Stem/Air Rotary Start Date: 2/24/05 End Date: 2/25/05 Notes: Denotes sample submitted for taboratory analysis Denotes	Geologic Services Corporation
Depth (ft.)	Sample ID Sample Intervel (feet)	PID Headspace (ppm)	Blows/ 8"	Recovery / Penetration (inches)	Description	(박) Well Diagram
23 24	23'-25'	5.1	2-5-15-31		Red brown Fine SAND, some Silt and medium Sand, little fine Gravel, no odor, moist	
25 26 27	25'-27'	6.3	13-25-31-20		Red brown SILT and Fine SAND, little coarse Gravet, no odor, moist/wet	25 26 27 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
28 29	27'-29'	9.7	22-33-38-51		Same as above (25'-27')	
30 31 32 33	29-31' 31-33'	4.2	14-15-14-18 19-53-60/4	13"	Same as above (25-27'), Color-red Red Fine SAND and SILT, trace Clay and medium Sand, no odor, moist Rock at 32'	30 31 32 33 33
34 35 36 37	35'	18.5	Air Rotary	Air Rolary	Red SILT, some fine Sand, crushed rock, no odor, dry	
38 39 40						38 39 - 40
41 42 43 43 44						-41 -42 -43 -44
45 46 47	45	11.8	Air Rotary	Air Rotary	Same as above (35')	
1.2007-2010 and and and a	Continued on follow	ving sheel	' t		·	

Project: Client: Location: Well ID: Screen Length: Diameter: PVC Type: Slot Size: Casing Length: Diameter:	4" Schedule 40 0.010	pping Cen	ter		Casing Elevation: 166.94" Total Depth: 72.5" Water Level: 36" Drilling Co.: Glacier Drilling Driller: Terry Method: Hollow Stem/Air Rotary Start Date: 2/24/05 End Date: 2/25/05 Notes: Denoles sample submitted for laboratory analysis Log by: JA Checked by:		Geologic Services Corporation	
Depth (f.)	Sample 10 Sample Sample Interval (feet)	PID Headspace (ppm)	Blows / 6"	Recovery / Penetration (inches)	Doscription	Depth (ft.)	Wełl Diagram	
69 70 71 72 73 Notes					Same as above (35') Same as above (35'), wet Encountered competent rock at approximately 72.5' PG	-47 -48 -49 -50 -51 -52 -53 -54 -55 -56 -57 -56 -57 -56 -60 -61 -62 -63 -64 -05 -66 -67 -68 -69 -70 -71 -72 -73	d'Dermier 0.01 Sol PVC Screen HI Sand Pack	·
BGS NA	Below Ground Suri Not Applicable Water Table Elova							

		45) 561-9857					MW-10
rojec1:		794CA				Casing Elevation: 137,17'	1
lient:	Rem					Total Depth: 34.5	1
ocation: /ell ID:	Oran MW-	geourg Shopp 10	ung Cent	c)		Water Level: 7 Drilling Co.: Glacier Drilling	1
creen Le						Dritter: Terry	Grulogia
liameter:	4	tula de				Method: Hollow Stem/Air Rotary Start Date; 2/28/05	Services Corporatio
VC Type lot Size:	: Sche 0.010	dule 40				Start Date: 2/28/05 End Date: 2/28/05	servers in a Vietne s
asing Le	ngth: 13'					Notes: * Denotes sample submitted for	
lameter:	4"					laboratory analysis Log by: JA Checked by: BW	
Ê	0		3	6	žās		8 Well Diagram
Depth (Sample ID	Semple Interval (feet)	PID Headspace (ppm)		Recovery / Penetration (inches)	Description	G Concrete Collar
1		0'-5'	0.9	Air Knife	Air Knife	Red brown Medium to Coarse SAND, some Silt, little line Gravel, no odor, damp	
2							
- 3				· · ·			
_ 1			1				
			1	;		1	
5							- s 8 8 4'Dame
_ "		5'-7'	0.0	4-6-11-17	14"	Same as above (0'-5')	
- 6							°
- 7			·				
_		7-9	0.3	22-14-30-25	24*	Red brown Fine SAND, some Sft, trace medium to coarse	
- 8						Sand, no odor, tighi, damp	
9		1	1	.	l		
		9'-11'	1.0	47-64-100/3	24*	Same as above (7-91)	Benton Seal
¹⁰							
		· ·				1	
- 12							
14		1	1			· ·	12
13		1				-	<u>13</u>
14			1				- 14
_ ^^						1	
15						-	
- 16		1			ĺ	1	₁₆
						-	
- 17		1					
18			I .				18 * Dame
- ,							PVC Sare
- 19		1	1 '		İ	1	
20						1	_20
21		20'	31.4	Air Rotary	Air Rotary	Red brown Fine SAND, some Sit, trace coarse Sand and fine Gravel, no odor,moist	- 21
. 22			1				
23						1	23
_							
24							_24
25]	25
-						1	
26		1	1				_26
27		1					
						4	
— ²⁸							
29		1				1	29 []
- 30		1					
_ ~		30'	873	Air Rotery	Air Rotary	Same as above (20')	
31	"I.IW-10 (30")					1	<u></u> 30
32							
		1				1	
33	"MW-10 (33")				ĺ	· · ·	
34	MAL-10 (33)						
.							
35			-L	l	L	Encountered competent rock at approximately 34.5 BGS	35 <u>{</u>
	Noles:						
	BGS Below	Ground Surfa					

GER Soil Boring/Temporary Monitoring Well

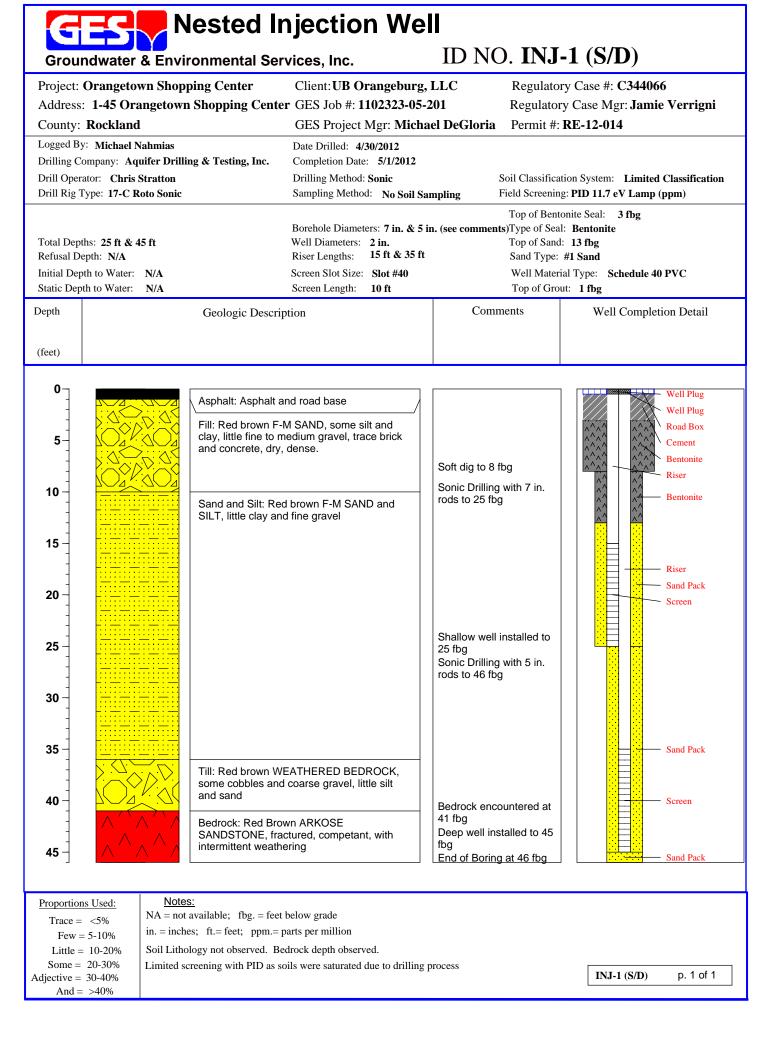
Groundwater & Environmental Services, Inc.

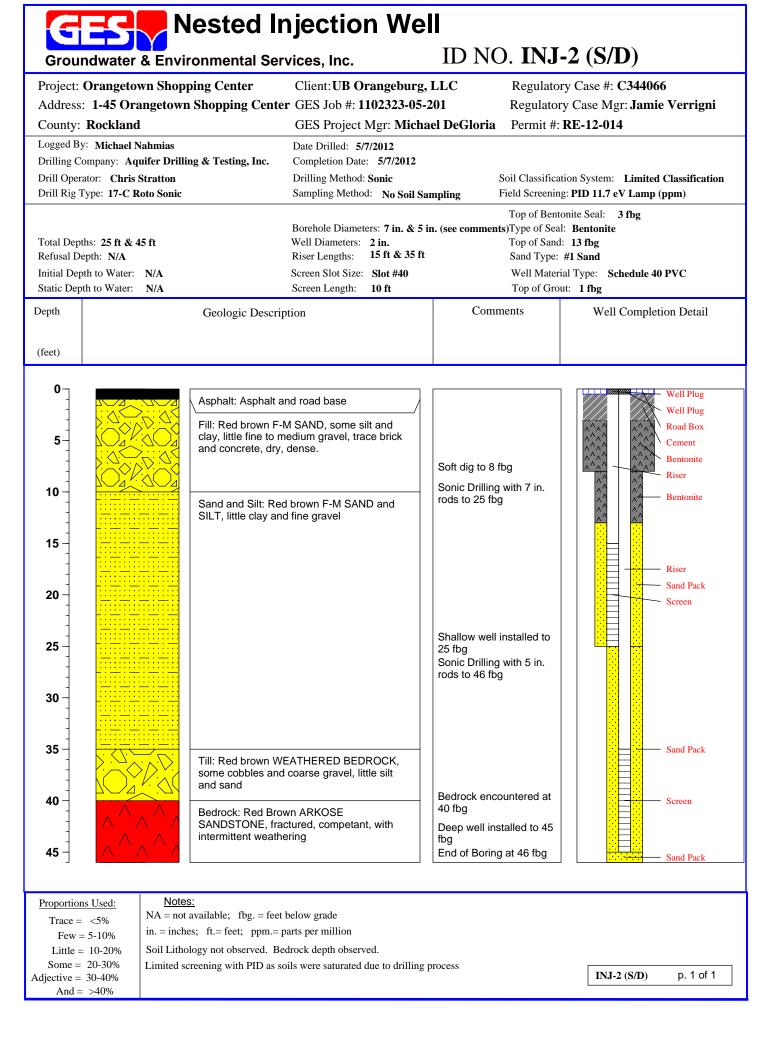
Gro	undwa	ater &	Envir	onment	al Serv	vices, lı	າc.	ID N	O.2R-]	L			
Projec	t: Oran	getoan S	Shoppi	ng Cente	r	Client:	U <mark>rstadt B</mark>	iddle Properties, I	nc. Regulato	ory Case #: N	I/A		
Addre	ss: 1-45	5 Orang	etown	Shopping	Center	· GES Jo	b #: 1102 2	242-12-282	Regulato	ry Case Mgr	: N/A		
Count	y: Roac	kland				GES Pr	oject Mgr	:Michael DeGloria	Permit #	:11-030			
Drilling Drill Op	erator: N		Schneck	ronmenatl, i	lnc.	Completion Drilling M			Split Spoon/A Soil Classific	cetate Sleeve E cetate Sleeve L ation System: ng: PID 10.6 eV	ength: USCS/	60 in. Burmister	
Total D Refusal Initial D	Elevation epth: 32 Depth: 3 Pepth to W	fbg				Well Diam Riser Leng Screen Slo	Diameter: 2 leter: 1 in.		Type of Sea Top of San Sand Type:	d: N/A N/A rial Type: Sch		40 PVC	
Depth	Sample Interval	Recover		ld Screen ppm)	Blow	Counts		Geologic Description		Comments		Well Comple	
(feet)	(feet)	(inches)		0 10		1 120						Deta	il
0 - -			0.1		,	\wedge	//////////////////////////////////////	Asphalt: Asphalt and r SC: Red brown fine sa silt, little fine gravel, no	and, some	Hand cleare to 8 fbg as per GES	d		
5-			0.4 6.8				//////////////////////////////////////	plastic, moist, soft, gla fragments, scrap meta fragments; fill material	il, asphalt 	protocol	×		
- 10 -			1.5 2.1			0		SC: Red brown fine sa silt, little fine gravel, no plastic, moist, soft	on to slightly	-			
- - - 15			3.8 5.9			Geoprobe, no blow counts collected	·///////	SC: Red brown fine sa clay, little fine gravel, s plastic, dry, stiff					- Riser
- - - 20 -			0.9 0.3			ow counts coll		ML: Light brown clay, medium sand, plastic,					· Grout
-			0.3	0 5 10		ected —		SC: Red brown fine to sand with clay, slightly stiff					
25 -			0.5 0.3 0.2				1977) 1977) 1977)			Boring			- Screen
30 -			5.6 6.7			\bigvee		SC: Red brown fine to sand with clay, sub-an gravel, plastic, moist, s	gular	grouted as per RCDOH protocol			
-	ions Used		Notes: A = not a	vailable; ft	σ = feet ŀ	elow orade		Blow Count Pent			mbols:		-
	v = <5% v = 5-10%			s; ft.= feet;	-	-		$\frac{\text{Consistency (M\&C)}}{<2 = \text{Very Soft}}$	$\frac{\text{Density}}{0-4} = \text{Very}$	loose		Vater Level	
Little Some	e = 10-20 = 20-309	% So % Ge	il Litholo neral Te	ogies based o xt here, site	on field ob	•		2-4 = Soft 4-8 = Medium 8-15 = Stiff	4-10 = Loos 10-30 = Med	ium	o Sampl	le Location	. 🔀
Adjective And	= 30-40% l = >40%	100	neral Te	xt II, details				15-30 = Very Stiff >30 = Hard	30-50 = Den >50 = Ver	an	-1	p. 7	1 of 1
		1						- 1					

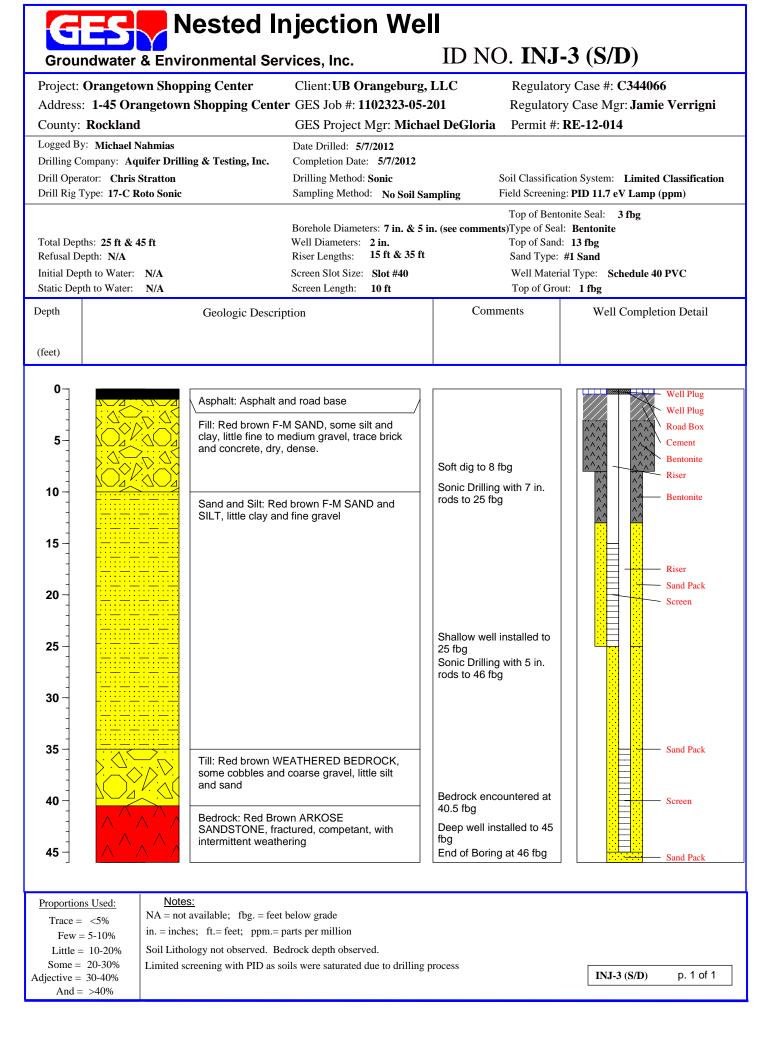
Groundwater & Environmental Services, Inc.

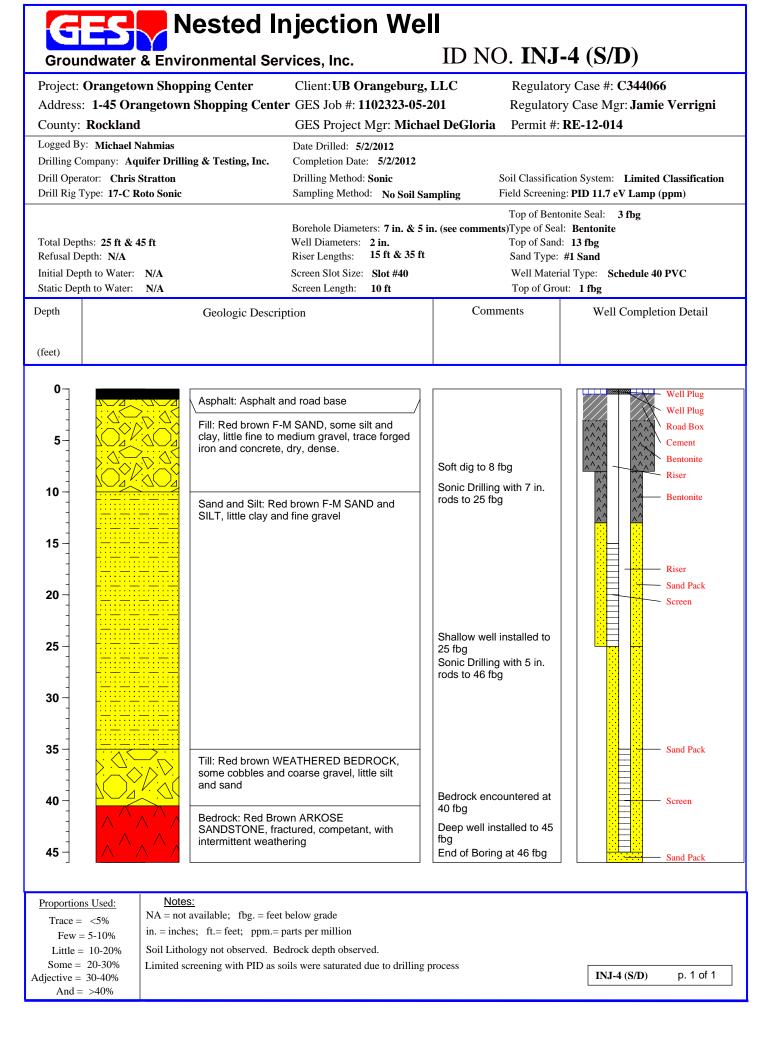
Gro	undwa	ater & E	Enviro	onment	al Services, li	nc.	ID N	0. SB- 3		
Projec	t: Oran	getoan S	hoppi	ng Cente	r Client:	U rstadt B	Biddle Properties, I	nc. Regulato	ry Case #: N/	Ά
Addre	ss: 1-45	5 Orange	etown	Shopping	Center GES Jo	b #: 1102	242-12-282	Regulator	ry Case Mgr:	N/A
Count	y: Roac	kland			GES Pr	oject Mgi	::Michael DeGloria	Permit #:	11-030	
	By: Tim					ed: 1/11/2	012	Split Spoon/A	cetate Sleeve Di	ameter: N/A
-				onmenatl,	-	on Date: 1.			cetate Sleeve Le	-
	perator: N g Type: N	Matthew S	chneck				tron & Air Lance Hand Auger		tion System: U g: PID 10.6 eV	JSCS/Burmister
	le: N/A	//A			Longitude		hand Auger		onite Seal: N/	
	Elevation	: N/A				Diameter:	3 in.	Type of Sea		A
	epth: 5 f	-			Well Diam			Top of Sand		
	Depth: N Depth to W	ater: N/A			Riser Leng Screen Slo	t Size: N/A		Sand Type: Well Mater	ial Type: N/A	
	Pepth to W					ngth: N/A		Top of Gro		
Depth	Sample	Recovery	Fiel	d Screen	Blow Counts		Geologic Description		Comments	Well
•	Interval			ppm)						Completion
(feet)	(feet)	(inches)		0 10	1 120					Detail
. /		. ,		<u> </u>	·					1
0-										
							SC: Red brown fine sa silt and clay, fine grave			
							slightly plastic, moist, o			
_						<u>//////</u>				
						/////				
					danc					
					d cle					
-			0.0		ared					
					Hand cleared, no blow counts collected	<u>.////////////////////////////////////</u>				
					blov	<u>/////////////////////////////////////</u>				
					< co	//////				
-					unts	·// ·/////				
					<u>o</u>	·/·/·//				
					ecte					
					<u>م</u>					
-			0.0			<u>//////</u>				
						·/////////////////////////////////////				
			0.0							
5_					\vee					
D	ions II 1	.	Notes:				Blow Count Pent	ration Desister -	o	bols
-	$\frac{1}{10000000000000000000000000000000000$				g. = feet below grade	•	Consistency (M&C)	Density (i <u>bols:</u> rent Water Level 🛛 🔽
	w = 5.10%	in.	= inches	; ft.= feet;	ppm.= parts per mil	lion	<2 = Very Soft	0-4 = Very I	0000	Sample Location
	e = 10-20			-	on field observations	only.	$\begin{array}{rcl} 2-4 &= & \text{Soft} \\ 4-8 &= & \text{Medium} \end{array}$	4-10 = Loos	e	
	e = 20-309 e = 30-409	/		t here, site	specific		8-15 = Stiff 15-30 = Very Stiff	10-30 = Medi 30-50 = Den		
-	d = >40%	1 00	ieral Tex	t II, details			>30 = Hard	>50 = Very	CD 2	9.1 of 1

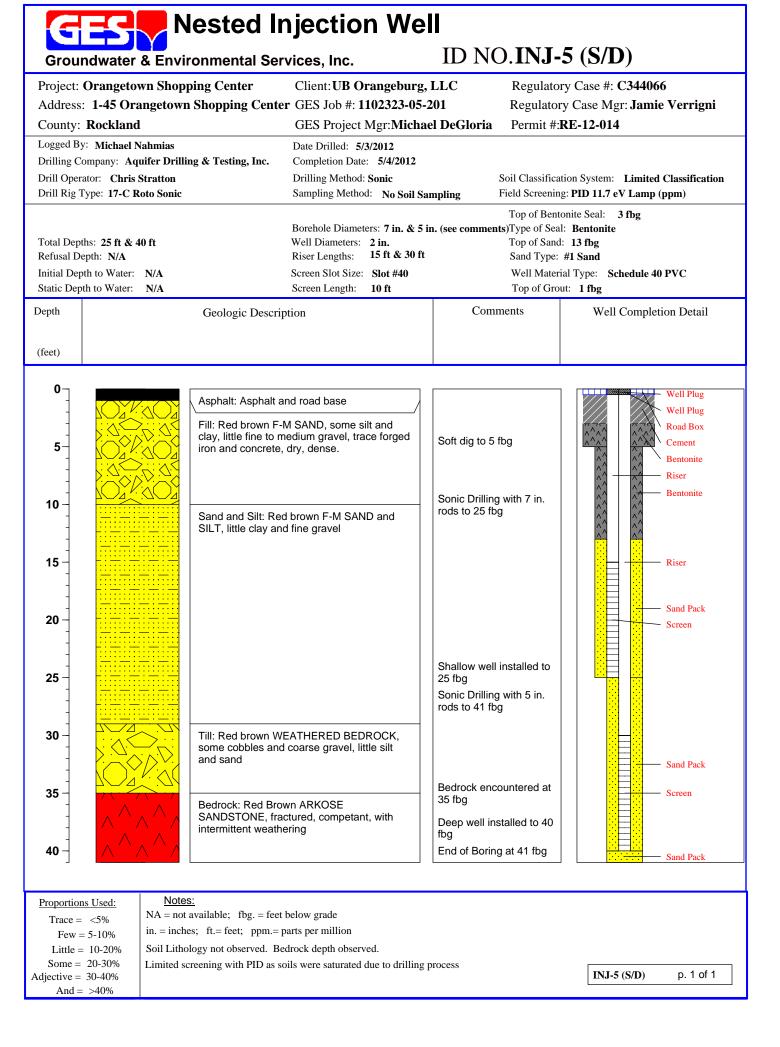
Soil Boring/Temporary Monitoring Well

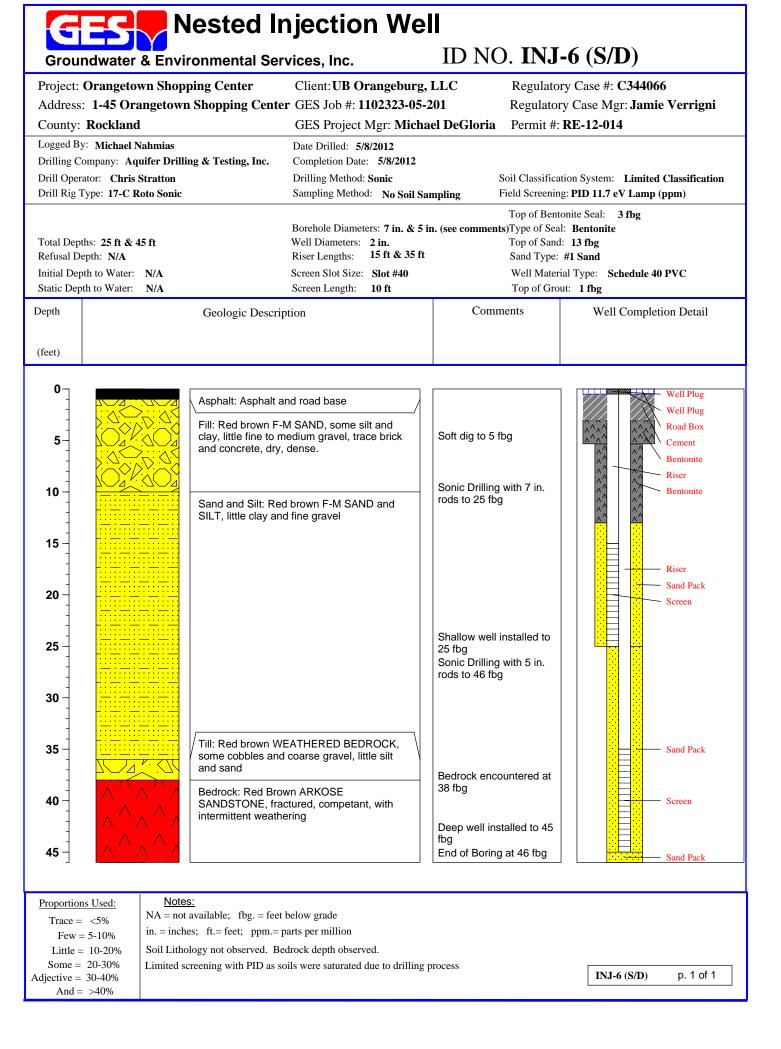

Groundwater & Environmental Services, Inc.

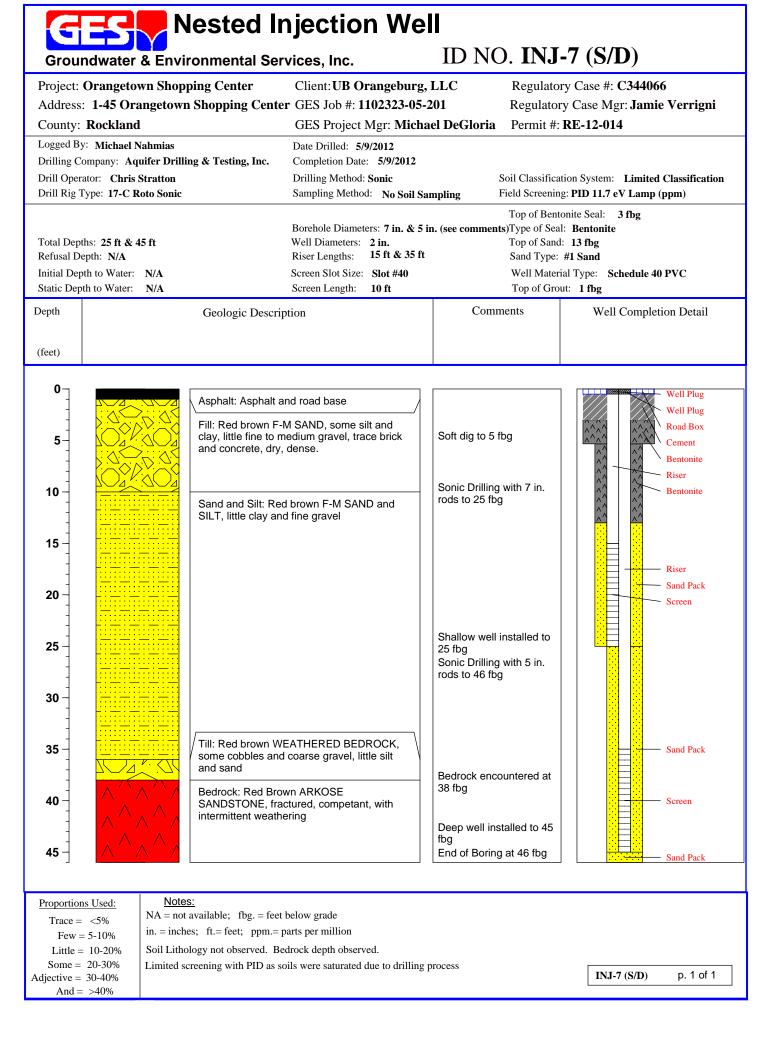

Gro	undwa	ater &	Envir	onment	al Serv	/ices,	Inc.		ID N	U. 3D- 4					
Projec	t: Oran	getoan	Shoppi	ng Cente	r	Client	Urst	adt Bi	ddle Properties, I	nc. Regulato	ry Case #	ŧ: N/ A	1		
Addre	ss: 1-45	5 Orang	getown	Shopping	g Center	GES	lob #:	11022	42-12-282	Regulator	ry Case N	/lgr: N	I/A		
Count	y: Roac	kland				GES I	Project	t Mgr:	Michael DeGloria	Permit #:	11-030				
	By: Tim								2 & 1/12/2012	Split Spoon/A					
-				ronmenatl,	Inc.	Comple				Split Spoon/A					
	perator: M g Type: G								t Push (Geoprobe) cetate Sleeve	Soil Classifica Field Screenin	-				
Lattitud						Longitu				Top of Bent				FF)	
Surface	Elevation					Borehol	e Diame	eter: 2.	25 in.	Type of Sea	l: N/A				
	epth: 19 Depth: 1 9	0				Well Dia Riser Le				Top of Sand Sand Type:					
	Depth to W	-	/A			Screen S			10	Well Mater		Sched	ule 40	PVC	
Static D	epth to W	ater: N	/A			Screen I	ength:	10 ft		Top of Gro					
Depth	Sample	Recover	y Fie	ld Screen	Blow	Counts		G	eologic Description		Comme	ents		Well	
	Interval		(ppm)										Complet	tion
(feet)	(feet)	(inches		0 10		1 12	20							Detai	1
				·			_								
0							<u>ryr</u>		anhalt: Annhalt and r	road base					
-							·///	<u>∕:/:/</u> ∖∟	sphalt: Asphalt and r	/	Hand cle	ared			
_							·///		C: Red brown fine sa ilt and clay, non to sli		to 5 fbg a				
			3.9					n n	noist, dense		per GES protocol				
							·/·//	/././ /././							
-			1.2												Riser
5-						\wedge	/./ ././/								
-			0.1										×		
_			0.1				·///		C: Red brown fine sa on to slightly plastic,						
									ense	,					
-			0.4												
-						èop	·/· ·/·//	//////////////////////////////////////							Grout
10 –			0.2			Geoporbe				fine to					Clout
-						•	- 111	.:!! n	 L: Light brown clay, nedium grained sand, 	, fine gravel,					
_						blov	- ji ji	ilii s	lightly plastic, less me	oist, stiff					
			1.0												
-						Ints									
-			0.7			no blow counts collected									Screen
15 –						octeo	- itji	ų įr			Boring				
-			0.6	•		Ī	<u>jili</u>	ilji			grouted a				
			0.6						C: Red brown fine sa on to slightly plastic,		per RCD protocol	Оп			
								//// d	ense, fractured sand	stone					
-			0.0				·/·//	/././ /././							
T			0.1			V	<u></u>								
			N1 -												
	ions Used:		<u>Notes</u> 35 AMSL						Blow Count Pent	ration Resistanc Density (C	_	Symb		atar Laval	-
	v = <5% w = 5-10%			s; ft.= feet;	ppm.= pa	arts per n	nillion		$\frac{\text{Consistency (M\&C)}}{<2 = \text{Very Soft}}$	0-4 = Very I	0050			ater Level	
Little	e = 10-20	% Se		ogies based		servation	ns only.		$\begin{array}{rcl} 2-4 &= & \text{Soft} \\ 4-8 &= & \text{Medium} \end{array}$	4-10 = Loos	e	Lab Sa	ample	Location	. 🕅
	x = 20-309 x = 30-409			xt here, site	specific				8-15 = Stiff 15-30 = Very Stiff	10-30 = Medi 30-50 = Dens					
-	d = >40%	10	eneral Te	xt II, details					30 = Hard	>50=30 = Dens		SB-4		p. 1	of 1

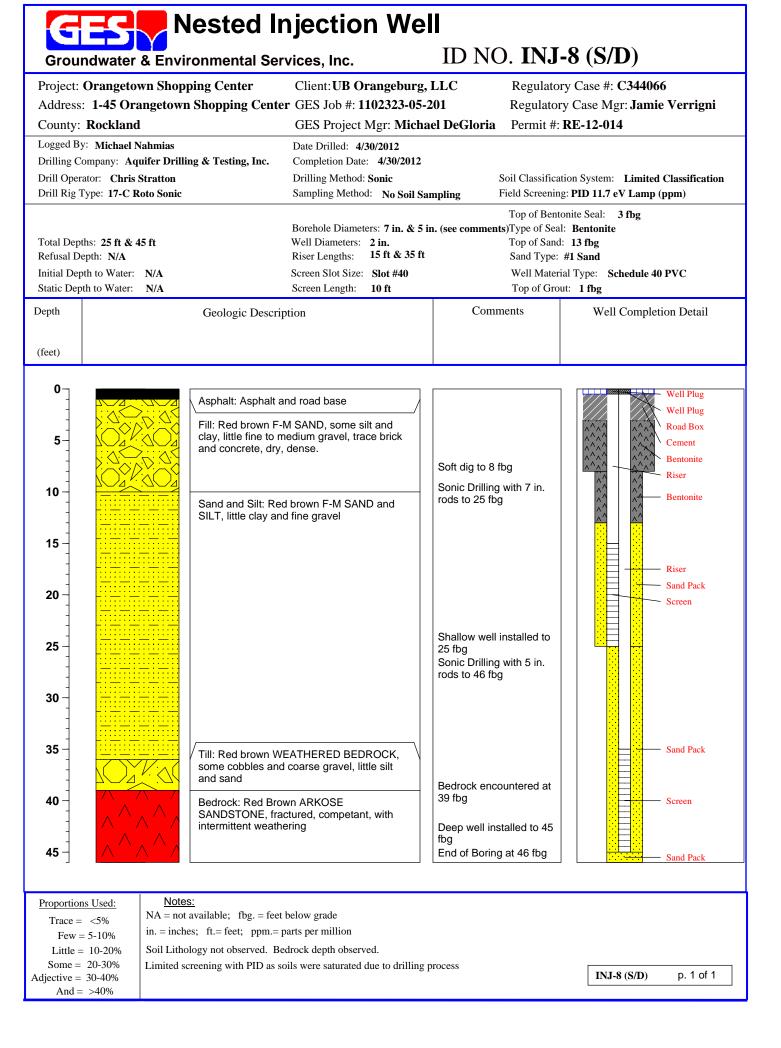

Soil Boring/Temporary Monitoring Well

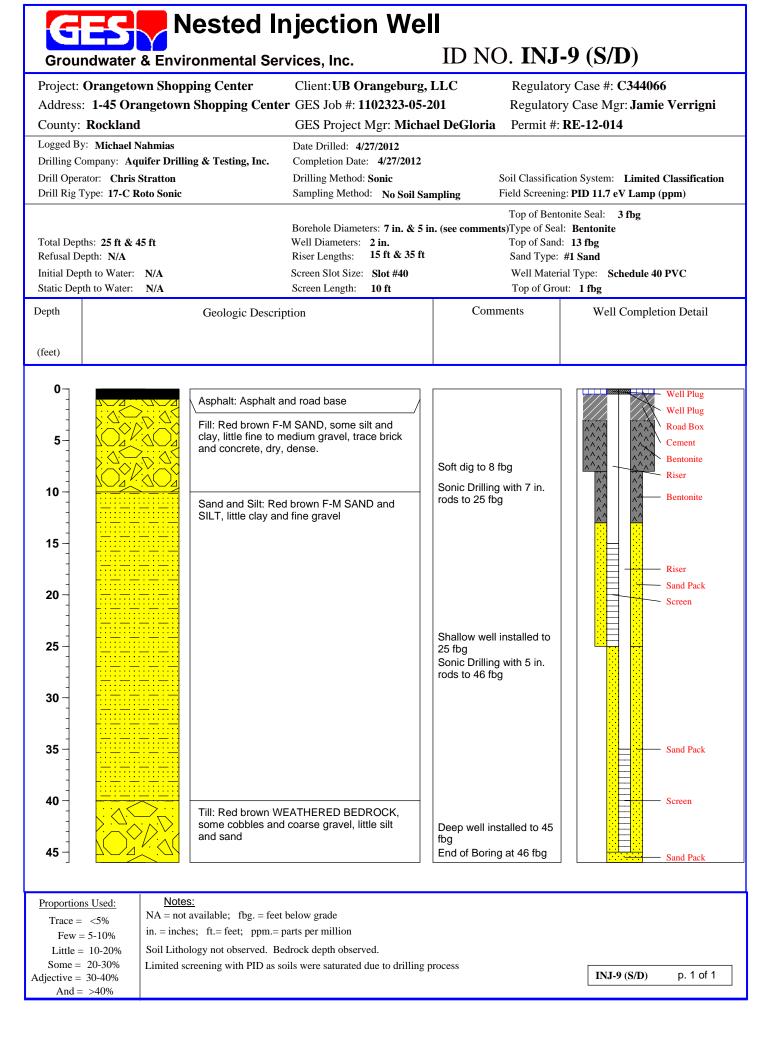

Groundwater & Environmental Services, Inc.

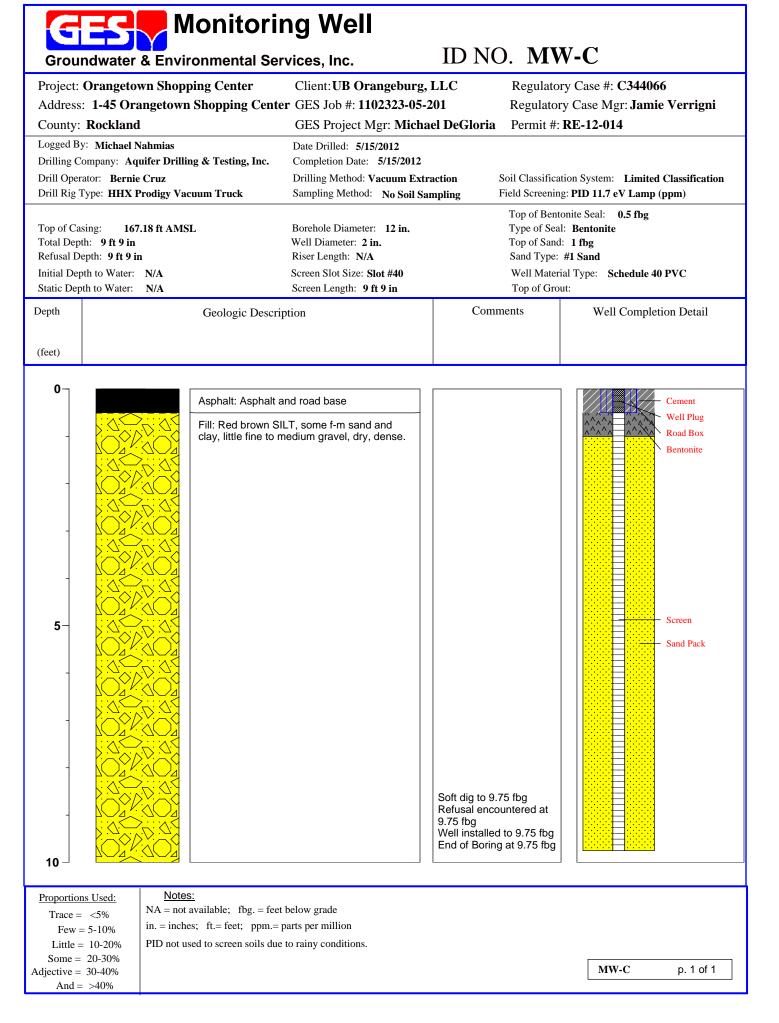

Gro	unawa	ater & E	Environmental Se	rvices, Inc.	ID N	0.30-3	9	
Projec	t: Oran	getoan S	Shopping Center	Client: Urstadt I	Biddle Properties, Ir	nc. Regulato	ory Case #: N/	A
Addre	ss: 1-45	5 Orange	etown Shopping Cent	er GES Job #: 1102	242-12-282	Regulator	ry Case Mgr: l	N/A
Count	y: Roac	kland		GES Project Mg	r: Michael DeGloria	Permit #:	11-030	
	By: Tim			Date Drilled: 1/11/2			cetate Sleeve Dia	meter: 2 in.
Drilling	Company	: Lonsho	re Environmenatl, Inc.	Completion Date: 1			cetate Sleeve Ler	
Drill O _J	perator: N	Matthew S	chneck	Drilling Method: Dir	rect Push (Geoprobe)	Soil Classifica	ation System: U	SCS/Burmister
Drill Ri	g Type: G	Geoprobe 6	5100DT	Sampling Method:	Acetate Sleeve	Field Screenir	ng: PID 10.6 eV I	Lamp (ppm)
Lattitud				Longitude: N/A		*	tonite Seal: N/A	Δ
	Elevation epth: 35			Borehole Diameter: Well Diameter: 1 in.		Type of Sea Top of Sand		
	Depth: 3	-		Riser Length: 25 ft		Sand Type:		
	•	ater: N/A		Screen Slot Size: Slot			ial Type: Sched	lule 40 PVC
Static E	epth to W	ater: N/A	A	Screen Length: 10 ft	t	Top of Gro	out: N/A	
Depth	Sample	Recovery	Field Screen Blo	w Counts	Geologic Description		Comments	Well
	Interval		(ppm)					Completion
(feet)	(feet)	(inches)	0 10	1 120				Detail
				· · · · · ·				
0-							1	
-					Asphalt: Asphalt and re	oad base	Hand cleared	
-			2.8		SC: Red brown fine to		to 5 fbg as per GES	
_			0.8		sand, some silt and cla slightly plastic, moist, o		protocol	
5-				$\uparrow \qquad				
-			0.0		SC: Red brown fine to			
-			0.2		sand, some silt and cla gravel, non to slightly p			
10 –			0.2		moist, dense			
-			0.3	<u> //////</u> //////////////////////////////				
-			0.0	· · · · · · · · · · · · · · · · · · ·				Riser
-			0.1	Ge	•••	<i>a</i> .		
15 -				opo	ML: Light brown clay, s medium sand, slightly			
-			0.5	rbe,	moist, stiff			Grout
-			0.3	no t	ML: Light brown clay,	fine sand		
20 -			0.2 0 5	blow	little fine gravel, plastic			
-			0.2 0	ဋ				
-			0.9	Ints				
-			0.6					
25 -				Geoporbe, no blow counts collected				
-			1.4		SC: Red brown fine to			
-			0.4		sand with clay, slightly medium dense	plastic, dry,		
30 -			0.2				Boring	Screen
-			0.2		SC: Red brown fine to		grouted as	
-			0.0		sand with clay, fracture snadstone, non to slight		per RCDOH protocol	
-			0.1		moist, medium dense			
35 –								
-	ions Used		Notes:	t balow grada	Blow Count Pentr			
	e = <5%		A = not available; fbg. = fee = inches; ft.= feet; ppm.=	-	$\frac{\text{Consistency (M\&C)}}{<2 = \text{Very Soft}}$	Density (ent Water Level 🛛 🐱
	w = 5-10% e = 10-20	, I	il Lithologies based on field		2-4 = Soft	0-4 = Very I 4-10 = Loos		ample Location _ 🔣
	e = 10-20 e = 20-309		neral Text here, site specific	coor rations only.	4-8 = Medium 8-15 = Stiff	10-30 = Medi		
	e = 30-40%	% Gei	neral Text II, details		15-30 = Very Stiff	30-50 = Den	CD 5	p. 1 of 1
An	d = >40%				>30 = Hard	>50 = Very	y Dense	p. i 0i i

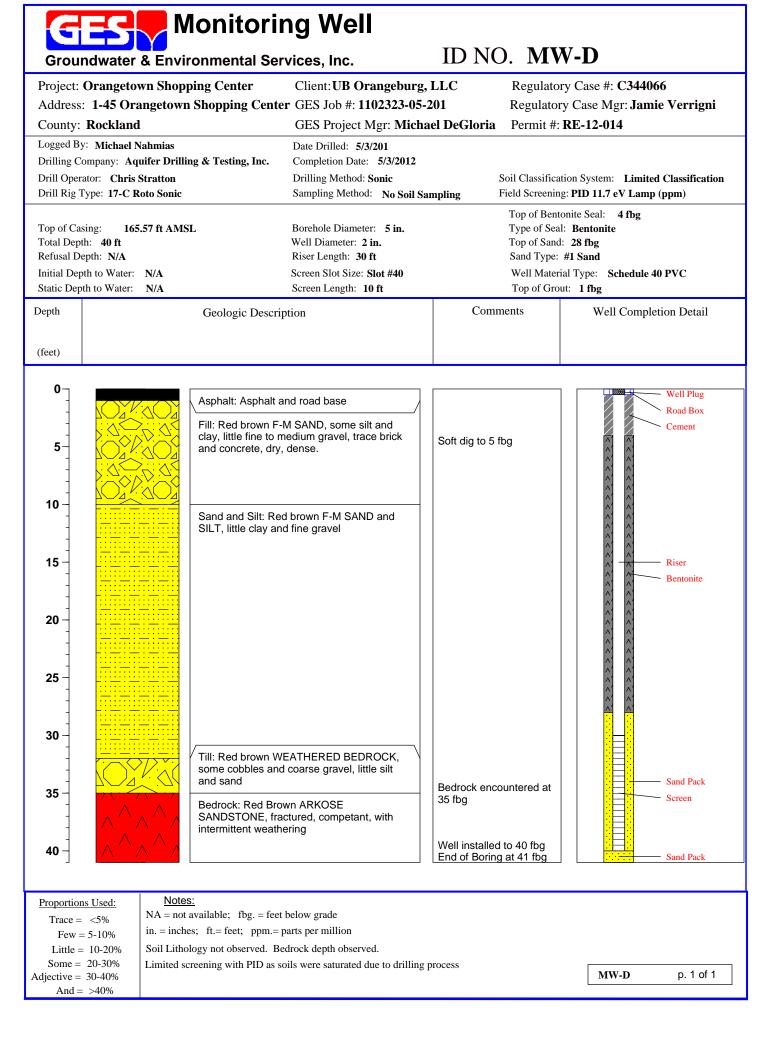


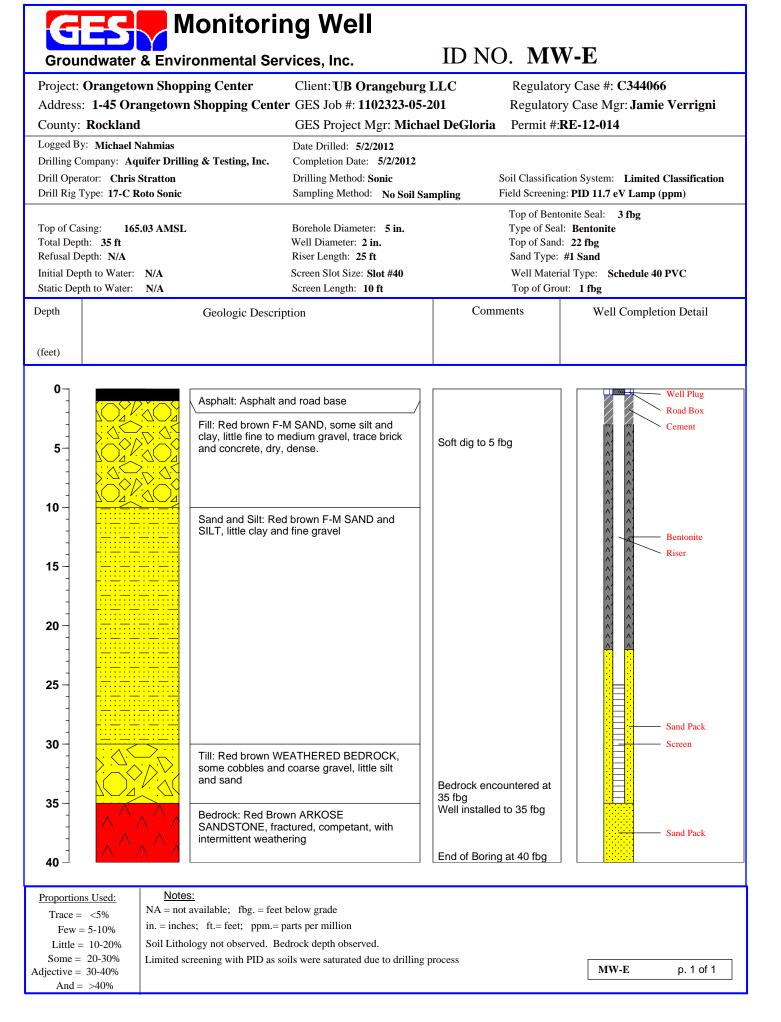


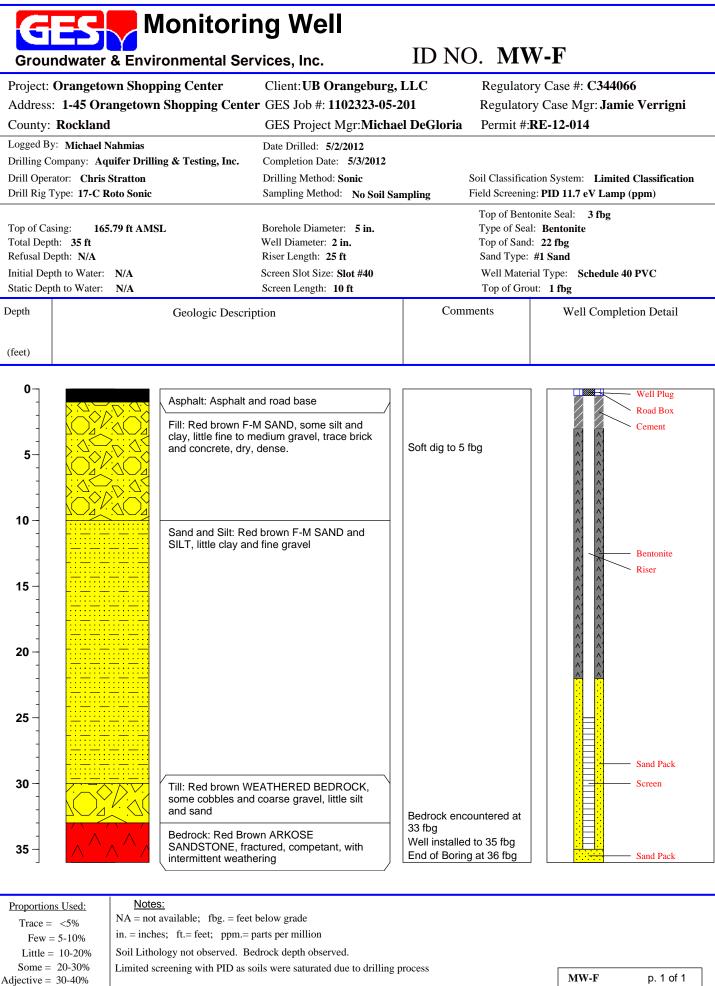












And = >40%

Appendix E – Soil SCOs

Location Sample ID	Cleanup C	Objectives		West Sidewall EX001W(4)-EX-1W(4)	South Sidewall EX001S(4)-EX-1S(4)	Bottom, north section EX001BN(4)-EX-1BN(4)	East Sidewall, south section EX001ES(4)-EX-1ES(4)
SAMPLING DATE	Dublic Hoalth	Protection of		14-Jan-09	14-Jan-09	14-Jan-09	14-Jan-09
LAB SAMPLE ID		Groundwater	11	L0900616-01	L0900616-04	L0900616-05	L0900616-06
ANALYTE Volatile Organics by EPA 826	Commercial		Units	Qual	Qual	Qual	Qual
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	-	-	-	-
1,1,1-Trichloroethane	500	0.68	mg/kg		-	-	-
1,1,2,2-Tetrachloroethane	NE		mg/kg		-	-	-
1,1,2-Trichloroethane	NE		mg/kg		-	-	-
1,1-Dichloroethane 1,1-Dichloroethene	240 500	0.27 0.33	mg/kg		-	-	-
1,1-Dichloropropene	NE	NE	mg/kg mg/kg		-	-	-
1,2,3-Trichlorobenzene	NE	NE	mg/kg		-	-	-
1,2,3-Trichloropropane	NE	NE	mg/kg		-	-	-
1,2,4,5-Tetramethylbenzene	NE		mg/kg		-	-	-
1,2,4-Trichlorobenzene	NE 100		mg/kg		-	-	-
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	190 NE	3.6 NE	mg/kg mg/kg		-	-	-
1,2-Dibromoethane	NE	NE	mg/kg		-	-	-
1,2-Dichlorobenzene	500	1.1	mg/kg		-	-	-
1,2-Dichloroethane	NE	0.02	mg/kg	-	-	-	-
1,2-Dichloropropane	NE	NE	mg/kg		-	-	-
1,3,5-Trimethylbenzene	190	NE	mg/kg		-	-	-
1,3-Dichlorobenzene 1,3-Dichloropropane	280 NE	2.4 NE	mg/kg		-	-	-
1,3-Dichloropropane	130	NE 1.8	mg/kg mg/kg		-		-
1,4-Diethylbenzene	NE		mg/kg		-	-	-
2,2-Dichloropropane	NE		mg/kg		-	-	-
2-Butanone	500	0.12	mg/kg		-	-	-
2-Hexanone	NE	NE	mg/kg		-	-	-
4-Ethyltoluene	NE	NE	mg/kg		-	-	-
4-Methyl-2-pentanone	NE 500	NE 0.05	mg/kg		-	-	-
Acetone Acrylonitrile	NE SUU	0.05 NE	mg/kg mg/kg		-	-	-
Benzene	44		mg/kg		-	-	-
Bromobenzene	NE		mg/kg		-	-	-
Bromochloromethane	NE	NE	mg/kg		-	-	-
Bromodichloromethane	NE	NE	mg/kg		-	-	-
Bromoform	NE		mg/kg		-	-	-
Bromomethane Carbon disulfide	NE NE		mg/kg		-	-	-
Carbon tetrachloride	22		mg/kg mg/kg		-	-	-
Chlorobenzene	500	1.1	mg/kg		-	-	-
Chloroethane	NE	NE	mg/kg		-	-	-
Chloroform	350	0.37	mg/kg		-	-	-
Chloromethane	NE		mg/kg		-	-	-
cis-1,2-Dichloroethene	500 NE	0.25 NE	mg/kg		-	-	-
cis-1,3-Dichloropropene Dibromochloromethane	NE	NE	mg/kg mg/kg		-	-	-
Dibromomethane	NE	NE	mg/kg		-	-	-
Dichlorodifluoromethane	NE		mg/kg		-	-	-
Ethylbenzene	390	1	mg/kg	-	-	-	-
Hexachlorobutadiene	NE		mg/kg		-	-	-
Isopropylbenzene	NE 500		mg/kg		-	-	-
Methyl tert butyl ether Methylene chloride	500 500		mg/kg mg/kg		-	-	-
n-Butylbenzene	NE	0.05 NE	mg/kg		-	-	-
n-Propylbenzene	500		mg/kg		-	-	-
Naphthalene	500	12	mg/kg	-	-	-	-
o-Chlorotoluene	NE	NE	mg/kg		-	-	-
o-Xylene	500	NE	mg/kg		-	-	-
p-Chlorotoluene	NE NE	NE NE	mg/kg		-	-	-
p-lsopropyltoluene p/m-Xylene	500		mg/kg mg/kg		-	-	-
sec-Butylbenzene	500		mg/kg		-	-	-
Styrene	NE		mg/kg		-	-	-
tert-Butylbenzene	500	5.9	mg/kg	-	-	-	-
Tetrachloroethene	150	1.3	mg/kg		-	-	-
Toluene	500	0.7	mg/kg		-	-	-
trans-1,2-Dichloroethene	500 NE	0.19 NE	mg/kg		-	-	-
trans-1,3-Dichloropropene Trichloroethene	200	NE 0.47	mg/kg mg/kg		-	-	
Trichlorofluoromethane	NE	NE	mg/kg		-	-	
Vinyl acetate	NE		mg/kg		-	-	-
Vinyl chloride	13		mg/kg		-	-	-

Location Sample ID	Cleanup C	-		West Sidewall EX001W(4)-EX-1W(4)		South Sidewall EX001S(4)-EX-1S(4))	Bottom, north section EX001BN(4)-EX-1BN(4)	1	East Sidewall, south s EX001ES(4)-EX-1ES(4)	
SAMPLING DATE		Protection of		14-Jan-09		14-Jan-09		14-Jan-09		14-Jan-09	
LAB SAMPLE ID	Public Health	Groundwater		L0900616-01		L0900616-04		L0900616-05		L0900616-06	
ANALYTE	Commercial		Units		Qual		Qual		Qual		Qual
Volatile Organics by EPA 826			100 m /l / m	0.02	11	1.0	11	0.060	11	0.057	
1,1,1,2-Tetrachloroethane	NE 500	NE 0.68	mg/kg mg/kg	0.23	U U	1.2 1.2	U U	0.062	U U	0.057	U U
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
1,1,2-Trichloroethane	NE	NE	mg/kg	0.34	Ŭ	1.8	Ŭ	0.094	Ŭ	0.085	Ŭ
1,1-Dichloroethane	240	0.27	mg/kg	0.34	U	1.8	Ū	0.094	Ū	0.085	Ū
1,1-Dichloroethene	500	0.33	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
1,1-Dichloropropene	NE	NE	mg/kg	1.1	U	6	U	0.31	U	0.28	U
1,2,3-Trichlorobenzene	NE	NE	mg/kg	1.1	U	6	U	0.31	U	0.28	U
1,2,3-Trichloropropane	NE	NE	mg/kg	2.3	U	12	U	0.62	U	0.57	U
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	0.92	U	4.8	U	0.25	<u>U</u>	0.23	<u>U</u>
1,2,4-Trichlorobenzene	NE 100	NE	mg/kg	1.1	U	6	U U	0.31	U U	0.28	<u> </u>
1,2,4-Trimethylbenzene 1,2-Dibromo-3-chloropropane	190 NE	3.6 NE	mg/kg	1.1 1.1	U U	6 6	U	0.31	U	0.28	U U
1,2-Dibromoethane	NE	NE	mg/kg mg/kg	0.92	U	4.8	U	0.25	U	0.28	U
1,2-Dichlorobenzene	500	N⊑ 1.1	mg/kg	1.1	U	4.0 6	U	0.23	U	0.23	U
1,2-Dichloroethane	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
1,2-Dichloropropane	NE	NE	mg/kg	0.8	U	4.2	U	0.22	U	0.2	U
1,3,5-Trimethylbenzene	190	8.4	mg/kg	1.1	Ŭ	6	Ŭ	0.31	Ŭ	0.28	Ŭ
1,3-Dichlorobenzene	280	2.4	mg/kg	1.1	U	6	U	0.31	U	0.28	U
1,3-Dichloropropane	NE	NE	mg/kg	1.1	U	6	U	0.31	U	0.28	U
1,4-Dichlorobenzene	130	1.8	mg/kg	1.1	U	6	U	0.31	U	0.28	U
1,4-Diethylbenzene	NE	NE	mg/kg	0.92	U	4.8	U	0.25	U	0.23	U
2,2-Dichloropropane	NE	NE	mg/kg	1.1	U	6	U	0.31	U	0.28	U
2-Butanone	500	0.12	mg/kg	2.3	U	12	U	0.62	U	0.57	U
2-Hexanone	NE	NE	mg/kg	2.3	U	12	U	0.62	<u>U</u>	0.57	<u> </u>
4-Ethyltoluene	NE	NE	mg/kg	0.92	U	4.8	U	0.25	U	0.23	U
4-Methyl-2-pentanone	NE 500	NE 0.05	mg/kg	2.3	U	12	U	0.62	U	0.57	U U
Acetone Acrylonitrile	500 NE	0.05 NE	mg/kg	2.3 2.3	U U	12 12	U U	0.62 0.62	U U	0.57 0.57	U
Benzene	N⊑ 44	0.06	mg/kg mg/kg		U	12	U	0.02	U	0.057	U
Bromobenzene	NE	NE	mg/kg	1.1	U	6	U	0.31	U	0.28	U
Bromochloromethane	NE	NE	mg/kg	1.1	Ŭ	6	Ŭ	0.31	Ŭ	0.28	Ŭ
Bromodichloromethane	NE	NE	mg/kg	0.23	U	1.2	U	0.062	Ū	0.057	Ū
Bromoform	NE	NE	mg/kg	0.92	U	4.8	U	0.25	U	0.23	U
Bromomethane	NE	NE	mg/kg	0.46	U	2.4	U	0.12	U	0.11	U
Carbon disulfide	NE	NE	mg/kg	2.3	U	12	U	0.62	U	0.57	U
Carbon tetrachloride	22	0.76	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
Chlorobenzene	500	1.1	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
Chloroethane	NE	NE	mg/kg	0.46	U	2.4	U	0.12	U	0.11	<u> </u>
Chloroform	350	0.37	mg/kg	0.34	U	1.8	U	0.094	<u>U</u>	0.085	<u> </u>
Chloromethane	NE 500	NE 0.25	mg/kg	1.1	U	6	U	0.31	U	0.28	U
cis-1,2-Dichloroethene cis-1,2-Dichloroethene	500 500	0.25	mg/kg	1.1		140		0.11		3.2	
cis-1,3-Dichloropropene	NE	NE	mg/kg mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
Dibromochloromethane	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U U	0.057	U
Dibromomethane	NE	NE	mg/kg	2.3	U	12	U	0.62	U	0.57	<u> </u>
Dichlorodifluoromethane	NE	NE	mg/kg	2.3	Ŭ	12	Ŭ	0.62	Ŭ	0.57	Ŭ
Ethylbenzene	390	1	mg/kg	0.23	U	1.2	Ū	0.062	Ū	0.057	Ū
Hexachlorobutadiene	NE	NE	mg/kg	1.1	Ū	6	Ŭ	0.31	Ū	0.28	Ŭ
Isopropylbenzene	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
Methyl tert butyl ether	500	0.93	mg/kg	0.46	U	2.4	U	0.12	U	0.11	U
Methylene chloride	500	0.05	mg/kg	2.3	U	12	U	0.62	U	0.57	U
n-Butylbenzene	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
n-Propylbenzene	500	3.9	mg/kg	0.23	U	1.2	U	0.062	<u>U</u>	0.057	<u> </u>
Naphthalene	500	12 NF	mg/kg	1.1	U	6	U	0.31	U	0.28	U
o-Chlorotoluene	NE 500	NE 1.6	mg/kg	1.1	U	6	U	0.31	U	0.28	U
o-Xylene	500	1.6	mg/kg	0.46	U	2.4	U	0.12	U	0.11 0.28	U
p-Chlorotoluene p-lsopropyltoluene	NE NE	NE NE	mg/kg mg/kg	1.1 0.23	U U	6 1.2	U U	0.31	U U	0.28	U U
p/m-Xylene	500	 1.6	mg/kg	0.23	U	2.4	U	0.002	U	0.037	U
sec-Butylbenzene	500	1.0	mg/kg	0.40	U	1.2	U	0.062	U	0.057	U
Styrene	NE	NE	mg/kg	0.25	U	2.4	U	0.12	U	0.037	U
tert-Butylbenzene	500	5.9	mg/kg	1.1	U	6	U	0.31	U	0.28	U
Tetrachloroethene	150	1.3	mg/kg	16	-	3.2	-	0.093		0.13	-
Toluene	500	0.7	mg/kg	0.34	U	1.8	U	0.094	U	0.085	U
trans-1,2-Dichloroethene	500	0. 1 9	mg/kg								
trans-1,2-Dichloroethene	500	0. 1 9	mg/kg	0.34	U	2.3		0.24		0.13	
trans-1,3-Dichloropropene	NE	NE	mg/kg	0.23	U	1.2	U	0.062	U	0.057	U
Trichloroethene	200	0.47	mg/kg							-	
Trichloroethene	200	0.47	mg/kg			4		0.062	U	0.057	U
Trichlorofluoromethane	NE	NE	mg/kg		U	6	U	0.31	U	0.28	U
Vinyl acetate	NE	NE 0.02	mg/kg	2.3	U	12	U	0.62	U	0.57	U
Vinyl chloride	13 13	0.02	mg/kg	0.40	U	05		0.40	U	0.98	
Vinyl chloride	13	0.02	mg/kg	0.46	U	25		0.12	U	0.98	

LAB SAMPLE IT Public Health Groundwater Protection of condwater L0900616-01 L0900616-05 L090 24AUTYE Commercial Outload Qual Qual Qual Qual Qual Semi-Volatile Organics by GC/MS 12.45-51ettachorbenzene NS NS ng/kg - - - - - - 12.45-1ettachorbenzene NS ng/kg - <t< th=""><th>Jan-09 00616-06 Qual - - - - - - - - - - - - -</th></t<>	Jan-09 00616-06 Qual - - - - - - - - - - - - -
ANALYTE Commercial Units Qual Qual Qual Qual Sent-Volatile Organics by GC/MS 12,45,7=tackforobenzene NS mg/g - - - - 12,45,7=tackforobenzene NS NS mg/g - - - - 1,2:Dichorobenzene NS NS mg/g - - - - 1,4:Dichorobenzene NS NS mg/g - - - - - 1,4:Dichorobenzene NS NS mg/g -	Qual - - - - - - - -
Semi-Volatile Organics by GC/MS 1.2,4.5-Interactionobenzene NS mg/kg - - - - - - 1.2 - - - - - - 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.3 1.2 1	- - - - - - - - - -
1.2.4.5-Tetrachlorobenzene NS NS mg/kg - - - 1.2.4-Trichlorobenzene NS NS mg/kg - - - - 1.3.Dichlorobenzene NS NS mg/kg - - - - 1.4.Dichlorobenzene NS NS mg/kg - - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - - 2.4-Dintrophenol NS NS mg/kg	- - - - -
1.2-Dichlorobenzene NS mg/kg - - - 1.3-Dichlorobenzene NS NS mg/kg - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - 2.4.0-Trichlyphenol NS NS mg/kg - - - 2.4-Dinthyphenol S00 0.33 mg/kg - - - 2.4-Dinthyphenol S00 0.33 mg/kg -	- - - - -
1.3-Dichlorobenzene NS mg/kg - - - 1.4-Dichlorobenzene NS NS mg/kg - - - - - - - 24.9 - - - - - 24.9 - - - - 24.2 - - - - - - 24.2 - - - - - - 24.2 - - - - - - 24.2 - - - - - - - 24.2 - - - - - - - - 24.2 -	- - - -
1.4-Dichlorobenzene NS NS mg/kg - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - - - - - - - - - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - - - - 2.4-Dichlorophenol NS NS mg/kg - - - - 2.4-Dichlorophenol NS NS mg/kg - - - - 2.4-Dichlorophenol NS NS mg/kg - - - - 2.4-Dichlorophenol NS NS Mg/kg - -	- - -
2.4.5-Trichlorophenol NS NS mg/kg - - - 2.4.5-Trichlorophenol NS NS mg/kg - - - - 2.4-Dicthorophenol NS NS mg/kg - - - - 2.4-Dinthylphenol NS NS mg/kg - - - - - 2.4-Dinthylphenol NS NS mg/kg - - - - - - - - - -	-
2.4.6-Trichlorophenol NS NS mg/kg - - - - 2.4-Dichlorophenol NS NS mg/kg - <t< td=""><td>- -</td></t<>	- -
2.4-Dichlorophenol NS mg/kg - - - 2.4-Dimethylphenol NS NS mg/kg - - - 2.4-Dinitroblenol NS NS mg/kg - - - 2.4-Dinitrobluene NS NS mg/kg - - - 2.6-Dinitrotoluene NS NS mg/kg - - - 2.6-Dinitrotoluene NS NS mg/kg - - - 2.6-Initrotoluene NS NS mg/kg - - - 2.4-Methylphenol SO 0.33 mg/kg - - - 2.4-Methylphenol/4-Methylphenol NS NS mg/kg -	-
2.4-Dimethylphenol NS mg/kg - - - 2.4-Dinitrophenol NS NS mg/kg - - - 2.4-Dinitrobluene NS NS mg/kg - - - 2.6-Dinitrobluene NS NS mg/kg - - - 2.6-Dinitrobluene NS NS mg/kg - - - 2.Chlorophthalene NS NS mg/kg - - - 2.Mitrophthalene NS NS mg/kg - - - 2.Mitrophthalene NS NS mg/kg - - - 2.Mitrophthalene NS NS mg/kg - - - 2.Nitrophthalene NS NS mg/kg - - - 2.Nitrophthalene NS NS mg/kg - - - 3.3-Dichlorobenzidine NS NS mg/kg - -	
2.4-Dinitrophenol NS NS mg/kg - - - 2.4-Dinitrotoluene NS NS mg/kg - - - - 2.6-Dinitrotoluene NS NS mg/kg - - - - 2.6-Dinitrotoluene NS NS mg/kg - - - - 2.6-Dinitrotoluene NS NS mg/kg - - - - 2.0-Inorophenol NS NS mg/kg - - - - 2.Methylphenol 500 0.33 mg/kg - - - - 2.Nitrophenol NS NS mg/kg - - - - 3.3-Dichlorobenzidine NS NS mg/kg - - - - 3.4Methylphenol/4-Methylpheno NS NS mg/kg - - - - 3.4Dirlyhphenol/Hohenyl ether NS NS mg/kg	- - - -
2,6-Dinitrotoluene NS NS mg/kg - - - 2-Chlorophenol NS NS mg/kg - - - - 2-Chlorophenol NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Mitrophenol NS NS mg/kg - - - - 3-Dichlorobenzidine NS NS mg/kg - - - - 3-Mitroaniline NS NS mg/kg - - - - 4-Bromophenyl phenyl ether NS NS mg/kg - - - - 4-Chloroaniline NS NS mg/kg -	
2-Chloronaphthalene NS MS mg/kg - - - 2-Chlorophenol NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Nitrophenol NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - - 3.4 Dichorobenzidine NS NS mg/kg -	- - -
2-Chlorophenol NS NS mg/kg - - - 2-Methylnaphthalene NS NS mg/kg - - - - 2-Methylphenol 500 0.33 mg/kg - - - - 2-Nitroaniline NS NS mg/kg - - - - 2-Nitroaniline NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - 3.4 Dichlorobenzidine NS NS mg/kg - - - - - 3.4 Dichlorobenzidine NS MS mg/kg - - - - - 4.6 Dinitro-o-cresol NS NS<	-
2-Methylnaphthalene NS NS mg/kg - - - 2-Methylphenol 500 0.33 mg/kg - - - 2-Nitroaniline NS NS mg/kg - - - 2-Nitrophenol NS NS mg/kg - - - 3.7-Dichlorobenzidine NS NS mg/kg - - - 3.4-Methylphenol/4-Methylpheno NS NS mg/kg - - - 3.4-Nitroaniline NS NS mg/kg - - - - 4.6-Dinitro-ocresol NS NS mg/kg - - - - 4.6-Dinitro-ocresol NS NS mg/kg - - - - 4.7-Chloroaniline NS NS mg/kg - - - - 4-Chlorophenyl phenyl ether NS NS mg/kg - - - -	-
2-Methylphenol 500 0.33 mg/kg - - - 2-Nitroaniline NS NS mg/kg - - - 2-Nitrophenol NS NS mg/kg - - - 3.3-Dichlorobenzidine NS NS mg/kg - - - 3.4-Methylphenol/4-Methylpheno NS NS mg/kg - - - 3.4-Dichlorobenzidine NS NS mg/kg - - - 3-Methylphenol/4-Methylpheno NS NS mg/kg - - - 3-Nitroaniline NS NS mg/kg - - - 4.6-Dinitro-o-cresol NS NS mg/kg - - - 4-Bromophenyl phenyl ether NS MS mg/kg - - - 4-Chloroaniline NS NS mg/kg - - - 4-Nitroaniline NS NS mg/kg	
2-Nitroaniline NS NS mg/kg - - 2-Nitrophenol NS NS mg/kg - - - 3.3-Dichlorobenzidine NS NS mg/kg - - - 3.4Dethylphenol/4-Methylpheno NS NS mg/kg - - - 3-Nitroaniline NS NS mg/kg - - - 4.6-Dinitro-o-cresol NS NS mg/kg - - - 4-Bromophenyl phenyl ether NS NS mg/kg - - - 4-Chloroaniline NS NS mg/kg - - - 4-Chlorophenyl phenyl ether NS NS mg/kg - - - 4-Chlorophenyl phenyl ether NS NS mg/kg - - - 4-Nitroaniline NS NS mg/kg - - - Acenaphthene 500 107 mg/kg	-
2-NitrophenolNSNSmg/kg3,3'-DichlorobenzidineNSNSmg/kg3-Methylphenol/4-MethylphenoNSNSmg/kg3-NitroanilineNSNSmg/kg4,6-Dinitro-o-cresolNSNSmg/kg4-Bromophenyl phenyl etherNSNSmg/kg4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg </td <td>-</td>	-
3,3'-DichlorobenzidineNSNSmg/kg3-Methylphenol/4-MethylphenoNSNSmg/kg3-NitroanilineNSNSmg/kg4,6-Dinitro-o-cresolNSNSmg/kg4-Bromophenyl phenyl etherNSNSmg/kg4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kg4-NitrophenolNSNSmg/kgAcenaphthene500107mg/kgAcetophenoneNSNSmg/kgAnthracene5001000mg/kgBenzo(a)anthracene5.61mg/kg	-
3-Methylphenol/4-MethylphenoNSNSmg/kg3-NitroanilineNSNSmg/kg4,6-Dinitro-o-cresolNSNSmg/kg4-Bromophenyl phenyl etherNSNSmg/kg4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kgAcenaphthene50098mg/kgAcetophenoneNSNSmg/kgAnthracene5001000mg/kgBenzo(a)anthracene5.61mg/kg	-
3-NitroanilineNSNSmg/kg4,6-Dinitro-o-cresolNSNSmg/kg4-Bromophenyl phenyl etherNSNSmg/kg4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kgAcenaphthylene500107mg/kgAcetophenoneNSNSmg/kgActophenoneNSNSmg/kgAcetophenoneNSNSmg/kgAnthracene5001000mg/kgBenzo(a)anthracene5.61mg/kg	-
4-Bromophenyl phenyl etherNSNSmg/kg4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kg4-NitrophenolNSNSmg/kg<	-
4-ChloroanilineNSNSmg/kg4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kg4-NitrophenolNSNSmg/kgAcenaphthene50098mg/kgAcenaphthylene500107mg/kgAcetophenoneNSNSmg/kgAnthracene5001000mg/kgBenzo(a)anthracene5.61mg/kg	-
4-Chlorophenyl phenyl etherNSNSmg/kg4-NitroanilineNSNSmg/kg4-NitrophenolNSNSmg/kgAcenaphthene50098mg/kgAcenaphthylene500107mg/kg	-
4-Nitroaniline NS NS mg/kg -	-
4-Nitrophenol NS NS mg/kg -	-
Acenaphthene 500 98 mg/kg -	-
Acenaphthylene 500 107 mg/kg -	-
Acetophenone NS NS mg/kg -	-
Anthracene 500 1000 mg/kg -	-
	-
	-
Benzo(a)pyrene 1 22 mg/kg - - -	-
Benzo(b)fluoranthene 5.6 1.7 mg/kg	-
Benzo(ghi)perylene 500 1000 mg/kg	-
Benzo(k)fluoranthene 56 1.7 mg/kg - - - - Benzoic Acid NS NS mg/kg - - - -	-
Benzyl Alcohol NS NS mg/kg	-
Biphenyl NS NS mg/kg	_
Bis(2-chloroethoxy)methane NS NS mg/kg	-
Bis(2-chloroethyl)ether NS NS mg/kg	-
Bis(2-chloroisopropyl)ether NS NS mg/kg	-
Bis(2-Ethylhexyl)phthalate NS NS mg/kg	-
Butyl benzyl phthalate NS NS mg/kg	-
Carbazole NS NS mg/kg	-
Chrysene 56 1 mg/kg - - - Di-n-butylphthalate NS NS mg/kg - - -	-
Di-n-butylphthalate NS NS mg/kg Di-n-octylphthalate NS NS mg/kg	-
Dienzo(a,h)anthracene 0.56 1000 mg/kg	-
Dibenzofuran NS NS mg/kg	-
Diethyl phthalate NS NS mg/kg	-
Dimethyl phthalate NS NS mg/kg	-
Fluoranthene 500 1000 mg/kg	-
Fluoranthene 500 1000 mg/kg	-
Fluorene 500 386 mg/kg - - - Humahlandarana NO NO NO mg/kg -	-
Hexachlorobenzene NS NS mg/kg	-
Hexachlorobutadiene NS NS mg/kg - - - Hexachlorocyclopentadiene NS NS mg/kg - - -	-
Hexachloroethane NS NS mg/kg	-
Indeno(1,2,3-cd)Pyrene 5.6 8.2 mg/kg	_
Isophorone NS NS mg/kg	-
n-Nitrosodi-n-propylamine NS NS mg/kg	-
Naphthalene 500 12 mg/kg	-
Nitrobenzene NS NS mg/kg	-
NitrosoDiPhenylAmine(NDPA)/ NS NS mg/kg	-
P-Chloro-M-Cresol NS NS mg/kg	
Pentachlorophenol 6.7 0.8 mg/kg - - - - Phenanthrene 500 1000 mg/kg - - - -	-
Phenanthrene 500 1000 mg/kg - - - Phenol 500 0.33 mg/kg - - - -	-
Pyrene 500 1000 mg/kg	- - -
Pyrene 500 1000 mg/kg	- - -

Location	Cleanup (ricted Use Soil Objectives		West Sidewall	South Sidewall	Bottom, north section	East Sidewall, south section
Sample ID		3-0.09(D)		EX001W(4)-EX-1W(4)	EX001S(4)-EX-1S(4)	EX001BN(4)-EX-1BN(4)	EX001ES(4)-EX-1ES(4)
SAMPLING DATE	Dublic Health	Protection of		14-Jan-09	14-Jan-09	14-Jan-09	14-Jan-09
LAB SAMPLE ID	Commercial	Groundwater	Units	L0900616-01 Qual	L0900616-04 Qual	L0900616-05 Qual	L0900616-06 Qual
Semi-Volatile Organics by G			Units	Qua	હ્યવા	Quai	હ્યવા
2-Chloronaphthalene	NS	NS	mg/kg	-	-	-	-
2-Methylnaphthalene	NS	NS	mg/kg	-	-	-	-
2-Methylnaphthalene	NS	NS	mg/kg	-	-	-	-
Acenaphthene	500	98	mg/kg	-	-	-	-
Acenaphthene	500	98	mg/kg	-	-	-	-
Acenaphthylene	500	107	mg/kg	-	-	-	-
Anthracene	500	1000	mg/kg	-	-	-	-
Anthracene Benzo(a)anthracene	500 5.6	1000 1	mg/kg mg/kg	-	-	-	-
Benzo(a)anthracene	5.6	1	mg/kg	-	-	-	-
Benzo(a)pyrene	1	22	mg/kg	-	_	-	-
Benzo(a)pyrene	1	22	mg/kg	-	-	-	-
Benzo(b)fluoranthene	5.6	1.7	mg/kg	-	-	-	-
Benzo(b)fluoranthene	5.6	1.7	mg/kg	-	-	-	-
Benzo(ghi)perylene	500	1000	mg/kg	-	-	-	-
Benzo(ghi)perylene	500	1000	mg/kg	-	-	-	-
Benzo(k)fluoranthene	56	1.7	mg/kg	-	-	-	-
Benzo(k)fluoranthene	56	1.7	mg/kg	-	-	-	-
Chrysene	56	1	mg/kg	-	-	-	-
Chrysene	56	1	mg/kg	-	-	-	-
Dibenzo(a,h)anthracene	0.56	1000	mg/kg	-	-	-	-
Dibenzo(a,h)anthracene Fluoranthene	0.56 500	1000 1000	mg/kg	-	-	-	-
Fluoranthene	500	1000	mg/kg mg/kg	-	-	-	-
Fluorene	500	386	mg/kg	_		_	
Fluorene	500	386	mg/kg	-	-	-	_
Hexachlorobenzene	NS	NS	mg/kg	-	-	-	-
Hexachlorobutadiene	NS	NS	mg/kg	-	-	-	-
Hexachloroethane	NS	NS	mg/kg	-	-	-	-
Indeno(1,2,3-cd)Pyrene	5.6	8.2	mg/kg	-	-	-	-
Indeno(1,2,3-cd)Pyrene	5.6	8.2	mg/kg	-	-	-	-
Naphthalene	500	12	mg/kg	-	-	-	-
Naphthalene	500 6.7	12	mg/kg	-	-	-	-
Pentachlorophenol Phenanthrene	6.7 500	0.8 1000	mg/kg	-	-	-	-
Phenanthrene	500	1000	mg/kg mg/kg	-	-	-	-
Pyrene	500	1000	mg/kg	_		_	
Pyrene	500	1000	mg/kg	-	-	-	-
Organochlorine Pesticides b						1	
4,4'-DDD	92	14	mg/kg	0.00388 U	-	0.00417 U	-
4,4'-DDE	62	17	mg/kg	0.00388 U	-	0.00562	-
4,4'-DDT	47	136	mg/kg	0.00388 U	-	0.00417 U	-
Aldrin Alpha-BHC	0.68 3.4	0.19 0.02	mg/kg	0.00388 U 0.00388 U	-	0.00417 U 0.00417 U	-
Alpha-BHC Beta-BHC	3.4	0.02	mg/kg mg/kg	0.00388 U 0.00388 U	-	0.00417 U 0.00417 U	
Chlordane	24	2.9	mg/kg	0.0388 U	-	0.00417 U	
Delta-BHC	500	0.25	mg/kg	0.00388 U	-	0.00417 U	-
Dieldrin	1.4	0.1	mg/kg	0.00388 U	-	0.00417 U	-
Endosulfan I	200	102	mg/kg	0.00388 U	-	0.00417 U	-
Endosulfan II	200	102	mg/kg	0.00388 U	-	0.00417 U	-
Endosulfan sulfate	200	1,000	mg/kg	0.00388 U	-	0.00417 U	-
Endrin Endrin ketone	89 NE	0.06 NE	mg/kg mg/kg	0.00388 U 0.00388 U	-	0.00417 U 0.00417 U	-
Heptachlor	15	0.38	mg/kg	0.00388 U	_	0.00417 U	
Heptachlor epoxide	NE	NE	mg/kg	0.00388 U	-	0.00417 U	-
Lindane	9.2	0.1	mg/kg	0.00388 U	-	0.00417 U	-
Methoxychlor	NE	NE	mg/kg	0.0155 U	-	0.0167 U	-
trans-Chlordane	NE	NE	mg/kg	0.00388 U	-	0.00417 U	-
Total Metals & Other Analyte		· ·=					
Iron, Total	NE	NE	mg/kg	13000	12000	13000	15000
Solids, Total pH	NE NE	NE NE	% SU	86 7.4	83 7.5	80 6.8	88 6.8
Total Organic Carbon (Rep1)	NE	NE	30 %	0.18	0.53	0.59	0.83
Total Organic Carbon (Rep2)	NE	NE	%	0.22	0.71	0.72	0.75
COD	NE	NE	mg/kg	12000 NOTES:	19000	28000	14000

NOTES:

U = Not detected at or above the reported limit; tabulated value is the reported limit.

NE = Not Established

mg/kg = milligrams per kilogram Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

NA = Not Available

Location	NYSDEC Rest			Bottom, south section	Bottom, north	Sparkle		Sparkle	Sparkle
	a search of the second second second	Objectives			section	Cleaners		Cleaners	Cleaners
Sample ID	Table 37	0-0.89(0)		EX001BS(4)-EX-1BS(4)	DUPLICATE	B1, 10-12		B2, 10-12	B3, 10-12
SAMPLING DATE		Protection of		14-Jan-09	14-Jan-09	24-Feb-09		24-Feb-09	25-Feb-09
LAB SAMPLE ID	Public Health	Groundwater		L0900616-07	L0900616-10	L0902559-01		L0902559-02	L0902559-03
ANALYTE	Commercial		Units	Qual			Qual	Qual	Qual
Volatile Organics by EPA 826									
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	-	-	0.00083	U	-	-
1,1,1-Trichloroethane	500	0.68	mg/kg	-	-	0.00083	U	-	-
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	-	-	0.00083	U	-	-
1,1,2-Trichloroethane	NE	NE	mg/kg	-	-	0.0012	U	-	-
1,1-Dichloroethane	240	0.27	mg/kg	-	-	0.0012	U	-	-
1,1-Dichloroethene 1,1-Dichloropropene	500 NE	0.33 NE	mg/kg	-	-	0.00083 0.0042	U U	-	-
1,2,3-Trichlorobenzene	NE	NE	mg/kg mg/kg	-	-	0.0042	U	-	-
1,2,3-Trichloropropane	NE	NE	mg/kg	-	-	0.0042	U	-	-
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	-	-	0.0033	U	-	-
1,2,4-Trichlorobenzene	NE	NE	mg/kg	-	-	0.0042	U	-	-
1,2,4-Trimethylbenzene	190	3.6	mg/kg	-	-	0.0042	U	-	-
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	-	-	0.0042	U	-	-
1,2-Dibromoethane	NE	NE	mg/kg	-	-	0.0033	U	-	-
1,2-Dichlorobenzene	500	1.1	mg/kg	-	-	0.0042	U	-	-
1,2-Dichloroethane	NE NE	0.02 NE	mg/kg	-	-	0.00083 0.0029	U U	-	-
1,2-Dichloropropane 1,3,5-Trimethylbenzene	NE 190	NE NE	mg/kg mg/kg	-	-	0.0029	U	-	
1,3-Dichlorobenzene	280	2.4	mg/kg	-	-	0.0042	U	-	-
1,3-Dichloropropane	NE	NE	mg/kg	-	-	0.0042	U	-	-
1,4-Dichlorobenzene	130	1.8	mg/kg	-	-	0.0042	U	-	-
1,4-Diethylbenzene	NE	NE	mg/kg	-	-	0.0033	U	-	-
2,2-Dichloropropane	NE	NE	mg/kg	-	-	0.0042	U	-	-
2-Butanone	500	0.12	mg/kg	-	-	0.0083	U	-	-
2-Hexanone	NE	NE	mg/kg	-	-	0.0083	U	-	-
4-Ethyltoluene	NE	NE	mg/kg	-	-	0.0033	U	-	-
4-Methyl-2-pentanone Acetone	NE 500	NE 0.05	mg/kg	-	-	0.0083	U	-	-
Acrylonitrile	NE	NE	mg/kg mg/kg	-	-	0.0083	U	-	-
Benzene	44	0.06	mg/kg	-		0.00083	U	-	
Bromobenzene	NE	NE	mg/kg	-	_	0.0042	Ŭ	-	-
Bromochloromethane	NE	NE	mg/kg	-	-	0.0042	U	-	-
Bromodichloromethane	NE	NE	mg/kg	-	-	0.00083	U	-	-
Bromoform	NE	NE	mg/kg	-	-	0.0033	U	-	-
Bromomethane	NE	NE	mg/kg	-	-	0.0017	U	-	-
Carbon disulfide	NE	NE	mg/kg	-	-	0.0083	U	-	-
Carbon tetrachloride Chlorobenzene	22 500	0.76 1.1	mg/kg	-	-	0.00083	U U	-	-
Chloroethane	NE	NE	mg/kg mg/kg	-	-	0.00083	U	-	-
Chloroform	350	0.37	mg/kg	_	_	0.0017	U	-	
Chloromethane	NE	NE	mg/kg	-	_	0.0042	Ŭ	-	-
cis-1,2-Dichloroethene	500	0.25	mg/kg	-	-	0.036	-	-	-
cis-1,3-Dichloropropene	NE	NE	mg/kg	-	-	0.00083	U	-	-
Dibromochloromethane	NE	NE	mg/kg	-	-	0.00083	U	-	-
Dibromomethane	NE	NE	mg/kg	-	-	0.0083	U	-	-
Dichlorodifluoromethane	NE	NE	mg/kg	-	-	0.0083	U	-	-
Ethylbenzene	390	1 NE	mg/kg	-	-	0.00083	<u>U</u>	-	-
Hexachlorobutadiene Isopropylbenzene	NE NE	NE NE	mg/kg mg/kg	-		0.0042 0.00083	U U		
Methyl tert butyl ether	NE 500	NE	mg/kg mg/kg	-		0.00083	U		
Methylene chloride	500 500	0.05	mg/kg	-	-	0.0017	U	-	
n-Butylbenzene	NE	NE	mg/kg	-	-	0.00083	U	-	-
n-Propylbenzene	500	3.9	mg/kg	-	-	0.00083	U	-	-
Naphthalene	500	12	mg/kg	-	-	0.0042	U	-	-
o-Chlorotoluene	NE	NE	mg/kg	-	-	0.0042	U	-	-
o-Xylene	500	NE	mg/kg	-	-	0.0017	U	-	-
p-Chlorotoluene	NE	NE	mg/kg	-	-	0.0042	<u> </u>	-	-
p-lsopropyltoluene	NE	NE	mg/kg	-	-	0.00083	U	-	-
p/m-Xylene	500 500	NE 11	mg/kg	-	-	0.0017 0.00083	U U	-	-
sec-Butylbenzene Styrene	500 NE	NE	mg/kg mg/kg	-		0.00083	U		
tert-Butylbenzene	500	5.9	mg/kg	-	-	0.0017	U	-	
Tetrachloroethene	150	1.3	mg/kg	-	-	0.0042	<u> </u>	-	-
Toluene	500	0.7	mg/kg	-	-	0.0012	U	-	- I
trans-1,2-Dichloroethene	500	0.19	mg/kg	-	-	0.0012	U	-	-
trans-1,3-Dichloropropene	NE	NE	mg/kg	-	-	0.00083	U	-	-
Trichloroethene	200	0.47	mg/kg	-	-	0.00083	U	-	-
Trichlorofluoromethane	NE	NE	mg/kg	-	-	0.0042	U	-	-
Vinyl acetate	NE	NE 0.02	mg/kg	-	-	0.0083	U	-	-
Vinyl chloride	13	0.02	mg/kg	-	-	0.0017	U	-	-

Sample ID Table 375-6.89(p) EX001BS(4)-EX-1BS(4) DUPLICATE B1, 10-12 B2, 10-12 B3, 10-12 SAMPLING DATE Protection of Groundwater Protection of Groundwater Protection of Groundwater Protection of Groundwater Protection of Groundwater 14-Jan-09 24-Feb-09 24-Feb-09 24-Feb-09 24-Feb-09 25-Feb-09 AVALYTE Commercial Units Coundwater L0900616-07 L0900616-10 L0902559-01 L0902559-02 L090259-02 L090259-01 L090259-01 L	Qual U
LAB SAMPLE ID Public Hearting Commercial Groundwater Units L0900616-07 L0900616-10 L0902559-01 L0902559-02 L0902559-02 ANALYTE Commercial Units Qual Q	Qual U
Volatile Organics by EPA 8260B/5035-Soil Analysis 11,12-Tertachloroethane NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1,12-Tichtoroethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,12-Tichtoroethane NE ME mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,12-Tichtoroethane NE ME mg/kg 0.089 U 0.062 U 0.15 U 1 U 0.44 1,1-Dichtoroethane 240 0.27 mg/kg 0.33 U 0.31 U 0.52 U 3.4 U 1.5 1,23-Tichtoroptopane NE NE mg/kg 0.3 U 0.62 U 1.4 U 6.9 U 2.9 1,24-Trichtoroptopane NE mg/kg 0.3 U	U U U U U U U U U U U U U U U U U U U
1,1,2-Tetrachloroethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1,2-Titachloroethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1,2-Titachloroethane NE NE mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethane 240 0.27 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethene 500 0.33 mg/kg 0.31 U 0.52 U 3.4 U 1.5 1,2.3-Trichloropopane NE ME mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.4-Trichtylbenzene NE Mg/kg 0.3 U 0.31 U 0.52 U 3.4 <t< th=""><th>U U U U U U U U U U U U U U U U U U U</th></t<>	U U U U U U U U U U U U U U U U U U U
1,1.1-Trichloroethane 500 0.68 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1.2-Trichloroethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,12-Trichloroethane NE mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethane 240 0.27 mg/kg 0.39 U 0.015 U 1 U 0.44 1,1-Dichloroethane 500 0.33 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.3-Trichloropropane NE ME mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2.4-Trichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U<	U U U U U U U U U U U U U U U U U U U
1,1,2-Tertachloroethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1,2-Trichloroethane NE mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethane 500 0.33 mg/kg 0.059 U 0.062 U 0.15 U 1 U 0.44 1,1-Dichloropopene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.3-Trichloropopane NE mg/kg 0.3 U 0.62 U 1 U 6.9 U 2.9 1,2.4-Trichlorobenzene NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.4-Trinebrybenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U	U U U U U U U U U U U U U U U U U U U
1,1,2-Trichloroethane NE NE mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethane 240 0.27 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethene 500 0.33 mg/kg 0.35 U 0.062 U 0.1 U 0.69 U 0.29 1,1-Dichloroethene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.3-Trichloropropane NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2.4-Trichlorobenzene NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2.4-Trichlorobenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U	U U U U U U U U U U U U U U U U U U U
1,1-Dichloroethane 240 0.27 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 1,1-Dichloroethene 500 0.33 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,1-Dichloroptopene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,3-Trichloroptopane NE ME mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2,4-Trichlorobenzene NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trichlorobenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trichlorobenzene 190 3.6 mg/kg 0.33 U 0.31 U 0.52 U </td <td>U U U U U U U U U U U U U U U U U U U</td>	U U U U U U U U U U U U U U U U U U U
1,1-Dichloropropene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,3-Trichloropropane NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2,4,5-Tetramethylbenzene NE NE mg/kg 0.3 U 0.62 U 1 U 6.9 U 2.9 1,2,4-Trichlorobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trinchylobenzene NE ME mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichloroporpane NE ME mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichloroporpane NE ME mg/kg 0.3 U 0.62 U 0.4 <t< td=""><td>U U U U U U U U U U U U U U U U U U U</td></t<>	U U U U U U U U U U U U U U U U U U U
1,2,3-Trichlorobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,3-Trichloropropane NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2,4-Trichlorobenzene NE ME mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trinehryblenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibromo-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibromo-3-chloropropane NE ME mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene 500 1.1 mg/kg 0.21 U 0.22 U <td< td=""><td>U U U U U U U U U U U U U U U U U U U</td></td<>	U U U U U U U U U U U U U U U U U U U
1,2,3-Trichloropropane NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 1,2,4,5-Tetramethylbenzene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2,4-Trichloroberzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Otorono-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Otorono-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene 500 1.1 mg/kg 0.31 U 0.52 U <	U U U U U U U U U U U U U U U U U U U
1,2,4,5-Tetramethylbenzene NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2,4-Trinchlorobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trinchlorobenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene NE Mg/kg 0.31 U 0.52 U 3.4 U 1.5 1,2-D	U U U U U U U U U U U U U U U U U U U
1,2,4-Trichlorobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2,4-Trimethylbenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibtromo-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibtromo-3-chloropropane NE NE mg/kg 0.3 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichloropetnane NE NE mg/kg 0.21 U 0.22 U 0.36 U 2.4 U 1 1,3-Dichloropenzene 190 8.4 mg/kg 0.3 U 0.31 U 0	U U U U U U U U U U U U U U U U U U U
1,2,4-Trimethylbenzene 190 3.6 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibromo-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibromoethane NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene NE mg/kg 0.21 U 0.22 U 0.36 U 2.4 U 1.5 1,3-Dichlorobenzene 180 8.4 mg/kg 0.3 U 0.31 U 0.52 U	
1,2-Dibromo-3-chloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dibromoethane NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,2-Dichloropropane NE ME mg/kg 0.21 U 0.32 U 0.36 U 2.4 U 1 1,3-Dichloropropane NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U <	
1,2-Dibromoethane NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 1,2-Dichlorobenzene 500 1.1 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,2-Dichlorobenzene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 1,2-Dichloropropane NE NE mg/kg 0.21 U 0.22 U 0.36 U 2.4 U 1 1,3-5Trimethylbenzene 190 8.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichlorobenzene 280 2.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Dichlorobenzene 130 1.8 mg/kg 0.3 U 0.31 U 0.52	U U U U U U U U U U U U U U U U U
1.2-Dichlorobenzene5001.1mg/kg0.3U0.31U0.52U3.4U1.51.2-DichloroethaneNENEmg/kg0.059U0.062U0.1U0.69U0.291.2-DichloropropaneNENEmg/kg0.21U0.22U0.36U2.4U11.3,5-Trimethylbenzene1908.4mg/kg0.3U0.31U0.52U3.4U1.51,3-Dichlorobenzene2802.4mg/kg0.3U0.31U0.52U3.4U1.51,3-DichloropropaneNENEmg/kg0.3U0.31U0.52U3.4U1.51,3-DichloropropaneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-Dichlorobenzene1301.8mg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.25U0.41U2.7U1.22,2-DichloropropaneNENEmg/kg0.59U0.62<	
1,2-Dichloropropane NE NE mg/kg 0.21 U 0.22 U 0.36 U 2.4 U 1 1,3,5-Trimethylbenzene 190 8.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichlorobenzene 280 2.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichloropopane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Dichlorobenzene 130 1.8 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Dichlorobenzene NE ME mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 2,2-Dichloropropane NE ME mg/kg 0.31 U 0.52 U 3.4	
1,3,5-Trimethybenzene 190 8.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichlorobenzene 280 2.4 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichlorobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,3-Dichloroppane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Dichlorobenzene 130 1.8 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Dichlorobenzene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 2,2-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 2,2-Dichloropropane NE NE mg/kg	
1,3-Dichlorobenzene2802.4mg/kg0.3U0.31U0.52U3.4U1.51,3-DichloropropaneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-Dichlorobenzene1301.8mg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.24U0.25U0.41U2.7U1.22,2-DichloropropaneNENEmg/kg0.33U0.31U0.52U3.4U1.52,2-DichloropropaneNENEmg/kg0.33U0.31U0.52U3.4U1.52,2-DichloropropaneNENEmg/kg0.59U0.62U1U6.9U2.92-HexanoneNENEmg/kg0.59U0.62U1U6.9U2.94-EthyltolueneNENEmg/kg0.59U0.62U1U6.9U2.9Acetone5000.05mg/kg0.59U0.62U1U<	
1,3-DichloropropaneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-Dichlorobenzene1301.8mg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.3U0.31U0.52U3.4U1.51,4-DichlorobenzeneNENEmg/kg0.24U0.25U0.41U2.7U1.22,2-DichloropropaneNENEmg/kg0.3U0.31U0.52U3.4U1.52-Butanone5000.12mg/kg0.59U0.62U1U6.9U2.92-HexanoneNENEmg/kg0.59U0.62U1U6.9U2.94-EthyltolueneNENEmg/kg0.59U0.62U1U2.7U1.24-Methyl-2-pentanoneNENEmg/kg0.59U0.62U1U6.9U2.9Acetone5000.05mg/kg0.59U0.62U1U6.9U2.9	
1,4-Dichlorobenzene 130 1.8 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 1,4-Diethylbenzene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 2,2-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.2 2,2-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 2-Butanone 500 0.12 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 4-Ethyltoluene NE NE mg/kg 0.59 U 0.62 U 1 U 6.9	U U U U U U U U
1,4-Diethylbenzene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 2,2-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 2-Butanone 500 0.12 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.24 U 0.25 U 1 U 6.9 U 2.9 4-Ethyltoluene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 4-Methyl-2-pentanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U </td <td></td>	
2,2-Dichloropropane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 2-Butanone 500 0.12 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 4-Ethyltoluene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 4-Methyl-2-pentanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 Acetone 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U	U U U U U U
2-Butanone 500 0.12 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 2-Hexanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 4-Ethyltoluene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 4-Methyl-2-pentanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 Acetone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 Acetone 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U U U U U U
2-Hexanone NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 4-Ethyltoluene NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2 4-Methyl-2-pentanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 Acetone 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U U U
4-Methyl-2-pentanone NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9 Acetone 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U U
Acetone 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Acrylonitrile NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Benzene 44 0.06 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 Bromobenzene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	UU
Bromochloromethane NE NE mg/kg 0.3 0 0.31 0 0.32 0 3.4 0 1.3	U
Bromodichloromethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	Ŭ
Bromoform NE NE mg/kg 0.24 U 0.25 U 0.41 U 2.7 U 1.2	Ŭ
Bromomethane NE NE mg/kg 0.12 U 0.12 U 0.21 U 1.4 U 0.59	U
Carbon disulfide NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Carbon tetrachloride 22 0.76 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Chlorobenzene 500 1.1 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Chloroethane NE mg/kg 0.12 U 0.21 U 1.4 U 0.59 Chloroform 350 0.37 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44	UU
Chloroform 350 0.37 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44 Chloromethane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	U
cis-1,2-Dichloroethene 500 0.25 mg/kg 83	0
cis-1,2-Dichloroethene 500 0.25 mg/kg 1.3 0.12 0.34 72 1	
cis-1,3-Dichloropropene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Dibromochloromethane NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Dibromomethane NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Dichlorodifluoromethane NE Mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Ethylbenzene 390 1 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Hexachlorobutadiene NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 Isopropylbenzene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	UU
Isopropylbenzene NE Mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 Methyl tert butyl ether 500 0.93 mg/kg 0.12 U 0.21 U 1.4 U 0.59	U
Methylene chloride 500 0.05 mg/kg 0.59 U 0.62 U 1.4 0 0.09 Methylene chloride 500 0.05 mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
n-Butylbenzene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
n-Propylbenzene 500 3.9 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Naphthalene 500 12 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	U
o-Chlorotoluene NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	U
o-Xylene 500 1.6 mg/kg 0.12 U 0.12 U 0.21 U 1.4 U 0.59	U
p-Chlorotoluene NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5 p-lsopropyltoluene NE NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	UU
p/m-Xylene 500 1.6 mg/kg 0.12 U 0.12 U 0.21 U 1.4 U 0.59	U
sec-Butylbenzene 500 11 mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29	U
Styrene NE NE mg/kg 0.12 U 0.21 U 1.4 U 0.59	U
tert-Butylbenzene 500 5.9 mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	U
Tetrachloroethene 150 1.3 mg/kg 0.44 0.49 0.1 U 0.69 U 24	
Toluene 500 0.7 mg/kg 0.089 U 0.094 U 0.15 U 1 U 0.44	U
trans-1,2-Dichloroethene 500 0.19 mg/kg 2.2	
trans-1,2-Dichloroethene 500 0.19 mg/kg 0.16 0.26 0.15 U 1.8 0.44 trans-1,2-Dichloroethene 500 0.19 mg/kg 0.060 0.10 0.000	U
trans-1,3-Dichloropropene NE mg/kg 0.059 U 0.062 U 0.1 U 0.69 U 0.29 Trichloroethene 200 0.47 mg/kg	U
Trichloroethene 200 0.47 mg/kg 4.2 Trichloroethene 200 0.47 mg/kg 0.068 0.062 U 0.1 U 3.7 3.6	
Trichlorofluoromethane NE NE mg/kg 0.3 U 0.31 U 0.52 U 3.4 U 1.5	U
Vinyl acetate NE NE mg/kg 0.5 0 0.51 0 0.52 0 5.4 0 1.3 Vinyl acetate NE NE mg/kg 0.59 U 0.62 U 1 U 6.9 U 2.9	U
Vinyl docato 112 112 113 0.02 mg/kg 0.02 0 0.02 0 0.02 0 1.6	
Vinyl chloride 13 0.02 mg/kg 3.4 0.12 U 0.21 U 1.4 U 0.59	U

Location	Cleanup C	ricted Use Soil Objectives		Bottom, south section	Bottom, north section	Sparkle Cleaners		Sparkle Cleaners		Sparkle Cleaners	
Sample ID		5-6.89(b)		EX001BS(4)-EX-1BS(4)	DUPLICATE	B1, 10-12		B2, 10-12		B3, 10-12	
SAMPLING DATE	Protection of Public Health	Protection of		14-Jan-09	14-Jan-09	24-Feb-09		24-Feb-09		25-Feb-09	
LAB SAMPLE ID ANALYTE	Commercial	Groundwater	Units	L0900616-07 Qual	L0900616-10 Qual	L0902559-01	Qual	L0902559-02	Qual	L0902559-03	Qual
Semi-Volatile Organics by GO	C/MS						4		4,		4000
1,2,4,5-Tetrachlorobenzene	NS	NS	mg/kg	-	-	1.5	U	1.5	U	1.5	U
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene	NS NS	NS NS	mg/kg	-	-	0.37 0.37	U U	0.38	U U	0.38	U U
1,3-Dichlorobenzene	NS	NS	mg/kg mg/kg	-	-	0.37	U	0.38	U	0.38	U
1,4-Dichlorobenzene	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
2,4,5-Trichlorophenol	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
2,4,6-Trichlorophenol	NS	NS	mg/kg	-	-	0.37	<u> </u>	0.38	U	0.38	U
2,4-Dichlorophenol 2,4-Dimethylphenol	NS NS	NS NS	mg/kg mg/kg	-	-	0.73 0.37	U U	0.76	U U	0.77	U U
2,4-Dinitrophenol	NS	NS	mg/kg	-	-	1.5	U	1.5	U	1.5	U
2,4-Dinitrotoluene	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
2,6-Dinitrotoluene	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
2-Chloronaphthalene	NS	NS	mg/kg	-	-	0.44	U	0.45	U	0.46	U
2-Chlorophenol 2-Methylnaphthalene	NS NS	NS NS	mg/kg	-	-	0.44 0.37	U U	0.45 0.38	U U	0.46 0.38	U U
2-Methylphenol	500	0.33	mg/kg mg/kg	-	-	0.37 0.44	U	0.38	U	0.36	U
2-Nitroaniline	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
2-Nitrophenol	NS	NS	mg/kg	-	-	1.5	Ŭ	1.5	U	1.5	U
3,3'-Dichlorobenzidine	NS	NS	mg/kg	-	-	0.73	U	0.76	U	0.77	U
3-Methylphenol/4-Methylpheno		NS	mg/kg	-	-	0.44	U	0.45	U	0.46	U
3-Nitroaniline	NS	NS	mg/kg	-	-	0.37 1.5	U	0.38	U	0.38	U
4,6-Dinitro-o-cresol 4-Bromophenyl phenyl ether	NS NS	NS NS	mg/kg mg/kg	-	-	1.5 0.37	U U	1.5 0.38	U U	1.5 0.38	U U
4-Chloroaniline	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
4-Chlorophenyl phenyl ether	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
4-Nitroaniline	NS	NS	mg/kg	-	-	0.51	U	0.53	U	0.54	U
4-Nitrophenol	NS	NS	mg/kg	-	-	0.73	U	0.76	U	0.77	U
Acenaphthene	500	98	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Acenaphthylene	500 NS	107 NS	mg/kg	-	-	0.37 1.5	U U	0.38	U U	0.38	UU
Acetophenone Anthracene	500	1000	mg/kg mg/kg	-	-	0.37	U	0.38	U	0.38	U
Benzo(a)anthracene	5.6	1	mg/kg	-	-	0.37	U	0.58	0	0.38	U
Benzo(a)pyrene	1	22	mg/kg	-	-	0.37	U	0.53		0.38	U
Benzo(b)fluoranthene	5.6	1.7	mg/kg	-	-	0.37	U	0.7		0.38	U
Benzo(ghi)perylene	500	1000	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Benzo(k)fluoranthene Benzoic Acid	56 NS	1.7 NS	mg/kg	-	-	0.37 3.7	U U	0.38 3.8	U U	0.38 3.8	U U
Benzyl Alcohol	NS	NS	mg/kg mg/kg	-	-	0.73	U	0.76	U	0.77	U
Biphenyl	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Bis(2-chloroethoxy)methane	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Bis(2-chloroethyl)ether	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Bis(2-chloroisopropyl)ether	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Bis(2-Ethylhexyl)phthalate Butyl benzyl phthalate	NS NS	NS NS	mg/kg	-	-	0.73 0.37	U U	0.76 0.38	U U	0.77 0.38	U U
Carbazole	NS	NS	mg/kg mg/kg	-	-	0.37	U	0.38	U	0.38	U
Chrysene	56	1	mg/kg	-	-	0.37	U	0.63	U	0.38	U
Di-n-butylphthalate	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Di-n-octylphthalate	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Dibenzo(a,h)anthracene	0.56	1000	mg/kg	-	-	0.37	<u> </u>	0.38	<u> </u>	0.38	U
Dibenzofuran Diethyl phthalate	NS NS	NS NS	mg/kg	-	-	0.37 0.37	U U	0.38	U U	0.38	U U
Dietnyl phthalate	NS NS	NS NS	mg/kg mg/kg	-	-	0.37	U	0.38	U U	0.38	U
Fluoranthene	500	1000	mg/kg	-	-	0.01	<u> </u>	0.38	U	0.00	-
Fluoranthene	500	1000	mg/kg	-	-	0.37	U	1.3		0.38	U
Fluorene	500	386	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Hexachlorobenzene	NS	NS	mg/kg	-	-	0.37	<u> </u>	0.38	U	0.38	U
Hexachlorobutadiene Hexachlorocyclopentadiene	NS NS	NS NS	mg/kg mg/kg	-	-	0.73 0.73	U U	0.76	U U	0.77 0.77	U U
Hexachloroethane	NS	NS	mg/kg	-	-	0.73	U	0.70	U	0.77	U
Indeno(1,2,3-cd)Pyrene	5.6	8.2	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Isophorone	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
n-Nitrosodi-n-propylamine	NS	NS	mg/kg	-	-	0.37	U	0.38	U	0.38	U
Naphthalene	500	12 NC	mg/kg	-	-	0.37	U	0.38	U	0.38	U
	NS NS	NS NS	mg/kg	-	-	0.37 1.1	U U	0.38 1.1	U U	0.38 1.1	U U
NitrosoDiPhenylAmine(NDPA)/ P-Chloro-M-Cresol	NS NS		mg/kg ma/ka	-	-	1.1 0.37	U U	0.38	U U	0.38	U
Pentachlorophenol	6.7	0.8	mg/kg mg/kg	-	-	1.5	U	1.5	U	1.5	U
Phenanthrene	500	1000	mg/kg	-	-	0.37	U	0.93	-	0.38	U
Phenol	500	0.33	mg/kg	-	-	0.51	U	0.53	U	0.54	U
Pyrene	500	1000	mg/kg	-	-			0.38	U		
Pyrene	500	1000	mg/kg	-	-	0.37	U	0.96		0.38	U

Luceday Ministry is any i												
Sample ID SAPPLE OF DESCRIPTIONProcessor Process	Location				Bottom, south section	Bottom, north	Sparkle		Sparkle		Sparkle	
Subruik Date Peter on both takes Islamo? Islamo? Islamo? Subruik Discrete Discrete <thdiscrete< th=""> Discret Dis</thdiscrete<>	Sample ID				EX001BS(4) EX 1BS(4)	COST AND A STATE OF A	Constanting Constanting		and the second second second		AND CARGEST, 11 2, 162 (17 2)5	
Los Rayes, Parket and			J-0.03(D)									
Characterization Constraint C	SAMPLING DATE		Protection of		14-Jan-09	14-Jan-09	24-Feb-09		24-Feb-09		25-Feb-09	
Same Vacing	LAB SAMPLE ID	Public Health	Groundwater		L0900616-07	L0900616-10	L0902559-01		L0902559-02		L0902559-03	
Zabarosanialine NS NS Ng ng/s - 0.015 U 0.015 U <th< td=""><td>ANALYTE</td><td>Commercial</td><td></td><td>Units</td><td>Qual</td><td>Qual</td><td></td><td>Qual</td><td></td><td>Qual</td><td></td><td>Qual</td></th<>	ANALYTE	Commercial		Units	Qual	Qual		Qual		Qual		Qual
Zachargenplandene NS NS ngha - 0.07 U 0.075		C/MS - SIM										
Zahlehympuneton NS NS NS NS NS NS NS U 0.015 U 0.015 <thu< <="" td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td>-</td><td>0.015</td><td>U</td><td></td><td>U</td><td>0.015</td><td>U</td></thu<>	· · · · · · · · · · · · · · · · · · ·					-	0.015	U		U	0.015	U
Accrayinten Stol 9 9 - - 0 <							0.045				0.045	
Accurative 500 66 myla - 0 0.015 U 0.01							0.015	U		U	0.015	U
Acongentingene 500 101 mpt b - - 0.015 U 0.015 U <t< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td></td><td></td><td>0.015</td><td></td><td></td><td>11</td><td>0.015</td><td>11</td></t<>	· · · · · · · · · · · · · · · · · · ·						0.015			11	0.015	11
Admissor 900 1000 mpty - - 0.75 U 0.015 U Description Becogamma conserve 5.6 1 mpty - - 0.015 U										-		
Anthream 900 1000 mpkg - - 0.05 U 0.015 U 0.015 U 0.015 U 0.015 U 0.021 U 0.015 U 0.015 U 0.021 U 0.015 U 0.021 U 0.015 U 0.021 U 0.015 U 0.021 U 0.015						-						
Bencalpyme 5.0 1 mpha - 0.015 U 0.031 0.015 U Bencalpyme 1 22 mpha - - 0.015 U 0.015	Anthracene	500	1000			-	0.015	U	0.015	U	0.015	U
Bencolpyme 1 22 rg/sp - - 0.47 Bencolpyter 1 22 rg/sp - 0.15 U 0.03 0.05 U Bencolpyter 5.6 1.7 rg/sp - 0.15 U 0.04 0.015 U 0.05 U 0.05 U 0.05 U 0.015 <	Benzo(a)anthracene	5.6	1	mg/kg	-	-			0.52			
Backborg/spress 1 22 mp/s - 0.015 U 0.022 0.015 U Backborg/spresspres		5.6				-	0.015	U			0.015	U
Bencolphicambe 5.6 1.7 mp30 0.1 U 0.24 . . Bencolphicambe 5.6 1.7 mp30 0.15 U 0.22 .		1				-						
Beacofing Second S		1				-	0.015	U			0.015	U
Bency Spinperies 500 1000 m/siz - 0 0 001 0.015 U 0.021 0.015 U 0.021 0.015 U						-	0.015				0.045	П
Barcochiperpine 500 Typic - - 0.015 U 0.021 0.015 U Barcochiperpine 56 17 mysic - - 0.015 U 0.015 U Barcochiperpine 56 1 mysic - - 0.015 U 0.016 U 0.016 U 0.016 U 0.016 U 0.016 U<							0.010	U			0.013	U
Bency Musanthene 56 17 mpto - - 0.15 U 0.017 C 0.16 U Chysene 56 1 mpto - 0.015 U 0.028 0.015 U 0.028 0.015 U 0.015 U <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>0.015</td><td>U</td><td></td><td></td><td>0.015</td><td>U</td></t<>							0.015	U			0.015	U
BencySinthreame 66 1.7 mpto - - 0.015 U 0.017 U 0.015 U Chysene 56 1 mpto - - 0.015 U 0.028 0.015 U 0.028 0.015 U 0.028 0.015 U 0.018 U						-	0.010	5			0.010	-
Chysene 56 1 mpkg - - 0.075 U 0.058 U 0.015 U Dbertogk hjverthracene 0.58 1000 mpkg - - 0.015 U 0.016 U 0.001 U U						-	0.015	U			0.015	U
Disconte hardinaceme 0.66 1000 mg/sg - - 0.015 U 0.015 U 0.015 U Fluorathinaceme 500 1000 mg/sg - - 0.015 U 0.016 U 0.015 U 0.		56	1			-			0.55			
Discreting instringene 0.66 1000 mg/kg - 0.015 U 0.015 U 0.015 U Fluoranthane 500 1000 mg/kg - - 0.015 U 0.065 U Fluoranthane 500 386 mg/kg - - 0.015 U	Chrysene	56	1			-	0.015	U			0.015	U
Fluorantheme 500 1000 mg/n - - 0.015 U 0.082 U 0.015 U 0.013 U 0.015 U 0.013 U 0.015 U						-						
Fluorente 500 1000 mg/kg - 0.15 U 0.062 0.015 U Fluorene 500 386 mg/kg - 0.015 U 0.015 U 0.015 U 0.015 U 0.015 U 0.015 U 0.016 U 0.061 U						-	0.015	U		U	0.015	U
Fluorene 500 386 mg/kg - - 0.015 U 0.016 U 0.061 U 0.015 U 0.023 U 0.061 U 0.015 U 0.021 0.015 U 0.015 U 0.015 U 0.016 U 0.016 U 0.015 U 0.016 U 0.015 U 0.016 U 0.015 U 0.015 U 0.015 U 0.015 U 0.015						-						
Fluorene 500 388 mg/q 0.015 U 0.016 U 0.016 U 0.018 U 0.028 U 0.015 U 0.021 0.015 U 0.021 0.016 U 0.021 U 0.016 U 0.021 U 0.016						-	0.015	U			0.015	U
Hexachtronbenzene NS Img/ng 0.059 U 0.061 U 0.031 U 0.038 U 0.031						-	0.015				0.015	
Heachtronbulation NS mg/ng - - 0.037 U 0.038 U 0.038 U Heackthronbulation NS mg/ng - - 0.059 U 0.061 U 0.064 U 0.061 U 0.061 </td <td></td>												
Hexachtomethane NS mg/kg - - 0.059 U 0.061 U 0.021 0.015 U 0.064 U 0.061 U 0.061 U 0.061 U 0.015 U 0.061 U						-						
Indem(1,2,3-cd)Pyene 5.6 8.2 mg/ng - - 0.015 U 0.02 0.015 U Inden(1,2,3-cd)Pyene 5.6 8.2 mg/ng - - 0.015 U 0.021 0.015 U Naphthalene 500 12 mg/ng - - 0.015 U 0.061						-						
Indemo(12,3:d)Pymene 5.6 8.2 mg/kg - - 0.015 U 0.02 0.015 U Naphthalene 500 1.2 mg/kg - - 0.015 U 0.061 U 0.015 U Naphthalene 500 1.2 mg/kg - - 0.015 U 0.061 U 0.06						-		-				-
Naphthalene 500 12 mg/kg - - 0.015 U 0.021 0.015 U Pentanthrone 5.00 1000 mg/kg - - 0.059 U 0.061 U Preme 500 1000 mg/kg - - 0.015 U 0.037 U - - 0.015 U 0.021 0.015 U - - 4.4 -002 0.001 mg/kg - - 0.00379 U - - - 0.00379 </td <td></td> <td>5.6</td> <td>8.2</td> <td></td> <td></td> <td>-</td> <td>0.015</td> <td>U</td> <td>0.02</td> <td></td> <td>0.015</td> <td>U</td>		5.6	8.2			-	0.015	U	0.02		0.015	U
Pentachlorophenol 6.7 0.8 mg/kg - - 0.059 U 0.061 U 0.061 U Phenanthrene 500 1000 mg/kg - - 0.015 U 0.061 U 0.075 U 0.075 U 0.015 U 0.08 0.015 U 0.08 0.015 U 0.023 0.015 U 0.0379 U - 1.44 0.023 0.015 U 0.0379 U - 4.42 0.0379 U - 4.42 0.0379 U - 0.0379 U -	Naphthalene			mg/kg	-	-						
Phenanthrene 500 1000 mg/rg - - 0.015 U 0.048 0.015 U Pyrene 500 1000 mg/rg - - 0.015 U 0.048 0.015 U Pyrene 500 1000 mg/rg - - 0.015 U 0.053 0.015 U Ar-DDD 62 17 mg/rg - - 0.00379 U - - 4.4-DDE 62 17 mg/rg - - 0.00379 U - - Adhan 0.68 0.19 mg/rg - - 0.00379 U - - Alpha-BHC 3.4 0.02 mg/rg - - 0.00379 U - - Chiordane 2.4 2.9 mg/rg - - 0.00379 U - Delta-PHC 500 0.25 mg/rg - - <t< td=""><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>						-						
Phenanthrene 500 1000 mg/kg - - 0.015 U 0.048 0.015 U Pyrene 500 1000 mg/kg - - 0.015 U 0.053 0.015 U Organochlorine Pesticides by EPA 8081A - - - 0.00379 U - - 4.4*DD 62 17 mg/kg - - 0.00379 U - - 4.4*DD 0.0379 U - - 0.00379 U - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.059</td> <td>U</td> <td></td> <td>U</td> <td>0.061</td> <td>U</td>						-	0.059	U		U	0.061	U
Pyrene 500 1000 mg/kg - - 0.015 U 0.053 0.015 U Organochlorine Pesticides by EPA 8081A - - 0.015 U 0.053 0.015 U 44-0DD 52 14 mg/kg - - 0.00379 U - 44-0DE 62 17 mg/kg - - 0.00379 U - Advin 0.68 0.19 mg/kg - - 0.00379 U - Alpha-BHC 3.4 0.02 mg/kg - - 0.00379 U - Choidane 24 2.9 mg/kg - - 0.00379 U - Choidane 24 2.9 mg/kg - - 0.00379 U - Dieldini 1.4 0.1 mg/kg - - 0.00379 U - Endosufan I 200 1020 mg/kg <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>0.045</td> <td></td> <td></td> <td></td> <td>0.045</td> <td></td>						-	0.045				0.045	
Pyrene 500 1000 mg/kg - 0.015 U 0.053 0.015 U Organcollorine Pesticides by EPA 8081A - - 0.00379 U - 4.4-DDC 62 17 mg/kg - - 0.00379 U - 4.4-DDT 47 136 mg/kg - - 0.00379 U - Aldn 0.68 0.19 mg/kg - - 0.00379 U - Alpha-BHC 3.4 0.02 mg/kg - - 0.00379 U - Beta-BHC 3 0.09 mg/kg - - 0.00379 U - Deltafin 1.4 0.1 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 102 mg/kg - - 0.0						-	0.015	U			0.015	U
Organochlorine Pesticides by EPA 8081A Implify	•					-	0.015				0.015	
4.4-DDD 92 14 mg/kg - - - 0.00379 U - 4.4-DDE 62 17 mg/kg - - 0.00379 U - 4.4'-DDT 47 136 mg/kg - - 0.00379 U - Aldrin 0.68 0.19 mg/kg - - 0.00379 U - Alpha-BHC 3.4 0.02 mg/kg - - 0.00379 U - Beta-BHC 3.4 0.02 mg/kg - - 0.00379 U - Chordane 2.4 2.9 mg/kg - - 0.00379 U - Delta-BHC 500 0.25 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 1000			1000	тту/ку	-	-	0.015	0	0.000		0.013	0
4.4-DDE 62 17 mg/kg - - - 0.00379 U - 4.4-DDT 47 136 mg/kg - - 0.00379 U - Aldrin 0.68 0.19 mg/kg - - 0.00379 U - Alpha-BHC 3.4 0.02 mg/kg - - 0.00379 U - Beta-BHC 3 0.09 mg/kg - - 0.00379 U - Chlordane 24 2.9 mg/kg - - 0.00379 U - Deldin 1.4 0.1 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 1.000 mg/kg - <td></td> <td></td> <td>14</td> <td>ma/ka</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>0.00379</td> <td>U</td> <td>-</td> <td></td>			14	ma/ka	-	-	-		0.00379	U	-	
Aldrin 0.68 0.19 mg/rg - - - 0.00379 U - Alpha-BHC 3.4 0.02 mg/rg - - 0.00379 U - Beta-BHC 3 0.09 mg/rg - - 0.00379 U - Chordane 24 2.9 mg/rg - - 0.00379 U - Delta-BHC 500 0.25 mg/rg - - 0.00379 U - Dieldin 1.4 0.1 mg/rg - - 0.00379 U - Endosulfan I 200 102 mg/rg - - 0.00379 U - Endosulfan II 200 102 mg/rg - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/rg - - 0.00379 U - Endosulfan II 89 0.06 mg/rg						-	-			U	-	
Alpha-BHC 3.4 0.02 mg/kg - - - 0.00379 U - Beta-BHC 3 0.09 mg/kg - - - 0.00379 U - Chlordane 24 2.9 mg/kg - - 0.00379 U - Delta-BHC 500 0.25 mg/kg - - 0.00379 U - Dieldin 1.4 0.1 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan sulfate 200 1.00 mg/kg - - 0.00379 U - Endosulfan Sulfate 200 1.00 mg/kg - - 0.00379 U - Endosulfan Sulfate 200 1.00 mg/kg - - 0.00379 U - Endosulf				mg/kg	-	-	-				-	
Beta-BHC 3 0.09 mg/kg - - - 0.00379 U - Chlordane 24 2.9 mg/kg - - 0.00379 U - Delta-BHC 500 0.25 mg/kg - - 0.00379 U - Dieldrin 1.4 0.1 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 102 mg/kg - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/kg - - 0.00379 U - Endrin ketone NE mg/kg - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg -						-	-				-	
Chlordane 24 2.9 mg/rg - - 0.0379 U - Delta-BHC 500 0.25 mg/rg - - 0.00379 U - Dieldrin 1.4 0.1 mg/rg - - 0.00379 U - Endosulfan I 200 102 mg/rg - - 0.00379 U - Endosulfan I 200 102 mg/rg - - 0.00379 U - Endosulfan II 200 102 mg/rg - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/rg - - 0.00379 U - Endin ketone NE mg/rg - - 0.00379 U - Heptachlor 15 0.38 mg/rg - - 0.00379 U - Lindane 9.2 0.1 mg/rg - - <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td>						-	-				-	
Delta-BHC 500 0.25 mg/kg - - - 0.00379 U - Dieldrin 1.4 0.1 mg/kg - - 0.00379 U - Endosulfan I 200 102 mg/kg - - 0.00379 U - Endosulfan II 200 102 mg/kg - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/kg - - 0.00379 U - Endrin ketone NE Ng/kg - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE Ng/kg - - 0.00379 U - Total Metals & Other Analytes NE mg/kg - -					-	- _	-				-	
Dieldrin 1.4 0.1 mg/kg - - - 0.00379 U - Endosulfan I 200 102 mg/kg - - - 0.00379 U - Endosulfan II 200 102 mg/kg - - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/kg - - - 0.00379 U - Endin ketone NE NE mg/kg - - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - - 0.00379 U - Total Crahe NE mg/kg - - - 0.00379 U					-	-	-				-	
Endosulfan I 200 102 mg/kg - - - 0.00379 U - Endosulfan II 200 102 mg/kg - - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/kg - - - 0.00379 U - Endrin 89 0.06 mg/kg - - - 0.00379 U - Endrin ketone NE Mg mg/kg - - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - - 0.00379 U - Heptachlor epoxide NE mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE NE mg/kg - - - 0.00379 U -					-	-	-				-	
Endosulfan II 200 102 mg/kg - - - 0.00379 U - Endosulfan sulfate 200 1,000 mg/kg - - 0.00379 U - Endrin 89 0.06 mg/kg - - 0.00379 U - Endrin ketone NE NE mg/kg - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - 0.00379 U - Heptachlor epoxide NE mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE mg/kg - - 0.00379 U - Total Metals & Other Analytes NE mg/kg - - 0.00379 U - Solids, Total NE NE mg/kg 14000	Endosulfan I	200	102	mg/kg	-	-	-		0.00379		-	
Endrin 89 0.06 mg/kg - - - 0.00379 U - Endrin ketone NE NE mg/kg - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - 0.00379 U - Heptachlor epoxide NE NE mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE NE mg/kg - - 0.00379 U - Methoxychlor NE NE mg/kg - - 0.0152 U - trans-Chlordane NE mg/kg - - - 0.00379 U - Total Metals & Other Analytes - - - - - - - Solids, Total NE NE % 85				mg/kg	-	-	-				-	
Endrin ketone NE NE mg/kg - - - 0.00379 U - Heptachlor 15 0.38 mg/kg - - 0.00379 U - Heptachlor epoxide NE NE mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE NE mg/kg - - 0.00379 U - Total Metals & Other Analytes mg/kg - - - 0.00379 U - Iron, Total NE NE mg/kg - - - 0.00379 U - Total Metals & Other Analytes mg/kg -						-	-				-	
Heptachlor 15 0.38 mg/kg - - - 0.00379 U - Heptachlor epoxide NE NE mg/kg - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - 0.00379 U - Methoxychlor NE NE mg/kg - - 0.0152 U - trans-Chlordane NE NE mg/kg - - 0.00379 U - Total Metals & Other Analytes NE mg/kg - - - 0.00379 U - Iron, Total NE NE mg/kg - - - 0.00379 U - Solids, Total NE NE mg/kg 14000 - - - - - Solids, Total NE NE % 85 80 91 88 87 pH NE NE SU 6.5 - - - - Total Organic Ca						-	-				-	
Heptachlor epoxide NE NE mg/kg - - - 0.00379 U - Lindane 9.2 0.1 mg/kg - - - 0.00379 U - Methoxychlor NE NE mg/kg - - - 0.00379 U - trans-Chlordane NE NE mg/kg - - 0.00379 U - Total Metals & Other Analytes NE mg/kg - - - 0.00379 U - Iron, Total NE NE mg/kg 14000 - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td>							-			-		
Lindane 9.2 0.1 mg/kg - - - 0.00379 U - Methoxychlor NE NE mg/kg - - - 0.0152 U - trans-Chlordane NE NE mg/kg - - - 0.00379 U - Total Metals & Other Analytes NE mg/kg 14000 - <th< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td>-</td><td></td><td></td><td>-</td><td></td><td></td></th<>						_	-			-		
Methoxychlor NE NE mg/kg - - 0.0152 U - trans-Chlordane NE NE mg/kg - - 0.00379 U - Total Metals & Other Analytes Total NE NE mg/kg 14000 -	Lindane	9.2				-	-				-	
Total Metals & Other Analytes Iron, Total NE NE mg/kg 14000 - <th< td=""><td></td><td></td><td></td><td>mg/kg</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td></td><td>-</td><td></td></th<>				mg/kg	-	-	-				-	
Iron, Total NE NE mg/kg 14000 -			NE	mg/kg	-	-	-		0.00379	U	-	
Solids, Total NE NE % 85 80 91 88 87 pH NE NE SU 6.5 - - - - - Total Organic Carbon (Rep1) NE NE % 0.59 - - - - Total Organic Carbon (Rep2) NE NE % 0.49 - - - -					4 4000							
pH NE NE SU 6.5 - - - - - Total Organic Carbon (Rep1) NE NE % 0.59 -	'						-					
Total Organic Carbon (Rep1) NE NE % 0.59 - <							91					
Total Organic Carbon (Rep2) NE NE % 0.49							-					
							-		-		-	
NOTES:				mg/kg			-		-		-	

NOTES:

U = Not detected at or above the reported limit; tabulated value is the reported limit.

NE = Not Established

mg/kg = milligrams per kilogram

Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

NA = Not Available

Locat	Cleanup	ricted Use Soil Objectives		North Sidewall	East Sidewall, north s	ection
Sample	e ID Table 37	5-6.89(b)		EX001N(4)-EX-1N(4)	EX001EN(4)-EX-1EN(4	l)
SAMPLING DA	TE Protection of	Urotootion of		14-Jan-09	14-Jan-09	
LAB SAMPLE	ID Public Health	Groundwater		L0900616-02	L0900616-03	
ANALYTE	Commercial		Units	Qual		Qua
Volatile Organics by EPA 8260B/5035-Low	•					
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	0.0011 U	0.0012	U
1,1,1-Trichloroethane	500	0.68	mg/kg	0.0011 U	0.0012	U
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	0.0011 U	0.0012	<u>U</u>
1,1,2-Trichloroethane	NE 240	NE 0.27	mg/kg	0.0016 U 0.0016 U	0.0018 0.0018	U
1,1-Dichloroethane 1,1-Dichloroethene	500	0.27	mg/kg mg/kg	0.0016 U 0.0011 U	0.0018	U U
1,1-Dichloropropene	NE	NE	mg/kg	0.0055 U	0.006	U
1,2,3-Trichlorobenzene	NE	NE	mg/kg	0.0055 U	0.006	Ŭ
1,2,3-Trichloropropane	NE	NE	mg/kg	0.011 U	0.012	U
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	0.0044 U	0.0048	U
1,2,4-Trichlorobenzene	NE	NE	mg/kg	0.0055 U	0.006	U
1,2,4-Trimethylbenzene	190	3.6	mg/kg	0.0055 U	0.006	<u> </u>
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	0.0055 U	0.006	U
1,2-Dibromoethane 1,2-Dichlorobenzene	NE 500	NE 1.1	mg/kg	0.0044 U 0.0055 U	0.0048 0.006	U
1,2-Dichloroethane	NE	0.02	mg/kg mg/kg	0.0055 U 0.0011 U	0.006	U U
1,2-Dichloropropane	NE	NE	mg/kg	0.0039 U	0.0042	U
1,3,5-Trimethylbenzene	190	NE	mg/kg	0.0055 U	0.006	U
1,3-Dichlorobenzene	280	2.4	mg/kg	0.0055 U	0.006	U
1,3-Dichloropropane	NE	NE	mg/kg	0.0055 U	0.006	U
1,4-Dichlorobenzene	130	1.8	mg/kg	0.0055 U	0.006	U
1,4-Diethylbenzene	NE	NE	mg/kg	0.0044 U	0.0048	U
2,2-Dichloropropane	NE	NE	mg/kg	0.0055 U	0.006	U
2-Butanone 2-Hexanone	500 NE	0.12	mg/kg	0.011 U 0.011 U	0.012	U U
4-Ethyltoluene	NE	NE NE	mg/kg mg/kg	0.011 U 0.0044 U	0.0012	U
4-Methyl-2-pentanone	NE	NE	mg/kg	0.0044 0 0.011 U	0.0040	<u> </u>
Acetone	500	0.05	mg/kg	0.041	0.028	U
Acrylonitrile	NE	NE	mg/kg	0.011 U	0.012	U
Benzene	44	0.06	mg/kg	0.0013	0.0012	U
Bromobenzene	NE	NE	mg/kg	0.0055 U	0.006	U
Bromochloromethane	NE	NE	mg/kg	0.0055 U	0.006	U
Bromodichloromethane	NE	NE	mg/kg	0.0011 U	0.0012	<u> </u>
Bromoform Bromomethane	NE NE	NE NE	mg/kg mg/kg	0.0044 U 0.0022 U	0.0048 0.0024	U U
Carbon disulfide	NE	NE	mg/kg	0.0022 0 0.011 U	0.0024	U
Carbon tetrachloride	22	0.76	mg/kg	0.0011 U	0.0012	<u>U</u>
Chlorobenzene	500	1.1	mg/kg	0.0011 U	0.0012	Ŭ
Chloroethane	NE	NE	mg/kg	0.0022 U	0.0024	U
Chloroform	350	0.37	mg/kg	0.0016 U	0.0018	U
Chloromethane	NE	NE	mg/kg	0.0055 U	0.006	U
cis-1,2-Dichloroethene	500	0.25	mg/kg	0.0054	0.037	
cis-1,3-Dichloropropene	NE	NE	mg/kg	0.0011 U	0.0012	<u> </u>
Dibromochloromethane Dibromomethane	NE NE	NE NE	mg/kg mg/kg	0.0011 U 0.011 U	0.0012 0.012	U U
Dichlorodifluoromethane	NE	NE	mg/kg	0.011 U	0.012	U
Ethylbenzene	390	1	mg/kg	0.0011 U	0.0012	U
Hexachlorobutadiene	NE	NE	mg/kg	0.0055 U	0.006	Ŭ
Isopropylbenzene	NE	NE	mg/kg	0.0011 U	0.0012	Ū
Methyl tert butyl ether	500	NE	mg/kg	0.0022 U	0.0024	U
Methylene chloride	500	0.05	mg/kg	0.011 U	0.012	U
n-Butylbenzene	NE	NE	mg/kg	0.0011 U	0.0012	<u> </u>
n-Propylbenzene	500	3.9	mg/kg	0.0011 U	0.0012	U
Naphthalene o-Chlorotoluene	500 NE	12 NE	mg/kg	0.0055 U 0.0055 U	0.006 0.006	U U
o-Xylene	500	NE NE	mg/kg mg/kg	0.0055 U 0.0022 U	0.008	U
p-Chlorotoluene	NE	NE	mg/kg	0.0022 U 0.0055 U	0.0024	U
p-IsopropyItoluene	NE	NE	mg/kg	0.0030 U 0.0011 U	0.0012	U
p/m-Xylene	500	NE	mg/kg	0.0022 U	0.0024	Ŭ
sec-Butylbenzene	500	11	mg/kg	0.0011 U	0.0012	U
Styrene	NE	NE	mg/kg	0.0022 U	0.0024	U
tert-Butylbenzene	500	5.9	mg/kg	0.0055 U	0.006	U
Tetrachloroethene	150	1.3	mg/kg	0.0023	0.1	
Toluene	500	0.7	mg/kg	0.0016 U	0.0018	<u> </u>
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	500 NE	0.19 NE	mg/kg	0.0016 U 0.0011 U	0.0018 0.0012	U U
Trichloroethene	200	0.47	mg/kg mg/kg	0.0011 U	0.0012	U
Trichlorofluoromethane	NE	NE	mg/kg	0.0055 U	0.006	U
Vinyl acetate	NE	NE	mg/kg	0.011 U	0.012	Ŭ
Vinyl chloride	13	0.02	mg/kg	0.01	0.015	-

	Location Sample ID		ricted Use Soil Dbjectives 5-6.89(b)		North Sidewall EX001N(4)-EX-1N(4)	East Sidewall, north section EX001EN(4)-EX-1EN(4)
	SAMPLING DATE	Protection of Public Health	Protection of		14-Jan-09	14-Jan-09
	LAB SAMPLE ID		Groundwater	11	L0900616-02	L0900616-03
ANALYTE Volatile Organics by EPA 8260B/5	135-Soil Analysis	Commercial		Units	Qual	Qual
1,1,1,2-Tetrachloroethane	055-5011 Allalysis	NE	NE	mg/kg		
1,1,1-Trichloroethane		500	0.68	mg/kg	-	_
1,1,2,2-Tetrachloroethane		NE	NE	mg/kg	-	-
1,1,2-Trichloroethane		NE	NE	mg/kg	-	-
1,1-Dichloroethane		240	0.27	mg/kg	-	-
1,1-Dichloroethene		500	0.33	mg/kg	-	-
1,1-Dichloropropene		NE	NE	mg/kg	-	-
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane		NE NE	NE NE	mg/kg	-	-
1,2,4,5-Tetramethylbenzene		NE	NE	mg/kg mg/kg	-	-
1,2,4-Trichlorobenzene		NE	NE	mg/kg	-	
1,2,4-Trimethylbenzene		190	3.6	mg/kg	-	_
1,2-Dibromo-3-chloropropane		NE	NE	mg/kg	-	-
1,2-Dibromoethane		NE	NE	mg/kg	-	-
1,2-Dichlorobenzene		500	1.1	mg/kg	-	-
1,2-Dichloroethane		NE	NE	mg/kg	-	-
1,2-Dichloropropane		NE	NE	mg/kg	-	-
1,3,5-Trimethylbenzene		190	8.4	mg/kg	-	-
1,3-Dichlorobenzene		280	2.4	mg/kg	-	-
1,3-Dichloropropane 1,4-Dichlorobenzene		NE 130	NE 1.8	mg/kg	-	-
1,4-Diethylbenzene		NE	NE	mg/kg mg/kg	-	-
2,2-Dichloropropane		NE	NE	mg/kg	-	_
2-Butanone		500	0.12	mg/kg	-	_
2-Hexanone		NE	NE	mg/kg	-	-
4-Ethyltoluene		NE	NE	mg/kg	-	-
4-Methyl-2-pentanone		NE	NE	mg/kg	-	-
Acetone		500	0.05	mg/kg	-	-
Acrylonitrile		NE	NE	mg/kg	-	-
Benzene		44	0.06	mg/kg	-	-
Bromobenzene		NE NE	NE NE	mg/kg	-	-
Bromochloromethane Bromodichloromethane		NE	NE	mg/kg mg/kg	-	-
Bromoform		NE	NE	mg/kg		
Bromomethane		NE	NE	mg/kg	-	-
Carbon disulfide		NE	NE	mg/kg	-	-
Carbon tetrachloride		22	0.76	mg/kg	-	-
Chlorobenzene		500	1.1	mg/kg	-	-
Chloroethane		NE	NE	mg/kg	-	-
Chloroform		350	0.37	mg/kg	-	-
Chloromethane		NE	NE	mg/kg	-	-
cis-1,2-Dichloroethene		500	0.25	mg/kg	-	-
cis-1,3-Dichloropropene Dibromochloromethane		NE NE	NE NE	mg/kg mg/kg	-	-
Dibromomethane		NE	NE	mg/kg	-	
Dichlorodifluoromethane		NE	NE	mg/kg	_	_
Ethylbenzene		390	1	mg/kg	-	-
Hexachlorobutadiene		NE	NE	mg/kg	-	-
Isopropylbenzene		NE	NE	mg/kg	-	-
Methyl tert butyl ether		500	0.93	mg/kg	-	-
Methylene chloride		500	0.05	mg/kg	-	-
n-Butylbenzene		NE	NE	mg/kg	-	-
n-Propylbenzene		500	3.9	mg/kg	-	-
Naphthalene		500 NE	12 NE	mg/kg	-	-
o-Chlorotoluene o-Xylene		NE 500	1.6	mg/kg mg/kg	-	-
p-Chlorotoluene		NE	NE	mg/kg		
p-Isopropyltoluene		NE	NE	mg/kg	· ·	_
p/m-Xylene		500	1.6	mg/kg	-	-
sec-Butylbenzene		500	11	mg/kg		-
Styrene		NE	NE	mg/kg	-	-
tert-Butylbenzene		500	5.9	mg/kg	-	-
Tetrachloroethene		150	1.3	mg/kg	-	-
Toluene		500	0.7	mg/kg	· ·	-
trans-1,2-Dichloroethene		500	0.19	mg/kg	-	-
trans-1,3-Dichloropropene Trichloroethene		NE 200	NE 0.47	mg/kg		-
Trichlorofluoromethane		200 NE	0.47 NE	mg/kg mg/kg	-	-
Vinyl acetate		NE	NE	mg/kg		_
Vinyl chloride		13	0.02	mg/kg		_

Location		ricted Use Soil		North Sidewall	East Sidewall, north section
Sample ID		Dbjectives 5-6.89(b)		EX001N(4)-EX-1N(4)	EX001EN(4)-EX-1EN(4)
SAMPLING DATE				14-Jan-09	14-Jan-09
	Public Health	Protection of Groundwater		L0900616-02	L0900616-03
LAB SAMPLE ID ANALYTE	Commercial	Groundwater	Units	LU900616-02 Qual	
Semi-Volatile Organics by GC/MS - SIM	Commercial		Units	Quai	Quai
2-Chloronaphthalene	NS	NS	mg/kg	_	
2-Methylnaphthalene	NS	NS	mg/kg	-	-
	500	98		-	-
Acenaphthene	500	107	mg/kg	-	-
Acenaphthylene Anthracene	500 500	100	mg/kg	-	-
	500 5.6		mg/kg	-	-
Benzo(a)anthracene	5.6 1	1	mg/kg	-	-
Benzo(a)pyrene		22	mg/kg	-	-
Benzo(b)fluoranthene	5.6	1.7	mg/kg	-	-
Benzo(ghi)perylene	500	1000	mg/kg	-	-
Benzo(k)fluoranthene	56	1.7	mg/kg	-	-
Chrysene	56	1	mg/kg	-	-
Dibenzo(a,h)anthracene	0.56	1000	mg/kg	-	-
Fluoranthene	500	1000	mg/kg	-	-
Fluorene	500	386	mg/kg	-	-
Hexachlorobenzene	NS	NS	mg/kg	-	-
Hexachlorobutadiene	NS	NS	mg/kg	-	-
Hexachloroethane	NS	NS	mg/kg	-	-
Indeno(1,2,3-cd)Pyrene	5.6	8.2	mg/kg	-	-
Naphthalene	500	12	mg/kg	-	-
Pentachlorophenol	6.7	0.8	mg/kg	-	-
Phenanthrene	500	1000	mg/kg	-	-
Pyrene	500	1000	mg/kg		-
Organochlorine Pesticides by EPA 8081A					
4,4'-DDD	92	14	mg/kg	-	-
4,4'-DDE	62	17	mg/kg	-	-
4,4'-DDT	47	136	mg/kg	-	-
Aldrin	0.68	0.19	mg/kg	-	-
Alpha-BHC	3.4	0.02	mg/kg	-	-
Beta-BHC	3	0.09	mg/kg	-	-
Chlordane	24	2.9	mg/kg	-	-
Delta-BHC	500	0.25	mg/kg	-	-
Dieldrin	1.4	0.1	mg/kg	-	-
Endosulfan I	200	102	mg/kg	-	-
Endosulfan II	200	102	mg/kg	-	-
Endosulfan sulfate	200	1,000	mg/kg	-	-
Endrin	89	0.06	mg/kg	-	-
Endrin ketone	NE	NE	mg/kg	-	-
Heptachlor	15 NF	0.38	mg/kg	-	-
Heptachlor epoxide	NE	NE 0.1	mg/kg	-	-
Lindane Methoxychlor	9.2 NE	0.1 NE	mg/kg	-	-
trans-Chlordane	NE	NE NE	mg/kg	-	-
Total Metals & Other Analytes			mg/kg	-	-
Iron, Total	NE	NE	mg/kg	14000	12000
Solids, Total	NE	NE	%	87	84
pH	NE	NE	SU	7.3	7.2
Total Organic Carbon (Rep1)	NE	NE	%	0.29	0.65
Total Organic Carbon (Rep2)	NE	NE	%	0.23	0.66
COD	NE	NE	mg/kg	11000	15000
NOTES				11000	10000

NOTES:

NE = Not Established

mg/kg = milligrams per kilogram

Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

NA = Not Available

U = Not detected at or above the reported limit; tabulated value is the reported limit.

Table2_soil meet SCOs_Revised.xlsx/Table 2

	Location Sample ID		ricted Use Soil Dbjectives 5-6.89(b)		Test Pit 2 TP002(3)-TP-2(3)		Test Pit 3 TP003(3)-TP-3(3)	
	SAMPLING DATE		Protection of Groundwater		14-Jan-09 L0900616-08		14-Jan-09 L0900616-09	
ANALYTE		Commercial	Croundwater	Units	E000010-00	Qual		Qual
Volatile Organics by EPA 8260B/5	035-Low			-				
1,1,1,2-Tetrachloroethane		NE	NE	mg/kg	0.0012	U	0.0012	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane		500 NE	0.68 NE	mg/kg mg/kg	0.0012 0.0012	U U	0.0012 0.0012	U U
1,1,2-Trichloroethane		NE	NE	mg/kg	0.0012	U	0.0012	U
1,1-Dichloroethane		240	0.27	mg/kg	0.0017	Ŭ	0.0018	Ŭ
1,1-Dichloroethene		500	0.33	mg/kg	0.0012	U	0.0012	U
1,1-Dichloropropene		NE	NE	mg/kg	0.0058	U	0.0059	U
1,2,3-Trichlorobenzene		NE	NE	mg/kg	0.0058	U	0.0059	U
1,2,3-Trichloropropane		NE	NE	mg/kg	0.012	U	0.012	U
1,2,4,5-Tetramethylbenzene 1,2,4-Trichlorobenzene		NE NE	NE NE	mg/kg mg/kg	0.0046	U U	0.0047	U U
1,2,4-Trimethylbenzene		190	3.6	mg/kg	0.0058	U	0.0059	U
1,2-Dibromo-3-chloropropane		NE	NE	mg/kg	0.0058	Ū	0.0059	Ŭ
1,2-Dibromoethane		NE	NE	mg/kg	0.0046	U	0.0047	U
1,2-Dichlorobenzene		500	1.1	mg/kg	0.0058	U	0.0059	U
1,2-Dichloroethane		NE	0.02	mg/kg	0.0012	U	0.0012	U
1,2-Dichloropropane		NE	NE	mg/kg	0.004	<u> </u>	0.0041	<u>U</u>
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene		190 280	NE 2.4	mg/kg mg/kg	0.0058 0.0058	U U	0.0059 0.0059	U U
1,3-Dichloropropane		200	NE	mg/kg	0.0058	U	0.0059	U U
1,4-Dichlorobenzene		130	1.8	mg/kg	0.0058	Ŭ	0.0059	U
1,4-Diethylbenzene		NE	NE	mg/kg	0.0046	U	0.0047	U
2,2-Dichloropropane		NE	NE	mg/kg	0.0058	U	0.0059	U
2-Butanone		500	0.12	mg/kg	0.012	U	0.012	U
2-Hexanone		NE	NE	mg/kg	0.012	U	0.012	U
4-Ethyltoluene		NE NE	NE NE	mg/kg	0.0046	U U	0.0047	U U
4-Methyl-2-pentanone Acetone		500	0.05	mg/kg mg/kg	0.012	U	0.012	U
Acrylonitrile		NE	NE	mg/kg	0.012	U	0.012	U
Benzene		44	0.06	mg/kg	0.002		0.002	
Bromobenzene		NE	NE	mg/kg	0.0058	U	0.0059	U
Bromochloromethane		NE	NE	mg/kg	0.0058	U	0.0059	U
Bromodichloromethane		NE	NE	mg/kg	0.0012	<u> </u>	0.0012	<u> </u>
Bromoform Bromomethane		NE NE	NE NE	mg/kg mg/kg	0.0046 0.0023	U U	0.0047 0.0024	U U
Carbon disulfide		NE	NE	mg/kg	0.0023	U	0.0024	U
Carbon tetrachloride		22	0.76	mg/kg	0.0012	U	0.0012	U
Chlorobenzene		500	1.1	mg/kg	0.0012	U	0.0012	U
Chloroethane		NE	NE	mg/kg	0.0023	U	0.0024	U
Chloroform		350	0.37	mg/kg	0.0017	U	0.0018	U
Chloromethane		NE	NE 0.05	mg/kg	0.0058	U	0.0059	U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene		500 NE	0.25 NE	mg/kg mg/kg	0.0025 0.0012	U	0.0012 0.0012	U U
Dibromochloromethane		NE	NE	mg/kg	0.0012	U	0.0012	U
Dibromomethane		NE	NE	mg/kg	0.012	Ŭ	0.012	Ŭ
Dichlorodifluoromethane		NE	NE	mg/kg	0.012	U	0.012	U
Ethylbenzene		390	1	mg/kg	0.0012	U	0.0012	U
Hexachlorobutadiene		NE	NE	mg/kg	0.0058	U	0.0059	U
Isopropylbenzene		NE	NE	mg/kg	0.0012	U	0.0012	U
Methyl tert butyl ether Methylene chloride		500 500	NE 0.05	mg/kg mg/kg	0.0023	U U	0.0024	U U
n-Butylbenzene		NE	NE	mg/kg	0.0012	U	0.0012	U
n-Propylbenzene		500	3.9	mg/kg	0.0012	U	0.0012	U
Naphthalene		500	12	mg/kg	0.0058	U	0.0059	U
o-Chlorotoluene		NE	NE	mg/kg	0.0058	U	0.0059	U
o-Xylene		500	NE	mg/kg	0.0023	U	0.0024	U
p-Chlorotoluene		NE	NE	mg/kg	0.0058	<u> </u>	0.0059	U
p-Isopropyltoluene		NE 500	NE NE	mg/kg	0.0012 0.0023	U	0.0012 0.0024	U
p/m-Xylene sec-Butylbenzene		500	NE 11	mg/kg mg/kg	0.0023	U U	0.0024	U U
Styrene		NE	NE	mg/kg	0.0012	U	0.0012	U
tert-Butylbenzene		500	5.9	mg/kg	0.0058	Ŭ	0.0059	Ŭ
Tetrachloroethene		150	1.3	mg/kg	0.0012	U	0.0012	U
Toluene		500	0.7	mg/kg	0.0017	U	0.0018	U
trans-1,2-Dichloroethene		500	0.19	mg/kg	0.0017	U	0.0018	U
trans-1,3-Dichloropropene		NE 200	NE 0.47	mg/kg	0.0012	<u> </u>	0.0012	<u>U</u>
Trichloroethene Trichlorofluoromethane		200 NE	0.47 NE	mg/kg mg/kg	0.0012 0.0058	U U	0.0012 0.0059	U U
Vinyl acetate		NE	NE	mg/kg mg/kg	0.0038	U	0.0059	U
Vinyl chloride		13	0.02	mg/kg	0.0023	U	0.0024	U

	Location Sample ID	Cleanup (ricted Use Soil Dbjectives 5-6.89(b)		Test Pit 2 TP002(3)-TP-2(3)	Test Pit 3 TP003(3)-TP-3(3)
	SAMPLING DATE	Protection of Public Health	Protection of Groundwater		14-Jan-09 L0900616-08	14-Jan-09 L0900616-09
ANALYTE		Commercial		Units	Qual	
Volatile Organics by EPA 8260B/503	5-Soil Analysis					
1,1,1,2-Tetrachloroethane		NE	NE	mg/kg	-	-
1,1,1-Trichloroethane		500	0.68	mg/kg	-	-
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane		NE NE	NE NE	mg/kg	-	-
1,1-Dichloroethane		240	0.27	mg/kg mg/kg	-	-
1,1-Dichloroethene		500	0.33	mg/kg	-	_
1,1-Dichloropropene		NE	NE	mg/kg	-	-
1,2,3-Trichlorobenzene		NE	NE	mg/kg	-	-
1,2,3-Trichloropropane		NE	NE	mg/kg	-	-
1,2,4,5-Tetramethylbenzene		NE	NE	mg/kg	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		NE 190	NE 3.6	mg/kg	-	-
1,2,4-11methylbenzene 1,2-Dibromo-3-chloropropane		NE	NE	mg/kg mg/kg	-	-
1.2-Dibromoethane		NE	NE	mg/kg	-	
1,2-Dichlorobenzene		500	1.1	mg/kg	-	_
1,2-Dichloroethane		NE	NE	mg/kg	-	-
1,2-Dichloropropane		NE	NE	mg/kg	-	-
1,3,5-Trimethylbenzene		190	8.4	mg/kg	-	-
1,3-Dichlorobenzene		280	2.4	mg/kg	-	-
1,3-Dichloropropane		NE 130	NE 1.0	mg/kg	-	-
1,4-Dichlorobenzene 1,4-Diethylbenzene		NE	1.8 NE	mg/kg mg/kg	-	-
2,2-Dichloropropane		NE	NE	mg/kg	-	_
2-Butanone		500	0.12	mg/kg	-	_
2-Hexanone		NE	NE	mg/kg	-	-
4-Ethyltoluene		NE	NE	mg/kg	-	-
4-Methyl-2-pentanone		NE	NE	mg/kg	-	-
Acetone		500	0.05	mg/kg	-	-
Acrylonitrile		NE	NE	mg/kg	-	-
Benzene Bromobenzene		44 NE	0.06 NE	mg/kg	-	-
Bromochloromethane		NE	NE	mg/kg mg/kg	-	-
Bromodichloromethane		NE	NE	mg/kg	-	-
Bromoform		NE	NE	mg/kg	-	_
Bromomethane		NE	NE	mg/kg	-	-
Carbon disulfide		NE	NE	mg/kg	-	-
Carbon tetrachloride		22	0.76	mg/kg	-	-
Chlorobenzene		500	1.1	mg/kg	-	-
Chloroethane Chloroform		NE 350	NE 0.37	mg/kg mg/kg	-	-
Chloromethane		NE	NE	mg/kg	-	-
cis-1,2-Dichloroethene		500	0.25	mg/kg	_	_
cis-1,3-Dichloropropene		NE	NE	mg/kg	-	-
Dibromochloromethane		NE	NE	mg/kg	-	-
Dibromomethane		NE	NE	mg/kg	-	-
Dichlorodifluoromethane		NE	NE	mg/kg	-	-
Ethylbenzene Hexachlorobutadiene		390 NE	1 NE	mg/kg	-	-
Isopropylbenzene		NE NE	NE	mg/kg mg/kg	-	
Methyl tert butyl ether		500	0.93	mg/kg	-	
Methylene chloride		500	0.05	mg/kg	-	_
n-Butylbenzene		NE	NE	mg/kg	-	-
n-Propylbenzene		500	3.9	mg/kg	-	-
Naphthalene		500	12	mg/kg	-	-
o-Chlorotoluene		NE 500	NE 1.6	mg/kg	-	-
o-Xylene p-Chlorotoluene		500 NE	1.6 NE	mg/kg	-	-
p-lsopropyltoluene		NE	NE	mg/kg mg/kg	-	-
p/m-Xylene		500	1.6	mg/kg	-	-
sec-Butylbenzene		500	11	mg/kg	-	_
Styrene		NE	NE	mg/kg	-	-
tert-Butylbenzene		500	<mark>5.</mark> 9	mg/kg	-	-
Tetrachloroethene		150	1.3	mg/kg	-	-
Toluene		500	0.7	mg/kg	-	-
trans-1,2-Dichloroethene		500	0.19	mg/kg	-	-
trans-1,3-Dichloropropene Trichloroethene		NE 200	NE 0.47	mg/kg	-	-
Trichloroethene Trichlorofluoromethane		200 NE	0.47 NE	mg/kg mg/kg	-	
Vinyl acetate		NE	NE	mg/kg mg/kg	_	
Vinyl chloride		13	0.02	mg/kg	_	_

	Location		ricted Use Soil Objectives		Test Pit 2	Test Pit 3
	Sample ID	Table 37			TP002(3)-TP-2(3)	TP003(3)-TP-3(3)
	SAMPLING DATE				14-Jan-09	14-Jan-09
	LAB SAMPLE ID	Public Health	Protection of Groundwater		L0900616-08	L0900616-09
ANALYTE	LAD SAWIFLE ID	Commercial	Giounuwalei	Units	Qual	
Semi-Volatile Organics by GC/MS	- SIM			00		
2-Chloronaphthalene		NS	NS	mg/kg	-	-
2-Methylnaphthalene		NS	NS	mg/kg	-	-
Acenaphthene		500	98	mg/kg	-	-
Acenaphthylene		500	107	mg/kg	-	-
Anthracene		500	1000	mg/kg	-	-
Benzo(a)anthracene		5.6	1	mg/kg	-	-
Benzo(a)pyrene		1	22	mg/kg	-	-
Benzo(b)fluoranthene		5.6	1.7	mg/kg	-	-
Benzo(ghi)perylene		500	1000	mg/kg	-	-
Benzo(k)fluoranthene		56	1.7	mg/kg	_	-
Chrysene		56	1	mg/kg	_	-
Dibenzo(a,h)anthracene		0.56	1000	mg/kg		-
Fluoranthene		500	1000	mg/kg		
Fluorene		500	386	mg/kg		
Hexachlorobenzene		NS	NS	mg/kg	-	-
Hexachlorobutadiene		NS	NS		-	-
Hexachloroethane		NS	NS	mg/kg	-	-
		5.6		mg/kg	-	-
Indeno(1,2,3-cd)Pyrene			8.2	mg/kg	-	-
Naphthalene		500	12	mg/kg	-	-
Pentachlorophenol		6.7	0.8	mg/kg	-	-
Phenanthrene		500	1000	mg/kg	-	-
Pyrene		500	1000	mg/kg	-	-
Organochlorine Pesticides by EP	A 8081A	00	44			I
4,4'-DDD		92	14	mg/kg	-	-
4,4'-DDE		62	17	mg/kg	-	-
4,4'-DDT		47	136	mg/kg	-	-
Aldrin		0.68	0.19	mg/kg	-	-
Alpha-BHC		3.4	0.02	mg/kg	-	-
Beta-BHC		3	0.09	mg/kg	-	-
Chlordane Delta-BHC		24 500	2.9 0.25	mg/kg	-	-
Dieldrin		500 1.4	0.25	mg/kg	-	-
Endosulfan I		200	102	mg/kg	-	-
Endosulfan II		200	102	mg/kg mg/kg	-	-
Endosulfan sulfate		200	1,000	mg/kg	-	-
Endrin		89	0.06	mg/kg	-	-
Endrin ketone		NE	NE	mg/kg	-	-
Heptachlor		15	0.38	mg/kg		
Heptachlor epoxide		NE	NE	mg/kg		
Lindane		9.2	0.1	mg/kg		-
Methoxychlor		NE	NE	mg/kg		_
trans-Chlordane		NE	NE	mg/kg	_	-
Total Metals & Other Analytes						l
Iron, Total		NE	NE	mg/kg	-	-
Solids, Total		NE	NE	%	85	85
pH		NE	NE	SU	-	-
Total Organic Carbon (Rep1)		NE	NE	%	-	-
Total Organic Carbon (Rep2)		NE	NE	%		-
				/ v		1

NOTES:

NE = Not Established

mg/kg = milligrams per kilogram

Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

NA = Not Available

U = Not detected at or above the reported limit; tabulated value is the reported limit.

Table2_soil meet SCOs_Revised.xlsx/Table 2

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	NEWSREY PERMITENTIAL PROPERTY OF THE PERMIT	ricted Use Soil		West Sidewall	North Sidewall		East Sidewall, north	section
Sample ID	Cleanup C	Objectives 5-6.89(b)		EX001W(4)-EX-1W(4)	EX001N(4)-EX-1N(4)		EX001EN(4)-EX-1EN((4)
SAMPLING DATE				14-Jan-09	14-Jan-09		14-Jan-09	/
	Public Health	Protection of Groundwater						
	Commercial	Groundwater	Units	L0900616-01 Qual	L0900616-02	Qual	L0900616-03	Qual
Volatile Organics by EPA 826			•			4.4.4.		
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	-	0.0011	U	0.0012	U
1,1,1-Trichloroethane	500	0.68	mg/kg		0.0011	U	0.0012	U
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	-	0.0011	U	0.0012	U
1,1,2-Trichloroethane 1,1-Dichloroethane	NE 240	NE 0.27	mg/kg mg/kg		0.0016 0.0016	U U	0.0018 0.0018	U U
1,1-Dichloroethene	500	0.33	mg/kg	-	0.0011	U	0.0012	U
1,1-Dichloropropene	NE	NE	mg/kg	-	0.0055	U	0.006	U
1,2,3-Trichlorobenzene	NE	NE	mg/kg		0.0055	U	0.006	U
1,2,3-Trichloropropane	NE	NE	mg/kg		0.011	U	0.012	U
1,2,4,5-Tetramethylbenzene	NE NE	NE	mg/kg		0.0044	U	0.0048	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	NE 190	NE 3.6	mg/kg mg/kg		0.0055 0.0055	U U	0.006 0.006	U U
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	-	0.0055	U	0.006	U
1,2-Dibromoethane	NE	NE	mg/kg	-	0.0044	U	0.0048	U
1,2-Dichlorobenzene	500	1.1	mg/kg	-	0.0055	U	0.006	U
1,2-Dichloroethane	NE	0.02	mg/kg	-	0.0011	U	0.0012	U
1,2-Dichloropropane	NE	NE	mg/kg	-	0.0039	U	0.0042	U
1,3,5-Trimethylbenzene	190	NE	mg/kg		0.0055	U	0.006	U
1,3-Dichlorobenzene 1,3-Dichloropropane	280 NE	2.4 NE	mg/kg		0.0055 0.0055	U U	0.006 0.006	U U
1,4-Dichlorobenzene	130	1.8	mg/kg mg/kg	-	0.0055	U U	0.006	U
1,4-Diethylbenzene	NE	NE	mg/kg	-	0.0044	U	0.0048	U
2,2-Dichloropropane	NE	NE	mg/kg	-	0.0055	U	0.006	U
2-Butanone	500	0.12	mg/kg		0.011	U	0.012	U
2-Hexanone	NE	NE	mg/kg	-	0.011	U	0.012	U
4-Ethyltoluene	NE	NE	mg/kg		0.0044	U	0.0048	U
4-Methyl-2-pentanone	NE	NE	mg/kg		0.011	U	0.012	U
Acetone Acrylonitrile	500 NE	0.05 NE	mg/kg	-	0.041	U	0.028	U
Benzene	44	0.06	mg/kg mg/kg		0.0013	0	0.0012	U
Bromobenzene	NE	NE	mg/kg	-	0.0055	U	0.006	U
Bromochloromethane	NE	NE	mg/kg	-	0.0055	U	0.006	U
Bromodichloromethane	NE	NE	mg/kg		0.0011	U	0.0012	U
Bromoform	NE	NE	mg/kg		0.0044	U	0.0048	U
Bromomethane	NE	NE	mg/kg		0.0022	U	0.0024	<u> </u>
Carbon disulfide	NE 22	NE 0.70	mg/kg	-	0.011	U	0.012	<u> </u>
Carbon tetrachloride Chlorobenzene	500	0.76 1.1	mg/kg mg/kg	-	0.0011	U U	0.0012	U U
Chloroethane	NE	NE	mg/kg	-	0.0022	Ŭ	0.0024	U
Chloroform	350	0.37	mg/kg		0.0016	Ū	0.0018	U
Chloromethane	NE	NE	mg/kg		0.0055	U	0.006	U
cis-1,2-Dichloroethene	500	0.25	mg/kg	-	0.0054		0.037	
cis-1,3-Dichloropropene	NE	NE	mg/kg		0.0011	U	0.0012	U
Dibromochloromethane	NE	NE	mg/kg		0.0011	U	0.0012	<u> </u>
Dibromomethane Dichlorodifluoromethane	NE NE	NE NE	mg/kg mg/kg	-	0.011 0.011	U U	0.012 0.012	U U
Ethylbenzene	390	1	mg/kg	-	0.0011	U	0.0012	U
Hexachlorobutadiene	NE	NE	mg/kg		0.0055	U	0.006	U
Isopropylbenzene	NE	NE	mg/kg	-	0.0011	U	0.0012	U
Methyl tert butyl ether	500	NE	mg/kg	-	0.0022	U	0.0024	U
Methylene chloride	500	0.05	mg/kg	-	0.011	U	0.012	U
n-Butylbenzene	NE	NE	mg/kg	-	0.0011	U	0.0012	<u> </u>
n-Propylbenzene	500 500	3.9	mg/kg		0.0011	U	0.0012	U
Naphthalene o-Chlorotoluene	500 NE	12 NE	mg/kg mg/kg	-	0.0055 0.0055	U U	0.006 0.006	U U
o-Xylene	500	NE	mg/kg	-	0.0055	U	0.008	U
p-Chlorotoluene	NE	NE	mg/kg	-	0.0055	U	0.006	U
p-lsopropyltoluene	NE	NE	mg/kg	-	0.0011	U	0.0012	U
p/m-Xylene	500	NE	mg/kg	-	0.0022	U	0.0024	U
sec-Butylbenzene	500	11	mg/kg	-	0.0011	U	0.0012	U
Styrene	NE 500	NE	mg/kg	-	0.0022	U	0.0024	U
tert-Butylbenzene	500 150	5.9	mg/kg		0.0055	U	0.006	U
Tetrachloroethene Toluene	150 500	1.3 0.7	mg/kg mg/kg		0.0023 0.0016	U	0.1 0.0018	U
trans-1,2-Dichloroethene	500 500	0.7 0.19	mg/kg		0.0016	U	0.0018	U
trans-1,3-Dichloropropene	NE	NE	mg/kg		0.0010	U	0.0012	U
Trichloroethene	200	0.47	mg/kg		0.0011	U	0.0063	-
Trichlorofluoromethane	NE	NE	mg/kg		0.0055	U	0.006	U
Vinyl acetate	NE	NE	mg/kg	-	0.011	U	0.012	U
Vinyl chloride	13	0.02	mg/kg	-	0.01		0.015	

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	NEWSON PERSONAL PROPERTY OF	ricted Use Soil		West Sidewall		North Sidewall	East Sidewall, north section
Sample ID		Objectives 5-6.89(b)		EX001W(4)-EX-1W(4)		EX001N(4)-EX-1N(4)	EX001EN(4)-EX-1EN(4)
SAMPLING DATE				14-Jan-09		14-Jan-09	14-Jan-09
	Public Health	Protection of					
LAB SAMPLE ID ANALYTE	Commercial	Groundwater	Units	L0900616-01	Qual	L0900616-02 Qual	L0900616-03 Qual
Volatile Organics by EPA 826		nalysis	onno		quui		quar
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	0.23	U	-	-
1,1,1-Trichloroethane	500	0.68	mg/kg	0.23	U	-	-
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	0.23	U	-	-
1,1,2-Trichloroethane 1,1-Dichloroethane	NE 240	NE 0.27	mg/kg mg/kg	0.34 0.34	U U	-	-
1,1-Dichloroethene	500	0.33	mg/kg	0.23	U	-	-
1,1-Dichloropropene	NE	NE	mg/kg	1.1	U	-	-
1,2,3-Trichlorobenzene	NE	NE	mg/kg	1.1	U	-	-
1,2,3-Trichloropropane 1,2,4,5-Tetramethylbenzene	NE NE	NE NE	mg/kg mg/kg	2.3 0.92	U U	-	-
1,2,4-Trichlorobenzene	NE	NE	mg/kg	1.1	U	-	_
1,2,4-Trimethylbenzene	190	3.6	mg/kg	1.1	U	-	-
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	1.1	U	-	-
1,2-Dibromoethane	NE 500	NE	mg/kg	0.92 1.1	U U	-	-
1,2-Dichlorobenzene 1,2-Dichloroethane	NE	1.1 NE	mg/kg mg/kg		U	-	-
1,2-Dichloropropane	NE	NE	mg/kg		Ŭ	-	-
1,3,5-Trimethylbenzene	190	8.4	mg/kg	1.1	U	-	-
1,3-Dichlorobenzene	280	2.4	mg/kg	1.1	U	-	-
1,3-Dichloropropane 1,4-Dichlorobenzene	NE 130	NE 1.8	mg/kg mg/kg	1.1 1.1	U U	-	-
1,4-Diethylbenzene	NE	NE	mg/kg	0.92	U	-	-
2,2-Dichloropropane	NE	NE	mg/kg		U	-	-
2-Butanone	500	0.12	mg/kg	2.3	U	-	-
2-Hexanone	NE	NE	mg/kg		U	-	-
4-Ethyltoluene 4-Methyl-2-pentanone	NE NE	NE NE	mg/kg mg/kg		U U	-	-
Acetone	500	0.05	mg/kg	2.3	U	-	-
Acrylonitrile	NE	NE	mg/kg	2.3	U	-	-
Benzene	44	0.06	mg/kg		U	-	-
Bromobenzene	NE	NE	mg/kg		U	-	-
Bromochloromethane Bromodichloromethane	NE NE	NE NE	mg/kg mg/kg		U U	-	-
Bromoform	NE	NE	mg/kg		U	-	-
Bromomethane	NE	NE	mg/kg	0.46	U	-	-
Carbon disulfide	NE	NE	mg/kg	2.3	U	-	-
Carbon tetrachloride	22	0.76	mg/kg	0.23	U	-	-
Chlorobenzene Chloroethane	500 NE	1.1 NE	mg/kg mg/kg		U U	-	-
Chloroform	350	0.37	mg/kg		U	-	-
Chloromethane	NE	NE	mg/kg		U	-	-
cis-1,2-Dichloroethene	500	0.25	mg/kg	1.1		-	-
cis-1,3-Dichloropropene Dibromochloromethane	NE NE	NE NE	mg/kg mg/kg	0.23	U U	-	-
Dibromomethane	NE	NE	mg/kg	2.3	U	-	-
Dichlorodifluoromethane	NE	NE	mg/kg	2.3	Ŭ	-	-
Ethylbenzene	390	1	mg/kg		U	-	-
Hexachlorobutadiene	NE	NE	mg/kg		U	-	-
Isopropylbenzene Methyl tert butyl ether	NE 500	NE 0.93	mg/kg mg/kg		U U	-	
Methylene chloride	500	0.95	mg/kg	2.3	U	-	-
n-Butylbenzene	NE	NE	mg/kg	0.23	U	-	-
n-Propylbenzene	500	3.9	mg/kg	0.23	U	-	-
Naphthalene	500	12 NE	mg/kg	1.1	U	-	-
o-Chlorotoluene o-Xylene	NE 500	NE 1.6	mg/kg mg/kg	1.1 0.46	U U	-	
p-Chlorotoluene	NE	NE	mg/kg		U	-	-
p-lsopropyltoluene	NE	NE	mg/kg	0.23	U	-	-
p/m-Xylene	500	1.6	mg/kg	0.46	U	-	-
sec-Butylbenzene Styrene	500 NE	11 NE	mg/kg mg/kg	0.23 0.46	U U	-	-
tert-Butylbenzene	500	NE 5.9	mg/kg		U	-	
Tetrachloroethene	150	1.3	mg/kg		J	-	-
Toluene	500	0.7	mg/kg	0.34	U	-	-
trans-1,2-Dichloroethene	500	0.19	mg/kg	0.34	U	-	-
trans-1,3-Dichloropropene Trichloroethene	NE 200	NE 0.47	mg/kg mg/kg	0.23 1.2	U	-	-
Trichlorofluoromethane	200 NE	0.47 NE	mg/kg		U	-	
Vinyl acetate	NE	NE	mg/kg		U	-	-
Vinyl chloride	13	0.02	mg/kg	0.46	U	-	-

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	Cleanup (ricted Use Soil Objectives		West Sidewall		North Sidewall	East Sidewall, north section
Sample ID	Table 37	5-6.89(b)		EX001W(4)-EX-1W(4)		EX001N(4)-EX-1N(4)	EX001EN(4)-EX-1EN(4)
SAMPLING DATE	Protection of Public Health	Protection of		14-Jan-09		14-Jan-09	14-Jan-09
LAB SAMPLE ID		Groundwater		L0900616-01		L0900616-02	L0900616-03
ANALYTE	Commercial		Units		Qual	Qual	Qual
Organochlorine Pesticides by	y EPA 8081A						
4,4'-DDD	92	14	mg/kg	0.00388	U	-	-
4,4'-DDE	62	17	mg/kg	0.00388	U	-	-
4,4'-DDT	47	136	mg/kg	0.00388	U	-	-
Aldrin	0.68	0.19	mg/kg	0.00388	U	-	-
Alpha-BHC	3.4	0.02	mg/kg	0.00388	U	-	-
Beta-BHC	3	0.09	mg/kg	0.00388	U	-	-
Chlordane	24	2.9	mg/kg	0.0388	U	-	-
Delta-BHC	500	0.25	mg/kg	0.00388	U	-	-
Dieldrin	1.4	0.1	mg/kg	0.00388	U	-	-
Endosulfan I	200	102	mg/kg	0.00388	U	-	-
Endosulfan II	200	102	mg/kg	0.00388	U	-	-
Endosulfan sulfate	200	1,000	mg/kg	0.00388	U	-	-
Endrin	89	0.06	mg/kg	0.00388	U	-	-
Endrin ketone	NE	NE	mg/kg	0.00388	U	-	-
Heptachlor	15	0.38	mg/kg	0.00388	U	-	-
Heptachlor epoxide	NE	NE	mg/kg	0.00388	U	-	-
Lindane	9.2	0.1	mg/kg	0.00388	U	-	-
Methoxychlor	NE	NE	mg/kg	0.0155	U	-	-
trans-Chlordane	NE	NE	mg/kg	0.00388	U	-	-
Total Metals & Other Analyte	S						
Iron, Total	NE	NE	mg/kg	13000		14000	12000
Solids, Total	NE	NE	%	86		87	84
рН	NE	NE	SU	7.4		7.3	7.2
Total Organic Carbon (Rep1)	NE	NE	%	0.18		0.29	0.65
Total Organic Carbon (Rep2)	NE	NE	%	0.22		0.37	0.66
COD	NE	NE	mg/kg	12000		11000	15000
	•			NOTES:		•	

NOTES:

U = Not detected at or above the reported limit; tabulated value is the reported limit.

NE = Not Established NA = Not Available

mg/kg = milligrams per kilogram

Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

69972_CCR-1_Tables/Table 4

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

	NYSDEC Rest	ricted Use Soil		Couth Sidowall	Pottom north costion	East Sidewall, south section
Location	Cleanup C			South Sidewall	Bottom, north section	
Sample ID		5-6.89(D)		EX001S(4)-EX-1S(4)	EX001BN(4)-EX-1BN(4)	EX001ES(4)-EX-1ES(4)
SAMPLING DATE		Protection of		14-Jan-09	14-Jan-09	14-Jan-09
LAB SAMPLE ID		Groundwater		L0900616-04	L0900616-05	L0900616-06
ANALYTE	Commercial		Units	Qual	Qual	Qual
Volatile Organics by EPA 826 1,1,1,2-Tetrachloroethane	NE	NE	mg/kg			
1,1,1-Trichloroethane	500	0.68	mg/kg	_	-	_
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	-	-	-
1,1,2-Trichloroethane	NE	NE	mg/kg	-	-	-
1,1-Dichloroethane 1,1-Dichloroethene	240 500	0.27	mg/kg	-	-	-
1,1-Dichloropropene	NE	0.33 NE	mg/kg mg/kg		-	-
1,2,3-Trichlorobenzene	NE	NE	mg/kg	-	-	-
1,2,3-Trichloropropane	NE	NE	mg/kg	-	-	-
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	-	-	-
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	NE 190	NE 3.6	mg/kg	-	-	-
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg mg/kg	-	-	-
1,2-Dibromoethane	NE	NE	mg/kg	-	-	-
1,2-Dichlorobenzene	500	1.1	mg/kg	-	-	-
1,2-Dichloroethane	NE	0.02	mg/kg	-	-	-
1,2-Dichloropropane	NE 100	NE	mg/kg	-	-	-
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	190 280	NE 2.4	mg/kg mg/kg	-	-	
1,3-Dichloropropane	NE	NE	mg/kg	-	-	-
1,4-Dichlorobenzene	130	1.8	mg/kg	-	-	-
1,4-Diethylbenzene	NE	NE	mg/kg	-	-	-
2,2-Dichloropropane 2-Butanone	NE 500	NE 0.12	mg/kg	-	-	-
2-Butanone	NE	NE	mg/kg mg/kg	-	-	-
4-Ethyltoluene	NE	NE	mg/kg	-	-	-
4-Methyl-2-pentanone	NE	NE	mg/kg	-	-	-
Acetone	500	0.05	mg/kg	-	-	-
Acrylonitrile Benzene	NE 44	NE 0.06	mg/kg mg/kg	-	-	-
Bromobenzene	NE	NE	mg/kg	-	-	-
Bromochloromethane	NE	NE	mg/kg	-	-	-
Bromodichloromethane	NE	NE	mg/kg	-	-	-
Bromoform	NE	NE	mg/kg	-	-	-
Bromomethane Carbon disulfide	NE NE	NE NE	mg/kg mg/kg	-	-	-
Carbon tetrachloride	22	0.76	mg/kg	-	-	-
Chlorobenzene	500	1.1	mg/kg	-	-	-
Chloroethane	NE	NE	mg/kg	-	-	-
Chloroform	350	0.37	mg/kg	-	-	-
Chloromethane cis-1,2-Dichloroethene	NE 500	NE 0.25	mg/kg mg/kg	-	-	-
cis-1,3-Dichloropropene	NE	NE	mg/kg	-	-	_
Dibromochloromethane	NE	NE	mg/kg	-	-	-
Dibromomethane	NE	NE	mg/kg	-	-	-
Dichlorodifluoromethane	NE 200	NE 1	mg/kg	-	-	-
Ethylbenzene Hexachlorobutadiene	390 NE	1 NE	mg/kg mg/kg	-	-	
Isopropylbenzene	NE	NE	mg/kg	-	-	-
Methyl tert butyl ether	500	NE	mg/kg	-	-	-
Methylene chloride	500	0.05	mg/kg	-	-	-
n-Butylbenzene n-Propylbenzene	NE 500	NE 3.9	mg/kg mg/kg	-	-	-
Naphthalene	500 500	3.9 12	mg/kg mg/kg	-	-	
o-Chlorotoluene	NE	NE	mg/kg	-	-	-
o-Xylene	500	NE	mg/kg	-	-	-
p-Chlorotoluene	NE	NE	mg/kg	-	-	-
p-lsopropyltoluene p/m-Xylene	NE 500	NE NE	mg/kg mg/kg	-	-	-
sec-Butylbenzene	500	11	mg/kg	-	-	-
Styrene	NE	NE	mg/kg	-	-	-
tert-Butylbenzene	500	5.9	mg/kg		-	-
Tetrachloroethene	150	1.3	mg/kg	-	-	-
Toluene trans 1.2 Dichloroothono	500	0.7 0.19	mg/kg	-	-	-
trans-1,2-Dichloroethene trans-1,3-Dichloropropene	500 NE	0.19 NE	mg/kg mg/kg	-	-	-
Trichloroethene	200	0.47	mg/kg		-	-
Trichlorofluoromethane	NE	NE	mg/kg		-	-
Vinyl acetate	NE	NE	mg/kg	-	-	-
Vinyl chloride	13	0.02	mg/kg	-	-	-

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	NYSDEC Rest			South Sidewall		Bottom, north sec	tion	East Sidewall, south	section
Sample ID	Cleanup C Table 37			EX001S(4)-EX-1S(4)		EX001BN(4)-EX-1BN(4	4)	EX001ES(4)-EX-1ES(4	4)
SAMPLING DATE		()		14-Jan-09		14-Jan-09	-,	14-Jan-09	-7
	Public Health	Protection of							
LAB SAMPLE ID	Commercial	Groundwater	Units	L0900616-04	Qual	L0900616-05	Qual	L0900616-06	Qual
Volatile Organics by EPA 826		nalvsis	onito		Quui		Quui		Quui
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	1.2	U	0.062	U	0.057	U
1,1,1-Trichloroethane	500	0.68	mg/kg	1.2	U	0.062	U	0.057	U
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	1.2	U	0.062	U	0.057	U
1,1,2-Trichloroethane 1,1-Dichloroethane	NE 240	NE 0.27	mg/kg mg/kg	1.8 1.8	U U	0.094 0.094	U U	0.085 0.085	U U
1,1-Dichloroethene	500	0.27	mg/kg	1.8	U	0.094	U	0.085	U
1,1-Dichloropropene	NE	NE	mg/kg	6	U	0.31	U	0.28	U
1,2,3-Trichlorobenzene	NE	NE	mg/kg	6	U	0.31	U	0.28	U
1,2,3-Trichloropropane	NE	NE	mg/kg	12	U	0.62	U	0.57	U
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	4.8	U	0.25	U	0.23	U
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	NE 190	NE 3.6	mg/kg mg/kg	6 6	U U	0.31 0.31	U U	0.28 0.28	U U
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	6	U	0.31	U	0.28	U
1,2-Dibromoethane	NE	NE	mg/kg	4.8	U	0.25	U	0.23	U
1,2-Dichlorobenzene	500	1.1	mg/kg	6	U	0.31	U	0.28	U
1,2-Dichloroethane	NE	NE	mg/kg	1.2	U	0.062	U	0.057	U
1,2-Dichloropropane	NE	NE	mg/kg	4.2	U	0.22	U	0.2	U
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	190 280	8.4 2.4	mg/kg mg/kg	6 6	U U	0.31 0.31	U U	0.28 0.28	U U
1,3-Dichloropropane	NE	Z.4 NE	mg/kg	6	U	0.31	U	0.28	U
1,4-Dichlorobenzene	130	1.8	mg/kg	6	U	0.31	U	0.28	U
1,4-Diethylbenzene	NE	NE	mg/kg	4.8	U	0.25	U	0.23	U
2,2-Dichloropropane	NE	NE	mg/kg	6	U	0.31	U	0.28	U
2-Butanone 2-Hexanone	500	0.12	mg/kg	12	U	0.62	U	0.57	U
2-Hexanone 4-Ethyltoluene	NE NE	NE NE	mg/kg mg/kg	12 4.8	U U	0.62 0.25	U U	0.57 0.23	U U
4-Methyl-2-pentanone	NE	NE	mg/kg	12	U	0.62	U	0.57	U
Acetone	500	0.05	mg/kg	12	U	0.62	U	0.57	U
Acrylonitrile	NE	NE	mg/kg	12	U	0.62	U	0.57	U
Benzene	44	0.06	mg/kg	1.2	U	0.062	U	0.057	U
Bromobenzene Bromochloromethane	NE NE	NE NE	mg/kg	6 6	U	0.31 0.31	U	0.28 0.28	U U
Bromodichloromethane	NE	NE	mg/kg mg/kg	6 1.2	U U	0.062	U U	0.28	U
Bromoform	NE	NE	mg/kg	4.8	U	0.25	U	0.23	U
Bromomethane	NE	NE	mg/kg	2.4	U	0.12	U	0.11	U
Carbon disulfide	NE	NE	mg/kg	12	U	0.62	U	0.57	U
Carbon tetrachloride	22	0.76	mg/kg	1.2	U	0.062	U	0.057	U
Chlorobenzene Chloroethane	500 NE	1.1 NE	mg/kg	1.2 2.4	U	0.062 0.12	U U	0.057 0.11	U U
Chloroform	350	N⊑ 0.37	mg/kg mg/kg	2.4 1.8	U U	0.12	U	0.085	U
Chloromethane	NE	NE	mg/kg	6	U	0.31	Ŭ	0.28	U
cis-1,2-Dichloroethene	500	0.25	mg/kg	140		0.11		3.2	
cis-1,3-Dichloropropene	NE	NE	mg/kg	1.2	U	0.062	U	0.057	U
Dibromochloromethane	NE	NE	mg/kg	1.2	U	0.062	<u> </u>	0.057	<u> </u>
Dibromomethane Dichlorodifluoromethane	NE NE	NE NE	mg/kg mg/kg	12 12	U	0.62 0.62	U	0.57 0.57	U U
Ethylbenzene	NE 390	NE 1	mg/kg mg/kg	12	U U	0.62	U U	0.57	U
Hexachlorobutadiene	NE	NE	mg/kg	6	U	0.31	U	0.28	U
lsopropylbenzene	NE	NE	mg/kg	1.2	U	0.062	U	0.057	U
Methyl tert butyl ether	500	0.93	mg/kg	2.4	U	0.12	U	0.11	U
Methylene chloride	500	0.05	mg/kg	12	U	0.62	<u> </u>	0.57	<u> </u>
n-Butylbenzene n-Propylbenzene	NE 500	NE 3.9	mg/kg mg/kg	1.2 1.2	U U	0.062 0.062	U U	0.057 0.057	U U
Naphthalene	500 500	12	mg/kg	6	U	0.31	U	0.28	U
o-Chlorotoluene	NE	NE	mg/kg	6	U	0.31	U	0.28	U
o-Xylene	500	1.6	mg/kg	2.4	U	0.12	U	0.11	U
p-Chlorotoluene	NE	NE	mg/kg	6	U	0.31	U	0.28	U
p-lsopropyltoluene	NE	NE	mg/kg	1.2	U	0.062	<u> </u>	0.057	<u> </u>
p/m-Xylene sec-Butylbenzene	500 500	1.6 11	mg/kg mg/kg	2.4 1.2	U U	0.12 0.062	U U	0.11 0.057	U U
Styrene	NE	NE	mg/kg	2.4	U	0.062	U	0.057	U
tert-Butylbenzene	500	5.9	mg/kg	6	U	0.31	U	0.28	U
Tetrachloroethene	150	1.3	mg/kg	3.2	-	0.093	2	0.13	-
Toluene	500	0.7	mg/kg	1.8	U	0.094	U	0.085	U
trans-1,2-Dichloroethene	500	0.19	mg/kg	2.3		0.24		0.13	
trans-1,3-Dichloropropene	NE	NE	mg/kg	1.2	U	0.062	<u> </u>	0.057	U
Trichloroethene Trichlorofluoromethane	200 NE	0.47 NE	mg/kg mg/kg	4 6	U	0.062 0.31	U U	0.057 0.28	U U
Vinyl acetate	NE	NE	mg/kg	12	U	0.62	U	0.28	U
Vinyl chloride	13	0.02	mg/kg	25	2	0.12	Ŭ	0.98	0

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	NYSDEC Rest Cleanup (ricted Use Soil Objectives		South Sidewall	Bottom, north section	East Sidewall, south section
Sample ID	Table 37	5-6.89(b)		EX001S(4)-EX-1S(4)	EX001BN(4)-EX-1BN(4)	EX001ES(4)-EX-1ES(4)
SAMPLING DATE	Protection of Public Health	Protection of		14-Jan-09	14-Jan-09	14-Jan-09
LAB SAMPLE ID		Groundwater		L0900616-04	L0900616-05	L0900616-06
ANALYTE	Commercial		Units	Qual	Qual	Qual
Organochlorine Pesticides by	y EPA 8081A					
4,4'-DDD	92	14	mg/kg	-	0.00417 U	-
4,4'-DDE	62	17	mg/kg	-	0.00562	-
4,4'-DDT	47	136	mg/kg	-	0.00417 U	-
Aldrin	0.68	0.19	mg/kg	-	0.00417 U	-
Alpha-BHC	3.4	0.02	mg/kg	-	0.00417 U	-
Beta-BHC	3	0.09	mg/kg	-	0.00417 U	-
Chlordane	24	2.9	mg/kg	-	0.0417 U	-
Delta-BHC	500	0.25	mg/kg	-	0.00417 U	-
Dieldrin	1.4	0.1	mg/kg	-	0.00417 U	-
Endosulfan I	200	102	mg/kg	-	0.00417 U	-
Endosulfan II	200	102	mg/kg	-	0.00417 U	-
Endosulfan sulfate	200	1,000	mg/kg	-	0.00417 U	-
Endrin	89	0.06	mg/kg	-	0.00417 U	-
Endrin ketone	NE	NE	mg/kg	-	0.00417 U	-
Heptachlor	15	0.38	mg/kg	-	0.00417 U	-
Heptachlor epoxide	NE	NE	mg/kg	-	0.00417 U	-
Lindane	9.2	0.1	mg/kg	-	0.00417 U	-
Methoxychlor	NE	NE	mg/kg	-	0.0167 U	-
trans-Chlordane	NE	NE	mg/kg	-	0.00417 U	-
Total Metals & Other Analytes	5					
Iron, Total	NE	NE	mg/kg	12000	13000	15000
Solids, Total	NE	NE	%	83	80	88
рН	NE	NE	SU	7.5	6.8	6.8
Total Organic Carbon (Rep1)	NE	NE	%	0.53	0.59	0.83
Total Organic Carbon (Rep2)	NE	NE	%	0.71	0.72	0.75
COD	NE	NE	mg/kg	19000	28000	14000

NOTES:

U = Not detected at or above the reported limit; tabulated value is the reported limit.

NE = Not Established NA = Not Available

mg/kg = milligrams per kilogram

Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

69972_CCR-1_Tables/Table 4

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Location	and the second second second	ricted Use Soil		Bottom, south section	Test Pit 2		Test Pit 3		Bottom, no	
Sample ID	Cleanup C	Objectives 5-6.89(b)		EX001BS(4)-EX-1BS(4)	TP002(3)-TP-2(3))	TP003(3)-TP-3(3)		section DUPLICATE	
SAMPLING DATE				14-Jan-09	14-Jan-09	/	14-Jan-09			
	Public Health	Protection of							14-Jan-09	
LAB SAMPLE ID ANALYTE	Commercial	Groundwater	Units	L0900616-07 Qual	L0900616-08	Qual	L0900616-09	Qual	L0900616-10	Qual
Volatile Organics by EPA 826			Units	Quai		Quai		Quai		Quai
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
1,1,1-Trichloroethane	500	0.68	mg/kg	-	0.0012	U	0.0012	U	-	
1,1,2,2-Tetrachloroethane	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
1,1,2-Trichloroethane 1,1-Dichloroethane	NE 240	NE 0.27	mg/kg mg/kg	-	0.0017 0.0017	U U	0.0018 0.0018	U U	-	
1,1-Dichloroethene	500	0.27	mg/kg	-	0.0017	U	0.0018	U	-	
1,1-Dichloropropene	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
1,2,3-Trichlorobenzene	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
1,2,3-Trichloropropane	NE	NE	mg/kg	-	0.012	U	0.012	U	-	
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	-	0.0046	U	0.0047	U	-	
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene	NE 190	NE 3.6	mg/kg mg/kg	-	0.0058 0.0058	U U	0.0059 0.0059	U U	-	
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
1,2-Dibromoethane	NE	NE	mg/kg	-	0.0046	U	0.0047	U	-	
1,2-Dichlorobenzene	500	1.1	mg/kg	-	0.0058	U	0.0059	U	-	
1,2-Dichloroethane	NE	0.02	mg/kg	-	0.0012	U	0.0012	U	-	
1,2-Dichloropropane	NE 100	NE NE	mg/kg	-	0.004	U	0.0041 0.0059	U	-	
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	190 280	NE 2.4	mg/kg mg/kg	-	0.0058 0.0058	U U	0.0059	U U	-	
1,3-Dichloropropane	NE	NE	mg/kg	_	0.0058	U	0.0059	U	-	
1,4-Dichlorobenzene	130	1.8	mg/kg	-	0.0058	U	0.0059	U	-	
1,4-Diethylbenzene	NE	NE	mg/kg	-	0.0046	U	0.0047	U	-	
2,2-Dichloropropane	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
2-Butanone	500	0.12	mg/kg	-	0.012	U	0.012	U	-	
2-Hexanone 4-Ethyltoluene	NE NE	NE NE	mg/kg mg/kg	-	0.012 0.0046	U U	0.012 0.0047	U U	-	
4-Methyl-2-pentanone	NE	NE	mg/kg		0.012	U	0.012	U	-	
Acetone	500	0.05	mg/kg	-	0.041		0.037		-	
Acrylonitrile	NE	NE	mg/kg	-	0.012	U	0.012	U	-	
Benzene	44	0.06	mg/kg	-	0.002		0.002		-	
Bromobenzene Bromochloromethane	NE NE	NE NE	mg/kg	-	0.0058 0.0058	U U	0.0059 0.0059	U U	-	
Bromodichloromethane	NE	NE	mg/kg mg/kg	-	0.0058	U	0.0059	U	-	
Bromoform	NE	NE	mg/kg	-	0.0046	U	0.0047	U	-	
Bromomethane	NE	NE	mg/kg	-	0.0023	U	0.0024	U	-	
Carbon disulfide	NE	NE	mg/kg	-	0.012	U	0.012	U	-	
Carbon tetrachloride	22	0.76	mg/kg	-	0.0012	U	0.0012	U	-	
Chlorobenzene Chloroethane	500 NE	1.1 NE	mg/kg	-	0.0012 0.0023	U U	0.0012 0.0024	U U	-	
Chloroform	350	0.37	mg/kg mg/kg	-	0.0023	U	0.0024	U	-	
Chloromethane	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
cis-1,2-Dichloroethene	500	0.25	mg/kg	-	0.0025		0.0012	U	-	
cis-1,3-Dichloropropene	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
Dibromochloromethane	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
Dibromomethane Dichlorodifluoromethane	NE NE	NE NE	mg/kg	-	0.012 0.012	U U	0.012 0.012	U	-	
Ethylbenzene	390		mg/kg mg/kg	-	0.012	U	0.012	U U	-	
Hexachlorobutadiene	NE	NE	mg/kg	-	0.0012	U	0.0059	U	-	
lsopropylbenzene	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
Methyl tert butyl ether	500	NE	mg/kg	-	0.0023	U	0.0024	U	-	
Methylene chloride	500	0.05	mg/kg	-	0.012	U	0.012	U	-	
n-Butylbenzene n-Propylbenzene	NE 500	NE 3.9	mg/kg	-	0.0012 0.0012	U U	0.0012	U U	-	
Naphthalene	500	3.9 12	mg/kg mg/kg	-	0.0012	U	0.0012	U	-	
o-Chlorotoluene	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
o-Xylene	500	NE	mg/kg	-	0.0023	U	0.0024	U	-	
p-Chlorotoluene	NE	NE	mg/kg	-	0.0058	U	0.0059	U	-	
p-lsopropyltoluene	NE	NE	mg/kg	-	0.0012	U	0.0012	U	-	
p/m-Xylene	500 500	NE 11	mg/kg	-	0.0023 0.0012	U	0.0024	U	-	
sec-Butylbenzene Styrene	NE	11 NE	mg/kg mg/kg	-	0.0012	U U	0.0012 0.0024	U U	-	
tert-Butylbenzene	500	N⊑ 5.9	mg/kg	-	0.0023	U	0.0024	U	-	
Tetrachloroethene	150	1.3	mg/kg		0.0012	U	0.0012	U	-	
Toluene	500	0.7	mg/kg	-	0.0017	U	0.0018	U	-	
trans-1,2-Dichloroethene	500	0.19	mg/kg		0.0017	U	0.0018	U	-	
trans-1,3-Dichloropropene	NE	NE 0.47	mg/kg		0.0012	U	0.0012	<u>U</u>	-	
Trichloroethene Trichlorofluoromethane	200 NE	0.47 NE	mg/kg mg/kg		0.0012 0.0058	U U	0.0012	U U	-	
Vinyl acetate	NE	NE	mg/kg		0.0038	U	0.0059	U	-	
		0.02	mg/kg		0.0023	Ŭ	0.0024	-		

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

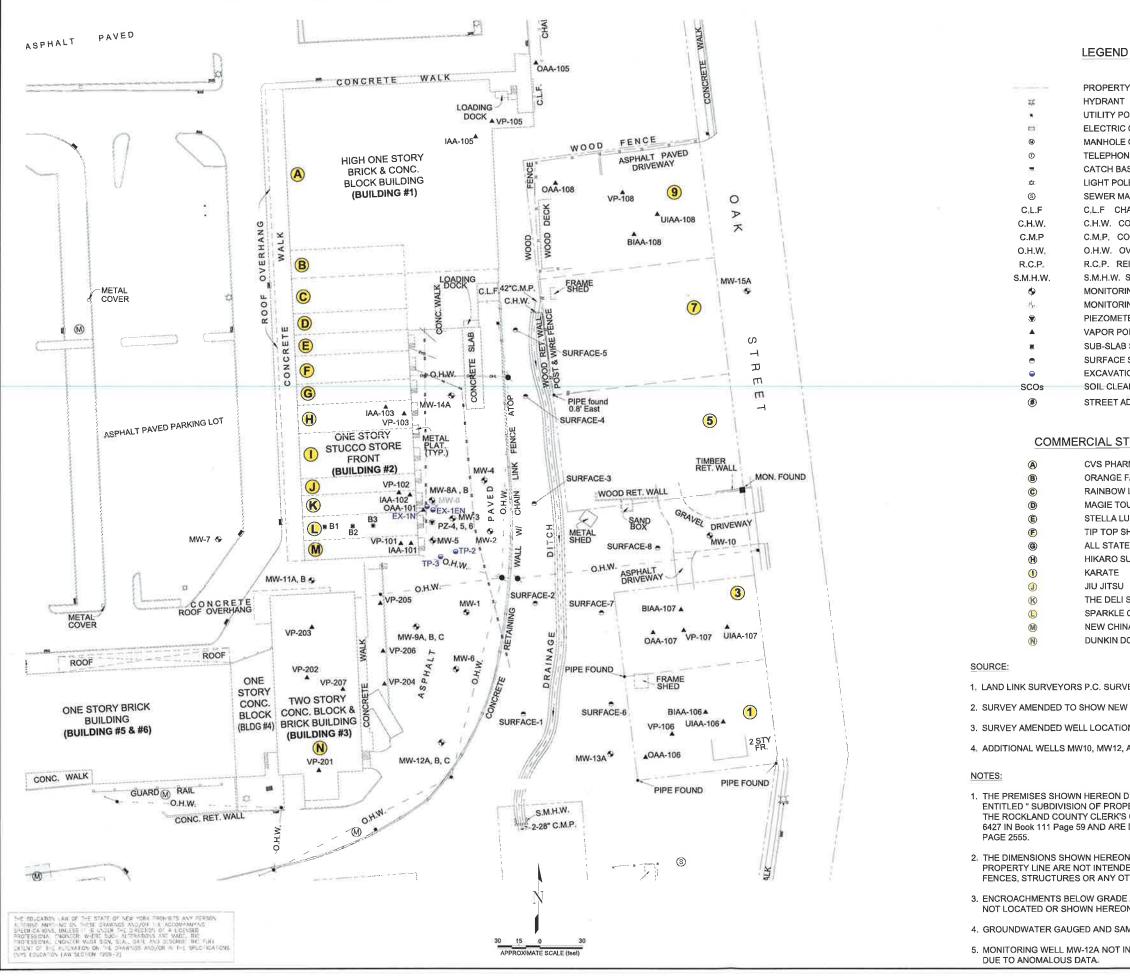
Location	NEWSREY PERMITENTIAL PROPERTY OF THE PERMIT	ricted Use Soil Objectives		Bottom, south sect	ion	Test Pit 2	Test Pit 3	Bottom, n sectior	
Sample ID				EX001BS(4)-EX-1BS(4)		TP002(3)-TP-2(3)	TP003(3)-TP-3(3)	DUPLICATE	
SAMPLING DATE	Protection of	Ducto sticu. of		14-Jan-09		14-Jan-09	14-Jan-09	14-Jan-09	
LAB SAMPLE ID	Public Health	Protection of Groundwater		L0900616-07		L0900616-08	L0900616-09	L0900616-10)
ANALYTE	Commercial		Units		Qual	Qual	Qual		Qual
Volatile Organics by EPA 826	0B/5035-Soil A	nalysis							
1,1,1,2-Tetrachloroethane	NE	NE	mg/kg	0.059	U	-	-	0.062	U
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	500 NE	0.68 NE	mg/kg	0.059 0.059	U	-	-	0.062 0.062	U U
1,1,2-Trichloroethane	NE	NE	mg/kg mg/kg	0.039	U U	-	-	0.082	U
1,1-Dichloroethane	240	0.27	mg/kg	0.089	Ŭ	-	-	0.094	Ŭ
1,1-Dichloroethene	500	0.33	mg/kg	0.059	U	-	-	0.062	U
1,1-Dichloropropene	NE	NE	mg/kg	0.3	U	-	-	0.31	<u> </u>
1,2,3-Trichlorobenzene 1,2,3-Trichloropropane	NE NE	NE NE	mg/kg mg/kg	0.3 0.59	U U	-	-	0.31 0.62	U U
1,2,4,5-Tetramethylbenzene	NE	NE	mg/kg	0.24	U	-	-	0.02	U
1,2,4-Trichlorobenzene	NE	NE	mg/kg	0.3	U	-	-	0.31	U
1,2,4-Trimethylbenzene	190	3.6	mg/kg	0.3	U	-	-	0.31	U
1,2-Dibromo-3-chloropropane	NE	NE	mg/kg	0.3	U	-	-	0.31	<u> </u>
1,2-Dibromoethane 1.2-Dichlorobenzene	NE 500	NE 1.1	mg/kg mg/kg	0.24	U U	-	-	0.25	U U
1,2-Dichloroethane	NE	NE	mg/kg	0.059	U	-	-	0.062	U
1,2-Dichloropropane	NE	NE	mg/kg	0.21	U	-	-	0.22	U
1,3,5-Trimethylbenzene	190	8.4	mg/kg	0.3	U	-	-	0.31	U
1,3-Dichlorobenzene	280	2.4	mg/kg	0.3	U	-	-	0.31	U
1,3-Dichloropropane 1,4-Dichlorobenzene	NE 130	NE 1.8	mg/kg mg/kg	0.3	U U	-	-	0.31	U U
1,4-Diethylbenzene	NE	NE	mg/kg	0.24	U	-	-	0.25	U
2,2-Dichloropropane	NE	NE	mg/kg	0.3	U	-	-	0.31	U
2-Butanone	500	0.12	mg/kg	0.59	U	-	-	0.62	U
2-Hexanone	NE	NE	mg/kg	0.59	U	-	-	0.62	U
4-Ethyltoluene 4-Methyl-2-pentanone	NE NE	NE NE	mg/kg mg/kg	0.24 0.59	U U	-	-	0.25 0.62	U U
Acetone	500	0.05	mg/kg	0.59	U	-	-	0.62	U
Acrylonitrile	NE	NE	mg/kg	0.59	U	-	-	0.62	U
Benzene	44	0.06	mg/kg	0.059	U	-	-	0.062	U
Bromobenzene	NE	NE	mg/kg	0.3	U	-	-	0.31	U
Bromochloromethane Bromodichloromethane	NE NE	NE NE	mg/kg mg/kg	0.3 0.059	U U	-	-	0.31 0.062	U U
Bromoform	NE	NE	mg/kg	0.24	U	-	-	0.25	U
Bromomethane	NE	NE	mg/kg	0.12	U	-	-	0.12	U
Carbon disulfide	NE	NE	mg/kg	0.59	U	-	-	0.62	U
Carbon tetrachloride Chlorobenzene	22 500	0.76 1.1	mg/kg mg/kg	0.059 0.059	U U	-	-	0.062 0.062	U U
Chloroethane	NE	NE	mg/kg	0.039	U	-	-	0.002	U
Chloroform	350	0.37	mg/kg	0.089	Ŭ	-	-	0.094	U
Chloromethane	NE	NE	mg/kg	0.3	U	-	-	0.31	U
cis-1,2-Dichloroethene	500	0.25	mg/kg	1.3		-	-	0.12	
cis-1,3-Dichloropropene Dibromochloromethane	NE NE	NE NE	mg/kg mg/kg	0.059 0.059	U U	-	-	0.062	U U
Dibromomethane	NE	NE	mg/kg	0.59	U	-	-	0.62	U
Dichlorodifluoromethane	NE	NE	mg/kg	0.59	U	-	-	0.62	U
Ethylbenzene	390	1	mg/kg	0.059	U	-	-	0.062	U
Hexachlorobutadiene	NE	NE	mg/kg	0.3	U	-	-	0.31	U
lsopropylbenzene Methyl tert butyl ether	NE 500	NE 0.93	mg/kg mg/kg	0.059 0.12	U U	-	-	0.062 0.12	U U
Methylene chloride	500	0.05	mg/kg	0.59	U	-	-	0.62	U
n-Butylbenzene	NE	NE	mg/kg	0.059	U	-	-	0.062	U
n-Propylbenzene	500	3.9	mg/kg	0.059	U	-	-	0.062	U
Naphthalene	500	12	mg/kg	0.3	U	-	-	0.31	U
o-Chlorotoluene o-Xylene	NE 500	NE 1.6	mg/kg mg/kg	0.3 0.12	U U	-	-	0.31 0.12	U U
p-Chlorotoluene	NE	NE	mg/kg	0.12	U	-	-	0.12	U
p-lsopropyltoluene	NE	NE	mg/kg	0.059	U			0.062	U
p/m-Xylene	500	1.6	mg/kg	0.12	U	-	-	0.12	U
sec-Butylbenzene	500	11 NE	mg/kg		U	-	-	0.062	U
Styrene tert-Butylbenzene	NE 500	NE 5.9	mg/kg mg/kg	0.12 0.3	U U	-	-	0.12 0.31	U U
Tetrachloroethene	150	1.3	mg/kg		U	-	-	0.31	0
Toluene	500	0.7	mg/kg	0.089	U	-	-	0.094	U
trans-1,2-Dichloroethene	500	0.19	mg/kg	0.16		-	-	0.26	
trans-1,3-Dichloropropene	NE	NE 0.47	mg/kg	0.059	U	-	-	0.062	<u> </u>
Trichloroethene Trichlorofluoromethane	200 NE	0.47 NE	mg/kg mg/kg	0.068 0.3	U	-	-	0.062 0.31	U U
Vinyl acetate	NE	NE	mg/kg	0.59	U	-	-	0.62	U
Vinyl chloride	13	0.02	mg/kg	3.4		-	-	0.12	U

Excavation Endpoint Sampling Results Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

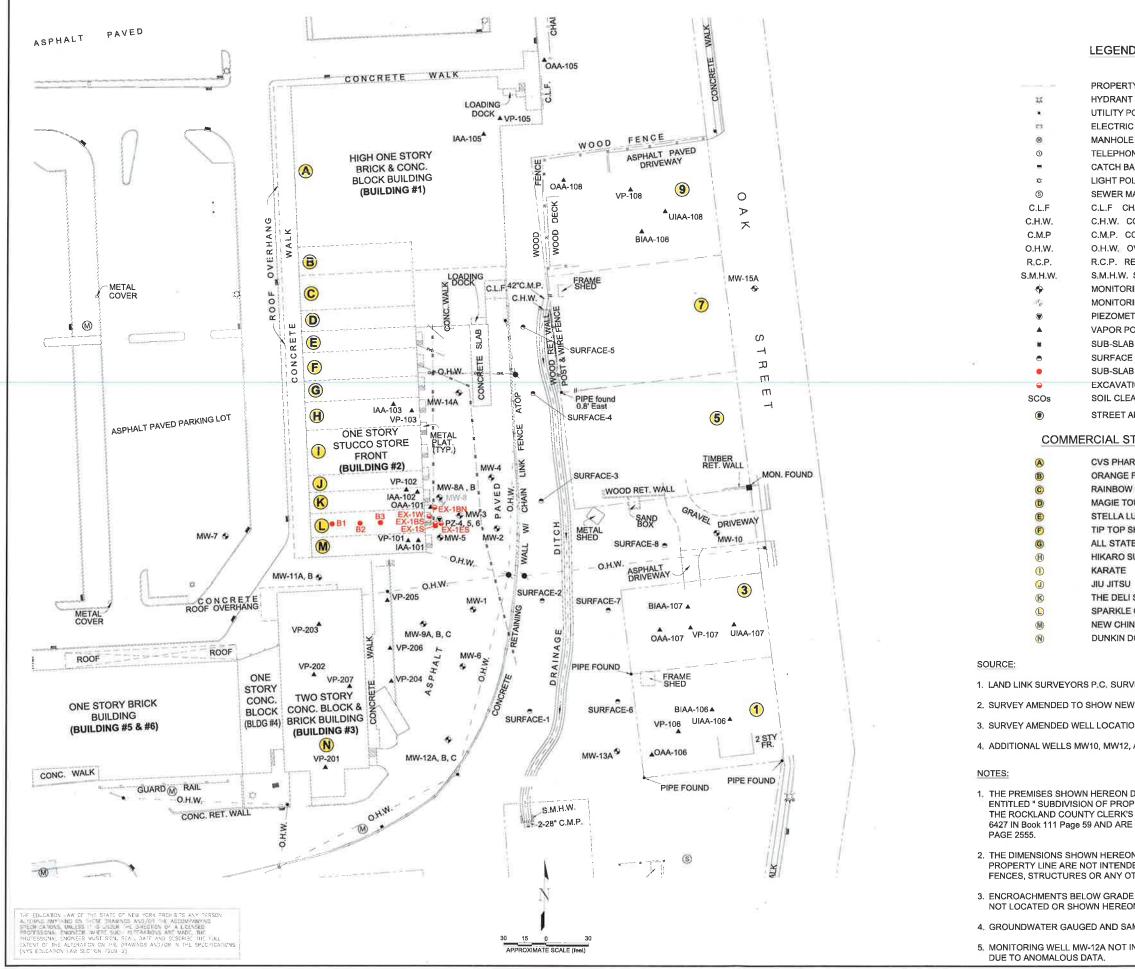
Location	second from any opening the second	ricted Use Soil Objectives		Bottom, south section	Test Pit 2	Test Pit 3	Bottom, north section
Sample ID	Table 37	5-6.89(b)		EX001BS(4)-EX-1BS(4)	TP002(3)-TP-2(3)	TP003(3)-TP-3(3)	DUPLICATE
SAMPLING DATE	Protection of Public Health	Protection of		14-Jan-09	14-Jan-09	14-Jan-09	14-Jan-09
LAB SAMPLE ID	Public Health	Groundwater		L0900616-07	L0900616-08	L0900616-09	L0900616-10
ANALYTE	Commercial		Units	Qual	Qual	Qual	Qual
Organochlorine Pesticides by	y EPA 8081A						
4,4'-DDD	92	14	mg/kg	-	-	-	-
4,4'-DDE	62	17	mg/kg	-	-	-	-
4,4'-DDT	47	136	mg/kg	-	-	-	-
Aldrin	0.68	0.19	mg/kg	-	-	-	-
Alpha-BHC	3.4	0.02	mg/kg	-	-	-	-
Beta-BHC	3	0.09	mg/kg	-	-	-	-
Chlordane	24	2.9	mg/kg	-	-	-	-
Delta-BHC	500	0.25	mg/kg	-	-	-	-
Dieldrin	1.4	0.1	mg/kg	-	-	-	-
Endosulfan I	200	102	mg/kg	-	-	-	-
Endosulfan II	200	102	mg/kg	-	-	-	-
Endosulfan sulfate	200	1,000	mg/kg	-	-	-	-
Endrin	89	0.06	mg/kg	-	-	-	-
Endrin ketone	NE	NE	mg/kg	-	-	-	-
Heptachlor	15	0.38	mg/kg	-	-	-	-
Heptachlor epoxide	NE	NE	mg/kg	-	-	-	-
Lindane	9.2	0.1	mg/kg	-	-	-	-
Methoxychlor	NE	NE	mg/kg	-	-	-	-
trans-Chlordane	NE	NE	mg/kg	-	-	-	-
Total Metals & Other Analyte	s						
Iron, Total	NE	NE	mg/kg	14000	-	-	-
Solids, Total	NE	NE	%	85	85	85	80
рН	NE	NE	SU	6.5	-	-	-
Total Organic Carbon (Rep1)	NE	NE	%	0.59	-	-	-
Total Organic Carbon (Rep2)	NE	NE	%	0.49	-	-	-
COD	NE	NE	mg/kg	17000	-	-	-

NOTES:

U = Not detected at or above the reported limit; tabulated value is the reported limit.


NE = Not Established NA = Not Available

mg/kg = milligrams per kilogram


Yellow highlight = result above NYSDEC Restricted Use SCOs

BOLD TEXT = result above NYSDEC Groundwater Protection SCOs

69972_CCR-1_Tables/Table 4

	JAIE
ND	<u>ت</u>
RTY BOUNDARY NT	
RIC COVER	
DLE COVER (UNKNOWN)	
HONE MANHOLE COVER	REVISION
BASIN	ж С
POLE	
R MANHOLE CHAIN LINK FENCE	
CONCRETE HEAD WALL	
CORRUGATED METAL PIPE	
OVERHEAD WIRES	
REINFORCED CONCRETE PIPE	
N. STONE MASONRY HEAD WALL	z \triangleleft \triangleleft \triangleleft \triangleleft
ORING WELL (PAVED OVER OR ABANDONED)	
METER	
AB SOIL SAMPLE	
CE SOIL SAMPLE	
ATION SOIL SAMPLE (MEETS SCOs)	
LEANUP OBJECTIVE	
T ADDRESS NUMBER	U
	C 28
STORE ID TABLE (BUILDING #2)	R ENGINEERING P.C. RAME DAW, SUTE 201 A.N.E.WORK 17/16 BALPI A.K.G.1), 218-078/ A.N.K.G.1), 218-078/ A.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C
	CLDLR FNGINLERIN own coepoart Save suit 201 anithum www.stentsren.com www.atentsren.com centeren.com centeren.com centeren.com
HARMACY SE FARM MARKET DW LAUNDROMAT TOUCH NAILS	OIN[Sav. Kork Ax (6 Steer c
SE FARM MARKET	
TOUCH NAILS	5 0 5 0
	ONE CORPO- BOILEMA ROLEMA ROLEMA (6,5) 218-0 Www.
P SHOPPER	
ATE INSURANCE	EIN
o sushi	KI FI HHOL - DRAWN CTH
SU SPOT	
SU POFESSION	
ELI SPOT	
CHINA HOUSE	
N DONUTS & DISCOUNT STORE	S S OI
	WITH I ME Surger New York
IRVEY MAP DATED NOVEMBER 4, 2003.	N N O S
	NN V SCO SCO NNGEB BURG, T
IEW CERTIFICATION JUNE 1, 2005.	
TION DECEMBER 19, 2007,	(PLES THAL MITH SOIL (PLES THAL MEET SCOS ORANGETOWN SHOPPING CENTER 1-45 ORANGEBURG ROAD ORANGEBURG, NEW YORK
12, AND MW13 LOCATED DECEMBER 27, 2007	
	$ 0\rangle \geq 1\rangle$
	SA S
N DESIGNATED AS LOT 1 ON A CERTAIN MAP	
ROPERTY ORANGETOWN CENTER" AS FILED IN K'S OFFICE ON FEBRUARY 26, 1990 AS MAP No.	EDD REDUCTO C AND
RE DESCRIBED IN DEED RECORDED REEL 404,	FOR REDUCED PLANS ORIGINAL IN INCHES
	0. 0.5 1.0 1.5 2.0 His persivo auto a L. Vicenarios
EON, FROM THE STRUCTURES TO THE	HIS DRAINCE AND ALL SCHUMATON CONSIGNATION HOLEN IN THE ADDRAFTING OF SCHOOL TO SCHUMAN THE ADDRAFT ADDRAFT TO SCHUMAN THE ADDRAFT ADDRAFT THINN THE ALL DRAFT ADDRAFT ADDRAFT ADDRAFT COMPANY
NDED TO BE USED FOR THE ERECTION OF (OTHER IMPROVEMENT.	and the contract of Andre of the
	DATE 1*/28/11
ADE AND/OR SUBSURFACE FEATURES, IF ANY, REON.	SCALE
	AS SHOWN.
SAMPLED ON APRIL 29, 2010	11
T INCLUDED IN GROUNDWATER CONTOURING	

	_		_
	DAILE	ю.	
ND	'n		
RTY BOUNDARY			
NT POLE			
RC COVER LE COVER (UNKNOWN)			
IONE MANHOLE COVER	REVISION		
BASIN 20LE	RE		
MANHOLE CHAIN LINK FENCE	1.		
CONCRETE HEAD WALL CORRUGATED METAL PIPE			
OVERHEAD WIRES REINFORCED CONCRETE PIPE			
V. STONE MASONRY HEAD WALL DRING WELL	ND	- < <	
ORING WELL (PAVED OVER OR ABANDONED)			
IETER POINT/AMBIENT AIR SAMPLE			
AB SOIL SAMPLE			
CE SOIL SAMPL'E AB SOIL SAMPLE (EXCEEDS SCOs)			
ATION SOIL SAMPLE (EXCEEDS SCOs)			
EANUP OBJECTIVE TADDRESS NUMBER	0		BY:
STORE ID TABLE (BUILDING #2)	RING F	TC 201 16 218 0787	
ARMACY E FARM MARKET W LAUNDROMAT TOUCH NAILS LLUNA P SHOPPER ATE INSURANCE D SUSHI	KLEINFELDER FNCINERRING	ONF. CORPORATT DRIVE, SUIT 20 BOHEMM, NEW YORK 11715 PH, (53*) 2°8-06*2 (AX. (531) 218- WWW 410*140cm com	PHGL NO ACAD FILE 65972 68972FERNOV1.14mg DRAWN BY C+ECKLD BY DESIGNT CTH CAF CONT
LI SPOT LE CLEANERS			
HINA HOUSE	20		\mathbb{C}
	I	CF	C C- ROA
	N T	EX ()	IOWN SHOPPING CENTLA ORANGEBURG ROAD VGEBURG, NEW YORK
	Z	SCO	SHO NOEE
EW CERTIFICATION JUNE 1, 2005.	PLAN		CEB ON
FION DECEMBER 19, 2007.		Ś	NNG1 0 1-45 0RANG
2, AND MW13 LOCATED DECEMBER 27, 2007	SIT	AMP	018/
N DESIGNATED AS LOT 1 ON A CERTAIN MAP OPERTY ORANGETOWN CENTER" AS FILED IN ('S OFFICE ON FEBRUARY 26, 1990 AS MAP No. RE DESCRIBED IN DEED RECORDED REEL 404,		OR REDUCT	PLANS NOTES
ON, FROM THE STRUCTURES TO THE IDED TO BE USED FOR THE ERECTION OF OTHER IMPROVEMENT.		DRAMES AND A MEDI-DRIN BIT YOUR DRAMES OF TO DO DRESS OF SITUATION CONSTR	ACCAMPTON TO YOR HER AN S. CON. 2.5, ON MYDOD DOI:10.00 CONTRACTOR
DE AND/OR SUBSURFACE FEATURES, IF ANY, EON.	SCA	1*/28,	-
SAMPLED ON APRIL 29, 2010.	PLAT	5	
T INCLUDED IN GROUNDWATER CONTOURING		10	
	1		

Appendix F – Groundwater SCGs

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066 Orangeburg, New York

Orangeburg, New York													_				_							
LOCATION	SGC	Value	MW	/-1	MV	V-1	м	W-2	M	V-2	'	/W-2	Duplic	ate MW-2	N	IW-2	N	1W-2		M	W-2		MW	-2
Matrix	TOGS	e Va	Ground	lwater	Groun	dwater	Grou	ndwater	Groun	dwater	Grou	Indwater	Grou	ndwater	Grou	ndwater	Grou	ndwat	er	Grour	ndwater	,	Ground	water
SAMPLING DATE		Guidance	11/25/	2008	4/30/	2010	4/29	9/2010	6/16	/2010	8/	9/2010	8/9	9/2010	4/2	0/2011	5/1	<mark>6/2011</mark>		5/31	/2011		6/22/2	011
Units	NYSDEC	Gu	ug	/I	u	g/l	ι	ug/l	u	g/l		ug/l		ug/l		ug/l		ug/l		ι	ıg/l		ug/	(1
PARAMETER			Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Result	s Q R	. Results	Q RL	Results	Q RL	Results	Q	RL	Results	QR	L Re	sults 0	۲ RL
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	N	NA NA	NA	NA	NA	NA		NA	NA	N	IA I	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	640	J 500	2600	J 50	2500	J 500	500	UJ 500	960	J	500	740	J 5	00 2	210	J 500
Primary Constituents of Concern	VOCs by G	GC/MS (8	260B)				•		•				•		•		•							
1,1-Dichloroethene	5	Ì	, ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 2	25	U 25	10	U 10	12	U	12	12	U 1	2	12 l	J 12
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA		N		NA	980	10	1200		12	1200			NA	NA
cis-1,2-Dichloroethene	5		100	0.5	210	2.5	2000	50	1000	25	1,900			25	NA	NA	NA		NA	NA			620	12
Tetrachloroethene	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 2		U 25	10	U 10	12	U	12	12			12 L	
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	N	NA	NA	15	U 15	19	U	19	19			19 L	J 19
trans-1,2-Dichloroethene	5		0.96	0.75	3.8	U 3.8	75	U 75	38	U 38	30	U 3		U 38	NA	NA	NA		NA	NA			NA	NA
Trichloroethene	5		0.87	0.5	2.9	2.5	50	U 50	25	U 25	20	U 2		U 25	12	10	11	J	12	13	1		10	J 12
Vinyl chloride	2		99	1	65	5	100	U 100	50	U 50	40	U 4		U 50	29	20	32		25	29			43	25
Other VOCs by GC/MS (8260B)																								
1,1,1,2-Tetrachloroethane	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 2	25	U 25	10	U 10	12	U	12	12	U 1	2	12 l	J 12
1,1,1-Trichloroethane	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25		U 2		U 25	10	U 10	12	U	12	12				J 12
1,1,2,2-Tetrachloroethane	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 2	25	U 25	10	U 10	12	U	12	12	U 1	2	12 L	J 12
1,1,2-Trichloroethane	1		ND	0.75	3.8	U 3.8	75	U 75	38	U 38	30	U 3	38	U 38	15	U 15	19	U	19	19	U 1	9	19 L	J 19
1,1-Dichloroethane	5		ND	0.75	3.8	U 3.8	75	U 75	38	U 38	30	U 3	38	U 38	15	U 15	19	U	19	19	U 1	9	19 L	J 19
1,1-Dichloropropene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10	0 120	U 120	50	U 10	62	U	62	62	U 6	62	62 L	J 62
1,2,3-Trichlorobenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10	0 120	U 120	50	UJ 50	62	U	62	8.5	J 6	62	62 L	J 62
1,2,3-Trichloropropane	0.04		ND	5	25	U 25	500	U 500	250	U 250	200	U 20	250	U 250	100	U 50	120	U	120	120	U 1:	20 1	120 L	J 120
1,2,4,5-Tetramethylbenzene			ND	2	10	U 10	200	U 200	100	U 100	80	U 8	100	U 100	40	U 100	50	U	50	50	U 5	50	50 L	J 50
1,2,4-Trichlorobenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10	0 120	U 120	50	UJ 40	62	U	62	62	U 6	62	62 L	J 62
1,2,4-Trimethylbenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10	0 120	U 120	50	U 50	62	U	62	62	U 6	62	62 L	J 62
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10	0 120	U 120	50	U 50	62	U	62	62	U 6	62	62 L	J 62
1,2-Dibromoethane	5		ND	2	10	U 10	200	U 200	100	U 100		U 8	100	U 100	40	U 50	50	U	50	50	U 5	50	50 L	J 50
1,2-Dichlorobenzene	3		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 10		U 120	50	U 40	62	U	62	62			62 L	
1,2-Dichloroethane	0.6		ND	0.5	4.8	2.5	<mark>5</mark> 0	U 50	25	U 25	20	U 2		U 25	10	U 50	12	U	12	12				J 12
1,2-Dichloropropane	1		ND	1.8	8.8	U 8.8		U 180	88	U 88	70	U 7		U 88	35	U 10	44	U	44	44				J 44
1,3,5-Trimethylbenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120		U 10		U 120	50	U 35	62	U	62	62				J 62
1,3-Dichlorobenzene	3		ND	2.5	12	U 12	250	U 250	120	U 120		U 10		U 120	50	U 50	62	U	62	62				J 62
1,3-Dichloropropane	5		ND	2.5	12	U 12	250	U 250	120	U 120		U 10		U 120	50	U 50	62	U	62	62				J 62
1,4-Dichlorobenzene	3		ND	2.5	12	U 12	250	U 250	120	U 120		U 10		U 120	50	U 50	62	U	62	62			62 L	J 62
1,4-Dichlorobutane			NA	NA	NA	NA	NA	NA	NA	NA		N		NA	NA	NA	NA		NA	50			NA	NA
1,4-Diethylbenzene			ND	2	10	U 10	200	U 200	100	U 100		U 8		U 100	40	U 40	50	U	50	62			50 l	
2,2-Dichloropropane	5		ND	2.5	12	U 12	250	U 250	120	U 120		U 10		U 120	50	U 50	62	U	62	120				J 62
2-Butanone	50		NA	NA	25	U 25	500	U 500	250	U 250		U 20		U 250	100	U 100	120	U	120	NA				J 120
2-Butanone	50		ND	5	NA	NA NA	NA	NA	NA	NA	NA	N		NA	NA	NA	NA		NA	120			NA	NA
2-Hexanone	50		ND	5	25	U 25	500	U 500	250	U 250		U 20		U 250	100	U 100	120		120	120				J 120
4-Ethyltoluene			ND	2	10	U 10	200	U 200	100	U 100		U 8		U 100	40	U 40	50	U	50	50				J 50
4-Methyl-2-pentanone	50		ND	5	25	U 25	500	U 500	250	U 250		U 20		U 250	100	U 100	120		120	120				J 120
Acetone	50		17	5	25	U 25	500	U 500	250	U 250		U 20		U 250	100	U 100	120	U	120 NIA	120				J 120
Acrolein	5	I	NA	NA	NA	NA	NA	NA	NA	NA	NA	N.	NA	NA	NA	NA	NA		NA	NA			NA	NA

Orangeburg, New York			-								_				-										
LOCATION	SGC	lue	MW	-1	ΜV	V-1	M	N-2	M	N-2	м	W-2	Duplica	ate MW-2	М	W-2		MW-2		M	W-2		Ν	/W-2	
Matrix	TOGS	e Va	Ground	water	Ground	dwater	Groun	dwater	Grour	dwater	Grou	ndwater	Groun	ndwater	Grour	ndwater	Gro	undwa	ater	Grou	ndwa	ter	Grou	Indwa	ter
SAMPLING DATE	DEC T	Guidance Value	11/25/2	2008	4/30/	2010	4/29	/2010	6/16	/2010	8/9	/2010	8/9/	/2010	4/20)/2011	5/*	16/20 ⁻	11	5/3	1/201 ⁻	1	6/2	2/201	1
Units	NYSDEC	Gu	ug/	I	uç	g/l	u	g/l	U	g/l	L	ıg/l	u	ıg/l	ι	ug/l		ug/l			ug/l			ug/l	
PARAMETER			Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	QR	L Results	s Q	RL	Results	Q	RL	Results	Q	RL
Acrylonitrile	5		ND	5	25	U 25	500	U 500	250	U 250	200	U 200	250	U 250	100	U 1(0 120	U	120	120	U	120	120	U	120
Benzene	1		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1) 12	U	12	12	U	12	12	U	12
Bromobenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5	62	U	62	62	U	62	62	U	62
Bromochloromethane	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62	U	62
Bromodichloromethane	50		ND	0.5	2.5	U 2.5		U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
Bromoform	50		ND	2	10	U 10	200	U 200	100	U 100	80	U 80	100	U 100	40	U 4		U	50	50	U	50	50	U	50
Bromomethane	5		ND	1	5	U 5	100	U 100	50	U 50	40	U 40	50	U 50	20	U 2		U	25	25	U	25	25	UJ	25
Carbon disulfide			ND	5	25	U 25	500	U 500	250	U 250	200	U 200	250	U 250	100	U 10		U	120	120	U	120	120	U	120
Carbon tetrachloride	5		ND	0.5	2.5	U 2.5		U 50	25	U 25	20	U 20	25	U 25	10	U 1		Ū	12	12	U	12	12	U	12
Chlorobenzene	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
Chloroethane	5		ND	1	5	U 5	100	U 100	50	U 50	40	U 40	50	U 50	20	U 2		U	25	25	U	25	25	U	25
Chloroform	7		ND	0.75	3.8	U 3.8		U 75	38	U 38	30	U 30	38	U 38	15	U 1		U	19	19	U	19	19	Ū	19
Chloromethane	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		UJ	62	62	U	62	62	U	62
cis-1,3-Dichloropropene	0.4		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
Dibromochloromethane	50		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
Dibromomethane	5		ND	5	25	U 25	500	U 500	250	U 250	200	U 200	250	U 250	100	U 10		U	120	120	U	120	120	U	120
Dichlorodifluoromethane	5		ND	5	25	U 25	500 500	U 500	250	U 250	200	U 200	250	U 250	100	U 10		U	120	120	U	120	120	U	120
Ethyl ether	5		NA	NA	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62	U	62
Ethyl methacrylate			NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	N			NA	NA		NA	NA		NA
Ethylbenzene	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12		12	12	l III	12
Hexachlorobutadiene	0.5		ND	0.6	3	U 3	60	U 60	30	U 30	20	U 24	30	U 30	10	U 1		U	15	12	U	15	15	U	15
lodomethane	5		NA	NA	NA		NA	NA NA	NA	NA	NA	NA	NA	NA	NA				NA	NA		NA	NA		NA
Isopropylbenzene	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
	5			0.5	2.5 5	U 2.5		U 100		U 50			25 50								I I				
Methyl tert butyl ether	F		ND		-		100		50		40			U 50	20			UJ	25	25	U	25	25		25
Methylene chloride	5		ND	5	25	U 25	500	U 500	250	U 250	200		250	U 250	100	U 10		U	120	120	U	120	120		120
n-Butylbenzene	5		ND	0.5	2.5	U 2.5	50	U 50	25	U 25	20	U 20	25	U 25	10) 12	U	12	12	U	12	12		12
n-Propylbenzene	5		ND	0.5	2.5	0 2.5	50	U 50	25	U 25	20	0 20	25	U 25	10	U 1		U	12	12		12	12		12
Naphthalene	10		ND	2.5	12	U 12		U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	11	J	11	62 62	U	62 62
o-Chlorotoluene	5	1	ND	2.5	12	U 12		U 20	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62 05		62 05
o-Xylene			ND		5	U 5	100	U 100	50	U 50	40	U 40	50	U 50	20	U 2		U	25	25	U	25	25	U	25
p-Chlorotoluene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62	U	62
p-lsopropyltoluene	5	1	ND	0.5	2.5	U 2.5		U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12		12
p/m-Xylene	_		ND	1	5	U 5	100	U 100	50	U 50	40	U 40	50	U 50	20	U 2		U	25	25		25	25		25
sec-Butylbenzene	5		ND	0.5	2.5	U 2.5		U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
Styrene	5		ND	1	5	U 5	100	U 100	50	U 50	40	U 400	50	U 50	20	U 2		U	25	25	U	25	25	U	25
tert-Butylbenzene	5		ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62	U	62
Tetrahydrofuran	50		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N			NA	NA		NA	NA		NA
Toluene	5		ND	0.75	3.8	U 3.8		U 75	38	U 38	30	U 30	38	U 38	15	U 1	5 19	U	19	19	U	19	19	U	19
trans-1,3-Dichloropropene	0.4		ND	0.5	2.5	U 2.5		U 50	25	U 25	20	U 20	25	U 25	10	U 1		U	12	12	U	12	12	U	12
trans-1,4-Dichloro-2-butene	5		NA	NA	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5) 62	U	62	62	U	62	62	U	62
Trichlorofluoromethane	5	1	ND	2.5	12	U 12	250	U 250	120	U 120	100	U 100	120	U 120	50	U 5		U	62	62	U	62	62	U	62
Vinyl acetate			ND	5	25	U 25	500	U 500	250	U 250	200	U 200	250	U 250	100	U 1(0 120	U	120	120	U	120	120	UJ	120
	-	-	-		-		-		-		-						-	-	-	-				·	

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York							-				-		-				-							
LOCATION	SGC	lue	MW	-1	MW	-1	M	N-2	M	V-2	M	N-2	Duplica	te MW-2	Μ	W-2	N	1W-2		Μ	W-2		MW-:	2
Matrix	TOGS	Guidance Value	Ground	water	Ground	water	Grour	dwater	Groun	dwater	Groun	dwater	Groun	dwater	Grou	ndwater	Grou	ndwa	ter	Grou	ndwater	G	oundv	vater
SAMPLING DATE	DEC T	idanc	11/25/2	2008	4/30/2	010	4/29	/2010	6/16	/2010	8/9/	2010	8/9/2	2010	4/20)/2011	5/1	<mark>6/201</mark> 1	1	5/3 ²	1/2011		6/22/20	011
Units	NYSDEC	Gui	ug/	1	ug/	1	u	g/l	u	g/l	u	g/l	uç	g/l	l	ıg/l		ug/l		l	ıg/l		ug/l	
PARAMETER	-		Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q	RL	Results	Q R	L Resu	lts Q	RL
Dissolved Gases by GC																								
Ethane			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Ethene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3.07	J 0.5	3.8		0.5	3.96	0	5 9.9	1	0.5
Methane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Anions by lon Chromatography																								
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Sulfate	250,000		NA	NA	NA	NA	38000	10000	35,000	1000	28000	100	28000	10000	31000	10000	32000		10000	34000	100	00 270	0	10000
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	NA	NA	310	100	100	U 100	320	100	100	U 100	810	U 100	360		100	420	1(0 42)	100
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Total Organic Carbon			NA	NA	NA	NA	3800	U 1000	26000	2000	3800	1000	3800	1000	2600	1000	3800	U	1000	3000	10	00 280	0 U	1000
Iron, Ferrous			NA	NA	NA	NA	NA	NA	640	J 500	2600	J 500	2500	J 500	500	UJ 500	960	J	500	740	J 50	0 21) J	500
Hardness			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Ferric Iron			NA	NA	NA	NA	NA	NA	1400	J 500	4700	J 500	4600	J 500	500	UJ 500	500	UJ	500	500	UJ 50	0 58)	500
Total Metals					•				-	•			-			•	-							
Antimony, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Beryllium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Iron, Total	300		NA	NA	NA	NA	1600	50	2000	50	7300	50	7100	50	280	50	1200		50	980	5	0 58)	50
Lead, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Manganese, Total			NA	NA	NA	NA	14400	10	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N	A NA		NA
Mercury, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Nickel, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	$\uparrow \uparrow$	NA	NA	N			NA
Selenium, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Silver, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Thallium, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
Zinc, Total			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	N			NA
											I.		•											

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York															-			-		-	_			-	
LOCATION	SGC	Value	MW-3	3	MM	1-3	Μ	W-3	М	W-3	n n	WW-3		MW-3		MW-3		MW-	-4	MV	V-4	MV	/-4	MW	1-4
Matrix	TOGS	ie Va	Groundv	vater	Ground	lwater	Grou	ndwater	Grour	ndwater	Grou	undwa	ater	Groundwater	Gr	oundwat	er	Ground	water	Groun	dwater	Groun	dwater	Ground	lwater
SAMPLING DATE		Guidance	9/14/20	007	11/24	2008	4/29	9/2010	4/21	/2011	5/1	6/201	11	5/31/2011	(6/21/2011		9/14/2	007	11/24	/2008	4/30/	2010	6/16/2	2010
Units	NYSDEC	Gui	ug/l		ug	/I	l	ıg/l	ι	ıg/l		ug/l		ug/l		ug/l		ug/	/	uç	g/l	u	g/l	ug	//
PARAMETER	2		Results Q	RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q	RL	Results Q RL	Results	Q	RL	Results	Q RL	Results	Q RL	Results	Q RL	Results (Q RL
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA NA	NA	_	NA	NA	NA	NA		NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	7000	5000	52000		12000	12000 J 250			50000	NA	NA	NA	NA	NA	NA	1400	J 500
Primary Constituents of Concern VC	OCs by G	C/MS (8		14/3	1.0.1	14/ 1	T W X		1000	0000	02000	1 1	12000	12000 0 200	110000	v	00000	101	1.0.1	1.07	1.0.1	1.073	1.0.1	1100	000
1,1-Dichloroethene	5		ND	100	ND	100	12	U 12	12	U 12	5	1 11 1	5	12 U 12	10	U	10	ND	0.5	ND	10	2.5	U 2.5	10	U 10
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	1200	12	340		5	12 0 12	NA	U	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	5		11,000	100	6400	100	7900	120	NA	NA	NA		NA	NA NA	200		10	>100	0.5	710	10	160	2.5	840	10
Tetrachloroethene	5		ND	100	ND	100	12	U 12	12	U 12	5		5	12 U 12	10	U	10	ND	0.5	ND	10	2.5	U 2.5	10	U 10
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	12	U 19	7.5		7.5	12 U 12	15	U	15	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	5		ND	150	ND	150	19	U 19	NA	NA	NA		NA	NA NA	NA		NA	2.9	0.75	ND	15	3.8	U 3.8	15	U 15
Trichloroethene	5		ND	100	ND	100	210	12	12	U 12	5		5	10 U 10	4 1		10	17	0.70	14	10	5.1	2.5	10	U 10
Vinyl chloride	2		ND	200	1800	200	60	25	450	25	130		10	51 20	22	Ŭ	20	21	1.0	70	20	5	U 5	20	U 20
Other VOCs by GC/MS (8260B)	L			200	1000	200	00	20	400	20	100		10		~~~~		20	21	1.0	10	20	U	0 0	20	0 20
1,1,1,2-Tetrachloroethane	5		ND	100	ND	100	12	U 12	12	U 12	5	TIIT	5	10 U 10	10	U	10	ND	0.5	ND	10	2.5	U 2.5	10	U 10
1,1,1-Trichloroethane	5		ND	100	ND	100	12	U 12	12	U 12	5		5	10 U 10	10	U	10	ND	0.5	ND	10	2.5	U 2.5	10	U 10
1,1,2,2-Tetrachloroethane	5		ND	100	ND	100	12	U 12	12	U 12	5		5	10 U 10	10	U	10	ND	0.5	ND	10	2.5	U 2.5	10	U 10
1,1,2-Trichloroethane	1		ND	150	ND	150	12	U 19	12	U 19	7.5		7.5	15 U 15	15	U	15	ND	0.75	ND	15	3.8	U 3.8	15	U 15
1,1-Dichloroethane	5		ND	150	ND	150	19	U 19	19	U 19	7.5		7.5	15 U 15	15	U	15	ND	0.75	ND	15	3.8	U 3.8	15	U 15
1,1-Dichloropropene	5		ND	500	ND	500	62	U 62	62	U 62	25		25	50 U 50	50	U	50	ND	2.5	ND	50	12	U 12	50	U 50
1,2,3-Trichlorobenzene	5		ND	500	ND	500	62	U 62	62	UJ 62	25		25	50 U 50	50	U	50 50	ND	2.5	ND	50	12	U 12	50	U 50
1,2,3-Trichloropropane	0.04		ND	1,000	ND	1000	120	U 120	120	U 120	50	l ĭ l	50	100 U 100		U	100	ND	5	ND	100	25	U 25	100	U 100
1,2,4,5-Tetramethylbenzene	0.04		NA	NA	ND	400	50	U 50	50	U 50	20	U	20	40 U 40	40	U	40	NA	NA	ND	40	10	U 10	40	U 40
1,2,4-Trichlorobenzene	5		ND	500	ND	500	62	U 62	62	UJ 62	25		25	50 U 50	50	U	50	ND	2.5	ND	50	10	U 12	50	U 50
1,2,4-Trimethylbenzene	5		ND	500	ND	500	62	U 62	62	U 62	25		25	50 U 50	50	U	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,2-Dibromo-3-chloropropane	0.04		ND	500	ND	500	62	U 62	62	U 62	25	Ĭŭ	25	50 U 50	50	Ŭ	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,2-Dibromoethane	5		ND	400	ND	400	50	U 50	50	U 50	20	U U	20	40 U 40	40	U	40	ND	2	ND	40	10	U 10	40	U 40
1,2-Dichlorobenzene	3		ND	500	ND	500	62	U 62	62	U 62	25	u	25	50 U 50	50	U	50	ND	2.5	ND	50	10	U 12	50	U 50
1,2-Dichloroethane	0.6		ND	100	ND	100	12	U 12	12	U 12	5	Ŭ	5	10 U 10	10	U	10	ND	0.5	ND	10	25	U 2.5	10	U 10
1,2-Dichloropropane	1		ND	350	ND	350	44	U 44	44	U 44	18	$ \tilde{\mathbf{u}} $	18	35 U 35	35	U	35	ND	1.8	ND	35	8.8	U 8.8	35 1	U 35
1,3,5-Trimethylbenzene	5		ND	500	ND	500	62	U 62	62	U 62	25	Ū	25	50 U 50	50	Ŭ	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,3-Dichlorobenzene	3		ND	500	ND	500	62	U 62	62	U 62	25	Ū	25	50 U 50	50	Ŭ	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,3-Dichloropropane	5		ND	500	ND	500	62	U 62	62	U 62	25	TU I	25	50 U 50	50	U	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,4-Dichlorobenzene	3		ND	500	ND	500	62	U 62	62	U 62	25	Ū	25	50 U 50	50	U	50	ND	2.5	ND	50	12	U 12	50 1	U 50
1,4-Dichlorobutane	-		ND	1,000		NA	NA	NA	NA	NA	NA		NA	NA NA	NA		NA	ND	5	NA	NA	NA	NA	NA	NA
1,4-Diethylbenzene			NA	NA	ND	400	50	U 50	50	U 50	20	U	20	40 U 40	40	U	40	NA	NA	ND	40	10	U 10	40 0	U 40
2,2-Dichloropropane	5		ND	500	ND	500	62	U 62	62	U 62	25	U	25	50 U 50	50	U	50	ND	2.5	ND	50	12	U 12	50 1	U 50
2-Butanone	50		NA	NA	NA	NA	640	120	1100	120	990		50	640 100		U	100	NA	NA	NA	NA	25	U 25	100	U 100
2-Butanone	50		ND	1,000	ND	1000	NA	NA	NA	U NA	NA	1	NA	NA NA			NA	ND	5	ND	100	NA	NA	NA	NA
2-Hexanone	50		ND	1,000	ND	1000	120	U 120	120	U 120	56		50	100 U 10		U	100	ND	5	ND	100	25	U 25	100 0	U 100
4-Ethyltoluene			NA	NA	ND	400	50	U 50	50	U 50	20	U	20	40 U 40	40	U	40	NA	NA	ND	40	10	U 10	40 1	U 40
4-Methyl-2-pentanone			ND	1,000	ND	1000	120	U 120	120	U 120	50	U	50	100 U 10		U	100	ND	5	ND	100	25	U 25	100 1	U 100
Acetone	50		ND	1,000	ND	1000	120	U 120	140	120	220		50	170 100		J	100	6.2	5	ND	100	25	U 25	100 1	U 100
Acrolein	5		ND	2,500		NA	NA	NA	NA	NA	NA		NA	NA NA			NA	ND	12	NA	NA	NA	NA	NA	NA

percentamine 5 ND 100 1	Orangeburg, New York									-											-						-	
SAMPLING DATE By PARAFETER PARAFETER Contraction Contract	LOCATION		lue	MW-3	3	MV	N-3	М	W-3	м	W-3		Μ	IW-3		MV	V-3		MW-3		MW	-4	MW-4		MW	-4	MW	-4
SAMPLING LTL Signed Part Part Part Part Part Part Part Part	Matrix	068	e Va	Groundv	vater	Groun	dwater	Grou	ndwater	Grou	ndwate	er	Grou	ndwa	ater	Groun	dwate	r Gr	oundwat	ter	Ground	water	Groundw	ater	Ground	water	Ground	lwater
Detail Up p Up U	SAMPLING DATE		idanc	9/14/20	07	11/24	/2008	4/29	9/2010	4/21	1/2011		5/16	6/201	1	5/31/	2011		6/21/2011	1	9/14/2	007	11/24/20	0 <mark>0</mark> 8	4/30/2	2010	6/16/2	2010
PARAMETE ARAMETE PARAMETE PARAMETE <th<< th=""><th>Units</th><th>NYSD</th><th>Gui</th><th>ug/l</th><th></th><th>u</th><th>g/l</th><th>ι</th><th>ıg/l</th><th>ι</th><th>ıg/l</th><th></th><th>ι</th><th>ug/l</th><th></th><th>uç</th><th>g/l</th><th></th><th>ug/l</th><th></th><th>ug/</th><th>/ </th><th>ug/l</th><th></th><th>ug</th><th>/]</th><th>ug</th><th>/I</th></th<<>	Units	NYSD	Gui	ug/l		u	g/l	ι	ıg/l	ι	ıg/l		ι	ug/l		uç	g/l		ug/l		ug/	/	ug/l		ug	/]	ug	/I
Aprivativity S ND 100 ND 100 100 100 ND 100 ND 100 ND 100 ND 500 V 100 ND 500 V 100 ND 500 V 100 ND 500 ND 100 ND 100	PARAMETER	_		Results Q	RL	Results	Q RL	Results	Q RL	Results	Q	RL	Results	Q	RL	Results	Q R	L Results	Q	RL	Results	Q RL	Results C	RL	Results (RL	Results (
Barbane 1 ND 100 100 100 100 100 100	Acrylonitrile	5		ND	1 000	ND	1000	120		120	U ·	120	50	U	50	100	U 10	0 100	U	100	ND	5	ND	100	25 1	J 25	100	U 100
Biomediance 6 NN 60 ND 60 ND 60 ND 60 ND 60 ND 60 ND 600 ND <	-	1												Ū										10				U 10
Broncholomenhame 5 ND 50 ND 50 ND 50 ND 50 12 U 12 U 12 V 12		5											-	Ŭ.	-				-									U 50
Biomedicintante S0 ND 400 D 400 ND </td <td></td> <td>5</td> <td></td> <td>I ŭ I</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U 50</td>		5												I ŭ I					_									U 50
Biomonder Bio ND 400 ND 400 50 U 20 U 40 40 40 ND 2 ND 40 10 10 0 0 0 0 </td <td></td> <td>•</td> <td></td> <td>l ŭ l</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U 10</td>		•												l ŭ l					-									U 10
Baromethane 5 ND 200 ND 200 20 20 20 100 100 ND 1000 ND 100 ND 1000 ND 1000 ND 100 12 U 12 12 12 12 12 10 10 100 100 ND 100 12 U 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 12 10 10 100 100													_						-									U 40
Carbon Asylinkie ND 1000 ND 1000 100																						1			5 1			U 20
Carbon etherachedinde S ND 100 <		5																							25			U 100
Chrocobarane 5 ND 100 ND 100 12 12 12 12 12 12 12 10		F																	-									
Chivoceshane 5 ND 100 200 200 100 200 12 10 100 100 100 100 100 12 100 12 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 120 </td <td></td> <td>-</td> <td></td> <td>_</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U 10 U 10</td>		-											_		-				-									U 10 U 10
Chronordm 7 ND 150 ND 150 19 U 19 U 19 U 19 V 19 U 19 17 U 150 ND 100 12 U 12 U 12 12 U 12 <th12< th=""> 12 <th12< th=""></th12<></th12<>		J F											Č.									0.5			Z.J			
Chromethane 5 ND 500 ND 500 ND 500 LD 100 LD LD <thld< th=""> LD <thld< th=""> <thld< td="" th<=""><td></td><td>5 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U 20 U 15</td></thld<></thld<></thld<>		5 7																										U 20 U 15
15-13-Dichloropropene 0.4 ND 100 ND 100 12 12 12 15 10 10 10 10 10 10 25 10 1		/ E																										
Dibromochatomethane 50 ND 100 ND 100 12 U 12 12 5 U 5 100 U 100 ND 100 25 U 25 U 5 100 U 100 100 120 100 100 100 NA NA <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>U 50</td>		-																	-									U 50
Dibromethane 5 ND 1.000 ND 1.000 120 U 120													_	-					_									U 10
Dicklorodifluorodi de la secondifluorodifluorodifluorodifluorodifluorod		50											-		-				_									U 10
Ethyl ether ND 500 NA NA 62 U 62 25 U 25 50 U 50 ND 1.25 NA		5																	-									U 100
Ethyl methacylate ND 1.000 NA NA <th< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>U 100</td></th<>		5												U					_									U 100
Ethylbenzene 5 ND 100 ND 100 12 12 12 12 15 6 10 10 10 10 ND 100 2.5 10 10 10 10 10 10 2.5 10 10 2.5 10 10 2.5 10 10 10 10 10 10 10 10 10 10 2.5 10 1														U					U									U 50
Hexachlorobutadiene 0.5 ND 120 ND 120 15 U 15 V NA		-												.														NA
Indomethane 5 ND 1,000 NA NA <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.5</td> <td></td> <td></td> <td>U 10</td>		-											-		-										2.5			U 10
Isopropylbenzene 5 ND 100 ND 100 12 12 12 12 5 U 5 10 U 10 ND 100 200 ND 200 25 U 25 10 U 10 20 ND 100 200 ND 100 120<													, in the second s		-				U						3 1			U 12
Methylertehulylether ND 200 ND 200 25 U 25 25 10 U 100 20 25 0 25 0 20 100 100 120 120 120 120 100 120 120 120 120 120 100 100 120		-																										NA
Methylene chloride 5 ND 1,000 ND 100 120 120 120 120 50 100 100 100 ND 100 20 120 120 50 100 100 100 ND 100 25 100 100 100 100 120 12 12 12 5 100 10 100 ND 100 25 ND 100 10 25 10		5											5	U	-							0.5			2.5			U 10
n-Burylbenzene 5 ND 100 ND 100 12 12 12 5 10 10 10 ND 10 2.5 10 10 n-Propylbenzene 5 ND 100 ND 100 12 12 12 12 5 10 10 10 10 ND 10 2.5 10 10 Naphtalene 10 ND 500 ND 500 62 0 62 25 10 10 10 10 ND 50 ND 10 2.5 ND 50 12 0 12 50 0 50 10 10 10 10 10 10 10 10 10 10 12 12 10 12 10 12 12 10 12 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10													10	UJ		20			U			1			5			U 20
n-Propylbenzene 5 ND 100 ND 100 12 U 12 12 U 12 5 U 5 10 U 10 ND 10 2.5 U 2.5 10 U Naphthalene 10 ND 500 ND 500 62 U 62 25 U 25 50 U 50 ND 50 12 U 12 50 U o-Chlorotoluene 5 ND 500 ND 500 62 U 62 25 U 25 50 U 50 ND 50 12 U 12 50 U o-Xylene 50 ND 500 62 U 62 25 U 25 50 U 20 ND 1 ND 20 5 0 5 10 U 20 25 U 25 U 25 U	-	5		ND	1,000	ND	1000	120	U 120		U '	120	50	U	5	100	U 10	00 100	U	100		5	ND	100	25 เ		100 l	U 100
Introdyclating 05 ND 100 ND 100	n-Butylbenzene	5				ND		12		12	U		5	U	5	10	U 1	0 10	U	10				10	2.5 l	J 2.5		U 10
o-Chlorotoluene 5 ND 500 ND 500 62 U 62 62 U 62 25 U 25 ND 50 12 U 12 50 U 25 ND 50 12 U 12 50 U 25 ND 50 ND 10 ND 200 ND 200 ND 200 25 U 25 10 U 10 20 20 ND 10 ND 20 20 ND 10 ND 10 12 10 25 10 10 20 10 10 10 10 10 10 10 10 10 10 12 12 12 10		5				ND		12	0 12	12	U		5	U					-					10		5 2.0		U 10
o-Xylene ND ND 200 ND 200 200 25 U 25 20 10 20 20 20 50 0 50 0 50 0 50 0 20 20 20 20 20 20 ND 1 ND 20 50 0 50 0 50 0 50 0 50 60 0 60 50 0 50 0 50 ND 1 ND 20 50 0 0 100														U					U									U 50
p-Chlorotoluene 5 ND 500 ND 500 62 U 62 2 U 25 50 U 50 U 50 12 U 12 50 U 50 ND 50 12 U 12 50 U 50 50 U 50 ND 10 12 U 12 10 10 10 10 ND 10 20 50 10 <		5				ND							25	U		50			U			2.5			12 l	J 12		U 50
p-lsopropyltoluene 5 ND 100 ND 100 ND 100 12 12 12 5 10 10 10 ND 10 2.5 U 2.5 10 U 10 10 10 ND 10 2.5 U 2.5 10 U 10 10 10 ND 10 2.5 U 2.5 10 U 10 20 ND 10 2.5 U 2.5 10 U 10 20 2.5 U 2.5 10 U 10 2.0 2.5 U 2.5 2.0 2.5 10 U 10 2.0 2.5 U 2.5 2.0 2.5 10 U 10 2.0 2.0 ND 10 2.0 5.0 10 U 2.0 2.0 10 10 2.0 2.0 10 10 2.0 2.0 10 10 10 2.0 10 10 10 10 10 10 10 10 10 10 10 10														U					U			1			-	J <u>5</u>		U 20
p/m-Xylene ND 200 ND 200 ND 200 25 U 25 10 U 10 20 20 ND 200 5 U 5 5 10 10 20 10 100 20 25 25 10 U 100 20 20 ND 1 ND 20 5 20 0 20 20 100 100 20 20 5 20 10 100 100 100 100 100 20 5 100 100 100 100 100 100 20 5 100	•												25	U					U									U 50
sec-Butylbenzene 5 ND 100 ND 100 12 0 12<		5		ND		ND							5	UT	5	10			U	10		0.5			2.5 l	J 2.5		U 10
Styrene 5 ND 200 ND 200 25 U 25 10 U 10 20 20 1 ND 20 5 U 5 10 10 20 10 20 20 10 20 10 20 20 10 20 20 20 5 10 20 20 20 10 20 20 20 5 10 20 20 20 5 20	p/m-Xylene			ND	200	ND	200	25	U 25	25	U	25	10	U	10	20	U 2	0 20	U	20	ND	1	ND	20	5 l	J 5	20 1	U 20
tert-Butylbenzene 5 ND 500 ND 500 62 U 62 62 U 62 62 U 62 25 50 U 50 U 50 ND 2.5 ND 50 12 U 12 50 U Tetrahydrofuran 50 ND 2,000 NA	sec-Butylbenzene	5		ND	100	ND	100	12	U 12	12	U	12	5	U	5	10	U 1	0 10	U	10	ND	0.5	ND	10	2.5 l	J 2.5	10 I	U 10
Tetrahydrofuran 50 ND 2,000 NA	Styrene	5		ND		ND	200	25					10	U	10	20	U 2	0 20	U	20	ND	1			5 I	J 5	20 (U 20
	tert-Butylbenzene	5		ND	500	ND	500	62					25	U	25	50	U 5	0 50	U	50	ND	2.5	ND	50	12 l	J 12	50 (U 50
	Tetrahydrofuran	50		ND	2,000	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A NA		NA	ND	10	NA	NA	NA	NA	NA	NA
Toluene 5 ND 150 ND 150 19 U 19 19 U 19 7.5 U 7.5 15 U 15 15 U 15 ND 0.75 ND 15 3.8 U 3.8 15 U	Toluene	5		ND	150	ND	150	19	U 19	19	U	19	7.5	U	7.5	15	U 1	5 15	U	15	ND	0.75	ND	15	3.8 l	J <u>3.8</u>	15 I	U 15
trans-1,3-Dichloropropene 0.4 ND 100 ND 100 12 U 12 12 U 12 5 U 5 10 U 10 10 U 10 ND 0.5 ND 10 2.5 U 2.5 10 U	trans-1,3-Dichloropropene	0.4		ND	100	ND		12	U 12	12				U		10	U 1		U	10	ND	0.5		10	2.5 I	J 2.5	10 1	U 10
													25	U	25				U									U 50
	,													U					U									U 50
														U					U					100				U 100

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York																			_							
LOCATION	SGC	lue	MW-	3	MW-	3	М	W-3	М	W-3	Γ	/W-3	i	MV	V-3		MW-3		MV	V-4	MW	-4	MV	V-4	MW	-4
Matrix	SDO.	Guidance Value	Ground	water	Ground	water	Grou	ndwater	Grou	ndwater	Grou	Indwa	ater	Groun	dwater	Gro	oundwa	ter	Groun	dwater	Ground	water	Groun	dwater	Ground	lwater
SAMPLING DATE	DEC 1	idanc	9/14/2	007	11/24/2	800	4/29)/2010	4/21	/2011	5/1	6/201	11	5/31/	2011	6	/21/201	1	9/14/	2007	11/24/2	2008	4/30/	2010	6/16/2	2 <mark>010</mark>
Units	NYSI	ß	ug/		ug/l		ι	ıg/l	ι	ıg/l		ug/l		u	g/l		ug/l		uç	g/l	ug/	1	u	g/l	ug,	J <mark>/</mark> I
PARAMETER			Results C	RL	Results (ג RL	Results	Q RL	Results	Q RL	Results	Q	RL	Results	Q RL	Results	Q	RL	Results	Q RL	Results	Q RL	Results	Q RL	Results (Q RL
Dissolved Gases by GC																										
Ethane			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene			NA	NA	NA	NA	NA	NA	122	0.5	31.2		0.5	18.9	0.5	5.76		0.5	NA	NA	NA	NA	NA	NA	NA	NA
Methane			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions by lon Chromatography		-					_		_		-		-													
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000		NA	NA	NA	NA	20000	10000		U 5000	33000	J	100000	50000	U 50000	490000	J	620000	NA	NA	NA	NA	32000	10000	46000	20000
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	NA	NA	430	100	210	U 100	500	J	1000	6900	500	5000	U	5000	NA	NA	NA	NA	2500	100	600	100
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA 1000	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			NA	NA	NA	NA	3600	U 1000	530000	32000			260000	380000	32000	21000000		1600000	NA	NA	NA	NA	2200	U 1000	98000	10000
Iron, Ferrous			NA	NA	NA	NA	NA	NA	7000	5000	52000		12000	12000	J 2500	140000	J	50000	NA	NA	NA	NA	NA	NA	1400	J 500
Hardness			NA	NA	NA	NA	NA	NA	NA	NA 5000	NA	.	NA	NA	NA L 0500	NA		NA F0000	NA	NA	NA	NA	NA	NA	NA F00	NA LL 500
Ferric Iron			NA	NA	NA	NA	NA	NA	17000	5000	12000	U	12000	7000	J 2500	50000	UJ	50000	NA	NA	NA	NA	NA	NA	500 L	JJ 500
Total Metals		1	NIA			NIA	NIA		NIA		NIA		NIA	NIA		NIA			NIA	NIA		50	NIA			
Antimony, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	ND	50 5	NA	NA	NA	NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA	NA NA	NA		NA	NA	NA	NA		NA	NA	NA	ND 207	-	NA	NA	NA	NA
Barium, Total			NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA		NA NA	NA	NA NA	NA		NA	NA	NA	397	10	NA	NA	NA NA	NA
Beryllium, Total Cadmium, Total			NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA		NA	NA NA	NA	NA NA		NA NA	NA NA	NA NA	ND ND	5	NA NA	NA NA	NA	NA NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA	NA NA	NA		NA	NA	NA	NA		NA	NA	NA	ND	10	NA	NA	NA	NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA	NA NA	NA		NA	NA	NA	NA		NA	NA	NA	ND	10	NA	NA	NA	NA
Iron, Total	300		NA			NA	80	50	24000	50	49000		50	19000	100	130000		5000					50	U 50	1800	
	300			NA	NA	NA													NA	NA	NA	NA 10				50
Lead, Total			NA	NA	NA		NA	NA 10	NA	NA NA	NA		NA	NA	NA	NA		NA	NA	NA	ND	10 NA	NA	NA 10	NA	NA
Manganese, Total			NA		NA	NA	2950	10 NA	NA		NA		NA	NA	NA	NA		NA	NA	NA	NA	NA	21 NA	10 NA	NA	NA
Mercury, Total Nickel, Total			NA NA		NA	NA NA	NA	NA NA	NA NA	NA NA	NA		NA	NA	NA	NA NA		NA	NA	NA NA	ND	0.2	NA	NA	NA NA	
Selenium, Total			NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA		NA NA	NA NA	NA NA	ND ND	25	NA NA	NA NA	NA	NA NA
Silver, Total			NA	NA	NA	NA	NA	NA	NA	NA NA	NA		NA		NA	NA		NA	NA	NA	ND ND	7	NA	NA	NA	
Thallium, Total			NA	NA	NA	NA	NA	NA	NA	NA NA	NA		NA	NA NA	NA	NA		NA	NA	NA	ND	20	NA	NA	NA	NA
			NA	NA				NA		NA NA						NA			NA	NA	ND	20 50	NA			
Zinc, Total			IN/A	INA	NA	NA	NA	INA	NA	INA	NA	1	NA	NA	NA	INA		NA	NA	INA	ND	00	INA	NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Orangelown Onopping Center - Drov

Orangeburg, New York	S S	ne		olicate IW-4		N	/W-4	MV	1-4		uplicat MW-4			MW-4		MW-	4		uplicate MW-4		MW	-4	Duplicate 4	MV	v - M	W-5		MW-5		MW-	5
Matrix	TOGS	ce Value	Grou	ndwat	er	Grou	Indwater	Groun	dwater	Gro	undwa	ater	Gro	undwater	G	round	water	Gro	undwater	G	Ground	Iwater	Ground	lwater	Grou	ndwater	Gr	oundwa	ater	Groundv	water
SAMPLING DATE		Guidance	6/16	6/2010)	8/9	9/2010	4/20/	2011	4/	20/201	11	5/	16/2011		5/31/2	011	5/	31/2011		6/22/2	2011	6/22/:	2011	10/2	3/2007	1	0/24/200)7	10/25/2	007
Units	NYSDEC	Gu	ι	ug/l			ug/l	uç	g/l		ug/l			ug/l		ug/	I		ug/l		ug	/I	uç	ı/I		ug/l		ug/l		ug/l	
PARAMETER	1		Results	Q	RL	Results	G Q RL	Results	Q RL	Result	s Q	RL	Result	Q RL	Resu	lts Q	RL	Result	s Q RL	Res	ults	Q RL	Results	Q RL	Results	Q RL	Resu	ılts Q	RL F	Results Q	RL
Dissolved Organic Carbon			NA		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	. N	A	NA	NA	NA	NA	NA	N/		NA	NA	NA
Iron, Ferrous			1400	J	500	500	UJ 500	500	UJ 500	500	UJ	500	500	UJ 500	500) UJ	500	500	UJ 500) 50	00 L	JJ 500	500	JJ 500) NA	NA	N/		NA	NA	NA
Primary Constituents of Concerr	NOCs by (GC/MS (8		<u> </u>									· · · · · ·				I		1 1	_				_		1 1	·				-
1,1-Dichloroethene	5	1	10	TUT	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5	2.5	i l U	2.5	2.5	U 2.5	2	.5 l	U 2.5	10	U 10	ND	50	N/		NA	NA	NA
cis-1,2-Dichloroethene	5		NA	Ĭ	NA	NA	NA	190	2	180	Ŭ	2.5	170	2.5			2.5	220	2.5			10	NA	NA		NA	NA		NA	NA	NA
cis-1,2-Dichloroethene	5		680		10	1400	10	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA			E 2.5	680	10			NA		NA	NA	NA
Tetrachloroethene	5	1	10	U	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5			2.5	2.5	U 2.5			U 2.5	10	U 10		50	N/		NA	NA	NA
trans-1,2-Dichloroethene	5		NA		NA	NA	NA	3	U 3	3.8	U	3.8	3.8	U 3.8			3.8	3.8	U 3.8			U 3.8	15	U 15		NA	NA		NA	NA	NA
trans-1,2-Dichloroethene	5		15	U	15	15	U 15	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA		A	NA	NA	NA		75	N/		NA	NA	NA
Trichloroethene	5		10	U	10	10	U 10	5.8	2	5.3		2.5	3.5	2.5			2.5	6.5	2.5		.5	2.5	7.9	J 10		50	N/		NA	NA	NA
Vinyl chloride	2		20	U	20	23	20	4	U 4	5	U	5	1.8	J 5	5	U	5	5	U 5	9	6	5	110	20		100	N/		NA	NA	NA
Other VOCs by GC/MS (8260B)								-										•				-	8								
1,1,1,2-Tetrachloroethane	5		10	U	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5	2.5	i U	2.5	2.5	U 2.5	2	.5 l	U 2.5	10	U 10	50	50	N/		NA	NA	NA
1,1,1-Trichloroethane	5		10	U	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5			2.5	2.5	U 2.5			U 2.5	10	U 10		50	N/		NA	NA	NA
1,1,2,2-Tetrachloroethane	5		10	U	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5				2.5	U 2.5			U 2.5	10	U 10	50	50	NA		NA	NA	NA
1,1,2-Trichloroethane	1		15	U	15	15	U 15	3	U 3	3.8	U	3.8	3.8	U 3.8			3.8	3.8	U 3.8			U 3.8	15	U 15		75	N/		NA	NA	NA
1,1-Dichloroethane	5		15	U	15	15	U 15	3	U 3	3.8	U	3.8	3.8	U 3.8			3.8	3.8	U 3.8			U 3.8	15	U 15		75	NA		NA	NA	NA
1,1-Dichloropropene	5		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12		_		12	U 12			U 12	50	U 50		250	N/		NA	NA	NA
1,2,3-Trichlorobenzene	5		50	U	50	50	U 50	10	UJ 10	12	UJ	12	12	U 12	12	U		12	U 12	1:	2 1	U 12	50	U 50		250	NA		NA	NA	NA
1,2,3-Trichloropropane	0.04		100	U	100	100	U 100	20	U 20	25	U	25	25	U 25	25	U	25	25	U 25	2	5 เ	U 25	100	U 100		500	N/	A	NA	NA	NA
1,2,4,5-Tetramethylbenzene			40	U	40	40	U 40	8	U 8	10	U	10	10	U 10	10		10	10	U 10		0 ι	U 10	40	U 40		NA	N/		NA	NA	NA
1,2,4-Trichlorobenzene	5		50	U	50	50	U 50	10	UJ 10	12	UJ	12	12	U 12	12	U		12	U 12	1:	2 l	U 12	50	U 50		250	N/		NA	NA	NA
1,2,4-Trimethylbenzene	5		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12	12	U	12	12	U 12	1:	2 l	U 12	50	U 50	250	250	N/	۱ I	NA	NA	NA
1,2-Dibromo-3-chloropropane	0.04		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12	12	U	12	12	U 12	1:	2 เ	U 12	50	U 50	250	250	NA		NA	NA	NA
1,2-Dibromoethane	5		40	U	40	40	U 40	8	U 8	10	U	10	10	U 10	10	U	10	10	U 10	10	0 l	U 10	40	U 40	200	200	NA		NA	NA	NA
1,2-Dichlorobenzene	3		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12	12	U	12	12	U 12	1:	2 l	U 12	50	U 50	250	250	N/	۱	NA	NA	NA
1,2-Dichloroethane	0.6		10	U	10	10	U 10	2	U 2	2.5	U	2.5	2.5	U 2.5			2.5	2.5	U 2.5	2.		U 2.5	10	U 10		50	N/		NA	NA	NA
1,2-Dichloropropane	1		35	U	35	35	U 35		U 7	8.8	U	8.8	8.8	U 8.8			8.8	8.8	U 8.8			U 8.8	35	U 35		180	N/	\	NA	NA	NA
1,3,5-Trimethylbenzene	5		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12	12			12	U 12			U 12	50	U 50		250	N/	\	NA	NA	NA
1,3-Dichlorobenzene	3		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12			_	12	U 12			U 12	50	U 50		250	NA		NA	NA	NA
1,3-Dichloropropane	5		50	U	50	50	U 50	10	U 10	12	U	12	12	U 12				12	U 12			U 12	50	U 50		250	N/		NA	NA	NA
1,4-Dichlorobenzene	3	1	50	U	50	50	U 50	10	U 10	12	U	12	12	U 12	12		12	12	U 12		2 l	U 12	50	U 50		250	NA		NA	NA	NA
1,4-Dichlorobutane		1	NA		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA			NA	NA	NA		500	NA		NA	NA	NA
1,4-Diethylbenzene			40	U	40	40	U 40	8	U 8	10	U	10	10	U 10		_	10	10	U 10			U 10	40	U 40		NA	N/		NA	NA	NA
2,2-Dichloropropane	5		50	U	50	50	U 50		U 10	12	U	12	12	U 12				12	U 12			U 12	50	U 50		250	N/		NA	NA	NA
2-Butanone	50		100	U	100	100	U 100	20	U 20	25	U	25	25	U 25				25	U 25			U 25	100	U 100		NA	NA		NA	NA	NA
2-Butanone	50		NA		NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA			NA	NA	NA		500	N/		NA	NA	NA
2-Hexanone	50	_	100		100	100	U 100		U 20	25	U	25	25	U 25	25	_	25	25	U 25			U 25	100	U 100		500	N/		NA	NA	NA
4-Ethyltoluene			40		40	40	U 40	8	U 8	10		10	10	U 10				10	U 10			U 10	40	U 40		NA	N/		NA	NA	NA
4-Methyl-2-pentanone		1	100		100	100	U 100		U 20	25		25	25	U 25				25	U 25			U 25	100	U 100		500	N/		NA	NA	NA
Acetone	50		100	U	100	100	U 100		U 20	25	U	25	25	U 25	25			25	U 25			U 25	100	U 100		500	N/		NA	NA	NA
Acrolein	5	1	NA		NA	NA	NA NA	NA	NA	NA		NA	NA	NA	NA		NA	NA	NA	N	A	NA	NA	NA	NA	NA	N/		NA	NA	NA

Acrylonitrile 5 100 U 100 U 100 U 100 20 20 25 U 25 25 U 10 10 10 10 10 10 12 U 12 U 12 U 12 U 12 U 12 U 12 U <th>Groundwater Groundwater 10/24/2007 10/25/2007 ug/l ug/l Results Q RL Results Q RL NA NA NA NA NA NA NA NA NA NA</th>	Groundwater Groundwater 10/24/2007 10/25/2007 ug/l ug/l Results Q RL Results Q RL NA NA NA NA NA NA NA NA NA NA
SAMPLING DATE Separation 6/16/2/11/2 8/9/2/11/2 4/20/2/11/2 4/20/2/11/2 5/16/2/11/2 5/31/2/11/2 6/22/2/11/2 6/22/2/11/2 10/2/3/2/1 10/2/3/2/1 10/2/3/2/1 10/2/2/1/2 10/2/2/2/1/2 10/2/2/1/2 10/2/2/2/1/2 <	ug/lug/lResultsQRLResultsQRLNA
PARAMETER Results Q RL RL	ResultsQRLResultsQRLNA
Acrylonitrile 5 100 U 100 U 100 U 100 20 20 25 U 25 25 U 10 10 10 10 10 10 10 10 12 12 12 12 12 12 12 12 12 12 12 <t< th=""><th>NA</th></t<>	NA
Benzene 1 10 12 <th< th=""><th>NA</th></th<>	NA
Bromobenzene 5 50 U 50 U <td>NA</td>	NA
Bromochloromethane 5 50 U 50 U 50 U 50 U 50 U 50 U 10 U 10 U 10 12 12 12 U 12 12 12 U 12<	NA
Bromodichloromethane 50 10 U 10 U 10 U 10 Q 10 Q 10 Q 10 Q 10 Q 2 2.5 U 10 U 10 U 40 U	NA
Bromoform 50 40 U 40 U 40 U 40 B U 8 10 U 10 10 U 10 U 10 U 40 U 40 ND 200 A0 ND 200 A0 ND 200 A0 ND 200 A0 A0 U 20 A0 U 40 U 40 V 40 V 40 ND 200 A0 A0<	NA
Brommethane 5 20 U 20 U 20 U 20 U 20 4 U 4 5 U 5 20 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 5 U 25 25	NANANANANANANANANANANANANANANANA
Carbon disulfide 100 100 100 100 100 100 100 20 20 25 10 25 100 100 100 ND 500 Carbon tetrachloride 5 10 10 10 10 10 10 10 2 10 2 10 2 10 2 10 10 10 10 10 2 10 2 2.5 10 2.5 2.5 10	NANANANANANANANANANANANA
Carbon tetrachloride 5 10 U 10 U 10 U 10 Q 2 Q 2.5 Q <	NANANANANANA
Chlorobenzene 5 10 U 10 U 10 U 10 2 U 2 2.5 U D D D D D D D D D D <thd< th=""> D D</thd<>	NA NA NA NA
Chlorobenzene 5 10 U 10 U 10 U 10 2 U 2 2.5 U D D D D D D D D D D <thd< th=""> D D</thd<>	
	• • • • • • •
Chloroethane 5 20 U 100	NA NA NA NA
Chloroform 7 15 U 15 15 U 15 3 U 3 3.8 U 3.8 U 3.8 J 3	NA NA NA NA
Chloromethane 5 50 U 50 U 50 U 50 10 U 10 12 U 12 50 U 50 ND 250	NA NA NA NA
cis-1,3-Dichloropropene 0.4 10 U 10 10 10 U 10 2 U 2 2.5 U	NA NA NA NA
Dibromochloromethane 50 10 U 10 10 10 10 2 U 2 2.5 U	NA NA NA NA
Dibromomethane 5 100 U 100 100 U 100 20 U 20 25 U 25 U 25 U 25 U 25 U 25 U	NA NA NA NA
Dichlorodifluoromethane 5 100 U 100 100 100 U 100 20 U 20 25 U 25 U 25 U 25 U 25 U 25 U	NA NA NA NA
Ethyl ether 50 U 50 50 U 50 10 10 10 12 U 12 50 U 50 ND 250	NA NA NA NA
Ethyl methacrylate NA	NA NA NA NA
Ethylbenzene 5 10 U 10 10 10 10 2 U 2 2.5 U 2.5	NA NA NA NA
Hexachlorobutadiene 0.5 12 U 12 12 U 12 2.4 U 2.4 3 U 3 3 U 3 3 U 3 3 U 3 3 U 3 12 U 12 ND 60	NA NA NA NA
lodomethane 5 NA	NA NA NA NA
Isopropylbenzene 5 10 U 10 10 U 10 2 U 2 2.5 U 2	NA NA NA NA
Methyl tert butyl ether 20 U 20 Z0 U 20 4 U 4 5 U 5 5 U 5 5 U 5 5 U 5 20 U 20 ND 100	NA NA NA NA
Methylene chloride 5 100 U 100 100 U 100 20 U 20 25 U 25 U 25 U 25 U 25 U 25 U	NA NA NA NA
n-Butylbenzene 5 10 U 10 10 U 10 2 U 2 2.5 U 2.5	NA NA NA NA
n-Propylbenzene 5 10 U 10 10 U 10 2 U 2 2.5 U 2.	NA NA NA NA
Naphthalene 10 50 U 50 U 50 U 50 10 10 10 12 U 12	NA NA NA NA
o-Chlorotoluene 5 50 U 50 50 U 50 10 U 10 12 U 12 50 U 50 ND 250	NA NA NA NA
o-Xylene 20 U 20 20 U 20 4 U 4 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 20 U 20 ND 100	NA NA NA NA
p-Chlorotoluene 5 50 U 50 50 U 50 10 U 10 12 U 12 50 U 50 ND 250	NA NA NA NA
p-lsopropyltoluene 5 10 U 10 10 U 10 2 U 2 2.5 U 2.5 Z.5 U 2.5 U 2.5 Z.5 U 2	NA NA NA NA
p/m-Xylene 20 U 20 20 U 20 4 U 4 5 U 5 5 U 5 5 U 5 5 U 5 5 U 5 20 U 20 ND 100	NA NA NA NA
sec-Butylbenzene 5 10 U 10 10 U 10 2 U 2 2.5 U 2.5 U 2.5 U 2.5 2.5 U 2.5 2.5 U 2.5 2.5 U 2.5 10 U 2.5 10 U 10 ND 50	NA NA NA NA
Styrene 5 20 U 10 10 10 100 <th< td=""><td>NA NA NA NA</td></th<>	NA NA NA NA
Striction S Zo S Zo S Zo S Zo S <	NA NA NA NA
Tetrahydrofuran 50 NA	NA NA NA NA
Toluene 5 15 U 15 U 15 U 3 3.8 U 3.8 <thu< th=""> JU <thu< th=""> <thu< th=""></thu<></thu<></thu<>	NA NA NA NA
trans-1,3-Dichloropropene 0.4 10 U 10 10 U 10 2 U 2 2.5 U 2.	NA NA NA NA
trans-1,4-Dichloro-2-butene 5 50 U 50 50 U 50 10 10 10 10 10 12 U 12 50 U 50 ND 250	NA NA NA NA
Trichlorofluoromethane 5 50 0 50 0 50 0 50 10 10 12 <th12< th=""> 12 12 12</th12<>	NA NA NA NA
Vinyl acetate 100 U 100 20 U 20 25 U 25 25 U 25 <t< td=""><td>NA NA NA NA</td></t<>	NA NA NA NA

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York																														
LOCATION	SGC	Value		licate V-4	Μ	W-4	MV	1-4		iplicate NW-4		N	1W-4		MW-4	Ļ	-	olicate W-4		M	N-4	Duplicate	e MV 4	V-	MW-	-5	M	W-5	MV	V-5
Matrix	TOGS	ce Va	Groun	dwater	Grou	ndwater	Groun	dwater	Gro	undwate	er	Grou	ndwater	Gro	undw	vater	Grou	ndwate	er	Groun	dwater	Grour	ndwater		Ground	water	Grou	ndwater	Groun	dwater
SAMPLING DATE		Guidance	6/16	/2010	8/9	/2010	4/20/	2011	4/2	20/2011		5/1	6/2011	5/3	31/20	11	5/3 ²	1/2011		6/22	/2011	6/22	2/2011		10/23/2	2007	10/2	4/2007	10/25	/2007
Units	NYSDEC	Gu	ų	g/l		ıg/l	uç	g/l		ug/l			ug/l		ug/l		ι	ug/l		u	g/l	U	ıg/l		ug/	1	I	ug/l	uç	g/l
PARAMETER			Results	Q RL	Results	Q RL	Results	Q RL	Results	QR	RL Re	esults	Q RL	Results	s Q	RL	Results	QF	RL	Results	Q RL	Results	Q RL	Re	esults C	ג RL	Results	Q RL	Results	Q RL
Dissolved Gases by GC																														
Ethane			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA I	NA	NA	NA	NA		NA	NA	NA	NA	46.7	0.5
Ethene			NA	NA	NA	NA	0.5	U 0.5	0.5			.721	0.5	0.5	U	0.5	0.5).5	15.9	0.5	15.4	0.5		NA	NA	NA	NA	10.3	0.5
Methane			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		A	NA	NA	NA	NA		NA	NA	NA	NA	788	0.3
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	N	A	NA	NA	NA		NA	NA		N A	NA	NA	NA	NA		NA	NA	NA	NA	35,000	600
Anions by lon Chromatography		-												-												_			_	
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		A	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Sulfate	250,000		41000	20000	10000	U 10000) <mark>3100</mark> 0	10000	31000			2000		30000			32000	10		26000	10000	27000	1000		NA	NA	NA	NA	NA	NA
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		A	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Nitrogen, Nitrate/Nitrite	10,000		640	100	100	U 100	2900	100	2800			900	100	2000		100	2200		00	1500	100	1300	100		NA	NA	NA	NA	ND	100
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		A	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA I	NA	NA	NA	NA		NA	NA	NA	NA	ND	100
Sulfite	200		NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA I	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Dissolved Organic Carbon			NA	NA	NA	NA 1000	NA	NA	NA			NA	AN 1000	NA	1	AN	NA		NA NA	NA	NA 1000	NA	NA 100		NA	NA	NA	NA	6,700	2,000
Total Organic Carbon			97000	10000	58000	4000	2000	1000	1900			2100	1000	2000		1000	2000		000	3200	U 1000	3400	U 100		NA	NA	NA	NA NA	NA	NA
Iron, Ferrous			1400	J 500	500	UJ 500	500	UJ 500	500			500	U 500	500	UJ	500	500		00	500	UJ 500	500	UJ 500		NA	NA	500	U 500	NA	NA
Hardness			NA 500	NA	NA	NA	NA 500	NA	NA E00			NA	NA LL 500	NA	 	NA	NA		NA 00	NA	NA 111 500	NA 500	UJ 500		NA	NA	540,000		NA	NA
Ferric Iron Total Metals			500	UJ 500	1800	UJ 500	500	UJ 500	500	01 50	00	500	U 500	500	UJ	500	500	UJ D	00	500	UJ 500	500	01 500	,	NA	NA	10,000	500	NA	NA
		1	NA		ΝΙΑ		NA		ΝΙΑ		14	NIA	NA	ΝΙΔ	<u>т т</u>	NIA	NA		NA I	NA	NA	ΝΑ		-	NA		NA		ΝΛ	NA
Antimony, Total Arsenic, Total			NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA			NA NA	NA	NA NA		NA	NA		NA NA	NA	NA	NA NA	NA NA		NA	NA NA	NA	NA NA	NA NA	NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Beryllium, Total			NA	NA	NA	NA NA	NA	NA	NA			NA	NA	NA		NA	NA		NA I	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	+	NA	NA		NA NA	NA	NA	NA	N/		NA	NA	NA	NA	NA	NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Iron, Total	300		1700	50	1800	50	50	U 50	50			60	50	100	U	100			00	90	U 50	100	U 50		NA	NA	10,000		NA	NA
Lead, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Manganese, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Mercury, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Nickel, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	+	NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Selenium, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		VA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Silver, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Thallium, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA			NA	NA	NA		NA	NA		NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
,																														

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Orangeburg, New York		-																											
LOCATION	SGC	en	MW-	-5	M	W-5		Duplica	ate MW-5	5	M	W-5		MV	V-5		MM	/-5		MW-	5		MW-	5	MM	-5		MW-5	
Matrix	TOGS	e Va	Ground	water	Grour	Idwate	r	Groun	ndwater		Groun	ndwat	ter	Groun	dwater		Ground	dwater	Gr	oundv	vater	Gr	ound	water	Ground	lwater	Gro	undwa	ter
SAMPLING DATE	ECT	Guidance Value	11/24/2	2008	4/29	/2010		4/29)/2010		6/16	/2010)	8/9/2	2010		12/14	/2010		1/20/20)11	5	<mark>6/16/2</mark> 0	011	5/31/2	2011	6/	21/201 ⁻	1
Units	NYSDEC	Gui	ug/l		L	ıg/l		u	ıg/l		u	ıg/l		uç	g/l		ug	ı/I		ug/l			ug/l		ug	/I		ug/l	
PARAMETER	~		Results Q	RL	Results	QF	RL	Results	Q R		Results	Q	RL	Results	Q RL	R	Results	Q R	Resu	lts Q	RL	Resul	ts Q	RL	Results	Q RL	Results	Q	RL
Dissolved Organic Carbon			3100	1000	NA		IA	NA	N/		NA		NA	NA	NA		NA	N		-	NA	NA		NA	NA	NA	NA		NA
Iron, Ferrous			ND	500	NA		A	NA	N	A	500	UJ	500	870	J 500)	500	U 50	0 130	J	500	1800) UJ	500	1100	J 500	420	J	500
Primary Constituents of Concern	VOCs by G	C/MS (8					_								-			_										-	
1,1-Dichloroethene	5		250 U	J 250	250	11 2	50	200	U 20	0	120	U	1200	120	U 120)	120	U 12	0 120	U	120	120	ΙU	120	10	U 10	20	U	20
cis-1,2-Dichloroethene	5		NA	NA	NA		IA	NA	N/		NA	Ŭ	NA	NA	NA		NA	N			120	6600	-	120	1300	10	8600	Ŭ	200
cis-1,2-Dichloroethene	5		15000	250	13000	25		13000	20		14000		120	12,000	120		7,200	12			NA	NA		NA	NA	NA	11000	E	20
Tetrachloroethene	5		250 U	1 250	250		50	200	U 20		120	U	120	120	U 120		120	U 12			120	120	U	120	10	U 10	20		20
trans-1,2-Dichloroethene	5		NA	NA	NA		IA	NA	N/		NA		NA	NA	NA		NA	N			190	190	U	190	15	U 15	37		30
trans-1,2-Dichloroethene	5		380 U	380	380		80	300	U 30		190	U	190	190	U 190)	190	U 19			NA	NA		NA	NA	NA	NA		NA
Trichloroethene	5		320	250	250		50	200	U 20		120	U	120	120	U 120		120	U 12		U	120	120	U	120	10	U 10	16	J	20
Vinyl chloride	2		520	500	500		00	400	U 40		250	U	250	250	U 250		1800	25			250	2200)	250	280	20	1800		40
Other VOCs by GC/MS (8260B)										_					_														
1,1,1,2-Tetrachloroethane	5	Γ	250	250	250	U 2	50	200	U 20	0	120	U	120	120	U 120)	120	U 12	0 120	U	120	120	U	120	10	U 10	20	U	20
1,1,1-Trichloroethane	5		250	250	250		50	200	U 20			U	120	120	U 120		120	U 12			120	120	U	120		U 10	20	U	20
1,1,2,2-Tetrachloroethane	5		250	250	250		50	200	U 20		120	U	120	120	U 120		120	U 12			120	120	U	120	10	U 10	20	U	20
1,1,2-Trichloroethane	1		380	380	380		80	300	U 30		190	Ū	190	190	U 190		190	U 19			190	190	Ū	190	15	U 15	30	Ū	30
1,1-Dichloroethane	5		380	380	380		80	300	U 30		190	Ŭ	190	190	U 190		190	U 19			190	190	Ū	190	15	U 15	30	Ŭ	30
1,1-Dichloropropene	5		1200	1200	1200		200	1000	U 100		620	-	620	620	U 620		620	U 62			620	620	Ū	620		U 50	100	U	100
1,2,3-Trichlorobenzene	5		1200	1200	1200		200	1000	U 100		620		620	620	U 620		620	U 62			620	620	Ū	620	50	U 50	100	Ŭ	100
1,2,3-Trichloropropane	0.04		2500	2500	2500	U 25		2000	U 200		1200		1,200	1200	U 1,20		1,200	U 1,2			1200	1200	_	1200	100	U 100	200	Ū	200
1,2,4,5-Tetramethylbenzene			1000	1000	1000		000	800	U 80		500		500	500	U 500		500	U 50			500	500	U	500	40	U 40	80	U	80
1,2,4-Trichlorobenzene	5		1200	1200	1200		200	1000	U 100		620		620	620	U 620	-	620	U 62			620	620	U	620	50	U 50	100	U	100
1,2,4-Trimethylbenzene	5		1200	1200	1200		200	1000	U 100		620		620	620	U 620		620	U 62			620	620	U	620	50	U 50	100	U	100
1,2-Dibromo-3-chloropropane	0.04		1200	1200	1200		200	1000	U 100		620		620	620	U 620		620	U 62			620	620	U	620	50	U 50	100	U	100
1,2-Dibromoethane	5		1000	1000	1000		000	800	U 80		500		500	500	U 500		500	U 50			500	500	U	500	40	U 40	80	U	80
1,2-Dichlorobenzene	3		1200	1200	1200		200	1000	U 100		620		620	620	U 620		620	U 62			620	620	U	620	50	U 50	100	U	100
1,2-Dichloroethane	0.6		250	250	250		50	200	U 20		120	U	120		U 120		120	U 12			120	120	U	120	-	U 10	20	U	20
1,2-Dichloropropane	1		880	880	880	U 8	80	700	U 70	0	440	U	440	440	U 440)	440	U 44	0 440	U	440	440	U	440	35	U 35	70	U	70
1,3,5-Trimethylbenzene	5		1200	1200	1200	U 12	200	1000	U 100	00	620	U	620	620	U 620)	620	U 62	0 620	U	620	620	U	620	50	U 50	100	U	100
1,3-Dichlorobenzene	3		1200	1200	1200	U 12	200	1000	U 100	00	620	U	620	620	U 620)	620	U 62	0 620	U	620	620	U	620	50	U 50	100	U	100
1,3-Dichloropropane	5		1200	1200	1200	U 12	200	1000	U 100	00	620	U	620	620	U 620)	620	U 62	0 620	U	620	620	U	620	50	U 50	100	U	100
1,4-Dichlorobenzene	3		1200	1200	1200	U 12	200	1000	U 100	00	620	U	620	620	U 620)	620	U 62	0 620	U	620	620	U	620	50	U 50	100	U	100
1,4-Dichlorobutane			NA	NA	NA		A	NA	N/	Ą	NA		NA	NA	NA		NA	N	A NA		NA	NA		NA	NA	NA	NA		NA
1,4-Diethylbenzene			1000	1000	1000	U 10	000	800	U 80	0	500	U	500	500	U 500)	500	U 50	0 500	U	500	500	U	500	40	U 40	80	U	80
2,2-Dichloropropane	5		1200	1200	1200	U 12	200	1000	U 100	00	620	U	620	620	U 620)	620	U 62	0 620	U	620	620	U	620	50	U 50	100	U	100
2-Butanone	50		NA	NA	2500	U 25	500	2000	U 200	00	1200	U	1,200	1200	U 120	0	1200	U 12	0 120) U	1200	1200) U	1200	100	U 100	200	U	200
2-Butanone	<mark>5</mark> 0		2500	2500	NA	N	IA	NA	N/	A	NA		NA	NA	NA		NA	N	A NA		NA	NA		NA	NA	NA	NA		NA
2-Hexanone	<mark>5</mark> 0		2500	2500	2500	U 25	500	2000	U 200	00	1200	U	1,200	1200	U 120	0	1200	U 12	0 120) U	1200	1200) U	1200	100	U 100	200	U	200
4-Ethyltoluene			1000	1000	1000		000	800	U 80		500		500	500	U 500)	500	U 50			500	500	U	500	40	U 40	80	U	80
4-Methyl-2-pentanone			2500	2500	2500		500	2000	U 200		1200		1,200	1200	U 120	0	1200	U 12) U	1200	1200) U	1200	100	U 100	200	U	200
Acetone	50		2500	2500	2500		500	2000	U 200		1200	U	1,200	1200	U 120	0	1200	U 12			1200	1200) U	1200	100	U 100	200	U	200
Acrolein	5	I	NA	NA	NA		A	NA	N/	Ą	NA		NA	NA	NA		NA	N	A NA		NA	NA		NA	NA	NA	NA		NA

Orangeburg, New York		-			-				-					-					-			-				
LOCATION	SGC	lue	MW-	5	MV	1-5	Duplica	te MW-5	M	W-5		MV	1-5	r	MW-5		MW	-5		MW-	5	MW	-5		MW-5	
Matrix	TOGS	Guidance Valu	Groundy	water	Groun	dwater	Groun	dwater	Grour	ndwate	r	Groun	dwater	Grou	undwa	ater	Ground	water	Gro	ound	water	Ground	lwater	Gro	undwat	ter
SAMPLING DATE	EC T	idanc	11/24/2	800	4/29/	2010	4/29/	/2010	6/16	6/2010		8/9/2	2010	12/	14/20	10	4/20/2	011	5	/16/20	011	5/31/:	2011	6/	21/201 ⁻	
Units	NYSDEC	Gui	ug/l		uç	ı/I	u	g/l	ι	ıg/l		uį	g/l		ug/l		ug	1		ug/l	I	ug	/I		ug/l	
PARAMETER	-		Results Q	RL	Results	Q RL	Results	Q RL	Results	QI	RL	Results	Q RL	Results	s Q	RL	Results C	RL	Result	ts Q	RL	Results	Q RL	Results	Q	RL
Acrylonitrile	5		2500	2500	2500	U 2500	2000	U 2000	1200		,200	1200	U 1200	1200	U	1200	1200 L	1200	1200	_	1200	100	U 100	200	U	200
Benzene	1		250	250	250	U 250	200	U 200	120		120	120	U 120	120	Ū	120	120 L		120	U	120	10	U 10	20	U	20
Bromobenzene	5		1200	1200	1200	U 1200	1000	U 1000	620		620	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
Bromochloromethane	5		1200	1200	1200	U 1200	1000	U 1000	620		620	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
Bromodichloromethane	50		250	250	250	U 250	200	U 200	120		120	120	U 120	120	U	120	120 L	120	120	U	120	10	U 10	20	U	20
Bromoform	50		1000	1000	1000	U 1000	800	U 800	500		500	500	U 500	500	U	500	500 L		500	U	500	40	U 40	80	U	80
Bromomethane	5		500	500	500	U 500	400	U 400	250		250	250	U 250	250	U	250	250 L	250	250	U	250	20	U 20	40	U	40
Carbon disulfide			2500	2500	2500	U 2500	2000	U 2000	1200		200	1200	U 1200	1200	U	1200	1200 L		1200	U	1200	100	U 100	200	U	200
Carbon tetrachloride	5		250	250	250	U 250	200	U 200	120		20	120	U 120	120	U	120	120 L	120	120	U	120	10	U 10	20	U	20
Chlorobenzene	5		250	250	250	U 250	200	U 200	120		120	120	U 120	120	U	120	120 L	_	120	U	120	10	U 10	20	U	20
Chloroethane	5		500	500	500	U 500	400	U 400	250	U 2	250	250	U 250	250	U	250	250 L	250	250	UJ		20	U 20	40	U	40
Chloroform	7		380	380	380	U 380	300	U 300	190		190	190	U 190	190	U	190	190 L		190	U	190	15	U 15	30	U	30
Chloromethane	5		1200	1200	1200	U 1200	1000	U 1000	620	U 6	520	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
cis-1,3-Dichloropropene	0.4		250	250	250	U 250	200	U 200	120		120	120	U 120	120	U	120	120 L	120	120	U	120	10	U 10	20	U	20
Dibromochloromethane	50		250	250	250	U 250	200	U 200	120		120	120	U 120	120	U	120	120 L		120	U	120	10	U 10	20	U	20
Dibromomethane	5		2500	2500	2500	U 2500	2000	U 2000	1200	U 1	200	1200	U 1200	1200	U	1200	1200 L	1200	1200	U	1200	100	U 100	200	U	200
Dichlorodifluoromethane	5		2500	2500	2500	U 2500	2000	U 2000	1200	U 1	200	1200	U 1200	1200	U	1200	1200 L	1200	1200	U	1200	100	U 100	200	U	200
Ethyl ether			NA	NA	1200	U 1200	1000	U 1000	620		620	620	U 620	620	U	620	620 L	_	620	U	620	50	U 50	100	U	100
Ethyl methacrylate			NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA				NA	NA	NA		NA	NA	NA	NA		NA
Ethylbenzene	5		250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	120 L	120	120	U	120	10	U 10	20	U	20
Hexachlorobutadiene	0.5		300	300	300	U 300	240	U 240	150	U 1	150	150	U 150	150	U	150	150 L	150	150	U	150	12	U 12	24	U	24
lodomethane	5		NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA				NA L	NA	NA		NA	NA	NA	NA		NA
Isopropylbenzene	5		250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	150 L	150	120	U	120	10	U 10	20	U	20
Methyl tert butyl ether			5 0 0	500	500	U 500	400	U 400	250	U 2	250	250	U 250	250	U	250	120 L	120	250	UJ	250	20	U 20	40	U	40
Methylene chloride	5		2500	2500	2500	U 2500	2000	U 2000	1200	U 1	200	1200	U 1200	1200	U	1200	250 L	250	1200	U	1200	100	U 100	200	U	200
n-Butylbenzene	5		250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	1200 L	1200	120	U	120	10	U 10	20	U	20
n-Propylbenzene	5		250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	120 L		120	U	120	10	U 10	20	U	20
Naphthalene	10		1200	1200		U 1200		U 1000	620		620	620	U 620	620	U	620	120 L		620	U	620	50	U 50	100	U	100
o-Chlorotoluene	5		1200	1200	1200	U 1200	1000	U 1000	620	U 6	620	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
o-Xylene			500	500	5 0 0	U 500	400	U 400	250	U 2	250	250	U 250	250	U	250	620 L	620	250	U	250	20	U 20	40	U	40
p-Chlorotoluene	5		1200	1200	1200	U 1200		U 1000	620	U 6	620	620	U 620	620	U	620	250 L	250	620	U	620	50	U 50	100	U	100
p-IsopropyItoluene	5		250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	620 L	620	120	U	120	10	U 10	20	U	20
p/m-Xylene		1	500	500	5 <mark>0</mark> 0	U 500	400	U 400	250	U 2	250	250	U 250	250	U	250	120 L	120	250	U	250	20	U 20	40	U	40
sec-Butylbenzene	5	1	250	250	250	U 250	200	U 200	120	U 1	120	120	U 120	120	U	120	250 L	250	120	U	120	10	U 10	20	U	20
Styrene	5		500	500	5 <mark>0</mark> 0	U 500	400	U 400	250		250	250	U 250	250	U	250	120 L	120	250	U	250	20	U 20	40	U	40
tert-Butylbenzene	5		1200	1200	1200	U 1200	1000	U 1000	620	U 6	620	620	U 620	620	U	620	250 L	250	620	U	620	50	U 50	100	U	100
Tetrahydrofuran	50		NA	NA	NA	NA	NA	NA	NA	1	NA	NA	NA				620 L	620	NA		NA	NA	NA	NA		NA
Toluene	5		380	380	380	U 380	300	U 300	190	U 1	90	190	U 190	190	U	190	190 L	190	190	U	190	15	U 15	30	U	30
trans-1,3-Dichloropropene	0.4		250	250	250	U 250	200	U 200	120		120	120	U 120	120	U	120	120 L	120	120	U	120	10	U 10	20	U	20
trans-1,4-Dichloro-2-butene	5		NA	NA	1200	U 1200	1000	U 1000	620	U 6	620	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
Trichlorofluoromethane	5		1200	1200	1200	U 1200	1000	U 1000	620	U 6	520	620	U 620	620	U	620	620 L	620	620	U	620	50	U 50	100	U	100
Vinyl acetate			2500	2500	2500	U 2500	2000	U 2000	1200	U 1:	200	1200	U 1200	1200	U	1200	1200 L	1200	1200	U	1200	100	U 100	200	U	200
•			-	•	-	-								-				-		-	•					

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York					-		-		_			-					-		_						_		
LOCATION	SGC	lue	MW-	-5	M	N-5	Duplic	ate MW-5		MW-5		M	N-5		MM	1-5	M	IW-5		Γ	/W-5		М	W-5		MW-5	5
Matrix	TOGS	Guidance Value	Ground	water	Groun	dwater	Grou	ndwater	Gro	undwa	ater	Grour	Idwat	ter	Groun	dwater	Grou	ndwa	ater	Grou	undw	ater	Grou	ndwater	Gr	oundw	/ater
SAMPLING DATE	EC T	danc	11/24/2	2008	4/29	/2010	4/2	9/2010	6/	16/201	0	8/9/	2010)	12/14	/2010	4/20	0/201	1	5/1	6/20 ⁻	11	5/31	/2011		6/21/20	<mark>)11</mark>
Units	NYSDEC	Gui	ug/		u	g/l		ug/l		ug/l		ι	g/l		uç	g/l		ug/l			ug/l		ι	ıg/l		ug/l	
PARAMETER	~		Results C	RL	Results		Results	Q RL	Result	s Q	RL	Results	Q	RL	Results	Q RL	Results	Q	RL	Results	Q	RL	Results		Result		RL
Dissolved Gases by GC																											
Ethane			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Ethene			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	537		1	278		0.5	439	E 0.5	333		1
Methane			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Anions by Ion Chromatography																											
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA	T	NA
Sulfate	250,000		NA	NA	11000	10000	12000	1000	0 14000)	10000	10000	U 1	10000	10000	U 10000	10000	U	10000	10000	U	10000	4400	U 1000	0 8400		10000
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	370	J 100	3800	J 100	200		100	100		100	250	100	150	U	100	100	U	100	260	100	5700		100
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Sulfite	200		NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Total Organic Carbon			NA	NA	4300	U 1000	4200	U 100		U	3000	5700		1000	24000	2000	6600		1000	7900	U	1000	5700	U 100			1000
Iron, Ferrous			NA	NA	NA	NA	NA	NA	500	UJ	500	870	J	500	500	U 500	1300	J	500	1800	J	500	1100	J 500	420	J	500
Hardness			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Ferric Iron			NA	NA	NA	NA	NA	NA	600	J	500	500	UJ	500	3100	500	500	UJ	500	500	UJ	500	500	J 500	1600	J	500
Total Metals																											
Antimony, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA	Т	NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Beryllium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Iron, Total	300		21000	50	1800	50	2000	50	600		50	930		50	3100	50	1700		<mark>5</mark> 0	1900		50	1600	50			50
Lead, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Manganese, Total			NA	NA	1390	10	1520	10	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA
Mercury, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Nickel, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Selenium, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Silver, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Thallium, Total			NA	NA	NA	NA	NA	NA			NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA			NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA	NA		NA	NA	NA	NA		NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, and L1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York		-									-				_			-							-	
LOCATION	SGC	an	MW	-6		olicate W-6	MV	V-6	MM	/-6	M	N-6		MW-8A		MW-8	A	M	W-8A	•	MV	V-8A	M	W-8A	Duplic	ate MW-8A
Matrix	TOGS	e Val	Ground	lwater	Grou	ndwater	Groun	dwater	Ground	lwater	Groun	dwater	G	Groundwat	ter	Groundw	ater	Grou	ndwa	ater	Groun	dwater	Grou	ndwater	Grou	Indwater
SAMPLING DATE	-	Guidance Value	9/14/2	2007	9/14	1/2007	10/24	/2007	11/24/	2008	4/30	/2010		10/24/200	7	11/24/20	008	4/29	<mark>9/20</mark> 1	10	6/16	/2010	12/1	4/2010	12/	14/2010
Units	NYSDEC	Gui	ug	/I	ι	ıg/l	uį	g/l	ug	ı/I	u	g/l		ug/l		ug/l			ug/l		u	g/l		ug/l		ug/l
PARAMETER	_		Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Re	sults Q	RL	Results Q	RL	Results	Q	RL	Results	Q RL	Results	Q RL	Results	Q RL
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	_		NA	3400	1000	NA		NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	500	UJ 500	500	U 500	500	U 500
Primary Constituents of Concern	VOCs by C	C/MS (8								1.0.1														0 000		
1,1-Dichloroethene	5	l	ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5	5 1	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	N/			NA	NA	NA	NA	Ŭ	NA	NĂ	NA	NA	NA NA	2,90	
cis-1,2-Dichloroethene	5		24	0.5	36	0.5	NA	NA	45	0.5	75	0.5		,800	12	2100	25	1000		25	1300	20	2,500	20	2,300	E 0.5
Tetrachloroethene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5		ND	12	ND	25	25	U	25	5	U 5	20	U 20	1.7	0.5
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA	_	NA	NA	NA	NA	NA	75	U 75
trans-1,2-Dichloroethene	5		ND	0.75	ND	0.75	NA	NA	ND	0.75	0.75	U 0.7		ND	19	ND	38	38	U	38	7.5	U 7.5	30	U 30	120	E 0.75
Trichloroethene	5		ND	0.5	ND	0.5	NA	NA	0.93	0.5	1.5	0.5		58	12	62	25	39		25	41	5	54	20	73	0.5
Vinyl chloride	2		7.5	1.0	12	1.0	NA	NA	22	1	6.1	1		ND	25	ND	50	50	U	50	12	10	40	U 40	30	1
Other VOCs by GC/MS (8260B)							• •				•			<u> </u>		· · · · ·		•					•			
1,1,1,2-Tetrachloroethane	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5	5 N	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
1,1,1-Trichloroethane	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5		ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
1,1,2,2-Tetrachloroethane	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5	5 N	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
1,1,2-Trichloroethane	1		ND	0.75	ND	0.75	NA	NA	ND	0.75	0.75	U 0.7	5 N	ND	19	ND	38	38	U	38	7.5	U 7.5	30	U 30	0.75	U 0.75
1,1-Dichloroethane	5		ND	0.75	ND	0.75	NA	NA	ND	0.75	0.75	U 0.7	5 N	ND	19	ND	38	38	U	38	7.5	U 7.5	30	U 30	0.75	U 0.75
1,1-Dichloropropene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5	5 N	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2,3-Trichlorobenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5	5 N	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2,3-Trichloropropane	0.04		ND	5	ND	5	NA	NA	ND	5	5	U 5	Ν	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5
1,2,4,5-Tetramethylbenzene			NA	NA	NA	NA	NA	NA	ND	2	2	U 2		NA	NA	ND	100	100	U	100	20	U 20	80	U 80	2	U 2
1,2,4-Trichlorobenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2,4-Trimethylbenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5	5 N	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2-Dibromoethane	5		ND	2	ND	2	NA	NA	ND	2	2	U 2		ND	50	ND	100	100	U	100	20	U 20	80	U 80	2	U 2
1,2-Dichlorobenzene	3		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5	5 N	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,2-Dichloroethane	0.6		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U 0.5		ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
1,2-Dichloropropane	1		ND	1.8	ND	1.8	NA	NA	ND	1.8	1.8	U 1.8		ND	44	ND	88	88	U	88	18	U 18	70	U 70	1.8	U 1.8
1,3,5-Trimethylbenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,3-Dichlorobenzene	3		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,3-Dichloropropane	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,4-Dichlorobenzene	3		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
1,4-Dichlorobutane			ND	5	ND	5	NA	NA	NA	NA	2	UNA			120	NA	NA	NA		NA	NA	NA				
1,4-Diethylbenzene			NA	NA	NA	NA	NA	NA	ND	2	NA	N/			NA	ND	100	100	U	100	20	U 20	80	U 80	2	0 2
2,2-Dichloropropane	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U 2.5		ND	62	ND	120	120		120	25	U 25	100	U 100	2.5	U 2.5
2-Butanone	50		NA	NA	NA	NA	NA	NA	NA	NA	5	U 5			NA	NA	NA	250	U	250	50	U 50	200	U 200	5	U 5
2-Butanone	50		ND	5	ND	5	NA	NA	ND	5	NA	N/			120	ND	250	NA	_	NA	NA	NA			_	
2-Hexanone	50		ND	5	ND	5	NA	NA	ND	5	5	U 5			120	ND	250	250		250	50	U 50	200	U 200	5	0 5
4-Ethyltoluene			NA	NA	NA	NA	NA	NA	ND	2	2	U 2			NA	ND	100	100		100	20	U 20	80	U 80	2	U 2
4-Methyl-2-pentanone	50		ND	5	ND	5	NA	NA	ND	5	5	U 5			120	ND	250	250		250	50	U 50	200	U 200	5	U 5
Acetone	50		6.4	5	ND	5	NA	NA	15	5	19	5			120	ND	250	250		250	50	U 50	200	U 200	5	U 5
Acrolein	5	I	ND	12	ND	12	NA	NA	NA	NA	NA	U NA		NA	NA	NA	NA	NA		NA	NA	NA	I		I	

Orangeburg, New York	SGC	Value	MW	-6	Dupli MV		MW	-6	M	W-6	M	W-6		MW-8	BA	MW-8	BA	M	W-8A		MW	/-8A	MW	/-8A	Duplicate	e MW-8A
Matrix	S90	e Val	Ground	water	Ground	dwater	Ground	lwater	Grour	dwater	Grour	ndwat	ter	Ground	water	Ground	water	Groui	ndwat	er	Groun	dwater	Groun	dwater	Ground	dwater
SAMPLING DATE	DEC T	Guidance	9/14/2	2007	9/14/2	2007	10/24/	2007	11/24	4/2008	4/30	0/2010	0	10/24/2	2007	11/24/2	8008	4/29	9/2010)	6/16	2010	12/14	/2010	12/14	/2010
Units	NYSD	Gu	ug/	/	uç	j/l	ug	/I	U	ıg/l	ι	ug/l		ug/	1	ug/		ι	ug/l		u	g/l	u	g/l	uç	g/l
PARAMETER			Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q	RL	Results (Q RL	Results C	RL	Results	Q	RL	Results	Q RL	Results	Q RL	Results	Q RL
Acrylonitrile	5		ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5
Benzene	1		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Bromobenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Bromochloromethane	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	0.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Bromodichloromethane	50		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	2	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Bromoform	50		ND	2	ND	2	NA	NA	ND	2	2	U	2	ND	50	ND	100	100	U	100	20	U 20		U 80	2	U 2
Bromomethane	5		ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
Carbon disulfide			ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5
Carbon tetrachloride	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Chlorobenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Chloroethane	5		ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
Chloroform	7		ND	0.75	ND	0.75	NA	NA	ND	0.75	0.75	U	0.75	ND	19	ND	38	38	U	38	7.5	U 7.5	30	U 30	0.75	U 0.75
Chloromethane	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
cis-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5		0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Dibromochloromethane	50		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Dibromomethane	5		ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5
Dichlorodifluoromethane	5		ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5
Ethyl ether			ND	2.5	ND	2.5	NA	NA	NA	NA	2.5	U	2.5	ND	62	NA	NA	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Ethyl methacrylate			ND	5	ND	5	NA	NA	NA	NA	NA		NA	ND	120	NA	NA	NA		NA	NA	NA				
Ethylbenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Hexachlorobutadiene	0.5		ND	0.6	ND	0.6	NA	NA	ND	0.6	0.6	U	0.6	ND	15	ND	30	30	U	30	6	U 6	24	U 24	0.6	U 0.6
lodomethane	5		ND	5	ND	5	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA		NA	NA	NA				
Isopropylbenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Methyl tert butyl ether			ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
Methylene chloride	5		ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	<mark>5</mark> 0	U 50	200	U 200	5	U 5
n-Butylbenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
n-Propylbenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20		U 0.5
Naphthalene	10		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
o-Chlorotoluene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
o-Xylene			ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
p-Chlorotoluene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5		2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
p-lsopropyltoluene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
p/m-Xylene			ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
sec-Butylbenzene	5		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5	U	0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
Styrene	5		ND	1	ND	1	NA	NA	ND	1	1	U	1	ND	25	ND	50	50	U	50	10	U 10	40	U 40	1	U 1
tert-Butylbenzene	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Tetrahydrofuran	50		ND	10	ND	10	NA	NA	NA	NA	NA		NA	ND	250	NA	NA	NA		NA	NA	NA				
Toluene	5		ND	0.75	ND	0.75	NA	NA	ND	0.75	0.75	U	0.75	ND	19	ND	38	38	U	38	7.5	U 7.5	30	U 30	0.75	U 0.75
trans-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	NA	NA	ND	0.5	0.5		0.5	ND	12	ND	25	25	U	25	5	U 5	20	U 20	0.5	U 0.5
trans-1,4-Dichloro-2-butene	5		ND	2.5	ND	2.5	NA	NA	NA	NA	2.5	U	2.5	ND	62	NA	NA	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Trichlorofluoromethane	5		ND	2.5	ND	2.5	NA	NA	ND	2.5	2.5	U	2.5	ND	62	ND	120	120	U	120	25	U 25	100	U 100	2.5	U 2.5
Vinyl acetate			ND	5	ND	5	NA	NA	ND	5	5	U	5	ND	120	ND	250	250	U	250	50	U 50	200	U 200	5	U 5

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Disponder Gases by GC NA NA </th <th>Orangeburg, New York</th> <th></th> <th>_</th> <th></th>	Orangeburg, New York		_																						
Marca D - Orden Factor Orden Factor <td>LOCATION</td> <td>SGC</td> <td>lue</td> <td>MW</td> <td>/-6</td> <td></td> <td></td> <td>MW</td> <td>-6</td> <td>MV</td> <td>V-6</td> <td>M</td> <td>W-6</td> <td>MW-8</td> <td>BA</td> <td>MW-</td> <td>BA</td> <td>M</td> <td>N-8A</td> <td>MV</td> <td>V-8A</td> <td>MW-</td> <td>8A</td> <td>Duplicate</td> <td>MW-8A</td>	LOCATION	SGC	lue	MW	/-6			MW	-6	MV	V-6	M	W-6	MW-8	BA	MW-	BA	M	N-8A	MV	V-8A	MW-	8A	Duplicate	MW-8A
Other g up u	Matrix	ocs	ie Va	Ground	lwater	Grour	ndwater	Ground	water	Groun	dwater	Grour	dwater	Ground	water	Ground	water	Grou	ndwater	Grour	ndwater	Ground	water	Ground	Iwater
Other g up u	SAMPLING DATE	ECT	danc	9/14/2	2007	9/14	/2007	10/24/	2007	11/24	/2008	4/30	/2010	10/24/2	2007	11/24/2	2008	4/29	9/2010	6/16	/2010	12/14/2	2010	12/14/	2010
PARAMETER Pesults Q RL Results Q RL Results	Units	UYSD	Gui	ug	/I	ι	ıg/l	ug	/I	u	g/l	u	ıg/l	ug/	1	ug/			ug/l	u	ıg/l	ug	/	ug	 j/l
Ethene NA NA <th< td=""><td>PARAMETER</td><td>~</td><td></td><td>Results</td><td>Q RL</td><td>Results</td><td>Q RL</td><td>Results (</td><td>Q RL</td><td>Results</td><td>Q RL</td><td>Results</td><td>Q RL</td><td>Results (</td><td>Q RL</td><td>Results C</td><td>RL</td><td></td><td></td><td>Results</td><td>Q RL</td><td></td><td></td><td>Results</td><td>Q RL</td></th<>	PARAMETER	~		Results	Q RL	Results	Q RL	Results (Q RL	Results	Q RL	Results	Q RL	Results (Q RL	Results C	RL			Results	Q RL			Results	Q RL
Ellmene NA NA <t< td=""><td>Dissolved Gases by GC</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Dissolved Gases by GC																•								
Methame NA NA <t< td=""><td>Ethane</td><td></td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>5.08</td><td></td><td>NA</td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td></t<>	Ethane			NA	NA	NA	NA	5.08		NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Doxide NA	Ethene			NA		NA	NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anione by Ion Chromatography V	Methane			NA	NA	NA	NA	486		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chardie 250,000 NA	Carbon Dioxide			NA	NA	NA	NA	100,000	2,760	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfare 250,000 NA	Anions by lon Chromatography																								
Nitrogen, Armannia 2.000 NA NA </td <td>Chloride</td> <td></td> <td></td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Chloride			NA		NA	NA			NA	NA	NA	NA	NA		NA									
Ninogen, Nitrade/Nitrile 10,000 NA <	Sulfate																					11000			
Phosphorus, Orthophosphate NA NA <th< td=""><td>Nitrogen, Ammonia</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Nitrogen, Ammonia																								
Sulfide 50 NA NA </td <td>Nitrogen, Nitrate/Nitrite</td> <td>10,000</td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td></td> <td>100</td> <td></td> <td>NA</td> <td></td> <td>1 1</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td>1900</td> <td></td> <td>860</td> <td></td> <td>130</td> <td></td> <td></td> <td>100</td>	Nitrogen, Nitrate/Nitrite	10,000				NA			100		NA		1 1	NA		NA	NA	1900		860		130			100
Suffie 200 NA NA <t< td=""><td></td><td></td><td></td><td></td><td></td><td>NA</td><td></td><td></td><td>5</td><td></td><td>NA</td><td></td><td></td><td>NA</td><td></td><td></td><td></td><td>NA</td><td></td><td></td><td></td><td></td><td></td><td></td><td>NA</td></t<>						NA			5		NA			NA				NA							NA
Dissolved Organic Carbon NA	Sulfide																								
Total Organic Carbon NA NA <td></td> <td>200</td> <td></td>		200																							
Irons NA	-																								
HardnessNANANANAS30,000660NA <td>•</td> <td></td> <td>1 1</td> <td></td>	•												1 1												
Ferric Iron NA													1 1												
Total Metals Antimony, Total NA NA <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																									
Antimony, Total NA NA <thn< td=""><td></td><td></td><td></td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>18,000</td><td>500</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td>500</td><td>UJ 500</td><td>49000</td><td>500</td><td>42000</td><td>500</td></thn<>				NA	NA	NA	NA	18,000	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	500	UJ 500	49000	500	42000	500
Arsenic, Total NA N		•						<u> </u>				•								-					
Barium, TotalNA <td>-</td> <td></td>	-																								
Berylium, Total NA NA </td <td></td> <td>1 1</td> <td></td>													1 1												
Cadmium, TotalNA <td>-</td> <td></td> <td>1 1</td> <td></td>	-												1 1												
NA <td>-</td> <td></td>	-																								
Copper_OtalNA<													1 1												
Iron, Total300NANANANA18,00050NA<																									
Lead, TotalNA<				NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA							NA
Manganese, TotalNA<	Iron, Total	300		NA		NA			50	NA		NA		NA		NA		100		50	U 50	49000		42000	50
Mercury, TotalNA <td>Lead, Total</td> <td></td> <td></td> <td>NA</td>	Lead, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel, TotalNANANANANANANANANANANANANANASelenium, TotalNANANANANANANANANANANANANANANASilver, TotalNANANANANANANANANANANANANANAThallium, TotalNANANANANANANANANANANANANA	Manganese, Total				NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	10	U 10	NA	NA	NA	NA	NA	NA
Selenium, Total NA NA </td <td>Mercury, Total</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NA</td> <td></td> <td>NA</td> <td></td> <td>NA</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td>	Mercury, Total						NA		NA		NA		_				NA	NA		NA	NA	NA		NA	NA
Silver, Total NA	Nickel, Total						NA		_									NA		-				NA	
Thallium, Total NA	Selenium, Total				NA	NA	NA	NA	NA		NA	NA	NA	NA		NA		NA	NA	NA	NA	NA	NA	NA	NA
	Silver, Total					NA		NA	NA					NA		NA	NA	NA		NA				NA	NA
Zinc, Total NA	Thallium, Total					NA										NA		NA							
	Zinc, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, and L1109210 ug/l = micrograms per I Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

		-																													-		
LOCATION	SGC	Value	Μ	W-8A		M	W-8A			plicat IW-8A		M	W-8A		м	W-8A		MW	-8B	Duplic MW-8		MM	V-8B	MV	W-8B		MW-	BB	м	W-8B		MW-	8B
Matrix	rogs		Grou	Indwat	er	Grou	ndwat	er	Grou	undwa	ater	Grou	ndwat	er	Grou	Indwat	er	Ground	lwater	Ground	water	Groun	dwater	Grou	ndwat	ter	Ground	water	Grou	Indwate	r	Ground	lwater
SAMPLING DATE	DEC	Guidance	4/2	0/2011		5/1	6/2011		5/1	6/201	1	5/3	1/2011		6/2	1/2011		10/24	2007	10/25/2	007	11/24	1/2008	4/29	9/2010	C	6/16/2	010	8/9	9/2010		12/14/	2010
Units	NYSD	ษ		ug/l			ug/l			ug/l		I	ug/l			ug/l		ug	ı/I	ug/l		u	g/l	ι	ug/l		ug/			ug/l		ug	/I
PARAMETER			Results	Q	RL F	Results	Q	RL I	Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	Q RL	Results (ג RL	Results	Q RL	Results	Q	RL	Results C	RL	Results	s Q F	RL Re	esults (Q RL
Dissolved Organic Carbon			NA		NA	NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	NA	NA	1600	1000	NA		NA	NA	NA	NA	1	JA	NA	NA
Iron, Ferrous			500	U	500	500	U	500	500	UJ	500	500	UJ	500	500	UJ	500	NA	NA	NA	NA	ND	500	NA		NA	500 U	J 500	500	UJ 5	00 5	500 l	J 500
Primary Constituents of Concern	VOCs by G	C/MS (8													•					•								1					
1,1-Dichloroethene	5	Ì	10	U	10	12	U	12	12	U	12	12	U	12	12	U	12	ND	12	ND	0.5	ND	50	100	U	100	2.5 L	2.5	5	U	5	25 l	J 25
cis-1,2-Dichloroethene	5		910		10	970		12	920		12	910		12	NA		NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA			NA	NA
cis-1,2-Dichloroethene	5		NA		NA	NA		NA	NA		NA	NA		NA	1800		12	2,100	12	>100	0.5	ND	3200	5200		100	380	3	1800			600	25
Tetrachloroethene	5		10		10	12	U	12	12	U	12	12	U	12	12	U	12	ND	12	0.86	0.5	ND	50	100	U	100	2.5 L	2.5	5			25 l	J 25
trans-1,2-Dichloroethene	5		15		15	19	U	19	19	U	19	19	U	19	19	U	19	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA			NA	NA
trans-1,2-Dichloroethene	5		NA		NA	NA		NA	NA		NA	NA		NA	NA		NA	ND	19	43	0.75	ND	75	150	U	150	3.8 L	3.8	7.5	U 7		38 (J 38
Trichloroethene	5		34		10	38		12	40		12	42		12	64		12	34	12	28	0.5	ND	73	110		100	3.8	2.5	59			60	25
Vinyl chloride	2		20	U	20	25	U	25	25	U	25	25	U	25	9.1	J	25	ND	25	ND	1.0	ND	100	200	U	200	5 L		10	U ·	10	50 l	J 50
Other VOCs by GC/MS (8260B)		•											· · · · ·																				
1,1,1,2-Tetrachloroethane	5		10	U	10	12	U	12	12	U	12	12	U	12	12	U	12	ND	12	ND	0.5	ND	50	100	U	100	2.5 L	2.5	5	U	5	25 l	J 25
1,1,1-Trichloroethane	5		10	U	10	12	U	12	12	U	12	12	U	12	12	U	12	ND	12	ND	0.5	ND	50	100	U	100	2.5 L		5			25 l	J 25
1,1,2,2-Tetrachloroethane	5		10		10	12	Ū	12	12	U	12	12	U	12	12	U	12	ND	12	ND	0.5	ND	50	100	U	100	2.5 L		5			25 l	J 25
1,1,2-Trichloroethane	1		15		15	19	Ū	19	19	U	19	19	U	19	19	U	19	ND	19	ND	0.75	ND	75	150	U	150	3.8 L		7.5			38 l	J 38
1,1-Dichloroethane	5		15		15	19	Ū	19	19	U	19	19	U	19	19	Ū	19	ND	19	ND	0.75	ND	75	150	U	150	3.8 L		7.5		.5	38 I	J 38
1,1-Dichloropropene	5		50		50	62	U	62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L		25			120 l	J 120
1,2,3-Trichlorobenzene	5		50		50	62		62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L		25			120 L	J 120
1,2,3-Trichloropropane	0.04		100		100	120		120	120	U	120	120	U	120	120	U	120	ND	120	ND	5	ND	500	1000		1000	25 L		50			250 เ	J 250
1,2,4,5-Tetramethylbenzene			40		40	50		50	50	U	50	50	U	50	50	U	50	NA	NA	NA	NA	ND	200	400	U	400	10 L		20			100 l	J 100
1,2,4-Trichlorobenzene	5		50		50	62		62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 l		25			120 l	J 120
1,2,4-Trimethylbenzene	5		50		50	62		62	62	υ	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 l		25			120 l	J 120
1,2-Dibromo-3-chloropropane	0.04		50		50	62		62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L		25			120 L	J 120
1,2-Dibromoethane	5		40	U	40	50		50	50	U	50	50	U	50	50	U	50	ND	50	ND	2	ND	200	400	U	400	10 L		20			100 l	J 100
1,2-Dichlorobenzene	3		50		50	62		62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 l		25			120 l	J 120
1,2-Dichloroethane	0.6		10		10	12	U	12	12	U	12	12	U	12	12	U	12	ND	12	ND	0.5	ND	50	100	U	500	2.5 L		5			25 l	J 25
1,2-Dichloropropane	1		35	U	35	44	U	44	44	U	44	44	U	44	44	U	44	ND	44	ND	1.8	ND	180	350	U	350	8.8 L	8.8	18	U ·	18	88 l	J 88
1,3,5-Trimethylbenzene	5		50		50	62	U	62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L		25	U 2	25	120 เ	J 120
1,3-Dichlorobenzene	3		50	U	50	62	U	62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L	12	25		25	120 l	J 120
1,3-Dichloropropane	5		50	U	50	62		62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 l		25			120 l	J 120
1,4-Dichlorobenzene	3		50	U	50	62	U	62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L	12	25	U 2	25	120 เ	J 120
1,4-Dichlorobutane			NA		NA	NA		NA	NA		NA	NA		NA	NA		NA	ND	120	ND	5	NA	NA	NA		NA	NA	NA	NA		A	NA	NA
1,4-Diethylbenzene			40	U	40	50	U	50	50	U	50	50	U	50	50	U	50	NA	NA	NA	NA	ND	200	400	U	400	10 L	10	20		20 ·	100 l	J 100
2,2-Dichloropropane	5		50	U	50	62	U	62	62	U	62	62	U	62	62	U	62	ND	62	ND	2.5	ND	250	500	U	500	12 L	12	25	U 2	25 ⁻	120 l	J 120
2-Butanone	50		100		100	120		120	120	U	120	120	U	120	120	U	120	NA	NA	NA	NA	NA	NA	1000	U	1000	25 l	1 25	50			250 l	J 250
2-Butanone	50		NA		NA	NA		NA	NA		NA	NA		NA	NA		NA	ND	120	ND	5	ND	500	NA		NA	NA	NA	NA		A	NA	NA
2-Hexanone	50		100	U	100	120	U	120	120	U	120	120	U	120	120	U	120	ND	120	ND	5	ND	500	1000	U	1000	25 L	25	50	U	50 2	250 l	J 250
4-Ethyltoluene			40		40	50		50	50	U	50	50	U	50	50	U	50	NA	NA	NA	NA	ND	200	400	U	400	10 L	_	20	_		100 l	J 100
4-Methyl-2-pentanone			100		100	120		120	120	U	120	120	U	120	120	U	120	ND	120	ND	5	ND	500	1000	U	1000	25 L	_	50			250 l	J 250
Acetone	50		100	U	100	120	U	120	120	U	120	120	U	120	120	U	120	ND	120	ND	5	ND	500	1000	U	1000	25 L	25	50	U	50 2	250 l	J 250
Acrolein	5	I	NA		NA	NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA			NA	A

LOCATION	SGC	ne	MV	N-8A		M	W-8A		Dupli MW-		M	N-8A		MW-8/	4	MW-	8B	Duplic MW-8		MW	-8B	MV	V-8B	N	IW-8B	M	N-8B	MV	V-8B
Matrix	TOGS	ce Value	Grou	ndwat	ter	Grou	ndwat	ter	Ground	water	Grou	ndwater	Gr	oundwa	ater	Ground	water	Ground	water	Ground	dwater	Grou	ndwater	Grou	undwater	Grou	ndwater	Grour	ndwater
SAMPLING DATE	с Ш	Guidance	4/20)/2011		5/1	6/2011	1	5/16/2	2011	5/3	1/2011	6	6/21/20 [/]	11	10/24/	2007	10/25/2	2007	11/24/	/2008	4/29)/2010	6/^	6/2010	8/9	/2010	12/1	4/2010
Units	NYSDI	Gu	ι	ug/l		I	ug/l		ug	/I		ug/l		ug/l		ug	/I	ug/	1	ug	ı/I	ι	ıg/l		ug/l	L L	ıg/l	ι	ıg/l
PARAMETER			Results	Q	RL F	Results	Q	RL F	Results Q	RL	Results	Q RL	Resu	ts Q	RL	Results	Q RL	Results (Q RL	Results	Q RL	Results	Q RL	Results	QRL	Results	Q RL	Results	Q RL
Acrylonitrile	5		100	U	100	120	U	120	120 U	120	120	U 120	120	U	120	ND	120	ND	5	ND	500	1000	U 1000	25	U 25	50	U 50	250	U 250
Benzene	1		10	U	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 2.5	5	U 5	25	U 25
Bromobenzene	5		50	U	50	62	U	62	62 U	62	62	U 62	62	U	62	ND	62	ND	2.5	ND	250	500	U 500	12	U 12	25	U 25	120	U 120
Bromochloromethane	5		50	U	50	62	U	62	62 U	62	62	U 62	62	U	62	ND	62	ND	2.5	ND	250	500	U 500	12	U 12	25	U 25	120	U 120
Bromodichloromethane	50		10	U	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 2.5	5	U 5	25	U 25
Bromoform	50		40	U	40	50	U	50	50 U	50	50	U 50	50	U	50	ND	50	ND	2	ND	200	400	U 400	10	U 10	20	U 20	100	U 100
Bromomethane	5		20	U	20	25	U	25	25 U	25	25	U 25	25	UJ	25	ND	25	ND	1	ND	100	200	U 200	5	U 5	10	U 10	50	U 50
Carbon disulfide			100		100	120	U	120	120 U	120	120	U 120	120	U	120	ND	120	ND	5	ND	500	1000	U 1000	25	U 25	50	U 50	250	U 250
Carbon tetrachloride	5		10	U	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 25	5	U 5	25	U 25
Chlorobenzene	5		10	U	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 25	5	U 5	25	U 25
Chloroethane	5		20	U	20	25	U	25	25 U.	J 25	25	U 25	25	U	25	ND	25	ND	1	ND	100	200	U 200	5	U 5	10	U 10	50	U 50
Chloroform	7		15	U	15	19	U	19	19 U	19	19	U 19	19	U	19	ND	19	2.2	0.75	ND	75	150	U 150	3.8	U 3.8	7.5	U 7.5	38	U 38
Chloromethane	5		50	U	50	62	U	62	62 U	62	62	U 62	62	U	62	ND	62	ND	2.5	ND	250	500	U 500	12	U 12	25	U 25	120	U 120
cis-1,3-Dichloropropene	0.4		10	U	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 500	2.5	U 2.5	5	U 5	25	U 25
Dibromochloromethane	50		10	U	10	12	U	12	12 U	12	12	U 12	12		12	ND	12	ND	0.5	ND	50	100	U 500	2.5	U 2.5	5	U 5	25	U 25
Dibromomethane	5		100	Ū.	100	120	Ū	120	120 U	120	120	U 120	120		120	ND	120	ND	5	ND	500	1000	U 1000	25	U 25	50	U 50	250	U 250
Dichlorodifluoromethane	5		100	Ū.	100	120		120	120 U	120	120	U 120	120		120	ND	120	ND	5	ND	500	1000	U 1000	25	U 25	50	U 50	250	U 250
Ethyl ether	-		50		50	62	U	62	62 U	62	62	U 62	62		62	ND	62	ND	2.5	NA	NA	500	U 500	12	U 12	25	U 25	120	U 120
Ethyl methacrylate			NA		NA	NA		NA	NA	NA	NA	NA	NA	Ť	NA	ND	120	ND	5	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Ethylbenzene	5		10	υ	10	12	U	12	12 U	12	12	U 12	12	U	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 2.5	5	U 5	25	U 25
Hexachlorobutadiene	0.5		12	ŭ	12	15	Ū	15	15 U		15	U 15	15	Ū	15	ND	15	ND	0.6	ND	60	120	U 120	3		6	U 6	30	U 30
lodomethane	5		NA	ŭ	NA	NA	Ŭ	NA	NA	NA	NA	NA	NA	Ŭ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	A
Isopropylbenzene	5		10	π –	10	12	11	12	12 U	12	12	U 12	12	- 11	12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 2.5	5	11 5	25	U 25
Methyl tert butyl ether	0		20	ŭ	20	25	ň	25	25 U	25	25	U 25	25	U	25	ND	25	ND	1	ND	100	200	U 200	5	U 5	10	U 10	50	U 50
Methylene chloride	5		100		100	120	U	120	120 U	120	120	U 120	120		120	ND	120	ND	5	ND	500	1000	U 1000	25	U 25	50	U 50	250	U 250
n-Butylbenzene	5			ů l	100	120		120	120 0 12 U	120	120	U 12	120		120	ND	120	ND		ND	50		U 1000	2.5	U 2.5	5	5	250	U 25
	5		10 10		10		U		12 U	12	12		12		12	ND	12	ND	0.5	ND	50	100 100	U 100	2.5	U 2.5	5		25	U 25
n-Propylbenzene Naphthalene	<u> </u>		50	0	50	12 62	U	12 62	62 U		62	U 12 U 62	62		62	ND	62	ND	2.5	ND	250	500	U 500	2.5 12	U 2.5	25	U 25	120	U 120
o-Chlorotoluene	10 5		50 50		50 50	62 62	U	62 62	62 U		62 62	U 62	62	U	62	ND	62 62	ND	2.5	ND	250	500	U 500	12	U 12	25 25	U 25	120	U 120
o-Xylene	5				20	62 25	U	62 25	25 U		25	U 25							2.0				U 200	۱ <u>۲</u>	U 5	10			
p-Chlorotoluene	E		20 50								62		25		25	ND	25	ND	25	ND	100 250	200	U 200	10		25	U 10	50	U 50
•	5 5			UU	50	62 12		62 12				U 62 U 12	62		62 12	ND	62	ND	2.5 0.5	ND		500	U 500	12 2.5	U 12 U 2.5	25 5	U 25	120 25	U 120 U 25
p-Isopropyltoluene	3		10 20		10	12 25					12 25		12			ND ND	12		0.5		50 100	100		2.5 E					
p/m-Xylene	F		20		20	25		25 12	25 U		25	U 25	25		25	ND	25				100	200	U 200			10	U 10	50 25	U 50
sec-Butylbenzene	5		10		10	12 25	U	12 25	12 U		12 25	U 12	12		12	ND ND	12		0.5		50	100	U 100	2.5	U 2.5	5		25	U 25
Styrene	5		20		20	25		25	25 U		25	U 25	25		25	ND	25	ND	1	ND	100	200	U 200	5	U 5	10	U 10	50	U 50
tert-Butylbenzene	5		50		50	62	U	62	62 U		62	U 62	62		62	ND	62	ND	2.5	ND	250	500	U 500	12	U 12	25	U 25	120	U 120
Tetrahydrofuran	50		NA		NA	NA		NA	NA	NA	NA	NA NA	NA		NA	ND	250	ND	10	NA	NA	NA	NA 150	NA	3.8	NA	NA NA	NA	NA
Toluene	5		15		15	19	U	19	19 U		19	U 19	19		19	ND	19	ND	0.75	ND	75	150	U 150	3.8	U 3.8	7.5	U 7.5	38	U 38
trans-1,3-Dichloropropene	0.4		10		10	12	U	12	12 U		12	U 12	12		12	ND	12	ND	0.5	ND	50	100	U 100	2.5	U 2.5	5	0 5	25	U 25
trans-1,4-Dichloro-2-butene	5		50		50	62	U	62	62 U		62	U 62	62	U	62	ND	62	ND	2.5	NA	NA	500	U 500	12	U 12	25	U 2.5	120	U 120
Trichlorofluoromethane	5		50		50	62	U	62	62 U		62	U 62	62	U	62	ND	62	ND	2.5	ND	250	500	U 500	12	U 12	25	U 25	120	U 120
Vinyl acetate			100	U	100	120	U	120	120 U	120	120	U 120	120	U	120	ND	120	ND	5	ND	5 <mark>0</mark> 0	1000	U 1000	25	U 25	50	U 50	250	U 250

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York			-		-		-					-		-				-				-					
LOCATION	SGC	Value	N	IW-8A	N	IW-8A		plicate W-8A	P	/W-8A	i.	M	N-8A	MW	-8B	Duplic MW-8		MW-	8B	MW-8	В	MV	V-8B	MW	/-8B	MW-	8B
Matrix	S90.		Grou	undwater	Gro	undwater	Grou	Indwater	Gro	undwa	ater	Grou	ndwater	Groun	dwater	Ground	water	Ground	water	Groundw	vater	Grour	ndwater	Groun	dwater	Ground	lwater
SAMPLING DATE	JEC 1	Guidance	4/2	20/2011	5/1	6/2011	5/1	6/2011	5/	<mark>31/201</mark>	1	6/2	1/2011	10/24	/2007	10/25/2	2007	11/24/2	2008	4/29/20)10	6/16	/2010	8/9/	2010	12/14/2	2010
Units	NYSDI	Gu		ug/l		ug/l		ug/l		ug/l			ug/l	u	g/l	ug/l	I	ug/	1	ug/l		L	ıg/l	u	g/l	ug/	/I
PARAMETER			Results	Q RL	Results	Q RL	Results	Q RL	Result	s Q	RL	Results	Q RL	Results	Q RL	Results (Q RL	Results C	ג RL	Results Q	RL	Results	Q RL	Results	Q RL	Results (Q RL
Dissolved Gases by GC																				•							
Ethane			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	2.04	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene			0.97	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U	0.5	0.5	U 0.5	1.85	0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	3.83	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	69,000	600	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions by Ion Chromatography																											
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	170,000	2,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000		22000	10000	24000	10000	25000	1000	0 26000		10000	25000	10000	37,000	1,000	NA	NA	NA	NA	33000	10000	35000	10000	34000	10000	19000	10000
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	ND	150	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen, Nitrate/Nitrite	10,000		1500	100	1500	100	1500	100			100	1200	100	ND	100	NA	NA	NA	NA	2200	100	6400	100	1300	100	390	100
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	16	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	ND	100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	ND	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	4,500	2,000	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			2000	1000	1900	U 1000	2000	U 1000		UJ	1000	2000	1000	NA	NA	NA	NA	NA	NA	1100 U	500	1200	U 1200	1300	U 500	4000	2000
Iron, Ferrous			500	UJ 500	500	U 500	500	UJ 500	500	UJ	500	500	UJ 500	ND	500	NA	NA	NA	NA	NA	NA	500	UJ 500	500	UJ 500	500 L	J 500
Hardness			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	850,000	660	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferric Iron			500	UJ 500	500	U 500	500	UJ 500	500	UJ	500	500	UJ 500	87,000	500	NA	NA	NA	NA	NA	NA	500	UJ 500	5 0 0	UJ 500	54000	500
Total Metals		-										-															
Antimony, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	300		80	50	50	50	60	50	50	U	50	70	J 50	NA	NA	NA	NA	15000	50	130	50	60	50	60	50	54000	50
Lead, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	99	10	NA	NA	NA	NA	NA	NA
Mercury, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York									-			_					_						_			_		
LOCATION	SGC	au	м	IW-81	В	M	W-8	В	м	W-8E	3		MW-8E	3	MW	-9B		MW	-9B		MW	-9C		MW	-9C		MW	V-1
Matrix	NYSDEC TOGS	e Value	Grou	Indw	ater	Grou	Indw	/ater	Grou	ndw	ater	Gro	oundw	ater	Groun	dwater	r	Ground	dwat	er	Groun	dwater	r	Ground	dwater	T	Groun	ndv
SAMPLING DATE	DECT	Guidance	4/2	21/20	11	5/1	6/20	11	5/3	1/20 ⁻	11	6,	/21/20 ⁻	11	10/23	/2007		11/24	/2008	3	10/23	/2007		11/24/	/2008	T	9/14	/20
Units	NYSE	Gu		ug/l			ug/l			ug/l			ug/l		u	g/l		uç	g/l		Uį	g/l		ug	g/l		U	l/g
PARAMETER			Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	QR	2L	Results	Q	RL	Results	QR	L	Results	Q RI		Results	Q
Dissolved Organic Carbon			NA		NA	NA		NA	NA		NA	NA		NA	NA	N	A	NA		NA	NA	N	А	NA	N/	A I	NA	Γ
Iron, Ferrous			500	U	500	60		500	500	UJ	500	500	UJ	500	NA	l N	A	NA		NA	NA	l I N	A	NA	N/	A	NA	
Primary Constituents of Concern	VOCs by G	SC/MS (8								1																		-
1,1-Dichloroethene	5		10	U	10	10	ΤU	10	10	ΙU	10	10	U	10	ND	0	5	ND		0.5	ND	0	5	ND	0.	5	ND	Г
cis-1,2-Dichloroethene	5		950	Ŭ	10	450	ľ	10	490	ľ	10	NA	Ŭ	NA	NA	N		NA		NA	NA	N		NA	N/		NA	
cis-1,2-Dichloroethene	5		NA		NA	NA		NA	NA		NA	600		10	8.9	0		0.9		0.5	42	0		20	0.		1.8	
Tetrachloroethene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0		ND		0.5	ND	0		ND	0.		ND	┢
trans-1,2-Dichloroethene	5		15	U	15	15	Ū	15	15	Ū	15	15	U	15	NA	N		NA		NA	NA	N		NA	N		NA	
trans-1,2-Dichloroethene	5		NA		NA	NA		NA	NA		NA	NA	-	NA	ND	0.		ND).75	ND	0.		ND	0.7		ND	
Trichloroethene	5		16		10	7.2	J	10	8.4	J	10	9.3	J	10	ND	0		ND		0.5	0.69	0		ND	0.		ND	
Vinyl chloride	2		20	U	20	20	U	20	20	U	20	20	Ŭ	20	ND		1	ND		1	ND		1	ND	1		ND	┢
Other VOCs by GC/MS (8260B)				Ū	20	20		20		-	20			20	110		<u> </u>						<u> </u>		·	_		-
1,1,1,2-Tetrachloroethane	5	1	10	U	10	10	ΙU	10	10	U	10	10	U	10	ND	0	5	ND		0.5	ND	0	5	ND	0.	5	ND	Т
1,1,1,Trichloroethane	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0		ND		0.5	ND	0		ND	0.		ND	┢
1,1,2,2-Tetrachloroethane	5		10	U	10	10	Ιŭ	10	10	Ιŭ	10	10	U	10	ND	0		ND		0.5	ND	0		ND	0.		ND	
1,1,2-Trichloroethane	1		15	U	15	15	Ιŭ	15	15	U	15	15	U	15	ND	0.		ND		0.0 0.75	ND	0.		ND	0.7		ND	
1,1-Dichloroethane	5		15	U	15	15	U	15	15	Ιŭ	15	15	U	15	ND		75	ND).75	ND	0.		ND	0.7		ND	
1,1-Dichloropropene	5		50	U	50	50	U	50	50	Ū	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	┢
1,2,3-Trichlorobenzene	5		50	UJ	50	50	U	50	50	Ιŭ	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	
1,2,3-Trichloropropane	0.04		100	U	100	100	Ιŭ	100	100	U	100	100	Ŭ	100	ND			ND		5	ND			ND	5		ND	
1,2,4,5-Tetramethylbenzene	0.01		40	U	40	40	Ū	40	40	Ū	40	40	Ŭ	40	NA	N		ND		2	NA	N		ND	2		NA	
1,2,4-Trichlorobenzene	5		50	UJ	50	50	U	50	50	U	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	┢
1,2,4-Trimethylbenzene	5		50	U	50	50	U	50	50	Ū	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	┢
1,2-Dibromo-3-chloropropane	0.04		50	Ū	50	50	Ū	50	50	Ū	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	
1,2-Dibromoethane	5		40	U	40	40	Ū	40	40	Ū	40	40	Ŭ	40	ND		2	ND		2	ND		2	ND	2		ND	
1,2-Dichlorobenzene	3		50	U	50	50	U	50	50	Ū	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	t
1,2-Dichloroethane	0.6		10	U	10	7.4	J	10	10	Ū	10	10	U	10	ND		.5	ND		0.5	ND	0		ND	0.		ND	┢
1,2-Dichloropropane	1		35	U	35	35	U	35	35	Ū	35	35	U	35	ND	1		ND		1.8	ND	1		ND	1.0		ND	
1,3,5-Trimethylbenzene	5		50	U	50	50	Ū	50	50	Ū	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	
1,3-Dichlorobenzene	3		50	U	50	50	U	50	50	U	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	
1,3-Dichloropropane	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	t
1,4-Dichlorobenzene	3		50	U	50	50	U	50	50	U	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	
1,4-Dichlorobutane			NA		NA	NA		NA	NA		NA	NA		NA	ND		5	NA		NA	ND			NA	N/		ND	
1,4-Diethylbenzene			40	U	40	40	U	40	40	U	40	40	U	40	NA	N		ND		2	NA	N N		ND	2		NA	
2,2-Dichloropropane	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2		ND		2.5	ND	2		ND	2.		ND	t
2-Butanone	50	1	100	U	100	100	U	100	100	U	100	100	U	100	NA	N		NA		NA	NA	N		NA	N/		NA	t
2-Butanone	50		NA		NA	NA		NA	NA		NA	NA		NA	ND		5	ND		5	ND		5	ND	5		ND	1
2-Hexanone	50		100	U	100	100	U	100	100	U	100	100	U	100	ND		5	ND		5	ND			ND	5		ND	1
4-Ethyltoluene			40	U	40	40	U	40	40	U	40	40	U	40	NA	N		ND		2	NA	N		ND	2	_	NA	t
4-Methyl-2-pentanone			100	U	100	100	U	100	100	U	100	100	U	100	ND		5	ND	+	5	ND		5	ND	5	_	ND	t
Acetone	50		100	U	100	100	U	100	100	U	100	100	U	100	ND		5	11		5	ND		5	ND	5		ND	1
Acrolein	5		NA		NA	NA		NA	NA		NA	NA		NA	NA	N	Α	NA		NA	NA	N	Α	NA	N/	4	ND	
Acrolein	5		NA		NA	NA		NA	NA		NA	NA		NA	NA	N	A	NA		NA	NA	N	A	NA	N/	Ą	ND	1

/-10 MW-10 MW-10 MW-10 dwater Groundwater Groundwater Groundwater /2007 10/25/2007 11/24/2008 4/30/2010 g/l ug/l ug/l ug/l Q RL Results Q RL Results Q RL Results Q RL NA 0.5 ND ND 0.5 0.5 0.5 0.5 NA NA NA NA NA NA NA 0.5 0.5 2.2 0.5 0.5 1.4 47 0.5 0.5 0.5 0.5 ND 0.5 ND NA NA NA NA NA NA NA 0.75 0.75 J 0.75 0.75 ND 0.75 ND 0.95 0.5 0.5 0.5 0.5 ND ND ND ND 1 1 1 1 1 ND U 0.5 0.5 0.5 ND 0.5 0.5 0.5 0.5 ND 0.5 ND 0.5 0.5 0.5 0.5 ND 0.5 0.5 0.5 ND 0.75 0.75 0.75 J 0.75 0.75 ND ND 0.75 0.75 ND 0.75 0.75 J 0.75 ND 2.5 2.5 2.5 2.5 ND 2.5 ND 2.5 2.5 2.5 2.5 ND 2.5 ND 5 ND 5 ND 5 5 5 NA NA 2 2 2 NA ND 2.5 2.5 2.5 2.5 U 2.5 ND ND 2.5 ND 2.5 ND 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 ND ND 2 2 2 2 ND 2 ND 2.5 ND 2.5 ND 2.5 2.5 J 2.5 0.5 0.5 0.5 ND 0.5 ND 0.5 1.8 1.8 1.8 ND 1.8 1.8 ND 2.5 2.5 2.5 2.5 2.5 ND ND 2.5 2.5 ND 2.5 ND 2.5 2.5 2.5 2.5 2.5 2.5 ND 2.5 ND 2.5 2.5 2.5 2.5 ND 2.5 ND 5 5 NA NA NA ND NA 2 NA NA NA ND 2 2 2.5 2.5 2.5 ND 2.5 2.5 ND NA NA NA NA NA 5 5 5 NA 5 ND 5 ND NA 5 5 5 5 ND ND 5 2 2 NA NA NA ND 2 5 ND 5 ND 5 5 5 ND 5 5 5 ND 5 5

12

NA

NA

NA

NA

NA

KLEINFELDER

NA

Orangeburg, New York

Orangeburg, New York						-						-					-		_						
LOCATION	SGC	en	м	W-8	В	М	W-8	В	м	W-8E	3		MW-81	3	MW-	9B	MW	-9B		MW-9	9C	MW	-9C	MV	N-1
Matrix	TOGS	se Value	Grou	Indw	/ater	Grou	Indw	ater	Grou	Indw	ater	Gro	oundw	ater	Ground	lwater	Ground	lwater	Gro	oundv	water	Groun	dwater	Groun	ndw
SAMPLING DATE	DEC T	Guidance	4/2	1/20	11	5/1	<mark>6/20</mark>	11	5/3	<mark>1/20</mark>	11	6,	/21/20	11	10/23/	2007	11/24/	2008	1()/23/2	2007	11/24	/2008	9/14	1/20
Units	NYSDEC .	Gu		ug/l			ug/l			ug/l			ug/l		ug	/I	ug	ı/I		ug/l		uç	j/l	ι	Jg/l
PARAMETER	_		Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	Q	RL	Results	Q RL	Results	QR	Resu	Its (ג RL	Results	Q RL	Results	Q
Acrylonitrile	5		100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5	ND)	5	ND	5	ND	
Benzene	1		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Bromobenzene	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
Bromochloromethane	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
Bromodichloromethane	50		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Bromoform	50		40	U	40	40	U	40	40	U	40	40	U	40	ND	2	ND	2	ND)	2	ND	2	ND	
Bromomethane	5		20	U	20	20	U	20	20	U	20	20	UJ	20	ND	1	ND	1	ND)	1	ND	1	ND	
Carbon disulfide			100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5	ND)	5	ND	5	ND	
Carbon tetrachloride	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Chlorobenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Chloroethane	5		20	U	20	20	U	20	20	U	20	20	U	20	ND	1	ND	1	ND)	1	ND	1	ND	
Chloroform	7		15	U	15	15	U	15	15	U	15	15	U	15	ND	0.75	ND	0.7	5 1.1		0.75	ND	0.75	ND	
Chloromethane	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
cis-1,3-Dichloropropene	0.4		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Dibromochloromethane	50		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Dibromomethane	5		100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5	ND)	5	ND	5	ND	
Dichlorodifluoromethane	5		100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5	ND)	5	ND	5	ND	
Ethyl ether			50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	NA	N	A ND)	2.5	NA	NA	ND	T
Ethyl methacrylate			NA		NA	NA		NA	NA		NA	NA		NA	ND	5	NA	N	A ND)	5	NA	NA	ND	
Ethylbenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Hexachlorobutadiene	0.5		12	U	12	12	U	12	12	U	12	12	U	12	ND	0.6	ND	0.	S ND)	0.6	ND	0.6	ND	
lodomethane	5		NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	NA	N	A NA		NA	NA	NA	ND	
Isopropylbenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Methyl tert butyl ether			20	U	20	20	UJ	20	20	U	20	20	U	20	ND	1	ND	1	ND)	1	ND	1	ND	
Methylene chloride	5		100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5	ND)	5	ND	5	ND	
n-Butylbenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
n-Propylbenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Naphthalene	10		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
o-Chlorotoluene	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
o-Xylene			20	U	20	20	U	20	20	U	20	20	U	20	ND	1	ND	1	ND)	1	ND	1	ND	
p-Chlorotoluene	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
p-lsopropyltoluene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
p/m-Xylene			20	U	20	20	U	20	20	U	20	20	U	20	ND	1	ND	1	ND)	1	ND	1	ND	
sec-Butylbenzene	5		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND)	0.5	ND	0.5	ND	
Styrene	5		20	U	20	20	U	20	20	U	20	20	U	20	ND	1	ND	1	ND)	1	ND	1	ND	
tert-Butylbenzene	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 ND)	2.5	ND	2.5	ND	
Tetrahydrofuran	50		NA		NA	NA		NA	NA		NA	NA		NA	ND	10	NA	N	A ND		10	NA	NA	ND	
Toluene	5		15	U	15	15	U	15	15	U	15	15	U	15	ND	0.75	ND	0.7	5 ND		0.75	ND	0.75	ND	1
trans-1,3-Dichloropropene	0.4		10	U	10	10	U	10	10	U	10	10	U	10	ND	0.5	ND	0.	5 ND		0.5	ND	0.5	ND	
trans-1,4-Dichloro-2-butene	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	NA	N			2.5	NA	NA	ND	\uparrow
Trichlorofluoromethane	5		50	U	50	50	U	50	50	U	50	50	U	50	ND	2.5	ND	2.	5 NC		2.5	ND	2.5	ND	
Vinyl acetate			100	U	100	100	U	100	100	U	100	100	U	100	ND	5	ND	5)	5	ND	5	ND	
	-	-	-	•	•	-	•	•	-	•	-	-			-		-								<u> </u>

-10 MW-10 MW-10 MW-10 lwater Groundwater Groundwater Groundwater 2007 10/25/2007 11/24/2008 4/30/2010 1/1 ug/l ug/l ug/l Q RL Results Q RL Results Q RL Results Q RL ND ND 5 5 5 5 5 0.5 0.5 0.5 0.5 ND ND 0.5 2.5 2.5 2.5 2.5 ND 2.5 ND 2.5 ND 2.5 ND 2.5 2.5 2.5 0.5 0.5 0.5 ND 0.5 ND 0.5 2 2 ND 2 2 ND 2 ND 1 ND 1 1 1 1 5 ND 5 ND 5 5 5 0.5 0.5 0.5 0.5 ND ND 0.5 0.5 0.5 ND 0.5 0.5 U 0.5 ND ND ND 1 1 1 1 1 0.75 0.75 0.75 0.75 ND ND 0.75 2.5 2.5 ND 2.5 2.5 2.5 ND 0.5 NA NA ND 0.5 0.5 J 0.5 0.5 0.5 0.5 0.5 0.5 ND ND 5 5 5 ND 5 ND 5 5 ND 5 ND 5 5 5 2.5 2.5 2.5 ND NA NA 2.5 5 ND 5 NA NA NA NA 0.5 0.5 0.5 0.5 0.5 ND ND 0.6 0.6 ND 0.6 0.6 0.6 ND 5 NA NA NA NA NA NA 0.5 ND 0.5 ND 0.5 0.5 U 0.5 1 ND 1 ND 1 1 1 ND 5 5 5 ND 5 5 0.5 ND 0.5 0.5 0.5 ND J 0.5 0.5 0.5 ND 0.5 ND 0.5 0.5 2.5 2.5 2.5 2.5 ND 2.5 ND 2.5 2.5 2.5 2.5 2.5 ND ND 1 ND 1 ND 1 1 1 2.5 2.5 2.5 2.5 ND ND J 2.5 0.5 0.5 0.5 0.5 0.5 ND ND ND ND 1 1 1 1 1 0.5 0.5 ND 0.5 ND 0.5 J 0.5 ND ND 1 1 1 1 1 2.5 ND 2.5 ND 2.5 2.5 2.5 10 ND 10 NA NA NA NA 0.75 0.75 0.75 0.75 0.75 ND ND 0.5 ND 0.5 ND 0.5 0.5 0.5 2.5 2.5 2.5 NA 2.5 ND NA 2.5 2.5 ND 2.5 ND 2.5 2.5 5 ND 5 ND 5 5 5

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York			1									-					_									-				-	
LOCATION	SGC	Value	M	1W-8E	В	Μ	IW-8E	3	M	N-8B			MW-8E	3	MW-	-9B		MW-9B		MW-9	C	MW	/-9C	MW	/-10	MV	V-10	M	V-10	MW-	-10
Matrix	TOGS	se Va	Grou	undw	ater	Grou	Indwa	ater	Grou	ndwa	ater	Gr	oundw	ater	Ground	lwater		Groundwa	ter	Groundv	vater	Groun	dwater	Groun	dwater	Grour	dwater	Grou	ndwater	Ground	lwater
SAMPLING DATE	DEC T	Guidance ¹	4/2	21/20 ⁻	11	5/1	6/201	11	5/3	1/201	1	6	5/21/20 [/]	11	10/23/	2007		11/24/200	8	10/23/2	007	11/24	/2008	9/14/	2007	10/2	5/2007	11/2	4/2008	4/30/2	2010
Units	NYSDEC	Gu		ug/l			ug/l			ug/l			ug/l		ug	ı/I		ug/l		ug/l		u	g/l	uį	g/l	ι	ıg/l	l	ıg/l	ug	/I
PARAMETER			Results	Q	RL	Results	Q	RL	Results	Q	RL	Result	s Q	RL	Results	Q RL	. R	esults Q	RL	Results C	ג RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL
Dissolved Gases by GC																															
Ethane			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Ethene			0.5	U	0.5	0.5	U	0.5	0.323	J	0.5	0.414	J	0.5	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions by lon Chromatography																															
Chloride	250,000		NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfate	250,000		30000		10000	30000		10000	31000		10000			10000	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Nitrogen, Ammonia	2,000		NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Nitrogen, Nitrate/Nitrite	10,000		1900	U	100	2100		100	5000		100	2000		100	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phosphorus, Orthophosphate			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Sulfide	50		NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Sulfite	200		NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Dissolved Organic Carbon			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Total Organic Carbon			2000		1000	1600	U	1000	1600	U	1000	1900		1000	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Iron, Ferrous			500	U	500	60		500	500	UJ	500	500	UJ	500	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Hardness			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Ferric Iron			500	U	500	500	U	500	500	UJ	500	500	UJ	500	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals						-												<u> </u>								-		-			
Antimony, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Barium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Beryllium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Cadmium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Chromium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Copper, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	300		50	U	50	100		50	50	U	50	30	J	50	NA	NA	ι	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Lead, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	۱	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	۱.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Total			NA		NA	NA		NA	NA		NA	NA		NA	NA	NA	\	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				1													-			,											

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, and L1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

KLEINFELDER Bright People. Right Solutions.

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York		_	_				_		_										_					
LOCATION	TOGS SGC	au	MW-1	1B	MW-1	1B	MW	-12C	MW-	13A	MW-1	3A	MW	-14A	MW -1	I4A	MW	-14A	MW	-15A	MW	-15A	MW-1	15A
Matrix	OGS	e Va	Ground	water	Ground	water	Groun	dwater	Ground	lwater	Ground	water	Groun	dwater	Ground	water	Groun	dwater	Groun	dwater	Groun	dwater	Ground	lwater
SAMPLING DATE		Guidance Value	10/24/2	2007	11/25/2	2008	11/25	/2008	10/24/	2007	4/30/2	010	10/24	/2007	11/24/2	2008	4/30/	/2010	10/24	/2007	11/24	/2008	4/30/2	2010
Units	NYSDEC	Gui	ug/	1	ug,	1	u	g/l	ug	/I	ug/	1	u	g/l	ug	/I	U	g/l	u	g/l	u	g/l	ug	j/l
PARAMETER			Results (Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Primary Constituents of Concern	VOCs by G	C/MS (8			• •		•		• •	-			•		• · · · ·						•		·	
1,1-Dichloroethene	5	È	ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	5		ND	1	ND	0.5	11	0.5	ND	1	0.5	U 1	3.7	0.5	1.5	0.5	4.8	0.5	16	0.5	11	0.5	7	0.5
Tetrachloroethene	5		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	5		ND	0.75	ND	0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75
Trichloroethene	5		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	0.68	0.5	0.91	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
Vinyl chloride	2		ND	1	ND	1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1
Other VOCs by GC/MS (8260B)									· · · · ·															
1,1,1,2-Tetrachloroethane	5		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
1,1,1-Trichloroethane	5		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
1,1,2,2-Tetrachloroethane	5		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
1,1,2-Trichloroethane	1		ND	0.75	ND	0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75
1,1-Dichloroethane	5		ND	0.75	ND	0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75
1,1-Dichloropropene	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2,3-Trichlorobenzene	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2,3-Trichloropropane	0.04		ND	5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
1,2,4,5-Tetramethylbenzene			NA	NA	ND	2	ND	2	NA	NA	2	U 2	NA	NA	ND	2	2	U 2	NA	NA	ND	2	2	U 2
1,2,4-Trichlorobenzene	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2,4-Trimethylbenzene	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2-Dibromoethane	5		ND	2	ND	2	ND	2	ND	2	2	U 2	ND	2	ND	2	2	U 2	ND	2	ND	2	2	U 2
1,2-Dichlorobenzene	3		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,2-Dichloroethane	0.6		ND	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5
1,2-Dichloropropane	1		ND	1.8	ND	1.8	ND	1.8	ND	1.8	1.8	U 1.8	ND	1.8	ND	1.8	1.8	U 1.8		1.8	ND	1.8	1.8	U 1.8
1,3,5-Trimethylbenzene	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
1,3-Dichlorobenzene	3		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,3-Dichloropropane	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,4-Dichlorobenzene	3		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5
1,4-Dichlorobutane			ND	5	NA	NA	NA	NA	ND	5	NA	NA	ND	5	NA	NA	NA	NA	ND	5	NA	NA	NA	NA
1,4-Diethylbenzene			NA	NA	ND	2	ND	2	NA	NA	2	0 2	NA	NA	ND	2	2	0 2	NA	NA	ND	2	2	0 2
2,2-Dichloropropane	5		ND	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
2-Butanone	50		NA	NA	NA	NA	230	200	NA	NA	5	U 5	NA	NA	NA	NA	5	U 5	NA	NA	NA	NA	5	U 5
2-Butanone	50		ND	5	ND	5	>100	5	ND	5	NA	NA	ND	5	ND	5	NA	NA E	ND	5	ND	5	NA	NA
2-Hexanone	50		ND	5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
4-Ethyltoluene			NA	NA	ND	2	ND	2	NA	NA	2	U 2	NA	NA	ND	2	2	U 2	NA	NA	ND	2	2	U 2
4-Methyl-2-pentanone	ED		ND	5	ND	5	ND 20	5	ND	5	5		ND 16	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
Acetone	50 5		83	5	ND	5	20 NA	5	41 NA	5	5		16 NA	5	ND NA	5	8.2		18 NA	5		5	5	U 5
Acrolein	5	I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Orangeburg, New York	-	_	-		-				_				-		-				_					
LOCATION	SGC	ne	MW-1	1B	MW-	11B	MW-	12C	MW	-13A	MW	-13A	MW-1	14A	MW-	14A	MW	-1 4A	MV	V-15A	MW	-15A	MW-	15A
Matrix	TOGS	Guidance Value	Groundy	vater	Groun	dwater	Groun	dwater	Groun	dwater	Groun	dwater	Ground	water	Ground	dwater	Groun	dwater	Grou	ndwater	Groun	dwater	Ground	dwater
SAMPLING DATE	EC 1	idano	10/24/2	007	11/25	/2008	11/25	/2008	10/24	/2007	4/30	/2010	10/24/2	2007	11/24/	/2008	4/30/	/2010	10/2	24/2007	11/24	1/2008	4/30/2	2010
Units	NYSDEC	Gu	ug/l		uç	g/l	uç	g/l	u	g/l	u	g/l	ug/	/I	ug	j/l	u	g/l	l	ug/l	u	g/l	ug	J/I
PARAMETER	1		Results C	RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL
Acrylonitrile	5		<5	5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
Benzene	1		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Bromobenzene	5		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
Bromochloromethane	5		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
Bromodichloromethane	50		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Bromoform	50		<2	2	ND	2	ND	2	ND	2	2	U 2	ND	2	ND	2	2	U 2	ND	2	ND	2	2	U 2
Bromomethane	5		<1	1	ND	1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1
Carbon disulfide			<5	5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
Carbon tetrachloride	5		< 0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Chlorobenzene	5		< 0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Chloroethane	5		<1	1	ND	1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1	ND	1	ND	1	1	U 1
Chloroform	7		12	0.75	ND	0.75	ND	0.75	ND	0.75	0.75	U 0.75	1.3	0.75	ND	0.75	0.75	U 0.75		0.75	ND	0.75	2.7	0.75
Chloromethane	5		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
cis-1,3-Dichloropropene	0.4		< 0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Dibromochloromethane	50		< 0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Dibromomethane	5		5 1	J 5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
Dichlorodifluoromethane	5		5 1	J 5	ND	5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5	ND	5	ND	5	5	U 5
Ethyl ether			2.5 L	J 2.5	NA	NA	NA	NA	ND	2.5	2.5	U 2.5	ND	2.5	NA	NA	2.5	U 2.5		2.5	NA	NA	2.5	U 2.5
Ethyl methacrylate			5 1	J 5	NA	NA	NA	NA	ND	5	NA	NA NA	ND	5	NA	NA	NA	NA	ND	5	NA	NA	NA	NA
Ethylbenzene	5		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Hexachlorobutadiene	0.5		< 0.6	0.6	ND	0.6	ND	0.6	ND	0.6	0.6	U 0.6	ND	0.6	ND	0.6	0.6	U 0.6		0.6	ND	0.6	0.6	U 0.6
lodomethane	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	5		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Methyl tert butyl ether	Ŭ		<1	1	ND	1	ND	1	ND	1	1		ND	1	ND	1	1		ND	1	ND	1	1	
Methylene chloride	5		<5	5	ND	5	ND	5	ND	5	5	U 5	5.5	5	ND	5	5		ND	5	ND	5	5	U 5
n-Butylbenzene	5		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
n-Propylbenzene	5		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Naphthalene	10		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
o-Chlorotoluene	5	1	<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
o-Xylene	Ĭ	1	<1	1	ND	1	ND		ND	1	1		ND	1	ND	1	1		ND	1	ND		1	
p-Chlorotoluene	5		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
p-Isopropyltoluene	5		<0.5	0.5	ND	0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
p/m-Xylene			<1	1	ND	1	ND		ND	1	1		ND	1	ND	1	1		ND		ND		1	
sec-Butylbenzene	5		< 0.5	0.5		0.5	ND	0.5	ND	0.5	0.5	U 0.5	ND	0.5	ND	0.5	0.5	U 0.5		0.5	ND	0.5	0.5	U 0.5
Styrene	5		<1	1	ND	1	ND	1	ND	1	1		ND	1	ND	1	1		ND	1	ND	1	1	
tert-Butylbenzene	5		<2.5	2.5	ND	2.5	ND	2.5	ND	2.5	2.5	U 2.5	ND	2.5	ND	2.5	2.5	U 2.5		2.5	ND	2.5	2.5	U 2.5
Tetrahydrofuran	50	1	<10	10	NA	NA	NA	NA	ND	10	NA	NA	ND	10	NA	NA	NA	NA	ND	10	NA	NA	NA	NA
Toluene	5		<0.75	0.75		0.75	ND	0.75	ND	0.75	0.75	U 0.75	ND	0.75	ND	0.75	0.75	U 0.75		0.75	ND	0.75	0.75	U 0.75
trans-1,3-Dichloropropene	0.4		<0.75		ND	0.75	ND	0.75	ND	0.75	0.75	U 0.5	ND	0.75	ND		0.75	U 0.5		0.75	ND	0.75	0.75	
trans-1,4-Dichloro-2-butene	0.4 5		<0.5	0.5	NA	NA	ND	NA	ND	2.5	2.5	U 2.5	ND	2.5	ND	0.5 NA	2.5	U 2.5		2.5	NA	NA	0.5 2.5	U 0.5 U 2.5
Trichlorofluoromethane	5 5	1	<2.5 <2.5	2.5	NA ND	NA 2.5	NA ND	NA 2.5		2.5	2.5 2.5	U 2.5	ND	2.5			2.5 2.5			2.5	NA ND	2.5	2.5 2.5	U 2.5 U 2.5
	5	1	<2.5 <5	2.5	ND ND	2.5	ND	2.5	ND ND	2.3 5	2.0 E	U 2.5	ND	2.5	ND ND	2.5 5	2.0 F	U 2.5 U 5	ND ND	2.5	ND	5	2.5 5	U 2.5 U 5
Vinyl acetate			~0	0	NU	0	IND	0	ND	5	0	0 0	ND	0	IND	U	5	0 0	ND	J	ND	Ű	J	0 0

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York																			_		-			
LOCATION	SGC	lue	MW-11	IB	MW-1	1B	MW-′	2C	MW-	13A	MW-1	3A	MW-	14A	MW-1	4A	MW-1	14A	MV	/ -15A	MW	-15A	MW-1	15A
Matrix	TOGS	Guidance Value	Groundw	/ater	Ground	water	Ground	water	Ground	dwater	Ground	water	Groun	dwater	Ground	water	Ground	lwater	Grou	ndwater	Groun	dwater	Ground	water
SAMPLING DATE	DEC	idan	10/24/20	007	11/25/2	2008	11/25/	2008	10/24	/2007	4/30/2	010	10/24	/2007	11/24/2	8008	4/30/2	2010	10/2	4/2007	11/24	1/2008	4/30/20	:010
Units	NYSDEC	Gu	ug/l		ug/	l	ug	1	uç	g/l	ug/		uç	g/l	ug/		ug	/I		ug/l	u	g/l	ug/l	/I
PARAMETER			Results Q	RL	Results (ג RL	Results	Q RL	Results	Q RL	Results (ג RL	Results	Q RL	Results	ג RL	Results	Q RL	Results	Q RL	Results	Q RL	Results C	Q RL
Dissolved Gases by GC																								
Ethane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ethene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Anions by lon Chromatography																								
	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Hardness			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Ferric Iron			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals																					_			
Antimony, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Beryllium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Total	300		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Orangeburg, New York		-	-						-				-						-		-					
LOCATION	SGC	an	Field B	Blank	Field	Blank	Field	Blank	Field	Blank	Field	l Blank	Field	Blank	Field Bla	ank	Field E	Blank	Field	d Blank	Equipme	ent Blank	Equipme	ent Blank	Equipment	t Blank
Matrix	TOGS	e Value	wate	er	wa	ater	w	ater	wa	ater	w	ater	wa	ter	water		wat	er	v	/ater	wa	ter	wa	ater	wate	r
SAMPLING DATE		Guidance	9/14/2	2007	11/2	5/2008	6/16	6/2010	8/9/	/2010	12/1	4/2010	4/21/	/2011	5/16/202	11	5/31/2	2011	6/2	2/2011	9/14/	/2007	10/25	5/2007	10/25/2	007
Units	NYSDEC	Gu	ug/	/I	u	ıg/l	ι	ıg/l	U	ıg/l		ug/l	u	g/l	ug/l		ug	/I		ug/l	u	g/l	u	g/l	ug/l	
PARAMETER			Results C	ג RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results (Q RL	Results Q	RL	Results	Q RL	Result	Q RL	Results	Q RL	Results	Q RL	Results Q	RL
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	500	UJ 500	500	UJ 500	500	U 500	500 l	J 500	500 U	500	40	J 500	500	UJ 500	NA	NA	NA	NA	NA	NA
Primary Constituents of Concern	NOCs by C	GC/MS (8																								1
1,1-Dichloroethene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 05	0.5 l	J 05	0.5 U	0.5	0.5	J 05	0.5	U 0.5	ND	05	ND	0.5	ND	0.5
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.5	J 0.5	0.5 U	0.5	0.5	U 0.5	NA	NA	NA	NA	NA	NA	NA	NA
cis-1,2-Dichloroethene	5		ND	1	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	NA	NA	NA	NA	NA	NA	0.5	U 0.5	ND	1	ND	1	ND	1
Tetrachloroethene	5	1	ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.53	0.5	0.5 U	0.5	0.5	J 0.5	0.5	U 0.5	ND	0.5	ND	0.5	ND	0.5
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.75	J 0.75		0.75	0.75	J 0.75		U 0.75		NA	NA	NA	NA	NA
trans-1,2-Dichloroethene	5		ND	0.75	ND	0.75	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75	NA	NA	NA	-	NA	NA	NA	NA	ND	0.75	ND	0.75	ND	0.75
Trichloroethene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.5 U	J 0.5	0.5 U	0.5	0.5	U 0.5	0.5	U 0.5	ND	0.5	ND	0.5	ND	0.5
Vinyl chloride	2		ND	1	ND	1	1	U 1	1	U 1	1	U 1	1 1	J 1	1 U	1	1 1	J 1	1	U 1	ND	1	ND	1	ND	1
Other VOCs by GC/MS (8260B)												1-1 .														
1,1,1,2-Tetrachloroethane	5	T	ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 05	0.5 l	1 05	0.5 U	0.5	0.5	J 05	0.5	U 0.5	ND	0.5	ND	0.5	ND	0.5
1,1,1-Trichloroethane	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.5 U	J 0.5	0.5 U	0.5	0.5	J 0.5	0.5	U 0.5	ND	0.5	ND	0.5	ND	0.5
1,1,2,2-Tetrachloroethane	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.5 U	0.5	0.5	U 0.5	0.5	U 0.5	ND	0.5	ND	0.5	ND	0.5
1,1,2-Trichloroethane	1		ND	0.75	ND	0.75	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75		U 0.75		0.75	0.75	J 0.75		U 0.75	ND	0.75	ND	0.75	ND	0.75
1,1-Dichloroethane	5		ND	0.75	ND	0.75	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75		J 0.75		0.75	0.75	U 0.75	0.75	U 0.75		0.75	ND	0.75	ND	0.75
1,1-Dichloropropene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 U	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2,3-Trichlorobenzene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 L	JJ 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2,3-Trichloropropane	0.04		ND	5	ND	5	5	U 5	5	U 5	5	U 5	5 I	J 5	5 U	5	5	J 5	5	U 5	ND	5	ND	5	ND	5
1,2,4,5-Tetramethylbenzene			NA	NA	ND	2	2	U 2	2	U 2	2	U 2	2 1	J 2	2 U	2	2	J 2	2	U 2	NA	NA	NA	NA	NA	NA
1,2,4-Trichlorobenzene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 L	JJ 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2,4-Trimethylbenzene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5	J 2.5		U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 L	J 2.5	2.5 U	2.5	2.5	J 2.5		U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2-Dibromoethane	5		ND	2	ND	2	2	U 2	2	U 2	2	U 2	2 1	J 2	2 U	2	2	J 2	2	U 2	ND	2	ND	2	ND	2
1,2-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,2-Dichloroethane	0.6	I	ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	0.5 l	J 0.5	0.5 U	0.5	0.5	J 0.5		U 0.5	ND	0.5	ND	0.5	ND	0.5
1,2-Dichloropropane	1	1	ND	1.8	ND	1.8	1.8	U 1.8	1.8	U 1.8	1.8	U 1.8	1.8 l	J 1.8	1.8 U	1.8	1.8	J 1.8	1.8	U 1.8	ND	1.8	ND	1.8	ND	1.8
1,3,5-Trimethylbenzene	5	1	ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,3-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 U	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,3-Dichloropropane	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,4-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5	J 2.5	2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
1,4-Dichlorobutane			ND	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	5	ND	5	ND	5
1,4-Diethylbenzene			NA	NA	ND	2	2	U 2	2	U 2	2	U 2	2 l	J 2	2 U	2	2	J 2	2	U 2	NA	NA	NA	NA	NA	NA
2,2-Dichloropropane	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5 l	J 2.5	2.5 U	2.5	2.5		2.5	U 2.5	ND	2.5	ND	2.5	ND	2.5
2-Butanone	50		NA	NA	NA	NA	5	U 5	5	U 5	5	U 5	5 l	J 5	5 U	5	5 1	J 5	5	U 5	NA	NA	NA	NA	NA	NA
2-Butanone	50		ND	5	ND	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	5	ND	5	ND	5
2-Hexanone	50		ND	5	ND	5	5	U 5	5	U 5	5	U 5	5 l	J 5	5 U	5	5 1	J 5		U 5	ND	5	ND	5	ND	5
4-Ethyltoluene			NA	NA	ND	2	2	U 2	2	U 2	2	U 2	2 l	J 2	2 U	2	2	J 2	2	U 2	NA	NA	NA	NA	NA	NA
4-Methyl-2-pentanone			ND	5	ND	5	5	U 5	5	U 5	5	U 5	5 เ	J 5	5 U	5	5 1	J 5	5	U 5	ND	5	ND	5	ND	5
Acetone	50		ND	5	ND	5	5	U 5	5	U 5	5	U 5	5 l	J 5	5 U	5	5	J 2	•	U 5	ND	5	ND	5	ND	5
Acrolein	5	I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

									I																		1	
LOCATION	SGC	Value	Field E	Blank	Field B	lank	Field	Blank	Fiel	d Blank	Fie	ld Blank	F	eld Blanl	k	Field B	Blank	Field	Blank		Field Bl	lank	Equipme	ent Blank	Equipmo	ent Blank	Equipme	ent Blank
Matrix	TOGS	ce Va	wat	ter	wate	er	wa	ter	v	/ater		water		water		wate	er	wa	ter		wate	er	wa	ter	Wa	ater	wa	ter
SAMPLING DATE	DEC	Guidance	9/14/2	2007	11/25/2	2008	6/16	/2010	8/9	9/2010	12	/14/2010		1/21/2011		5/16/2	2011	5/31/	2011		6/22/20	011	9/14/	2007	10/25	5/2007	10/25	/2007
Units	NYSI	Gu	ug	ı/I	ug/		u	g/l		ug/l		ug/l		ug/l		ug/	/I	u	g/l		ug/l		u	g/l	u	g/l	uç	g/l
PARAMETER			Results (Q RL	Results C	≀ RL	Results	Q RL	Results	QR	L Result	s Q R	L Resu	Its Q R	RL Re	sults Q	RL	Results	Q RI	. Resu	lt: Q	RL	Results	Q RL	Results	Q RL	Results	Q RL
Acrylonitrile	5		ND	5	ND	5	5	U 5	5	U	5 5	U 5	5 5	U	5	5 U	5	5	U 2	5	U	5	ND	5	ND	5	ND	5
Benzene	1		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0	5 0.5	U 0.	.5 0.8	i U 0	.5	0.5 U	0.5	0.5	U 0.2	2 0.5	U	0.5	ND	0.5	ND	0.5	ND	0.5
Bromobenzene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2	5 2.5	U 2.	.5 2.5	U 2	.5	2.5 U	2.5	2.5	U 2.	5 2.5	U	2.5	ND	2.5	ND	2.5	ND	2.5
Bromochloromethane	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2	5 2.5	U 2.	.5 2.5	U 2	.5	2.5 U	2.5	2.5	U 2.	5 2.5	U	2.5	ND	2.5	ND	2.5	ND	2.5
Bromodichloromethane	50		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.	5 0.5	U 0.	5 0.5		.5	1.4		0.5	U 0.	5 0.5	U	0.5	ND	0.5	ND	0.5	ND	0.5
Bromoform	50		ND	2	ND	2	2	U 2	2	U 2		U 2				2 U	2	2	U 2	2	U	2	ND	2	ND	2	ND	2
Bromomethane	5		ND	1	ND	1	1	U 1	1	U 1	1	U 1	1	U	1	1 U	1	1	U 1	1	UJ	1	ND	1	ND	1	ND	1
Carbon disulfide			ND	5	ND	5	5	U 5	5	U	5 5	U 5	5 5	U	5	5 U	5	5	U 5	5	U	5	ND	5	ND	5	ND	5
Carbon tetrachloride	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.		U 0.	.5 0.5		.5	0.5 U		0.5	U 0.		U	0.5	ND	0.5	ND	0.5	ND	0.5
Chlorobenzene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U	-		U 0.			0.5	ND	0.5	ND	0.5	ND	0.5
Chloroethane	5		ND	1	ND	1	1	U 1	1		1		1	U	1	1 UJ		1	U 1	1	U	1	ND	1	ND	1	ND	1
Chloroform	7		ND	0.75	ND	0.75	0.75	U 0.75	0.75	U 0.	75 0.75	U 0.7	75 0.7	5 U 0.	75	1.5		0.75	U 0.7	5 0.75	5 U	0.75	ND	0.75	ND	0.75	ND	0.75
Chloromethane	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2		U 2.				2.5 U	2.5	2.5	U 2.			2.5	ND	2.5	ND	2.5	ND	2.5
cis-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0.		U 0.				0.5 U	0.5	0.5	U 0.		_	0.5	ND	0.5	ND	0.5	ND	0.5
Dibromochloromethane	50		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U	0.5	0.5	U 0.			0.5	ND	0.5	ND	0.5	ND	0.5
Dibromomethane	5		ND	5	ND	5	5	U 5	5	U					5	5 U	5	5	U 5	5	U	5	ND	5	ND	5	ND	5
Dichlorodifluoromethane	5		ND	5	ND	5	5	U 5	5	U						5 U	5	5	U 5	5	U	5	ND	5	ND	5	ND	5
Ethyl ether	-		ND	2.5	NA	NA	2.5	U 25	2.5	U 2		U 2.				2.5 U	2.5	2.5	U 2.			2.5	ND	2.5	ND	2.5	ND	2.5
Ethyl methacrylate			ND	5	NA	NA	NA	NA	NA	N		N.				NA	NA	NA	N/		_	NA	ND	5	ND	5	ND	5
Ethylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U	0.5	0.5	U 0.			0.5	ND	0.5	ND	0.5	ND	0.5
Hexachlorobutadiene	0.5		ND	0.6	ND	0.6	0.6	U 0.6	0.6	U 0		U 0.				0.6 U	0.6	0.6	U 0.0			0.6	ND	0.6	ND	0.6	ND	0.6
lodomethane	5		NA	NA	NA	NA	NA	NA	NA	N		N				NA	NA	NA	NA			NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U	0.5	0.5	U 0.			0.5	ND	0.5	ND	0.5	ND	0.5
Methyl tert butyl ether	Ŭ		ND	1	ND	1	1	U 1	1		1		1	U	1	1 UJ		1		1	U	1	ND	1	ND	1	ND	1
Methylene chloride	5		9.6	0.5	ND	5	5	U 5	5	U E	5 5		5 5	U	5	5 U		5	U 5	5	Ū	5	8.4	0.5	ND	13	14	5
n-Butylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U		0.5	U 0.		-	0.5	ND	0.5	ND	0.5	ND	0.5
n-Propylbenzene	5		ND	0.5	ND	0.5		U 0.5	0.5							0.5 U			U 0.			0.5	ND	0.5	ND	0.5	ND	0.5
Naphthalene	10		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2		U 2.				2.5 U	2.5	2.5	U 2.			2.5	ND	2.5	ND	2.5	ND	2.5
o-Chlorotoluene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2		U 2.				2.5 U			U 2.			2.5	ND	2.5	ND	2.5	ND	2.5
o-Xylene	Ţ		ND	1	ND	1	1	U 1	1		1		1	Ū,	1	1 1	1	1	$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	1	I Ŭ	1	ND		ND		ND	1
p-Chlorotoluene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2	5 2.5	U 2.	.5 2.8	U 2	.5	2.5 U	2.5	2.5	U 2.	5 2.5	U	2.5	ND	2.5	ND	2.5	ND	2.5
p-lsopropyltoluene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5	U 0		U 0.				0.5 U			U 0.			0.5						- 2.0
p/m-Xylene	Ŭ		ND	1	ND	1	1	<u>1</u>	1	lŭ Ž	1			ΙŭΙ ι			1	1	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	1		1	ND	1	ND	1	ND	1
sec-Butylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.5	0.5		5 0.5		5 0.8		.5	0.5 U	0.5	0.5		5 0.5		0.5	ND	0.5	ND	0.5	ND	0.5
Styrene	5		ND	1	ND	1	1		1		1				1	1 U		1		1		1	ND		ND		ND	1
tert-Butylbenzene	5		ND	2.5	ND	2.5	2.5	U 2.5	2.5	U 2	5 2.5	U 2.	5 2.5		.5	2.5 U	2.5	2.5	U 2.	5 2.5	_	2.5	ND	2.5	ND	2.5	ND	2.5
Tetrahydrofuran	50		ND	2.3 10	NA	NA	NA	NA	NA			0 2. N				NA	NA	NA				NA	ND	10	ND	10	ND	10
Toluene	50 5		ND	0.75	ND	0.75	0.75	U 0.75	0.75	U 0.).75 U		0.39	J 0.7			0.75	ND	0.75	ND	0.75	ND	0.75
trans-1,3-Dichloropropene			ND		ND		0.75	U 0.75	0.75								0.75	0.39							ND	0.75	ND	
trans-1,4-Dichloro-2-butene	0.4			0.5	ND	0.5 NA	0.5 2.5	U 2.5	2.5	U 0		U 2.	.5 0.8 .5 2.8			0.5 U 2.5 U		0.5 2.5	U 0.8			0.5	ND ND	0.5	ND ND	2.5	ND ND	0.5
Trichlorofluoromethane	5 5		ND	2.5																				2.5				
	5		ND ND	2.5	ND	2.5	2.5 5	U 2.5 U 5	2.5	U 2		U 2.				2.5 U 5 U		2.5 5	U 2.9 U 5			2.5 5		2.5 5		2.5 5	ND	2.5
Vinyl acetate			ND	5	ND	5	С	0 5	0		ວ ວ	U 5	5 5		0	5 U	5	С	0 5	5	UJ	5	ND	5	ND	5	ND	5

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York																												
LOCATION	SGC	lue	Field B	lank	Field B	lank	Field	Blank	Field	l Blank	Field	d Blank	Field	d Blank	F	Field Blank	k	Field Bla	ank	Fie	eld Blan	k	Equipment	Blank	Equipme	ent Blank	Equipment	t Blank
Matrix	TOGS	Guidance Value	wate	er	wate	er	wa	ater	w	ater	w	/ater	w	ater		water		water			water		wate	r	wa	iter	wate	er
SAMPLING DATE		danc	9/14/2	007	11/25/2	2008	6/16	/2010	8/9	/2010	12/1	4/2010	4/2	1/2011		5/16/2011		5/31/20	11	6,	/22/2011		9/14/20	07	10/25	5/2007	10/25/2	007
Units	NYSDEC	Gui	ug/	1	ug/	1	ι	ıg/l	,	ug/l		ug/l		ug/l		ug/l		ug/l			ug/l		ug/l		u	g/l	ug/l	
PARAMETER	_		Results C	RL	Results G	RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Resu	ults Q F	RL	Results Q	RL	Result	Q	RL	Results C	RL	Results	Q RL	Results Q	RL
Dissolved Gases by GC																												
Ethane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Ethene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.5	U 0.5			0.5	0.5 U	0.5	0.5		0.5	NA	NA	NA	NA	NA	NA
Methane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	A	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Anions by Ion Chromatography	050.000	-		NIA	NIA								NIA					NIA				NIA	NIA		NIA		NIA	
Chloride Sulfate	250,000		NA	NA	NA	NA	NA	NA 10000	NA	NA NA	NA	NA 1000	NA 10000	NA NA			NA	NA	NA 10000	NA		NA	NA		NA	NA	NA	NA
Nitrogen, Ammonia	250,000 2,000		NA NA	NA NA	NA	NA NA	10000 NA	U 10000	10000 NA	U 10000	10000 NA	U 1000	0 10000 NA	U 1000			0000 NA	1600 J NA	10000 NA	2500 NA		0000 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	NA NA	NA	100	U 100	100	U 100	100	U 100		100			NA 100	30 J	100	100		100	NA	NA	NA	NA	NA	NA
Phosphorus, Orthophosphate	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Dissolved Organic Carbon	200		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Total Organic Carbon			NA	NA	NA	NA	NA	NA	500	U 500	500	U 2000		U 500			500	540	500	270		500	NA	NA	NA	NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	500	UJ 500	500	UJ 500	500	U 500		U 500			500	40 J	500	500		500	NA	NA	NA	NA	NA	NA
Hardness			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N/	A	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Ferric Iron			NA	NA	NA	NA	500	UJ 500	500	UJ 500	500	U 500	0	U 0	50	0 U 5	500	500 UJ	500	500	UJ	500	NA	NA	NA	NA	NA	NA
Total Metals							-	•	-		-									•				•		•		
Antimony, Total			NA	NA	ND	50	NA	NA	NA	NA	NA	NA	NA	NA	N/	A N	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Arsenic, Total			NA	NA	ND	5	NA	NA	NA	NA	NA	NA	NA	NA	N/	A N	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Barium, Total			NA	NA	ND	10	NA	NA	NA	NA	NA	NA	NA	NA	N/	A N	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Beryllium, Total			NA	NA	ND	5	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Cadmium, Total			NA	NA	ND	5	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Chromium, Total			NA	NA	ND	10	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Copper, Total			NA	NA	ND	10	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Iron, Total	300		NA	NA	NA	NA	50	U 50	50	U 50	50	U 50	50	U 50			50	50 U	50	50		50	NA	NA	NA	NA	NA	NA
Lead, Total			NA	NA	ND	10	NA	NA	NA	NA	NA	NA	NA	NA	N/	A N	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Manganese, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Mercury, Total			NA	NA	ND	0.2	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Nickel, Total			NA	NA	ND	25	NA	NA	NA	NA	NA	NA		NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Selenium, Total			NA	NA	ND	10	NA	NA	NA	NA	NA	NA		NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Silver, Total			NA	NA	ND	7	NA	NA	NA	NA	NA	NA		NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Thallium, Total			NA	NA	ND	20	NA	NA	NA	NA	NA	NA		NA			NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA
Zinc, Total			NA	NA	ND	50	NA	NA	NA	NA	NA	NA	NA	NA	N/	AIN	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Table 1 Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York		1			-				-					1							_						
LOCATION	SGC	ne	Equipmer	nt Blank	Equipme	nt Blank	Equipmen	it Blank	Equipr	nent Bla	nk	Equipm	ent Blank	Equipm	ent Bla	ank	Equipment	Blank	Equipm	nent Blanl	c Equ	uipmer	nt Blank	Equipm	nent Blan I	Equi	oment Blank
Matrix	TOGS	e Val	wat	er	wat	er	wate	er	v	vater		Wa	ater	w	ater		water	r	w	ater		wat	er	w	ater		water
SAMPLING DATE	ECT	Guidance Value	10/25/	2007	11/25/	2008	11/25/2	2008	4/3	0/2010		6/16	/2010	8/9	/2010		12/14/20	010	4/2	1/2011		5/16/2	2011	5/3	1/2011	6	/22/2011
Units	NYSDEC	Gui	ug	/I	ug	/I	ug/	1		ug/l		U	ıg/l		ug/l		ug/l			ug/l		ug	/l		ug/l		ug/l
PARAMETER	Z		Results (Q RL	Results 0		Results		RL	Results	Q RL	Results		RL	Results Q	RL	Results	-	Resu			Results		Resul	
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA		NA NA	NA	NA NA	NA		VA	NA	NA	NA		_		NA	NA		NA	
Iron, Ferrous			NA	NA	NA	NA	NA	NA	NA		NA NA	500	UJ 500	500		500	500 U	500	500	U 500			500	500	U 500		
Primary Constituents of Concern	VOCs by (C/MS (8								<u> </u>					11 -							- 1-	1.00		1-1		
1,1-Dichloroethene	5		ND	0.5	ND	0.5	ND	0.5	0.5).5	0.5	11 05	0.5).5	0.5 U	0.5	0.5	U 0.5	0.5	5 1 11	0.5	0.5	U 0.5	0.5	U 0.5
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA		NA	NA 0	NA	0.5	U 0.5			0.5	5	5	NA	NA
cis-1,2-Dichloroethene	5		ND		ND	0.5	ND	0.5	0.69).5	0.5		1.6).5	0.5 U	0.5	NA				NA	NA	NA NA	0.5	U 0.5
Tetrachloroethene	5		ND	0.5	ND	0.5	ND	0.5	0.03).5).5	0.5	U 0.5	0.5).5).5	0.5 U	0.5	0.5	U 0.5			0.5	0.5	U 0.5	0.5	U 0.5
trans-1,2-Dichloroethene	5	1	NA	NA	NA	NA	NA	NA	NA		VA	NA	0 0.5 NA	NA		VA	NA	NA	0.5	U 0.7				0.5	U 0.75		
trans-1,2-Dichloroethene	5	1	NA	0.75	ND	0.75	NA	0.75	0.75		.75	0.75	U 0.75	0.75		.75	0.75 U	0.75	NA				NA	NA	NA	NA	0 0.75 NA
Trichloroethene	5		ND	0.75	ND	0.75	ND	0.75	0.75).5	0.75	U 0.5	0.75).5	0.75 U	0.75	0.5	U 0.5			0.5	0.5	U 0.5	0.5	U 0.5
Vinyl chloride	2		ND	0.0	ND	0.0	ND	0.0	0.5		1	0.0		0.0		1	1 11	0.0	0.0	U 1	1		0.0	0.0	U 1	0.0	
Other VOCs by GC/MS (8260B)	Z		ND	1	ND	1	ND				<u> </u>	1			0		1 0	1	1					1			0 1
	F	1		0.5		0.5		0.5	0.5			0.5		0.5			0.5	0.5	0.5			5 1 11	0.5	0.5		0.5	
1,1,1,2-Tetrachloroethane	<u>5</u> 5		ND	0.5	ND	0.5	ND	0.5	0.5 0.5).5).5	0.5 0.5	U 0.5 U 0.5	0.5 0.5).5).5	0.5 U	0.5 0.5	0.5	U 0.5	0.0		0.5	0.5	U 0.5	0.5	U 0.5 U 0.5
1,1,1-Trichloroethane			ND		ND		ND	0.5									0.5 U		0.5					0.5			
1,1,2,2-Tetrachloroethane	5		ND	0.5	ND	0.5	ND	0.5	0.5).5	0.5	U 0.5	0.5).5	0.5 U	0.5	0.5	U 0.5			0.5	0.5	U 0.5	0.5	U 0.5
1,1,2-Trichloroethane	1		ND	0.75	ND	0.75	ND	0.75	0.75		.75	0.75	U 0.75	0.75		.75	0.75 U	0.75	0.75	U 0.7				0.75	U 0.75	0.75	U 0.75
1,1-Dichloroethane	5		ND	0.75	ND	0.75	ND	0.75	0.75		.75	0.75	U 0.75	0.75		.75	0.75 U	0.75	0.75	U 0.7				0.75	U 0.75		
1,1-Dichloropropene	5		ND	2.5	ND	2.5	ND	2.5	2.5		2.5	2.5	U 2.5	2.5		2.5	2.5 U	2.5	2.5	U 2.5			2.5	2.5	U 2.5	2.5	U 2.5
1,2,3-Trichlorobenzene	5 0.04		ND	2.5	ND	2.5 5	ND	2.5 5	2.5 5		2.5	2.5 5	U 2.5 U 5	2.5 5		2.5 5	2.5 U 5 U	2.5 5	2.5	UJ 2.5	2.5		2.5 5	2.5	U 2.5	2.5	U 2.5 U 5
1,2,3-Trichloropropane	0.04		ND	5	ND		ND				5								5		0			5		5	
1,2,4,5-Tetramethylbenzene			NA	NA	ND	2	ND	2	2		2	2	U 2	2		2	2 U	2	2	U 2	2		2	2	U 2	2	U 2
1,2,4-Trichlorobenzene	5		ND	2.5	ND	2.5	ND	2.5	2.5		2.5 2.5	2.5	U 2.5 U 2.5	2.5 2.5		2.5 2.5	2.5 U	2.5	2.5 2.5	UJ 2.5 U 2.5			2.5 2.5	2.5	U 2.5	2.5 2.5	U 2.5
1,2,4-Trimethylbenzene	5		ND	2.5	ND	2.5	ND	2.5	2.5			2.5					2.5 U	2.5						2.5	U 2.5		U 2.5
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	ND	2.5	ND	2.5	2.5		2.5	2.5	U 2.5	2.5		2.5	2.5 U	2.5	2.5	U 2.5	2.5		2.5	2.5	U 2.5	2.5	U 2.5
1,2-Dibromoethane	5		ND	2	ND	2	ND	2	2		2	2	U 2	2		2	2 U	2	2	U 2	2		2	2	U 2	2	U 2
1,2-Dichlorobenzene	3		ND	2.5	ND	2.5	ND	2.5	2.5		2.5	2.5	U 2.5	2.5		2.5	2.5 U	2.5	2.5	U 2.5	2.5	5 U	_	2.5	U 2.5	2.5	U 2.5
1,2-Dichloroethane	0.6 1	1	ND ND	0.5	ND ND	0.5		0.5	0.5).5	0.5		0.5).5 1 0		0.5	0.5	U 0.8		5 U 8 U	0.5	0.5	U 0.5	0.5	
1,2-Dichloropropane	5	1	ND ND	1.8	ND ND	1.8 2.5		1.8	1.8		1.8 2.5	1.8 2.5	U 1.8 U 2.5	1.8		1.8 2.5	1.8 U 2.5 U	1.8 2.5	1.8 2.5	U 1.8 U 2.5			1.8 2.5	1.8 2.5		1.8	U 1.8
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	5 3	1	ND ND	2.5	ND ND	2.5 2.5		2.5	2.5 2.5		2.5 2.5		U 2.5 U 2.5	2.5				2.5 2.5						2.5	U 2.5 U 2.5	2.5 2.5	U 2.5
1,3-Dichloropropane	5		ND ND	2.5	ND	2.5	ND	2.5	2.5		2.5 2.5	2.5 2.5	U 2.5	2.5 2.5		2.5 2.5	2.5 U 2.5 U	2.5	2.5 2.5	U 2.5 U 2.5			2.5 2.5	2.5 2.5	U 2.5	2.5	U 2.5 U 2.5
1,4-Dichlorobenzene	3			2.5	ND	2.5	ND ND	2.5	2.5		2.5 2.5		U 2.5			2.5 2.5	2.5 U	2.5	2.5	U 2.5			2.5	2.5		2.5	
	3		ND	2.5							vA	2.5		2.5											U 2.5		U 2.5
1,4-Dichlorobutane 1,4-Diethylbenzene		1	ND NA	G NIA	NA ND	NA 2	NA	NA	NA 2		NA 2	NA 2	NA 11 2	NA 2		NA 2	NA 2	NA 2	NA 2				NA 2	NA 2	NA	NA 2	NA 11 2
2,2-Dichloropropane	5			NA 2.5	ND	2	ND	2.5	2.5		2 2.5	2.5	U 2.5	2.5		2 2.5	2 U 2.5 U	2 2.5	2.5	U 2.5	2		2	2	U 2 U 2.5	2.5	U 2 U 2.5
2,2-Dichloropropane 2-Butanone	50 50		ND NA	Z.5 NA	NA	Z.5 NA	ND NA	NA	2.5 5		2.5 5	2.5 5	U 2.5 U 5	2.5 5		2.5 5	2.5 U	2.5 5	2.5 5	U 2.0			-	2.5 5	U 2.5	2.0 5	U 2.5
2-Butanone	50 50			_	NA	5		5	5 NA			-				5 NA	NA		-					NA			
		1	ND ND	5							NA 5	NA 5	NA 11 5	NA 5				NA 5	NA 5	U 5			NA 5		NA	NA 5	NA 11 5
2-Hexanone	50		ND	5	ND	5	ND	5	5	-	5	5	U 5 U 2	-		5	5 U	5	5		5		5	5	U 5 U 2	5	
4-Ethyltoluene			NA	NA 5	ND ND	2	ND	2	2 5		2	2 5	U 2 U 5	2 5		2 5	2 U 5 U	2	2	U 2 U 5	2		2	2 5		<u>ک</u>	U 2 U 5
4-Methyl-2-pentanone	50		ND ND	5 5		5 5	ND 13	5	5 5		5 5	о 6.1	U 5 5	о 7.8		5 5	5 U 5 U	5 5	5	U 5 U 5			5 5	5 5		0 17	
Acetone	50 5	1	ND NA	5 NA	13 NA	o NA	13 NA	NA	o NA		5 NA	6.1 NA	o NA	7.8 NA		c NA	NA U	5 NA	5 NA		2.2 NA		D NA	o NA	U 5 NA	1.7 NA	J 5 NA
Acrolein	5	1	NA	INA	INA	INA	INA		NA		N/A	N/A	INA	NA		N/A	IN/A	NA I	NA		IN/	וי	INA	INA		NA	

LOCATION	SGC	Value	Equipmen	t Blank	Equipme	ent Blank	Equipmen	t Blank	Equipn	nent Bl	lank	Equipn	nent Bla	ank	Equipment Blank	Equipment Bla	nk Equ	ipment	Blank	Equip	nent Blank	Equipm	ent Blank	Equipn	nent Blank
Matrix	TOGS	e Va	wate	er	wa	iter	wate	er	w	vater		v	vater		water	water		water		, I	water	W	ater	w	/ater
SAMPLING DATE	EC T	Guidance	10/25/2	2007	11/25	5/2008	11/25/2	8008	4/3	0/2010)	6/1	6/2010		8/9/2010	12/14/2010		<mark>4/21/20</mark>	11	5/^	16/2011	5/31	/2011	6/2	2/2011
Units	NYSDEC	Gui	ug/		u	g/l	ug/l			ug/l			ug/l		ug/l	ug/l		ug/l			ug/l	ι	ıg/l		ug/l
PARAMETER	_		Results C	RL	Results	Q RL	Results Q	RL	Results	Q	RL	Results	Q	RL	Results Q RL	Results Q R	L Resu	lts Q	RL	Results	Q RL	Results	Q RL	Results	Q RL
Acrylonitrile	5		ND	5	ND	5	ND	5	5	U	5	5	U	5	5 U 5	5 U 5	_	U	5	5	U 5	5	U 5	5	U 5
Benzene	1		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5		0.5	0.5 U 0.5	0.5 U 0			0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Bromobenzene	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U :	2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Bromochloromethane	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U	2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Bromodichloromethane	50		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Bromoform	50		ND	2	ND	2	ND	2	2	U	2	2		2	2 U 2	2 U 2		U	2	2	U 2	2	U 2	2	U 2
Bromomethane	5		ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U ⁷	1	U	1	1	U 1	1	U 1	1	UJ 1
Carbon disulfide			ND	5	ND	5	ND	5	5	U	5	5	U	5	5 U 5	5 U 5	5	U	5	5	U 5	5	U 5	5	U 5
Carbon tetrachloride	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Chlorobenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5		0.5	0.5 U 0.5	0.5 U 0			0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Chloroethane	5		ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U ⁻	1	U	1	1	UJ 1	1	U 1	1	U 1
Chloroform	7		ND	0.75	ND	0.75	ND	0.75	0.75	U	0.75	0.75	UC	0.75	0.75 U 0.75	0.75 U 0.1	0.7	5 U	0.75	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75
Chloromethane	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U :	2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
cis-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Dibromochloromethane	50		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	i U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Dibromomethane	5		ND	5	ND	5	ND	5	5	U	5	5	U	5	5 U 5	5 U 5	5	U	5	5	U 5	5	U 5	5	U 5
Dichlorodifluoromethane	5		ND	5	ND	5	ND	5	5	U	5	5	U	5	5 U 5	5 U 4	5	U	5	5	U 5	5	U 5	5	U 5
Ethyl ether			ND	2.5	NA	NA	NA	NA	2.5	U	2.5	2.5	U	2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Ethyl methacrylate			ND	5	NA	NA	NA	NA	NA		NA	NA		NA	NA NA	NA N	A NA	\	NA	NA	NA	NA	NA	NA	NA
Ethylbenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Hexachlorobutadiene	0.5		ND	0.6	ND	0.6	ND	0.6	0.6	U	0.6	0.6	U	0.6	0.6 U 0.6	0.6 U 0	6 0.6	5 U	0.6	0.6	U 0.6	0.6	U 0.6	0.6	U 0.6
lodomethane	5		NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA NA	NA N	A NA		NA	NA	NA	NA	NA	NA	NA
Isopropylbenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Methyl tert butyl ether			ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U [•]	1	U	1	1	UJ 1	1	U 1	1	U 1
Methylene chloride	5		13	5	8.4	5	10	5	5	U	5	5	U	5	5 U 5	5 U 4	5	U	5	5	U 5	5	U 5	5	U 5
n-Butylbenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
n-Propylbenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5		0.5	0.5 U 0.5	0.5 U 0			0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Naphthalene	10		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U	2.5	2.5 U 2.5	2.5 U 2		5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
o-Chlorotoluene	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5		2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
o-Xylene			ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U ⁴	1	U	1	1	U 1	1	U 1	1	U 1
p-Chlorotoluene	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U :	2.5	2.5 U 2.5	2.5 U 2	5 2.5	i U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
p-lsopropyltoluene	5								0.5	U	0.5	0.5		0.5	0.5 U 0.5	0.5 U 0			0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
p/m-Xylene			ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U ⁴	1	U	1	1	U 1	1	U 1	1	U 1
sec-Butylbenzene	5		ND	0.5	ND	0.5	ND	0.5	0.5	U	0.5	0.5	U	0.5	0.5 U 0.5	0.5 U 0	5 0.5	5 U	0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
Styrene	5		ND	1	ND	1	ND	1	1	U	1	1	U	1	1 U 1	1 U ⁴	1	U	1	1	U 1	1	U 1	1	U 1
tert-Butylbenzene	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5	U :	2.5	2.5 U 2.5	2.5 U 2	5 2.5	5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Tetrahydrofuran	50		ND	10	NA	NA	NA	NA	NA		NA	NA		NA	NA NA	NA N	A NA		NA	NA	NA	NA	NA	NA	NA
Toluene	5		ND	0.75	ND	0.75	ND	0.75	0.75	U	0.75	0.75		0.75	0.75 U 0.75	0.75 U 0.	5 0.7	5 U	0.75	0.75	U 0.75	0.31	J 0.75	0.38	J 0.75
trans-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	ND	0.5	0.5		0.5	0.5		0.5	0.5 U 0.5	0.5 U 0			0.5	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5
trans-1,4-Dichloro-2-butene	5		ND	2.5	NA	NA	NA	NA	2.5	U	2.5	2.5		2.5	2.5 U 2.5	2.5 U 2			2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Trichlorofluoromethane	5		ND	2.5	ND	2.5	ND	2.5	2.5	U	2.5	2.5		2.5	2.5 U 2.5	2.5 U 2		5 U	2.5	2.5	U 2.5	2.5	U 2.5	2.5	U 2.5
Vinyl acetate			ND	5	ND	5	ND	5	5	U	5	5		5	5 U 5	5 U 5		U	5	5	U 5	5	U 5	5	UJ 5

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York																															-
LOCATION	SGC	lue	Equipme	nt Blank	Equipmer	nt Blank	Equipment	t Blank	Equipm	nent B	Blank	Equipm	nent	Blank	Equipm	ent Blai	nk	Equipmen	it Blank	Equipn	nent B	lank	Equip	ment	Blank	Equipm	ent Bl	lank	Equipm	ent Blank	C
Matrix	TOGS	ie Va	wat	ter	wate	er	wate	r	w	ater		w	/ater		W	ater		wate	er	v	vater		,	wateı	r	Wa	ater		w	ater	
SAMPLING DATE		Guidance Value	10/25/	/2007	11/25/2	2008	11/25/2	008	4/30	0/2010)	6/1	6/201	10	8/9	/2010		12/14/2	2010	4/2	1/2011	1	5/	<mark>16/20</mark>)11	5/31	/2011		6/2	2/2011	
Units	NYSDEC	Gui	ug	ı/l	ug/	/	ug/l			ug/l			ug/l		ι	ıg/l		ug/	(ug/l			ug/l		U	ıg/l			ug/l	٦
PARAMETER	2		Results	Q RL	Results (2 RL	Results Q	RL	Results		RL	Results	Q	RL	Results		RL I	Results C	RL	Results		RL	Results		RL	Results	Q	RL	Results		_
Dissolved Gases by GC			· · ·		• •				•	<u> </u>						<u> </u>		I		•	<u> </u>		•								
Ethane			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Ethene			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A	NA	NA	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5	0.5	U 0.5	,
Methane			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Anions by Ion Chromatography																															
Chloride	250,000		ND	500	NA	NA	NA	NA	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Sulfate	250,000		ND	1,000	NA	NA	NA	NA	10000	U	10000	10000	U	10000	10000	U 100	000	10000 L	J 10000	10000	U	1000	1500	J	10000	10000	U 1	0000	1 <mark>5</mark> 00	U 1000)0
Nitrogen, Ammonia	2,000		ND	75	NA	NA	NA	NA	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Nitrogen, Nitrate/Nitrite	10,000		600	100	NA	NA	NA	NA	100	U	100	100	U	100	100	U 10	00	100 L	J 100	400		100	100	U	100	100	U	100	100	U 100)
Phosphorus, Orthophosphate			ND	5	NA	NA	NA	NA	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Sulfide	50		ND	100	NA	NA	NA	NA	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Sulfite	200		ND	500	NA	NA	NA	NA	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Dissolved Organic Carbon			1,100	1,000	NA	NA	NA	NA	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Total Organic Carbon			NA	NA	NA	NA	NA	NA	1300		1000	1100		500	560	50		500 L	J 2000	500	U	500	4900		500	2200		500	1000	U 500	
Iron, Ferrous			ND	500	NA	NA	NA	NA	NA		NA	500	UJ	500	500	UJ 50	00	500 L	J 500	500	U	500	500	U	500	500	U	500	500	UJ 500)
Hardness			ND	660	NA	NA	NA	NA	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Ferric Iron			ND	500	NA	NA	NA	NA	NA		NA	500	UJ	500	500	UJ 50	00	500 L	J 500	500	U	500	500	U	500	500	U	500	500	UJ 500)
Total Metals																															
Antimony, Total			NA	NA	NA	NA	ND	50	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Arsenic, Total			NA	NA	NA	NA	ND	5	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Barium, Total			NA	NA	NA	NA	ND	10	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Beryllium, Total			NA	NA	NA	NA	ND	5	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Cadmium, Total			NA	NA	NA	NA	ND	5	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Chromium, Total			NA	NA	NA	NA	ND	10	NA		NA	NA		NA	NA		A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Copper, Total			NA	NA	NA	NA	ND	10	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Iron, Total	300		50	U 50	NA	NA	NA	NA	50	U	50	50	U	50	50	U 50	0	50 L	J 50	50	U	50	50	U	50	50	U	50	20	J 50	
Lead, Total			NA	NA	NA	NA	ND	10	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Manganese, Total			NA	NA	NA	NA	NA	NA	10	U	10	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Mercury, Total			NA	NA	NA	NA	ND	0.2	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Nickel, Total			NA	NA	NA	NA	ND	25	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Selenium, Total			NA	NA	NA	NA	ND	10	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Silver, Total			NA	NA	NA	NA	ND	7	NA		NA	NA		NA	NA	N	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Thallium, Total			NA	NA	NA	NA	ND	20	NA		NA	NA		NA	NA	N.		NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	
Zinc, Total			NA	NA	NA	NA	ND	50	NA		NA	NA		NA	NA	N/	A	NA	NA	NA		NA	NA		NA	NA		NA	NA	NA	

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York			_											-				_									
LOCATION	SGC	lue	Trip E	Blank	Trip	Blank	Trip	Blank		Trip I	Blank	Trip	Blank	Trip	Blank	Trip E	Blank	Trip	Blank	Trip	Blank	т	rip Blar	ık	Tri	ip Blank	ĸ
Matrix	TOGS	se Va	wat	er	w	ater	W	ater		wa	iter	wa	ater	Wa	ater	wa	ter	W	ater	wa	ater		water			water	
SAMPLING DATE	DEC 1	Guidance Value	<mark>9/14/</mark> 2	2007	10/2	5/2007	4/30)/2010		6/16/	/2010	8/9/	2010	8/9/	2010	4/20/:	2011	5/16	6/2011	5/31	/2011	6	6/21/201	1	6/	22/2011	
Units	NYSDEC	Ъ	ug	/I	,	ug/l	ι	ıg/l		u	g/l	u	g/l	u	ıg/l	ug	ı/I	ι	ıg/l	U	ıg/l		ug/l			ug/l	
PARAMETER			Results	Q RL	Results	Q RL	Results	QR	RL R	Results	Q RL	Result	Q	RL	Results	Q	RL										
Dissolved Organic Carbon			NA	NA	NA	NA	NA	N	IA	NA	NA	NA		NA	NA		NA										
Iron, Ferrous			NA	NA	NA	NA	NA	N	A	NA	NA	NA		NA	NA		NA										
Primary Constituents of Concern	VOCs by G	C/MS (8	3:									•	1 1	•		• • •											
1,1-Dichloroethene	5	Ì	ND	0.5	ND	0.5	0.5	U 0	.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5										
cis-1,2-Dichloroethene	5		NA	NA	NA	NA	NA		A	NA	NA	NA	NA	NA	NA	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	NA		NA	NA		NA
cis-1,2-Dichloroethene	5		ND	1	ND	1	0.5	U 0	.5	0.5	U 1	0.5	U 1	0.5	U 1	NA	NA	NA	NA	NA	NA	0.5	U	0.5	0.5	U	0.5
Tetrachloroethene	5		ND	0.5	ND	0.5	0.5		.5	0.5	U 0.5	0.5	U	0.5	0.5		0.5										
trans-1,2-Dichloroethene	5		NA	NA	NA	NA	NA	N		NA	NA	NA	NA	NA	NA	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75	0.75	U	0.75	0.75		0.75
trans-1,2-Dichloroethene	5		ND	0.75	ND	0.75	0.75	U 0.	.8	0.75	U 0.75	0.75	U 0.75	0.75	U 0.75	NA	NA	NA	NA	NA	NA	NA		NA	NA		NA
Trichloroethene	5		ND	0.5	ND	0.5	0.5	U 0	.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5										
Vinyl chloride	2		ND	1	ND	1	1	U 1.	.0	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U 1	1	U	1	1	U	1
Other VOCs by GC/MS (8260B)																											
1,1,1,2-Tetrachloroethane	5		ND	0.5	ND	0.5	0.5	U 0.4		0.5	U 0.5	0.5	U	0.5	0.5	U	0.5										
1,1,1-Trichloroethane	5		ND	0.5	ND	0.5	0.5	U 0.	.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5										
1,1,2,2-Tetrachloroethane	5		ND	0.5	ND	0.5	0.5	U 0.	.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5										
1,1,2-Trichloroethane	1		ND	0.75	ND	0.75	0.75	U 0.	75	0.75	U 0.75	0.75	U	0.75	0.75		0.75										
1,1-Dichloroethane	5		ND	0.75	ND	0.75	0.75	U 0.	75	0.75	U 0.75		U 0.75	0.75	U	0.75	0.75	U	0.75 2.5								
1,1-Dichloropropene	5		ND	2.5	ND	2.5	2.5	U 2	.5	2.5	U 2.5	2.5	U	2.5	2.5	U											
1,2,3-Trichlorobenzene	5		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5	UJ 2.5	2.5	U 2.5		U 2.5	2.5	U	2.5	2.5	U	2.5
1,2,3-Trichloropropane	0.04		ND	5	ND	5	5	U		5	U 5	5	U 5	5	U 5	5	U 5	5	U 5	5	U 5	5	U	5	5	U	5
1,2,4,5-Tetramethylbenzene			NA	NA	NA	NA	2	U 2		2	U 2	2	U 2	2	U 2	2	U 2	2	U 2	2	U 2	2	U	2	2	U	2
1,2,4-Trichlorobenzene	5		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5	2.5	U 2.5	2.5	U 2.5	2.5	UJ 2.5	2.5	U 2.5	2.5	U 2.5	2.5	U	2.5	2.5	U	2.5
1,2,4-Trimethylbenzene	5		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5	2.5	U	2.5	2.5	U	2.5										
1,2-Dibromo-3-chloropropane	0.04		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5	2.5	U	2.5	2.5	U	2.5										
1,2-Dibromoethane	5		ND	2	ND	2	2	U 2		2	U 2	2	U 2	2	U 2	2	U 2	2	U 2	2	U 2	2	U	2	2		2
1,2-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5		U 2.5	2.5	U	2.5	2.5	U	2.5								
1,2-Dichloroethane	0.6		ND	0.5	ND	0.5	0.5		.5	0.5	U 0.5		U 0.5	0.5		0.5	0.5	U	0.5								
1,2-Dichloropropane	1		ND	1.8	ND	1.8	1.8	U 1.		1.8	U 1.8	1.8	U	1.8	1.8		1.8										
1,3,5-Trimethylbenzene	5		ND	2.5	ND	2.5	2.5		.5	2.5	U 2.5		U 2.5	2.5		2.5	2.5	U	2.5								
1,3-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5		U 2.5	2.5		2.5	2.5	<u> </u>	2.5								
1,3-Dichloropropane	5		ND	2.5	ND	2.5	2.5	U 2		2.5	U 2.5	2.5		2.5	2.5	U	2.5										
1,4-Dichlorobenzene	3		ND	2.5	ND	2.5	2.5		.5	2.5	U 2.5		U 2.5	2.5	U	2.5	2.5	U	2.5								
1,4-Dichlorobutane			ND	5	ND NA	5	NA	N		NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA NA	NA		NA	NA		NA
1,4-Diethylbenzene	F		NA	NA 2.5	NA	NA 2.5	2		2	2	U 2	2	U 2	2	U 2	2	U 2	2	U 2 U 2.5	2	U 2	2	U	2	2	U	2
2,2-Dichloropropane	5 50		ND NA	2.5 NA	ND NA	2.5	2.5 5	U 2	.5	2.5 5	U 2.5 U 5	2.5 5	UU	2.5 5	2.5 5	U	2.5 5										
2-Butanone 2-Butanone	50 50				NA		o NA			5 NA				-			NA	-		o NA		-					
	50 50			5	ND	5	NA 5			INA E	NA 5		NA 5	NA 5	NA 111 5	NA 5		NA 5	U 5	NA 5	U 5	NA 5		NA 5	NA 5		NA 5
2-Hexanone 4-Ethyltoluene	50		ND NA		ND	5	-	U 5 U 2		5 2	U 5 U 2	5 2	U 5 U 2	5 2	U 5	5 2		5 2		-	U 2	5		5 2	5 2	UU	5 2
4-Ethyltoluene 4-Methyl-2-pentanone			NA ND	NA 5	NA ND	NA 5	2 5			<u>۲</u>	U 2 U 5	2 5	U 2 U 5	2 5	U 2 U 5	2 5	U 2 U 5	5	U 2 U 5	2	U 2 U 5	2	UU	2 5	2 5	U	2
4-metnyi-2-pentanone Acetone	50		ND ND	5 5	ND ND	5	5 5			บ ร	U 5 U 5	5 5	U 5 U 5	5	U 5 U 5	5 5		ว 5	о 5	U	5 5						
Acrolein	5		NA	NA	NA	NA S	NA			NA	NA	NA	NA	NA	NA	NA S	NA	NA	NA	NA	NA	NA		NA	NA	-	NA
	5	I	N/A	INA	INA		INA			INA		IN/A		INA		IN/A	INA	INA		INA	IINA	NA	I	INA	IN/A	I	IN/A

Orangeburg, New York		-	-		-				_			_																		
LOCATION	SGC	Value	Trip Bla	ank	Trip B	ank	Trip I	Blank		Trip B	llank	.	Trip Bl	ank	Trip B	lank	Trip	Blank		Trip I	Blank	Triț	o Blai	nk	Tr	ip Blar	ık	Tr	ip Blar	ik
Matrix	TOGS	ce Va	wate	r	wate	er	wa	ter		wat	er		wate	er	wate	er	w	ater		wa	ter	v	vater			water			water	
SAMPLING DATE	DEC 1	Guidance	9/14/20	007	10/25/2	2007	4/30/	/2010		6/16/2	2010		8/9/20)10	8/9/20	010	4/20)/2011		5/16/	2011	5/3	1/201	11	6,	/21/201	1	6/	/22/201	1
Units	NYSDEC	Gu	ug/l		ug/	1	u	g/l		ug	/I		ug/	I	ug/	1	L	ıg/l		u	g/l		ug/l			ug/l			ug/l	
PARAMETER			Results C	RL	Results	Q RL	Results	Q R	RL R	esults	Q RL	Res	sults (Q RL	Results	Q RL	Results	Q	RL	Results	Q RL	Result	s Q	RL	Results	Q	RL	Results	Q	RL
Acrylonitrile	5		ND	5	ND	5	5	U 5	5	5	U 5	-	5 เ	J 5	5	U 5	5	U	5	5	U 5	5	U	5	5	U	5	5	U	5
Benzene	1		ND	0.5	ND	0.5	0.5	U 0.	.5	0.5	U 0.5	5 0	.5 l	J 0.5	0.5	U 0.5	i 0.5	U	0.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Bromobenzene	5		ND	2.5	ND	2.5	2.5	U 2.	.5	2.5	U 2.5	5 2	.5 l	J 2.5	2.5	U 2.5	5 2.5	U	2.5	2.5	U 2.5	2.5	U	2.5	2.5	U	2.5	2.5	U	2.5
Bromochloromethane	5		ND	2.5	ND	2.5	2.5		.5	2.5	U 2.5		.5 (J 2.5	2.5	U 2.5			2.5	2.5	U 2.5		U	2.5	2.5	U	2.5	2.5	U	2.5
Bromodichloromethane	50		ND	0.5	ND	0.5	0.5		.5	0.5	U 0.5		.5 l	J 0.5	0.5	U 0.5			0.5	0.5	U 0.5		U	0.5	0.5	U	0.5	0.5	U	0.5
Bromoform	50		ND	2	ND	2	2	U 2		2	U 2		2 (J 2		U 2	2		2	2	U 2	2	U	2	2	U	2	2	U	2
Bromomethane	5		ND	1	ND	1	1	U 1	1	1	U 1		1	J 1	1	U 1	1	1 1	1	1	U 1	1	U	1	1	UJ	1	1	UJ	1
Carbon disulfide			ND	5	ND	5	5	U 5	5	5	U 5		5 I	J 5	5	U 5	5	U	5	5	U 5	5	U	5	5	U	5	5	U	5
Carbon tetrachloride	5		ND	0.5	ND	0.5	0.5	U 0.	.5	0.5	U 0.5		.5 1	J 0.5	0.5	U 0.5	0.5		0.5	0.5	U 0.5	0.5	U	0.5	0.5	U	0.5	0.5	U	0.5
Chlorobenzene	5		ND	0.5	ND	0.5	0.5	U 0.			U 0.5			J 0.5		U 0.5			0.5	0.5	U 0.5		U		0.5	U	0.5	0.5	U	0.5
Chloroethane	5		ND	1	ND	1	1		1	1	U 1		1	J 1	1	U 1	1	U	1	1	UJ 1	1	U	1	1	U	1	1	U	1
Chloroform	7		ND	0.75	ND	0.75	0.75	U 0.:	75	0.75	U 0.7	5 0.	75 I	J 0.75	0.75	U 0.7	5 0.75	U	0.75	0.75	U 0.75	0.75	U	0.75	0.75	U	0.75	0.75	U	0.75
Chloromethane	5		ND	2.5	ND	2.5	2.5		.5	2.5	U 2.5		.5 l	J 2.5	2.5	U 2.5			2.5	2.5	U 2.5		Ū	2.5	2.5	U	2.5	2.5	U	2.5
cis-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	0.5		.5	0.5	U 0.5		.5 l	J 0.5	0.5	U 0.5		U	0.5	0.5	U 0.5		U	0.5	0.5	U	0.5	0.5	U	0.5
Dibromochloromethane	50		ND	0.5	ND	0.5	0.5	U 0.			U 0.5		.5 1	J 0.5		U 0.5			0.5	0.5	U 0.5		Ū	0.5	0.5	U	0.5	0.5	U	0.5
Dibromomethane	5		ND	5	ND	5	5	U 5		5	U 5		5 1	J 5		U 5	5		5	5	U 5	5	Ū	5	5	Ŭ	5	5	Ŭ	5
Dichlorodifluoromethane	5		ND	5	ND	5	5	U 5		5	U 5		5 I	J 5	5	U 5	5		5	5	U 5	5	Ιŭ	5	5	Ŭ	5	5	Ŭ	5
Ethyl ether	Ŭ		ND	2.5	ND	2.5	2.5		.5	2.5	U 2.5		.5 l	J 2.5	2.5	U 2.5			2.5	2.5	U 2.5		- Ŭ	2.5	2.5	U	2.5	2.5	U	2.5
Ethyl methacrylate			ND	5	ND	5	NA	N		NA	NA		IA A	NA	NA	NA			NA	NA	NA		Ť	NA	NA	0	NA	NA	•	NA
Ethylbenzene	5		ND	0.5	ND	0.5	0.5			0.5	U 0.5		.5 l	J 0.5	0.5	U 0.5			0.5	0.5	U 0.5		Ιu	0.5	0.5	U	0.5	0.5	U	0.5
Hexachlorobutadiene	0.5		ND	0.6	ND	0.6	0.6			0.6	U 0.6		.6 1	J 0.6		U 0.6			0.6	0.6	U 0.6		ĬŬ	0.6	0.6	Ŭ	0.6	0.6	Ŭ	0.6
lodomethane	5		NA	NA	NA	NA	NA	N		NA	NA		IA I	NA	NA	NA		1 1	NA	NA	NA		Ŭ	NA	NA	Ŭ	NA	NA	Ŭ	NA
Isopropylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.		0.5	U 0.5		.5 l	J 0.5		U 0.5			0.5	0.5	U 0.5		1	0.5	0.5	U	0.5	0.5	U	0.5
Methyl tert butyl ether	Ŭ		ND	1	ND	1	1		1	1			1		1		1		1	1	UJ 1	1	Ĭŭ	1	1	Ŭ	1	1	U U	1
Methylene chloride	5		ND	5	ND	5	5	U 5	5	5	U 5		5 1	J 5	5	U 5	5		5	5	U 5	5	Ĭŭ	5	5	U	5	5	U U	5
n-Butylbenzene	5		ND	0.5	ND	0.5	0.5		.5		U 0.5		ī_ .	J 0.5	0.5	U 0.5	-		0.5	0.5	U 0.5	Ŭ,	U		0.5	U	0.5	0.5	U	0.5
n-Propylbenzene	5	_	ND	0.5	ND	0.5	0.5	U 0.			U 0.5		.5 l	J 0.5		U 0.5			0.5	0.5	U 0.5				0.5	U	0.5	0.5	U	0.5
Naphthalene	10		ND	2.5	ND	2.5	2.5	U 2.			U 2.5		.5 l	J 2.5		U 2.5			2.5	2.5	U 2.5			2.5	2.5	U	2.5	2.5	U	2.5
o-Chlorotoluene	5		ND	2.5	ND	2.5	2.5	U 2.			U 2.5		_	J 2.5		U 2.5			2.5	2.5	U 2.5		L.	2.5	2.5	U	2.5	2.5	11	2.5
o-Xylene	5		ND	2.0	ND	2.0	2.0		1	2.0		, 2	1		2.0		1		2.0	2.0	U 1	2.0		2.0	2.0 1	1	2.0	2.0		2.0
p-Chlorotoluene	5		ND	2.5	ND	2.5	2.5	U 2.	5	2.5	U 2.5	: 2	.5 l	J 2.5	2.5	U 2.5	5 2.5	U	2.5	2.5	U 2.5	2.5		2.5	2.5	U	2.5	2.5	- U	2.5
p-lsopropyltoluene	5		ND	0.5	ND	0.5	0.5	U 0.			U 0.5			J 0.5		U 0.5			0.5	0.5	U 0.5			0.5	0.5	U	0.5	0.5	U	0.5
p/m-Xylene	5		ND	0.0	ND	0.0	0.0		1	1			1		0.0		1		1	0.0	U 1	0.0		0.0	0.0	U	1	0.0		1
sec-Butylbenzene	5		ND	0.5	ND	0.5	0.5	U 0.	Б	0.5	U 0.5		.5 l	J 0.5	0.5	U 0.5	0.5	U	0.5	0.5	U 0.5	0.5		0.5	0.5	U	0.5	0.5		0.5
-	5		ND	0.0		0.0	0.0		.0	1			1 1		0.0		1	U	1	0.0	U 1	0.5		0.0	0.5	U	0.0	0.5		0.5
Styrene tert-Butylbenzene	5 5	1	ND	2.5	ND ND	2.5	2.5	U 2.	5	2.5	U 2.5		1 (1.5 (J 2.5	2.5	U 2.5	5 2.5		2.5	2.5	U 2.5	2.5		2.5	2.5	U	2.5	2.5	U	2.5
Tetrahydrofuran	5 50		ND	2.0		2.5	Z.5 NA	U Z. N		2.5 NA	NA								Z.5 NA			2.0 NIA		Z.5 NA	Z.5 NA	U	Z.5 NA	Z.5 NA	U	
-		1			ND								IA 75 II	NA J 0.75	NA 0.75		NA 5 0.75	1 1		NA 0.75							NA 0.75		11	NA 0.75
Toluene	5		ND	0.75	ND	0.75		U 0.		0.75	U 0.7		.75 l								U 0.75			0.75	0.75			0.75	U	0.75
trans-1,3-Dichloropropene	0.4		ND	0.5	ND	0.5	0.5	U 0.			U 0.5		.5 l	J 0.5	0.5	U 0.5			0.5	0.5	U 0.5 U 2.5			0.5	0.5	U	0.5	0.5	U	0.5
trans-1,4-Dichloro-2-butene	5	1	ND	2.5	ND	2.5	2.5	U 2.			U 2.5		.5 l	J 2.5		U 2.5			2.5	2.5				2.5	2.5	U	2.5	2.5	U	2.5
Trichlorofluoromethane	5	1	ND	2.5	ND	2.5	2.5	U 2.		2.5	U 2.5			J 2.5	2.5	U 2.5	5 2.5		2.5	2.5	U 2.5			2.5	2.5	U	2.5	2.5 E	U	2.5 E
Vinyl acetate		1	ND	5	ND	5	5	U 5	0	5	U 5		5 เ	J 5	5	U 5	5	U	5	5	U 5	5	U	5	5	U	5	5	UJ	5

Groundwater Analytical Data

Orangetown Shopping Center - Brownfield Site #C344066

Orangeburg, New York

Orangeburg, New York									_										_		_				
LOCATION	TOGS SGC	lue	Trip Bla	ank	Trip E	Blank	Trip I	Blank	Trip I	Blank	Trip	Blank	Trip Bl	ank	Trip I	Blank	Trip	Blank	Trip	Blank	Т	ip Blank	ζ	Trip	Blank
Matrix	068	Guidance Value	wate	er	wa	ter	wa	ter	wa	ter	wa	ater	wate	er	wa	ter	wa	ater	w	ater		water		Wa	ater
SAMPLING DATE		danc	9/14/20	007	10/25/	2007	4/30/	2010	6/16/	2010	8/9/	2010	8/9/20)10	4/20/	2011	5/16	/2011	5/31	1/2011	6	/21/2011		6/22	2/2011
Units	NYSDEC	Gui	ug/l		ug	ı/I	u	g/l	u	g/l	u	g/l	ug/l	I	uį	<u></u>]/I	u	ıg/l	L L	ug/l		ug/l		U	ıg/l
PARAMETER	~		Results C	RL	Results	Q RL	Results (Q RL	Results	Q RL	Results	Q RL	Results	Q RL	Results	Q	RL Re	esulte (Q RL						
Dissolved Gases by GC																									
Ethane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Ethene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.5	U 0.5	0.5	U 0.5	0.5	U 0.5	NA		NA	NA	NA
Methane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Carbon Dioxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Anions by Ion Chromatography																									
Chloride	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Sulfate	250,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Nitrogen, Ammonia	2,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA
Nitrogen, Nitrate/Nitrite	10,000		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Phosphorus, Orthophosphate			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Sulfide	50		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA
Sulfite	200		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA			NA	NA
Dissolved Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Total Organic Carbon			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Iron, Ferrous			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Hardness			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Ferric Iron			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Total Metals																									
Antimony, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Arsenic, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Barium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Beryllium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Cadmium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Chromium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Copper, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Iron, Total	300		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Lead, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA
Manganese, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Mercury, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Nickel, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-			NA	NA
Selenium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Silver, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Thallium, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA				NA	NA
Zinc, Total			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA

Source: Alpha Analytical Lab Reports: L0713529, L0716004, L0716078, L0817489, L1006386, L1009164, L1012239, L1020006, L1105478, L1106875, L1107639, L1109071, andL1109210 ug/l = micrograms per liter Q = Laboratory Qualifier RL = Laboratory Reported Limit

NA = not analyzed ND = Not Detected at or above the Laboratory Reported Limit

Bold = detected above NYSDEC TOGS SCG

Note: See DUSRs in Appendix J or associated previously published reports for details regarding valiation and usability.

Appendix G – Excavation Work Plan

Orangeburg (Orangetown) Shopping Center ROCKLAND COUNTY, NEW YORK

Excavation Work Plan

NYSDEC Site Number: C344066

Prepared for:

UB Orangeburg, LLC 321 Railroad Avenue Greenwich, CT 06830

Prepared by: Groundwater & Environmental Services, Inc. 16 Mount Ebo Road South, Suite 21 Brewster, New York 10509 This Manual Prepared for:

UB Orangeburg, LLC 321 Railroad Avenue Greenwich, CT 06830

Excavation Work Plan Orangetown Shopping Center 1-45 Orangetown Shopping Center Orangetown, New York 10962 NYSDEC Index No. A3-0563-0906 NYSDEC Site No. C344066

Table of Contents

	of Contents	
List c	of Acronyms	. 4
1.0	NOTIFICATION	
2.0	SOIL SCREENING METHODS	. 3
3.0	STOCKPILE METHODS	. 4
4.0	MATERIALS EXCAVATION AND LOAD OUT	
5.0	MATERIALS TRANSPORT OFF-SITE	
6.0	MATERIALS DISPOSAL OFF-SITE	
7.0	MATERIALS REUSE ON-SITE	
8.0	FLUIDS MANAGEMENT	
9.0	COVER SYSTEM RESTORATION	
10.0	BACKFILL FROM OFF-SITE SOURCES	
11.0	STORMWATER POLLUTION PREVENTION	
12.0	CONTINGENCY PLAN	
13.0	COMMUNITY AIR MONITORING PLAN	
14.0	ODOR CONTROL PLAN	
15.0	DUST CONTROL PLAN	-
16.1	OTHER NUISANCES	19

NOTE: All cited Tables, Figures (Plates), and Appendices are components parts of the Site Management Plan.

List of Acronyms

Acronym	Definitio
AA	Remedial Alternatives Analysis
AOC	Area of Concern
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
bgs	below ground surface
CCR	Construction Completion Report
cDCE	cis-1,2-Dichloroethene
COD	Chemical Oxygen Demand
CPP	Community Participation Plan
CSM	Conceptual Site Model
CTR	Connecticut Tank Removal, Inc
DCE	Cis-1,2-Dichloroethene
DER	Division of Environmental Remediation
DNAPL	Dense Non-Aqueous Phase Liquid
DUSR	Data Usability Summary Report
EIP	Electronic Interface Probe
ESA	Environmental Site Assessment
EWP	Excavation Work Plan
FOIA	Freedom of Information Act
Ft	Feet
FWIA	Fish and Wildlife Impact Analysis
HVAC	Heating, Venting, and Air Conditioning
IC/EC	Institutional Controls/Engineering Controls
IP	Injection Point or Injection Well
in wc	Inches of Water Column
IRM	Interim Remedial Measure
IRMWP	Interim Remedial Measures Work Plan
IWP	Investigation Work Plan
JLJ	JLJ Management Co., Inc.
GES	Kleinfelder, Inc.
μg/L	micrograms per liter
$\mu g/m3$	micrograms per cubic meter
mg/L	milligrams per liter
MNA	Monitored Natural Attenuation
msl	mean sea level
mV	millivolt
NRCS	Natural Resource Conservation Service
NYS	New York State
NYSDEC	New York State Department of Environmental
NYSDOH	New York State Department of Health
NYSGS	New York State Geological Survey
OM&M	Operation, Monitoring and Maintenance
ORP	Oxidation Reduction Potential

Acronym	Definition
PCE	Tetrachloroethene
PID	Photo Ionization Detector
PVC	polyvinyl chloride
QA/QC	Quality Assurance/Quality Control
OM&M	Operations, Maintenance and Monitoring
RAO	Remedial Action Objective
RI	Remedial Investigation
RAWP	Remedial Action Work Plan
SCG	Standards, Criteria, Guidelines
SCO	Soil Cleanup Objectives
SDG	Sample Data Group
SSD	Sub-Slab Depressurization
SSDS	Sub-Slab Depressurization System
SVOC	Semi-Volatile Organic Compound
TCE	Trichloroethene
TOC	Total Organic Carbon
tDCE	trans-1,2-Dichloroethene
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey
VC	Vinyl Chloride
VOC	Volatile Organic Compound

1.0 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

Michael Squire New York State Department of Environmental Conservation Division of Environmental Remediation Remedial Bureau C 625 Broadway – 12th Floor Albany, New York 12233-7014

NYSDEC Division of Environmental Remediation Bureau of Technical Support 625 Broadway Albany, New York 12233-7020

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,

- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix C of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

2.0 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Screening with a photoionization detector (PID) with an 11.7 micro-volt lamp will be used to identify impacted soil. Any sample above 50 parts per million (ppm) will be considered impacted, and will be removed and disposed of off-site. In addition, select buckets of soil will be field screened with a Dexsil chlorinated solvent screening kit. Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil. Prior to being disposed of, soil identified as impacted will be stockpiled onsite, on top of and covered by 6 millimeter plastic sheeting.

3.0 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with by 6 millimeter plastic sheeting. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

4.0 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

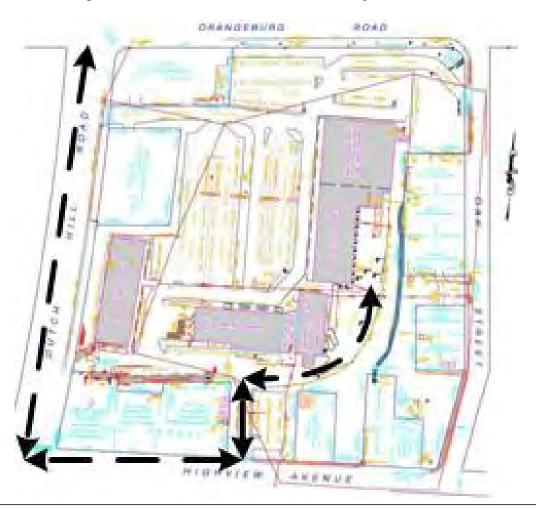
The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.



5.0 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used. All trucks will be washed prior to leaving the site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes shall be as shown below (see Figures 1 and 2).

Entry to the site shall begin at the corner of Orangeburg Road and Dutch Hill Road. Trucks will proceed south along Dutch Hill Rd. to Highview Ave. and turn south, proceeding until the entry point at the southerly paved ingress-egress point. Upon entry, trucks should proceed around the southeast walls for Buildings, #4 and #3 to the site. Exit from the site shall reverse this course. From the corner of Orangeburg Road and Dutch Hill Road, trucks may proceed by the most appropriate route. All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes;

(c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

6.0 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre- excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include waste profiles, test results, facility acceptance letters, manifests, bills of lading, and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

7.0 MATERIALS REUSE ON-SITE

Excavated soil may be re-used on site only if it is sampled and tested by the appropriate laboratory methods to demonstrate compliance with Commercial Use SCOs as setforth in Table 5.4(e)4 Reuse of Soil in the NYSDEC 2010 Technical Guidance for Site Investigation and Remediation document (called DER-10).

Sampling and analysis of these soils will be consistent with the following table extracted from NYSDEC's DER-10 guidance:

mposite	Discrete Samples/Composite
1	2 5 diameter complex from
	3-5 discrete samples from
1	different locations in the fill
1	being provided will comprise
1	composite sample for analysis
2	
2	
2	
2	
	1 2 2 2 2 1 1 composit

Sampling and analysis of soil must follow DER-10 Section 5.4(e)10 and Table 5.4(e)10. Samples will be a combination of discrete and composite samples, handled as follows. Samples to be analyzed for VOCs only must be grab samples. These grab samples are one or more discrete samples taken from the soil (fill), with the number as specified in the volatile column of Table 5.4(e)10 for the soil quantity in question, and analyzed for the VOCs identified in Appendix 5 of DER-10. For semi-VOCs, inorganics and PCBs/pesticides: one or more composite samples are collected from the volume of soil identified in Table 5.4(e)10 for analysis, with each composite from a different location in the fill volume. Each composite is prepared by collecting discrete samples from 3-5 random locations from the volume of soil to be tested and the samples are

mixed. After mixing, a sample of the composite mixture is analyzed for the SVOCs, inorganic and PCBs/pesticide constituents identified in Appendix 5 of DER-10.

Consistent with NYSDEC's DER-10 Section 5.4(f), soil exported from the site to locations other than permitted disposal facilities must have levels of contamination that do not exceed the lower of the groundwater and residential use levels as shown in Appendix 5 of DER-10, absent a beneficial use determination issued by NYSDEC. Sampling and analysis requirements for such soils are the same as discussed above. The NYSDEC project manager based on various factors, including the location of the site receiving the soil, may modify the number of required samples and type of analyses.

Chemical criteria for on-site reuse of material have been approved by NYSDEC and are listed in Table 1. The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

8.0 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be managed off-site.

Waste water generated as a result of dewatering activities may need to be transferred to a fractionation tank. If this is required, water from the excavation will be sampled and submitted for waste characterization. Water stored in the fractionation tank will be hauled to an approved treatment facility or discharged to site sewer under an approved permit depending on the volume and characteristics of the water generated.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream, or river) will be performed under a SPDES permit.

9.0 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities, the cover system will be restored in a manner that complies with the decision document. The demarcation layer, consisting of orange snow fencing material or equivalent material will be replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., asphalt is replaced by soil), this will constitute a modification of the cover element of the remedy and the upper surface of the Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan.

10.0 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

Solid waste will not be imported onto the site.

Imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). These imported soils (fill) must be sampled and analyzed following the protocols described in Section 7.0 above, and which are based on Section 5.4(3)10 of NYSDEC's DER-10 guidance and Table 5.4(3)10 therein. The material should not exceed the allowable constituent levels for imported fill or soil for the use of the site provided in Appendix 5 of the DER-10 guidance.

Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 1.

Soils that meet 'exempt' fill requirements under 6NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered with 6-millimeter plastic sheeting to prevent dust releases.

11.0 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

Silt fencing or hay bales will be installed around the entire perimeter of the construction area.

12.0 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (chlorinated VOCs, semi-volatiles, metals, pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

13.0 COMMUNITY AIR MONITORING PLAN

Groundwater and Environmental Services works under the guidance of the NYSDOH Generic CAMP to complete remedial activities at the site. The CAMP requires real-time monitoring for VOCs and particulates at the downwind perimeter of the designated work area when certain activities are in progress at contaminates sites. Continuous monitoring is required for intrusive work (*i.e.*, excavation) and was completed using air monitoring equipment such as a PID. Periodic monitoring is required for non-intrusive activities (ie: soil/groundwater sample collection).

A figure showing the location of air sampling stations based on generally prevailing wind conditions is shown in Figure [x]. These locations will be adjusted on a daily or more frequent basis based on actual wind directions to provide an upwind and at least two downwind monitoring stations. Residential areas are located east and south of the Site; therefore, fixed monitoring stations should be located at the eastern and southern perimeters.

Exceedances of action levels, and corrective measures taken, will be reported to NYSDEC and NYSDOH Project Managers within one business day.

14.0 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off- site. Specific odor control methods to be used on a routine basis (see below). If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

15.0 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on- site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

16.0 OTHER NUISANCES

A plan for rodent control will be developed and utilized by the contractor prior to and during site clearing and site grubbing, and during all remedial work.

A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

A plan will be developed with business tenants located within Building #2 prior to any remedial work to minimize disturbance to their business. All tenants will be notified at least 48-hours in advance of all remedial work.

Appendix H – H&S Plan

GROUNDWATER & ENVIRONMENTAL SERVICES, INC. HEALTH AND SAFETY PLAN

GROUNDWATER & ENVIRONMENTAL SERVICES, INC. HEALTH AND SAFETY PLAN

Cover Page

Site and Hospital Location (maps imbedded to print with cover)

Emergency Phone Numbers

Project Contact Information

Required Job Loss Analyses (linked to HSSE Library in SharePoint)

Additional Required Material Safety Data Sheets (if not already in Attachment E)

Required Work Permits

Site-Specific Chemical Hazard Monitoring (if not already in Attachment C)

Note to GES Staff – Content Placeholder Only! This is not the HASP Cover Page!

Obtain HASP Cover Page from HSSE tab included in the properly completed FWD Template. Refer to additional instructions in HSSE Sheet Tab in Excel.

Contents

Cover Page2
Site and Hospital Location (maps imbedded to print with cover)2
Emergency Phone Numbers2
Project Contact Information2
Required Job Loss Analyses (linked to HSSE Library in SharePoint)2
Additional Required Material Safety Data Sheets (if not already in Attachment E)2
Required Work Permits2
Site-Specific Chemical Hazard Monitoring (if not already in Attachment C)2
Introduction4
Approvals4
Project Organization and Responsibilities4
Accident / Incident Medical Surveillance4
Hazard Assessment5
Site Security5
Fire/Explosion5
GES Work Permits6
General Site Rules6
Attachment A – Field Forms9
Attachment B – GES Project Injury Case Management11
Attachment C – Exposure Monitoring Program21
Real-Time Monitoring21
Action Levels21
Attachment D – Tailgate Meeting Topics
Attachment E – Common Safety Data Sheets
Attachment F – Client and Program Specific Content

Introduction

Approvals

To simplify document review and approval, this Health and Safety Plan has been formatted to consolidate all site-specific information into two locations within the document. The main body of the document has been reviewed and approved by GES HSSE Leadership.

Two site-specific portions are reviewed and approved by the Project Manager prior to mobilization and should be modified for each event as necessary.

The two site-specific portions are the **Cover Page** and **Attachment A**.

- The **Cover Page** contains emergency contact information and initial risk assessment. The **Cover Page** is approved by the Project Manager prior to mobilization.
- Attachment A contains the field forms required to be completed during the event. Upon completion, Attachment A content is reviewed by the Project Manager for necessary follow-up and improvement activity.

Project Organization and Responsibilities

The GES project team typically consists of a Project Manager, a Field Supervisor, and an HSSE expert

The Project Manager is responsible for evaluating common site risks, communicating the work scope, stewarding field activity in progress, and approving the post-event documentation.

The Field Supervisor is responsible for implementing the scope and document compliance with the instructions, i.e. stewardship, accountability, etc.

The Regional Health Safety, Security and Environment (RHSSE) is responsible to evaluate overall work scope risk, with particular focus on high-risk activity, stewardship of HSSE reporting/incident management, and to provide quality review of HSSE systems and documentation.

Accident / Incident Medical Surveillance

As a follow-up to a work-related injury, all employees are entitled and encouraged to seek medical attention. All accidents and potential exposures must be reported <u>immediately</u> to the office leadership and / or Regional Health Safety, Security and Environment (RHSSE), who will coordinate with CHSSE to arrange for appropriate medical attention. Depending on the type of incident, it may be critical to perform tests within 24 to 48 hours. *Failure to report an injury or incident immediately will result in disciplinary action.* The GES Incident/Injury Case Management *Procedure* can be found in **Attachment B**.

Events surrounding Near Loss incidents will be recorded in the daily log and documented in accordance with the GES Incident Reporting Procedures.

Hazard Assessment

Job Loss Analyses (JLAs) are required for most site activities. Each JLA must identify and quantify the health and safety hazards associated with each task and site operation, and to evaluate risks to workers. Using this information, appropriate control methods are selected to mitigate or (preferably) eliminate the identified risks. Refer to the **Cover Page** for applicable JLAs.

Typical site Exposure Monitoring Program elements are included in **Attachment C**, which contains action levels for VOC, combustible gas (LEL), oxygen, and radiation. If necessary, additional site-specific exposure monitoring considerations are included on the **Cover Page**.

A daily discussion of site hazards is conducted at the start of each event during the tailgate safety meeting. Please refer to the GES' Tailgate Safety Meeting Checklist in **Attachment D** for specific meeting topics that should be covered.

Safety Data Sheets for the materials typically encountered during GES field events are in **Attachment E.** If additional SDS are required during non-standard activity, they are noted on the **Cover Page.**

Site Security

- Do not permit anyone who is not properly trained and outfitted with the appropriate PPE to enter the Exclusion or Contamination Reduction Zones (this includes GES personnel, clients, etc.)
- Use caution tape or barricade fencing where warranted to keep unauthorized personnel from entering the work area.
- On sites where it is believed that security is an issue, two employees will be used for all field work. The "buddy-system" will be in place and the two employees will be in constant communication and within each other's line of sight. There will be a cellular phone available to call 911 if a violent condition presents itself.
- When acts of violence occur or when an employee(s) feels that they are being placed in a threatening position they must immediately leave the site.
- All potential acts of violence or threats by non-GES personnel must be immediately reported to the Office leadership and / or Project Manager and Regional HSSE. The situation will be discussed to determine future action on the site in question.

If any GES employee notices suspicious persons or activities in a GES office or in the vicinity of a work area, he or she should immediately report the observation to his or her supervisor or Regional Operations Manager.

Fire/Explosion

If a fire is observed in the incipient phase (i.e., when it begins) and if the site personnel witnessing the fire feel secure in attempting to control the fire, the individual can attempt to extinguish the fire by using the onsite fire extinguisher. The fire extinguisher should be

a 10 or 20 pound (lb.) dry chemical, Class A, B, and C extinguisher and is adequate for paper and wood based products (A), flammable and combustible liquids (B), and electrical (C) type fires.

If there is no fire extinguisher available or if site personnel do not feel secure in attempting to extinguish the fire, site personnel shall perform the following.

- Secure the site and shut down equipment, if doing so does not place employees in harm's way.
- Evacuate the area using the nearest safe pathway from the area.
- Proceed to the nearest phone and call 911 and provide the emergency operator all required information. This will activate the emergency response system.

If more than one individual is on the site team, the individual activating the evacuation plan shall verbally communicate to the other site personnel that there is an emergency condition and that they should evacuate from the work area. If contact cannot be made verbally with the other site personnel, any of the following systems can be used as long as the system is audible above background noise. The system can be the site vehicle horn, a whistle, an air horn, or other acceptable device. The system used for initiating an evacuation from the site shall be discussed during the tailgate meeting with the other site personnel prior to beginning the workday. The system that is decided upon shall be documented in the pre-entry meeting notes.

If an explosion or other unsafe condition occurs that the site supervisor had determined will place the other site personnel at risk, then the evacuation system described above should be activated immediately.

GES Work Permits

Work permits will be required for Confined Space Entry, Hot Work and Lockout/Tag out as well as any Federal and client permitted activity. These permits must be completed prior to site work. Permits, if applicable, will be noted on the **Cover Page**, and included in **Attachment A**.

General Site Rules

The following general site rules apply to all personnel while on the site:

- Before daily site operations begin, the daily site safety checklist will be completed, the subcontractor's training documentation will be reviewed, and a pre-entry briefing will be held to review the site's health and safety plan concerns and emergency procedures. Please refer to the GES' Tailgate Safety Meeting Checklist in Attachment E for specific meeting topics that should be covered. This meeting will be registered, with attendance and all applicable notes documented using the field forms found in Attachment A.
- Some GES clients require specific HSSE elements including forms, checklists, and activities not included in this document. When client-specific elements are required, they are included in **Attachment F**.

- One site worker will be assigned to keep the daily log for all health and safety-specific site activities, unless otherwise specified.
- All personnel will wear safety-toe boots. Hard hats will be worn when working near heavy equipment (drill rigs, excavating equipment, etc.), when individuals are working with overhead hazards present, when required in the Job Loss Analysis (JLA), or when required by the client or facility.
- Eye protection and high visibility clothing/reflective safety vests will be donned at all times while on site.
- Possession of alcohol or illegal substances on the job site or consumption during hours of site operations is strictly prohibited.
- Food and/or beverages are not permitted within the site's established work zone. Food and/or beverages will be permitted in the Support Zone, if proper decontamination procedures are being followed.
- Smoking, including the use of e-cigarettes, is not permitted on any site. Chewing tobacco, snuff, application of cosmetics and/or lip balm is not permitted in the site's established work zone.
- A change in level of protection will be based on air monitoring equipment readings taken in the breathing zone.
- Field personnel will use air monitoring equipment and not their nose to determine site contamination (i.e., sniffing sampled soils or water in jars, confined spaces, open bore holes or trenches, etc.). Odors detected during the course of standard operating procedures, however, should be noted in the daily log.
- Field personnel should not stand with their head directly over a well when it is being opened.
- First Aid Kit(s) and Fire Extinguisher(s) will be placed in a conspicuous location, within 50 feet of the working area, and the crew will be aware of its location.

<u>Note:</u> Hot work activities require that a person onsite shall act as a fire watch with a Class A, B, C dry chemical extinguisher within 10 feet of the activity, and all necessary work requirements are satisfied.

Any revisions to the final Site-Specific Health and Safety Plan must be reviewed by the Project Manager and approved by the RHSSE.

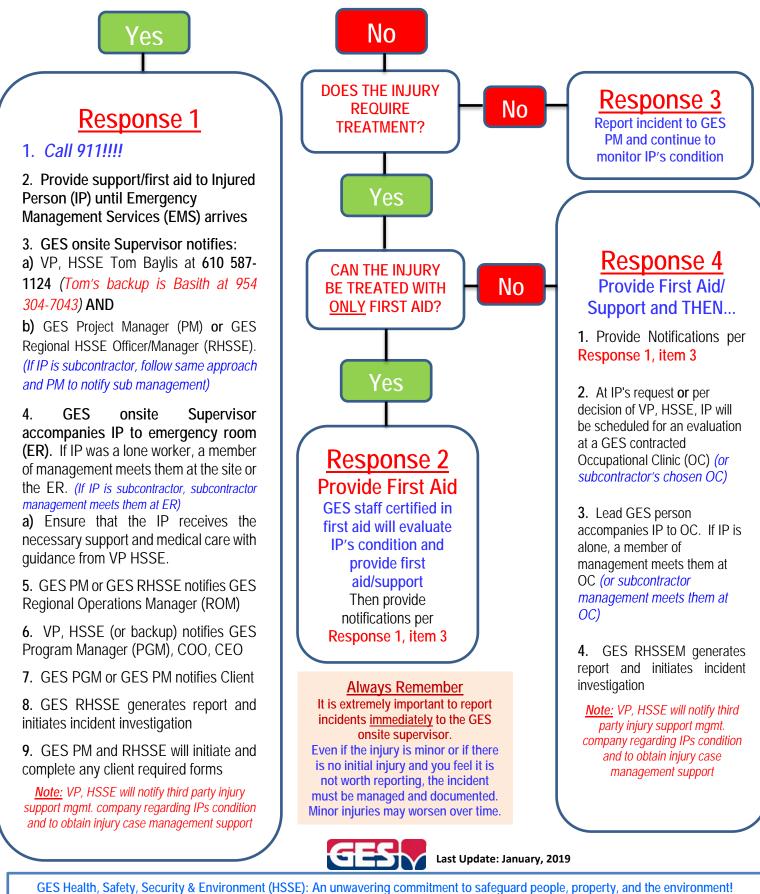
Attachment A

FIELD FORMS

Attachment A – Field Forms

- PRE-ENTRY MEETING NOTES/ATTENDANCE
- SITE SAFETY AND HEALTH PLAN COMPLIANCE AGREEMENT
- GES DAILY SITE SAFETY CHECKLIST

Please refer to Attachment A included in the approved FWD (HSSE Tab) or replace this page with Attachment A included in the approved FWD.


Attachment B

GES PROJECT INJURY CASE MANAGEMENT FLOWCHART

GES PROJECT INJURY CASE MANAGEMENT

If an incident/injury occurs on-site to a GES or a subcontractor employee, <u>the incident/injury must be immediately</u> <u>reported to the GES Onsite Supervisor</u>. If a subcontractor is injured, also notify subcontractor management.

DOES THE INJURY REQUIRE EMERGENCY MEDICAL ATTENTION?

Attachment C

EXPOSURE MONITORING PROGRAM

FOR THE TYPICAL CONTAMINANTS OF CONCERN

Attachment C – Exposure Monitoring Program

Real-Time Monitoring

Photo-ionization Detector (PID): Real-time monitoring for volatile organic compounds (VOCs) will be conducted using a photo-ionization detector (PID). The PID will be used to monitor employee breathing zones during all invasive activities. **Table 1** lists PID action levels and response requirements

Combustible Gas Indicator/Oxygen Level Meter: Real-time monitoring for combustible gases and oxygen levels will be conducted using a Combustible Gas Indicator (CGI)/Oxygen Level Meter. The CGI will test for the presence of combustible gases by continuously monitoring the lower explosive limit (LEL) of organic vapors. The CGI will be used to monitor the LEL prior to, and during, Confined Space (CS) entries and during work near an excavation in contaminated soil. The Oxygen Level Meter will detect an oxygen-deficient or oxygen-enriched atmosphere, and will be used prior to, and during, all CS entry activities. If ionizing radiation is suspected at a site, a Geiger counter will be used to measure exposure under guidance of a Health Physicist. **Table 2** lists CGI, Oxygen Level Meter, and ionizing radiation action levels and response requirements.

Depending on the Contaminants of Concern, other forms of real-time monitoring equipment may be required to quantify chemical hazards and protect workers from exposure. These may include, but are not limited to bio-aerosol monitors, detector tubes, dust monitors, FROG meters, etc.

- **Calibration of Real-Time Monitoring Equipment**: Monitoring and calibration protocols will be performed in accordance with the manufacturer's guidelines. Calibration will be performed, at a minimum, prior to each day's use.
- Calibration logs will be maintained by the field personnel performing the calibrations.

Action Levels

Tables 1 and **2** list the action levels and response requirements for a PID and CGI/Oxygen Level Meter. Changing levels of protection, upgrading respiratory protection, or changing work practices is based on maintaining the upper limit of the action level for approximately **10 minutes** sustained in the breathing zone (i.e., a non-transient reading) or at the discretion of the Site Supervisor. If changes in protection levels are required, the Site Supervisor will, stop the job, notify the Project Manager who will contact Regional Engineering and CHSSE to determine if administrative or engineering controls can be implemented to mitigate or eliminate the hazard.

Table 1 provides action levels that must be complied with when petroleum products such as gasoline are the known site contaminants.

Table 4 provides space to document site-specific action levels, should the site contain other potential site contaminants. Action levels must be determined by consultation with/approval by CHSSE, based on established chemical exposure limits and monitoring instrument response factors.

Table 1 – PID Action Levels (Petroleum)

Meter Response (Breathing Zone)	Action Required
PID response <5 units above background	No respiratory protection required (i.e., Level D)
PID response >5 units above background (Bkgd.) and < 50 units above Bkgd.	Stop work. Investigate the cause of elevated VOC measurements. Contact the Project Manager or office and determine if administrative or engineering controls can be implemented to mitigate or eliminate the elevated readings. If not medically qualified to wear respiratory protection, leave work zone. If the elevated readings cannot be reduced below 5 units above background or eliminated, and if medically qualified, fit tested and trained to wear respiratory protection, then upgrade to Modified Level C, half- face respiratory protection.
PID response >50 units and < 250 units above Bkgd.	Stop work. Investigate the cause of elevated VOC measurements. Contact the Project Manager or office and determine if administrative or engineering controls can be implemented to mitigate or eliminate the elevated readings. If not medically qualified to wear respiratory protection, leave work zone. If the elevated readings cannot be reduced below 5 units above background or eliminated, and if medically qualified, fit tested and trained to wear respiratory protection, then upgrade to Modified Level C, full- face respiratory protection.

PID response > 250 above Bkgd. Retreat from site ^{1,2}

- ¹ If a retreat becomes necessary, CHSSE or Regional Engineering will be consulted in regard to adding mechanical ventilation or possible changes in work practices. Work will not resume until appropriate corrective measures are implemented.
- ² Because direct reading instruments cannot indicate or are not compound specific, concentrations shown on the instruments shall be related to units above background and not parts per million (ppm).

Table 2 CGI/O2/Radiation Level Action Levels

Meter Response	Action
CGI response < 10 % LEL	Continue normal operations.
CGI response > 10 % and <20 % LEL	Eliminate all sources of ignition from the work area; implement continuous monitoring. However if work is being done in a confined space, retreat from work area. ¹
CGI response > 20 % LEL	Discontinue operations; allow to vent; retreat from work
Oxygen level < 19.5%	Retreat from work area. 1
Oxygen level > 23.5%	Retreat from work area. ¹
3X background to <2 mR/hr.	Radiation above background levels (normally 0.01-0.02 mR/hr.) signifies possible source(s) radiation present. Continue investigation with caution. Perform thorough monitoring. Consult with a health physicist .
>2mR/hr.	Potential radiation hazard. Evacuate site. Continue investigation only upon the advice of a health physicist

¹ If a retreat becomes necessary, CHSSE or Regional Engineering will be consulted in regard to adding mechanical ventilation or possible changes in work practices. Work will not resume until appropriate corrective measures are implemented.

Table 3 – Retail Petroleum Materials of Concern	Table 3 -	- Retail	Petroleum	Materials	of	Concern
---	-----------	----------	-----------	------------------	----	---------

Contaminant	OSHA TWA (ppm)	ACGIH TLV (ppm)	Hazards	Entry Routes	IP
Benzene	1	10	1,2,4,5,6,9	Inh, Abs, Ing, Con	9.24
Xylene	100	100	1,2,3,4,5,6,7,10	Inh, Abs, Ing, Con	8.56
Ethylbenzene	100	100	1,2,3,10	Inhh,, Ing, Con	8.76
Toluene	Toluene 200		1,2,3,4,5,7,10	Inh, Abs, Ing, Con	8.82
TWA = Time Weighted Average in parts per million (ppm) C = Ceiling IP = Ionization Potential6 = may cause nausea and vomiting 7 = may cause liver and kidney damage 8 = irritant to GI tract 9 = carcinogen/possible carcinogen 10 = may cause damage to CNS					
			7 = may cause 8 = irritant to GI 9 = carcinogen/	liver and kidney damage tract possible carcinogen	

Table 4 – Other (non-petroleum compounds) Contaminants of Concern

Contaminant	OSHA TWA (ppm)	ACGIH TLV (ppm)	Hazards	Entry Routes	Action Levels*

Non-Petroleum contaminants of concern should be included on the Cover Page included in the HSSE Tab in the FWD.

*Action levels must be determined by consultation with/approval by CHSSE, based on established chemical exposure limits and monitoring instrument response factors.

TWA = Time Weighted Average in parts per mill C = Ceiling IP = Ionization Potential	lion (ppm)
 1 = irritant to skin 2 = irritant to eyes 3 = irritant to respiratory system 4 = may cause headache 5 = may cause dizziness, lightheadedness 	 6 = may cause nausea and vomiting 7 = may cause liver and kidney damage 8 = irritant to GI tract 9 = carcinogen/possible carcinogen 10 = may cause damage to CNS

<u>Note</u>: Consult standard reference manuals for air concentration/toxicity data. Action level depends on PEL/REL/TLV. These Action Levels, if not defined by regulation, is some percent (usually 50%) of the applicable PEL/REL/TLV. That number must also be adjusted to account for instrument response factors.

Attachment D

GES TAILGATE SAFETY MEETING TOPICS

Attachment D – Tailgate Meeting Topics

• Introductions:

- ✓ How is everyone feeling today?
- If working with new subcontractors, multiple subcontractors, or personnel that haven't worked together before, have everyone introduce themselves and their role.
- Review OSHA, LPS, and client specific credentials.
- ✓ Review that everyone is responsible for their own safety, and to look out for everyone else on site.

• Stop Work Reminder For All Present

- ALL on-site personnel have the AUTHORITY, OBLIGATION and RESPONSIBILITY to stop the job at any time if they observe unsafe acts, situations or conditions!
- Please report all Losses, Near Losses, injuries, and any other abnormal situations to the GES Site Supervisor immediately.

• HASP and Emergency Information

- ✓ Hospital location: (We do NOT transport seriously injured personnel). Call 911
- ✓ First aid kit, eye wash, fire extinguisher, fuel service emergency stop, and HASP locations
- ✓ Review of First Aid/CPR trained site personnel
- ✓ Review "emergency stop work" signal, establish safe muster point, smoking and break location(s)
- ✓ Discuss what type of site activities could trigger a "stop work" alert (injury, fuel delivery, unexpected 3rd party site intrusion, weather, etc.)
- ✓ Decontamination procedures
- ✓ Emergency procedures

• Discuss Scope Of Work For The Day

- ✓ What do we expect to accomplish today?
- ✓ Review the anticipated schedule, but emphasize the need to work safe. <u>Safe operations cannot be</u> replaced by "need for speed"

• JLA Discussion Regarding The Day's Tasks

- ✓ Focus on making every JLA Site Specific
 - If working with subcontractors, empower them with the JLA review of the tasks they will be performing
 - Challenge them as a "job expert" to share experiences
- ✓ "What conditions and challenges exist on this site today that are not accounted for in our JSAs?"
- Review and complete checklists and permits
- If necessary, insure appropriate spotters, and establish communications between spotters and equipment operators

Equipment/Machinery/PPE Check

- ✓ Gas, grease and oil checked
- ✓ Safety devices checked and in working order
- Required and recommended Personal Protective Equipment (PPE) on site and in good condition (per JLA).
- ✓ Proper signage (Fence, traffic, drums, samples...)

LPSA/Hazard Communication

- Ask all site personnel to communicate a LPSA they performed since coming on site (you 1st, and then go around to every individual on site.)
- Emphasize that LPSAs and Hazard Recognitions should be performed and shared constantly throughout the day, not just at Tailgate Safety Meetings and "Take 2 at 2 meetings"!
- Encourage and empower all site personnel to communicate LPSAs out loud as they are performing them to share experiences and increase site awareness
- Reminder YOU are not only responsible for their own safety, but to look out for everyone else on site.
- ✓ Finally Stress the need and benefit of LPSAs. They are the most powerful tool in our toolbox.

Attachment E

COMMON SAFETY DATA SHEETS (SDS)

Attachment E – Common Safety Data Sheets

Replace this page with content supplied in SharePoint Library

http://sharepoint.gesonline.com/HSSE/Safety%20Data%20Sheets/Forms/AllItems.aspx

Attachment F

CLIENT AND PROGRAM SPECIFIC DOCUMENTS

Your Role in LPS **(5)** Report Losses Report Near Losses ③ Participate in LPOs **O Use / JLAs O**Do/LPSAs

My LPS Checklist

Do LPSAs

- **O** At beginning of the shift, before starting work
- ${\bf O}$ Before changing tasks during the day
- O For non-routine work activities
- ${\bf O}$ After a loss or significant near loss
- ${\bf O}$ When conditions change
- ${\boldsymbol O}$ Off the job, as well as at work

Use JLAs

- **O** Ask your Supervisor if a JLA exists for the job; JLAs are used in addition to the LPSA tool
- ${\bf O}\,$ If a JLA does not exist, use the LPSA tool
- **O** Review the JLA to ensure you understand critical job steps, potential hazards and actions to mitigate and/or eliminate hazards
- ${\bf O}\,$ Follow the JLA while doing the job

Report Losses/Near Losses

- **O** Understand what Losses and Near Losses are
- **O** Report Losses and Near Losses to your Supervisor immediately

Participate in LPOs

- **O** Understand LPO purpose and objective
- O Engage in the process when you are being observed

LPS Basic Training

"The culture of safety starts with **leadership** because leadership drives **behavior** and behavior drives **culture**."

ExxonMobil GREF SSHE

Loss Prevention System (LPS)

A SIMPLE set of tools that work together to focus on behaviors.

After reviewing this brochure, ask your Supervisor to review the LPSA card and a JLA with you in more detail.

Why do you need to know LPS?

LPS focuses on positively influencing behaviors to reduce injuries, environmental and security incidents and property damage.

LPS is part of our daily business at GREF... so that

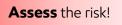
NOBODY GETS HURT!

Basic concepts of LPS

Everyone is involved.

Provides tools and activities that work together to eliminate loss.

Focuses on reinforcing safe behaviors and eliminating undesirable behaviors.


For more information goto/GREFLPS

LPSA Loss Prevention Self-Assessment

A brief, unwritten risk assessment. The simplest, most important tool you will use.

Purpose: Identify and eliminate potentially unsafe practices and hazards.

The simplest, **most important** tool you will use

Analyze how to reduce the risk!

Act to ensure safe operations!

Step 1: ASSESS the risk!

Ask, "What could go wrong, and what is the WORST thing that could happen if something does go wrong?" - use the back of the LPSA card

Step 2: ANALYZE how to reduce the risk!

Ask, "Do I have the training and knowledge to do this job properly and do I have all the proper tools and PPE?"

Step 3: ACT to ensure loss-free operations!

Take necessary action to ensure the job is done properly. Follow the JLA. If you are uncertain whether all hazards have been addressed, stop and get help from a colleague or Supervisor.

Job Loss Analysis (JLA)

A written tool used to record the critical steps of a job task, identify potential risks, and determine the best procedures to follow in order to perform the job properly.

Purpose: To provide a written and approved safe work standard for how to perform a task.

Three main sections:

- 1. Critical steps of the task
- 2. Risks associated with each step
- 3. Actions to prevent/manage risk

JLAs must be reviewed before starting the job and used while doing the job. Incorrect or incomplete information on JLAs should be reported to a Supervisor for correction/ completion.

Loss/Near Loss (LI/NLI)

A Loss is an event that resulted in an unwanted impact on the safety or health of people, or on property, environment, security, etc.

A Near Loss is an event which could have resulted, under slightly different circumstances, in a Loss.

• Report all Losses and Near Losses immediately to your Supervisor

Loss Prevention Observation (LPO)

A scheduled activity to observe how a task is performed as compared to written standards.

Purpose: LPOs are done to identify both positive and undesirable behaviors and conditions.

You may be observed doing a work task. If so, perform the task as normally done. After the observation, the Observee, Observer and Observee's Supervisor hold a feedback session to discuss positive and questionable items. LPOs are not performance reviews.

Appendix I – O&M Manual

UB Orangeburg, LLC

BIO-AUGMENTATION SYSTEM OPERATION, MAINTENANCE, AND MONITORING PLAN

1-45 Orangeburg (Orangetown) Shopping Center Orangeburg, New York NYSDEC Site #C344066

10/25/2019

Version 3.0

Bio-Augmentation System Operation, Maintenance, And Monitoring Plan

UB Orangeburg 1-45 Orangeburg (Orangetown) Shopping Center Orangeburg, New York NYSDEC Site #C344066

Prepared for: UB Orangeburg, LLC 321 Railroad Avenue Greenwich, CT 06830

Prepared by:

Groundwater & Environmental Services, Inc. 63 East Main Street, Suite 3 Pawling, New York 12564 TEL: 866-839-5195 www.gesonline.com

GES Project: 1102664

Date: October 25, 2019

nh

Jessica M. Thomas Staff Remediation Specialist

Michael Degloria

Michael DeGloria, P.G Principal Project Manager

Table of Contents

1	IN	ITRODUCTION1
	1.1	Site Description1
	1.2	Roles and Responsibilities2
2	BI	O-AUGMENTATION SYSTEM DESCRIPTION
	2.1	System Overview
	2.2	Description of BAS Injection Equipment3
3	B	AS SYSTEM OPERATION AND MAINTENANCE4
	3.1	Operation and Maintenance Schedule4
	3.2	Routine Operation and Maintenance4
	3.3	Non-Routine Operation and Maintenance5
	3.4	Tools and Spare Parts5
	3.5	Shutdown and Restart5
4	B	AS SYSTEM MONITORING
	4.1	Zone of Influence and Injection Performance Monitoring5
	4.2	Additional Injections and Monitoring6
	4.3	TOC6
	4.4	pH and TOC6
	4.5	pH only6
	4.6	Post Injection Monitoring7
5	R	eporting7
6	C	ontingency Plan7

Figures

Note: These are provided within the Site Management Plan

Figure 7 – Bio-augmentation Injection Well Configuration Figure 8 – Monitoring Well and Lateral Well Injection Configuration Map

Appendices

Note: These are provided within the Site Management Plan

Appendix G – Forms

Acronyms

ACCO	ACCO Brands, Inc.
AGV	Air Guideline Value
ASP	Analytical Services Protocol
BAS	Bio-Augmentation System
BCA	Brownfields Cleanup Agreement
BCP	Brownfields Cleanup Program
BGS	Below Ground Surface
CAMP	Community Air Monitoring Plan
CCR	Construction Completion Report
CLP	Contract Laboratory Protocol
COC	Certificate of Completion
CPR	Cardiopulmonary Resuscitation
DCA	Dichloroethane
DCE	Dichloroethene
DER	Division of Environmental Remediation
DO	Dissolved Oxygen
DNAPL	Dense Non-Aqueous Phase Liquid
DUSR	Data Usability and Summary Report
EC	Engineering Control
ECL	Environmental Conservation Law
EE	Environmental Easement
EIP	Electronic Interface Probe
ELAP	Environmental Laboratory Approval Program
EPA	Environmental Protection Agency
EWP	Excavation Work Plan
FER	Final Engineering Report
FT	Feet
GES	Groundwater & Environmental Services, Inc.
GES	GES Engineering of New York P.C.
GWQS	Groundwater Quality Standard
HASP	Health and Safety Plan
HASPA	Health and Safety Plan Addendum
HVAC	Heating, Venting, and Air Conditioning
IC	Institutional Control
IDW	Investigation Derived Waste
IN-WC	Inches of Water Column
IRM	Interim Remedial Measure
IRMWP	Interim Remedial Measure Work Plan
ISCO	In-Situ Chemical Oxidation
JLJ	JLJ Management Company
KLF	Kleinfelder
KMnO4	Potassium Permanganate
MFR	Multi-Family Residential

MIP	Membrane Interface Probe
MSL	Mean Sea Level
NYCRR	New York Codes, Rules and Regulations
NYS	New York State
NYSDEC	New York State Department of Environmental Conservation
NIVEDOLI	New York State Department of Health
O&M	Operation and Maintenance
	•
	Operation, Monitoring, and Maintenance Oxidation Reduction Potential
0	
OSHA	Occupational Safety and Health Administration
PCB	Polychlorinated Biphenyls
PCE	Tetrachloroethene
PPE	Personal Protective Equipment
PTWP	Pilot Test Work Plan
QA/QC	Quality Assurance / Quality Control
QAPP	Quality Assurance Project Plan
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RDWP	Remedial Design Work Plan
RI	Remedial Investigation
SDS	Safety Data Sheet
SCO	Soil Cleanup Objective
SSDSs	Sub-Slab Depressurization Systems
SMP	Specific Management Plan
SSMP	Site-Specific Management Plan
SV	Soil Vapor
SVE	Soil Vapor Extraction
SVI	Soil Vapor Intrusion
SVOC	Semi-Volatile Organic Compound
TAGM	Technical and Administrative Guidance Memorandum
ТСА	Trichloroethane
TCE	Trichloroethene
TCL	Target Compound List
TOC	Total Organic Carbon
US	United States
VC	Vinyl Chloride
VC	Voluntary Cleanup Agreement
VCA	Voluntary Cleanup Agreement Voluntary Cleanup Program
VGAC	Vapor-Phase Granular Activated Carbon
VGAC	Volatile Organic Compound
000	

1 INTRODUCTION

At the request of UB Orangeburg, LLC, Groundwater and Environmental Services, Inc. (GES) has prepared this Bio-augmentation System Operation, Maintenance and Monitoring Plan (OM&M Plan) for Orangetown Shopping Center located at 1-45 Orangetown Shopping Center in Orangetown, New York (Subject Property). An Interim Remedial Measures Work Plan (IRM) was submitted to New York State Department of Environmental Conservation (NYSDEC) in August 2008 and subsequently approved October 1, 2008. The Bio-augmentation Interim remedial measure system installation and performance is described in Construction Completion Report #3 approved by NYSDEC on August 30, 2011. A Remedial Action Work Plan (RAWP) was submitted to NYSDEC in December 2011. Per the RAWP, an additional injection gallery by way of placement of injection well points to treat impacted groundwater leaving the Site was installed in May 2012. In addition to the injection well points, six additional monitoring wells (MW-A through MW-F) were installed to evaluate the effects of bio-augmentation to the plume. The RAWP presented the design details and a basic OM&M Plan for the proposed Bio-augmentation System (BAS) system modifications to be installed at the Subject Property. The purpose of the existing BAS and modifications proposed in the RAWP was to facilitate in-situ biodegradation of chlorinated volatile organic compounds present in groundwater and saturated soils at the Subject Property in order to achieve the groundwater remedial action objectives. As of September 2017, a number of wells formerly associated with the bio-augmentation system were abandoned (MW-A, MW-B, MW-C, MW-D and MW-F) following approval from the NYSDEC. Additionally, in August 2019 the NYSDEC approved a reduction from quarterly monitoring of the BAS to annual monitoring only.

This OM&M Plan provides additional details regarding the protocols and procedures involved with the operation, maintenance and monitoring of the existing BAS.

1.1 Site Description

The shopping center contained a dry cleaning operation (Sparkle Cleaners), which had a historic release of perchloroethylene (PCE) through a leaking sewer line. Initial indications of potential site impact were discovered in 2004, which led to a site characterization, subsequent notification of NYSDEC in 2005, and application to the New York State BCP in 2006.

JLJ entered into a Brownfield Cleanup Agreement (BCA) with the NYSDEC in January 2007, to investigate and remediate a portion of it property (the Orangetown Shopping Center) located in Hamlet of Orangeburg, Town of Orangetown, County of Rockland, New York (Brownfield Cleanup Program [BCP] Site #C344066). The Orangetown (Orangeburg) Shopping Center BCP site (hereinafter the site) is approximately 1.2-acre in size, and is situated within an 11-acre retail property identified as a portion of Block 1 and Lot 67 on Orangetown Tax Map # 74.10. The boundaries of the retail property include Orangeburg Road to the north, residential homes and Highview Avenue to the south, residential homes and Oak Street to the east, and Dutch Hill Road to the west together with commercial and office properties (see Plate 1). This site is being remediated to commercial use, and will be used for commercial (retail) property for the foreseeable future.

The shopping center has seven distinct building components, including five retail buildings. The surrounding area is a well-developed village/town setting, characterized by general business, commercial, and institutional (public) development. The Town of Orangetown designates this general area as a Commercial (CS) Zone. Refer to Site Locus (Plate 1) and Site Layout (Plate 2).

The interim remedial measure (IRM) remedial excavation conducted in January 2009 removed impacted soils from the known source area, with the exception of some detectable chlorinated VOCs above soil cleanup objectives (SCO) in certain portions of the excavation as discussed in the Source Removal Construction Completion Report (CCR) (KLF 2011a). It also appeared that some impacted soils remained under the building immediately adjacent to the eastern foundation wall (based upon the findings at the western- most extent of the source removal excavation, discussed above). Because contaminated subsurface soils and groundwater remain after completion of the source removal IRM, two additional IRMs were implemented at the site (see IRMWP [KLF 2008b): a sub-slab depressurization system (SSDS) to mitigate the potential for vapor intrusion into the southern portion of Building #2 and a bio-stimulation system designed to promote microbial degradation of the contaminants in the saturated soil and groundwater.

The details regarding previous investigations and remedial activities conducted at the site as well as a description of the site geology and hydrogeology are included in the Remedial Investigation report prepared by Kelinfelder (KLF) in May 2008 and revised in August 2008 (KLF, 2008).

1.2 Roles and Responsibilities

Contact	Title	Company	Phone Number
Michael DeGloria, PG	Principal Project Manager	GES	866-839-5195, extension 3839
Jessica Thomas	Staff Remediation Specialist	GES	800-360-9405, extension 4328
Rich Brown	NE Region Field Technician Manger	GES	866-839-5195, extension 3836
Monica Roth	Assistant Vice President	Urstadt Biddle Properties, Inc.	203-863-8203
Michael Squire	Project Manager	NYSDEC	518-402-9662

Primary roles have been identified and assigned as follows:

Site owner through its environmental consulting contractor (currently GES) is responsible for completing BAS performance monitoring and injection events (both routine and non-routine) and documenting work by completing the OM&M data sheets during each site visit and evaluating BAS monitoring groundwater analytical results. An example OM&M data sheet is included as **Appendix G**.

Additionally, Site Owner through its environmental consulting contractor is responsible to perform the following:

• Scheduling and conducting injection events and injection performance groundwater monitoring events.

- Providing staff training on the OM&M aspects of the project.
- Preparing and submitting annual Periodic Review Reports to the NYSDEC.
- Updating this OM&M manual to reflect changes to the BAS system.

2 **BIO-AUGMENTATION SYSTEM DESCRIPTION**

The purpose of the BAS at the Site is to facilitate in-situ bio-degradation of chlorinated volatile organic compounds in saturated soils and groundwater. Its various components are described below.

2.1 System Overview

The BAS, installed in 2010, consists of four injection points (IP-1 through 4) and conveyance piping connected to existing groundwater monitoring well MW-3. Stubs ups for injection are located within a locked weather tight box outside the rear door of the former Sparkle Cleaners. The system construction is documented in Construction Completion Report – 3. The system allows for gravity fed or low pressure injection of molasses into injection points IP-1 through 4 and MW-3. Additional injection points were installed in accordance to the RAWP.

The system includes the following components as shown on Figures 7 and 8:

- Four individual injection points each with flow control valve and stub ups for connection to the batch injection tank.
- One monitoring well (MW-3) converted for injection with conveyance piping, control valve, and stub up for connection to the batch injection tank.
- A north-south trending injection gallery located along the eastern edge of the macadam pavement behind Building #2 (see **Figure 7**), and made-up of nine injection wells/ points.
- Three lateral injection points installed below the floor slab within the former Sparkle Cleaners (see **Figure 8**).

The injection area is monitored using site monitoring wells (MW-4 and MW-5).

2.2 Description of BAS Injection Equipment

- One portable 225 gallon polyethylene mix tank with side drain ball valve and top opening used to mix the molasses and potable water to achieve the injection concentration.
- One Rubbermaid[™] locked enclosure containing the conveyance piping stub ups at the rear of the former Sparkle Cleaners.
- One 1" hose to connect the mix tank to the injection point stub ups.
- One 12 volt portable utility pump for injection solution mixing and low pressure injection (0-10 PSI).

3 BAS SYSTEM OPERATION AND MAINTENANCE

This OM&M Plan describes the measures necessary to operate, monitor, and maintain the BAS system to be installed at the Subject Property. The specific task objectives are as follows:

- Perform BAS monitoring well network sampling (annually with additional events as needed to optimize BAS performance, see section 4 for monitoring details).
- Perform bio-augmentation injections on an as needed basis to maintain the monitoring network performance criteria as described under section 4 below.
- Record monitoring data to determine optimal system operational parameters and provide documentation for non-routine OM&M reports.

In order to accomplish the objectives described above, a schedule and list of tasks as part of this OM&M Plan and these are presented below.

3.1 Operation and Maintenance Schedule

OM&M visits will be conducted to assess the effectiveness of the BAS based on the following proposed schedule:

- BAS groundwater monitoring well network sampling annually (MW-4 and MW-5).
- Injection frequency based BAS performance targets.

3.2 Routine Operation and Maintenance

System adjustment and maintenance of the BAS will be performed during each site visit in addition to monitoring and recording the following on the OM&M data sheet:

- Security issues, vandalism, system damage, equipment or conveyance malfunction, connection integrity, or environmental effects.
- Gauging of BAS monitoring network wells.
- Ground water sampling with field parameter collection.
- pH adjustment titration for each monitoring point with field measured pH outside of the target range.
- Visual inspection of piping stub ups and BAS monitoring network well road boxes and well pads, injection well road boxes and well pads.

Upon completion of the OM&M inspections, field staff will transfer inspection information (i.e. notes, completed OM&M data sheets and photographs) to the appropriate GES data management personnel. The GES project management team will routinely review the inspection findings to note issues with the BAS. GES will maintain copies of inspection data for use in developing annual reports to be submitted to NYSDEC.

An example OM&M data sheet is included in **Appendix G**. This form will be filled out during each field event and a copy will be returned to the site and placed in the on-site OM&M binder during the next site visit. The duplicated will be stored in the hazard communications box located on the eastern (rear) side of the building and one copy will be maintained in the project file. This OM&M Plan will also be stored in the hazard communications box at the Subject Property for as-needed reference during performance of the OM&M activities.

3.3 Non-Routine Operation and Maintenance

Non-routine operation and maintenance will be performed as a follow-up to deficiencies noted during the OM&M visits. If repairs cannot be readily made in the field, GES (or its subcontractors) will identify options to remedy the issue. If it appears that significant BAS modifications are required, NYSDEC will be notified prior to the commencement of any modification work.

3.4 Tools and Spare Parts

Tools and one set of spare parts required for the OM&M tasks will be stored in the GES office and brought to the Subject Property by the field staff conducting the OM&M inspection. These spare parts will be available in the event that repairs are required during the OM&M inspections.

3.5 Shutdown and Restart

The BAS system will not be equipped with shutdown sensors or a telemetry system. The BAS system will only be operated with GES personnel on Site.

4 BAS SYSTEM MONITORING

Geochemical targets for pH and total organic carbon (TOC) is BAS monitoring network wells are established to inform decision making regarding injection frequency and quantity. The geochemical performance targets are:

- pH between 6 and 8
- TOC between 50 and 500 milligrams per liter (mg/L)

4.1 Zone of Influence and Injection Performance Monitoring

Monitoring of injection performance will be conducted through annual sampling of the BAS monitoring well network. Field parameters collected during sampling will be recorded on sampling data sheets (See **Appendix G**). Groundwater samples collected during the annual monitoring events will be submitted for laboratory analysis of total organic carbon and chlorinated volatile organic compounds. If pH readings collected from any monitoring point are below the pH target a pH titration procedure shall be implemented.

The pH titration procedure is as follows:

1. Collect 3-100 milliliter (ml) aliquots of groundwater from the well.

- 2. Titrate the groundwater aliquots to a pH of 7 using a 0.1 molar (M) solution of sodium bicarbonate.
- 3. Record the titration values on the OM&M sheet.

Measurement of pH during titration shall be made by an electronic pH meter calibrated prior to use and end point shall be confirmed by litmus paper. In solution color-metric indicators are not to be used due to the likely dark color of groundwater within the treatment zone.

4.2 Additional Injections and Monitoring

Injections of molasses, buffered molasses, or buffer solution will be conducted on an as needed basis as described below. Following these injections post injection follow-up monitoring will be conducted and the data evaluated to determine the need for additional injections.

Injections will be conducted as described in the IRM work plan, the RAWP or in accordance to a NYSDEC approved schedule. The procedure includes mixing of a solution within a portable batch tank and low pressure injection [less than 10 pounds per square inch (PSI)] into the target injection points. Decision thresholds and solution mixes are described below by geochemical goal.

4.3 TOC

TOC results from the annual groundwater monitoring event will be evaluated based on the targeted TOC range (as described above). If the TOC results are below the target TOC range, an injection of 10% molasses solution may be conducted in injection points proximate to the monitoring well with low TOC.

4.4 pH and TOC

If pH and TOC results from any groundwater monitoring event are below target TOC and pH ranges (as described above) an injection of sodium bicarbonate buffered 10% molasses solution may be conducted in injection points proximate to the monitoring well with low TOC and pH. The buffer strength will be calculated based on 50% of the required buffer (based on groundwater titration) for the theoretical water volume within the area of influence of the well or wells into which injection is being conducted. The theoretical water volume will be calculated based aquifer thickness at the injection location, 10-foot radius of influence, and 15% aquifer porosity. pH and TOC results will be evaluated on an annual basis to determine if an injection is required.

4.5 pH only

If pH results from any groundwater monitoring event are below the target pH range (as described above) and TOC is within the target range an injection of a sodium bicarbonate solution may be conducted to correct pH. The buffer strength will be calculated based on 50% of the required buffer (based on groundwater titration) for the theoretical water volume within the area of influence of the well or wells into which injection is being conducted. The theoretical water volume will be calculated based aquifer thickness at the injection location, 10 foot radius of influence, and 15% aquifer porosity.

4.6 Post Injection Monitoring

Following injection of solution into the aquifer, the BAS monitoring network will be sampled within two weeks following the injection procedure set forth in Section 4.1 above with the following exceptions.

- 1. Laboratory analysis will be conducted only for TOC.
- 2. If the injection event was of only sodium bi-carbonate the no laboratory analysis will be conducted.

Based on the results of the sampling in comparison to the geochemical goals established in Section 4.0 above, either additional injection will be conducted or the BAS performance will be reevaluated based on the next routine annual sampling event.

5 Reporting

Performance of the BAS will be evaluated and reported to the NYSDEC subsequent to each event in a summary letter. Each report will contain:

- An evaluation of BAS performance, a summary of the injection activities, and groundwater geochemistry trends over the history of BAS system operation.
- A summary of modifications to the system and recommendations for potential improvements.

6 Contingency Plan

A contingency plan is included in the site HASP. A copy of the HASP will be kept in the hazard communications box. The contingency plan contains the following:

- Emergency contact list with phone numbers.
- Emergency response procedures.
- Evacuation plan, including a map and route to the nearest hospital.

Changes to the contingency plan information (e.g. changed phone numbers or contact personnel) will be updated immediately upon receipt of the new information. The contingency plan will be evaluated on an annual basis to determine if additional changes are required based on changed site conditions (e.g. hospital closures or changes to the evacuation route). Appropriate changes will be made to the contingency plan and the field and office copies will be updated accordingly.

References

- KLF, 2007a, Remedial Investigation Work Plan, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated July 2007.
- KLF, 2008a, Remedial Investigation Report, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated May 2008, revised August 2008.
- KLF, 2008b, Interim Remedial Measures Work Plan, Orangeburg (Orangetown) Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, dated June 2008, revised August 2008.
- KLF, 2009a, Design Letter Report Sub-Slab Depressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated September 22, 2009.
- KLF, 2009b, Revised Design Letter Report Sub-Slab Depressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated October 28, 2009.
- KLF, 2010a, Biostimulation Injection System Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated January 29, 2010.
- KLF, 2011a, Biostimulation Injection System Revision Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated April 1, 2011.
- KLF, 2011b, Revised Underground Injection Plan Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated April 26, 2011.
- KLF, 2011c, Construction Completion Report #1 Source Removal, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated June 2011.
- KLF, 2011d, Construction Completion Report #2 Sub-Slab Depressurization System, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated August 2011.
- KLF, 2011e, Remedial Investigation Addendum Report, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated July 2011.
- KLF, 2011f, Construction Completion Report #3 Bio-augmentation Treatment, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated August 2011.

- KLF, 2011g, Final Engineering Plan, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated September 2011.
- JLJ, 2011, Environmental Easement, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated September 2011.
- New York State Department of Environmental Conservation (NYSDEC), 2009a, Comment Letter on the Sub-Slab Depressurization System Design Details, Orangetown Shopping Center, Site ID No. C344066, Town of Orangetown, Rockland County, New York USA, dated October 13, 2009.
- NYSDEC, 2009b, Letter Approval of Sub-Slab Depressurization System Design Details, Orangetown Shopping Center, Site ID No. C344066, Town of Orangetown, Rockland County, New York USA, dated November 3, 2009.
- NYSDEC, 2010, Letter Approval of Sub-Slab Depressurization System Design Revision Letter, Orangetown Shopping Center, 1-45 Orangetown Shopping Center, Orangeburg, New York, 10962, dated August 9.

Appendix J – Site Management Forms

	Site: Orangetown Shopping Center	Tech:	
	Address: 1-45 Orangetown Shopping Center	Date:	
Daily Field Log (Gauging Table)	Orangeburg, New York	Weather:	

Well ID	PID (outer)	PID (inner)	Depth to Water	Depth to DNAPL	Depth to Bottom (last visit)	Depth to Bottom (measured)	Well Diameter	Well Volume	Comments	Analytical Parameters
MW-3									Gauge only	
MW-4									Gauge & Sample	VOCs, Ethene, electron acceptor analtyes and TOC
MW-5									Gauge & Sample	VOCs, Ethene, electron acceptor analtyes and TOC
MW-8A									Gauge & Sample	VOCs, Ethene, electron acceptor analtyes and TOC
MW-E									Gauge only	
MW-14A									Gauge only	

Groundwater Sampling

(DTB - DTW)*X = _____(1well volume in gallons)

Remove at least 3 well volumes

Х	0.041	0.163	0.367	0.653
Well Diameter	1"	2"	3"	4"

•	

GROUNDWATER PURGE AND SAMPLING FIELD SHEET

Well ID: MW-4

1. PROJE		ATION:								
Site:	Orangetow	n Shopping	Center	Client:	UB Orang	eburg, LLC	Date:			
Address:	1-45 Orang	etown Shop	ping Ctr.	Project #:	110	2825	Sampler:			
	Orangeburg	g, New York	Z	NYSDEC S	ite #:	C344066	Weather:			
	ORING WELI	L DATA:								
Depth to V				-						
Casing Di	ameter:		Calc	ulated Purg	e Amount			gallons		
Purge Volume	Calculation:									
(DTB - DTW)	*X =	(1well volume	in gallons)							
	Х	0.041	0.163	0.367	0.653					
Well D	Diameter	1"	2"	3"	4"	*Remove at le	east 3 well volu	mes*		
3. PURGE	DATA									
Purge Met		Dedic	ated Teflon	Bailers			Did well	recharge?	Yes 🗆	. No □
-	urge dry?		Yes 🗆	No 🗆		Deptl	h to Water a	-		
Actual Pu	rge Amount	:		gallons		Depth to	Water after	r recharge:		
	ality Meter N			3			elapsed fo	-		
	er quality param		removal of eac	ch well volume:		-		J. J.		
		рН		Conductivity	DO	ORP	Turbidity	Comme	nts or Obs	servations
First Value										
First Volu	me									
Second V	olume									
Third Volu	ume*									
* - Sample wa	ater parameters	. If well ran dry	y, record the pa	arameters of an	y remaining sa	ample water he	re.			
4. SAMPLI	Ε ΠΑΤΑ									
					De	onth to Wate	er at time of	Sampling		
S a	Sample ID: mple Time:					-	Containers:			
Analyses:							ple Collect		Yes □	No 🗆
,					,	•	ple Collecte		Yes □	No 🗆
Was there	enough sa	mple volum	ne to fill all s	sample iars		Yes □	-	explain:		
	Bottom of W				-			to DNAPL:		
				·r···y/·						
5. COMME	ENTS									
<u> </u>										

GROUNDWATER PURGE AND SAMPLING FIELD SHEET

Well ID: MW-5

1. PROJE		ATION:								
Site:	Orangetow	n Shopping	Center	Client:	UB Orang	eburg, LLC	Date:			
Address:	1-45 Orang	jetown Shop	ping Ctr.	Project #:	110	2825	Sampler:			
	Orangeburg	g, New York	Z	NYSDEC S	ite #:	C344066	Weather:			
	ORING WEL	L DATA:								
Depth to V				-					-	
Casing Di	ameter:		Calc	ulated Purg	e Amount:			gallons	-	
Purge Volume	Calculation:									
(DTB - DTW)	*X =	(1well volume	in gallons)							
	Х	0.041	0.163	0.367	0.653]				
Well D	Diameter	1"	2"	3"	4"	*Remove at le	east 3 well volu	mes*		
3. PURGE	DATA									
Purge Met		Dedic	ated Teflon	Bailers			Did well	recharge?	Yes 🗆	□ No □
Did well p	urge dry?		Yes 🗆	No 🗆		Deptł	h to Water a	fter purge:		
Actual Pu	rge Amount			gallons		Depth to	Water after	r recharge:		
	ality Meter N						elapsed for	_		
Observe wate	er quality param	eters following	removal of eac	ch well volume:			-	-		
		рН	Temperature	Conductivity	DO	ORP	Turbidity	Comme	nts or Ob	servations
First Volu	me									
Second V	olume									
Third Volu										
* - Sample wa	ater parameters	. If well ran dr	y, record the pa	arameters of an	y remaining sa	ample water he	re.			
4. SAMPLI	E DATA									
	Sample ID:				De	oth to Wate	er at time of	Sampling:		
Sa	Imple Time:					-	Containers:		1	
Analyses:							nple Collect		Yes 🗆	No 🗆
					M	S/MSD Sam	ple Collecte	ed?	Yes 🗆	No 🗆
Was there	enough sa	mple volun	ne to fill all s	sample jars	?	Yes 🗆	No 🗆	explain:		
Depth to E	Bottom of W	ell (measu	re after sam	pling):			Depth	to DNAPL:		
		-					-			
5. COMME	ENTS									

GROUNDWATER PURGE AND SAMPLING FIELD SHEET

Well ID: MW-8A

Site: Orangetown Shopping Center Client: UB Orangeburg, LLC Date: Address: 145 Orangetown Shopping Ctr. Project #: 1102825 Sampler: Orangeburg, New York NYSDEC Site #: C344066 Weather; 2. MONITORING WELL DATA: Depth to Bottom (last round):	1. PROJEC		ATION:								
Orangeburg, New York NYSDEC Site #: C344066 Weather: 2. MONITORING WELL DATA: Depth to Bottom (last round):	Site:	Orangetown	n Shopping	Center	Client:	UB Orang	eburg, LLC	Date:			
Orangeburg, New York NYSDEC Site #: C344066_Weather: 2. MONITORING WELL DATA: Depth to Bottom (last round):	Address:	1-45 Orang	etown Shop	ping Ctr.	Project #:	110	2825	Sampler:			
2. MONITORING WELL DATA: Depth to Water:								-			
Depth to Water:					•			-			
Casing Diameter: Calculated Purge Amount: gallons Purge Volume Calculation: (DTB - DTW)"X =	2. MONITO	ORING WELL	DATA:								
Purge Volume Calculation: (DTB - DTW)*X =	Depth to V	Vater:			Depth to	Bottom (I	ast round):				
(DTB - DTW)*X =	Casing Dia	ameter:		Calc	ulated Purg	e Amount:			gallons		
X 0.041 0.163 0.367 0.653 Well Diameter 1" 2" 3" 4" "Remove at least 3 well volumes" 3. PURGE DATA Purge Method:	Purge Volume (Calculation:									
X 0.041 0.163 0.367 0.653 Well Diameter 1" 2" 3" 4" "Remove at least 3 well volumes" 3. PURGE DATA Purge Method:											
X 0.041 0.163 0.367 0.653 Well Diameter 1" 2" 3" 4" "Remove at least 3 well volumes" 3. PURGE DATA Purge Method:	(DTB - DTW)	*X =	(1well volume	in gallons)							
3. PURGE DATA Purge Method: Dedicated Teflon Bailers Did well purge dry? Yes No Depth to Water after purge: Actual Purge Amount: gallons Depth to Water after recharge:	· · · · · · · · · · · · · · · · · · ·			<u> </u>	0.367	0.653]				
Purge Method: Dedicated Teflon Bailers Did well recharge? Yes No Did well purge dry? Yes No Depth to Water after purge:	Well D)iameter	1"	2"	3"	4"	*Remove at le	east 3 well volu	mes*		
Purge Method: Dedicated Teflon Bailers Did well recharge? Yes No Did well purge dry? Yes No Depth to Water after purge:											
Did well purge dry? Yes No Depth to Water after purge: Actual Purge Amount: gallons Depth to Water after recharge: Water Quality Meter Model: Time elapsed for recharge: Observe water quality parameters following removal of each well volume: Time elapsed for recharge: Observe water quality parameters following removal of each well volume: DO ORP Turbidity Comments or Observations First Volume Image: Conductivity DO Second Volume Image: Conductivity Image: Conductivity Third Volume* Image: Cond water parameters. If well ran dry, record the parameters of any remaining sample water here. 4. SAMPLE DATA Depth to Water at time of Sampling:			Dedie	atad Taflan I	Pailara			Didwall	racharga?	Vec 🗆	
Actual Purge Amount: gallons Depth to Water after recharge: Water Quality Meter Model:	•	•	Deulca				Donth		-		
Water Quality Meter Model:	-			763 🗆							
Observe water quality parameters following removal of each well volume: pH Temperature Conductivity DO ORP Turbidity Comments or Observations First Volume		•			gallons				-		
pH Temperature Conductivity DO ORP Turbidity Comments or Observations First Volume Image: Conductivity Image: Conductity Image: Con	Water Qua	ality Meter M	lodel:				Time	elapsed to	r recharge:		
First Volume Image: Constraint of the parameters of any remaining sample water here. Second Volume* Image: Constraint of the parameters of any remaining sample water here. 4. SAMPLE DATA Sample ID: Depth to Water at time of Sampling:	Observe wate	er quality parame							_		
Second Volume Image: Constraint of the parameters of any remaining sample water here. Third Volume* Image: Constraint of the parameters of any remaining sample water here. 4. SAMPLE DATA Sample ID:			рН	Temperature	Conductivity	DO	ORP	Turbidity	Comme	nts or Obs	servations
Third Volume* Image: Constraint of the parameters of any remaining sample water here. * - Sample water parameters. If well ran dry, record the parameters of any remaining sample water here. 4. SAMPLE DATA Sample ID: Depth to Water at time of Sampling:	First Volu	me									
* - Sample water parameters. If well ran dry, record the parameters of any remaining sample water here. 4. SAMPLE DATA Sample ID: Depth to Water at time of Sampling:	Second Vo	olume									
4. SAMPLE DATA Sample ID: Depth to Water at time of Sampling:	Third Volu	ıme*									
Sample ID: Depth to Water at time of Sampling:			If well ran dry	r, record the pa	rameters of any	y remaining sa	ample water he	re.			
Sample ID: Depth to Water at time of Sampling:											
						De			Compliant		
Sample Time: Number of Containers:							-				
	Analyses:						•	•			
MS/MSD Sample Collected? Yes I No I								•		Yes ⊔	NO L
Was there enough sample volume to fill all sample jars? Yes No explain:		•	-			?	Yes 🗆		•		
Depth to Bottom of Well (measure after sampling): Depth to DNAPL:	Depth to E	Bottom of W	ell (measur	e after sam	pling):			Depth	to DNAPL:		
5. COMMENTS		NTS									

BAS OPERATION, MAINTENANCE, AND MONITORING DATA SHEET GROUNDWATER MONITORING EVENT

Site ID:	Orangetown Sh	opping Center		Date:		
NYSDEC Site #:	C344066			Name:		
Site Address:	1-45 Orangetov	n Shopping Ce	nter			
	Orangeburg, Ne	ew York				
Injection Well or		pH within range	Titration of	100mL groundwate	r with O.1M	
Monitoring Well		of 6 to 8?	Sodium Bi	carbonate (NaH ₂ CO	3) Solution	
Location (ID)	Sampled?	(If pH<6, titrate)	Titration 1 Volume	Titration 2 Volume	Titration 3 Volume	Notes:
MW-5	YES / NO	YES / NO				

Molasses Injection Data Sheet

System ID: Orangeburg Shop	ping Center		Name:
NYSDEC Site ID: C344066			Date:
Site Address: 1-45 Orangetov	vn Shopping Center		
Orangeburg, Ne	w York 10962		
Location	Injected Solution	Volume (gallons)	Notes

Additional Notes:

BAS OPERATION, MAINTENANCE, AND MONITORING DATA SHEET ANNUAL INSPECTION

System ID: Orangeburg Shopping Ce	enter										Name:		
NYSDEC Site ID: C344066											Date:		
Site Address: 1-45 Orangetown Shop		nter											
Orangeburg, New York	10962												
	Visual Any Visual Any												
Inspection Is Condition Maintenance													
Location Completed? Satisfactory? Secure? Required? Photo Taken? Notes Piping Stub-Ups/Security Cabinet Y N Y <td></td>													
Well pad/Wellhead at IP-1													
Well pad/Wellhead at IP-2													
Well pad/Wellhead at IP-3													
Well pad/Wellhead at IP-4													
Well pad/Wellhead at MW-3													

Notes:

- If condition of any location is not satisfactory a photo must be take.

- If any location requires maintenance the required maintenance shall be noted on this data sheet in the Notes section.

Site Name, Address Urstadt - Orangetown Shopping Center/Sparkle Cleaners, 1-45 Orangetown Shopping Ctr, Orangeburg, NY

Inspection Date _____

TAKE PHOTOS OF EACH WELL (IF ALLOWED)

						Ob	servat	ions U	pon A	rrival									
Well ID	Туре	Manwa Condit				Bolt Co	ndition		Labeled Properly ¹		Cap per) ition		Vell Loo Conditio				Note Repairs Made Detailed Explanation of Maintenance Recommended and Performed		otos Condition
	Standpipe	Flush	G	Р	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Р		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Р	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Р	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Р	Y	N	G	Р	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Р	Y	N	G	Р	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	N	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	N	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Р		Y	Ν
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	Ν
	Standpipe	Flush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Condition of Soil Boring Patches or Abandoned Monitoring Wells: G P N/A G P N/A If POOR, identify borings/Well IDs or describe location and note on map. N if patch is sinking below surrounding sur							. Note		(1) – NA		a un llan a caracterizzatori de la caracterizzatori a consecutori a consecutori a consecutori a consecutori a c							

G = Good (acceptable) **P** = Poor (needs attention) **NL** = No Lock Present

(1) = Monitoring well covers must be painted & labeled in accordance w/applicable regulations.

All environmental wells were in good condition, locked, and secured on my departure (unless otherwise noted above).

Photo Best Practice: Place a white board with the well ID next to the well when photographing it - manhole lid off, unlocked, well open, with plug next to well

Print or type Name of Field Personnel

Site Name, Address Urstadt - Orangetown Shopping Center/Sparkle Cleaners, 1-45 Orangetown Shopping Ctr, Orangeburg, NY

Inspection Date

TAKE PHOTOS OF EACH WELL (IF ALLOWED)

						Obs	servat	ions U	pon A	rrival									
Well ID	Manway Cover Type Condition Size (in)				Bolt Condition		Labeled		Well Cap (Gripper) Condition		Well Lock Condition			Well Pad Condition		Note Repairs Made Detailed Explanation of Maintenance Recommended and Performed		Photos of Well Condition	
	Standpipe Fl	lush	G	Р	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	N	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Ρ	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Р	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Ρ		Y	N
	Standpipe Fl	lush	G	Ρ	Size	G	Ρ	Y	Ν	G	Ρ	G	Р	NL	G	Р		Y	N
	Condition of Soil Boring Patches or Abandoned Monitoring Wells: G P N/A If POOR, identify borings/Well IDs or describe location and note on map. Note if patch is sinking below surrounding surface. a = Good (acceptable) P = Poor (needs attention) NI = No Lock Present											a well covers must be painted & labeled in accordance w/applicable regulations							

G = Good (acceptable) **P** = Poor (needs attention) **NL** = No Lock Present

(1) = Monitoring well covers must be painted & labeled in accordance w/applicable regulations.

All environmental wells were in good condition, locked, and secured on my departure (unless otherwise noted above).

Photo Best Practice: Place a white board with the well ID next to the well when photographing it - manhole lid off, unlocked, well open, with plug next to well

Print or type Name of Field Personnel