

Ciabattoni Property ROCKLAND COUNTY, NEW YORK

Site Management Plan

NYSDEC Site Number: C344068

Prepared for:

Sembler/Treasure NY, Joint Venture c/o Sembler Florida, Inc. 5858 Central Avenue Saint Petersburg, FL 33707

Prepared by:

A2L Technologies, Inc. 10220 Harney Road Thonotosassa, FL 33592 813.248.8558

Revisions to Final Approved Site Management Plan:

Revision #	Submitted Date	Summary of Revision	DEC Approval Date
	,		
	_		
		<u></u>	

JUNE 2010

TABLE OF CONTENTS

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM	1
1.1 INTRODUCTION	1
1.2 SITE BACKGROUND	3
1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS	
1.4 SUMMARY OF REMEDIAL ACTIONS	11
2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN	14
2.1 INTRODUCTION	14
2.2 ENGINEERING CONTROLS	15
2.3 INSTITUTIONAL CONTROLS	16
2.4 INSPECTIONS AND NOTIFICATIONS	
2.5 CONTINGENCY PLAN	
3.0 SITE MONITORING PLAN	23
3.1 INTRODUCTION	
3.2 SOIL COVER SYSTEM MONITORING	24
3.3 MEDIA MONITORING PROGRAM	25
3.4 SITEWIDE INSPECTIONS	28
3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL	29
3.6 MONITORING REPORTING REQUIREMENTS	30
4.0 OPERATION AND MAINTENANCE	31
4.1 INTRODUCTION	31
5.0 INSPECTIONS, REPORTING AND CERTIFICATIONS	31
5.1 SITE INSPECTIONS	31
5.2 CERTIFICATION OF INSTITUTIONAL CONTROLS	32
5.3 PERIODIC REVIEW REPORT	
5.4 CORRECTIVE MEASURES PLAN	

- Remedial Investigation Soil Contamination Summary Table 1
- Remedial Investigation Groundwater Elevation Summary Table 2A
- Remedial Investigation Groundwater Contamination Summary Table 2B
- Remedial Investigation Soil Vapor Data Table 3
- Emergency Contact Numbers Table 4
- Other Contact Numbers Table 5
- Monitoring/Inspection Schedule Table 6
- Schedule of Monitoring/Inspection Reports Table 7
- Soil Quality Standards Table 8

LIST OF FIGURES

- Figure 1 Site and Site Boundaries
- Figures 2A, 2B and 2C Geologic Cross Section(s)
- Figure 3 Groundwater Flow
- Figure 4 Remedial Investigation Soil Contamination Summary
- Figure 5 Remedial Investigation Groundwater Contamination Summary
- Figure 6 Remedial Investigation Soil Vapor Monitoring Points
- Figure 7 Extent of Remedial Excavation Performed
- Figure 8 Groundwater Monitoring Well Network
- Figure 9 Soil Sample Locations (10/6/09)
- Figure 10 Cover System Plan and X-Section

LIST OF APPENDICES

- Appendix 1 Metes and Bounds
- Appendix 2 Health and Safety Plan and Community Air Monitoring Plan
- Appendix 3 Inspection Checklist(s)
- Appendix 4 Excavation Work Plan
- Appendix 5 Monitoring Well Boring and Construction Logs
- Appendix 6 Groundwater Monitoring Well Sampling Log Form
- Appendix 7 Quality Assurance Project Plan
- Appendix 8 Laboratory Analytical Results
- Appendix 9 Phase II Environmental Site Assessment (4/27/06)
- Appendix 10 Post Excavation Soil Analytical Report (2007)

SITE MANAGEMENT PLAN

1.0 INTRODUCTION AND DESCRIPTION OF REMEDIAL PROGRAM 1.1 INTRODUCTION

This document is required as an element of the remedial program at the Ciabattoni Property (hereinafter referred to as the "Site") under the New York State (NYS) Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The site was investigated in accordance with Brownfield Cleanup Agreement (BCA) Index# W1-1105-07-05, Site # C344068, which was executed on July 5, 2007.

1.1.1 GENERAL

Sembler/Treasure NY Joint Venture entered into a BCA, with the NYSDEC to investigate a 0.23 acre property located in the town of Stony Point, Rockland County, New York. This BCA, required the Remedial Party, Sembler/Treasure NY Joint Venture, to investigate, and as necessary remediate contaminated media at the site. A figure showing the site location and boundaries of this 0.23-acre site is provided in Figure # 1. The boundaries of the site are more fully described in the metes and bounds site description that is included in Appendix 1 titled Metes and Bounds within this document, and discussed in Section 1.2.1.

Following completion of the remedial work (soil excavation) during the UST removal (2003), the hydraulic lift and fuel dispenser island removals (2004) and the storm water management system installation (2007), some contamination was left in the subsurface at this site, which is hereafter referred to as "remaining contamination." This Site Management Plan (SMP) was prepared to manage remaining contamination at the site until the Environmental Easement is extinguished in accordance with ECL Article 71, Title 36. All reports associated with the site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in New York State.

This SMP was prepared by A2L Technologies, Inc., on behalf of Sembler/Treasure NY Joint Venture, in accordance with the requirements in NYSDEC DER-10 Technical Guidance for Site Investigation and Remediation, dated November 2009, and the guidelines provided by NYSDEC. This SMP addresses the means for implementing the Institutional Controls (ICs) and Engineering Controls (ECs) that are required by the Environmental Easement for the site.

1.1.2 PURPOSE

The site contains contamination left after completion of the various remedial actions. Engineering Controls (EC) and Institutional Controls (IC) have been incorporated into the site remedy to control exposure to remaining contamination during the use of the site to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Rockland County Clerk, will require compliance with this SMP and all ECs and ICs placed on the site. The ICs place restrictions on site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. This SMP specifies the methods necessary to ensure compliance with all ECs and ICs required by the Environmental Easement for contamination that remains at the site. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

This SMP provides a detailed description of all procedures required to manage remaining contamination at the site after completion of the Remedial Action, including: (1) implementation and management of all Institutional Controls; (2) media monitoring; (3) operation and maintenance of all treatment, collection, containment, or recovery systems; (4) performance of periodic inspections, certification of results, and submittal of Periodic Review Reports; and (5) defining criteria for termination of treatment system operations.

To address these needs, this SMP includes three plans: (1) an Engineering and Institutional Control Plan for implementation and management of EC/ICs; (2) a Monitoring Plan for implementation of Site Monitoring; (3) an Operation and Maintenance Plan for implementation of remedial collection, containment, treatment, and recovery systems (including, where appropriate, preparation of an Operation and Maintenance Manual for complex systems).

This plan also includes a description of Periodic Review Reports for the periodic submittal of data, information, recommendations, and certifications to NYSDEC.

It is important to note that:

- This SMP details the site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the environmental easement, which is grounds for revocation of the Certificate of Completion (COC);
- Failure to comply with this SMP is also a violation of Environmental Conservation Law, 6NYCRR Part 375 and the BCA Index # W1-1105-07-05; Site # C344068 for the site, and thereby subject to applicable penalties.

1.1.3 REVISIONS

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. In accordance with the Environmental Easement for the site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

1.2 SITE BACKGROUND

The Site incorporates approximately 0.23, acres, Rockland County Tax Lot# 20.15-1-17, of the currently developed parcels being utilized as a Provident Bank Branch Location. Ninety eight percent of the property is currently covered with impervious materials including concrete and asphalt parking. The specific location of the site is illustrated in Figure 1 of this document. Further, the metes and bounds description of the Site is provided in Appendix 1, and discussed in Section 1.2.1.

Previous investigative work at this site was conducted in accordance with the Remedial Investigation Work Plan (RIWP) approved by the NYSDEC and NYSDOH in May 13, 2008. The work consisted of installing six permanent groundwater monitoring wells. In addition, soil and groundwater samples were obtained and analyzed for contaminants of concern, primarily gasoline constituents and metals. The NYSCEC requested additional sampling analysis to include the Full Target Compound List + 30/Target Analyte List. Soil and ground water samples were collected for these analyses on October 6 & 7, 2009.

Soil samples were collected throughout the site at various depths during field efforts implementing the approved RIWP. The samples collected were submitted to a certified laboratory and analyzed for the following chemical constituents: New York State Spill Technology and Remediation Series Memo #1 (STARS) Volatile Organic Compounds via USEAP Method 8260B; lead and chromium using Method 6010 (mass analysis); hexavalent and trivalent chromium using analytical USEPA Method SW-846 7196A; Toxic Characteristic Leachate Procedure (TCLP) using USEPA Method 1311. Samples collected on October 6, 2009 were analyzed for the Full Target Compound List + 30/Target Analyte List. Soil sampling findings are discussed in Section 1.3 herein.

Groundwater monitoring wells were installed pursuant to the approved RIWP. Six wells were installed on or around the site to identify the depth and flow direction of groundwater. Groundwater was identified below a dense silty clay layer seventeen (17) to twenty-two (22) feet below land surface (BLS). Sub artesian hydrostatic conditions, water pressure contained within the aquifer causing elevated water levels, was observed throughout the site and adjacent areas

investigated. The groundwater levels were identified 8.86 to 18.14 feet below top of casing elevation (TOCE) during the sampling events.

Groundwater samples were collected and submitted to the laboratory for analysis using: NY STARS water via SW846 EPA Method 8260B for Volatile Organic (VOA); RCRA filtered metals using EPA Method 200.7. Most recently, samples were collected from MW-1 through MW-6 for analyses using the Full Compound List + 30/Target Analyte List on October 7, 2009.

Groundwater below the site has been impacted by concentrations of petroleum products. The depth to groundwater as monitored within the existing sub-artesian permanent wells was from eight (8) feet to approximately eighteen (18) feet across the site. Groundwater flow direction, as anticipated, is to the east with the bulk of the groundwater concentrations extending below South Liberty Drive. As the mass of contamination degrades and moves eastward, the impacts will diminish. Further, down gradient impacts will be subject to advective transport movement, and by the phenomena of dilution and diffusion, and will therefore degrade due to natural attenuation processes.

The groundwater laboratory analytical report did identify varying concentrations of gasoline range petroleum hydrocarbons within monitoring wells MW-3, MW-4 and MW-6. The condensed results are presented within Table 2 and the complete laboratory analytical reports are presented within Appendix 8.

Specific findings of the ground water investigation are included in Section 1.3 herein.

Potable wells within a quarter mile radius area were researched to determine if the observed contamination would affect drinking water quality at those locations. Helen Hayes Hospital, greater than one-eighth (1/8) of a mile south, of the subject site was identified as having two potable wells servicing the on-site facilities. The wells were developed in the 1930's and meet current RCDOH and NYSDOH water quality standards. Due to the distance and equigradient location, under normal conditions, the observed contamination mass at the site will not affect the hospitals drinking water source. Gabriel Manufacturing located at 125 South Liberty Drive, approximately one-eighth (1/8) of a mile north, was identified as containing a potable well drinking water well. The RCDOH indicated that the facility had an onsite well used for production and drinking water. Due to groundwater contamination at the Gabriel site, the use of the well has been discontinued and no longer monitored by the RCDOH. Due to the distance between the Ciabattoni site and the Gabriel well and equigradient location, under normal conditions, the observed contamination at the Ciabattoni site will not affect the Gabriel well.

Remediation at the subject site has been limited to several soil removal events associated with the decommissioning of the service station facility formerly present on the site and during the installation of the storm water retention tanks. In August 2003, approximately 600 tons of soils were removed from the UST tank farm and distribution area excavation area and 150 tons of soil removed from the waste oil UST excavation. In November 2004, the removal of two inground hydraulic lifts and the dispenser island commenced. Approximately 1,780 tons of petroleum contaminated soils were removed from both excavations. In May 2006 A2L Technologies, Inc. performed a Phase II Environmental Site Assessment in order to determine the status of the soil and ground water in the areas of the former excavations. The Phase II report is included as Appendix 9 herein. Soil samples were collected from borings installed in the former excavation areas. Borings that included soils analysis were SB-02 located in the former waste oil tank area (2003 excavation area), SB-04 located in the area of the former dispensers (2004 excavation area), and SB-06 located in the area of the former hydraulic lifts (2004 excavation area). Borings that did not included sample analysis, and their respective maximum OVA readings, included SB-01 (0 ppm) located in the former 2003 waste oil excavation, SB-03 (3.6 ppm at 15' bls) located in the former 2003 UST excavation area, and SB-05 (3.4 ppm at 9' bls) also located in the 2003 UST excavation area. These samples acted as post-excavation endpoint samples. The laboratory analysis of the collected samples revealed that most constituents were below recommended soil cleanup objectives, with the exception of chromium 25 mg/kg at SB-02, benzene (0.63 mg/kg), toluene (3.8 mg/kg), total xylenes (5.9 mg/kg), total VOCs (18.68 mg/kg), and chromium (34 mg/kg) at SB-04, and chromium (38 mg/kg) at SB-06. Refer to Appendix 9 for the Phase II report and Figure 7 for locations of the excavation areas and soil boring locations.

During the installation of the current storm water system, in November 2007, twenty (20) tons of petroleum contaminated soils (>50 ppm via PID) were removed from the center of the eastern property boundary along South Liberty Drive (adjacent to MW-6). Excessively contaminated soils were limited to the area from approximately two (2) feet to eight (8) feet BLS in the area adjacent to MW-6 (located in the Right of Way). This excavation was conducted without a NYSDEC-approved work plan. The area of excavation is shown on Figure 7. Each bucket of soil excavated was screened using an Organic Vapor Analyzer (OVA) equipped with a Photoionization Detector (PID). Soils that exhibited any reading on the OVA were placed into a dump truck for removal and from the site. Once all exhibiting soils were removed, the final bucket of soil was used as an endpoint sample. A sample was collected by the contractor and submitted to a laboratory for analysis. The sample was analyzed for TPH using Modified EPA

Method 8015. The analysis revealed no detectable concentration of TPH. The laboratory analysis report is included as Appendix 10.

Clean fill and crushed granite cobble was imported to the site to provide a stable subsurface for the construction of the existing bank facility and comprise at least one to two feet across the upper strata of the site, which is covered with engineering control covers as shown the site survey figure. The site development contractor acquired the fill from another site where they were performing development, the Nyack Library Expansion site.

No other identified assessment or remediation activities have been performed at the subject site.

1.2.1 SITE LOCATION AND DESCRIPTION

The site is located in the town of Stony Point County of Rockland, New York and is identified as Section 020.015 Block 0001 Lot 017 on the Rockland Tax Map. The site is approximately 0.23-acres bounded by a property which is also owned by the Volunteer on which a portion of the bank building is located, followed by Filors Lane to the north, and South Liberty Drive to the east, see Figure 1. The subject site is further defined by its metes and bounds description, as described in Appendix 1:

1.2.2 SITE HISTORY

The Site has historically operated as a gasoline service station with initial construction in 1953 and operated under various private ownerships and management until August 2003 when all underground storage tanks were removed and the station vacated. When the underground storage tanks (UST's) were removed, petroleum contamination within the soils was identified in the gasoline and waste oil tank farm areas. The former service station was located on the southeast side of the property. The building was a single story, two bay service building typical of the era constructed. The tank farm and associated dispensing equipment was located within the Site. During redevelopment of the site, to its current conditions, all buildings and improvements were demolished in accordance with applicable regulations. During an inspection by the Rockland County Health Department, it was requested that the hydraulic lifts and dispenser islands be removed. In November 2004, the removal of two in-ground hydraulic lifts and the dispenser island commenced. Approximately 1,780 tons of petroleum contaminated soils were removed from both excavations.

Subsequent investigations performed at the site by A2L Technologies, Inc include: January 2006 Phase I Environmental Site Assessment; April 2006 Phase II Environmental Site Assessment; and December 2006 Supplemental Phase II Environmental Site Assessment. These reports were included within the initial BCP Application and subsequent RIWP filings.

1.2.3 GEOLOGIC CONDITIONS

Based on subsurface borings installed during monitoring well installation, the site specific lithology was found to consist of varying degrees of silts, clay, fine and medium gravel, rock and boulders and brick to a depth of approximately eighteen to twenty- one feet BLS. A one to three foot reddish brown stiff silt layer was encountered at some boring locations, while clay was encountered at other boring locations from eighteen to twenty-two feet BLS. Then a medium to course grained sand and gravel was observed to the terminus of the borings, typically five to six feet below the clay and silt layer. Geologic cross sections across the site are illustrated in Figures 2A, 2B and 2C.

Groundwater was generally encountered beneath the clay and silt units layers previously identified. The water table was observed at depths between 8.86 to 18.14 feet below top of casing elevation (TOCE) during the sampling event. All of the monitoring wells were identified as having a sub artesian hydrostatic pressure. The ground surface elevation is approximately 121.0' above mean sea level. Refer to Figures 2A, 2B, and 2C for geological cross section diagrams. The groundwater flow direction was identified at the subject site flowing to the east-southeast as identified in Figure 3.

1.3 SUMMARY OF REMEDIAL INVESTIGATION FINDINGS

A Remedial Investigation (RI) was performed to characterize the nature and extent of contamination at the site. The results of the RI are described in detail in the following reports:

Remedial Investigation Report, Ciabattoni Property, November 2009, A2L Technologies, Inc.

Generally, the RI determined that the residual soil contamination above the unrestricted SCO was limited to samples obtained from the range of 18' – 22' feet below land surface (at soil boring SB-4, sample taken at 18' below land surface) on the Site and within the right-of-way of South Liberty Drive (SB-6, sample taken at 18' below land surface), as shown on Figure 5. Note that on Figure 5, SB-4 and SB-6 correspond with the monitoring well locations MW-4 and MW-6, respectively.

Below is a summary of site conditions when the RI was performed in 2008, with additional soil and ground water sampling performed in October 2009:

Soil

Soil sampling analytical data is presented in Table 1 of this report. Soil samples were collected at various depths across the site and analyzed in accordance with the approved RIWP Dated May 2007, and per the NYSDEC additional requirements of April 9, 2009. The relevant data is presented on a site plan in Figure 4 of this report. Note that the soil borings SB-1 through SB-6, installed May 12, 2008, are enumerated the same as their respective monitoring wells (ie: SB-1 = MW-1, SB-2 = MW-2, etc.)

The soil samples from borings SB-4 and SB-6 identified concentrations of ethylbenzene and naphthalene, above commercial restricted use soil cleanup objectives (SCO) as defined in Table 375-6.8(b). Concentrations of total xylenes (13 mg/kg at SB4), isopropylbenzene (0.75 mg/kg at SB4 and 0.31 at SB6), propylbenzene 2.4 mg/kg at SB4 and 0.85 mg/kg at SB6), 1,3,5 trimethylbenzene 4.5 mg/kg at SB4 and 1.4 mg/kg at SB6), 1,2,4 trimethylbenzene (1.4 mg/kg at SB4 and 4.6 mg/kg at SB6) and n-butylbenzene (0.94 mg/kg at SB4) were identified above detectable levels, but below the SCO for each constituent. The sampling data indicates the residual contamination above current unrestricted SCOs is limited to the former tank farm and dispenser area of the site around monitoring well MW-4, and extends eastward at a range of approximately eighteen (18) to twenty-two (22) feet below land surface. Observational data, acquired during the installation of the onsite stormwater retention system, indicates that subsurficial soil contamination extends beyond the eastern site boundary, onto the right-of-way of South Liberty Drive.

Clean fill and crushed granite cobble was imported to the site to provide a stable subsurface for the construction of the existing bank facility and comprise at least one to two feet across the upper strata of the site.

Soil sampling from ten (10) borings across the site was performed on October 6, 2009. Analyses of the collected soil samples revealed concentrations of several metals, none of which exceeded their respective Restricted Use Soil Cleanup Objectives. Refer to Table 1 for a tabularized view of the data, and Figure 9 for the boring locations.

Groundwater

The groundwater laboratory analytical data identified varying concentrations of gasoline range petroleum hydrocarbons within monitoring wells MW-3, MW-4 and MW-6. The condensed results are presented within Table 2 and the BTEX groundwater concentration contour map is presented in Figure 5.

No contaminants of concern were identified within samples extracted from monitoring wells MW-1, MW-2 and MW-5.

Concentrations of isopropylbenzene (9.0 μ g/l), n-propylbenzene (9.0 μ g/l) and secbutylbenzene (7.0 μ g/l) were identified in groundwater analyzed from MW-3. The concentrations observed were above Class GA fresh groundwater concentrations, for Isopropylbenzene, and secbutylbenzene. The NYSDOH principal organic contaminant (POC) drinking water concentrations are exceeded for all contaminants observed. During the October 7, 2009 sampling event, only isopropylbenzene was identified above a reportable limit (laboratory's reportable limit of 5μ g/l), at 180μ g/l.

Monitoring well MW-4 contained concentrations of benzene (8.0μg/l), toluene (13.0μg/l), ethylbenzene (190.0μg/l), total xylenes (120.0μg/l), isopropylbenzene (44.0μg/l), n-Propylbenzene (110.0μg/l), 1,3,5 trimethylbenzene (46.0μg/l), 1,2,4 trimethylbenzene (31.0μg/l), sec-butylbenzene (18.0μg/l), p-isopropyltoluene (5.0μg/l), n-butylbenzene (16.0μg/l), and naphthalene (5.0μg/l). The concentrations observed were above Class GA fresh groundwater concentrations for benzene, toluene, ethylbenzene, total xylenes, Isopropylbenzene, 1,3,5 trimethylbenzene, 1,2,4 trimethylbenzene, p-isopropyltoluene, and n-butylbenzene. Additionally, all observed levels exceeded the NYSDOH POC drinking water concentrations. The sampling event on October 7, 2009, revealed reportable concentrations of benzene (2.6μg/l), ethylbenzene (2.1μg/l), and isopropylbenzene (29μg/l).

Monitoring well MW-6, located along the property boundary of the right of way with South Liberty Drive, contained the highest petroleum compound concentrations. Groundwater was found to contain: benzene (290.0μg/l), toluene (170.0μg/l), ethylebenzene (610.0μg/l), total xylenes (638.0μg/l), isopropylbenzene (110.0μg/l), n-Propylbenzene (200.0μg/l), 1,3,5 trimethylbenzene (290.0μg/l), 1,2,4 trimethylbenzene (320.0μg/l), sec-butylbenzene (16.0μg/l), p-isopropyltoluene (9.0μg/l), n-butylbenzene (30.0μg/l), and naphthalene (170.0μg/l). The concentrations observed were above Class GA fresh groundwater concentrations for benzene, toluene, ethylbenzene, total xylenes, Isopropylbenzene, 1,3,5 trimethylbenzene, 1,2,4 trimethylbenzene, p-isopropyltoluene, n-butylbenzene and naphthalene. Additionally, all observed levels exceeded the NYSDOH POC drinking water concentrations. The sampling event on October 7, 2009, at MW-6, revealed numerous constituents above reportable limits, as follows: benzene (8.5μg/l), cyclohexane (170μg/l) ethylbenzene (270μg/l), and isopropylbenzene (63μg/l), methylcyclohexane (97μg/l), total xylenes (354μg/l), toluene (17μg/l), 2-methylnaphthalene (19μg/l), and naphthalene (72μg/l).

The elevated concentrations of contaminants of concern were observed to be limited to the onsite monitoring well (MW-4) placed in the vicinity of the former tank farm/dispenser and the monitoring well (MW-6). Monitoring well MW-6 was placed in the immediately adjacent right-of-way of South Liberty Drive, east of monitoring well MW-4.

Groundwater monitoring in October 7, 2009 also revealed insignificant concentrations of numerous metals.

Soil Vapor Intrusion

The soil vapor investigation was performed due to the presence of petroleum contaminated soil and groundwater at the subject site and the potential for vapor intrusion into the structure. The building currently on the site was under construction at the time of the sampling. The exterior shell was completed with interior finish work being completed and was not formally occupied and under heating conditions. The investigation included the collection of sub-slab, interior ambient, exterior ambient and exterior sub-grade air samples at the site, in accordance with the RIWP. The air samples collected were analyzed by EPA Method TO-15 for Volatile Organic Compounds in air. Samples were extracted from two locations within the bank building (ambient and sub-slab), three locations at the perimeter of the exterior of the building (sub-grade), and one location upwind (ambient) from the subject site.

In order to evaluate the potential presence of vapor intrusion into the structure, the New York State Department of Health (Center for Environmental Health, Bureau of Environmental Exposure Investigation) document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" was referenced for applicable guidelines. At the time of this report, New York State does not have any formalized standards, criteria or guidance values for concentrations of compounds in soil or sub-slab vapor aside from the levels established in the aforementioned document Table 3.3. Therefore, the results of each sampling location were evaluated with the consideration of several additional factors which include: nature and extent of contamination in all environmental media, factors that affect vapor migration and intrusion, completed or proposed remedial actions, source of volatile chemicals, and background of volatile chemicals in air.

The results of the sampling indicated concentrations of Isopropanol, Propene, Pentane, Acetone, and 2-Butenone at both interior ambient locations. The sub-slab samples indicated the same constituents found at the interior, but at one to four orders of magnitude lower than the interior concentrations.

Isopropanol was used as the tracer gas to determine the presence of a breach the concrete slab seal during sampling. The sub-slab concentration is negligible in comparison to the indoor

concentration. The sub-slab Isopropanol concentration was equal to the levels found at each of the exterior sub-grade points and ambient exterior upwind sample. Chloroethane was present at very low concentrations (7.1 & 1.4 ug/m3) within the sub-slab sample but not detected within the interior ambient sample. Based upon the results of the sampling, the reported air concentrations at the time were not indicative of a soil vapor intrusion concern. Additional mitigating factors supporting this conclusion include:

> 6 mil polyethylene vapor barrier was placed beneath the 6" thick continuously poured reinforced concrete slab, separating the subsurface from the interior space.

Underground Storage Tanks

In August 2003, the site operator, Majic Enterprises, had the three (3) 10,000 gallon gasoline underground storage tanks (UST's) and one (1) 550 gallon waste oil UST removed from the site. The three gasoline tanks and associated delivery systems were located on the Site. The waste oil UST was located to the southwest of the Site, adjacent to the former service station building.

1.4 SUMMARY OF REMEDIAL ACTIONS

The soils at the site were remediated during separate events beginning with the original UST removal in 2003.

The following is a summary of the Remedial Actions performed at the site:

- Excavation of excessively contaminated soil/fill during the 2003 UST removal event. Approximately 600 tons of soil was removed from the tank excavation area and 150 tons of soil was removed from the waste oil UST excavation.
- In November 2004, the removal of two in-ground hydraulic lifts and the dispenser island commenced. Approximately 1,780 tons of petroleum contaminated soils were removed from both excavations.
- 3. During the installation of the current storm water system, in November 2007, twenty (20) tons of petroleum contaminated soils (>50 ppm via PID) were removed from the center of the eastern property boundary along South Liberty Drive (adjacent to MW-6). Excessively contaminated soils were removed from the area from approximately two (2) feet to eight (8) feet BLS.
- Construction and maintenance of a soil cover system consisting of adding clean compatible fill to establish the foundation platform for the current bank building.

The paved parking areas were filled to approximately one and one-half feet (1.5') above previous grade with three to four inch crushed granite rock. Landscaped areas were backfilled with clean soils to prevent human exposure to remaining contaminated soil/fill remaining at the site;

- 5. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the site;
- 6. Development and implementation of a Site Management Plan for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

1.4.1 REMOVAL OF CONTAMINATED MATERIALS FROM THE SITE

The removal of contaminated materials from the site is described in Section 1.4 above. The soil cleanup objectives used for this site are prescribed in 6 NYCRR Part 375 Track 4 restricted use.

A list of the soil cleanup objectives (SCOs) for the primary contaminants of concern (COCs) and applicable land use for this site is provided in Table 8.

Remediation at the subject site has been limited to several soil removal events associated with the decommissioning of the service station facility formerly present on the site and during the installation of the storm water retention tanks. In August 2003, approximately 600 tons of soils were removed from the UST tank farm and distribution area excavation area and 150 tons of soil removed from the waste oil UST excavation. In November 2004, the removal of two inground hydraulic lifts and the dispenser island commenced. Approximately 1,780 tons of petroleum contaminated soils were removed from both excavations. In May 2006 A2L.

Technologies, Inc. performed a Phase II Environmental Site Assessment in order to determine the status of the soil and ground water in the areas of the former excavations. The Phase II report is included as Appendix 9 herein. Soil samples were collected from borings installed in the former excavation areas. Borings that included soils analysis were SB-02 located in the former waste oil tank area (2003 excavation area), SB-04 located in the area of the former UST and dispensers (2003 excavation area), and SB-06 located in the area of the former hydraulic lifts (2004 excavation area). These samples acted as post-excavation endpoint samples. The laboratory analysis of the collected samples revealed that most constituents were below recommended soil

cleanup objectives, with the exception of chromium 25 mg/kg at SB-02, benzene (0.63 mg/kg), toluene (3.8 mg/kg), total xylenes (5.9 mg/kg), total VOCs (18.68 mg/kg), and chromium (34 mg/kg) at SB-04, and chromium (38 mg/kg) at SB-06. Refer to Appendix 9 for the Phase II report and Figure 7 for locations of the excavation areas and soil boring locations. Actual specifics regarding excavation size are unclear.

During the installation of the current storm water system, in November 2007, twenty (20) tons of petroleum contaminated soils (>50 ppm via PID) were removed from the center of the eastern property boundary along South Liberty Drive (adjacent to MW-6). Excessively contaminated soils were limited to the area from approximately two (2) feet to eight (8) feet BLS in the area adjacent to MW-6 (located in the Right of Way). This excavation was conducted without a NYSDEC-approved work plan. The area of excavation is shown on Figure 7. Each bucket of soil excavated was screened using an Organic Vapor Analyzer (OVA) equipped with a Photoionization Detector (PID). Soils that exhibited any reading on the OVA were placed into a dump truck for removal and from the site. Once all exhibiting soils were removed, the final bucket of soil was used as an endpoint sample. A sample was collected by the contractor and submitted to a laboratory for analysis. The sample was analyzed for TPH using Modified EPA Method 8015. The analysis revealed no detectable concentration of TPH. The laboratory analysis report is included as Appendix 10. Actual specifics regarding excavation size are unclear.

A figure showing areas where excavation was performed is shown in Figure 7.

1.4.2 TREATMENT SYSTEMS

No long-term treatment systems were installed as part of the site remedy.

1.4.3 Remaining Contamination

The soil sampling data indicates that the residual contamination above current unrestricted SCO's is limited to the former tank farm and dispenser area of the site in an area between the existing MW-4 and MW-6, and extending eastward. The soils that exceed the unrestricted SCO's are limited to an area at a depth range of eight (8) to twenty-two (22) feet below land surface. Soil analysis data at SB-6, installed May 12, 2008 (completed as MW-6) indicate that subsurficial soil contamination may extend beyond the eastern site boundary, onto the right-of-way of South Liberty Drive (ethylbenzene and naphthalene exceeded unrestricted SCO's). The area of soils that exhibit results in excess of the unrestricted SCOs is depicted on Figure 4. Based on the surveyed elevations at the site, the upper zone of soils that exceed the unrestricted SCOs are located at an elevation of approximately 100' above mean sea level based

on the NVGD 1929. Figure 4 further shows the areas of the site that are in compliance with the unrestricted SCOs.

Table 1 summarizes the results of all soil contamination remaining at the site after completion of Remedial Action that exceed the Track 1 (unrestricted) SCOs.

2.0 ENGINEERING AND INSTITUTIONAL CONTROL PLAN

2.1 INTRODUCTION

2.1.1 GENERAL

The remedial goals included attainment of Track 4 Soil Cleanup Objectives (SCOs) for on-site soils for restricted commercial use. The Track 4 Restricted SCOs were approved by NYSDEC and are listed in Table 1. A summary of the remedial strategies and EC/ICs implemented at the site follows.

Since remaining contaminated soil and groundwater/ exists beneath the site, Engineering Controls and Institutional Controls (EC/ICs) are required to protect human health and the environment. This Engineering and Institutional Control Plan describes the procedures for the implementation and management of all EC/ICs at the site. The EC/IC Plan is one component of the SMP and is subject to revision by NYSDEC.

2.1.2 PURPOSE

This plan provides:

- A description of all ICs on the site;
- The basic implementation and intended role of each IC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the features to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of EC/ICs, such as the implementation of the Excavation Work Plan for the

proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the site;

- Any other provisions necessary to identify or establish methods for implementing the EC/ICs required by the site remedy, as determined by the NYSDEC; and
- A description of the Reporting Requirements for these controls.

2.2 ENGINEERING CONTROLS

2.2.1 ENGINEERING CONTROL SYSTEMS

2.2.1.1 Soil Cover

Exposure to remaining contamination in soil/fill at the site is prevented by a soil cover system placed over the site. This cover system is comprised of a minimum of 12 inches (minimum) of clean soil. The one foot thick cover consists of clean soil underlain by the subsurface soil. The top six inches of soil must be of sufficient quality to support vegetation. Non-vegetated areas (buildings, roadways, parking lots, etc) are covered with either a paving system or at least 6 inches thick or concrete at least 4 inches thick with a 15 mil polyethylene vapor barrier underlayment. The contractor did not place a demarcation layer under the clean fill. The Excavation Work Plan that appears in Appendix 4 outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection and maintenance of this cover are provided in the Monitoring Plan included in Section 4 of this SMP. Figure 10 shows the locations and delineation of the on-site cover system and a cross-section of covers.

2.2.2 CRITERIA FOR COMPLETION

Generally, remedial processes are considered completed when effectiveness monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in DER-10.

2.2.2.1 Monitored Natural Attenuation

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC, until residual groundwater concentrations are found to be

consistently below NYSDEC standards or have become asymptotic at an acceptable level over an extended period. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

2.3 INSTITUTIONAL CONTROLS

A series of Institutional Controls is required by the Decision Document and the Rededial Action Work Plan to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the site to Part 375, Track 4 commercial uses only. Adherence to these Institutional Controls on the site is required by the Environmental Easement and will be implemented under this Site Management Plan. These Institutional Controls are:

- Compliance with the Environmental Easement and this SMP by the Grantor and the Grantor's successors and assigns;
- All Engineering Controls must be operated and maintained as specified in this SMP;
- All Engineering Controls on the Controlled Property must be inspected at a frequency and in a manner defined in the SMP.
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in this SMP;
- On-site environmental monitoring devices, including but not limited to, groundwater
 monitoring wells and soil vapor probes, must be protected and replaced as necessary to
 ensure the devices function in the manner specified in this SMP.

Institutional Controls identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

The site has a series of Institutional Controls in the form of site restrictions. Adherence to these Institutional Controls is required by the Environmental Easement. Site restrictions that apply to the Controlled Property are:

• The property may only be used for restricted commercial use provided that the longterm Engineering and Institutional Controls included in this SMP are employed.

- The property may not be used for a higher level of use, such as unrestricted, residential, or restricted residential, without additional testing and or remediation and amendment of the Environmental Easement, as approved by the NYSDEC;
- All future activities on the property that will disturb remaining contaminated material are prohibited unless they are conducted in accordance with this SMP;
- The use of the groundwater underlying the property is prohibited without treatment rendering it safe for intended use;
- The potential for vapor intrusion must be evaluated for any buildings developed onsite, and any impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the property are prohibited;
- The site owner or remedial party will submit to NYSDEC a written statement that certifies, under penalty of perjury, that: (1) controls employed at the Controlled Property are unchanged from the previous certification or that any changes to the controls were approved by the NYSDEC; and, (2) nothing has occurred that impairs the ability of the controls to protect public health and environment or that constitute a violation or failure to comply with the SMP. NYSDEC retains the right to access such Controlled Property at any time in order to evaluate the continued maintenance of any and all controls. This certification shall be submitted annually, or an alternate period of time that NYSDEC may allow and will be made by an expert that the NYSDEC finds acceptable.

2.3.1 EXCAVATION WORK PLAN

The site remedy allows for restricted commercial use. Any future intrusive work that will penetrate the soil cover, or encounter or disturb the remaining contamination, including any modifications or repairs to the existing cover system will be performed in compliance with the Excavation Work Plan (EWP) that is attached as Appendix 4 to this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and Community Air Monitoring Plan (CAMP) prepared for the site. A sample HASP is attached as Appendix 2 to this SMP that is in current compliance with DER-10, and 29 CFR 1910, 29 CFR 1926, and all other applicable Federal, State and local regulations. Based on future changes to State and federal health and safety requirements, and specific methods employed by future contractors, the HASP and CAMP will be updated and resubmitted with the notification provided in Section A-1 of the EWP. Any intrusive construction work will be performed in compliance with the EWP, HASP and CAMP, and will be included in the periodic inspection and certification reports submitted under the Site Management Reporting Plan (See Section 5).

The site owner and associated parties preparing the remedial documents submitted to the State, and parties performing this work, are completely responsible for the safe performance of all intrusive work, the structural integrity of excavations, proper disposal of excavation de-water, control of runoff from open excavations into remaining contamination, and for structures that may be affected by excavations (such as building foundations and bridge footings). The site owner will ensure that site development activities will not interfere with, or otherwise impair or compromise, the engineering controls described in this SMP.

2.3.2 SOIL VAPOR INTRUSION EVALUATION

Prior to the construction of any additional enclosed structure (eg: building) located over areas that contain remaining contamination and thus have the potential for soil vapor intrusion (SVI), (refer to Figures 4, 5 and 6), an SVI evaluation will be performed to determine whether any mitigation measures are necessary to eliminate potential exposure to vapors in the proposed structure. The SVI evaluation will be performed as outlined in Section 1.3 of this document using the New York State Department of Health (Center for Environmental Health, Bureau of Environmental Exposure Investigation) document "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" as a reference for applicable guidelines. Alternatively, an SVI mitigation system will be installed as an element of the building foundation without first conducting an investigation. This mitigation system will include a vapor barrier and passive subslab depressurization system that is capable of being converted to an active system.

Prior to conducting an SVI investigation or installing a mitigation system, a work plan will be developed and submitted to the NYSDEC and NYSDOH for approval. This work plan will be developed in accordance with the most recent NYSDOH "Guidance for Evaluating Vapor Intrusion in the State of New York". Measures to be employed to mitigate potential vapor intrusion will be evaluated, selected, designed, installed, and maintained based on the SVI evaluation, the NYSDOH guidance, and construction details of the proposed structure.

Preliminary (unvalidated) SVI sampling data will be forwarded to the NYSDEC and NYSDOH for initial review and interpretation. Upon validation, the final data will be transmitted to the agencies, along with a recommendation for follow-up action, such as mitigation. Validated SVI data will be transmitted to the property owner within 30 days of validation. If any indoor air test results exceed NYSDOH guidelines, relevant NYSDOH fact sheets will be provided to all tenants and occupants of the property within 15 days of receipt of validated data.

SVI sampling results, evaluations, and follow-up actions will also be summarized in the next Periodic Review Report.

SMP Template: April 2009

2.4 INSPECTIONS AND NOTIFICATIONS

2.4.1 INSPECTIONS

Inspections of all remedial components installed at the site will be conducted at the frequency specified in the SMP Monitoring Plan schedule. A comprehensive site-wide inspection will be conducted annually, regardless of the frequency of the Periodic Review Report. The inspections will determine and document the following:

- Whether Engineering Controls continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria;
- Sampling and analysis of appropriate media during monitoring events:
- If site records are complete and up to date; and
- Changes, or needed changes, to the remedial or monitoring system;

Inspections will be conducted in accordance with the procedures set forth in the Monitoring Plan of this SMP (Section 3). The reporting requirements are outlined in the Periodic Review Reporting section of this plan (Section 5).

If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the EC/ICs implemented at the site by a qualified environmental professional as determined by NYSDEC.

2.4.2 NOTIFICATIONS

Notifications will be submitted by the property owner to the NYSDEC as needed for the following reasons:

- 60-day advance notice of any proposed changes in site use that are required under the terms of the Brownfield Cleanup Agreement (BCA), 6NYCRR Part 375, and/or Environmental Conservation Law.
- 15-day advance notice of any proposed non-emergency ground-intrusive activities pursuant to the Excavation Work Plan.
- Notice within 48 hours of any damage or defect to the foundations structures that reduces
 or has the potential to reduce the effectiveness of other Engineering Controls and
 likewise any action to be taken to mitigate the damage or defect.

- Notice within 48 hours of any emergency, such as a fire, flood, or earthquake that reduces
 or has the potential to reduce the effectiveness of Engineering Controls in place at the
 site, including a summary of actions taken, or to be taken, and the potential impact to the
 environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring
 ongoing responsive action shall be submitted to the NYSDEC within 45 days and shall
 describe and document actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing.

2.5 CONTINGENCY PLAN

Emergencies may include injury to personnel, fire or explosion, environmental release, or serious weather conditions.

2.5.1 EMERGENCY TELEPHONE NUMBERS

In the event of any environmentally related situation or unplanned occurrence requiring assistance the Owner or Owner's representative(s) should contact the appropriate party from the contact list below. For emergencies, appropriate emergency response personnel should be contacted. Prompt contact should also be made to A2L Technologies. These emergency contact lists must be maintained in an easily accessible location at the site.

Table 4: Emergency Contact Numbers

Medical, Fire, and Police:	911
One Call Center:	(800) 272-4480 (3 day notice required for utility markout)
Poison Control Center:	(800) 222-1222

Pollution Toxic Chemical Oil Spills:	(800) 424-8802
NYSDEC Spills Hotline	(800) 457-7362

Table 5: Contact Numbers

Sembler/Treasure NY Joint Venture	727.384.6000
A2L Technologies, Inc.	813-248-8558

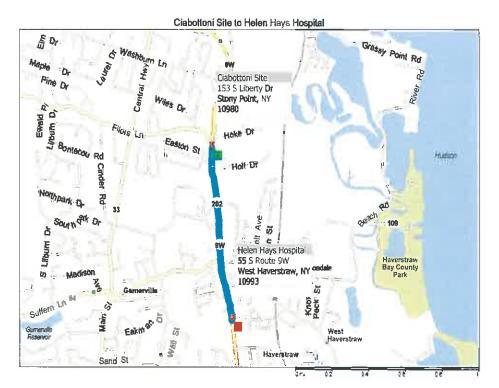
^{*} Note: Contact numbers subject to change and should be updated as necessary

2.5.2 MAP AND DIRECTIONS TO NEAREST HEALTH FACILITY

Site Location: 153 South Liberty Drive, Stony Point, NY

Nearest Hospital Name: Helen Hayes Hospital

Hospital Location: 51-55 Route 9W, West Haverstraw, New York 10993


Hospital Telephone: 845-786-4000

Directions to the Hospital:

1. Take South Liberty Drive, south bound, approximately one half mile south of site.

2. Total Distance: 0.5 Miles Total Estimated Time: 5 Minutes

Map Showing Route from the site to the Hospital:

Compiled the ACP F TBM 2000 the counted Commentation bonds in the simplicity. At English recovered, this, Journal and contributed

Contribution of the ACP F TBM 2000 the contribution of the Section of

SMP Template: April 2009

2.5.3 RESPONSE PROCEDURES

As appropriate, the fire department and other emergency response group will be notified immediately by telephone of the emergency. The emergency telephone number list is found at the beginning of this Contingency Plan (Table 4). The list will also be posted prominently at the site and made readily available to all personnel at all times.

The current use of the site is primarily parking lot, with the western portion containing a single story masonry building set on a 6 inch monolithic cement slab with a six mil polyethylene vapor barrier. The occupied structure is operated as a retail banking office. Spills of hazardous materials are not anticipated. If the interior use changes, this plan will be amended to reflect these changes.

Evacuation plans for the facility are provided by the employing entity. Provident Bank, the current lease holder, is directly responsible for OSHA compliance and employee safety at their facility.

3.0 SITE MONITORING PLAN

3.1 INTRODUCTION

3.1.1 GENERAL

The Monitoring Plan describes the measures for evaluating the performance and effectiveness of the remedy to reduce or mitigate contamination at the site, the soil cover system, and all affected site media identified below. Monitoring of other Engineering Controls is described in Chapter 4, Operation, Monitoring and Maintenance Plan. This Monitoring Plan may only be revised with the approval of NYSDEC.

3.1.2 PURPOSE AND SCHEDULE

This Monitoring Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., groundwater, indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance, particularly ambient groundwater standards and Part 375 SCOs for soil;
- Assessing achievement of the remedial performance criteria.
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment; and
- Preparing the necessary reports for the various monitoring activities.

To adequately address these issues, this Monitoring Plan provides information on:

- Sampling locations, protocol, and frequency;
- Information on all designed monitoring systems (e.g., well logs);
- Analytical sampling program requirements;
- Reporting requirements;
- Quality Assurance/Quality Control (QA/QC) requirements;
- Inspection and maintenance requirements for monitoring wells;
- Monitoring well decommissioning procedures; and
- Annual inspection and periodic certification.

Consistent with the November 4, 2009 Draft DER-10, annual monitoring of the performance of the remedy and overall reduction in contamination on-site and off-site will be conducted for the first two (2) years. The frequency thereafter will be determined by NYSDEC. Trends in contaminant levels in soil, and/or groundwater in the affected areas, will be evaluated to determine if the remedy continues to be effective in achieving remedial goals. Monitoring programs are summarized in Table 6 and outlined in detail in Sections 3.2 and 3.3 below.

Table 6: Monitoring/Inspection Schedule

Monitoring:	Frequency*	Matrix	Analysis
	Once Per Year	Groundwater, (MW-1, MW-2, MW-3, MW-4, MW-5, MW-	USEPA 8260 Full VOV
		6)	USEPA 8270 Semi-VOC

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC and NYSDOH

3.2 SOIL COVER SYSTEM MONITORING

The soil cover system monitoring (SCSM) at the site is comprised of the visual inspection of asphalt covered roads, concrete covered sidewalks, a clean soil cover in landscaped areas and building slabs. The SCSM has been employed to mitigate potential exposure to humans and potential off-site migration (mobilized by precipitation run-off and infiltration of subsurface impacts.

The soil cover system will be inspected upon completion of the construction activities and on an annual schedule, coinciding with proposed groundwater monitoring schedule.

Unscheduled inspections and/or sampling may take place when a suspected failure of the soil

cover system has been reported or an emergency occurs that is deemed likely to affect the operation of the system.

A visual inspection of the complete system will be conducted during the monitoring event. Soil cover system components to be monitored include, but are not limited to, the following.

- integrity of asphalt covered parking and access ways
- integrity of concrete sidewalks
- integrity of concrete building slabs
- integrity of clean soil cover

A complete list of components to be checked in provided in the Inspection Checklist, presented in Appendix 3. If any of the components of the soil cover system are not functioning as designed, maintenance and/or repairs will be conducted/implemented as per Section 4 Operation and Maintenance Plan

3.3 MEDIA MONITORING PROGRAM

3.3.1 GROUNDWATER MONITORING

Groundwater monitoring will be performed on an annual basis to assess the concentrations of known contaminants within the groundwater on and downgradient of the site.

The network of monitoring wells has been installed to monitor both up-gradient and down-gradient groundwater conditions at the site. The network of on-site and off-site wells was designed prior to site construction and implementation of the Remedial Investigation Work Plan, in 2008. The location of the groundwater monitoring points is presented in Figure 8 within this report.

The monitoring wells have been installed to provide a sufficient pattern clearly identifying the west, north and south clean zones for this site. The groundwater sampling points provide adequate monitoring of the sub artesian aquifer confined beneath the site.

The current groundwater wells (MW-1 through MW-6) were installed using a rotary auger, with clean 2" diameter PVC piping placed into the borehole upon reaching the desired depth of approximately 24 - 29 feet below land surface. The geologic conditions observed at the site revealed that the upper seventeen (17) to twenty (20) feet below ground surface consisted of unconsolidated fill comprised of boulders, brick, clay, silt, and gravel. It was determined that unconfined surficial aquifer conditions did not exist beneath the subject site. A compact clay lens was found to exist at approximate 20 – 24 feet below land surface. This clay lens seemed to form a confined sub artesian aquifer beneath the subject site. The screened interval, consisting of 0.01"

slotted screen, of the well was placed within the top five (5) feet of this sub artesian aquifer below the confining clay lens. The interstitial space was filled with 20/30 silica clean sand to one foot above the screen, followed by the placement of a one foot thick bentonite seal. The remaining annulus was grouted to the surface with a slurry of Portland cement and bentonite clay, where a steel manhole vault was installed in concrete. Monitoring well construction logs are included in Appendix 6.

The sampling frequency may be modified with the approval of the NYSDEC. The SMP will be modified to reflect changes in sampling plans approved by NYSDEC.

Deliverables for the groundwater monitoring program are specified below.

3.3.1.1 Sampling Protocol

All monitoring well sampling activities will be recorded in a field book, and a groundwater-sampling log will presented as shown in Appendix 6. Other observations (e.g., well integrity, etc.) will be noted on the well sampling log. The well sampling log will serve as the inspection form for the groundwater monitoring well network.

Well gauging will be performed during each event prior to purging of the well. All measurements will be performed using an electronic conductivity probe and measure to a one hundredth of an inch (0.01").

Well purging will be performed by suitable method to meet the USEPA Low Flow Sampling protocol in force at the time of sampling. Sampling will be consistent with the comprehensive QAPP attached as Appendix 7.

All laboratory analysis will be performed by laboratories certified in accordance with NYSDOH ELAP program, and all laboratory deliverables will conform to the requirements for Category B deliverables under the Department's Analytical Services Protocol (ASP).

The selected analytical methodology for groundwater presented above (USEPA Method 8260b), presents a representative coverage for compounds of concern identified at the site. The baseline post-remediation groundwater quality conditions and the wells to be sampled according to the monitoring schedule are as follows:

WELLS TO BE MONITORED	ANALYTE	BASELINE CONCENTRATION (ug/l)	MONITORING PARAMETERS
MW-3	Isopropylbenzene	9.0	Volatile Organic
	n-propylbenzene	9.0	Aromatics (VOA) EPA Method 8260b
	sec-butylbenzene	7.0	Semi-Volatile Organic Compounds (SVOC) EPA Method 8270
MW-4	benzene	8.0	
	toluene	13.0	
	ethylbenzene	190.0	
	total xylenes	120.0	Volatile Organic
	isopropylbenzene	44.0	Aromatics (VOA) EPA Method 8260b
	1,3,5 trimethylbenzene	46.0	Semi-Volatile Organic
	1,2,4 trimethylbenzene	31.0	Compounds (SVOC) EPA Method 8270
	p-isopropyltoluene	5.0	13171 Westing 6270
	n-butylbenzene	16.0	
MW-6	benzene	290.0	
	toluene	170.0	
	ethylbenzene	610.0	
	total xylenes	638.0	Volatile Organic
	isopropylbenzene	110.0	Aromatics (VOA) EPA Method 8260b
	1,3,5 trimethylbenzene	290.0	Semi-Volatile Organic
	1,2,4 trimethylbenzene	9.0	Compounds (SVOC) EPA Method 8270
	p-isopropylbenzene	30.0	ATT MICHIGA GETO
	n-butylbenzne	170.0	
	naphthalene	320.0	

Note that only those analytes that exceeded the allowable limits during the May 2008 baseline post-remediation sampling event are listed on the table.

3.3.1.2 Monitoring Well Repairs, Replacement and Decommissioning

If biofouling or silt accumulation occurs in the on-site and/or off-site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan), if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of monitoring wells for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent periodic report. Well decommissioning without replacement will be done only with the prior approval of NYSDEC. Well abandonment will be performed in accordance with NYSDEC's "Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be reinstalled in the nearest available location, unless otherwise approved by the NYSDEC.

3.4 SITE-WIDE INSPECTION

Site-wide inspections will be performed on a regular schedule at a minimum of once a year. Site-wide inspections will also be performed after all severe weather conditions that may affect Engineering Controls or monitoring devices. During these inspections, an inspection form will be completed (Appendix 3]). The form will compile sufficient information to assess the following:

- Compliance with all ICs, including site usage;
- An evaluation of the condition and continued effectiveness of ECs:
- General site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection;

- Compliance with permits and schedules included in the Operation and Maintenance Plan; and
- Confirm that site records are up to date.

3.5 MONITORING QUALITY ASSURANCE/QUALITY CONTROL

All sampling and analyses will be performed in accordance with the requirements of the Quality Assurance Project Plan (QAPP) prepared for the site (Appendix 7). Main Components of the QAPP include:

- QA/QC Objectives for Data Measurement;
- Sampling Program:
 - Sample containers will be properly washed, decontaminated, and appropriate preservative will be added (if applicable) prior to their use by the analytical laboratory. Containers with preservative will be tagged as such.
 - Sample holding times will be in accordance with the NYSDEC ASP requirements.
 - o Field QC samples (e.g., trip blanks, coded field duplicates, and matrix spike/matrix spike duplicates) will be collected as necessary.
- Sample Tracking and Custody;
- Calibration Procedures:
 - All field analytical equipment will be calibrated immediately prior to each day's use. Calibration procedures will conform to manufacturer's standard instructions.
 - o The laboratory will follow all calibration procedures and schedules as specified in USEPA SW-846 and subsequent updates that apply to the instruments used for the analytical methods.
- Analytical Procedures;
- Preparation of a Data Usability Summary Report (DUSR), which will present the results
 of data validation, including a summary assessment of laboratory data packages, sample
 preservation and chain of custody procedures, and a summary assessment of precision,
 accuracy, representativeness, comparability, and completeness for each analytical
 method.
- Internal QC and Checks;
- QA Performance and System Audits;

- Preventative Maintenance Procedures and Schedules:
- Corrective Action Measures.

3.6 MONITORING REPORTING REQUIREMENTS

Forms and any other information generated during regular monitoring events and inspections will be kept on file on-site. All forms, and other relevant reporting formats used during the monitoring/inspection events, will be (1) subject to approval by NYSDEC and (2) submitted at the time of the Periodic Review Report, as specified in the Reporting Plan of this SMP.

All monitoring results will be reported to NYSDEC on a periodic basis in the Periodic Review Report. A letter report will also be prepared, subsequent to each sampling event. The report (or letter) will include, at a minimum:

- Date of event;
- Personnel conducting sampling;
- Description of the activities performed;
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air groundwater, soil, etc):
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDEC-identified format);
- Any observations, conclusions, or recommendations; and
- A determination as to whether groundwater conditions have changed since the last reporting event.

Data will be reported in hard copy or digital format as determined by NYSDEC. A summary of the monitoring program deliverables are summarized in Table 7 below.

SMP Template: April 2009

Table 7: Schedule of Monitoring/Inspection Reports

Task	
Annual Monitoring	Within 45 days of the receipt of laboratory data

^{*} The frequency of events will be conducted as specified until otherwise approved by NYSDEC

4.0 OPERATION AND MAINTENANCE

4.1 INTRODUCTION

The site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/ soil vapor extraction systems to protect public health and the environment. Therefore, the operation and maintenance of such components is not included in this SMP.

5.0 INPECTIONS, REPORTING, AND CERTIFICATIONS

5.1 SITE INSPECTIONS

5.1.1 INSPECTION FREQUENCY

All inspections will be conducted at the frequency specified in the schedules provided in Section 3 Monitoring Plan and Section 4 Operation and Maintenance Plan of this SMP. At a minimum, a site-wide inspection will be conducted on an annual basis. Inspections of remedial components will also be conducted when a breakdown of any treatment system component has occurred or whenever a severe condition has taken place, such as an erosion or flooding event that may affect the ECs.

5.1.2 INSPECTION FORMS, SAMPLING DATA, AND MAINTENANCE REPORTS

All inspections and monitoring events will be recorded on the appropriate forms for their respective system which are contained in Appendix 3. Additionally, a general site-wide inspection form will be completed during the site-wide inspection (see Appendix 3). These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including all media sampling data and system maintenance reports, generated for the site during the reporting period will be provided in electronic format in the Periodic Review Report.

5.1.3 EVALUATION OF RECORDS AND REPORTING

The results of the inspection and site monitoring data will be evaluated as part of the EC/IC certification to confirm that the:

- EC/ICs are in place, are performing properly, and remain effective;
- The Monitoring Plan is being implemented;
- Operation and maintenance activities are being conducted properly; and, based on the above items,
- The site remedy continues to be protective of public health and the environment and is performing as designed in the RAWP and Decision Document.

5.2 CERTIFICATION OF INSTITUTIONAL AND ENGINEERING CONTROLS

After the last inspection of the reporting period, a qualified environmental professional will prepare the following certification:

'For each engineering and institutional control identified for the site, I certify that all of the following statements are true:

- (a) the institutional control and/or engineering control employed at this site is unchanged from the date the control was put in place, or last approved by the DER;
- (b) nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (c) nothing has occurred that would constitute a violation or failure to comply with any SMP for this control;
- (d) access to the site will continue to be provided to the DER to evaluate the remedy, including access to evaluate continued maintenance of this control;
- (e) if a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for their intended purpose under the document;
- (f) no new information has come to the remedial party's (site owner's) attention, including groundwater monitoring data from wells located at the site boundary, if

any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid.

'I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I [print name] of [print business address], am certifying as [Owner or Owner's Designated Site Representative] for the site named in the Site Details section of this form.'

In addition, since the NYSDEC has determined that the site does not represent a significant threat to public health or the environment, and since contaminants in the groundwater at the site boundary contravene drinking water standards, every five years the following statement (g) will be added to the certification:

(g) the assumptions made in the qualitative exposure assessment remain valid."

The signed certifications will be included in the Periodic Review Report described below.

5.3 PERIODIC REVIEW REPORT

A Periodic Review Report, including a synopsis of annual reports during the review period, will be submitted to the Department every year, beginning eighteen months after the Certificate of Completion is issued. In the event that the site is subdivided into separate parcels with different ownership, a single Periodic Review Report will be prepared that addresses the site described in Appendix 1 (Metes and Bounds). The report will be prepared in accordance with NYSDEC DER-10 and submitted within 45 days of the end of each certification period. Media sampling results will also be incorporated into the Periodic Review Report. The report will include:

- Identification, assessment and certification of all ICs required by the remedy for the site;
- Results of the required annual site inspections and severe condition inspections, if applicable;
- All applicable inspection forms and other records generated for the site during the reporting period in electronic format;
- A summary of any discharge monitoring data and/or information generated during the reporting period with comments and conclusions;
- Data summary tables and graphical representations of contaminants of concern by media (groundwater, soil vapor), which include a listing of all compounds analyzed, along with

the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends;

- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted electronically in a NYSDEC-approved format;
- A site evaluation, which includes the following:
 - o The compliance of the remedy with the requirements of the site-specific RAWP, ROD or Decision Document:
 - o The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
 - Any new conclusions or observations regarding site contamination based on inspections or data generated by the Monitoring Plan for the media being monitored;
 - o Recommendations regarding any necessary changes to the remedy and/or Monitoring Plan; and
 - o The overall performance and effectiveness of the remedy.

The Periodic Review Report will be submitted, in hard-copy format, to the NYSDEC Central Office and Regional Office in which the site is located, and in electronic format to NYSDEC Central Office, Regional Office and the NYSDOH Bureau of Environmental Exposure Investigation.

5.4 CORRECTIVE MEASURES PLAN

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an institutional or engineering control, a corrective measures plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the corrective measures plan until it is approved by the NYSDEC.

TABLE 1 SOIL ANALYTICAL SUMMARY - VOCs CIABATTONI I.D.#C344068 STONY POINT, NY

1,1- Dichtoroethene	D D D	ח	0	ס	ס	э	6
g	D n	э	5		n.	ם	1 8
g	mg/kg U)]) D	5	ם ס	D	
1,1,1. Trichioroethane	o O	ם ו	D	כ	n i) 	
1,2,4- Trmethybenzene	mg/kg	ם	D	4	0	4.6	
Q.	n n	5	a	4.5) 	7	
16	TIPOWS	Б	D I	24	5	2800	
lent- Butyfbenzene	D n	э]	ם	3	a l	
2	ng/gm	5	n .	בו	ם D	5	
8	D D			180	D	ח	
perzere	5 D	D I	اد	0.75	Þ	0.31	3
	D ⊃	ы) 	Э	5	0.51	
X	D D	Þ	בי	2	Þ	3.2	+ 1 2
1 H	D U	ם) 	44	2		
Totame	2 3 E	>	5	Э	9	3	8
1	D	3	٥	3]]	э	1
++)		 - -	ם		
		18 bs	24' 18	10 bis	20	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	
	SB1-8 S12/208	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	Restricted Use Soil Cleansp
	SB1-8	582-18	\$83.24	SB4-16	8382	SB8-18	Reserve

Notes U = Below Detection Limits the a below land surface

Page 1 of 10

TABLE 1
SOIL ANALYTICAL SUMMARY - VOCs
CIABATTONI I.D.#C344068
STONY POINT, NY

Location	SB1-8	SB2-18	\$83.24	\$84-18	885-8	SB6-18	Restric
Sample	5/12/2008	5/12/2008	SB3-24 S/12/2008	8002/21/5	SB5-8 5/12/2008	5/12/2008	Restricted Use Soil Clasmop Objections - Commercial
Depth	┠─┎ ═ ┥ ┈ ┼╌╃┈	87 PS	24' bis	18 bls	74 b	18' bis	di mi
1,2- Dichtoruberzene mg/kg	5	D	3	a	o	n	S
Cis-1,2- Dichloroethene mg/lg	D	a		D	a l	ם	W2
Dichloroethene mg/kg	D	٥		D	D	n	903
1,3-Dichlaro- benzene morta	a	5) D ₁	٦	ח	ם	vac
1,4-Dichloro- benzene mg/kg	Þ	2	ם	ם ו	ם	D	Ę
Dioxam mg/kg	ם	5	3	Э	5	D	1.00
Acetone	Э	Э	3	5	D	ח	200
Carbon Tetrachloride mg/kg	3	5	 = 	5	3	5	
Chloro- benzene mg/kg	5	э	Þ	3	Э	э	8
Chloroform	اد	э	D	٦		ם ח	
Hexaction- berzene mg/tg	э.	5	D	a	2	ח	,
Methyl Ethyl Katone ma/kg	5	5	>	 	>	ם	
Methytena Chloride marka	э	3	ם	Di l	ם	D	8
Tetra- chloroethene mg/kg		Э	Э	ם	3	D	
ethene mg/tg	ם	ا اد	2	ם	Э	٥	
toluene morka	3	5	D 1) J	5) D. .	}
Chloride Tofa	ם	٦	3	3	>	ס	

Notes U = Betow Detaction Limits this = betow land surface

TABLE 1 SOIL ANALYTICAL SUMMARY - VOCS CIABATTONI I.D.#C344068 STONY POINT, NY

nzene											
1,2- Dictriorabenzene	TOPKS	 	a	ח	 	ב ב	Э	D.	D!	3	9009
1,1- Oichloroethene	mg/kg	n	٦	ח	5) D	b	ס	n	3	200
1,2- Dichloroethane	D D	D.	ח) 	ol	ח) 	D.	ם	3	8
1,1- Dichloroethane	mg/kg	ב	2	Э	a	ם :	٦	ם	5	3	240
1,1,1- Trichioroethane	mg/kg U	٦	ס	a	D	ם		ם	בו	3	200
Toluene	D D		ם	٦	5	בן בן	0.0034 (J)	 	Э	3	900
o-Xylene	9% D	Э	>	Э	٦	Ы	0.0095	>	э	3	9
G P-Xylene	D D D	5	٦	0.0072 (J)	5	اد	0,150	5	Э	3	500 Total
Methylane Chloride	0.0018 (J)	0,002 (J)	(c) 7100.0	0.011(J)	0.0015 (J)	(L) 7100.0	(r) 1500.0	0.0017 (J)	Э	0.0015 (J)	200
Methytcyclo- hexzne	mg/kg		D	0,110	ם	n.	0.081	ם	0.0016 (J)	3	1
1	D D	Э	D	0.140) -	 -	0.033	 	3	3	23
Ethyt-	D C	ם	>	0.029		a)	0,140) 	3	3	88
1 1	D D	ן בּוֹ	٦	٦	0 0001	Þ	٥	 ! !	0.0013 (J)	3	i
Betzene	®√kg ⊃	ם	2	Þ	ם) -	(7) 8100.0	o!	ם	3	2
Acetone	0.012 (J)	5	Þ	0.120 (J)	ם	5	0,039	Э	٦	3	88
	mg/kg	ב	ובן	ם)	ם	DUP 5-4 0.0082 (J)	D	5	3	
	Z Pis	11' bis	2º bls	17 bis	2° tols	95 EPS	DUP 5.4	2' bls	10° bis	器 2	dnus
Sample	Date 10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/8/2009	10/8/2009	10/8/2009	10/8/2009	10/8/2009	10/6/2009	Restricted Use Soil Cleanup Objectives - Commercial
ļį	S-1	\$-2	S-3	J	8.5	898	7.3	88	88	\$10	Restricts

Notes J = The emarks was positively identified the associated numerical value is the approximate concentration of the analyse in the escripts.

D10 = Disclor regard due to ammile concentration to the analyse in the escripts.

U = Selver Disclor regard can be associated above the reported sample quantification hell. However, the reported quantification limit is approximate and may or may not represent the actual land of quantification hell. However, the reported quantification limit is approximate and may or may not represent the actual land of quantification helps and problemly and p

SOIL ANALYTICAL SUMMARY - VOCS CIABATTONI I.D.#C344068 STONY POINT, NY TABLE 1

Chloride	Вубш	۱ ا	n	ρĺ	٥	ם	ם	ח	ם ו	ח	3:	53
Tri-	толю	D) 	ם	ם	D) - 	D .	n -	o	n l	200
Tetra-	толко	3]]]]	ס	ם	n	ם	n	ם	D	'n	150
Methylene Chloride	-	5	a	э	>	ם	ח	n	n	D	3	200
2	⊕g/to	D	'n	D	ס	n	n	0	ח	o l	S ¹	200
Hexa- Chforobenzene	physic	n	ח	Э	ח	ח	a l	n	0	al l	3	
Chloroform	9	5	n .	Э	ם	D.	ח	n	D	ח	3	350
Chlorobenzene	теуча) >] ;	n	n	ם ח	ן -)	<u>n</u>	ח	n _	ß.	200
Cerbon	\rightarrow	D	n	n	n	ח ו	ם ח	n	ח	ם ו	n l	22
Acetone	9	>	n	<u>n</u>	ח	ח	n;	ם	ם ח	D	3	200
Dioxen		-	ם ו	D	n	ם	<u>, </u>	ח	ם כ	D	3	£
1,4- Dichlorobenzene	mg/kg	3	ס	ח _	Э	O .	מ	ָח l	n -	D	m l	130
1,3- Dichlorobenzene		D	n	n	ם[n l	D	_ n	ח	ח	n	280
bichloroethene	mg/kg		n .	ם	ם	ח	n	n	ח	n	3	200
Cis-1,2- Dichloroethens	mg/kg	a	מ	D	э,	n	n	D	ח	n	3	200
_		2. bls	11. bis	2' bis	17 bis	Z bis	6° bls	DUP 5-4	Z bls	10° bls	Z bls	de ji
Semple	Data	10/6/2009	10/8/2009	10/6/2009	10/8/2009	10/8/2009	10/6/2009	10/8/2009 DUP 5-4	10/6/2009	10/6/2009	10/6/2009	Restricted Use Soil Cleanup Objectives - Commercial
	딝	5-1	\$.2	23	24	5.5	88	5-7	8-8	S-8	5-10	Restricted

Notes U - 8-doing Demandrian Limbs

Use - 8-doing Demandrian Inhology to a standard and secure of the secure of th

SOIL ANALYTICAL SUMMARY - SVOCs CIABATTON! I.D.#C344068 STONY POINT, NY TABLE 1

			2-Methyl-	Benzo(a)	Benzo(a)	Benzo[b]	Benzo(g,h,i]	Benzo(k)	Į.		Indeno(1,2,3-cd]	
Sample Location Date	Depth	Naphthalene ma/ka	naphthalene	antracene	рлепе	fluoranthene ma/ka	penytene	fluoranthene mo/kg	Chrysene	Fluoranthene	pyrene ma/ka	Phenanthrene
100		L						5				8
10/8/2009)	0.021 (J)	0.018 (J)	(1) 120.0	0,014 (J)	0.012(J)	0.021(J)	0.035 (J)	0.012 (J)	0.016 (J)
5/12/2008	09 11° bls	D	ם	٦	ם) 	0	٦	n	n	n
5/12/2008	08 24 bis)	<u>ס</u>	0.011 (J)) 	ח	ם		5	0.010(J)	ם	n
5/12/2008	08 16'bla	3,1	=	=	3	=	=	=	=	=	=	
5/12/2008	1 1 1											,
10/8/2009	09 2' bis		i D	0.067 (D10,J)	0.081 (D10,J)	0.078 (D10,J)	0.043 (D10,J)	ח	0.054 (D10,1)	5	ם	0.041 (D10.J)
5/12/2008	08 18' bis 09 6' bis	0.38	٦	מ	٥	٦	n	a	; DI	0	٦	n
10/6/2009	09 DUPS-1		0.310 (D10,J)	0.150 (D10,J)	0.100 (D10,J)	0.120 (D10,J)	ם	Þ	0.100 (D10,J)	0.160 (0.10,J)	Э	0.088 (D10,J)
10/6/2009	09 2 bis		D.	0.120 (010.1)	Э.	(L,01Q) 001.0	D	D	Э	D	D.	D
10/8/2009	09 10'bks		Э	ב	D,	D.	D .	ם	Þ	D.	ם	D !
10/6/2009	2 Dis		m	m	m	73	0.075 (010.J)	ß	3	m	75	'n
Restricted Use Soil Cleanup Objectives - Commercial	2 Cleanup unarclad	900		5.6	_	5.6	200	56.0	26	009	80.	500
	Modera	I - The non-ben up		and an experience of the property of the	and the black successful and an observe	And the second second second	white in the compile					

Notes Ja The stables was positively identified, the associated numerical value is the approximate commentation of the analyte in the sample D10 = Dilution required due to sample color

U = Below Detection Limits

U. The analyte was not detected above the reported sample quantification limit. However, the reported quentification limit is approximate and may or may not represent the sculal limit of quantification necessary to accurately and precisely measure the sculad in the semple. But a semple

SOIL ANALYTICAL SUMMARY - SVOCs CIABATTONI I.D.#C344068 STONY POINT, NY TABLE 1

Depth Depth Moderaphthene Acenaphthene Moderaphthalene Anthracene mg/kg mg/kg mg/kg mg/kg mg/kg 2* bls U U U 17* bls U U U 2* bls U U U 0* bls U U U 0* bls U U U 10* bls U U U 2* bls U U U	Acenaphthene Acenaphthalene mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U	Aceraphthene Aceraphthene Anthracene anthracene Fluorene mg/kg mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U </th <th>Aceraphthene Aceraphthene Anthracene anthracene Fluorene mg/kg mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U<!--</th--><th>Aceraphthere Aceraphthalene Arthhacene anthracene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U</th><th>Aceraphthene Aceraphthelene Arthracene anthracene Fluorene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U</th><th>Actual pulmental land Activision of the market Dispersión of the market Fluorense market Implication of the market Processor Actual pulmental of the market Implication of the market Processor Actual pulmental of the market Actual pulmental of the pulmental of</th><th>, , , , , , , , , , , , , , , , , , ,</th><th>S-1 10/8/2009</th><th>S-2 10/6/2008</th><th>S-3 10/6/2009</th><th>S-4 10/6/2009</th><th>S-5 10/8/2009</th><th>S-8 10/6/2009</th><th>S-7 10/6/2009 DUP5-4</th><th>S-8 10/6/2009</th><th>S-9 10/6/2009</th><th>S-10 10/6/2008</th></th>	Aceraphthene Aceraphthene Anthracene anthracene Fluorene mg/kg mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U </th <th>Aceraphthere Aceraphthalene Arthhacene anthracene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U</th> <th>Aceraphthene Aceraphthelene Arthracene anthracene Fluorene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U</th> <th>Actual pulmental land Activision of the market Dispersión of the market Fluorense market Implication of the market Processor Actual pulmental of the market Implication of the market Processor Actual pulmental of the market Actual pulmental of the pulmental of</th> <th>, , , , , , , , , , , , , , , , , , ,</th> <th>S-1 10/8/2009</th> <th>S-2 10/6/2008</th> <th>S-3 10/6/2009</th> <th>S-4 10/6/2009</th> <th>S-5 10/8/2009</th> <th>S-8 10/6/2009</th> <th>S-7 10/6/2009 DUP5-4</th> <th>S-8 10/6/2009</th> <th>S-9 10/6/2009</th> <th>S-10 10/6/2008</th>	Aceraphthere Aceraphthalene Arthhacene anthracene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Aceraphthene Aceraphthelene Arthracene anthracene Fluorene Fluorene U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Actual pulmental land Activision of the market Dispersión of the market Fluorense market Implication of the market Processor Actual pulmental of the market Implication of the market Processor Actual pulmental of the market Actual pulmental of the pulmental of	, , , , , , , , , , , , , , , , , , ,	S-1 10/8/2009	S-2 10/6/2008	S-3 10/6/2009	S-4 10/6/2009	S-5 10/8/2009	S-8 10/6/2009	S-7 10/6/2009 DUP5-4	S-8 10/6/2009	S-9 10/6/2009	S-10 10/6/2008
Acenaphthatene morkg	Aceraphthalene Anthracene mg/kg mg/kg mg/kg mg/kg mg/kg n u u u u u u u u u u u u u u u u u u	Aceraphthalene Arthracene anthracene Fluorene mg/kg mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Aceraphthalene Anthracene Elucrene mg/kg mg/kg mg/kg U U U U	Accenaphthalene Anthracene Individual marke Plucene marke U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Othersian Othe	Activations and marked myles Arithmeters and myles Flucture myles myles Pcressol myles myles myles myles myles myles myles myles u <td< td=""><td>1</td><td>z' bis</td><td>11' bis</td><td>2' bh</td><td>17 bis</td><td>2 bis</td><td>.9 A</td><td>DUPS-4</td><td>2' bis</td><td>10' bis</td><td>2 Ds</td></td<>	1	z' bis	11' bis	2' bh	17 bis	2 bis	.9 A	DUPS-4	2' bis	10' bis	2 Ds
	Arithracene morking mo	Arithracene antitracene marke	Arthracene anthracene Fluorene mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Dibenz(e,h)	Othersia Dibenzia, Diben	Otherside, h) Dibenside, h	Acenaphthene	mg/kg	ם	ח	a	n	D.	n	Э	n	m
	Arithmeene morking morking and	Dibenz(e,h) Dibenz(e,h) Muhracene Fluorene marke mar	Arthracene marke Anthracene anthracene marke Fluorene marke U	Arthriscene antbracene Fluorene mg/kg mg/kg mg/kg mg/kg U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U <td> Objection Obje</td> <td> Otherside, b) Anthracene Otherside, b) Anthracene Anthracene</td> <td>Acenaphthalene</td> <td>U</td> <td>ם </td> <td>ח</td> <td>ם</td> <td>a</td> <td>D</td> <td>3</td> <td>ם</td> <td>ח</td> <td>n</td>	Objection Obje	Otherside, b) Anthracene Otherside, b) Anthracene Anthracene	Acenaphthalene	U	ם	ח	ם	a	D	3	ם	ח	n
	u u u u u u u u u u u u u u u u u u u			Fluctore m-Cresol U U U U U U U U U U U U U U U U U U	Fluctore m-Cresol c-Cresol mg/kg mg/	Fluorene m-Cresol p-Cresol mg/kg mg/	Anthracene	D D	ח	ם	ח		ם	ס	D	D.	m
mg/kg mg/k	mg/kg p-Cresol P-Cresol P-Cresol Chrosophenol U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U U	Perta- Perta- D U U D U D U D U D U D U D U D U D U D					Pyrane	mg/kg 0.036 (J)	D	0.10 (J)	D	0,083 (D10,J)	0	0.190 (D10,J)	0.110 (010,J)	n_	ß

Notes U = Below Detection Limits

UU = The straights was not detected above the reported quantification find is approximate and may or may not represent the actual limit of quantification recessary to accumitaly and precessly measure the analyte in the assertible.

Sample.

bis = below land surfaces

SOIL ANALYTICAL SUMMARY - METALS CIABATTONI I.D.#C344068 STONY POINT, NY TABLE 1

	Silver	٥	٥	ם			٦	SS	SS	S	SN	SN	1,500
	35 E							2		Z	2	Z	1.5
	Lead mg/L) >) 	٦	ם		٦	NS	SS	NS.	SN	NS	1,000
	Chromium))	D	D	D.	3	 	SS S	SN	NS.	SN	SN	1,900
-Volatile	Cedmium	n .	n i) 3	ם	D.	Э	NS	SN	SN	SN	SN	9.3
TCLP Non-Volatile	Bartum mg/L	0.517	0.304	0.613	0.580	0.317	0.529	SS	SN	SN	NS	SN	400
	Selenium mg/L	2	D	ם ס	ם	٦	5	SN	NS.	NS	SN	NS.	1,500
	Arsenic mg/L	, 3) 	ם	ם	ב	Þ	SS	SS	NS	SN SN	NS.	16
	Mercury mg/L	3	D	ם	5	ס		SN	NS S	SZ SZ	SZ	SN.	2.8
Hexavalent	Chromium	o l	ם	Э	-	D	D	ם ס) D	D	3))	400
	Moisture	18.3	16.2	12.4	16.9	10.1	0.0	12.1	18.4	10.1	15.2	11.8	n/a
	Lead	8.15	9.94	5.62	21.8	18.7	6.74	6.73	8,61	8,43	244	18.7	1,000
	Chromlum	35.6	32.1	21.3	23.6	18.9	15.4	143	9,7	141	214	18.7	1,900
Trivatent	Chromium mg/kg	35.6	31.5	21	23.5	18.6	15.2	14.3	14.7	4	21.2	16.4	1,500
	Pept High	e, ple	16' bis	24. Þis	18' bls	8. As	18' bks	2, bls	1. bks	1. bis	1' bks	1, bls	die la
	Sample Date	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	5/12/2008	Restricted Use Soil Clearup Objectives - Commercial
	Location		SB2-18	SB3-24	SB4-18	SB5-8	SB6-18	SB7-2	SB8-1	\$89-1	SB10-1	SB11-1	Restricte Objecth

Notes U = Balow Detection Limits

UJ = The emaints was not detected above the reported sample quantification limit. However, the reported quantification kink is approximate and may not represent the actual limit of quantification necessary to accurately and predically measure the analyte in the sample.

NS = Not Sampled

bls = below land surface

TABLE 1 SOIL ANALYTICAL SUMMARY - METALS CIABATTONI I.D.#C344068 STONY POINT. NY

Lead	mg/kg 7.6	5.7	6.1	5.5(J)	8.1	5.2	12.3	7.0 (J)	14,5	48.2	1,000
Iron		18600	17200	15300 (J)	15800	18900	24100	18700 (J)	18800	14300	-
Cyanide		ם	כ	U 15	ן יין ס		D	O 18	ח	U)	27
	тg/kg 20.2	17.0	17.9	16.0 (J)	12.4	19.0	38.8	20.0 (J)	29.3	12.3	270
Coball	mg/kg 8.05	7.14	6.84	98.9	6.84	7.28	8.93	7.90	7.68	5.24	
Chromium	mg/kg 10.9	18.5	9.02	7.69	9.73	13.7	8.32	12.0	12.4	10.0	1.900
Calcium	3030	1490	3150	(r) 0/61	36300	1520	6330	10700 (J)	4040	1670	1
Cadmium	тр/кр 0.152 (J)	(L) 770.0	0.125(J)	0.101(J)	0.169 (J)	0.088 (J)	0.121(J)	0.169 (J)	0.138 (J)	0.091 (J)	6.0
Beryllium	тg/kg 0.455 (В)	0.423 (B)	0.436 (B)	0.334 (B)	0.436 (B)	0.498 (B)	0.382 (B)	0.419 (B)	0.378 (B)	0.308 (B)	280
Barium	mg/kg 61.8	52.6	66.4	54.5	46.3	61.0	46.2	55.4	52.2	54.1	400
Arsenic	mg/kg 4.3 (B)	3.5 (B)	3.6 (B)	4.1 (B)	3.1 (B)	2.9 (B)	3.0 (B)	3.9 (B)	3.5 (B)	2.8 (8)	16
Aluminum	mg/kg 10100	9250	9490	0999	9150	11900	9510	9460	0908	7140	
	Oepth 2' bis	11' bts	5, pis	17' bks	2' bis	6, bks	DUP 5.4	2, pls	10' bls	2' bls	dru 19
Sample	Date 10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009	10/6/2009 DUP 5-4	10/6/2009	10/8/2009	10/6/2009	Restricted Use Soll Clearup Objectives - Commercial
	S-1	\$-2	S-3	48	ę,	9 %	S-7	8-8	6,	S-10	Restricter

Notes B = Analyte was detected in the associated Method Blank.

J = The snalyte was positively identified, the associated numerical value is the approximate concentration of the analyte in the sample

U = Below Detection Limits

UL = The analyte was not detected above the reported sample quantification limit. However, the reported quantification finit is approximate and may or may not represent the actual limit of quantification necessary to accurately and precisely measure the analyte in the semple.

bis = below land surface

TABLE 1 SOIL ANALYTICAL SUMMARY - METALS CIABATTONI I.D.#C344068 STONY POINT. NY

							SIGNI POINT, IN), IS						
 	Sample		Magnesium	Manganese	Метсилу	Nickel	Potessium	Selenium	Silver	Sodium	Vanadium	ZInc	Mercury	Thallium
Location	Date	Depth	mg/kg	mg/kg	mg/kg	тр/кр	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
5-7	10/6/2009	2' bls	4050 (B)	4332 (B1.B)	ם	14.3	1460	ם	ם	80.0 (J)	10.9	47.1 (B)	0.0101 (J)	SN
S-2	10/6/2009	11. bls	2990 (B)	414 (B1,B)	כ	12.8	1460	ח	D	78.2 (J)	16.8	38.8 (B)	SN	٦
જ	10/6/2009	2' bls	3590 (B)	420 (B1.B)		11.3	1350	Σį	٦	221	17.4	37.9 (B)	NS	NS
Š	10/6/2009	17' bls	2790 (B.J)	210 (B1,B,J)	ס	13.4	1260	ח	D	144 (J)	14.0 (J)	39.7 (B)	NS	ח
S-5	10/6/2009	2. bks	22200 (B)	493 (B1,B)	D	12.5	1190	D ₁	ם	127 (J)	16.0	62.7(B)	(1) 0600.0	NS
8.6	10/6/2009	8' bis	3450 (B)	330 (B1.B)	ם	13.5	1480	ם	ם	201	22.2	36.2 (B)	0.0101 (J)	SN
S-7	10/6/2009	DUP 5-4	5550 (B)	320 (B1,B)	ס	11.8	1170	ס	D	176	31.0	51.6 (B)	0.0112 (J)	NS.
83	10/6/2009	2' bls	4450 (B,J)	700 (B1,B,J)	ם	16.8	1320	5	ס	120 (J)	17.2 (J)	45.4 (B)	0.0132 (J)	D
6-S -	10/6/2009	10° bls	4280 (B)	280 (B1.B)	D	13.8	1230	Þ	Э	287	18.8	49.9 (B)	(1) 2600.0	SN
S-10	10/6/2009	2' bis	2730 (B)	236 (B1,B)	3	9.69	1160	3	3	(f) 6.79	14.9	30.0 (8)	0.0449	SN
Restric	Restricted Use Soil Cleanup Objectives - Commercial	remup chal		10,000	2.8	310	l l	1,500	1,500	1		10,000	2.8	
		Notes F	Notes R = Analyse species	technol in the association	Contact Medium Blank									

Notes B = Analyte was detected in the associated Method Blank,

B1 = Analyte was detected in the associated Method Blank. Analyte concentration in the sample is greater than 10k the concentration found in the method blank.

J = The enalyte was positively identified, the associated numerical velue is the approximate concentration of the analyte in the sample.

U = Below Detaction Limits

UJ - The enabyte was not detected above the reported eartification limit. However, the reported quantification limit is approximate and may or may not represent the actual limit of quantification necessary to encurately measure the analyte in the sample.

NS = Not sempled

bis = below land surface

Table 1 - Soil Analytical Summary w DUSR Revisions Mata's Pest PCB Pg7-P10

Page 9 of 10

TABLE 1 SOIL ANALYTICAL SUMMARY - PESTICIDES/PCBs CIABATTONI I.D.#C344068 STONY POINT, NY

							15		1	O	Organochlorine Pesticides	Pesticio	les					1	1	Polychlorin	Potychlorinated Biphemyla
	Semple		4,4-000	4.4'-DDE	4,4-DDT	Mahm	BHC BHC	BH SH	BHC	BHC BHC	Diekdrin	Ketone	Chlordene	Chlordene	Endounten II	Suffete	Heptachlor	TP Acid		1248	1260
Location	L.	Depth	ug/kg	D/dn		ug/kg	П	ug/kg	uplkg	gyka				Н	up/qu	D)/Cn	ayka	_	ug/kg	กลูกเล	pydn
\$ - 1	10/6/2009	Z bis	D	1.0 (OPL.1) 1.7 (OPL.3)	1.7 (QFL.J)		5	ם	0 91 (QFL.J)		 	a	ח	13 (OFL.J)	n	o]	∍))	ם	a .
8.2	10/6/2009	14. hts	Э]]	n	3	>	j 1	2	5	ם	5	a	3	ח	э	ם ו	ם 	5	5	5 ₋
8.3	10/6/2009	2 bls	ם	בן	11(QFL,J)	5	٦	3	0 90 (OFL.J)) 	ב	3		э	٦	Þ	D) J	اد	Þ	
4	10/6/2009	17 bis	ם	2	ָ הַ	=	5	ÞΙ	0.82 (QFL,J)	5	ם	>	2	ם	ח		٥	Э	ادا	5	, p
2.5	10/6/2009	Z bis	0.7 (OFL,J)	0.7 (OFL.J) 0.66 (OFL.J) 1.6 (OFL.J)		- e -	0 93 (QFL,J)	c	OBI (OFL.)		0.67 (QFL,J)			0.86 (QFL,C4,J)	D) -	٥) 		1
8-6	10/6/2009	6. bis	5	ם ס	1.1 (OFL.J.)	=	ם		0 82 (QFL,J) 0 58 (QFL,J)	58 (QFL J)	3 , 1		+ + +	ח	Þ	٥	מ	Þ		ס	ם
8-7	10/6/2009	25. 25.	11 (QFL.J)	105/2009 DUP 5-411(QFL,J), 2.0 (QFL), 2.4 (QFL,J)	2.4 (OFL.J)) D	0.95 (OFL.J)	3]	0 85 (QFL,J)	n	Þ	3	11 (OFL.1)	11 (QFL,J) 12 (QFL,C4,J)	a	-	5	>	э	(r'OSO) <u>re</u>	5.5 (QSU,J)
8	10/6/2009	2 bis	D	0.59 (QFL,J) 1.1 (QFLJ)	1 (OFL.)	=			0.98 (QFL,J)	2	2		a l	0 52 (QFL,C4,J)	ם	D I		Э))	a	٦
8.0	10/6/2009	10' bis	٦	٦		+	٦		0 84 (QFL,J) 0 65 (QFL,J)	65 (OFL. J)	Э		5	0 53 (OFL.CA.J)	Э	٥		Э	Þ	٥	
S-10	10/6/2009	Z Dis	3	ñ	2.1 (QFLJ)	3	3	3	0.98 (QFL,J)	3	3	3	3	0 41 (QFL.J) 0	0 48 (GFL,C4.J)	3	3	3	3	ъ	3
1 6	Restricted the Soil Chemp Objectives - Commercial	d a	2,000	62.000	47,000	8	3,488	3,000	000'000		Ĭ,	1	2,589	1	000 R	900,002	15,000	000,000	88		

Notes QFL = Florish charry (EPA 3820) performed on correct.

J = The armitys was pusified; the mandated numerical value is the approximate concentration of the matrix is the tempte C4 = Californian Verification recovery was below the method control limb for this manipta

OSU = Butter (EPA 3090) chemup performed on extract.

sary to accountaly and proximaly measure his analytis in the varieties U - The analyse was not detected above the reported excepts quantification finit. However, the reported quantification finit is approximate and may or may not represent the actual finit of quantification.

16 - below land surfaces

TABLE 2A: GROUNDWATER ELEVATION DATA

Facility Name:

Clabattoni Brownfields Site 153 South Liberty Drive

Stony Point, New York

Site ID#:

C344068

No Data ≃ Blank All Measurements = Feet

	ĺ		0	T	윤	n/a	n/a
MW-6	2	27.90	22.90 - 27.90	117.00	WLQ	15.20	96.92
		ļ	22		ELEV		100.05
T			22	٦	표	n/a	e a
NW-5	7	24.53	19.53 - 24.53	117.10	WLD	15.21	16.75
			19.5		ELEV		9.36
	1		go	1	FP	n/a	ογa
MW-4	2	24.79	19.79 - 24.79	118.80	WTO	17.03	88.
			19.		ELEV	101.77	86.96
			75		ם	n/a	n/a
MW-3	2	28.75	23.75 - 28.75	119.50	WTO	17.83	44.6
	1		23.		ELEV	101.67	0000
			0		FP	n/a	νa
MW-2	2	29.80	24.80 - 29.80	119.90	WTO	18.14	19.60
			24.6		ELEV		100.30
			0		FP	n/a	n/a
MW-1	2	25.50	15.50 - 25.50	120.60	WTO	8.86	14.03
			15.		ELEV	111.74	100.57
WELL NO.	DIAMETER (In)	WELL DEPTH (R)	SCREEN INTERVAL (ft)	TOC ELEVATION (R)	DATE	5/19/2008	10/7/2009

GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 TABLE 2B

Phonen	trene	Z		٥		1:		T	=			ם			ם			ם	1	1	1	024(J)			ន	
	Puorene	HOV		n		:	- - -		0.25 (J)			(r) EZ 0		!	_ _			0.31 (J)				0.30 (J)	1 1		S	
Dischard	-	:	_	3			(2)	1	0.48 (J)			0 88 (J)	+ -	_ ! [0.43(J)	•		0.53 (4) 0.31 (4)	=	,	1	0.54(J)	-	I	 8	
Defind	1 =		İ	041 (J.B)			062 (J.B) 030 (J)		0.39 (J.B)			0.34 (J.B)	 	7	0.61 (J.B)			030 (J.B)	- 6	Tion I		ם	1		8	
12-Dichlora		-		5	1-1		-1 					0 40 (1)			2	- 	-	n	-		- 	,			60	
2.Method. 1	1 12	Ш		2			- -	ŀ] []			5			2	ļ		9				22			nva	
Methol.	1 9	-		 	- ·	+		-	10				<u> </u> 		 	 		97 (DOB)	-		1	67 (DOB)		+	ινία	
\vdash	H	Н		- +	-	<u> </u>	+	-	-			- -		1		ļ		- 1			+	IЦ	Ļ			
8				Þ.		:	-		기		- [٦		-]	,		170 (D08)	=			160 (008)			6 /2	
÷	100	YOY.		ם		:	o i∔		>			>		-	5			0 68 (J)	=	-1 -1		(6)			10	Į
STONY POINT, NY	Dertzene	MDA.	\$	2		£ :	2	₩	 g		31.0	ST.		\$	5	- 	320.0	ē	ŀ	2		2			10	
IT, NY	berzere	FPA.	2	8		φ	2	\$	2		\$	2		\$	2		Ą	5				20			ĸ	
STONY POINT, NY	Perzene	NOT.	\$>	٤		6 	E ,	9	2		46.0	92		\$	2		290.0	2		2		2			ın	
ST	berzera	NG/L	52	బ		9	5	0.0	2		110.0	臣		اڻ	2	 -	200.0	ā		•		Ę	1		VO.	
lsomost.	benzene	HOL	\$5	Đ		\$ -	5	9.0	כ	+	44.0	8		¥9	3		110.0	63 (D08)	١			(BOG) 09	I		10	
ď	Xyterne	Jon I	9	ח		v:		45	Э		£0	5		φ.	_ 		38.0	14 (D09)	=	, ,		14 (008)			10	
d d	Xyteme	LOT.	45	ח		0	- - -	45	٦	T	120.0	(c) B(.7)			>	†- -	600.0	340 (D08)		,		330 (DOS)			ın	
EBA	bergene	HOL	\$5	a	- 	7	 - -	2	1		190,0	- 21 -		\$	a .		610.0	270 (DOS)		, 	<u> </u>	260 (D08)			40	rod Blank
-	Total	LOV.	5	ם		₽.:	; 	١٧) - -		13.0	(r) 99 0		* 0′)]		170.0	17 (DOS)	0.000			17 (008)	Ч		vo	a smoothed Med
	Benzene	h9/L	<5	ח		9	-! - -	\$	[sl	<u> </u>	9,6	2.6		٠. ا	- -		290.0	8.6 (DO\$)				8.6 (D08)	-	1-	-	Notes: Bin Analyte was detected in the amoditard Method Blank.
-	MTBE	LOV.	49	ם		ę.	- - - -	8	0.48 (J)		Ψ,	0.88 (3)	1-	7	-			\dashv	- =	,			i		8	9 n Analyte v
	Sample	Cate	5/19/2008	10/7/2009	i	5718/2008	MOZNAT	5/19/2008			5/19/2008			5/19/2008	10/7/2009		5/19/2008	10/7/2008	0000000	nt Blank		10/7/2009	(MW-0)		tter SCG	Notes
	See	Location	MW-1			MW-2		MW-3	: [MW4			MW-5			MW-6		14.7	Equipment Blank		W-8	Duplcate (WW-8)		Groundwater SCG	

J = The entryto was positively identified, the amodated surserical value is the approximate concentration of the analyte in the somple CDG = Datam required due to high concentration of larged analysis). (8) = Som what not ensured 0 is Table of destriction that can be block contamination. Books indicates examplement of allowable level.

GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 **TABLE 2B**

Manganese	иgЛ				10.2		3100		3660		1720		2030	S		1830	
Magnesium	HQ/L	00270	74700		29500		21400		38300		36300		8850	٦		8220	
	hgy	9	2		(r) 02		7320	7	3150		5730		7530			7150	
Coball	Ing/L	5	3		اد		כ		ם כ		2		ם	Þ		-	
Calcium	MOV	412000	3		238000		116000		169000		174000		38500	100 (1)		36500	
Beryllium	ug/L	=	3		ક		3		ဌ		၁၅		သူ	>		3	
Silver		<5.0		<5.0) 	<50	ם	\$50	기	<5.0	Ы	<5.0	ם	ם ליי		əl	1
Lead	ъgч	<15.0	<u>, </u>	<15.0	5	<15.0	כ	<150	5	<15.0	ם	<15.0	5	>		5	
Chromium	HQ/L	<15,0		<15,0	ا اد	<15.0	٦	<15.0	5	<15.0	ם ור	<15.0	ם כ	٦		٦	
Cadmium	LD/L	<5.0	, i	<5.0	ח	<5.0	o.	<5.0	5	<5.0	ъ	<5.0	٥	5		2	
Barkun	hg/L	82.7	4	46.9	<u>88</u>	113.0	232	84.9	274	152.0	180	119,0	77.8]		73.7	
Selentum		<20.0		<20.0	n	<20.0	n	<20.0	ם	<20.0	n	<20.0	S	ח		D	
Arsenic	HD/L	<20.0		<20.0	ב <u>י</u>	<20.0	ם	<20.0	ם	<20.0	5	<20.0	91(J)	٦		B.7(J)	
Mercury	μg⁄l.	40.20	3	0,20	כ	<0.20	3	<0.20	0.1 (J)	<0.20	5	40.20	5	٦		ا ا	
Naphthalene	µg/L	\$ =	,	v	ם		D	31.0	ם ס	₹	ם	170.0	72	ס	1	۴ م	
n-Budyt- benzene		5	2	\$	\$2	4	2	18.0	SU]	v	8	30.0	2	2		5	
p-lsopropyl- toluene	War.	\$	3	\$	Ę	\$	2	0.00	ПS	\$	2	8.0	2 			5	
sec-Buyti- benzene	Mg/L	\$		ŝ	SI.	7.0	22	18.0	2	\$	Si .	16.0	힏	2		2	
Acetone	•	=			ב כ		4.4 (3)		4.6 (J)		5		D	٦		D	
Acenaph- thene	hg/L	=			>		5		0.20 (J)		ם ו		3	3		5	
	Oate	5/19/2008	2000	5/18/2008	10/7/2009	5/19/2008	10/7/2009	5/19/2008		5/19/2008	10/7/2009	5/19/2008	10/7/2009	10/8/2009 art Blank		6	
Sample	ocation	MW-1		MW-2		MW-3		MW-4		MW-5	<u> </u>	MW-8		W-7 10/8/20 Equipment Blank		W-8 1077200 Duplicate (MW-8)	-

Notes: B = Analyse was delected in the exponence before Blank.

J = The enaltyse was positively identified; the esacciated numerical vetue is the approximate concentration of the armyle in the temple.

(D) = Sum shalf not expend due to the brent concentration of larget analyse(s).

(D) = Sum shalf not expend in the tiple to be blank contemination.

(LC = Before defection finite due to bits blank contemination.

Bold indicates exceedence of allocatible level.

TABLE 2B GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 STONY POINT, NY

C C C C C C C C C C								1	448		_	4 + 4 Tolerhio	SIONT POINT, NT	1 (2 Teichtom	4 4 9. Telephone	1 1 Dichilon	1 Diebber	4 2 % Trieblem	1.2.4.Tdehlum	1 2 Differential	(2.00bmmn.	1 2-Dichloup
1 2000 1 1 2000 1 1 2000 1 1 2000 2000	Location	emple Dats	Aluminum	Potessia.		_	4.4.00T	1	PAC I	F 84	+ -		chloroethans MON.				etherm 1704	benzara		-	- 12	-
U 3390 Zastrono U <th< td=""><td>MW-1</td><td>107/2008</td><td></td><td>3000</td><td>230000</td><td>3</td><td></td><td>э</td><td> =</td><td>: D</td><td> c</td><td>] a </td><td>3</td><td>a</td><td>ב - -</td><td> D</td><td> </td><td>э</td><td>ח</td><td>n</td><td>ח</td><td> </td></th<>	MW-1	107/2008		3000	230000	3		э	=	: D	c] a 	3	a	ב - -	D		э	ח	n	ח	
1 1 1 1 1 1 1 1 1 1	MW-2		5	4310				5	э	ادا	2	, D	5	Э]]	٥	a ,	=	ח	D	5	
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	MW-3			0661	208000	- - -	0 024 (J)		0.028 (J.)	1	. 5		a	2			, D;	ס	D	5	n	٦
U 2170 1 U	MW-4	5/19/20	5	200	259000	13.9	0 025 (J)		0 024 (4)	اِ	5	э] 	5	2	5	D	٦	[p	Э	D	13
U 27.73 17.1000 U <th< td=""><td></td><td>5/19/20</td><td>ב</td><td>3640</td><td>278000</td><td>32(1)</td><td></td><td>2</td><td>(C) 1200</td><td></td><td>[כ</td><td>) </td><td>5</td><td>3</td><td></td><td>1</td><td>5</td><td>э</td><td> </td><td>ם</td><td> </td><td>ם</td></th<>		5/19/20	ב	3640	278000	32(1)		2	(C) 1200		[כ) 	5	3		1	5	э		ם		ם
U X010 162000 U U 0 007[4] U 0017[4] U U U U U U U U U U U U U U U U U U U	MW-6	9/19/2008 10/7/2009	2	2128	171000		i i	1	Le 4 - 4 - Le	2		٦		5	5		ס	2	П	ם	10.00	٦
2.2000 n/m n/m 6.000 02 0.01 0.04 (1) 0 0.017(1) U U U U U U U U U U U U U U U U U U U	W.7 Equipm	10/5/2009 nent Ettank	>	₹)	2	3	 	Э	3	٥	3	ם ב		5	3	o	D		5		D
2,000 n/m n/m 6,000 02 0.01 0.04 0.05 0.03 5 5 5 5 5 5 0.04	W-8 Duples	10777200 (0-WW-0)	ס			oi L	۵	0.024 [J]		0017 (A)		- - - - - - - - - -	D_	c	5	ם		ם	ס	a	D	ח
	Graum	water SCG	2,000	20	Ē	6,000	50	10:0	000	800	0.03	2	°c	-	45	2	ro	kg	IG	000	0 0000	0.6

1 The surply was patiently beforeful, the amounted in the appropriate concentration of the surplys in the surplys to the surply was patiently followed. The surply was patiently followed and the birth concentration of larger surplys(s).

(B) - Burn shall not secured 0.0

TABLE 2B GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 STONY POINT, NY

Sample Locaton C		ᇍ		MW-2 5/1	IAW-3 SYI	MW4 5/1	10. 10/	10V	W-7 10/2/200 Equipment Blank	W-8 107//20 Duplicate (AAW-6)
į	3/19/2008	貴	19/2006 1/7/2009	5/19/2008	5/10/2008 10/7/2009	5/18/2008	5/19/2008 10/7/2009	5/19/2008 10/7/2008	10/5/2009 rt Ebenk	10/7/2009 (0/W-6)
2-Olchloro 1 propene	111	properse	7		n.	2	5	ا ا	n ;	5
1,2-Olehloro- 1,3-Olehloro- 1,4-Olehloro- propane banzane bonzene 1954. 1951. 1951.		hanzrane µg/L	784 -	 5 1			э	٦	ח	э
1,4-Dichloro benzeme µg/L	=	Denzeme Upl.	2		ב	5	5	5	э	۵ ا
1,4- Diominal UQ/L		Dioxane µg/L	2 2	2	э	>	٥.	5	3	э
2-Butenone (ME)Q µg/L	2	(MEN)	2	٦	, ,	э	ם	ם	Э	5
2- Hexanone µg/L	Э	Hexanone µ9/L	Z Z	ا	3	٦	5	э	>	ם
4-Methyk-2- pertanone (MISK) µg/L	٦	pentanone (MSK) USA.	n n	٦	3	5	n	מ	ח	D
Bramochloro- methans µg/L	>	methans	ğ >	5	5	5	=	ם ס'	ɔ ¦ !	ם י
2 g	٥				 a] 	5		٦	3
Bramotorm	3		<u>\$</u>	, c	>) 	5
m E	5		2 5	э ;	p	=	>	ס	o.	5
익이	5			2	Þ,	c	5	a	5	Э
Carbon Tetrachloride Up/L	=	Tetrachioride USA.	2 ⊃	ادا		, =		 c	3	5
	j j		ž o	; >	3	ادا	a	3	J	5
o difo	_ D		704 D		D I	5	Þ	a	ם	э '
—			ğ >	Ы		2	c] ₃ !		s l
5		_		٦	٦	5	ָב	5	3	p
- 6	2		z = 2]=	2	a	s	٦	ادا ا	5
Dien	٦		L C	is i	ם	a	מ	2	э	D;
Cis-1,3- Dichloropropsu µg/L		Dichloroproperse µD/L	n) 	3	5	5	3	ם ו

Name (b) of Amelyan was detained to the management destrict (Berk),

J. The waylyn was problemy benything by managined inserved value in the approximate to the waylyn was problemy benything by managined in the properties of traps of manyer(s).

U.C. = Below destricts in This data is an inclusion of impartments.

[5] is then what not executed 0.9.

TABLE 2B
GROUNDWATER ANALYTICAL SUMMARY
CIABATTONI I.D. #C344068
STONY POINT, NY

									SIONT FOINT, NY		4									
Sample	difuoromethane	Acetalo	≛ , ∪	Shane	ethene	Dichloroethene	P S		Trichiano- fluoramentana	10		Chlorophanol	Z.4.6-Trichiono-	12.4.5-16th - 23.4.5-16th 24.6-16th 24.6-16th 24.0th 24.0t	2.4-Oldtloro-	2,4-Dimentry4-	phenol phenol	Z,4-Unim	2,6-Christro-	ZCHORO
-	$\overline{}$		ğ	ZZ.	HOY	101		164	MON.	76	You	LIGA.	196	HOY	10,4	HOY.	120	MOV.	TIQ4	HOL
10/1/2019) 	Э	ב	Э	Э	٦	a	3	5	ם	٥]	Э	5	5	Э	٦	5	ם	
MW-2 5/18/2008	2		,	=	3	2		э	3	2	5	5	כ	5			5	3	9	э
NW.3 5/19/2008	D	3	اا	5	5	D.	o	, si	5	ъ	Э		5	, D.	ם	5		 D	l ₃	
NW4 STRZOO	5	5	a	5,	э	5	 a 	5.	n	٦		a	D.	ח	Э	יכן	p !	2	3	c
MW-8 5/19/2008]]	5	Э	2	Э	5	D .	3	Э	3	5		э	3	ס	ם	э		5	13
MW-8 5/19/2006			n	>		j o	ם	20	٥		jo.	٦) 	J	5	 	2	э	٦	ם
W-7 10/2/2009 Equipment Blank	 	э _.	5	.	5	3) - - -	3	3 ,	>	5	5	э	3	э	5	3))	Э
W-6 10772009 Duplicate (MW-6)	5	- -	2	5	3		ם ב	3	ם			3 I	D		5	ם	3	5	3	5
Groundwater SCG	2G 5 n/2 5 9:	7.8	5 20	930	2	s.	0.1	10	5	2	s.		- u/a	n/a	84,	8.	2	u ₁	ча	10
					1															

J v The analysis was provisely facilities for amone in current values in the appra-to Deban required date is bely concentration of large trades(s). U.C.: Below discussed freith che in the largest communities. (1) - Barn shell not accord (2)

GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344668 STONY POINT. NY TABLE 2B

Notine, B a Analyta was obtained in the associated bladmed Blanck

Ja The attainty was politherly bladdleds, the associated remarkant value in the approximate concentration of the analyte in the statisfies.

JOB or Relation required date to high convenient of largest weighted; b.

U.C. Elektron detection that the late blank contamination.

(3) in Sum shall not expend 0.0

TABLE 2B GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 STONY POINT, NY

		1	ı		L			ľ		SION FORM, N				- 16-	- 1-			ľ			L
Sample	1	Dyrane E	Denzo(b)	Perzolg,h.f	Participans Tubracity	BS(2-chlorosthory) Bls(2-chlor methan etha	Bis(2-chloroethyl) ether pp/L	1,2-oxybs [1-chloropropme]	Biographicsyl) Bufyl benzyl phthabete phthabete pg/L pg/L pg/L		Caprolectem	Certazole	Chrysene	andraceno LQA	Popular Por	Distribution philipates 1904. 1904.	Dithatate phthatate Fluorenthem.		Denzane IgA	Mexachions butaclena FBA	cyclopertadiene pg/.
MW-1	10777703	, 3			0 !	n	o l	10	o.	Э		٥	5	ם	Э	5,	ם	2	, ,	ם	n
MW-2	S/18/2008 10/7/2008	a	3	: a	٦	3	5	o .	5	2	5	>	٦	2	ם]]		3 ;	c) 	ם
FW.3	\$/19/2000 10/7/2009			, D)] 5 	n	- D	3		3	3			בן יבו	 	 a 	ם	בן
1984	5/19/2008		b	٦	ņ	, , , , , , , , , , , , , , , , , , ,		5) 	ادا	э	3	Э	5	 	3	-		2	5	la l
MW-5	5/19/2008 10/7/2009	ا	Э	5	3	n l] a 	5	n l	5	5	э	3]=	5	- · · · · ·	- -	5	D)]	10
MW-6	\$002/41/5 10/2/2008			2) 	2	n .	٦	D	ח				5] =)	٥	O	5
W-7 10/8/200 Equipment Bissuk	10/8/2009 erd Elecut	5	3	a	ם	э	a	n	a	n	2	Э	3 1	5	ס	Э	5	3	ם	ם	2
W-8 107/20 Duplicate (n/W-0)	10/7/2000 (0-W/d)	 a	2	5	>	51	Э	פ	5 1	э	3	э,	э	3	a	ב	a		5	ח	o
Graundwe	Groundwater SCG	Q.	0 002	n/a D	0.002	80	-	- No	10	8	n/a	n/a	0.002	d/a	\$	S	o/a	SA.	200	80	9

بجنه وسيمسونهم ماركم محشيفه دركم فسيبث Name B is Amply and demand in the quantized Medical Black.

2 - The market was probledy blackfull, the manifold of control relate to the sprange D. Bolton registered than it in this control will are the property of L.C. - Black operation of impair evolution.

U.C. - Black operation below as it is in black conserved to (impair evolution).

(3) - Black shell not assemble to the control of the property of the prop

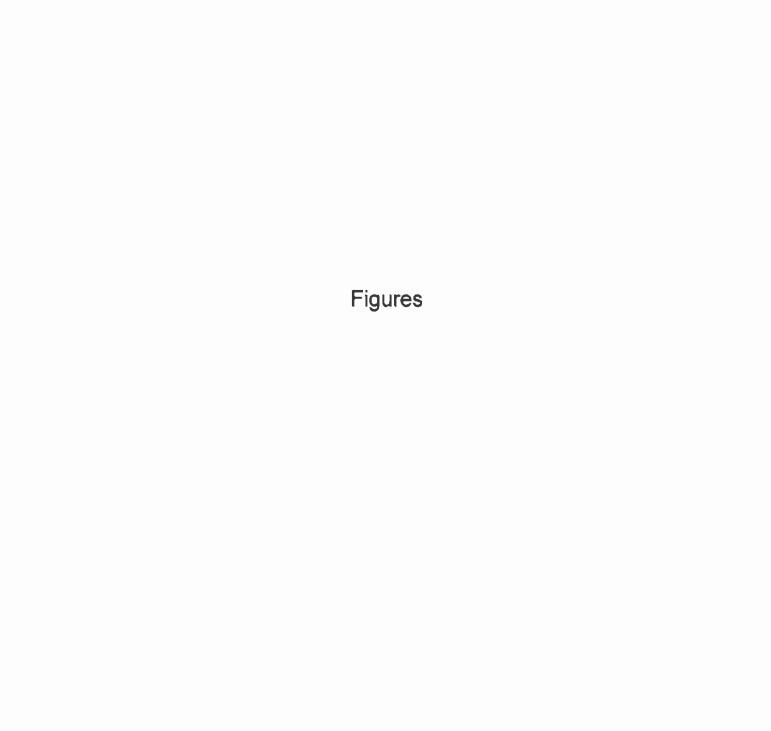
GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 STONY POINT, NY TABLE 2B

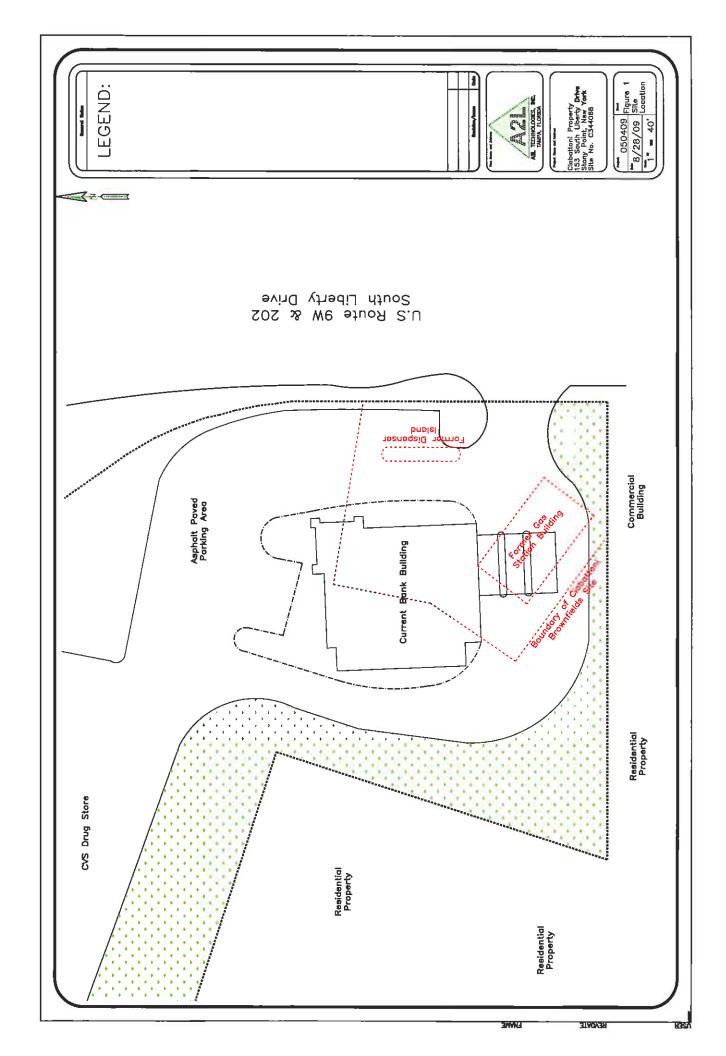
		Hexaction-	Indeno[1.2.3-cd]			day.	N-Nitmscodi.	N-Narosof- Pentachlon-	Pentachlon-						Alpha-	Refs.	F	Frofor	Foods	Fortnesdien	
O.	Samole	officere		Isospone	Northholeno	horryana	n-ormondamin		phono	Diemon	100	44.00	24.00	Aldin	1 9		Diototion	•	-	and and	- Confession
Location	Date	PO/L	par	pg/L		PD/L	PB4	Marin	PON.		170H	P. P. P. C.	P. P. P.	PQ.	POA POA			_	24	PG/L	Ž
MW-1	5/19/2008										-							1	-		
	10/7/2009	Э.	ם	5	>	5	בן בו	ח	>	3	5	3	5	5	э	2	5		5	٦	Э
1	511073000													1			۱		1		I
7-000	10/7/2009	ם 				 	ם	ח	2	2	٦	-	3]]	۱ ۱)) J	5	ס	Э
MW-3	5/19/2008													1				+	-		
	10/7/2009		ı D]]	٦	5	٦	, o	 ⊃	, >	3	D	3		5			3	→ ⊃¦ │	ם,	ا ا _ح ا
MW-4	5/19/2008	j 3 '	15		o _t			o l		= 	5	5	, D		ם		ם	15		٦	ادرا
MW-5	5/19/2008	ם	5	5	 	5	٦	 	٥	2) 	╏ ┈ ╏ ┃ ┃ ┃	3		5			Э]=	-	Ja
MW-8	10/7/2009	; ɔ	5	כ	, ם	5	Jol I) 	Э	D	- T - T - T	> ₁	D		э	 	٦		2	3	I⊃
W-7 Eguipme	W-7 10/8/2009 Eguipment Blank	ם	3	3	ס	'5 1		2	5	ם	∃	3	ם	>	ם ו	ם	ם	>] 	Э	2
W-8 Duplicate	W-8 10/7/2009 Dupticate (MW-8)] 	ם ו	ם	ם	ם	5) D	ם	ם	>	5	Э	5	>	ם	 >	 		Э	ے ا
oundw	Groundwater SCG	S.	0.002	88	10	0.4	n/a	8	2	2	8	0,3	0.2	n/e	0.05	0.04	0,004	r/a	ιva	n/a	2
	Moter	B = Analyre was defected in the J = The atractic was posiblyely to DOS = Distribut required due to be U.C = Below detection firmly due (S) = Sum atract mo exceed 0 8	Note: 8 = Analyne was derected to the associated Method Blank. J = The stansylve was derected to the associated Method Blank. J = The stansylve was derected to the associated furnished numerical velociate to the approximate concentration of the analyse in the sample DDB = District required due to the bigh concentration of largest rangingly). U.C. = Below detection furite due to this blank confamilination. (S) = Sum shall not exceed 0 8	and Mathod Blan 1, the executabed or centralion of large blank conteminal	K. numberkari veltre is t st amalytin(i). forn.	he approxima	is concertration of	the smatte in the s	emple e												

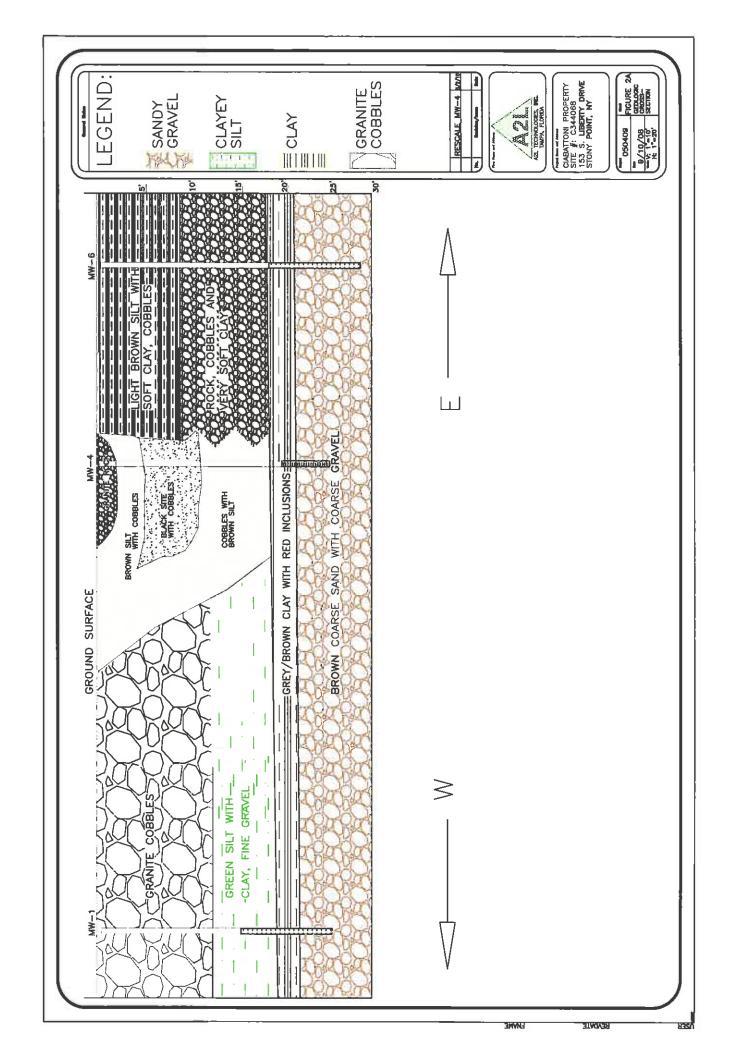
Page 9 of 9

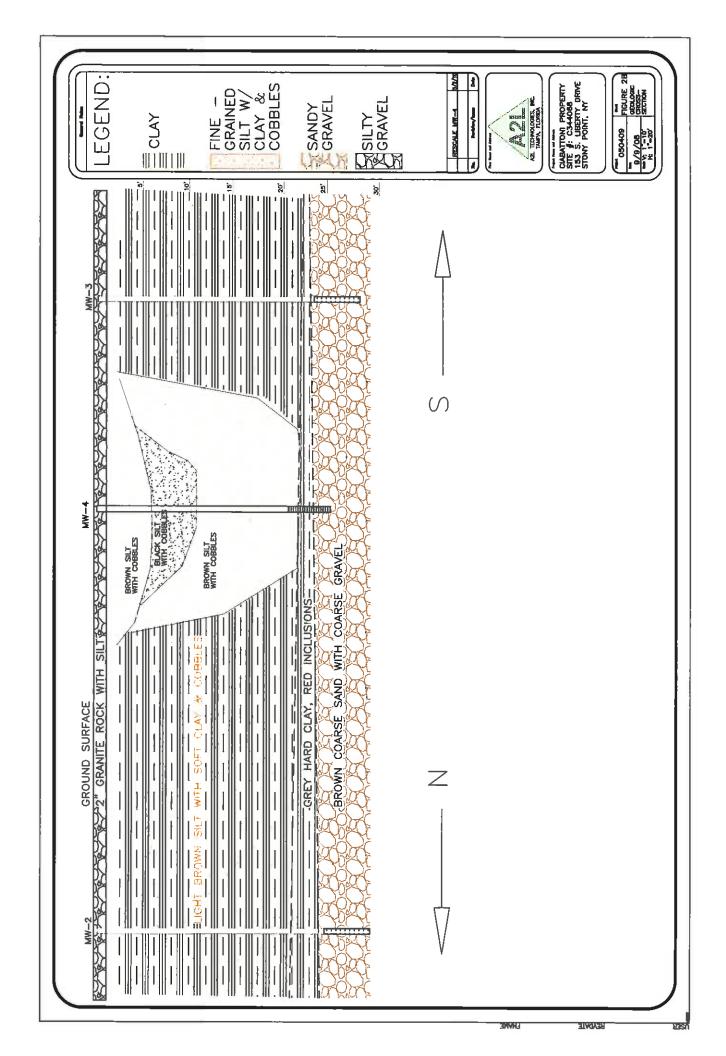
GROUNDWATER ANALYTICAL SUMMARY CIABATTONI I.D. #C344068 **TABLE 2B**

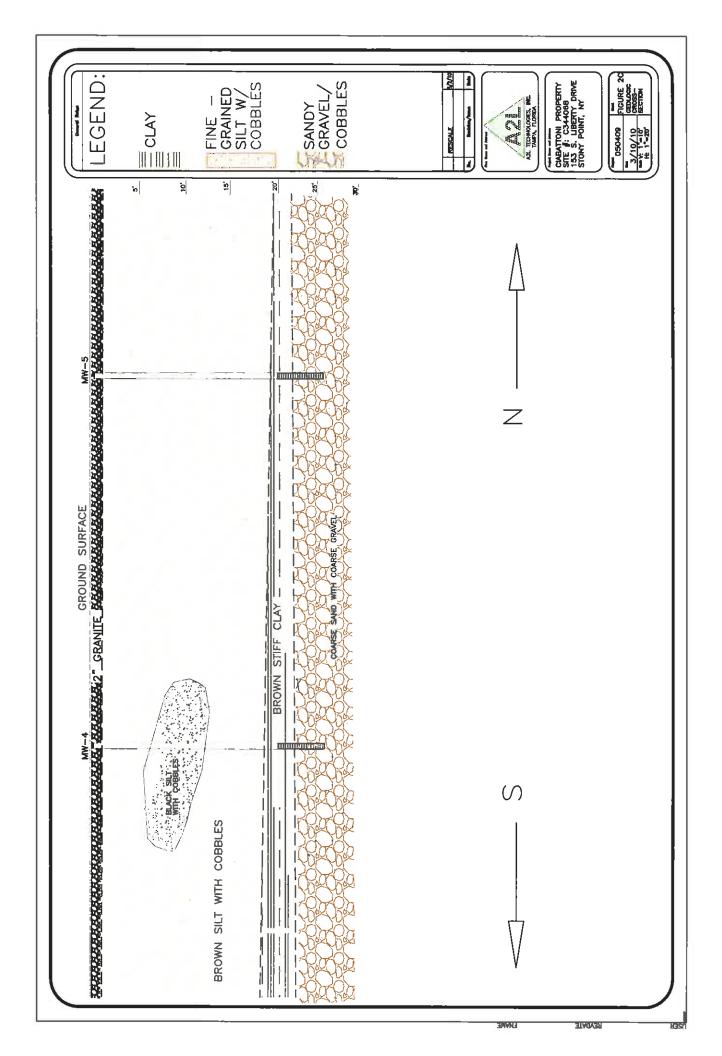
STONY POINT, NY

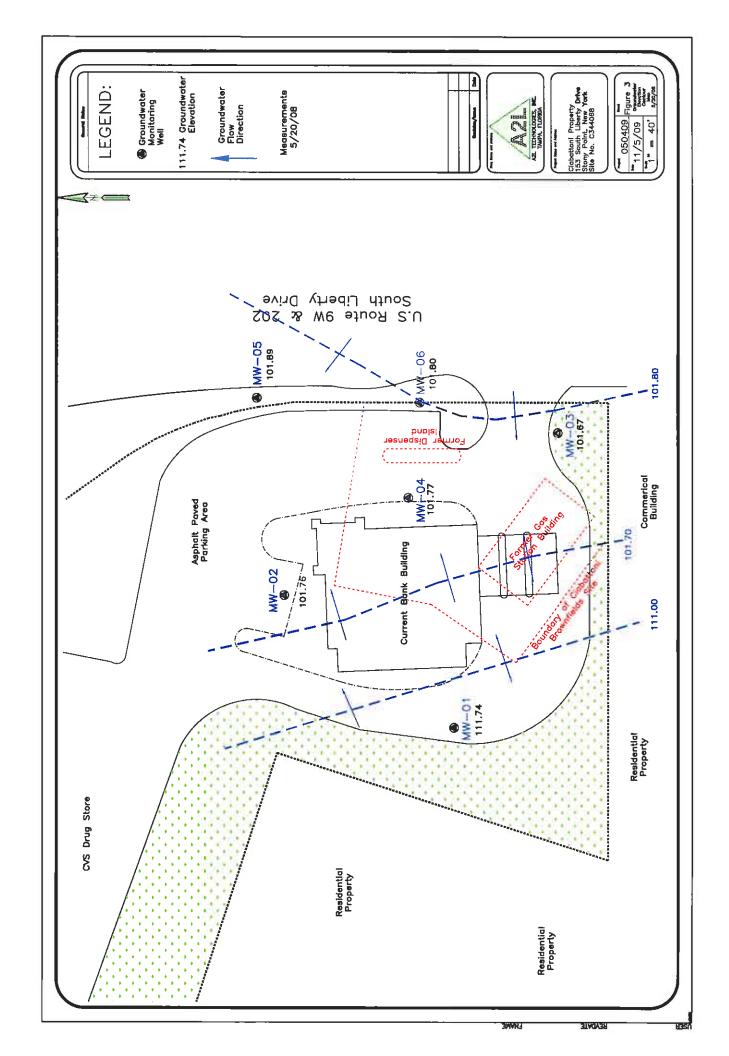

		Cardia	Endido			Madhana	1		No.			_	_		_					
				- SELLES		Meuroxy-	OXP					_	다	Arocor	_	Arodor		Ĭ		İ
Location	Sample on Date	aldehyde ketone Ch	ketone rg/L	Chlordane µg/L	Heptachlor µg/L	p de	Phone Phone	1016 Pg/L	12 P	1232 Hg/L	1242 Hg/L	1248 F9/L	1254 Joh	1280	1262	1268 FIDA	Antimony	Copper	Nickel Take	Thaffum
MW-1	10/7/2009	o	ادا] o; 	ם	5		j _o		- 	٦	>	 5	5	13	>	э	ا ادا	ם כ)
MW-2	5/19/2008]	;s.	5	٦)	**************************************	5	ادا))	+	اادا	ے ا	5	5	ا ادا	ב
MW-3	5/19/2008	3]	5	5					Э.		٦	3	p	Ы	pi	2	ادا	, D
MW-4	5/19/2008	Э	احا	ם	٦	, a,	2	5	- -		ם יכ		اد	Э	5	ادا) 	٦	Ы	c
MW-5	5/19/2008	Э	ادا) >	ם	٥	اد	Э	 	اد	Э	_	٦	ъ	э,	٦	ادا	اح	>	٦
MW-6	5/19/2008	Þ		ב	٦) 		٦	5	Э	احا	2	5		э	Э	٦	Э	احا	٦
W-7 Equipm	W-7 10/8/2009 Equipment Blank	3	Ы		ם	Э	2)	- - -	2	ا اح) 		э	-	ا اد	5	Э	Э	ااد
W-8 Duplicat	W-8 10/7/2009 Duplicate (MW-5)	ם	∍		3]			5) - -) 	 	D)	3		5]=) l
Grounds	Groundwater SCG	8 8	ro.	0.05	0.05 0.04	35	90'0	0 (S) 60'	0(S) 60'	0(S) 60'I	0(S) 60'	(S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0 (S) 60.0	0 (S) 60	o(S) 60'	0(S) 60	(S) 60'	6	1,000	200	0.5

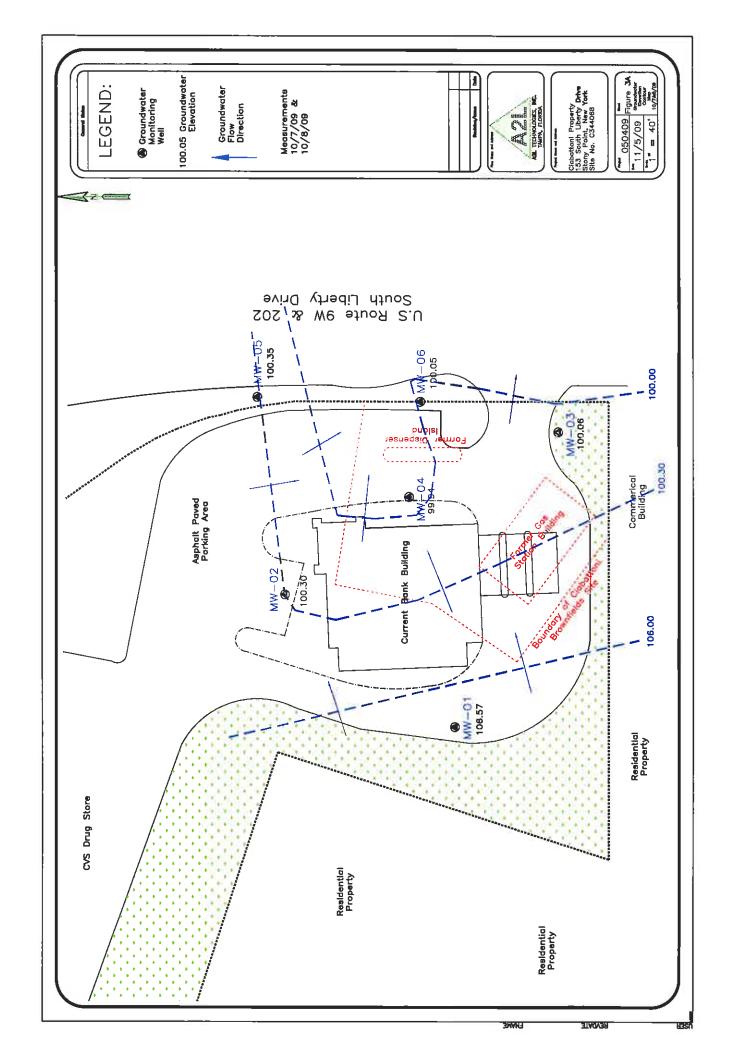

Notes B = Anatyle vest delected for the associated Method Blants.
J = The stayle vest postbrely identified; the associated runnefold value is the approximate concentration of the ensigne to the analyse to the astrophed in Political due to high concentration of target ensigne(s).
UC = Believe detection finite due to light concentration.
(S) = Sum shall not exceed 0.09

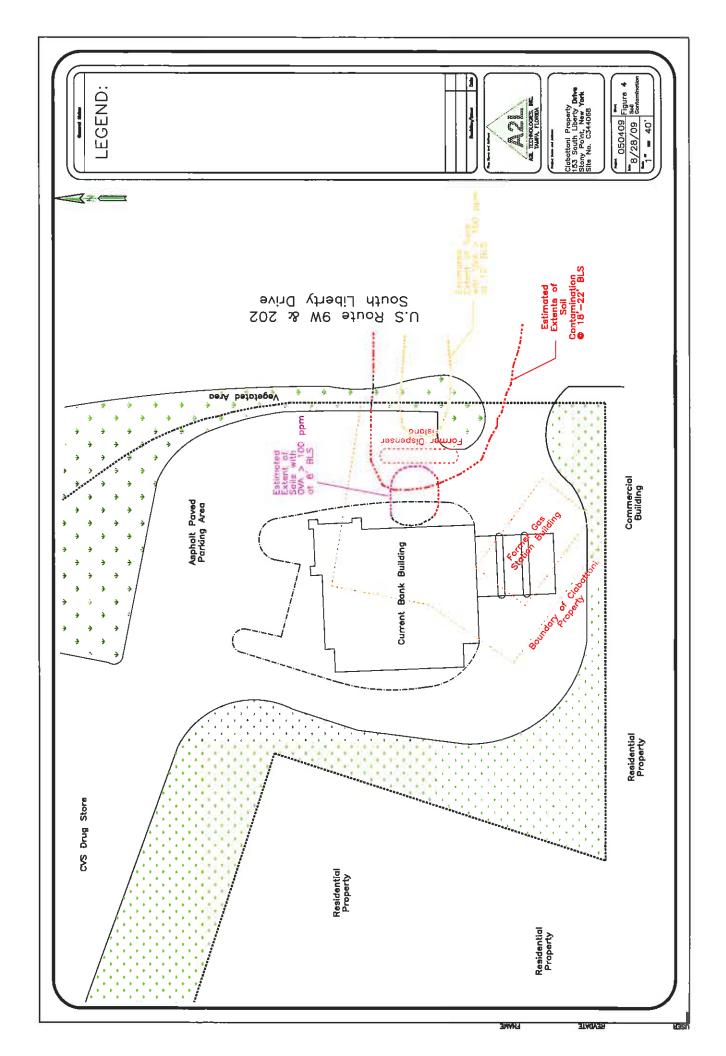

(S) = Sum shall not exceed 0.09

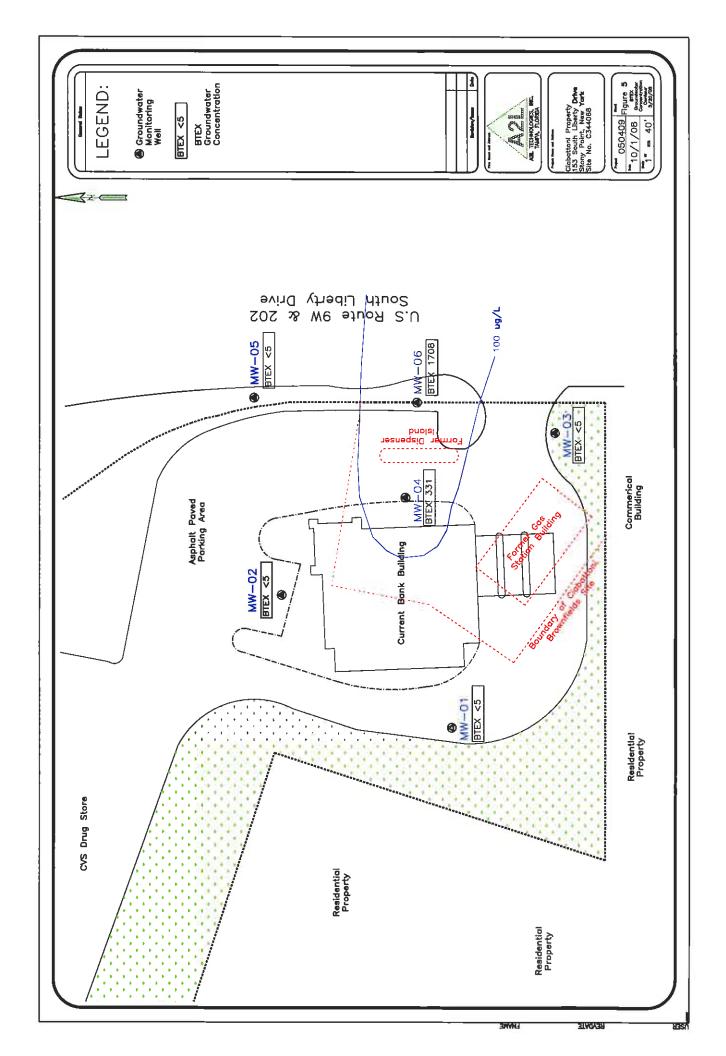

Table 3
Soil Gas Vapor Analytical Data
Ciabattoni Brownfields Site
Site # C344068

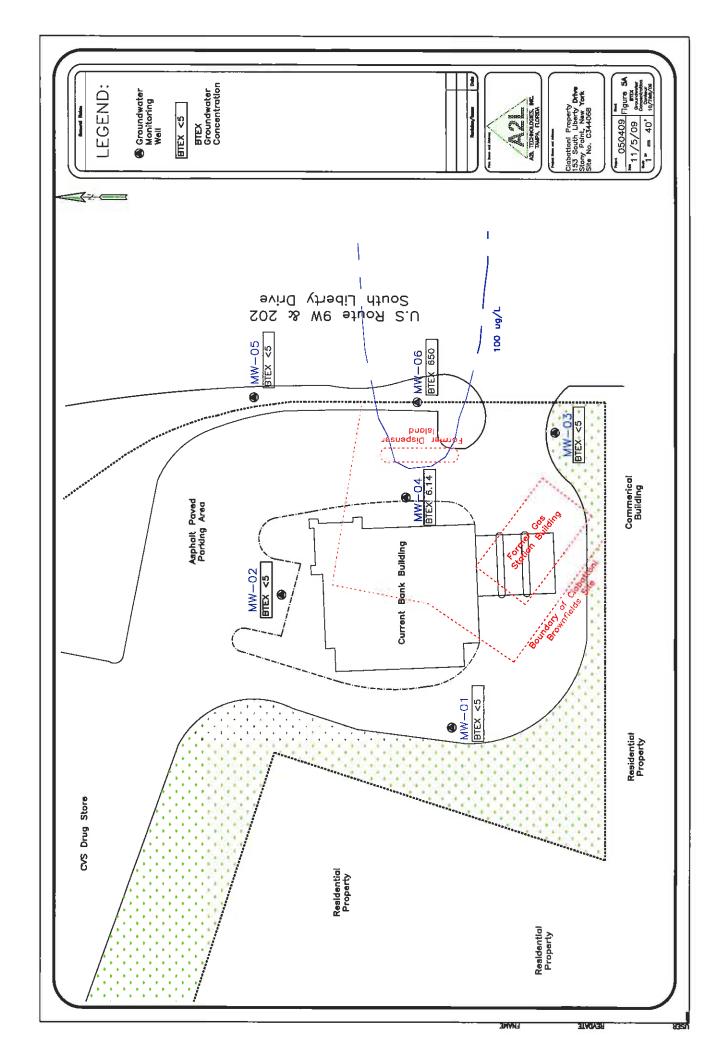

Ambient Center of Lobby	by	Sub-slab Center of Lobby	ppy	Ambient Nor	Ambient Northeast Office	Sub-slab Northeast Office	theast Office
Sample No.	5366079 AQ	Sample No.	5366080 AQ	Sample No.	5366081AQ	Sample No.	5366082 AQ
Analyte	Concentration	1	Concentration	Analyte	Concentration	Analyte	Concentration
Dropone	(ug/ms)	Chloroethana	(ug/ms)	Dronono	(cm/gn)	Chloroethane	3.8
Pentane	270	Acetone	28	Pentane	350	Pentane	3.2
Acetone	390	2-Butanone	6.9	Acetone	390	Acetone	19
2-Butanone	310	Isopropanol	72.8	2-Butanone	350	2-Butanone	6.6
Isopropanol	76791.7			Isopropanol	68708.3	Isopropanol	16.2
North - SVI Point		South - SVI Point		West - SVI P	Point	Ambient Upwind	jud
Sample No.	5366075 AQ	Sample No.	5366077 AQ	Sample No.	5366078 AQ	Sample No.	5366076 AQ
Analyte	Concentration		Concentration	Analyte	Concentration	Analyte	Concentration
	(ng/ms)		(cm/gn)	II.	(cm/gn)		(cm/gn)
Propene	540	Tert-Butyl Alcohol	9.6	Propene	2.9	Acetone	18
1,3 Butadiene	7.9	Propene	630	Pentane	3.4	2-Butanone	6.6
Pentane	180	1,3 Butadiene	6.6	Acetone	120	Isopropanol	12.1
Acetone	830	Pentane	110	2-Butanone	6.7		
Carbon Disulfide	71	Acetone	1000	Isopropanol	28.3		
Hexane	99	Carbon Disulfide	12				
2-Butanone	25	Hexane	44				
Chloroform		2-Butanone	42				
Benzene	49	Chloroform	81				
Sooctane	21	Benzene	22				
Heptane	63	Isooctane	8.2				
Toluene	170	Heptane	59				
Octane	58	Toluene	120				
Tetrachloroethene	18	Octane	25				
Ethylbenzene	52	Tetrachloroethene	9.7				
m/p xylene	180	2-Hexanone	20				
o-xylene	52	Ethylbenzene	28				
styrene	5.9	m/p xylene	94				
cumene	5.4	o-xylene	27				
4-ethyltoluene	55	4-Ethyltoluene	.25				
1,3,5 Trimethylbenzene	13	1,3,5 Trimethylbenzene	6.5				
1,2,4 Trimethylbenzene	40	1,2,4 Trimethylbenzene	20				
Hexachloroethane	99	Hexachloroethane	36				
Isopropanol	28.3	Isopropanol	9.09				

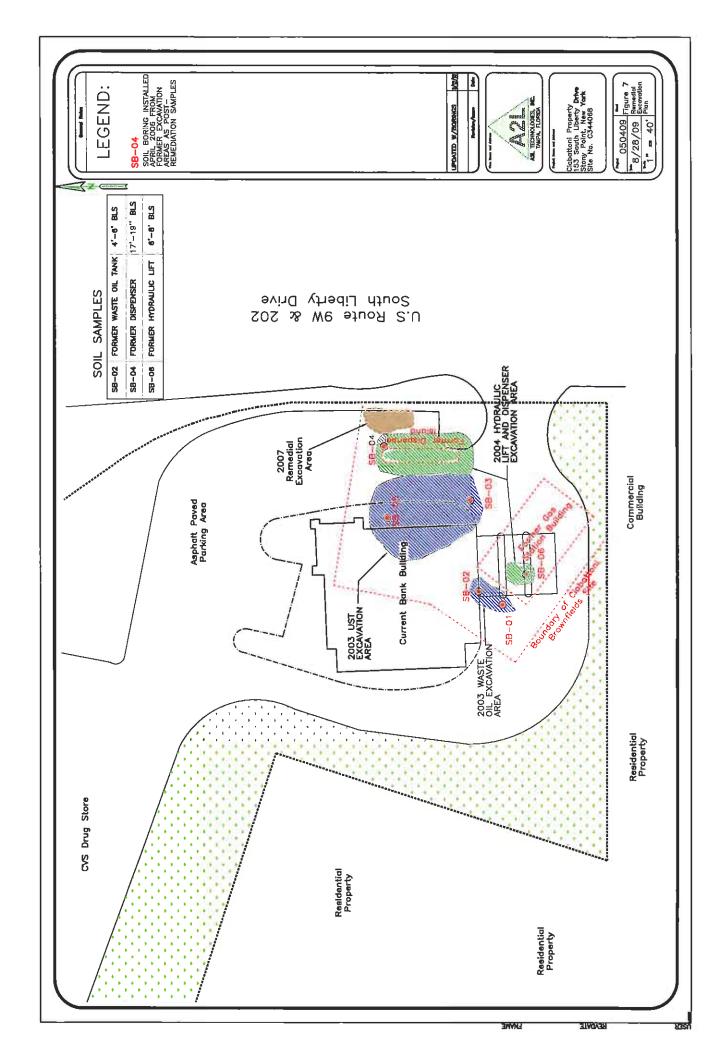


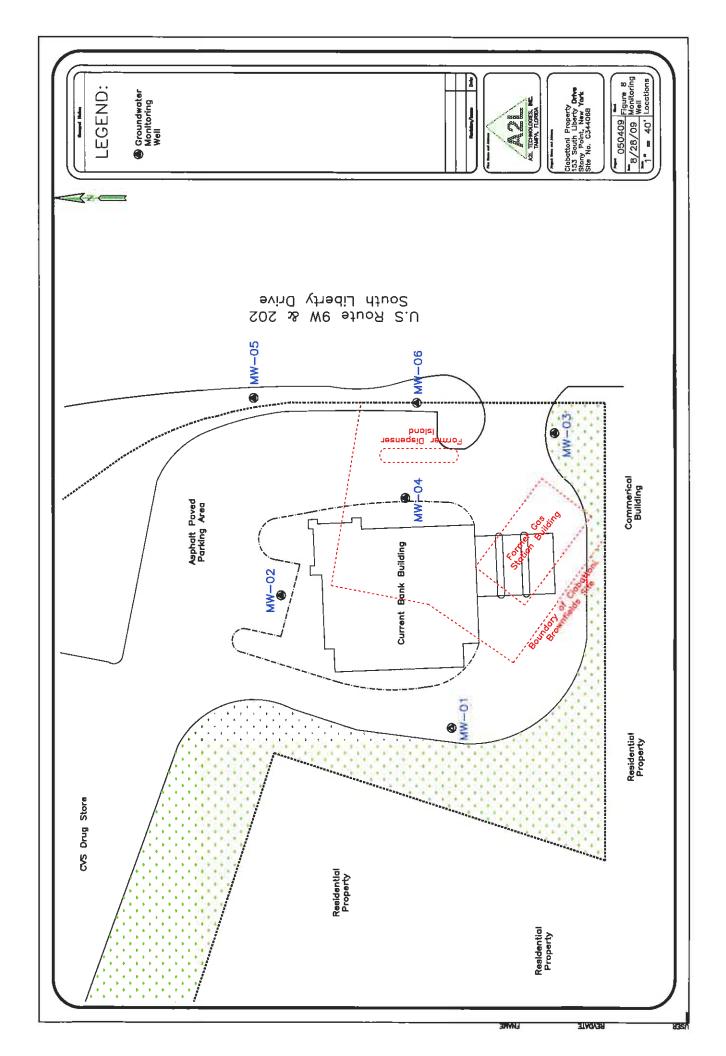


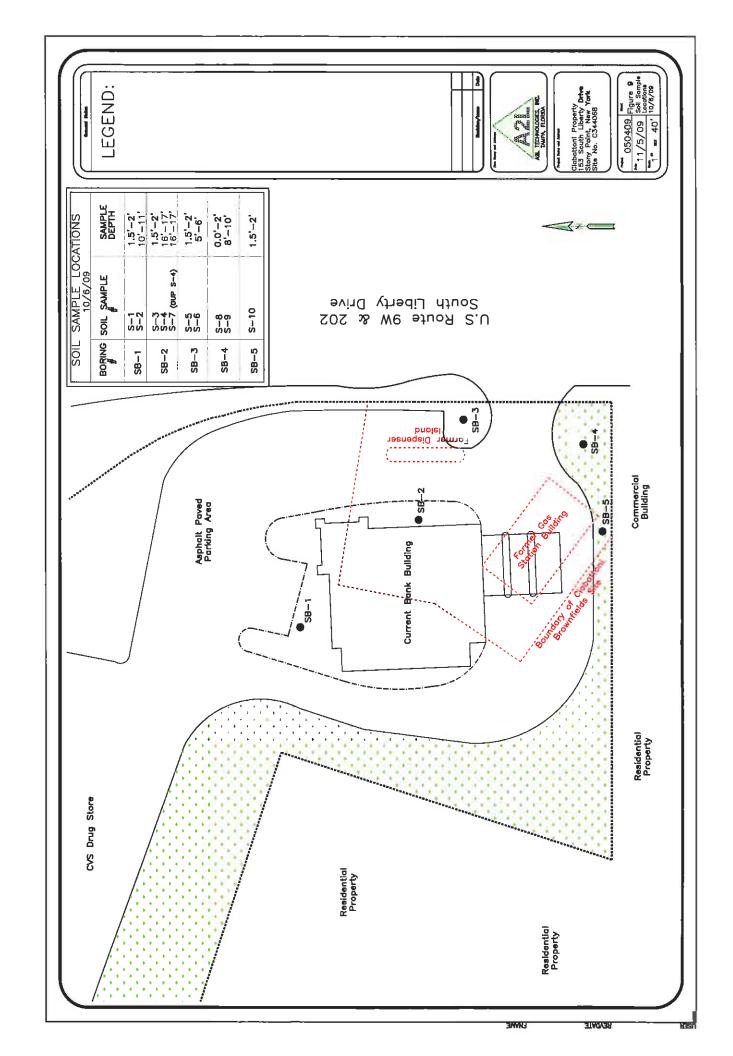


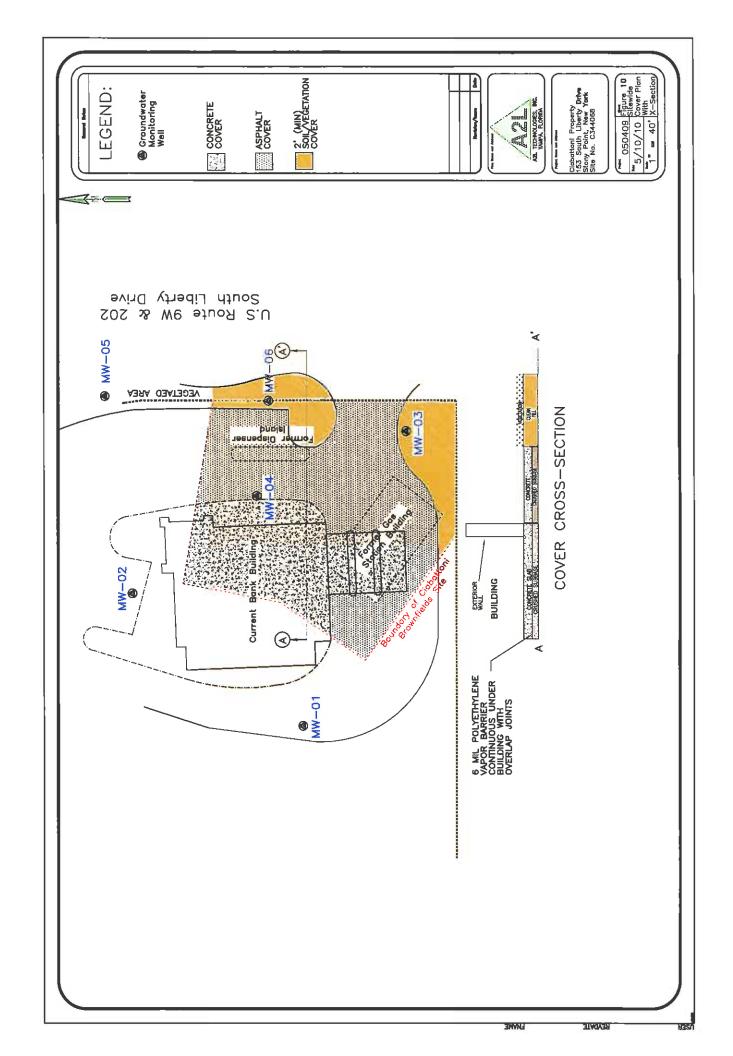












APPENDIX 1
Metes and Bounds Desctiption

SCHEDULE A DESCRIPTION

Old Tax Lot 20.15-1-17

ALL that certain plot, piece or parcel of land situate, lying and being in the Town of Stony Point, County of Rockland and State of New York. Being more fully bounded and described as follows:

BEGINNING at a point on the westerly right-of-way line of U.S. Routes 9W & 202 - South Liberty Drive, said point being located at the northeast corner of lands now or formerly of Joseph & Maureen Pehush (Tax Lot 20.15-1-18) and the southeast corner of the hereinafter intended to be described parcel; running thence

- 1)N 78-36-00 W, 55.91 feet along the northerly line of lands now or formerly of Joseph & Maureen Pehush (Tax Lot 20.15-1-18); thence
- 2)N 45-46-00 W, 70.56 feet; thence
- 3)N 45-25-38 E, 45.46 feet; thence
- 4)N 23-26-18 E, 44.27 feet; thence
- 5)S 69-03-58 E, 77.63 feet, thence
- 6)On a curve to the right, connecting the southerly right-of-way line of Filors Lane with the westerly right-of-way line of U.S. Routes 9W & 202 - South Liberty Drive, having a radius of 372.04 feet, an arc length of 54.37 feet; thence
- 7)S 11-24-00 W, 52.19 feet along the westerly right-of-way line of U.S. Routes 9W & 202 South Liberty Drive to the point or place of beginning.

APPENDIX 2
Health and Safety Plan
and
Community Air Monitoring Plan

HEALTH AND SAFETY PLAN

Ciabattoni Brownfields Site Site No. : C344068 153 South Liberty Drive Stony Point, NY Rev. February 18, 2008

Prepared for:

New York State Department of Health 145 Huguenot Street New Rochelle, New York 10801-5228

and

New York State Department of Environmental Conservation 21 South Putt Corners Road New Paltz, NY 12561-1620

Prepared By:

A2L TECHNOLOGIES, INC. 10220 Harney Road NE Thonotosassa, Florida 33592 (813) 248-8558

February 22, 2008

Project #050409

्री क्षा कर्ने । जन्म केंद्र (सम्बोधाः अस्तिकारः

TABLE OF CONTENTS

	<u>P</u>	AGE	
HEALT	H AND SAFETY PLAN	1	
1.0	ORGANIZATION AND RESPONSIBILITIES	2	2
2.0	HAZARD EVALUATION	3	}
3.0	COMMUNITY AIR MONITORING PLAN	4	1
4.0	LEVELS OF PROTECTION 4.1 Level D 4.2 Level C 4.3 Level B and Level A	(7 B
5.0	SAFE WORK PRACTICES AND HYGIENE	!	9
6.0	WORK ZONE	16	Û
7.0	DECONTAMINATION	10	0
8.0	CONTINGENCY PLAN FOR EMERGENCIES 8.1 Directions to Hospital	1	0
9.0	TRAINING	1	1
10.0	MEDICAL SURVEILLANCE	1	2

ATTACHMENT I

HEALTH AND SAFETY PLAN

CIABATTONI BROWNFIELDS SITE STONY POINT, ROCKLAND COUNTY, NEW YORK

The Health and Safety Plan (HASP) is intended to provide a basic framework for the implementation of the site assessment at the CIABATTONI BROWNFIELDS SITE located at 153 South Liberty Drive, Stony Point, New York. The work is being conducted under the New York State Brownfields Program. The procedures provided herein are intended as a guide for all A2L Technologies, Inc. (A2L) and subcontractor employees who will be involved in the performance of the project.

The primary objective of the HASP is to establish work-safety guidelines, requirements and procedures before field activities begin. The following information was prepared specifically for field operations. The approved HASP will be provided to personnel to aid in accomplishing the following objectives:

- Monitoring the effectiveness of the HASP as it is conducted in the field by performing field operation audits;
- Following up on any necessary corrective actions;
- Interacting with NYSDOH and NYSDEC representatives regarding modifications of health and safety actions, and
- Stopping work should work-site conditions warrant such action.

All personnel will have had health and safety training in accordance with OSHA Standard 29 CFR 1910.120.

1.0 ORGANIZATION AND RESPONSIBILITIES

The organization and responsibilities for implementing safe site-investigation procedures, and specifically for the requirements contained in this manual, are described in this section.

1.1 Project Manager

The A2L Health and Safety Officer, Larry G. Schmaltz, P.E., will be responsible for the overall implementation and monitoring of the health and safety program by:

- Ensuring appropriate protective equipment is available and property used by personnel, in accordance with the HASP;
- Ensuring personnel health and safety awareness by providing them with proper training and familiarity with procedures and contingency plans;
- Ensuring all personnel are apprised of potential hazards associated with the site conditions and operations;
- Supervising and monitoring the safety performance of personnel to ensure their work practices are conducted in accordance with the HASP;
- Correcting any work practices or conditions that would expose personnel to possible injury or hazardous condition;
- Communications with the onsite Health and Safety Officer (HSO);
- Promptly initiating emergency alerts, and
- Communicating with the client and/or regulatory agency representatives.

1.2 Onsite Health and Safety Officer

The onsite Health and Safety Officer (HSO) will be the designated representative of A2L (Joseph Clemis) and will be present during site activities. The onsite HSO will be accountable for the direct supervision of personnel from the subcontractors and other A2L personnel with regard to:

- Health and safety program compliance;
- Maintaining a high level of health and safety consciousness among employees at the work site; and
- reporting accidents and undertaking corrective action.

1,3 Field Personnel

Field personnel will report directly to the onsite HSO, and will be required to:

- Be familiar with, and conform to, provisions of the HASP;
- Ensure that they are well informed of potential hazards at the work site and exercise informed consent in their work;
- Report any accidents or hazardous conditions to the onsite HSO; and
- Have a complete familiarity with their job requirements and the health and safety procedures involved.

Prior to the start of field activities, a meeting will be held to discuss the potential hazards at the site, with a review of the required protective clothing and procedures observed at this site. As needed, daily meetings will be held to discuss any changes in the hazards.

2.0 HAZARD EVALUATION

Phase II Environmental Site Assessment activities involving groundwater and soils sampling have identified the primary organic and inorganic chemical constituents of concern at the Site include gasoline constituents, chromium and lead. The objective of this HASP is the protection of personnel and adjacent property occupants from exposure to these substances by inhalation, oral ingestion, dermal absorption, or eye contact.

Material and Safety Data Sheets (MSDS) for gasoline, chromium and lead summarizing the potential exposure hazards are included as ATTACHMENT 1.

The onsite HSO is responsible for determining the level of personal protection equipment required. The HSO will perform a preliminary evaluation to confirm personal protective equipment requirements once the site has been entered. When work-site conditions warrant, the onsite HSO will modify the level of protection to be utilized. The existence of a situation more hazardous than anticipated will result in the suspension of work until the Project Manager and client representative have been notified and appropriate instructions have been provided to the field team.

3.0 COMMUNITY AIR MONITORING PLAN

Pursuant to NYSDEC Draft DER-10, Appendix 1A, a Community Air Monitoring Plan (CAMP) is required for any intrusive work performed at this site. A CAMP requires real-time monitoring for volatile organic compounds (VOC) and particulates (i.e. dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e. off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The CAMP helps to confirm that work activities do not spread contamination off-site through the air. Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas. Previous investigations at the Site have identified that volatile organic compounds and chromium are the primary contaminants of concern.

3.1 VOC Monitoring, Response Levels and Actions

Volatile organic compounds (VOCs) will be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations will be measured at the start of each

workday and periodically thereafter to establish background conditions. The monitoring work will be performed using a portable hand held photoionization detector (PID), appropriate to measure the types of contaminants known or suspected to be present. The equipment will be calibrated using 100 ppm isobutylene at the beginning of each day. The equipment will be capable of calculating and recording 15-minute running average concentrations, which will be compared to the levels specified below.

- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities will resume with continued monitoring.
- exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities will resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown. All 15-minute readings will be recorded and be available for State (DEC and DOH) personnel to review. Instantaneous readings, if any, used for decision purposes will also be recorded.

3.2 Particulate Monitoring, Response Levels and Actions

Particulate concentrations will be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring will be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment will be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration will be visually assessed during all work activities.

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques will be employed. Work will continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work will be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

All readings will be recorded and be available for State (DEC and DOH) personnel to review.

4.0 LEVELS OF PROTECTION

The level of protection anticipated to perform work on this investigation is Level D. Only protective equipment deemed suitable by the onsite HSO for use at the work site would be worn. Any changes in protection levels shall be documented by the onsite HSO.

Field personnel will exercise informed judgement on protective equipment requirements at active work sites or at work sites that have been repeatedly occupied without apparent harm. In any case where doubt exists, the safest course of action will be taken. The protective equipment that may be used by field personnel is listed below.

4.1 Level D

- Hard hat;
- Safety glasses, shatterproof prescription glasses, or chemical splash goggles;
- Boots/shoes, leather or chemical-resistant, steel toe and shank;
- Coveralls, and
- Chemical-resistant gloves.

At a minimum, protective headgear, including protective hearing devices, eyewear and footwear will be worn at all times by personnel working around the excavation and drilling equipment. When work-site conditions dictate, protective gloves and chemical-resistant boots shall be required for those personnel handling contaminated soils and water.

Should consistent levels of organic vapor concentrations greater than 25 ppm above background levels be detected by the PID in the work area, work will stop and all personnel will leave the work area. The Project Manager and the HSO have chosen a level of 25 ppm because it provides an adequate safety margin before the compounds of concern at the site present a threat to site personnel.

In the event work space concentrations rise above 25 ppm. Level C protection will be initiated as Level C protection is described below.

4.2 Level C

- Hard Hat;
- Boots, leather, steel toe and shank;
- Outer boots, chemical-resistant;
- Chemical-resistant gloves (Solvex);
- Tyvek or Saranex suit;
- Air purifying respirator assuming O₂ levels are greater than 19.5% oxygen.

If workspace concentrations rise above 50 ppm for a protracted period of time, work will be discontinued.

4.3 Level B and Level A

Work will not be conducted if Level B or Level A protection is required.

5.0 SAFE WORK PRACTICES AND HYGIENE

In addition to the use of protective equipment, other procedures will be followed to minimize risk:

- All consumptive activities, including eating, chewlng gum, drinking, or smoking are prohibited during the monitoring well installation, trenching, sampling, and decontamination activities;
- An adequate source of potable water for emergency use will be available at the site (two liters per person per day);
- Fire extinguishers will be available at the work site for use on equipment or small fires when appropriate; and

An adequately stocked first-aid kit will be maintained at the work site during operational hours.

Additional safe work practices include:

- Stand and work upwind from the well and rig to reduce the amount of vapors inhaled.
- Use protective clothing, especially gloves and goggles.
- Use care while sampling to prevent product from being splashed or spilled on skin and/or in eyes.
- Double check to make sure New York Dig Safely has been called and has marked all electrical, cable, and phone lines on the site.
- Stay clear of all operating equipment. Be aware of all equipment and in what mode the equipment is operating.

5.1 Heat Stress

In order to avoid heat stress, several preventive measures may be observed:

- Workers will drink a 16-ounce glass of water prior to work (in the morning and after lunch). Water will be contained in a cooler, maintained at a temperature below 60F. Workers will be encouraged to drink approximately every 29 minutes during days of extreme heat.
- In extreme hot weather, field activities will be conducted in the early mornings and late afternoons.
- Rest breaks in cool or shaded areas will be enforced as needed.
- Toilet facilities will be made available at or near the site.
- Be aware of the signs of frostbite and take immediate remedial measures.
- Good hygiene practices will be encouraged, stressing the Importance of

allowing the clothing to dry during rest periods. Anyone who notices skin problems should receive medical attention immediately.

If there are support personnel available outside the work zone, they should observe the workers in the exclusion zone to monitor signs of stress, frequency of breaks, etc.

6,0 WORK ZONE

To prevent unauthorized personnel from entering areas where active operations are being performed, the area enclosing the operation will be marked with flagging.

This zone will be entered in Level D protection. However, individual work sites within the zone may require higher levels of protection based on air monitoring results during the various activities. If this becomes the case, separate work sites will be established based on the level of protection required. Field personnel are instructed to leave the area if monitoring shows readings above the permissible exposure limits.

7.0 DECONTAMINATION

An area will be set aside within the work zone for decontamination. The type of decontamination procedures will be based on the level of protection required. Decontamination of Level D protective wear may consist of brushing heavily soiled boots to remove soils, rinsing gloves, and safety glasses (and overboots, if worn) with water, and removing and storing coveralls in plastic bags before leaving the work zone, if heavily soiled or suspected of having been in contact with site contaminants.

8.0 CONTINGENCY PLAN FOR EMERGENCIES

In the event of a safety health emergency, appropriate corrective measures must

immediately be taken to assist those who have been injured or exposed and to protect others from hazard. The onsite HSO will be notified of the incident immediately. If necessary, first aid will be rendered.

Onsite personnel will report any accident to the onsite HSO and an accident report form filled out. The following are the emergency contacts for this project:

A2L Technologies, Inc.

Health & Safety Officer

Larry G. Schmaltz

(813) 248-8558

Police

Emergency Ambulance/Police

911

Hospital Helen Hayes Hospital Route 9W West Haverstraw, NY 10993 (845)786.4000

8.1 Directions to Hospital

Directions From:

Ciabattoni Brownfields Site

Take Liberty Drive (9W) South approximately 0.5 mlle on West side of roadway.

9.0 TRAINING

All site workers, including site managers, will be questioned by the onsite HSO that the field personnel have been trained in the proper use of protective clothing and equipment in accordance with 29 CFR Part 1910.120, including:

- Purpose of wearing respirators;
- How the respirator works;
- Limitations;
- Fit testing;
- Maintenance; and

- Maintenance; and
- Conditions of use

10.0 MEDICAL SURVEILLANCE

The HSO will insure that each site worker involved participates in an ongoing medical surveillance program.

A2L TECHNOLOGIES, INC.

Larry G Schmaltz, P.E. Health & Safety Officer

TEXACO REFINING & MARKETING - 00365 TEXACO UNLEADED - AUTOMOTIVE GASOLINE

MATERIAL SAFETY DATA SHEET

NSN: 9130001487102 Manufacturer's CAGE: 2R503

Part No. Indicator: B

Part Number/Trade Name: 00365 TEXACO UNLEADED

General Information

Item Name: AUTOMOTIVE GASOLINE

Company's Name: TEXACO REFINING AND MARKETING INC

Company's Street: 1111 RUSK ST Company's City: HOUSTON Company's State: TX Company's Country: US

Company's Zip Code: 77002-3310

Company's Emerg Ph #: 914-831-3400 800-424-9300(CHEMTREC)

Company's Info Ph #: 512-459-6543

Distributor Vendor #1: SCHULTE OIL CO (405-262-3121)

Distributor/Vendor # 1 Cage: 4R019 Record No. For Safety Entry: 024 Tot Safety Entries This Stk#: 053

Status: FE

Date MSDS Prepared: 15DEC92 Safety Data Review Date: 22JJIL93

Supply Item Manager: KY

MSDS Preparer's Name: MANAGER, PRODUCT SERVICES

Preparer's Company: TEXACO INC.
Preparer's St Or P. O. Box: P. O. BOX 509

Preparer's City: BEACON
Preparer's State: NY
Preparer's Zip Code: 12508
MSDS Serial Number: BRFLK
Specification Number: VV-G-1609

Spec Type. Grade, Class: REGULAR UNLEADED

Hazard Characteristic Code: F2

Unit Of Issue: GL

Unit Of Issue Container Qty: BULK
Type Of Container: BULK
Net Unit Weight: UNKNOWN
NRC/State License Number: NONE
Net Propellant Weight-Amroo: NONE

Ingredients/Identity Information

Proprietary: NO

Ingredient: GASOLINE

Ingredient Sequence Number: 01

Percent: 95-99.9

NIOSH (RTECS) Number: LX3300000

CAS Number: 8006-61-9
OSHA PEL: 300 PPM/500 STEL
ACGIH TLV: 300 PPM/500STEL:9293

Other Recommended Limit: NONE RECOMMENDED

Proprietary: NO

Ingredient: HYDROCARBON GAS CONTAINED IN INGREDIENT #1

Ingredient Sequence Number: 02

Percent: UNKNOWN

NIOSH (RTECS) Number: MW3860000 OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED

Other Recommended Limit: NONE RECOMMENDED

Proprietary: NO Ingredient: OLEFINS

Ingredient Sequence Number: 03

Peromit: UNKNOWN

NIOSH (RTECS) Number: 10007950L OSHA PEL: NOT ESTABLISHED ACGIH TLV: NOT ESTABLISHED

Other Recommended Limit: NONE RECOMMENDED

Proprietary: NO

Ingredient: BENZENE (SARA III)
Ingredient Sequence Number: 04

Percent: .2-3.5

NIOSH (RTECS) Number: CY1400000

CAS Number: 71-43-2

OSHA PEL: 1PPM/5STEL;1910.1028 ACGIH TLV: 10 PPM; A2; 9293

Other Recommended Limit: NONE RECOMMENDED

Proprietary: NO

Ingredient: METHYL TERT-BUTYL ETHER (SARA III)

Ingredient Sequence Number: 05

Percent: 0-15

NIOSH (RTECS) Number: KN5250000

CAS Number: 1634-04-4

OSHA PEL: NOT ESTABLISHED ACGIHTLY: NOT ESTABLISHED

Other Recommended Limit: NONE RECOMMENDED

Physical/Chemical Characteristics

Appearance And Odor: LIQUID; LIGHT STRAW TO LIGHT RED; GASOLINE-LIKE ODOR

Boiling Point: >90F,>32C

Vapor Pressure (MM Hg/70 F): 465-775

Vapor Density (Air=1): 3-4 Specific Gravity: .7-.77

Evaporation Rate And Ref: UNKNOWN

Solubility In Water: SLIGHT
Percent Volatiles By Volume: 100
Autoignition Temperature: 850F

Fire and Explosion Hazard Data

Flash Point: -40F, -40C Flash Point Method: COC Lower Explosive Limit: 1.4 Upper Explosive Limit: 7.6

Extinguishing Media: DRY CHEMICAL, FOAM, CARBON DIOXIDE.

Special Fire Fighting Proc: WATER MAY BE INEFFECTIVE ON FLAMES, BUT CAN BE USED TO COOL FIRE EXPOSED CONTAINERS. USE A SELF-CONTAINED BREATHING APPARATUS AND FULL PROTECTIVE CLOTHING.

Unusual Fire And Expl Hazzds: VAPORS ARE HEAVIER THAN AIR AND TRAVEL ALONG THE GROUND, POSING A FLASHBACK HAZARD (FLOWING GASOLINE GENERATES STATIC ELECRICITY).

Reactivity Data

Stability: YES

Cond To Avoid (Stability): HEAT, SPARKS ... OTHER SOURCES OF IGNITION.

Materials To Avoid: \$TRONG OXIDIZERS.

Hazardous Decomp Products: CARBON MONOXIDE, CARBON DIOXIDE, IRRITATING

ALDEHYDES AND KETONES. Hazardous Poly Occur: NO

Conditions To Avoid (Poly): NONE

Health Hazard Data

LDSO-LCSO Mixture: LDSO ORAL RAT(EST)=5 G/KG

Route Of Entry - Inhalation: YES Route Of Entry - Skin: YES Route Of Entry - Ingestion: NO

Health Haz Acute And Chronic: EYES:IRRITANT.SKIN:THIS MATERIEL IS ABSORBED

BY THE SKIN(HAZARD LEVEL HAS NOT BEEN DETERMINED); IRRITANT.INHAL:IRRITATES NOSE AND THROAT.MAY CAUSE ASPHYXIATION IN ENCLOSED SPACES.INGEST:MAY CAUSE

LUNG DAMAGE IF VOMITTED AFTER SWALLOWING.CHRONIC:BENZENE CAUSES LEUKEMIA IN

HUMANS.

Carcinogenicity - NTP: YES
Carcinogenicity - IARC: YES
Carcinogenicity - OSHA: YES

Explanation Caremogenicity. CONTAINS Benzene [71-43-2] WHICH IS LISTED BY

NTP AND IARC AND REGULATED BY OSHA AS A CARCINOGEN.

HEADACHE, NAUSEA, VOMITING, DIZZINESS, DROWSINESS, EUPHORIA, LOSS OF COORDINATION, DISORIENTATION.

Mod Cond Aggravated By Exp: REPEATED SKIN CONTACT MAY AGGRIVATE EXISTING DERMATITIS.

Emergency/First Aid Proc: EYES:FLUSH WITH WATER FOR 15 MINUTES WHILE LIFTING LIDS.CALL PHYSICIAN.SKIN:REMOVE CONTAMINATED CLOTHING; WASH WITH SOAP AND WATER.CALL PHYSICIAN IF IRRITATION PERSISTS.INGEST:DO NOT INDUCE VOMITING WITHOUT ADVICE OF A PHYSICIAN.GET PROMPT QUALIFIED MEDICAL ATTENTION.INHAL:REMOVE TO FRESH AIR.GIVE ARTIFICIAL RESPIRATION OR OXYGEN IF NEEDED.GET PROMPT MEDICAL ATTENTION.

Precautions for Safe Handling and Use

Steps If Mail Released/Spill: ELIMINATE SOURCES OF IGNITION.VENTILATE AREA.AVOID BREATHING VAPORS;STAY UPWIND;USE A SCBA.REMOVE WITH A NON-FLAMMABLE ADSORBANT(EG.DIATOMACEOUS EARTH);PUT IN AN APPROPRIATE CONTAINER

FOR DISPOSAL.KEEP OUT OF WATERWAYS.

Neutralizing Agent: NONE

Waste Disposal Method: THIS MATERIEL IS CONSIDERED TO BE HAZARDOUS PER RCRA, WITH REGARD TO BENZENE TOXICITY AND IGNITABILITY.

Precautions-Handling/Storing: TRANSPORT, HANDLE AND STORE PER OSHA
1910.106.GROUND AND BOND SHIPPING CONTAINERS. USE SPARK-PRROF TOOLS.
Other Precautions: USE CAUTION WHEN OPENING CONTAINERS WHICH MAY BE UNDER PRESSURE.

Control Measures

Respiratory Protection: IN THE ABSENCE OF ENVIRONMENTAL CONTROLS A NIOSH ORGANIC VAPOR RESPIRATOR MAY BE USED; IN ENCLOSED SPACES A SELF-CONTAINED BREATHING APPARATUS SHOULD BE USED.

Ventilation: ENVIRONMENTAL CONTROLS TO MAINTAIN TLV BELOW 500PPM.

Protective Gloves: NITRILE, TEFLON, VITON.
Eve Protection: GOGGLES/FACE SHIELD.

Other Protective Equipment: CLOTHING TO PREVENT SKIN CONTACT.

Work Hygienic Practices: WASH HANDS.SEPERATE WORK CLOTHES FROM STREET CLOTHES.LAUNDER WORK CLOTHES BEFORE REUSE, KEEP FOOD OUT OF THE WORK

AREA.
Suppl. Safety & Health Data; NONE.

Transportation Data

Trans Data Review Date: 93203

DOT PSN Code: GTN

DOT Proper Shipping Name: GASOLINE

DOT Class: 3

DOT ID Number: UN1203 DOT Pack Group: II

DOT Label: FLAMMABLE LIQUID

IMO PSN Code: HRV

IMO Proper Shipping Name: GASOLINE IMO Regulations Page Number: 3141

IMO UN Number: 1203 IMO UN Class: 3.1

IMO Subsidiary Risk Label: -LATA PSN Code: RMF IATA UN ID Number: 1203

IATA Proper Shipping Name: MOTOR SPIRIT

IATA UN Class: 3

IATA Label: FLAMMABLE LIQUID

AFI PSN Code: MUC

AFT Prop. Shipping Name: GASOLINE.

AFI Class: 3

AFI ID Number: UN1203
AFI Pack Group: II
AFI Basic Pac Ref: 7-7
Additional Trans Data: NONE

Disposal Data

Label Data

Label Required YES

Technical Review Date: 22JUL93

Label Date: 15DEC92

MFR Label Number: 00365TEX UNLEAD

Label Status: G

Common Name: 00365 TEXACO UNLEADED

Signal Word: DANGER!

Acute Health Hazard-Moderate: X
Contact Hazard-Moderate: X
Fire Hazard-Severe: X
Reactivity Hazard-None: X

Special Hazard Precautions: EYES:IRRITANT.SKIN:THIS MATERIEL IS ABSORBED
BY THE SKIN(HAZARD LEVEL NOT DETERMINED);IRRITANT.INHAL:IRRITATES NOSE AND
THROAT.MAY CAUSE ASPHYXIATION IN ENCLOSED SPACES.INGEST:MAY CAUSE LUNG
DAMAGE IF VOMITTED AFTER SWALLOWING.CHRONIC:BENZENE CAUSES LEUKEMIA IN
HUMANS. FIRST AID: EYES:FLUSH WITH WATER FOR 15 MINUTES WHILE LIFTING LIDS.
CALL PHYSICIAN.SKIN:REMOVE CONTAMINATED CLOTHING;WASH WITH SOAP AND
WATER.

CALL PHYSICIAN IF IRRITATION PERSISTS.INGEST:DO NOT INDUCE VOMITING WITHOUT ADVICE OF A PHYSICIAN.GET PROMPT QUALIFIED MEDICAL ATTENTION.INII.AL:REMOVE TO FRESH AIR.GIVE ARTIFICIAL RESPIRATION OR OXYGEN IF NEEDED.GET PROMPT MEDICAL ATTENTION

Protect Eye: Y
Protect Skin: Y
Protect Respiratory: Y

Label Name: TEXACO REFINING AND MARKETING INC

Label Street: 1111 RUSK ST Label City: HOUSTON Label State: TX

Label Zip Code: 77002-3310

Label Country: US

Label Emergency Number: 914-831-3400 800-424-9300(CHEMTREC)

Material Safety Data Sheet Chromium MSDS

Section 1: Chemical Product and Company Identification

Product Name: Chromium

Catalog Codes: SLC4711, SLC3709

CAS#: 7440-47-3

RTECS: GB4200000

TSCA: TSCA 8(b) inventory: Chromium

C#: Not applicable.

Synonym; Chromium metal; Chrome; Chromium Metal

Chips 2' and finer

Chamical Name: Chromium

Chemical Formula: Cr

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77398

US Salet: 1-800-901-7247

International Sales: 1-281-441-4400

Order Online: Sciencel ab com-

CHEMTREC (24KR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Composition:		
Name	CAS #	% by Weight
Chromium	7440-47-3	100

Section 3: Hazards Identification

Potential Acute Health Effects:

Hazerdous in case of skin contact (trritant), of eye contact (trritant), of inhalation. Slightly hazardous in case of ingestion.

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH, 3 (Not classifiable for

human.) by IARC.

MUTAGENIC EFFECTS: Not available.
TERATOGENIC EFFECTS: Not available.
DEVELOPMENTAL TOXICITY: Not available.

The substance may be toxic to kidneys, lungs, liver, upper respiratory tract.

Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Ald Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention.

Skin Contact:

In case of contact, immediately flush skin with plenty of water. Cover the irritated skin with an emollient. Remove contaminated clothing and shoes. Wash clothing before reuse. Thoroughly clean shoes before reuse. Get medical attention.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cresm. Seek medical attention.

Inhalation:

If inheled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation: Not available.

Ingestion

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. Loosen light clothing such as a collar, tie, belt or waistband. Get medical attention if symptoms appear.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: 580°C (1076°F)

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances:

Slightly flammable to flammable in presence of open flames and sparks, of heat.

Non-flammable in presence of shocks.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not evailable. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

SMALL FIRE: Use DRY chemical powder.

LARGE FIRE: Use water spray, fog or foam. Do not use water jal.

Special Remarks on Fire Hazards:

Moderate fire hazard when it is in the form of a dust (powder) and burns rapidly when heated in flame.

Chromium is attacked vigorously by fused potassium chlorate producing vivid incandescence.

Pyrophoric chromium unites with nitric oxide with incendescence.

Incandescent reaction with nitrogen oxide or sulfur dioxide.

Special Remarks on Explosion Hazards:

Powdered Chromium metal +fused ammonium nitrate may react violently or explosively.

Powdered Chromium will explode spontaneously in air.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spill:

Use a shovel to put the material Into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep away from heat. Keep away from sources of ignition. Ground all equipment containing material. Do not ingest. Do not breathe dust. Wear suitable protective clothing. In case of insufficient ventilation, wear suitable respiratory equipment. If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes. Keep away from incompatibles such as oxidizing agents, acids, alkalis.

Storage: Keep container lightly closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection:

Splash goggles. Lab coat, Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Dust respirator, Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 0.5 (mg/m3) from ACGIH (TLV) [United States]
TWA: 1 (mg/m3) from OSHA (PEL) [United States]
TWA: 0.5 (mg/m3) from NIOSH [United States]
TWA: 0.5 (mg/m3) [United Kingdom (UK)]

TWA; 0.5 (mg/m3) [Canada]Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid. (Metal solid.)

Odor: Odorless.

Taste: Not available.

Molecular Weight: 52 g/mole

Color: Silver-white to Grey.

pH (1% soln/water): Not applicable.

Bolling Point; 2642°C (4787.6°F)

Melting Point: 1900°C (3452°F) +/- !0 deg. C

Critical Temperature: Not available.

Specific Gravity: 7.14 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Volatility: Not available.

Odor Threshold: Not available.

Water/Oil Dist. Coeff.: Not evailable.

ionicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility:

Insoluble in cold water, hol water.

Soluble in acids (except Nitric), and strong sikalies.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Excess heat, incompatible materials

Incompatibility with various substances: Reactive with exidizing agents, acids, alkalis.

Corrosivity: Not available.

Special Remarks on Reactivity:

Incompatible with molten Lithium at 180 deg. C, hydrogen peroxide, hydrochloric acid, sulfuric acid, most caustic alkalies and alkali carbonates, potassium chlorate, sulfur dioxide, nitrogen oxide, bromine pentalluoride.

It may read violently or ignite with bromine pentafluoride.

Chromium is rapidly attacked by fused sodium hydroxide + potassium nitrate.

Potentially hazardous incompatibility with strong oxidizers.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Inhalation. Ingestion.

Toxicity to Animals: LD50: Not available. LC50: Not available.

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: A4 (Not classifiable for human or animal.) by ACGIH, 3 (Not classifiable for

human.) by IARC.

May cause damage to the following organs: kidneys, lungs, liver, upper respiratory tract.

Other Toxic Effects on Humans:

Hazardous in case of skin contact (irritant) of inhalation.

Slightly hazardous in case of ingestion.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans:

May cause cancer based on animal data. There is no evidence that exposure to trivalent chromium causes cancer in man.

Special Remarks on other Toxic Effects on Humans:

Acute Potential Health Effects:

May cause skin imitation.

Eyes: May cause mechanical eye imitation.

inhalation. May cause inflation of the respiratory tract and mucous membranes of the respiratory tract.

Ingestion: May cause gastrointestinal tract imitation with nauses, vomiting, diarrhea.

Chronic Polential Health Effects:

Inhelation: The effects of chronic exposure include irritation, sneezing, reddness of the throat, bronchospasm, asthma, cough, polyps, chronic inflammation, emphyseme, chronic bronchitis, pharyngitis, bronchopneumonia, pneumoconoisis. Effects on the nose from chronic chronium exposure include irritation, ulceration, and perforation of the nasal septum. Inflammation and ulceration of the larynx may also occur.

ingestion or Inhalation: Chronic exposure may cause liver and kidney damage.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may

Toxicity of the Products of Biodegradation: The product itself and its products of degradation are not loxic.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

Identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

Connecticut hazardous material survey.: Chromium Illinois toxic substances disclosure to employee act: Chromium Illinois chemical safety act: Chromium New York release reporting list: Chromium Rhode Island RTK hazardous substances: Chromium Pennsylvania RTK: Chromlum Minnesota: Chromium Michigan critical material: Chromium Massachusetts RTK: Chromium Massachusetts spill list: Chromium New Jersey: Chromium New Jersey spill list: Chromium Louisiana spill reporting: Chromium California Director's List of Hazardous Substances: Chromium TSCA 8(b) Inventory: Chromium SARA 313 toxic chemical notification and release reporting: Chromium CERCLA: Hazardous substances.: Chromium: 5000 lbs. (2268 kg) Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200). EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances Other Classifications: WHMIS (Canada): Not controlled under WHMIS (Canada). DSCL (EEC): R40- Limited evidence of carcinogenic effect \$38/37/39- Wear suitable protective clothing. gloves and eye/face protection. S45- In case of accident or if you feel unwell, seek medical advice immediately (show the label where possible). HMIS (U.S.A.): Health Hazard: 2 Fire Hazard: 1 Reactivity: 0 Personal Protection; E National Fire Protection Association (U.S.A.): Health: 2 Flammability: 1 Reactivity: 0 Specific hazard: Protective Equipment: Gloves. Lab coat.

Dust respirator. Be sure to use an approved/certified respirator or

equivalent. Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:16 PM

Last Updated: 10/10/2005 08:16 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Material Safety Data Sheet Lead MSDS

Section 1: Chemical Product and Company Identification

Product Name: Lead

Catalog Codes: SLL1291, SLL1669, SLL1081, SLL1459,

SLL1834

CAS#: 7439-92-1

RTECS; OF7525000

TSCA: TSCA 8(b) Inventory: Lead

C#: Not available.

Synonym: Leed Metal, granular; Lead Metal, foil; Lead

Metal, shoot: Lead Metal, shot

Ghamical Name: Lead Chemical Formula: Pb

Name

Lead

Contact Information:

Sciencelab.com, Inc. 14025 Smith Rd. Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400

Order Online: Sciencel ab com-

CHEMTREG (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients Composition: CAS# % by Weight 7439-92-1 100 Toxicological Data on ingredients: Lead LD50; Not available. LC50; Not available.

Section 3: Hazards Identification

Potential Acute Health Effects: Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.

Potential Chronic Health Effects:

Slightly hazardous in case of skin contact (permeator)

CARCINOGENIC EFFECTS: Classified A3 (Proven for animal.) by ACGIH, 28 (Possible for human.) by IARC.

MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available. DEVELOPMENTAL TOXICITY: Not available.

The substance may be toxic to blood, kidneys, central nervous system (CNS).

Repeated or prolonged exposure to the substance can produce target organs damage,

Section 4: First Aid Measures

Eye Contact:

Check for and remove any contact lenses. In case of contact, immediately flush eyes with plenty of water for at least 15 minutes. Get medical attention if irritation occurs.

Skin Contact: Wash with soap and water. Cover the irritated skin with an emollient. Get medical attention if irritation develops.

Serious Skin Contact: Not available.

Inhalation:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Get medical attention.

Serious Inhalation; Not available.

Ingestion:

Do NOT induce vomiting unless directed to do so by medical personnel. Never give anything by mouth to an unconscious person. If large quantities of this material are swallowed, call a physician immediately. Loosen tight clothing such as a collar, tie, belt or waistband.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: May be combustible at high temperature.

Auto-Ignition Temperature: Not available.

Flash Points: Not available.

Flammable Limits: Not available.

Products of Combustion: Some metallic oxides.

Fire Hazards in Presence of Various Substances: Non-flammable in presence of open flames and sparks, of shocks, of heat.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact; Not available. Risks of explosion of the product in presence of static discharge; Not available.

Fire Fighting Media and instructions:

SMALL FIRE: Use DRY chemical powder.

LARGE FIRE: Use water spray, fog or foam. Do not use water jet.

Special Remarks on Fire Hazards: When heated to decomposition it emits highly toxic fumes of lead.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill:

Use appropriate tools to put the spilled solid in a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and dispose of according to local and regional authority requirements.

Large Spili:

Use a shovel to put the material into a convenient waste disposal container. Finish cleaning by spreading water on the contaminated surface and allow to evacuate through the sanitary system. Be careful that the product is not

present at a concentration level above TLV, Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep locked up.. Keep away from heat. Keep away from sources of ignition. Empty containers pose a fire risk, evaporate the residue under a fume hood. Ground all equipment containing material. Oo not breathe dust. Wear suitable protective clothing. If ingested, seek medical advice immediately and show the container or the label. Keep away from incompatibles such as oxidizing agents.

Storage: Keep container tightty closed. Keep container in a cool, well-ventilated area.

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Use process enclosures, local exhaust ventilation, or other engineering controls to keep airborne levels below recommended exposure limits. If user operations generate dust, fume or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.

Personal Protection: Safety glasses. Lab coat. Dust respirator. Be sure to use an approved/certified respirator or equivalent. Gioves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Oust respirator. Boots, Gloves, A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective ciothing might not be sufficient, consult a specialist BEFORE handling this product.

Exposure Limite:

TWA: 0.05 (mg/m3) from ACGIH (TLV) [United States]
TWA: 0.05 (mg/m3) from OSHA (PEL) [United States]
TWA: 0.03 (mg/m3) from NIOSH [United States]

TWA: 0.05 (mg/m3) [Canada]Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Solid. (Metal solid.)

Odor: Not available.

Taste: Not available.

Molecular Weight: 207.21 g/mole
Color: Bluish-white. Silvery. Gray
pH (1% soln/water): Not applicable.

Bolling Point: 1740°C (3164°F)

Melting Point: 327.43*C (621.4*F)

Critical Temperature: Not available.

Specific Gravity: 11.3 (Water = 1)

Vapor Pressure: Not applicable.

Vapor Density: Not available.

Voiatility: Not available.

Odor Threshold: Not available.

Water/Oll Dist. Coeff.: Not available.
Ionicity (in Water): Not available.

Dispersion Properties: Not available.

Solubility: Insoluble in cold water.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of instability: Incompatible materials, excess heat

Incompatibility with various substances: Reactive with oxidizing agents.

Corrosivity: Non-corrosive in presence of glass.

Special Remarks on Reactivity:

Can react vigorously with oxidizing materials.

Incompatible with sodium carbide, chlorine trifluoride, thoxene + hydrogen peroxide, ammonium nitrate, sodium azide, disodium acetylide, sodium acetylide, hot concentrated nitric acid, hot concentrated hydrochloric acid, hot concentrated sulfuric acid, zirconium.

Special Remarks on Corrosivity: Not available.

Polymerization: Will not occur.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin, Inhalation, Ingestion.

Toxicity to Animals:

LO50: Not available.

LC50: Not available.

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: Classified A3 (Proven for animal.) by ACGIH, 2B (Possible for human.) by IARC. May cause damage to the following organs: blood, kidneys, central nervous system (CNS).

Other Toxic Effects on Humans: Slightly hazardous in case of skin contact (irritant), of ingestion, of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humana:

Acute Potential:

Skin

Lead metal granules or dust: May cause skin irritation by mechanical action.

Lead metal foil shot or sheets: Not likely to cause skin irritation

Eyes:

Lead metal granules or dust: Can irritate eyes by mechanical action.

Lead metal foil, shot or sheets: No hazard. Will not cause eye irritation. Inhalation:

In an industrial setting exposure to lead mainly occurs from inhalation of dust or furnes.

Lead dust or fumes: Can imitate the upper respiratory tract (nose, throat) as well as the bronchi and lungsby mechanical action. Lead dust can be absorbed through the respiratory system. However, inhaled lead does not accumulate in the lungs. All of an inhaled dose is eventually abssorbed or transferred to the gastrointestinal tract. Inhalation effects of exposure to fumes or dust of inorganic lead may not develop quickly. Symptoms may include metallic teste, chest pain, decreased physical fitness, fatigue, sleep disturbance, headache, irritability, reduces memory, mood and personality changes, aching bones and muscles, constipation, abdominal pains, decreasing appetite. Inhalation of large amounts may lead to ataxla, delinuim, convulsions/seizures, coma, and death. Lead metal foil, shot, or sheets. Not an inhalation hazard unless metal is heated. If metal is heated, furnes will be released. Inhalation of these turnes may cause "turne metal fever", which is characterized by flu-like symptoms. Symptoms may include metallic taste, fever, nausea, vomiting, chilis, cough, weakness, cheet pain, generalized muscle pain/aches, and increased white blood cell count. Ingestion:

Lead metal granules or dust: The symptoms of lead po soning include abdominal pain or cramps (lead cholic), spasms, nausea, vomiting, headache, muscle weakness, hallucinations, distorted perceptions, "lead line" on the gums, metallic table, loss of appetite, insomnia, dizziness and other symptoms similar to that of inhalation. Acute poisoning may result in high lead levels in the blood and urine, shock, come and death in extreme cases. Lead metal foil, shot or sheets: Not an ingestion hazard for usual industrial handling.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not evailable.

Products of Blodegradation:

Possibly hazardous short term degradation products are not likely. However, long term degradation products may

Toxicity of the Products of Biodegradation: The products of degradation are less toxic than the product itself.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Wasta Disposal:

Waste must be disposed of in accordance with federal, state and local environmental control regulations.

Section 14: Transport Information

DOT Classification: Not a DOT controlled material (United States).

identification: Not applicable.

Special Provisions for Transport: Not applicable.

Section 15: Other Regulatory Information

Federal and State Regulations:

California prop. 65: This product contains the following ingredients for which the State of California has found to cause cancer, birth defects or other reproductive harm, which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause reproductive harm (female) which would require a warning under the statute: Lead

California prop. 65: This product contains the following ingredients for which the State of California has found to

cause reproductive harm (male) which would require a warning under the statute: Lead California prop. 65 (no significant risk level): Lead: 0.0005 mg/day (value) California prop. 65: This product contains the following ingredients for which the State of California has found to cause birth defects which would require a warning under the statute: Lead California prop. 65: This product contains the following ingredients for which the State of California has found to cause cancer which would require a warning under the statute: Lead Connecticut hazardous material survey.: Lead Illinols toxic substances disclosure to employee act: Lead Illinois chemical safety act: Lead New York release reporting list: Lead Rhods Island RTK hazardous substances: Lead Pennsylvania RTK: Lead Other Regulations: OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200) EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances. Other Classifications: WHMIS (Canada): CLASS D-2A: Meterial causing other toxic effects (VERY TOXIC). DSCL (EEC): R20/22- Harmful by inhalation and if swallowed. R33- Danger of cumulative effects. R61- May cause harm to the unborn child. R62- Possible risk of impaired fertility. S36/37- Wear suitable protective clothing and gloves S44- If you feel unwell, seek medical advice (show the label when possible). S53 Avoid exposure - obtain special instructions before use. HMIS (U.S.A.): Health Hezard: 1 Fire Hazard: 0 Reactivity: 0 Personal Protection: E National Fire Protection Association (U.S.A.): Health: 1 Fiammability: 0 Reactivity: 0 Specific hazard: Protective Equipment: Gloves. Lab coal.

Dust respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator when ventilation is inadequate.

Safety glasses.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/10/2005 08:21 PM

Last Updated: 10/10/2005 08:21 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we essume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLeb.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLeb.com has been advised of the possibility of such damages.

APPENDIX 3
Inspection Checklist

Engineering Control/Institutional Control Inspection Checklist

Ciabattoni Brownfield Site, C344068 153 South Liberty Drive Stony Point, NY 10980

Description of Control	Yes	No
Asphalt paved areas in good condition, without cracks?		
Concrete sidewalk and building slab in good condition, without cracks?		
Have any subterranean excavation activities been performed at the site since the last inspection?		
Are the tenants or leasee aware of the necessity of following the Site Excavation Work Plan?		
Have any new buildings been constructed on the Brownfields Site?		
Has the Site Monitoring Plan been implemented.		
Is the Site currently used for commercial or industrial purposes?		
Are there any groundwater irrigation wells present on the Brownfield's site?		
Are the monitoring wells in satisfactory condition?		
Remarks:		

For each engineering and institutional control identified for the site, I certify that all of the following statements are true:

- The institutional control employed at this site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- > Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- > Use of the site is compliant with the environmental easement.
- > The information presented in this report is accurate and complete.

I certify that all information and statements in this certification form are true. I understand that a
false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section
210.45 of the Penal Law. I,, of
(business address), am certifying as Owner or Owner's Designated Site Representative and I
have been authorized and designated by all site owners to sign this certification for the site.
No new information has come to my attention, including groundwater monitoring data from wells located at the site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid; and
Every five years the following certification will be added:
The assumptions made in the qualitative exposure assessment remain valid.
Signature
Date

APPENDIX 4
Excavation Work Plan

SMP Template: April 2009

APPENDIX 4 - EXCAVATION WORK PLAN

A-1 NOTIFICATION

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the site owner or their representative will notify the Department. Currently, this notification will be made to:

Mr. Edward Moore

Regional Hazardous Waste Remediation Engineer

21 S. Putt Corners Road, New Paltz, NY 12561

This notification will include:

- A detailed description of the work to be performed, including the location and areal extent, plans for site re-grading, intrusive elements or utilities to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control,
- A summary of environmental conditions anticipated in the work areas, including the nature and concentration levels of contaminants of concern, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work,
- A summary of the applicable components of this EWP,
- A statement that the work will be performed in compliance with this EWP and 29 CFR 1910.120,
- A copy of the contractor's health and safety plan, in electronic format, if it differs from the HASP provided in Appendix 2 of this document,
- Identification of disposal facilities for potential waste streams,
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

A-2 SOIL SCREENING METHODS

Visual, olfactory and instrument-based soil screening will be performed by a qualified environmental professional during all remedial and development excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed regardless of when the invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the COC. Soil screening will be performed using an Organic Vapor Analyzer equipped with either Photoionization Detector (PID) or Flame Ionization Detector (FID). Samples will be collected into 16 ounce glass jars and immediately covered with aluminum foil. The tip of the FID or PID will be used to penetrate the foil and a reading of the headspace vapor will be recorded. In the case of the FID, a duplicate sample will be collected and analyzed using a methane filter, the results of which will be deducted from the total reading.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal, material that requires testing, material that can be returned to the subsurface, and material that can be used as cover soil.

A-3 STOCKPILE METHODS

Soil stockpiles will be continuously encircled with a bern and/or silt fence. Hay bales will be used as needed near catch basins, surface waters and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC.

A-4 MATERIALS EXCAVATION AND LOAD OUT

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are solely responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the site.

Loaded vehicles leaving the site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the site until the activities performed under this section are complete.

Locations where vehicles enter or exit the site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to site-derived materials.

A-5 MATERIALS TRANSPORT OFF-SITE

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the site will be secured with tight-fitting covers.

Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

All trucks will be washed prior to leaving the site. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Truck transport routes are as follows: the site is accessible from South Liberty Drive on the east or through the entry on Filors Lane to the northwest of the current complex.- All trucks loaded with site materials will exit the vicinity of the site using only these approved truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing

of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the project site.

Egress points for truck and equipment transport from the site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

A-6 MATERIALS DISPOSAL OFF-SITE

All soil/fill/solid waste excavated and removed from the site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State (including 6NYCRR Part 360) and Federal regulations. If disposal of soil/fill from this site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C/D recycling facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the Periodic Review Report. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled, at minimum, as a Municipal Solid Waste per 6NYCRR Part 360-1.2. Material that does not meet Track 1 unrestricted SCOs is prohibited from being taken to a New York State recycling facility (6NYCRR Part 360-16 Registration Facility).

A-7 MATERIALS REUSE ON-SITE

Any residual material will be stockpiled and properly handled in accordance with all applicable local, state and federal regulations.

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for re-use on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the site will not be reused on-site.

A-8 FLUIDS MANAGEMENT

All liquids to be removed from the site, including excavation dewatering and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the site, but will be containerized and managed off site.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a SPDES permit.

A-9 COVER SYSTEM RESTORATION

After the completion of soil removal and any other invasive activities the cover system will be restored in a manner that complies with the Decision Document. The demarcation layer, consisting of orange snow fencing material or equivalent material will be placed or replaced to provide a visual reference to the top of the 'Remaining Contamination Zone', the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this Site Management Plan. If the type of cover system changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the 'Remaining Contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report and in any updates to the Site Management Plan. Refer to Figure 10 for a cross-section figure of the cover system.

A-10 BACKFILL FROM OFF-SITE SOURCES

All materials proposed for import onto the site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the site.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Refer to Table 8, below, for the specific soil quality standards. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this site, will not be imported onto the site without prior approval by NYSDEC. Solid waste will not be imported onto the site.

Trucks entering the site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

TABLE 8

(b) Restricted use soil cleanup objectives.

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

	Table 375	-6.8(b): Rest	ricted Use S	oll Cleanup C	bjectives		
_	CAS	1	Protection of I	Public Health		Protection of	Protection of
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
Metals							
Arsenic	7440-38-2	161	16 ¹	16 ^f	16 ^f	13 ^f	16 ^f
Barium	7440-39-3	350 ^f	400	400	10,000 ^d	433	820
Beryllium	7440-41-7	14	72	590	2,700	10	47
Cadmium	7440-43-9	2.5 ^f	4.3	9.3	60	4	7.5
Chromium, hexavalent b	18540-29-9	22	110	400	800	l*	19
Chromium, trivalenth	16065-83-1	36	180	1,500	6,800	41	NS
Соррег	7440-50-8	270	270	270	10,000 d	50	1,720
Total Cyanide h		27	27	27	10,000 d	NS	40
Lead	7439-92-1	400	400	1,000	3,900	63 ¹	450
Manganese	7439-96-5	2,000 ^r	2,000 ^f	10,000 d	10,000 d	1600 ^r	2,000 ^f
Total Mercury		0.81 ^f	0.81 ^j	2.8 ^j	5.7 ^j	0.18f	0.73
Nickel	7440-02-0	140	310	310	10,000 d	30	130
Selenium	7782-49-2	36	180	1,500	6,800	3.91	4 ¹
Silver	7440-22-4	36	180	1,500	6,800	2	8.3
Zine	7440-66-6	2200	10,000 d	10,000 d	10,000 ^d	109 ^f	2,480
PCBs/Pesticides		_					
2,4,5-TP Acid (Silvex)	93-72-1	58	100"	500 ^b	1,000°	NS	3.8
4.4"-DDE	72-55-9	1.8	8.9	62	120	0.0033 *	17
4.4"-DDT	50-29-3	1.7	7.9	47	94	0.0033	136
4,4"- DDD	72-54-8	2.6	13	92	180	0.0033 *	14
Aldrin	309-00-2	0.019	0.097	0.68	1.4	0.14	0.19
alpha-BHC	319-84-6	0.097	0.48	3.4	6.8	0.04	0.02
beta-BHC	319-85-7	0.072	0.36	3	14	0.6	0.09
Chlordane (alpha)	5103-71-9	0.91	4.2	24	47	1.3	2.9

Table 375-6.8(b): Restricted Use Soll Cleanup Objectives

	CAS	1	Protection of 1	Public Health		Protection of	Protection
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
delta-BHC	319-86-8	100*	100°	500 ^h	1,000°	0.04	0.25
Dibe nzofuran	132-64-9	14	59	350	1,000°	NS	210
Dieldrin	60-57-1	0.039	0.2	1.4	2.8	0.006	0.1
Endosulfan I	959-98-8	4.8 ⁱ	24 ⁱ	200 ⁱ	920 ¹	N\$	102
Endosulfan II	33213-65-9	4.8 ⁱ	24 ⁱ	200 ⁱ	920'	NS	102
Endosulfan sulfate	1031-07-8	4.81	24 ⁱ	200'	920 ¹	NS	1,000°
Endrin	72-20-8	2.2	11	89	410	0.014	0.06
Heptachlor	76-44-8	0.42	2.1	15	29	0.14	0.38
Lindane	58-89-9	0.28	1.3	9.2	23	6	0,1
Polychlarinated biphenyla	1336-36-3	1	1	1	25	1	3.2
Semivolatiles							
Acenaphthene	83-32-9	100°	100°	500 ^b	1,000°	20	98
Acenapthylene	208-96-8	100°	100°	500 ^b	1,000°	NS	107
Anthraceno	120-12-7	100°	100°	500 ^k	1,000°	NS	1,000°
Benz(a)anthracene	56-55-3	1^{f}	-1_t	5.6	11	NS	1^{f}
Benzo(a)pyrene	50-32-8	1^{ℓ}	14	1f	1.1	2.6	22
Benzo(b)fluoranthene	205-99-2	1^{f}	$1_{\rm t}$	5.6	11	NS	1.7
Benzo(g,h,i)perylene	191-24-2	100°	100°	500 ^b	1,000°	NS	1,000°
Benzo(k)fluoranthene	207-08-9	1	3.9	56	110	NS	1.7
Chrysene	218-01-9	1 ^f	3.9	56	110	NS	1^{ℓ}
Dibenz(a,h)anthracene	53-70-3	0.33"	0.33*	0.56	1.1	NS	1,000*
Fluoranthene	206-44-0	100°	100ª	500 ^b	1,000°	NS	1,000°
Fluorene	86-73-7	100°	100°	500 ^b	1,000°	30	386
Indeno(1,2,3-cd)pyrene	193-39-5	0.5°	0.5 ^f	5.6	11	NS	8,2
m-C resol	108-39-4	100ª	100°	500 ^b	1,000*	NS	0.33*
Naphthalene	91-20-3	100*	1004	500 ^b	1,000°	NS	12

Table 375-6.8(b): Restricted Use Soil Cleanup Objectives

	CAS	1	Protection of 1	Public Health		Protection of	Protection of
Contaminant	Num ber	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water
o-Cr esol	95-48-7	100"	100°	500 ^b	1,000°	NS	0.33 ^t
p-Cr esol	106-44-5	34	100*	500 ^b	1,000°	NS	0.33*
Pentachlorophenol	87-86-5	2.4	6.7	6.7	55	0.8*	0.8*
Phenanthrene	85-01-8	100*	100°	500 ^b	1,000°	NS	1,000°
Phenol	108-95-2	100"	100 ^a	500 ^h	1,000°	30	0.33*
Pyrone	129-00-0	100°	100°	500 ^h	1,000°	NS	1,000°
Volatiles							
1,1,1-Trichloroethans	71-55-6	100*	100°	500 ^b	1,000°	NS	0.68
1,1-Dichloroethane	75-34-3	19	26	240	480	NS	0,27
1,1-Dichloroethene	75-35-4	100°	100°	500 ^b	1,000°	NS	0.33
1,2-Dichlorobenzene	95-50-1	100"	100°	500 ^h	1,000°	NS	1.1
1,2-Dichloroethane	107-06-2	2.3	3.1	30	60	10	0.02 ^r
cis-1,2-Dichloroethene	156-59-2	59	100°	500 ⁶	1,000°	NS	0.25
trans-1,2-Dichloroethene	156-60-5	100°	100*	500 ^b	1,000°	NS	0.19
1,3-Dichlorobenzene	541-73-1	17	49	280	560	NS	2.4
1,4-Dichlorobenzene	106-46-7	9.8	13	130	250	20	1.8
1,4-Dioxane	123-91-1	9.8	13	130	250	0.1°	0.1"
Acctone	67-64-1	100°	100 ^b	500 ^b	1,000°	2.2	0.05
Benzene	71-43-2	2.9	4.8	44	89	70	0.06
Butylbenzene	104-51-8	100°	100°	500 ^b	1,000°	NS	12
Carbon tetrachloride	56-23-5	1.4	2.4	22	44	NS	0.76
Chlorobenzene	108-90-7	100°	100ª	500 ^b	1,000°	40	1,1
Chloroform	67-66-3	10	49	350	700	12	0.37
Ethylbenzenc	100-41-4	30	41	390	780	NS	1
Hexachlorobenzene	118-74-1	0.33°	1.2	6	12	NS	3.2
Methyl othyl kotono	78-93-3	100°	100°	500 ^b	1,000°	100°	0.12

Table 375-6 8(b): Restricted Use Soll Cleanup Objectives

	CAS	1	Protection of	Protection of	Protection of			
Contaminant	Number	Residential	Restricted- Residential	Commercial	Industrial	Ecological Resources	Ground- water	
Methyl tert-butyl ether	1634-04-4	62	100*	500 ^b	1,000°	NS	0.93	
Methylene chloride	75-09-2	51	100"	500 ^b	1,000*	12	0.05	
n-Propylbenzene	103-65-1	100°	100°	500b	1,000°	NS	3,9	
sec-Butylbenzene	135-98-8	100*	100"	500b	1,000°	NS	11	
tert-Butylbenzene	98-06-6	100°	100*	500 ^b	1,000°	NS	5,9	
Tetrachloroethene	127-18-4	5.5	19	150	300	2 —	1.3	
Toluene	108-88-3	100°	100*	500 ⁶	1,000	36	0.7	
Trichloroethene	79-01-6	10	21	200	400	2	0.47	
1,2,4-Trimethylbenzene	95-63-6	47	52	190	380	NS	3.6	
1,3,5- Trimethylbenzene	108-67-8	47	52	190	380	NS	8.4	
Vin yl chloride	75-01-4	0.21	0.9	13	27	NS	0.02	
Nylene (mixed)	1330-20-7	100*	100ª	500b	1,000°	0.26	1.6	

All soil cleanup objectives (SCOs) are in parts per million (ppm). NS-Not specified. See Technical Support Document (TSD).

Footnotes

- * The SCOs for residential, restricted-residential and ecological resources use were capped at a maximum value of 100 ppm. See TSD section 9.3,
- ^b The SCOs for commercial use were capped at a maximum value of 500 ppm. See TSD section 9.3.
- * The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 ppm. See TSD section 9.3. $^{\rm d}$ The SCOs for metals were capped at a maximum value of 10,000 ppm. See TSD section 9.3.
- * For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the SCO value.
- ¹ For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.
- 5 This SCO is derived from data on mixed isomers of BHC.
- ^b The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.
- 'This SCO is for the sum of endosulfan I, endosulfan II, and endosulfan sulfate.
- ¹ This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See TSD Table 5.6-1.

A-11 STORMWATER POLLUTION PREVENTION

Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional.

All undercutting or erosion of the silt fence toe anchor shall be repaired immediately with appropriate backfill materials.

Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters

Proper SPDES permit compliance measures will be employed at all times during any excavating or site redeveloplent and can include: Silt fencing; hay bales; fiber storm drain covers, etc. of sufficient nature to eliminate untreated water leaving the site.

A-12 CONTINGENCY PLAN

If underground tanks or other previously unidentified contaminant sources are found during post-remedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for full a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills

hotline. These findings will be also included in the periodic reports prepared pursuant to Section 5 of the SMP.

A-13 COMMUNITY AIR MONITORING PLAN

The Community Air Monitoring Plan is presented within the site specific HASP developed for the site. The HASP is presented in Appendix 2 and contains the specificity necessary to perform all intrusive maintenance work anticipated at this site. All air monitoring points will be defined in the field by the environmental professional as dictated by daily site specific activities and wind patterns.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

A-14 ODOR CONTROL PLAN

This odor control plan is capable of controlling emissions of nuisance odors off-site and on-site. Specific odor control methods to be used on a routine basis will include those methods described elsewhere in this section. If nuisance odors are identified at the site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the property owner's Remediation Engineer, and any measures that are implemented will be discussed in the Periodic Review Report.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soils. If odors develop and cannot be otherwise controlled, additional means to climinate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

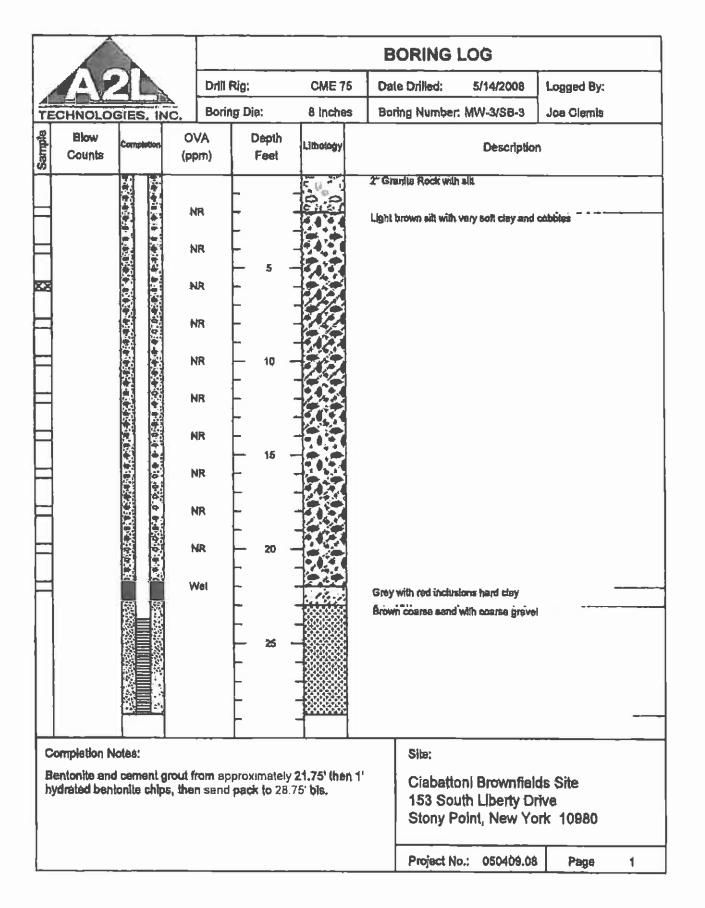
If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and

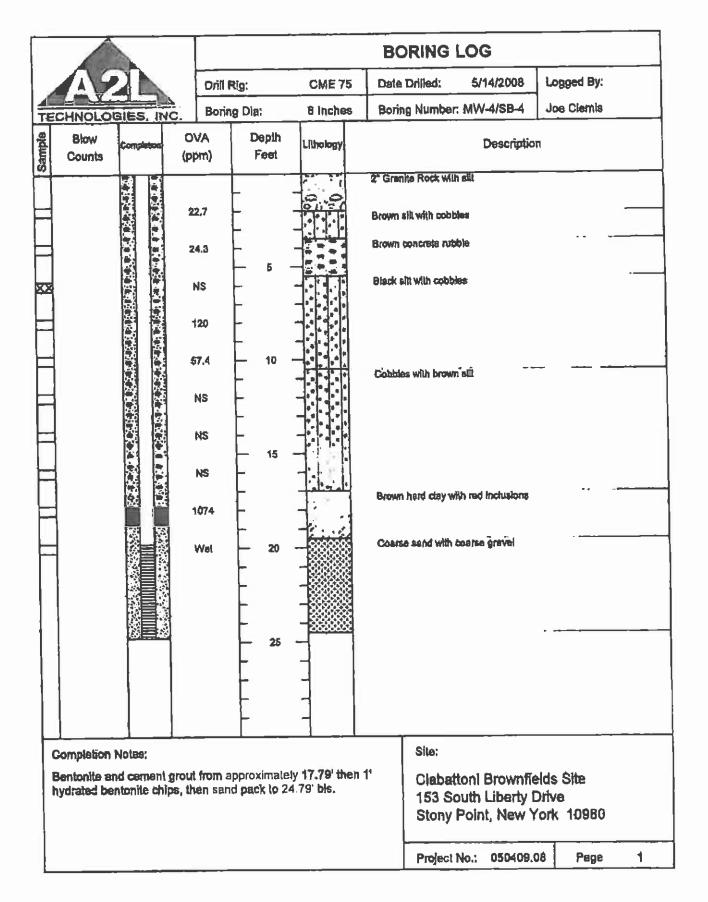
handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

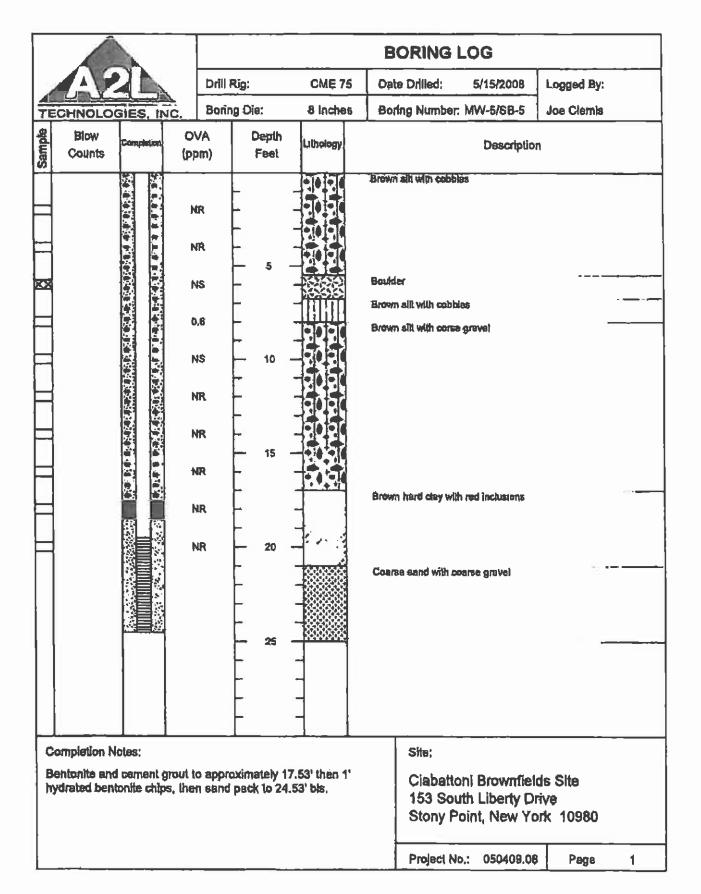
A-15 DUST CONTROL PLAN

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck
 for road wetting. The truck will be equipped with a water cannon capable of
 spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.


A-16 OTHER NUISANCES


A plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.


APPENDIX 5
Monitoring Well Boring and Construction Logs

	Â	<u> </u>								BORING I	.OG	
4	AS.			Drill	Rig:			CME 75	D	ate Drilled:	5/12/2008	Logged By:
$\overline{}$	CHNOLOG	IES. INC	5.	Borin	ng Di	ia:	6 Inches		B	oring Number: MW-1/\$B-1		Joe Clemis
Sample	Blow Counts	Completion	OV (PP		1	Depth Feet	ı	Jihalogy.			Description	יח
	empletion No		NI NI NI NI NI NI NI NI NI NI NI NI NI N	R R R R R R BI		5 10 15 20 25			Bour Light Roca Srev	ther I brown silt with the company with red inclusion with red inclusion coarse sand to Sile;	ons hard clay with coarse grave	çobbles
hye	ntonite and drated bento sponse	cement gro onite chips ,	ut fro	om ap send	prox pad	imately k to 25'	y 13. ' ble	.5' then 1 . NR = N	0	153 Sout	nl Brownfiel th Liberty Di pint, New Yo	rive
										Project No	.: 050409.08	Page 1

									BORING	LOG				
Z	A2			Drill	Rig:		CME 7	5 1	Date Drilled:	5/13/2008	Logged By:			
TE	CHNOLOG	IES. IN	<u>c.</u>	Borir	ing Dia:		8 Inche	us I	Boring Number:	MW-2/SB-2	Joe Clemis			
Sample	Blow Counts	Completion		1 '						Lithology			Descriptio	h
Co Bee	empletion No intonite and drated bent esponse	cement g	N N N N N N N N N N N N N N N N N N N	R IR	proxi	10 - 15 - 20 - 25 -	c O O O O O O O O O O O O O O O O O O O	1-1 G B	153 Sou	very soft clay and	ds Site			
									Project No	0.: 050409.08	Page 1			

									В	ORING I	LOG			
ź	A2			Drill	Rig:			CME 75	Dat	e Drilled:	5/10	6/2008	Logged B	y:
1	HNOLOG	IES. INC		Borin	ng Di	ia;	8 Inches Bo		Bor	ing Number:	MW-	6/SB-6	Joe Clemi	is
Sample	Blow Counts	Dompletion	O\ (pp			Depth Feet		Lithology			Đ	escription		
Ccc Bee hy	mpletion No entonite and o drated bento impled due to	cement gro nite chips,	1: 63	s s s s s s s s s s s s s s s s s s s	paroi paro	10 15 20 25	ly 227.9'	0.9' then 1 bis, NS=	Great	with red inclusion of coarse sand	with to	rownfiek	is Site	
										Project No	b.: 0	50409.08	Page	1

Drill Rig:GeoProbe 6620DT Date Drilled: 10/06/2009 Logged By:

Boring Dia: 2.5 Inches Boring Number: SB-1 Joe Clemis

Sample	Blow Counts	Completion	OVA (ppm)	Depth Feet	Lithology	·
X			NR NR			Brown silt with clay and gravel
			NR 10 1.6 NR NR 10 48 1.2 10 33			

Completion Notes:

Not completed as a well. Sample S-1 collected from the 1.5 - 2.0' bls interval. Sample S-2 collected from the 10 - 11' bls interval. NOTE: NR = No Response

Site:

Ciabattoni Brownfields Site 149 South Liberty Drive Stony Point, NY 10980

Project No.:

050409

Page

1

Drill Rig:GeoProbe 6620DT Date Drilled:

10/06/2009

Logged By:

Boring Dia:

2.5 Inches

Boring Number:

SB-2

Joe Clemis

	CHNOLOG	51ES, II	4C DOLL	ig Dia.	2.3 11101165	Boning Number.	3D-2	Joe Clemis
Sample	Blow Counts	Completion	OVA (ppm)	Depth Feet	Lilhology		Descriptio	n
X	·		NR NR			Brown sill with clay and gra	vel	
			NR NR	_ 5				
			1 O 0.9					
		!	13 NR	_				
			NR 7.5	10				
			11 1	_				
			1011	_				
			1526	<u> </u>	- ////	Grey brown sill with clay an	d gravel	
A			1593	_				

Completion Notes:

Not completed as a well. Sample S-3 collected from the 1.5 - 2.0' bls. interval. Sample S-4 collected from the 16 - 17' bls. interval. Duplicate sample (S-7) taken from 16 - 17' bls. interval. NOTE: NR \approx No Response

Site:

Ciabattoni Brownfields Site 149 South Liberty Drive Stony Point, NY 10980

Project No.:

050409

Page

Drill Rig:GeoProbe 6620DT | Date Drilled: 10/06/2009 | Logged By:

Boring Dia: 2.5 Inches | Boring Number: SB-3 | Joe Clemis

Sample	Blow Counts	Comple(ion	OVA (ppm)	Depth Feet	Lilhology	·
			NR 1.2 1.3 NR 1.7 NR NR	- 5		Brown sill with clay and gravel

Completion Notes:

Not completed as a well. Sample S-5 collected from the 1.5 - 2.0' bis interval. Sample S-6 collected from the 5 - 6' bis interval. NOTE: NR = No Response

Site:

Ciabattoni Brownfields Site 149 South Liberty Drive Stony Point, NY 10980

Project No.:

050409

Page

1

Drill Rig:GeoProbe 6620DT Date Drilled: 10/06/2009 Logged By:

Boring Dia: 2.5 Inches Boring Number: SB-4 Joe Clemis

Sample Blow OVA Depth Completion Lithology Description Counts Feet (ppm) Brown sill with clay and gravel NR NR NR NR NR 0 5 10 NR NR NR 02

Completion Notes:

Not completed as a well. Sample S-8 collected from the 0.0 - 2.0' bis interval. Sample S-9 collected from the 8 - 10' bis interval. NOTE: NR = No Response

Site:

Ciabattoni Brownfields Site 149 South Liberty Drive Stony Point, NY 10980

Project No.: 050409 Page 1

Drill Rig:GeoProbe 6620DT Date Drilled: 10/06/2009 Logged By:

Boring Dia: 2.5 Inches Boring Number: SB-5 Joe Clemis

T	CHNOLO	GIES, II	MC. DOUR	iy Dia.	2.5 IIICHES	Bolling Nulliber.	30-3	Joe Clettiis
Sample	Blow Counts	Completion	OVA (ppm)	Depth Feet	Lithology		Descriptio	n
			NR NR		1/1/4	Brown silt with clay and gr	avel	
			NIX		-			
				_ 5	-			
				_				
				10				
				 -				
				_				
				15	-			
				<u> </u>	_			
		ļ						

Completion Notes:

Not completed as a well. Sample S-10 collected from the 1.5 - 2.0' bls interval. NOTE: NR = No Response

Site:

Ciabattoni Brownfields Site 149 South Liberty Drive Stony Point, NY 10980

Project No.:

050409

Page

1

APPENDIX 6
Groundwater Monitoring Well Sampling Log Form

GROUNDW	ATER	CAMPI	ING 1	OG.

6tju Name:							sija Leegjor:						
WELL NO: MW- SAMPLE ID: MW-									DATE				
PURGING DATA													
WELL TUBLING DIAMETER (Inches): 0.17				WELL SCREEN INTERVAL DEPTH:			STATIC DEPTH YO WATER (feet)			PURGE PUMP TYPE OR BAILER ESP			
WELL VOLUME PURGE: 1 WELL VOLUME = (TOTAL WELL DEPTH ~ STATIC DEPTH TO WATER) X WELL CAPACITY (only fill out if applicable) = (mgl - feet) X 0.16 gallons/rool = gallons													
EQUIPMENT VOLUME FURGE: 1 EQUIPMENT VOL = PUMP VOLUME + (TUBING CAPACITY X TUBING LENGTH) + FLOW CELL VOLUME (only till out if applicable) = 0.28 gallons + (gallons/foct X tref) + 0.26 gallons = gallons													
INITIAL PUMP OR TUBING FINAL DEPTH IN WELL (mig): DEPTH			THE OR TUBING PURGING WITH THE A			·	PURGING ENDED AT:			TOTAL VOLUME PURGED (skilens):			
TIME	VOLUME PURGED (pallors)	CUMUL, VOLUME PURGED (pallors)	PURGE RATE (spin)	DEPTH TO WATER (feet)	(aprinciping (aprinciping	TEMP. (*C)	COND. (Anthon/or or)/S/cm)		DISSOLVED OXYGEN (Circle mg/L or % astunden)	TURBICITY (HYUs)	COLDR (describe)	ÇDÇIR (desaribe)	
								\dashv					
						-		7					
					_			+			+	-	
								4	_				
	+							\dashv			1		
WELL CAPACITY (GEORGEO) COO, 1/5° = 0.02; 1' = 0.01; 125° = 0.00; 2' = 0.10; 2' = 0.01; 4" = 0.02; 5' = 1.02; 10" = 0.016; 11" = 0.001;													
SAMPLING DATA SAMPLED BY (PRINT) / AFFILIATION: SAMPLER(S) SIGNATURES: SAMPLING SAMPLING													
PUMP OR TUBING, TUBING FIELDS					INITIATED AT: ENDED AT: ILTERED; Y N FILTER SIZE								
FIELD DECONTAMINATION: PLIMP Y N TUBING Y N (replaced) DUPLICATE: Y N													
CODE CONTAINERS CO		MAYERIAL CODE	VOLUME	PRESERVATIVA USED	41	PRESERVATION TOTAL VOI, LODIED IN PELD (Inc.) PM		AL ·	ANALYSIS ANDIOR METHOD		EQUIPMENT CODE	BANPLE PUMP PLANY RATE (Inc. per minute)	
MW-	+ + + + + + + + + + + + + + + + + + + +		-										
 						100		_					
REMARKS													
MATERIAL COORS: AG = Amber Glass; GG = Clear Glass; PE = Polysthylene; PP = Polypropylene; S = Sillarre; T = Tellox; Q = Other													
SAMPLENGIPURGHES APP = After Peristable Pump: B = Bailet; BP = Blackler Pump: ESP = Electric Butterpolite Pump; PP = Peristable Pump EQUIPMENT CODES: RFPP = Revoke Flow Peristable Pump. SM = Straw Method (Tubing Gravity Drain); VT = Vacuum Trap; Q = Color (Specify)													
NOTES: 1. The above do not constitute all of the Information required by Chapter 62-160, F.A.C.													

STABILIZATION CRITERIA, FOR RANGE OF VARIATION OF LAST THREE CONSECUTIVE READINGS (SEE FS 2212, SECTION 3) pH: ± 0.2 units Temperature: ± 0.2 °C Specific Conductance: ± 5% Dissolved Oxygen: all readings ≤ 20% saturation (see Table FS 2200-2); optionally, ± 0.2 mg/L or ± 10% (whichever is greater). Turbidity: all readings ≤ 20 NTU, optionally ± 5 NTU or ± 10% (whichever is greater). APPENDIX 7
Quality Assurance Project Plan

GENERIC QUALITY ASSURANCE PROJECT PLAN (QAPP) FOR THE CIABATTON! BROWNFIELDS SITE ID # C344068

Prepared for:

New York State Department of Environmental Conservation

And

New York State Department of Health

Prepared by:

A2L Technologies, Inc. 10220 Harney Road Thonotosassa, FL 33592

APRIL 2007

Table of Contents

Section	п	r.	rage
1.0	Introduction		
	1.1	Purpose	1
	1.2	Objectives	1
		·	
2.0	Project Organization and Responsibility		1
	2.1	Overview	1
	2.2	Responsibility	
	2.3	Subcontractors	3
3.0	Field	Procedures	3
	3,1	Documentation (Field Log Book)	3
	3,2	Sample Collection, Documentation and Identification	
	3.3	Chain-of-Custody Procedures	9
	3.4	Field Quality Control Samples	. 10
	3,5	Premobilization	
	3.6	Soil Vapor Sampling	. 12
	3.7	Temporary Port Sub-Slab Soil Vapor Sampling Procedures for Offsite Analysi	
		***************************************	. 15
	3.8	Outdoor (Ambient) Air Sampling Procedures for Offsite Analysis	
	3.9	Decontamination	
	3.10	Investigative Derived Waste	
	3,11	Soil Boring Logs	
	3.12	Monitoring Well Installation	
	3.13	Monitoring Well Development	
	3.14	Low Flow Groundwater Sampling	
	3.15	Monitoring Well Purging	
	3.16	Well Abandonment	
	3.17	Subsurface Soil Sampling	
	3.18	Surface Soil Sampling	
	3.19	Water Level/NAPL Measurement	
	3.20	Sample Handling, Packaging, and Shipping	37
4.0	Instrument Procedures		
•••	4.1	Photoionization Detector	
	4,2	pH, Conductivity, Temperature, Dissolved Oxygen Meter	39
5.0	Laboratory Procedures		
5.0	5.1	Data Quality Criteria	
	5.2	Quality Control	
	5.3	Data Quality Requirements	
	5.4	Data Deliverable	
	5.5	Analytical Data Validation	46
	5.6	Data Usability Summary Report	47

1.0 Introduction

1.1 Purpose

The principal purpose of this document is to specify quality assurance/quality control (QA/QC) procedures for the collection, analysis, and evaluation of data that will be legally and scientifically defensible.

1.2 Objectives

The QAPP provides general information and procedures applicable to the activities and analytical program detailed in each site-specific Work Plan. This information includes definitions and generic goals for data quality and required types and quantities of QA/QC samples. The procedures address field documentation; sample handling, custody, and shipping; instrument calibration and maintenance; auditing; data reduction, validation, and reporting; corrective action requirements; and QA reporting specific to the analyses performed by the laboratories subcontracted by A21.

2.0 Project Organization and Responsibility

2.1 Overview

The project management organization for each project is to provide a clear delineation of functional responsibility and authority. The project manager for A2L is the primary point of contact with the regulatory agency. He/she is responsible for development and completion of the site-specific investigation, project team organization and supervision of all project tasks. In this role, he/she will communicate directly with NYSDEC staff.

For the fieldwork, field teams consisting of A2L personnel and subcontractors will be assembled and will be responsible for implementing all aspects of the fieldwork. Several key activities will be performed as part of the field and analytical work. These activities include:

- Ensuring that sample collection, testing and data collection procedures are performed according to DER-10 requirements.
- That health and safety procedures as outlined in the site-specific health and safety plan (HASP) are followed.
- That the field QA/QC procedures are implemented.
- That laboratory analysis, data validation, data processing, and data QC

activities are performed in accordance with NYSDEC guidelines.

2.2 Responsibility

The primary responsibilities for program management activities rest with the Project Manager (PM). The Project Manager will have ultimate contract responsibility for the project, including responsibility for the technical content of all engineering work. The Project Manager will direct, review and approve all project deliverables, schedule staff and resources, resolve scheduling conflicts and identify and solve potential program problems. They have authority to assign staff, negotiate and execute contracts and amendments, as well as execute subcontracts.

The Project Manager will have overall responsibility for the technical and financial aspects of this project. He/she will assign technical staff, maintain control of the project budget and schedule, prepare monthly progress reports, review and approve project invoices, evaluate the technical quality of the project deliverables as well as the adherence to QA/QC procedures and manage subcontractors. He/she will serve as A2L point of contact for this project.

The Program Quality Assurance Officer will monitor QC activities of program management and technical staff, as well as identify and report the needs for corrective action to the Project Manager. They will also conduct an internal review of all project deliverables prepared by A2L staff and sign off on the final investigation reports.

The Program Health and Safety Officer will review and make recommendations to the Subcontractors on health and safety plans for compliance with OSHA requirements. He has developed a Health and Safety plan for A2L, handle over-sight activities, evaluate the performance of health and safety officers and maintain required health and safety records.

The Health and Safety Site Supervisor/Coordinator will be responsible for ensuring that the Health and Safety Plan is implemented during field activities and that a copy of the site-specific Health and Safety Plan is maintained at the site at all times. He/she is also responsible for upgrading or downgrading personnel protection based on actual conditions at the time of the investigation. The Coordinator must also present an overview of the Health and Safety Plan to field personnel. He/she will contact the Program Health and Safety Officer if any questions or issues arise during the field activities that he/she cannot answer.

2.3 Subcontractors

The following subcontractor services may be required as part of the site investigations and performed by subcontractors under A2L's supervision:

- Geophysical Survey
- Geoprobe Installation
- Drilling
- Well Installation
- Groundwater Sampling
- Chemical Analytical Services
- Site Survey
- Investigation Derived Waste Removal

3.0 Field Procedures

A2L points of contact for the field investigation are the Site Manager and the onsite NYSDEC representative. Any minor changes in sampling activities that are within the proposed scope of the project will be documented each day in the field logbook and signed by both representatives. Any modifications that are inconsistent with the approved work plan are to be approved by NYSDEC prior to implementation.

3.1 Documentation (Field Log Book)

Information recorded in field log books include observations, data, calculations, time, weather, description of the data collection activity, methods, instruments, and results. Additionally, the logbook may contain descriptions of wastes, biota, geologic material, and site features including sketches maps, or drawings as appropriate.

3.1.1 Preparation

In addition to this QAPP, site personnel responsible for maintaining logbooks must be familiar with other site specific standard operating procedure (SOPs). These should be consulted as necessary to obtain specific information about equipment and supplies, health and safety, sample collection, packaging, decontamination, and documentation.

Field notebooks will be bound with lined, consecutively numbered pages.

All pages must be numbered prior to initial use of the logbook. The following

information will be recorded inside the front cover of the logbook:

- Activity (if the log book is to be activity-specific).
- Person and organization to whom the book is assigned, and phone number(s)
- Start date

3.1.2 Operation

Complete thorough notes of all field events are essential to a timely and accurate completion of this project. The field manager and/or field engineer is responsible for accounting for particular actions and times for these actions of the subcontractor while in the field. Also, identification (numbers and description) of field samples duplicates samples, and blank samples should also be noted in the field book. For a particular workday, the field book should contain the following:

- Field personnel name, contractors name, number of persons in crew, equipment used, weather, date, time, and location at start of day (boring number). Sample identification number, depth, amount of sample recovery, PID readings and soil descriptions. Description of any unusual surface or subsurface soil conditions. Record of Health and Safety monitoring; time, equipment and results. Record of site accidents or incidents. Record of any visitors. Materials and equipment used during borehole installation. Final daily summary of work completed including list of samples obtained.
- Any other data that may be construed as relevant information at a later date. The field logs should confirm the subcontractors data.
 Field notes should be photocopied weekly and returned to the project manager.

If a borehole is completed as a monitoring well, simply note this in the note book.

Monitoring well completion data is required in addition to the boring log information if the borehole is completed as a monitoring well. This data should include screen length, riser length, materials used, etc. Examples of monitoring well logs should be reviewed and adequate blank log forms obtained as needed.

3.1.3 Post-Operation

To guard against loss of data due to damage or disappearance of notebooks, copies of completed pages will be made periodically (weekly, at a minimum) and submitted to the project manager. Documents that are separate from the logbook will be copied and submitted regularly and as promptly as possible to the project manager. This includes all automatic data recording media (printouts, logs, disks or tapes) and activity-specific data collection forms required by other SOPs.

At the conclusion of each activity or phase of site work, the individual responsible for the notebook will ensure all entries have been appropriately signed and dated, and that corrections were made properly (single lines drawn through incorrect information, then initialed and dated). The completed logbook will be submitted to the records file.

3.2 Sample Collection, Documentation and Identification

The following procedures describe proper sample collection, and documentation to be included in field notebooks. Documentation includes describing data collection activities, logging sample locations, sample IDs, container labeling and chain-of custody forms. Procedures for sample classification to insure proper labeling of samples are also included.

3.2.1 Responsibilities

The field manager and/or field technician is required to oversee drilling of the boreholes, collection of vapor, groundwater, and air samples, fill out field book logs, submit samples for analysis, COC forms and labeling of any waste-containing drums, if required. Also, the field manager and/or field engineer is required to adhere to the Site-Specific Health & Safety Plan. Field book entries should state starting time of monitoring, equipment used and results.

3.2.2 Sample Collection

3.2.2.1 Water Samples

VOCs, if analyzed, are to be sampled first. Prepreserved laboratory prepared vials will be utilized where practicable. Pour water slowly into the 40-ml vial, tipping the vial and allowing water to run down the side to prevent aeration at a rate of less than 100 ml/min. Fill until a meniscus forms and tightly seal the vial. Invert the vial and

check for bubbles. If bubbles are present, at a size of greater than five millimeters (5ml), additional sample water will be added and repeat. It will be necessary to discard the vial and use another if bubbles continue to appear after two refills.

- Remaining bottles should then be filled, again preventing agration.
- If filtering is required (filtering is sometimes requested when samples
 are to be analyzed for metals and if turbidity is high (> 20 ntu), use a
 dedicated 0.45 micron filter for each sample and filter prior to
 preservation.
- Label bottles with sample designation, project, date, time,
 preservative and required analysis prior to filling. Clear tape may be used to cover the completed label.
- Place sample in a cooler with ice to maintain temperature at 4°C +/2°C. Samples will be maintained at this temperature throughout the
 sampling and transportation period. Chain of Custody and shipping
 procedures are discussed in See Section 3.3.

3.2.2.2 Soil/Sediment/Sludge Samples

- VOCs, if analyzed, are to be sampled first. Fill the jar completely such that there is no air space. VOCs must not be homogenized.
- For the remaining parameters, homogenize the samples with a
 decontaminated stainless bowl (Section 3.12) and trowel prior to
 filling the remaining bottles. Use of dedicated disposable trowels is
 permitted.
- Label bottles with sample designation, project, date, time, preservative and required analysis. Clear tape may be used to cover the completed label.
- Place sample in a cooler with ice to maintain temperature at 4°C+/-2°C. Samples will be maintained at this temperature throughout the sampling and transportation period. If multiple days worth of soil samples are collected during a work event, the daily storage of collected samples can be maintained in a refrigerated device that

keeps the soils at less than 0 degrees Centigrade. Chain of Custody and shipping procedures are discussed in Section 3.3.

3.2.2.3 Soil Vapor/Ambient Air Samples

- Soil Vapor samples will be collected with 6.0-liter summa canisters, with 2-hour flow controllers (regulators) and particulate filters (if required).
- Sub slab soil vapor samples will be collected with 6-liter summa canisters, with 2-hour flow controllers (regulators) and particulate filters (if required).
- Soil Vapor samples will be collected with 6-liter summa canisters,
 with flow controllers (regulators) and particulate filters (if required).
- Indoor and outdoor ambient air samples will be collected with 6-liter summa canisters, with flow controllers (regulators) and particulate filters (if required).
- Instantaneous grab samples may also be collected, as permitted by NYSDEC.
- Record vacuum prior to and at conclusion of sampling. Prior to sampling, vacuum should be 28-30 inches. At conclusion of sampling, vacuum should be 3 inches Hg+/-1 inch Hg. Label summa canister and prepare for shipping. Summa canisters are not chilled or otherwise preserved.

3.2.3 Drum Labeling

Labeling of drums is essential for tracking hazardous materials. The responsibility of the contractor is to collect, handle, and store the drums, but the responsibility of field personnel is to label these drums appropriately. There is a significant cost implication if drums are not property labeled. Unknown material must be properly characterized prior to offsite disposal. Non-hazardous petroleum contaminated wastes have been found at this site and it is anticipated that all drill cuttings and purge water will be characterized as such.

The following drum labeling procedures are to be adhered to:

Field staff shall secure self adhesive Non-Hazardous petroleum

contaminated waste labels to the side of the drum prior to placing any material therein.

- Field staff shall print with an indelible marker on the label all information pertaining to the contents of the drum(s). If more than one drum is collected from the same borehole, each information card shall be numbered sequentially in parenthesis starting with the number one after the boring number. The information shall include:
 - Boring No.(s)
 - Date collected
 - Description of contents (i.e., soil cuttings, well water, etc.)
- Project Manager, upon receipt of the analytical data for the drums,
 shall confirm the Non-Hazardous petroleum contaminated waste
 designation for the waste material.
- Based on the review of the analytical data, the PM will determine and prepare the appropriate storage labels required:
 - Hazardous Waste label
 - Non-hazardous label
- The PM will fill out the appropriate labels.
- Field staff shall attach these labels to the appropriate drums.

It is noted that waste material is expected to be transported off-site during excavation of the stormwater retention tanks. Investigation derived wastes, soils, development water and purge water are expected to be drummed.

3.2.5 Sample Identification

Each sample collected will be designated by an alpha or numeric code that will identify the type of sampling location, matrix sampled, and the specific sample designation (identifier).

Soil samples will be identified by the site boring number from which the sample was collected and the depth of the sample. For example a sample collected at soil boring 7 from the seven foot interval the sample will be identified as SB-7-7.

Groundwater samples will be identified by the monitoring well number associated with the well being sampled. For example the sample obtained from

monitoring well will be identified as MW-1.

The sample ID for the soil vapor will be identified by using the laboratory issued identification number associated with the supplied Summa canister.

Field blank and trip blank samples will be designated Field and Trip on the chain of custody.

3.3 Chain-of-Custody Procedures

This section describes the procedures used to ensure that sample integrity and chain-of-custody are maintained throughout the sampling and analysis program. Chain-of custody (COC) procedures provide documentation of sample handling from the time of collection until its disposal by a licensed waste hauler. This documentation is essential in assuring that each sample collected is of known and ascertainable quality.

The COC begins at the time of sample collection. Sample collection is documented in the field notebooks in accordance with the specified SOP. At the same time, the sampler fills out the label on the sample container with the following information:

- Site Name
- Sample 1D code
- Required analyses
- Sampler initials
- Date and time of sample collection
- Preservative if any

3.3.1 Chain-of-Custody Forms

The COC forms are a paper trail system that follows the samples collected and indicates which laboratory analyses are to be performed on which samples. Each sample should be clearly labeled and listed on the COC. The laboratory will only perform analyses on samples indicated and all other samples should be indicated with a "HOLD" designation. By labeling a sample "HOLD", the laboratory will store the sample until further instruction is given. Do not check the request for analysis blocks on the COC for samples designated with "HOLD" Status. Never indicate duplicate or blank samples on a COC.

It is the responsibility of the field manager to coordinate COC forms and supply copies of all COC to the project manager for data management use.

A COC form is filled out for each sample type at each sampling location. Each time the samples are transferred to another custodian or to the laboratory, the signatures of the people relinquishing the sample and receiving the sample, as well as the time and date, are documented. Labels will be filled out with an indelible, waterproof, marking pen.

3.3.2 Chain-of-Custody Records

The COC record is a two or three-part form. The laboratory retains the original form and the person relinquishing the samples keeps a copy of the form at the time of sample submittal. This form is then returned to the project manager or person in charge of data coordination.

The COC Record will be placed in a Ziplock bag and placed inside of all shipping and transport containers. All samples will be hand delivered or shipped by Federal Express or equivalent overnight service to the laboratory specified by the field manager. Samples should be packed so that no breakage will occur (e.g. placed upright in the cooler surrounded by packing materials). Sample vials may be placed on their sides if frozen.

3.4 Field Quality Control Samples

In order to maintain QA/QC in both the field and the laboratory, additional samples such as trip blanks, duplicates, field blanks, performance evaluation samples and background samples will be collected. Each type of QA/QC sample is described below. Details of the QA/QC samples collected will be provided to the project data validator for use in their evaluation.

3.4.1 Quality Control for Soil Sampling

Approximately five percent of all soil samples analyzed should be QA/QC samples. These samples act as a verification of appropriate field and laboratory procedures. These samples should be recorded in the field book but should not be identified on the Chain-of-Custody (COC). All QA/QC samples should be numbered sequentially with other field samples on the soil log form. The following is a breakdown of types of QA/QC samples that are to be taken:

3.4.1.1 Duplicate Samples

Approximately five percent of all soil samples analyzed should be

duplicate samples if conditions permit. Soil duplicates shall be field-homogenized samples. To ensure laboratory "blind" analyses, duplicate samples will be identified with the next sequential sample number on sample containers and the COC forms. The actual identification of the duplicate samples shall be recorded in the field book. Duplicate samples are collected from the same split spoon sampler, homogenized in the field and analyzed for the same compounds.

3.4.2 Quality Control for Soil Vapor and Air Sampling

Soil vapor and air sampling quality control will be established using a tracer compound, specifically, isopropanol or other approved tracer gas. All summa canisters must be certified to be free of contaminants in accordance with QA/QC protocol. Each connection along the sampling train will be covered with a cloth or paper towel containing isopropanol during the sampling period. Samples extracted found to contain greater than twenty percent of the tracer compound will be discarded.

3.4.3 Quality Control for Groundwater Sampling

The following is a breakdown of types of QA/QC samples that are to be taken:

3.4.3.1 Trip Blanks

Each cooler packed and shipped for aqueous VOC analysis should also contain a trip blank. Trip blanks are VOA vials filled with distilled water. These pre-filled vials are to be carried with the sample bottles and samples and should remain sealed the entire time. It should be documented in the field book which aqueous samples were collected and transported with the trip blank.

3.5 Premobilization

Prior to initiating fieldwork, the following preparatory activities will be completed:

- Project mobilization.
- Utility clearance and permitting. The drilling subcontractor is responsible for contacting the appropriate local utility or Dig Safely New York service to locate subsurface and aboveground utilities in the vicinity of the soil gas

survey area.

- Site specific issues resolved.
- Sample analysis will be scheduled with the laboratory.
- Appropriate sample containers and preservatives for the various sample parameters will be obtained. Extra containers will be obtained to account for possible breakage.
- Field blank water will be obtained from the laboratory performing the analysis.
- Necessary field sampling and monitoring equipment will be obtained. Prior
 to use, the equipment will be checked to confirm that it is in good working
 condition, properly calibrated, and decontaminated.
- Materials necessary for personal protection and decontamination will be obtained.
- Coordinate with subcontractors,

3.6 Soil Vapor Sampling

Soil vapor sampling will be conducted in accordance with the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 and the NYSDEC Draft Division of Environmental Remediation (DER)-10 Technical Guidance for Site Investigation and Remediation, dated December 2002.

3.6.1 Soil Vapor Probe Installation

A Soil vapor probe installation at all locations will be performed according to the following procedures:

- At each location, a Geoprobe will be used to drive stainless steel rods equipped with polyethylene liners to desired depth (approximately 4 feet bgs).
- Once the probe is in place, retract the core establishing a void within the outer rod.
- Place the stainless steel soil vapor sampling implant, connected to
 polyethylene tubing, within the hollow rod to the bottom of the
 boring.
- The borehole will then be backfilled with sand to a minimum depth

of 6 inches above the screen interval.

Bentonite chips or pellets will then be placed from approximately 6 inches above the screen to the ground surface and immediately hydrated. The bentonite will be allowed to set-up for a minimum of 24 hrs.

3.6.2 Tracer Testing

Tracer tests will be conducted at all soil vapor locations to verify the integrity of the soil vapor probe seal and aboveground connections. Tracer tests will be conducted according to the following procedures:

- A cloth or paper towel will be saturated with isopropanol and wrapped around each fitting and around the tubing extending from the ground during sample collection.
- If laboratory analysis identifies less than twenty percent by volume of the tracer compound the probe seal is deemed acceptable and the sample collected representative.

3.6.3 Soil Vapor Sampling Procedures for Offsite Analysis

Once the soil gas probe is installed and a tracer test is conducted, soil gas samples for off site analysis will be collected according to the following procedures:

- The soil vapor samples will be collected using a laboratory-certified clean summa canister with a two-hour regulator ensuring that the sample flow rate less than 200 milliliters per minute (ml/min) to minimize outdoor air infiltration during sampling. The summa canisters will have a vacuum of 28 inches mercury (in Hg) prior to the collection of the soil vapor sample.
- Calculate the volume of the tubing including the screen interval as
 part of the volume. The tubing has an inside diameter of 0.17 inch
 and a volume of 4.46 ml/foot.
- Attach the vacuum pump and purge at least 3 tube volumes from the tubing. Syringes will be utilized to purge the tubing if obtaining a flow rate of 200 ml/min is difficult with vacuum pump.

- After purging is complete, the tubing will be connected to the summa canister.
- Record the initial pressure in the stainless steel summa canister to be used for the sample prior to connecting the tubing. The samples will be collected using laboratory-certified clean summa canisters with flow regulators and a vacuum of 28 in Hg. Vacuum readings in the canister should be approximately 28-30 inches Hg. If no vacuum reading is obtained, use a different canister as this indicates the canister was not properly evacuated.
- Connect the end of the tubing directly to the summa canister intake valve.
- Collect the sample into the summa canister, which will be provided by the approved laboratory. An additional canister and regulator will be ordered as backup. Sample flow rate will not exceed 200 ml/min.
- When the vacuum gauge reads 2 inches Hg, close the valve.
 Sampling is complete. Record the final pressure reading in the summa canister.
- A2L personnel will label, pack and ship the samples to an NYSDOH
 ELAP-approved laboratory. The serial numbers for the summa canisters and the regulators will be recorded on the chain of custody.
 Custody seals will be placed on all coolers/packages containing laboratory samples during shipment.
- The field sampling team will maintain a sample log sheet summarizing the following:
 - sample identification.
 - date and time of sample collection
 - sampling height
 - serial numbers for summa canisters and regulators
 - sampling methods and devices
 - purge volumes
 - volume of soil vapor extracted

- vacuum of summa canisters before and after sample collection
- apparent moisture content (dry, moist, saturated, etc.) of the sampling zone
- chain of custody protocols and records used to track samples from sampling point to analysis.

It is critical to ensure that moisture does not enter the summa canister which can compromise the analytical results.

3.7 Temporary Port Sub-Siab Soil Vapor Sampling Procedures for Offsite Analysis

The New York State Department of Health Indoor Air Quality Questionnaire and Building Inventory shall be completed for each structure where indoor air testing is being conducted. Sub-slab soil gas samples for off site analysis will be collected according to the following procedures:

- Prior to installation of the sub-slab vapor probe, the building floor should be inspected and any penetrations (cracks, floor drains, utility perforations, sumps, etc.) should be noted and recorded. Probes will be installed at locations determined and approved within the Remedial Investigation Work. Plan (RIWP) and where the potential for ambient air infiltration via floor penetrations is minimal.
- A hammer drill with a linch diameter drill bit will be used to advance a
 boring to a depth of approximately three to six inches beneath the slab. When
 drilling is complete, clean around drilled area.
- Fill the subslab void with clean glass beads to approximately two inches below the bottom of the slab.
- Insert probe constructed with 1/4 inch outer diameter, 0.17 inch inner
 diameter food grade polyethylene tubing to the top of the glass beads. The
 tubing should not extend further than 2 inches into the sub-slab material.
- The annular space between the borehole and the sample tubing will be filled and sealed with bees wax to the surface of the slab.
- Conduct tracer testing in accordance with the procedures detailed in Section
 3.6.2 above.

- The tubing will be connected to a low-flow sample pump. A three-way valve will be used to allow purging of all the lines. Flow rates for both purging and collection must not exceed 200 milliliters per minute to minimize the ambient air infiltration during sampling.
- Record the initial pressure in the stainless steel SUMMA canister to be used for the sample prior to connecting the tubing. The samples will be collected using laboratory-certified clean summa canisters with flow regulators and a vacuum of 28 inches Hg+/-2 inches. Vacuum readings in the canister should be approximately 28-30 inches Hg. If no vacuum reading is obtained, use a different canister as this indicates the canister was not properly evacuated.
- The end of the tubing will be connected directly to the summa canisters regulator intake valve via the three-way valve. Flexible silicone tubing will be used at a minimum and as a tubing adapter only. The sample shall be collected with a 6 Liter laboratory-certified summa canister with dedicated regulator set for a 2 hour sample collection.
- Collect the sample tubing to the Summa canister, which will be provided by the laboratory. An additional canister and regulator will be ordered as backup.
 Sample flow rate will not exceed 200 ml/min.
- When the vacuum gauge reads 2 inches Hg, close the valve. Sampling is complete. Record the final pressure reading in the summa canister.
- A2L personnel will label, pack and ship the samples to an NYSDOH ELAP-approved laboratory. The serial numbers for the SUMMA canisters and the regulators will be recorded on the chain of custody. Custody seals will be placed on all coolers/packages containing laboratory samples during shipment.
- Remove the sample port and patch the floor with concrete or an appropriate concrete patching material.

When sub-slab vapor samples are collected, the following actions should be taken to document conditions during sampling and ultimately to aid in the interpretation of the sampling results:

historic and current storage and uses of volatile chemicals should be

identified, especially if sampling within a commercial or industrial building (e.g., use of volatile chemicals in commercial or industrial processes and/or during building maintenance);

- the use of heating or air conditioning systems during sampling should be noted;
- floor plan sketches should be drawn that include the floor layout with sampling locations, chemical storage areas, garages, doorways, stairways, location of basement sumps or subsurface drains and utility perforations through building foundations, HVAC system air supply and return registers, compass orientation (north), footings that create separate foundation sections, and any other pertinent information should be completed;
- outdoor plot sketches should be drawn, as necessary, that include the building site, area streets, outdoor air sampling locations (if applicable), compass orientation (north), and paved areas;
- weather conditions (e.g., precipitation and indoor and outdoor temperature)
 and ventilation conditions (e.g., heating system active and windows closed)
 should be reported; and
- any pertinent observations, such as spills, floor stains, smoke tube results, odors and readings from field instrumentation (e.g., vapors via PID, Jerome Mercury Vapor Analyzer, etc.), should be recorded.

The field sampling team should maintain a sample log sheet summarizing the following:

- sample identification,
- date and time of sample collection,
- sampling depth,
- identity of samplers,
- sampling methods and devices,
- soil vapor purge volumes,
- volume of soil vapor extracted,
- if canisters used, vacuum of canisters before and after samples collected,

- apparent moisture content (dry, moist, saturated, etc.) of the sampling zone, and
- chain of custody protocols and records used to track samples from sampling point to analysis.

3.8 Outdoor (Ambient) Air Sampling Procedures for Offsite Analysis

All outdoor air samples will be collected with a laboratory-certified summa canister regulated for a 2-hour sample collection using a 6 Liter summa canister. The summa canister will be placed in such a location as to collect a representative sample from the breathing zone at four or six feet above the ground.

Personnel will avoid lingering in the immediate area of the sampling device while samples are being collected. Ambient air samples will be collected in a location of as far away as possible from any boring or dust generating activities.

The following actions will be taken to document conditions during ambient air sampling:

- Outdoor plot sketches will be drawn that include the building site, area streets, ambient air sample locations, the location of potential interferences, compass orientation, and paved areas.
- Weather conditions (e.g. precipitation, temperature, wind direction and barometric pressure)
- Any pertinent observations, such as odors, reading from field instruments,
 and significant activities in the vicinity (e.g. operation of heavy equipment)
 will be recorded.

The field sampling team will maintain a sample log sheet summarizing the following:

- sample identification,
- date and time of sample collection,
- sampling height,
- identity of samplers,
- sampling methods and devices,
- volume of air sampled,
- yacuum of canisters before and after samples collected, and
- chain of custody protocols and records used to track samples from

sampling point to analysis.

3.9 Decontamination

All non-dedicated, non-disposal sampling equipment and tools used to collect samples for chemical analysis will be decontaminated prior to and between each sample interval using an Alconox rinse and potable water rinse prior to reuse. Unless disposable sampling equipment is used, the equipment will be decontaminated by the following procedure:

- Wash with the non-phosphate detergent
- Tap water rinse
- Deionized water rinse
- Air dry and wrap in aluminum foil, shiny side out

Additional cleaning of the drilling equipment with steam may be needed under some circumstances if elevated levels of contamination appear to be present using field monitoring equipment or visible stained soils. Decontamination fluids will be discharge to the ground surface unless visible sheen is detected either on the equipment or the fluids, at which point the decontamination water will be contained in a 55-gallon drum, staged and properly disposed.

3.10 Investigative Derived Waste

All soil cuttings and purge water will be placed and dispersed on the ground unless visible contamination or elevated PID readings are observed. If contamination is present, investigative derived waste (IDW) will be contained and analyzed to determine the appropriate disposal methods.

3.10.1 Waste Sampling

Waste classification sampling will be determined by the disposal facility. Worst case analytical data obtained during sampling of soils and groundwater will be used to classify the waste for disposal.

The requirements for waste characterization will be determined by the disposal facility. The containers of waste will be stored in an remote area on the site until the analytical results are received and the waste can be characterized for disposal.

3.11 Soil Boring Logs

Geological logging includes keeping a detailed record of drilling (or excavating) and a geological description of materials on a prepared form. Geological logs are used for all types of drilling and exploratory excavations and include descriptions of both soil and rock. Accurate and consistent descriptions are imperative.

3.11.1 Boring Log

When drilling in soils or unconsolidated deposits, the log should be kept within the prescribed field log book or on a standard Soil Boring Log Form. The following basic information should be entered on the heading of each log sheet:

- Project name and number
- Boring or well number
- Name of drilling contractor
- Drilling method and equipment

The following technical information is recorded on the logs:

- Depth of sample below surface
- Sample interval
- Sample type and number
- Length of sample recovered
- Soil description
- PID readings

In addition to the items listed above, all pertinent observations about drilling rate, equipment operation, or unusual conditions should be noted. Such information might include the following:

- Size of casing used and method of installation
- Rig reactions such as chatter, rod drops, and bouncing
- Drilling rate changes
- Material changes
- Zones of caving or heaving

3.11.2 Soil Classification

The soil description should be concise and should stress major constituents and characteristics. Soil descriptions should be given in a consistent order and

format. The following order is as given in ASTM D2488:

- Soil name. The basic name of the predominant constituent and a single-word modifier indicating the major subordinate constituent.
- Gradation or plasticity. For granular soil (sand or gravel) that should be described as well graded, poorly graded, uniform, or gap-graded, depending on the gradation of the minus 3-inch fraction. Cohesive soil (silts or clays) should be described as non-plastic, slightly plastic, moderately plastic, or highly plastic, depending on the results of the manual evaluation for plasticity as described in ASTM D2488.
- Particle size distribution. An estimate of the percentage and
 grain-size range of each of the soil's subordinate constituents with
 emphasis on clay-particle constituents. This description may also
 include a description of angularity. This parameter is critical for
 assessing hydrogeology of the site and should be carefully and fully
 documented.
- Color.
 - The color of the soil using Munsell notation.
- Moisture content.
 - The amount of soil moisture, described as dry, moist, or wel.
- Relative density or consistency. An estimate of density of a granular soil or consistency of a cohesive soil, usually based on standard penetration test results (see Table 3-2 and 3-3).
- Local geologic name. Any specific local name or a generic name (i.e., alluvium, loess). Also use of Unified Soil Classification System of symbols.
 - The soil logs should also include a complete description of any tests run in the borehole; placement and construction details of piezometers, wells, and other monitoring equipment; abandonment records; geophysical logging techniques used; and notes on readings obtained by air monitoring instruments.
- Additional data in sedimentary rocks includes:

- Sorting
- Cementation
- Density or compaction
- Rounding The core should be logged as quickly as possible
 after removal from the hole. Some materials may degrade
 rapidly upon exposure, resulting in apparently poor rock,
 which was not actually present in the subsurface.

Check carefully each core end and try to determine if the fracture is natural or mechanical in origin. Mechanical fractures often can be identified by their orientation, the absence of secondary coatings or filling and slickensides, and its fit with the adjacent core piece. If doubt exists, consider it a natural fracture. If it is determined that the fracture is mechanical, ignore it and consider the two pieces of core as a single piece.

3.12 Monitoring Well Installation

This section provides procedures for well design and well construction to aid in the development of drilling subcontracts. Drilling operation and well development guidelines are presented to aid the reader in the oversight of the installation of monitoring wells.

The principal reason that monitoring wells are constructed is to collect groundwater samples that, upon analysis, can be used to delineate a contaminant plume and track movement of specific chemical or biological constituents. A secondary consideration is the determination of the physical characteristics of the groundwater flow system to establish flow direction, transmissivity, quantity, etc. The spatial and vertical locations of monitoring wells are important. Of equal importance are the design and construction of monitoring wells that will provide easily obtainable samples and yield reliable, defensible, meaningful information. In general, monitoring well design and construction follows production well design and construction techniques. However, emphasis is placed on the effect these practices may have on the chemistry of the water samples being collected rather than on maximizing well efficiency.

From this emphasis, it follows that an understanding of the chemistry of the suspected pollutants and of the geologic setting in which the monitoring wells are constructed plays a major role in determining the drilling technique and materials used.

3.12.1 Well Siting

The following procedures should be followed:

- Review and be familiar with pertinent proposal sections, specifications, and subcontractors contracts. Review and be familiar with any regulations governing how, where or when the well is drilled. Review and be familiar with data (supplied by the Client, or any other data available) used for program planning.
- Identify well site on a topographic map or other suitable project base map. Contact landowner at the beginning of well siting. Inquire whether the proposed drill locations will interfere with the landowner's established land use. Unless the property is owned by the client, the landowner is always contacted before entering the property, even if he is leasing back the property from the client.
- Check route to insure a drill rig can access the proposed well site.
 Plan routes that require the least disturbance of natural vegetation or natural countryside conditions and which would not require grading or other types of work by i.e., backhoes, etc.
- The well site should be reasonably level and absent of large boulders or other hazardous obstructions.
- Check to insure absence of buried high-pressure gas, oil or water lines. If any lines are present relocate the well site a safe distance away from them. Be sure to check with the subcontractor to insure his/her agreement.
- Check to insure absence of overhead power transmission lines. If any
 overhead power lines are present, relocate the well site a safe distance
 away from them. Be sure to check with the subcontractor to insure
 his/her agreement.
- Consult landowner about water source and access, and then notify the driller of these decisions.
- Explain to the driller the need for care and accurate retrieval of drill
 cuttings and, if necessary, placement and accounting of materials

during well completion.

If necessary, request access agreement to the well site.

3.12.2 Well Design

The following procedures should be followed:

- The monitoring wells for this site will be two inch diameter with 0.10 slotted screen.
- Annular space will be filled with 20/30 clean sand.
- A bentonite seal will be placed above the filter pack and hydrated prior to grouting.
- Portland cement and bentonite clay slurry will be used to grout the well to the surface.
- Bolt down steel vaults will be installed within the pad surrounding the exposed well installation.

3.12.3 Well Construction

The following procedures should be followed:

3.12.3.1 Final Design of Casing - Screen/Slotted Casing String(s)

If there is any doubt about the final design of the casing string, based on data from the pilot hole or the individual drill holes scheduled for completion, verify the design with the hydrogeologist in charge.

It is the rig hydrogeologist's responsibility to insure adequate supplies are maintained at each well site even though it may be the contractors responsibility for supplying the materials.

3.12.3.2 Installing Casing (Slotted/Screen Casing String(s))

- Plastic or Polyvinylchloride (PVC) Casing Join all 5 or 10 foot lengths of casing (blank and screen) by flush-joint threading, All pipe is to be cut with a cutting tool which leaves a smooth, square end,
- Seal the bottom on the casing-slotted/screen casing string with a cap
 screwed permanently in place.

3.12.3.3 Installing Filter Material (Sand Pack)

- Place the filter material downhole by gravity feed.
- The filter material shall be installed to levels pre-determined by the

hydrogeologist. The exact depth for each well is determined from the final well design. However, generally the top of the filter material will be a minimum of one foot above the top of the highest slotted/screened interval.

• Following placement of the filter material "sound" or "tag" this depth with the tremie pipe to insure it is at the prescribed level.

3.12.3.4 Installing Bentonite Pellet Seals (Blanket)

Following the installation of the filter material place a bentonite pellet blanket seal on top of the filter material to prevent contamination of the filter pack by the grout.

The actual amount of the annulus that is filled with bentonite pellets may vary from completion to completion but a minimum of 6 inches of the annulus should be filled with bentonite by gravity feed from the surface. The tremie pipe remains in the bore hold during gravity feed of the bentonite pellets.

3.12.3.5 Grouting

- Grout the annular space above the bentonite pellets as directed by the hydrogeologist.
- The grouted volume of annular space will vary from completion to completion, and sometimes within the same completion. Generally, if the annular space exceeds approximately 20 feet then the grouting is done in more than one stage. Take care to insure that the grout does not displace the bentonite seal or exceed (in weight) the collapse strength of the casing.
- The methods of mixing grout in the field are numerous. The first concern is that the slurry mixture is fluid enough for placement by tremie pipe and heavy enough to give the desired strength and sealing properties required. Rockland County Health Department Rules on grout content and consistency will be adhered to for all wells installed at this site. Mix the correct number of bags of cement with the water at a rate which prevents, clotting or settling out of dry, unmixed

cement. Usually this procedure is accomplished with a portable pump that sucks the water or cements mixtures in and then expels it under pressure through a hose that is used in a jetting fashion at the opposite end of the tank, pit or trough. Grout also can be mixed using a shovel or hoe. Generally, the grout is placed on the side of the tub, the bag is ruptured, and the cement is slowly added to the water. If the cement has hard spots place on a screen of approximately 1/4inch mesh attached to some type of frame that is placed across the mixing tub. The cement is then "filtered" for the larger; hard pieces or blocks.

Pumping or Pouring Grout

Place the mixed grout above the bentonite pellets. The time between placement of the bentonite pellets and the grout should not be less than 15 to 20 minutes. This allows the pellets to settle to the top of the gravel pack and to begin to swell, while not allowing the grout to harden.

- The grout can either be pumped down the tremie pipe by same pump used for jetting or it can be poured by buckets through a funnel into the tremie pipe. Displacement of the bore hole fluid is almost certain because the grout slurry weighs more than the residual borehole fluid (10 or 11 pounds per gallon for the mud versus 14 to 18 pounds per gallon for the grout).
- Except under rare circumstances, grout is never poured from the surface nor is it ever poured into standing water.
- Grout the remainder of the hole by gravity feed from the surface as directed by the hydrogeologist. The quantity of grout placed from the surface should not exceed the collapse strength of the casing and should not be initiated prior to the curing of the grout seal above the bentonite pellets.

3.13 Monitoring Well Development

All completed wells, whether the production or monitoring type, must be developed in order to facilitate unobstructed and continuous groundwater flow into the well. Well development is the process of cleaning the fines from the face of the borehole and the formation near the well screen. During any drilling process the side of the borehole becomes smeared with drilling mud, clays or other fines. This plugging action substantially reduces the permeability and retards the movement of water into the well screen. If these fines are not removed, especially in formations having low permeability, it then becomes difficult and time consuming to remove sufficient water from the well before obtaining a fresh groundwater sample because the water cannot flow easily into the well.

The development process is best accomplished for monitoring wells by causing the natural formation water inside the well screen to move vigorously in and out through the screen in order to agitate the clay and sill, and move these fines into the screen. The use of water other than the natural formation water is not recommended.

3.13.1 Development Methods

The following well development methods may be used including:

- Surge Block A surge block is a round plunger with pliable edges such as belting that will not catch on the well screen. Moving the surge block forcefully up and down inside the well screen causes the water to surge in and out through the screen accomplishing the desired cleaning action. Surge blocks are commonly used with cable-tool drilling rigs, but are not easily used by other types of drilling rigs.
- Surging and pumping Starting and stopping a pump so that the water is alternately pulled into the well through the screen and backflushed through the screen is an effective development method. Periodically pumping to the surface will remove the fines from the well and permit checking the progress to assure that development is complete.

Well development should continue until the water becomes free of sediment or contains sediment in a lesser amount than was initially present. Disposal of development water is site specific and should be discussed in the Sampling and Analysis Plan or Work Plan.

3.14 Low Flow Groundwater Sampling

Low-flow sampling will be used for all groundwater sampling at this site and is appropriate at locations where disturbance of the media around the well screen needs to be minimized. A common concern is turbidity in the monitoring wells and the consequent undesirable effects on metals sampling results.

The low-flow purge and sample method creates less disturbance and agitation in the well, and therefore excess turbidity is not generated during the purging and sampling process. The result is a more rapid stabilization of turbidity and other parameters (pH, temperature, specific conductivity, and dissolved oxygen), and a sample more representative of conditions in the formation is collected.

The low flow purge and sample method consists of using a submersible, peristaltic or bladder pump to purge the well at a very low flow rate (0.5 to 1.5 liter/minute). The pump intake is set approximately in the middle of the wetted well screen, with a stagnant water column over the top of the pump. The well is purged at the low rate until the field parameters (temperature, pH, specific conductivity, turbidity, dissolved oxygen, and pH) have stabilized. The sample is then collected directly from the pump discharge at a low flow rate.

- Check and record the condition of the well for any damage or evidence of tampering.
- Remove the well cap.
- Measure and record the depth to water with an electronic water level device and record the measurement in the field logbook or on the groundwater sampling log sheet. Do not measure the depth to the bottom of the well at this time (to avoid disturbing any sediment that may have accumulated). Obtain depth to bottom information from installation information in the field logbook or drilling logs. Calculate volume of the water column by depth of water column times the cross-sectional area of the well.
- Lower pump to desired sampling depth. During purging, monitor the water level and field parameters (temperature, pH, turbidity, specific conductance and dissolved oxygen) approximately every 3 to 5 minutes. Continue

monitoring until the water level stabilizes and field parameters have stabilized to within 10 percent (plus or minus 5 percent) over a minimum of three readings. Turbidity and dissolved oxygen are typically the last parameters to stabilize. Note: once turbidity readings get below 20 NTUs, then the stabilization range can be amended to 20 percent (plus or minus 10 percent) over a minimum of three readings.

- Once the water level and field parameters have stabilized, collect the samples from the pump. Collect samples per Section 3.2.2.1.
- Decontaminate equipment in accordance with Section 3.12.

3.15 Monitoring Well Purging

Well purging can be performed on a volume basis or on a field parameter stabilization basis. In both cases, field parameters are recorded; however, for the former case purging is concluded after a target number of well volumes (typically 3 to 5) regardless of whether parameters have stabilized. In the latter case, purging continues until field parameters stabilize within 10 percent.

3.15. 1 Volumetric Method of Well Purging

The following steps should be followed when purging a well by the volumetric method:

- Don personal protective clothing and equipment as specified in the site-specific health and safety plan.
- Open the well cover and check the condition of the wellhead, including the condition of the surveyed reference mark, if any.
- Calibrate the required field parameter meters according to manufacturers specifications.
- Determine the depth to static water level and depth to bottom of well casing. Calculate the volume of water within the well bore.

Note: Record all data and calculations in the field logbook.

- Set up field parameter probes at the discharge orifice or dedicated probe port of the pump assembly or within the flow-through chamber.
- Prepare the pump and tubing, or bailer, and lower it into the casing.
- Remove the number of well volumes specified in the site-specific

plans. Generally, three to five well volumes will be required. Field parameters should be measured and recorded, if required by site-specific plans. In low recharge aquifers, the well commonly will be pumped or bailed to dryness before three well volumes of water are removed. If this is the case, there is no need to continue with purging operations. Record pertinent data in the field logbook.

Remove the pump assembly or bailer from the well, decontaminate
it (if required), and clean up the site. Lock the well cover before
leaving. Containerize and/or dispose of development water as
required by the site-specific plan.

3.15.2 Indicator Parameter Method of Well Purging

- Don personal protective clothing and equipment as specified in the site-specific health and safety plan.
- Open the well cover and check the condition of the wellhead,
 including the condition of the surveyed reference mark, if any.
- Calibrate the required field parameter meters according to manufacturers specifications.
- Determine the depth to static water level and depth to bottom.
- Set up field parameter probes at the discharge orifice or dedicated probe port of the pump assembly or within the flow-through chamber.
- Assemble the pump and tubing, or bailer, and lower into the casing.
- Begin pumping or bailing the well. Record indicator parameter readings for every purge volume. Maintain a record of the approximate volumes of water produced.
- Continue pumping or bailing until indicator parameter readings remain stable within ± 10 percent for three consecutive recording intervals, or in accordance with site-specific plans. Purging should continue until the discharge stream is clear and turbidity is less than 20 ntu or +/- 10 percent. In a low recharge aquifer, the well may pump or bail to dryness before indicator parameters stabilize. In this

case, there is no need to continue purging. Record pertinent data on the well sampling form and or the field logbook.

 Remove the pump assembly or bailer from the well, decontaminate (if required), and clean up the site. Lock the well cover before leaving. Containerize and/or dispose of development water as required by the site-specific plans.

3.16 Well Abandonment

Once it is deemed that the temporary or permanent monitoring well is no longer needed, the well will be abandoned by a New York State certified well driller in accordance with Rockland County Department of Health rules.

3.17 Subsurface Soil Sampling

Subsurface soil samples may be collected using a hand auger at depths of up to 10 feet (typical). In such cases, A2L typically performs the boring and collects the samples for analysis. For deeper depths, a drilling subcontractor is typically used to perform a boring and collect subsurface soil samples by split spoon or Shelby tube via rotary drilling methods, or by direct push methods. In such cases, the driller provides the soil samples to A2L, and A2L then collects the laboratory samples.

The following steps should be taken when preparing for subsurface soil sampling:

- Don the appropriate personal protective clothing as dictated by the site-specific health and safety plan.
- Locate sampling location(s) in accordance with project documents (e.g., work
 plan) and document pertinent information in the appropriate field logbook.
 When possible, reference locations back to existing site features such as
 buildings, roads, intersections, etc.
- Processes for verifying depth of sampling must be specified in the site-specific plans.
- Clear away vegetation and debris from the ground surface at the boring location.
- Prepare an area next to the sample collection location for laying out cuttings
 by placing plastic sheeting on the ground to cover the immediate area
 surrounding the borehole.

The following general steps must be followed when collecting all subsurface soil samples:

- VOC samples or samples that may be degraded by aeration shall be collected first and with the least disturbance possible.
- Sampling information shall be recorded in the field logbook and on any associated forms.
- Describe lithology, including color, grains size, moisture, odor and other observations.

3.17.1 Manual (Hand) Auguring

The following steps must be followed when collecting hand-augured samples:

- Auger to the depth required for sampling. Place cuttings on plastic sheeting or as specified in the site-specific plans. If possible, lay out the cuttings in stratigraphic order.
- Throughout the Auguring, make detailed notes concerning the geologic features of the soil or sediments in the field logbook.
- Cease Auguring when the top of the specified sampling depth has been reached. If required, remove the auger from the hole and decontaminate the auger or use a separate decontaminated auger, then obtain the sample.
- Scan sample with organic vapor meter as appropriate.
- Collect samples in accordance with Section 3.2.2.2. Collect VOCs quickly to minimize loss of volatile's.
- When all sampling is complete, dispose of cuttings, plastic sheeting,
 etc., as specified in the site specific plans.
- Decontaminate all equipment in accordance with Section 3.12

3.17.2 Split-Spoon/Split Barrel Sampling

Note: the first 15 bullets describe activities to be performed by a licensed drilling contractor, not A2L personnel. The following steps must be followed when collecting split-spoon samples. Remove any pavement and subbase material from an area of twice the bit diameter, if necessary. The drilling rig will be

decontaminated at a separate location prior to drilling. Attach the hollow-stem auger with the cutting head, plug, and center rod(s) to the drill rig.

- Begin drilling and proceed to the first designated sample depth,
 adding auger(s) as necessary.
- Upon reaching the designated sample depth, slightly raise the auger(s)
 to disengage the cutting head, and rotate the auger without
 advancement to clean cuttings from the bottom of the hole.
- Remove the plug and center rods.
- If required by the site-specific sampling plan, install decontaminated liners in the splitspoon/split barrel sampler.
- Install a decontaminated split-spoon on the center rod(s) and insert it
 into the hollow-stem auger. Connect the hammer assembly and lightly
 tap the rods to seat the drive shoe at the top of undisturbed soil or
 sediment.
- Mark the center rod in 15-centimeter (6-inch) increments from the top of the auger(s).
- Drive the split-spoon using the hammer. Use a full 76-cm (30-inch) drop as specified by the American Society for Testing and Materials (ASTM) Method D1586. Record the number of blows required to drive the spoon or tube through each 15-cm (6-inch) increment.
- Cease driving when the full length of the spoon has been driven or
 upon refusal. Refusal occurs when little or no progress is made for 50
 blows of the hammer. ASTM D1586-99 ° 7.2.1 and 7.2.2 defines as
 >50 blows per 6-inch advance or a total of 100 blows.
- Pull the split-spoon free by using upswings of the hammer to loosen the sampler. Pull out the center rod and split-spoon.
- Unscrew the split-spoon assembly from the center rod and place it on the plastic sheeting.
- Remove the drive shoe and head assembly. If necessary, tap the split-spoon assembly with a hammer to loosen threaded couplings.
- · With the drive shoe and head assembly off, open (split) the

split-spoon, being careful not to disturb the sample.

- Scan sample with organic vapor detector as appropriate.
- Collect samples in accordance with Section 3.2.2.2. Collect VOCs quickly to minimize loss of volatile's.
- When all sampling is complete, dispose of cuttings, plastic sheeting,
 etc., as specified in the site specific plans.
- Decontaminate all equipment in accordance with Section 3.12.

3,17.3 Direct Push Drilling

Note: The first six bullets describe activities to be performed by a licensed drilling contractor, not A2L personnel. Decontaminate equipment. Install acetate sleeve in direct push sampler (no acetate sleeve required for split spoon). Drive samples from the surface to the desired depth, using either 4-foot or 5-foot long direct push samplers, or 2-foot split spoons.

- Use discrete interval sampling (sampler end is plugged while driving
 to top of desired sample interval to exclude soil from non-desired
 depths) when appropriate (for example, deeper than 8 feet or below
 the water table).
- At top of sampling interval, release plug (if used) and drive sampler across desired sample interval. Retrieve sample and provide to A2L. Cut open acetate sleeve with two parallel slices, scan with organic vapor meter as appropriate. Collect samples in accordance with Section 3.2.2.2. At the conclusion of the boring, grout the borehole and decontaminate equipment in accordance with Section 3.12.

3.17.4 Restrictions/Limitations

 Basket or spring retainers may be needed for split-spoon sampling in loose, sandy soils.

3.18 Surface Soll Sampling

The following steps must be followed when preparing for sample collection:

- Don the appropriate personal protective clothing as dictated by the site-specific health and safety plan.
- Locate sampling location(s) in accordance with project documents (e.g., work

plan) and document pertinent information in the appropriate field logbook. When possible, reference locations back to existing site features such as buildings, roads, intersections, etc.

- Processes for verifying depth of sampling must be specified in the site-specific plans.
- Carefully remove vegetation, stones etc. from the ground surface to expose soil.
- Pace clean plastic sheeting on a flat, level surface near the sampling area, if
 possible, and place equipment to be used on the plastic; place the insulated
 cooler(s) on separate plastic sheeting.
- A clean, decontaminated trowel, scoop, or spoon will be used for each sample collected. Other equipment may be used (e.g., shovels) if constructed of stainless steel.
- Surface soil samples are normally collected from the least contaminated to the most contaminated areas, if known.
- Document the sampling events, recording the information in the designated field logbook. Document any and all deviations from SOPs in the field logbook and include rationale for changes.
- Collect samples in accordance with Section 3,2.2.2.
- Decontaminate sampling equipment in accordance with Section 3.12.

3.19 Water Level/NAPL Measurement

Water levels can be measured by several instruments. The three most common are covered here electric water level meter (measures depth to water only), interface probe (measures depth to water and depth to non-aqueous phase liquid).

3.19.1 Procedures for Use of Water Level Meter

- Standing upwind of the well, open the well head and monitor with organic vapor meter as dictated by the site-specific health and safety plan.
- Check that water level meter is functioning correctly (test button, or immerse probe in tap water to test).
- Lower probe slowly into well until contact with water surface is indicated (tone and/or light).

- Slowly raise and re-lower probe until a precise, repeatable depth to water can be measured.
- Record the depth to water from the measuring point of known elevation, usually marked at the top of the casing. If no mark is present, measure from the highest point of the casing or as otherwise instructed in the site-specific work plan.
- Remove and decontaminate probe, secure well.

3.19.2 Procedures for Use of Interface Probe

The interface meter is used to measure the depth to water and the depth to nonaqueous phase liquid (light and/or dense).

- Standing upwind of the well, open the well head and monitor with organic vapor meter as dictated by the site-specific health and safety plan.
- Check that the interface level meter is functioning correctly (test button, or immerse probe in tap water and NAPL to test).
- Lower probe slowly into well until contact with water or NAPL surface is indicated. Water is typically indicated by a steady tone;
 NAPL is typically indicated by a beeping tone check manufacturers specifications.
- Slowly raise and re-lower probe until a precise, repeatable depth to water/NAPL can be measured.
- Record the depth to water/NAPL from the measuring point of known elevation, usually marked at the top of the casing. If no mark is present, measure from the highest point of the casing or as otherwise instructed in the site-specific work plan.
- Measurement of interface depth between LNAPL and water: For LNAPL, the non-aqueous phase is floating on top of the water column, and the probe must be lowered through the NAPL before encountering water. In this case, shake the probe after water is encountered to help dislodge any NAPL droplets stuck to the probe. Then raise the probe slowly until it re-enters the NAPL. Perform this

procedure until a repeatable result is obtained. The interface depth should be recorded in the up direction, never the down direction. When the probe is moving down, past the LNAPL, it may still be coated with product and can therefore yield misleading results. Therefore, it must be shaken in the water and raised to the interface for an accurate result. Record depth from measuring point, per item 5 above.

Remove and decontaminate probe, secure well.

3.20 Sample Handling, Packaging, and Shipping

The shipping containers (coolers or shuttles) will be provided by the laboratory providing the analysis. These containers, once filled, will be secured with fiber tape, wrapped entirely around the container and will either be delivered directly to the Con Edison laboratory in Astoria Queens by the field crew or picked up by a laboratory provided courier. Consequently, the strict packaging, labeling and shipping of hazardous wastes and substances requirements set forth by the U.S. Department of Transportation (DOT) under CFR 49 will not be necessary. However, the following sample packaging procedures will be followed to guard against sample breakage and to maintain chain-of-custody.

- Check to ensure that the sample is properly filled; tighten cap securely.
- Enclose and seal sample containers in a clear plastic bag.
- Place freezer packages or ice in large ziplock plastic bags and place the bags
 in a sample cooler so that ice is not in direct contact with sample bottles.
 Sufficient ice will be added to cool the samples to 4°C.
- Pack noncombustible, absorbent vermiculite around bottles and ice to avoid sample breakage during transport.
- Complete Chain-of-Custody Records and other shipping/sample documentation including air bill numbers for each shipment of samples using a ballpoint pen. Seal documentation in a waterproof plastic bag and tape the bag inside the shipping container under the container lid. Include a return address for the cooler.
- Close the container and seal it with fiber tape and custody seals in such a manner that the custody seals would be broken if the cooler were opened.

4.0 Instrument Procedures

4.1 Photoionization Detector

4.1.1 Introduction

This Standard Operating Procedure (SOP) is specific to the Rae Systems MiniRae 2000 Organic Vapor Monitor (OVM) PID. This portable instrument is designed to measure the concentration of trace gases in ambient atmospheres at industrial and hazardous waste sites and are intrinsically safe. The analyzer employ PID.

The PID sensor consist of a sealed ultraviolet light source that emits photons which are energetic enough to ionize many trace species (particularly organics) but do not ionize the major compounds of air such as O2, N2, CO, CO2, or H2O. An ionization chamber adjacent to the ultraviolet lamp source contains a pair of electrodes. When a positive potential is applied to one electrode, the field created drives any ions, formed by absorption of UV light, to the collector electrode where the currents (proportional to concentration) are measured. One major difference between a flame ionization detector (FID) and a PID is that the latter responds to inorganic compounds as well as non methane type organic compounds.

To assess whether the instrument will respond to a particular species, the ionization potential (IP) should be checked. If the IP is less than the lamp energy, or, in some cases, up to 0.2-0.3 electron volts (ev) higher than the lamp energy, instrument response should occur. For example, hydrogen sulfide (IP = 10.5 ev) may be detected with a 10.2 ev lamp, but butane (IP 10.6 ev) will not be detected.

4.1.2 Calibration

Qualified personnel trained in calibration techniques for all field items perform calibration of all A2L field equipment. All field instruments will be tested prior to use to determine if it is reading within desired parameters. If it is determined that the equipment is out of calibration, it will be calibrated in the field. A maintenance file is kept for each calibrated field item.

PID and FID detector type instruments come with field calibration kits. A field calibration kit would be used if the instrument is to be kept out at the site for extended periods of time, or if the instrument endures prolonged environmental

extremes. In either case, a calibration check standard could be introduced in the instrument to verify its accuracy. If an instrument will not calibrate or shows improper field operation, it should be sent back to the office, and another instrument reissued.

Field personnel should not try to maintain the instruments in the field. If long sampling program is required, be prepared to take more equipment for backup in case of instrument failure. Records and procedures of all calibration techniques are contained within the owners manual maintained with the equipment.

With the instrument fully calibrated, it is now ready for use. Any results obtained should be reported as parts per millions (ppm) as isobutylene.

4.2 pH, Conductivity, Temperature, Dissolved Oxygen Meter

4.2.1 Introduction

A2L Technologies utilize a YSI 556MPS multi purpose meter to measure pH, conductivity, temperature and dissolved oxygen. The meter is equipt to read the oxygen reductive potential of groundwater samples, however, this will not be recorded for this project. The YSI 556 utilizes a flow through cell continuously submersing the respective probes to obtain the requisite readings.

pH is the negative logarithm of the effective hydrogen ion concentration (or activity) in gram equivalents per liter used. This expresses both acidity, and alkalinity on a scale whose valves run from 0 to 14. Number 7 represents neutrality, and numbers greater than 7 indicate increasing alkalinity while numbers less than 7 indicate increasing acidity.

Conductivity is a numerical expression of the ability of an aqueous solution to carry an electrical current. This ability depends on the presence of ions in the solution, and their total concentration. Factors such as mobility valence, relative concentration, and temperature also combine to create this occurrence. Solutions of most inorganic acids, bases and salts are relatively good conductors. Organic compounds in aqueous solutions are not good conductors. For example, freshly distilled water has conductivity reading of 0.5 to 2 mhos/cm and increases with time. This increase is caused by absorption of atmospheric carbon dioxide, and to a lesser extent ammonia. While industrial type wastes have conductivity readings of +10,000

mhos/cm.

Dissolved oxygen (DO) is the numerical expression of the available oxygen content of an aqueous solution at standard temperatures and pressures. DO concentrations are temperature dependant with lower temperature water solutions containing higher concentrations of oxygen.

Temperature is a measure of the average kinetic energy of the particles in a sample of matter, expressed in terms of units or degrees designated on a standard scale. The groundwater temperature will be recorded in degrees Centigrade.

4.2.2 Callbration

The YSI 556 readings will be checked in the field prior to recording any groundwater readings against known standards for all effected parameters excluding temperature. If the presented values are beyond a five percent range for the effected readout, the unit will be calibrated in the field using known standards. A record of the check and or calibration will be maintained in the field log book or within a dedicated binder.

5.0 Laboratory Procedures

The term "data quality" refers to the level of uncertainty associated with a particular data set. The data quality associated with environmental measurement data is a function of the sampling plan rationale and procedures used to collect the samples as well as the analytical methods and instrumentation used in making the measurements. Each component has its own potential sources of error and biases that can affect the overall measurement process.

Sources of error that can be traced to the sampling component of environmental data collection are: poor sampling plan design, inconsistent use of standard operating procedures, sample handling and transportation. The most common sources of error that can be traced to the analytical component of the total measurement system are calibration and contamination problems. It is recognized that by far the largest component of the total uncertainty associated with environmental data collection originates from the sampling process. All sampling programs initiated in support of this project will stress forward planning and be well conceived and reviewed prior to the collection of any samples as a way to minimize this major source of potential error.

Uncertainty cannot be eliminated from environmental measurement data. The amount of

uncertainty that can be tolerated depends on the objective of the sampling program and the intended use of the data collected. The purpose of the project's quality assurance program is to assure that the data quality of all data collected be of known and ascertainable value.

5.1 Data Quality Criteria

Data quality can be assessed in terms of its precision, accuracy, representativeness, completeness, and comparability. Analytical method detection limits will also be discussed in this section.

5.1.1 Precision

Precision is a measure of the reproducibility of analyses under a given set of conditions. The overall precision of a sampling event is a mixture of sampling and analytical factors. The precision of data collected in support of this project will be assessed on two different levels:

- By calculating the relative percent difference (RPD) of laboratory matrix spike duplicates and/or laboratory replicate samples (a measure of analytical precision).
- By calculating the RPD of field duplicates samples submitted to laboratory "blind" (a measure of the precision of the entire measurement system, including sampling).

Relative percent difference will be calculated according to the following equation:

|A-B|RPD = $(A+B)/2 \times 100\%$ where: A = Sample Result B = Replicate Sample Result

5.1.2 Accuracy

Accuracy is a measurement of the amount of bias that exists in a measurement system. This can be thought of as the degree that the reported value agrees with the supposed "true value". The accuracy of data collected in support of this project will be assessed in the following ways:

- By calculating the percent recovery (%R) of laboratory matrix spikes
 and/or laboratory control standards
- By documenting the level of contamination that exists (if any) in laboratory method blanks

- By documenting the level of contamination that exists (if any) in field and/or trip blanks submitted to the laboratory "blind" for analysis
- Percent recovery will be calculated according to the following equation:

%R = SSR - SR x 100 SA where: SSR = Spiked Sample Result SR = Sample Result SA = Spike Concentration

5.1.3 Representativeness

Unlike the previous two criteria which can be expressed in quantitative terms, representativeness is a qualitative parameter. However, in terms of overall data quality, representativeness may be the most important parameter of all.

The representativeness criterion is concerned with the degree to which a sample reflects (represents) a characteristic of a population, parameter variations at a specific location or an environmental condition. Sample representativeness will be addressed in support of this project through a detailed sampling plan design and rationale and through the proper use of the appropriate sampling standard operating procedures, depending on sample matrix and the parameters to be analyzed.

Composite samples will be collected in situations conducive to compositing techniques (particularly samples collected along the vertical extent of a borehole). The use of composite samples tends to maximize the representativeness of a sampling round because more information is provided about a much broader area than a single grab sample. This is especially true in situations where the objective of sampling is to determine where gross contamination exits on site and the location of any "hot spots". In these cases, broad coverage of the area to be sampled is more important than obtaining the lowest possible detection limits.

5.1.4 Completeness

Completeness is a measure of the amount of usable data obtained from a measurement system compared to the amount that was expected to be obtained under correct normal conditions. Usability will be determined by evaluation of the precision, accuracy, representativeness, and comparability parameters. Those data that are validated as correct, or are qualified as estimated or non-detect are considered usable. Rejected data are not considered usable. A completeness goal of 90% is

projected. If this goal is not met, the effect of not meeting this goal will be discussed by the A2L project manager and the NYSDEC site manager. Completeness is calculated using the following equation:

Percent Completeness = DO/DP x 100

Where:

DO = Data obtained and usable

DP = Data planned to be obtained

There also may be incomplete data while still meeting the 90 percent goal if a critical sample location cannot be sampled.

5,1.5 Comparability

The comparability criterion is a quality characteristic which is an expression of the confidence with which one data set can be compared with another. Comparability issues are of importance at two different levels of a sampling program. The primary comparability issues are concerned with whether the field sampling techniques, analytical procedures, and concentration units of one data set can be compared with another.

The comparability criterion also applies to the environmental conditions/ considerations present at the time of the sampling. Temporal and/or seasonal variations may make data collected from the same location at different times of the year incomparable, or comparable in a relative sense only, for example.

Comparability is judged by comparing results to other similar data sets. Consistency in the acquisition, handling, and analysis of samples is necessary for comparing results. Data developed under this investigation will be collected and analyzed using Soil Vapor Intrusion Guidance for soil vapor collection and NYSDEC Department of Remediation Draft DER-10 Technical Guidance for Site Investigation and Remediation, dated December 2002 to ensure comparability of results with other analyses performed in a similar manner.

5.1.6 Method Detection Limits

Whenever environmental measurement data is to be used in comparison with predetermined "action levels" or other regulatory requirements, the reported method detection limits of the analytical data is of prime importance. Analytical methods specified in support of this project should have a reported detection limit at least 50% below the required action level to assure that measurements made in the vicinity of

the action level are of high quality. In circumstances concerning extremely low action levels or regulatory requirements where analytical techniques will have to be pushed to their limits, every effort will be made to select the most appropriate analytical procedures. It is recognized that analytical detection limits are sample specific and are affected by sample volumes as well as the need for sample concentration or dilution. These circumstances will be accounted for in the review and interpretation of the analytical results.

5.2 Quality Control

Two separate levels of quality control exist for all samples collected in support of this project, internal laboratory quality control and program generated quality control.

5.2.1 Internal Laboratory Quality Control

Internal laboratory quality control is a function of the individual laboratory's QA/QC Plan. A laboratory's QA/QC plan contains specific criteria governing the manner in which analyses are conducted and provide information on the laboratory's performance and control of the sources of error that exist within the lab. Included in the plan are requirements for the type and frequency of quality control check samples that are to be analyzed on a routine basis.

All laboratory analysis conducted in support of this project must include the following quality control check samples:

- Surrogate spikes (where appropriate)
- Matrix spike/matrix spike duplicate or laboratory duplicates and laboratory control samples (where appropriate)
- Method blanks

The laboratory may adhere to the analysis frequency specified in their QA/QC plan for these check samples provided that the specified frequency is equal-to or greater-than the frequency specified in Table 5-1 or as modified/specified by the OAPP.

5.2.2 Program Generated Quality Control

Program generated quality control consists of quality control check samples that are submitted to the laboratory for analysis "blind" along with actual environmental samples. These samples provide quality control information for the

entire sampling event, from the actual sampling and handling through laboratory analysis. As such, they can provide the best overall estimate of the total uncertainty associated with the sampling round.

TABLE 5-1 Laboratory Sample Frequency OC Check Sample Method Blanks One per analytical batch or one per every twenty samples. Matrix Spike/Matrix Spike Duplicate (MS/MSD) One per analytical batch or one per every twenty samples. Surrogate Spikes One per every trace organic analysis

The combination of laboratory duplicates and laboratory control samples may be substituted for MS/MSD analysis for parameters where they are more appropriate.

Program generated quality control samples collected in support of this project are:

- Duplicate samples
- Field blanks
- Trip blanks

Each report should have a cover page that references the A2L task number. The cover page also provides an opportunity to describe in a narrative format any unusual problems or interferences encountered during analysis. In addition, all results should be reported on a dry weight basis for soils and at dilution-corrected concentrations for all samples.

5.2.3 OC Deliverables Package

The following quality control data is required to be reported. For "priority pollutant" type analysis, the following quality control data is required per sample batch:

- Method Blanks associated with each analytical procedure.
- Surrogate Spike Recoveries for volatile organics, PCBs, semi-volatile's and polynuclear aromatic hydrocarbons. MS/MSDs for all priority pollutant parameters. One MS/MSD should be run for

every 20 samples.

For non-priority pollutant parameters, the following quality control data is required per sample batch:

- Method Blanks
- Laboratory Duplicates One duplicate analysis should be performed at a frequency of one per twenty samples.

No specific acceptance criteria for blanks and spike recoveries will be set forth here, however, all laboratories are expected to conform to standard EPA quality control specifications. A2L expects laboratories to reanalyze samples if quality control samples fail to meet EPA specifications.

The quality control data may be presented as a quality control section within the report or it may be integrated among the results.

5.3 Data Quality Requirements

Taking into consideration a project's overall objective and intended use of the data, it should be considered that analyses be conducted in accordance with SW-846, Test Methods for Evaluating Solid Waste, Third Edition procedures. In cases where additional procedures are required, other EPA approved laboratory methods will be used.

5.4 Data Deliverable

Analytical data deliverable will be provided in accordance with NYSDEC requirements (EPA Region 2 EDD, dated December 2003).

5.5 Analytical Data Validation

If a Work Assignment requires the validation of data; i.e., data validation is performed to determine whether or not the data, as presented, meets the site/project specific criteria for data quality and data use.

Laboratories results shall be supported by sufficient back-up data and QA/QC results to enable the reviewer to conclusively determine the quality of the data. The laboratory will review data prior to its release from the laboratory. Objectives for review are in accordance with the QA/QC objectives stated in each site-specific Work Plan. The laboratory is required to evaluate their ability to meet these objectives.

Outlying data will be flagged in accordance with laboratory standard operating procedures, and corrective action will be taken to rectify the problem.

A NYSDEC-approved qualified independent third party data validator will review the data package to determine completeness and compliance in accordance with Standby Contract D004437. A narrative describing how the data did or did not meet the validation criteria is part of the data validation procedure. The validation assessment will describe the overall quality of the data and the data validation report will provide a written statement upon completion of the validation indicating whether or not the data are valid and usable, and include a percent completeness value of usable data.

5.6 Data Usability Summary Report

A Data Usability Summary Report (DUSR) provides a thorough evaluation of analytical data without the third party data validation. The primary objective of a DUSR is to determine whether or not the data, as presented, meets the site/project specific criteria for data quality and data use. If a Work Assignment requires a DUSR, the DUSR will be developed by a NYSDEC approved qualified environmental scientist.

ATTACHMENT 1

NYSDOH Indoor Air Quality Questionnaire and Building Inventory Form

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name		Date/Time Prepared	
Preparer's Affiliation		Phone No.	
Purpose of Investigation			
1. OCCUPANT:			
Interviewed: Y/N			
Last Name:	}	First Name:	
Address;			
County:			
Home Phone:	Offic	e Phone:	
Number of Occupants/pe	rsons at this location	n Age of Occupants	
2. OWNER OR LAND	LORD: (Check if s	ame as occupant)	
Interviewed: Y/N			
Last Name:	F	irst Name:	-
Address:			
County:			
Home Phone:	Offi	ice Phone:	
3. BUILDING CHARA	CTERISTICS		
Type of Building: (Circ	le appropriate respo	nse)	
Residential Industrial		Commercial/Multi-use	

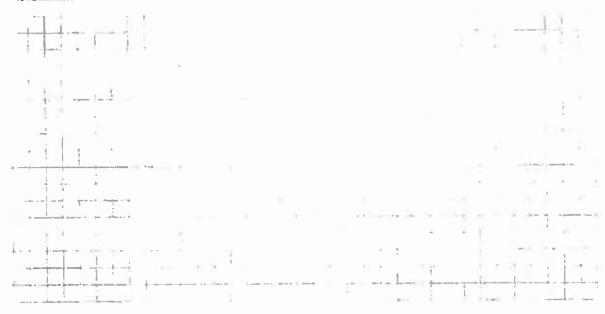
If the property is residential, type? (Circle appropriate response)

	Ranch Raised Ranch Cape Cod Duplex Modular	Split Level Contemporary Apartment Hou Log Home	SE	Colonia Mobile Townh			
lfı	nultiple units, how many?						
Ir t	he property is commercial	, type?					
	Business Type(s)						
	Does it include residences	(i.e., multi-use)?	Y/N		If yes, how many	?	
Οú	ber characteristics:						
	Number of floors		Buildir	ig agė_			
	Is the building insulated? Y	7/N	How ai	ir light?	Tight / Average /	Not Tight	
	AIRFLOW e air current tubes or trace	er smøke to evah	uate alr	flow pa	tterns and quality	itively descri	be:
Aiı	flow between floors					-	
	rflow near source						
_							
Ou	ndoor air infiltration						
	·	-					
lnf	litration into air ducts						
			_				

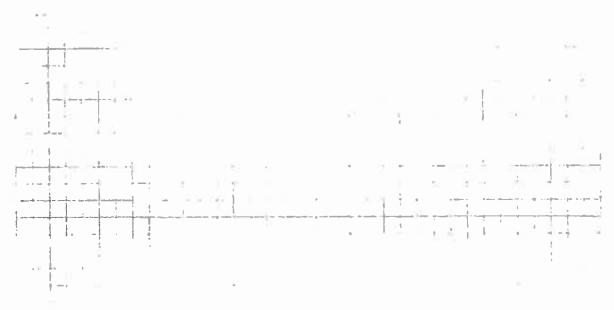
					3		
5.	BASEME	NT AN	d Const	RUCTION CHA	RACTERISTIC	S (Circle all the	at apply)

a. Above grade construct	ion: wood	frame concret	e stone	brick
b. Basement type:	full	crawisp	ace slab	other
e. Basement floor:	concre	te dirt	stone	other
d, Basement floor;	uncov	ered covered	covered w	rith
e. Concrete floor:	unseal	ed sealed	sealed wit	h
f. Foundation walls:	poure	i block	stone	other
g. Foundation walls:	unseal	ed scaled	sealed wit	h
h. The basement is:	Wel	qemb	dry	moldy
L The basement is:	finish	ed untinisi	hed partially f	inished
j. Sump present?	Y/N			
k. Water in sump?	Y/N/not app	nlicable		
Basement/Lowest level depti	halour averdes	(feet)		
HEATING, VENTING : Type of beating system(s) us			****	mars/\
Hot air circulation Space Heaters Electric baseboard	Heat Stream	- '	Hot water basebo Radiant floor Outdoor wood bo	ard
The primary type of fuel na		3.04E	Campot wood bo	net Ontel
Natural Gas Electric Wood	Fuel (Props Coal		Kerosène Solar	
Domestic hot water tank fu	led by:	-		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? Y/N


Describe the sa there is a cold diagram.	apply and cold air return ductwork, and its air return and the tightness of duct joints. I	condition vindicate the	where visible, it e locations on t	cluding whether he floor plan
				 -
7. OCCUPA	NCY			
		asionally	Seldom	Almost Never
Level	General Use of Each Floor (e.g., familyro	om, bedree	om, laundry, w	orkshop, storage)
_				
Basement				•
)# Floor				
2 nd Floor				•
3 rd Floor				-
4 th Floor			-	
8. FACTORS	THAT MAY INFLUENCE INDOOR AIR	QUALITY	•	
a. Is there a	n attached garage?		Y/N	
b. Does the	garage have a separate beating unit?		Y/N/NA	
	leum-powered machines or vehicles the garage (e.g., lawnmower, atv., car)		Y/N/NA Please specify	
d. Has the b	vilding ever had a fire?		Y/N When!	?
e. Is a keros	ene or unvented gas space heater present?		Y/N Where	?
f. Is there a	workshop or hobby/craft area?	Y/N	Where & Type	?
g. Is there s	moking in the building?	Y/N	How frequently	y?
h. Have cles	ning products been used recently?	Y/N	When & Type	7
L Have coan	netic products been used recently?	Y/N	When & Type	?

j. Has painting/stale	ing been done i	the last 6 mon	iths? Y/N	Where & When	1?				
k. Is there new carp	-			Where & When	1?				
I. Have air freshene	rs been used rec	ently?	Y/N	When & Type	·				
m. Is there a kitche	n exhaust fan?		Y/N	If yes, where vented?					
n. Is there a bathro	om exhaust fan	?	Y/N	If yes, where vented?					
o. Is there a clothes	dryer?	If yes, is it vented outside? Y/N							
p. Has there been a	pesticide applic	When & Type	?						
Are there odors in If yes, please descr			Y/N						
Do any of the building (e.g., chemical manufa boiler mechanic, pestic	cturing or labora- cide application, o	tory, auto meche cosmetologist	inic or auto body		fuel oil delivery,				
If yes, what types of	solvents are use	17							
If yes, are their cloth	nes washed at wo	rk?	Y/N						
Do any of the buildin response)	g occupants reg	ilarly use or we	ork at a dry-cle	aning service? ((Circle appropriate				
Yез, цзе dry-с	l eaning regularly leaning infrequent dry-cleaning ser	itly (monthly or	less)	No Unknown					
Is there a radon mitt Is the system active o	gation system for passive?	r the building/s Active/Passive	trpeture? Y/N	Date of Install	lation:				
9. WATER AND SE	WAGE								
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:				
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other;				
10. RELOCATION	INFORMATIO	i (for oil spill r	esidential emer _i	gency)					
a. Provide reason	as why relocation	n is recommend	led:						
b. Residents cho	ose to: remain in	home reloc	ate to friends/fer	nily reloc	ete to hotel/motel				
c. Responsibility	for costs associa	ted with reimb	ursement expla	ined? Y/N	ī				
d. Relocation par	d. Relocation package provided and explained to residents? Y/N								


11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, laudifile, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

	T MILE	

4 -		to be selected as a selected a	4 40 40 4	71/2/24
1171	PROBLET		NWW.	KILLINI

111000001 2110010012 2 2221
Make & Model of field instrument used;
List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (paits)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo "X/N
						,
		+				
		-				+
		-	ļ			
						ļ
		1				
_		+				
		<u> </u>				
						
		+-				
		+				-
		-				
						-

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX 8
Laboratory Analytical Results

ANALYTICAL RESULTS

Prepared for:

A2L Technologies 10220 Harney Road Thonolosassa FL 33592

813-248-8558

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1092162. Samples arrived at the laboratory on Tuesday, May 20, 2008. The PO# for this group is 050409.05.

Client Description	Lancaster Labs Number
MW-1 Grab Water Sample	5366351
MW-2 Grab Water Sample	5366352
MW-3 Grab Water Sample	5366353
MW-4 Grab Water Sample	5366354
MW-5 Grab Water Sample	5366355
MW-6 Grab Water Sample	5366356
Trip Blank Water Sample	5366357

1 COPY TO A2L Technologies Attn: Joe Clemis

Questions? Contact Environmental Client Services

Respectfully Submitted,

Marla S. Lord Senior Specialist

Page 1 of 2

Lancaster Laboratories Sample No. WW5366351 Group No. 1092162

MW-1 Grab Water Sample Ciabattoni 050409

Collected:05/20/2008 08:51 by JC Account Number: 01907

 Submitted:
 05/20/2008 09:30
 A2L Technologies

 Reported:
 06/09/2008 at 15:27
 10220 Harney Road

 Discard:
 06/24/2008
 Thonotosassa FL 33592

CIA01

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-39-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	ı
07046	Barium	7440-39-3	0.0827	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
04513	NY STARS waters by SW846 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	ı
05401	Benzene	71-43-2	< 5.	5.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	ug/l	1
05416	m+p-Xylene	1330-20-7	< 5.	5.	ug/1	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	< 5.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-B	< 5.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-6	< 5.	5.	ug/l	1
05431	p-Isopropyltoluene	39-87-6	< 5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	< 5.	5.	ug/l	1
05439	Naphthalene	91-20-3	< 5.	5.	ug/l	1

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
00259	Mercury	SW-846 7470A	1	05/28/2008 10:06	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	06/01/2008 D4:28	Tara L Snyder	1

Lancaster Laboratories, Inc 2425 New Holland Pike PO Box 12425 Ancaster, FA 17635-2475 717-656-2300 Fax 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW5366351 Group No. 1092162

MW-1 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 08:51 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 A2L Technologies Reported: 06/09/2008 at 15:27 10220 Harney Road Thonotosassa FL 33592

Discard: 06/24/2008

CIA01						
07036	Selenium	SW-846 6010B	1	06/01/200B 04:2B	Tara L Snyder	1
07046	Barium	SW-846 6010B	1	06/01/2008 04:28	Tara L Snyder	1
07049	Cadmium	SW-846 6010B	1	06/01/2008 04:28	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	06/01/200B 04:28	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	06/02/2008 17:41	Thomas F McLamb Sr	1
07066	Silver	SW-846 6010B	1	06/01/2008 04:28	Tara L Snyder	1
04513	NY STARS waters by SW846 8260B	SW-846 E260B	1	05/30/2008 13:30	Chelsea B Eastep	1
01163	GC/MS VOA Water Prep	SW-846 S030B	1	05/30/2008 13:30	Chelsea B Eastep	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	05/22/2008 08:34	Denise K Conners	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/27/2008 16:15	Damary Valentin	1

Page 1 of 2

Lancaster Laboratories Sample No. WW5366352 Group No. 1092162

MW-2 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 10:16 by JC Account Number: 01907

 Submitted:
 05/20/2008 09:30
 A2L Technologies

 Reported:
 06/09/2008 at 15:27
 10220 Harney Road

 Discard:
 06/24/2008
 Thonotosassa FL 33592

CIA02

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.0469	0.0050	mg/l	ı
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/1	1
04513	NY STARS waters by SWB46 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	ug/l	ı
05407	Toluene	108-88-3	< 5.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	ug/l	1
05416	m+p-Xylene	1330-20-7	< 5.	5.	ug/l	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	< 5.	5,	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	< 5.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-8	< 5.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	< 5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	< 5.	5.	ug/l	1
05439	Naphthalene	91-20-3	< 5.	5.	ug/l	1

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	05/28/200B 10:07	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	06/01/2008 04:32	Tara L Snyder	1

Lancaster Laboratories, Inc 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax 717-656 2681

Page 2 of 2

Lancaster Laboratories Sample No. WW5366352 Group No. 1092162

MW-2 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 10:16 by JC Account Number: 01907

 Submitted:
 05/20/2008 09:30
 A2L Technologies

 Reported:
 06/09/2008 at 15:27
 10220 Harney Road

 Discard:
 06/24/2008
 Thonotosassa FL 33592

CIA02								
07036	Selenium	SW-846	6010B	1	06/01/2008	04:32	Tara L Snyder	1
07046	Barium	SW-846	6010B	1	06/01/2008	04:32	Tara L Snyder	1
07049	Cadmium	SW-846	6010B	1	06/01/2008	04:32	Tara L Snyder	1
07051	Chromium	SW-846	6010B	1	06/01/2008	04:32	Tara L Snyder	1
07055	Lead	SW-846	6010B	1	06/02/2008	17:55	Thomas F McLamb Sr	1
07066	Silver	SW-846	6010B	1	06/01/2008	04:32	Tara L Snyder	1
04513	NY STARS waters by SW846 8260B	SW-846	8260B	1	05/30/2008	13:53	Chelsea B Eastep	1
01163	GC/MS VOA Water Prep	SW-846	5030B	1	05/30/2008	13:53	Chelsea B Eastep	1.
01848	WW SW846 ICP Digest (tot	SW-846	3005A	1	05/22/2008	OB:34	Denise K Conners	1
05713	WW SW846 Hg Digest	SW-846	7470A	1	05/27/2008	16:15	Damary Valentin	3

Page 1 of 2

Lancaster Laboratories Sample No. WW5366353 Group No. 1092162

MW-3 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 14:02 by JC Account Number: 01907

 Submitted: 05/20/2008 09:30
 A2L Technologies

 Reported: 06/09/2008 at 15:27
 10220 Harney Road

 Discard: 06/24/2008
 Thonotosassa FL 33592

CIA03

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Unita	Factor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.113	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
04513	NY STARS waters by SW846 8260B					
			_	_	12	
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	ug/l	1
05416	m+p-Xylene	1330-20-7	< 5.	5.	ug/l	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	9.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	9.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	< 5.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-8	7.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	< 5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	< 5.	5.	ug/l	1
05439	Naphthalene	91-20-3	< 5.	5.	ug/l	1
	-					

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

			Analymis		Dilution
Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
Mercury	5W-846 7470A	1	05/28/2008 10:08	Damary Valentin	1
Arsenic	SW-846 6010B	1	06/01/2008 04:43	Tara L Snyder	1
	Mercury	Mercury SW-846 7470A	Mercury SW-846 7470A 1	Analysis Name Method Trial Date and Time Mercury SW-846 7470A 1 05/28/2008 10:08	Analysis Name Method Trial# Date and Time Analyst Mercury SW-846 7470A 1 05/28/2008 10:08 Damary Valentin

Lancaster Laboratories, inc 2425 New Holland Fike PO Box 12425 Lancaster, PA 17605-2425 717-656 2300 Fax 717-656 2681

Page 2 of 2

Lancaster Laboratories Sample No. WW5366353 Group No. 1092162

MW-3 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 14:02 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 A2L Technologies Reported: 06/09/2008 at 15:27 Discard: 06/24/2008 10220 Harney Road Thonotosassa FL 33592

CIA03						
07036	Selenium	SW-846 6010B	ı	06/01/2008 04:43	Tara L Snyder	1
07046	Barium	SW-846 6010B	1	06/01/2008 04:43	Tara L Snyder	1
07049	Cadmium	SW-846 6010B	1	06/01/2008 04:43	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	06/01/2008 04:43	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	06/02/2008 17:59	Thomas F McLamb Sr	1
07066	Silver	SW-846 6010B	1	06/01/2008 04:43	Tara L Snyder	1
04513	NY STARS waters by SW846 8260B	SW-846 8260B	1	05/30/2008 14:16	Chelsea B Eastep	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/30/2008 14:16	Chelsea B Eastep	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	05/22/2008 08:34	Denise K Conners	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/27/2008 16:15	Damary Valentin	1

Page 1 of 2

Lancaster Laboratories Sample No. WW5366354 Group No. 1092162

MW-4 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 12:49 by JC Account Number: 01907

 Submitted: 05/20/2008 09:30
 A2L Technologies

 Reported: 06/09/2008 at 15:27
 10220 Harney Road

 Discard: 06/24/2008
 Thonotosassa FL 33592

CIA04

				As Received Limit of		Dilution
CAT			As Received		er Lau	
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.0849	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
04513	MY STARS waters by SW846 B260B					
	Managara Managara Managa Makan	1634-04-4	< 5.	5.	ug/1	1
02010	Methyl Tertiary Butyl Ether			5.	ug/1	1
05401	Benzene	71-43-2	8.			
05407	Toluene	108-88-3	13.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	190.	5.	ug/l	1
05416	m+p-Xylene	1330-20-7	120.	5.	ug/l	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	44.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	110.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	46.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5 -	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	31.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-8	18.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	16.	5.	ug/l	1
05439	Naphthalene	91-20-3	31.	5.	ug/l	1

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
00259	Mercury	SW-846 7470A	1	05/28/2008 10:09	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	06/01/200B 04:47	Tara L Snyder	1

Lancaster Laboratories, Inc 2425 New Holland Pike PO Box 12425 Lancaster, PA 17605-2475 717-655-2300 Fax 717-656-2661

Page 2 of 2

Lancaster Laboratories Sample No. WW5366354 Group No. 1092162

MW-4 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 12:49 Account Number: 01907 by JC

Submitted: 05/20/2008 09:30 A2L Technologies 10220 Harney Road Thonotosassa FL 33592 Reported: 06/09/2008 at 15:27

Discard: 06/24/2008

CIA04						
07036	Selenium	SW-846 6010B	1	06/01/2008 04:47	Tara L Snyder	1
07046	Barium	SW-846 6010B	1	06/01/2008 04:47	Tara L Snyder	1
07049	Cadmium	SW-846 6010B	1	06/01/2008 04:47	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	06/01/200B 04:47	Tara L Snyder	1
07055	Lead	SW-846 6010B	1	06/02/2008 18:04	Thomas F McLamb Sr	1
07066	Silver	SW-845 6010B	1	06/01/2008 04:47	Tara L Snyder	1
04513	NY STARS waters by SWB46 8260B	SW-846 8260B	1	05/30/2008 15:02	Chelsea B Eastep	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/30/2006 15:02	Chelsea B Eastep	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	05/22/200B 0B:34	Denise K Conners	1
05713	WW SW846 Hg Digest	SW-846 7470A	ı	05/27/2008 16:15	Damary Valentin	1

Page 1 of 2

Lancaster Laboratories Sample No. WW5366355 Group No. 1092162

MW-5 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 11:33 by JC Account Number: 01907

 Submitted:
 05/20/2008 09:30
 A2L Technologies

 Reported:
 06/09/2008 at 15:27
 10220 Harney Road

 Discard:
 06/24/2008
 Thonotosassa FL 33592

CIA05

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Voits	Factor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.152	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
04513	NY STARS waters by SW846 8260B					
02010	Methyl Textiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	ug/l	1
05407	Toluene	108-98-3	< 5.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5,	ug/l	1
05416	m+p-Kylene	1330-20-7	< 5.	S.	ug/l	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	< 5.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	< 5.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-B	< 5.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-8	< 5.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	< 5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	< 5.	5.	ug/l	1
05439	Naphthalene	91-20-3	< 5.	5.	ug/l	1

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
00259	Mercury	SW-846 7470A	1	05/28/2008 10:11	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box. 12425 Lancaster, PA 17605-2425 717-656-2300 Fax 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. WW5366355 Group No. 1092162

MW-5 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 11:33 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/09/2008 at 15:27 A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/24/2008

CIA05						
07036	Selenium	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1
07046	Barium	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1
07049	Cadmium	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1
07051	Chromium	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1
07055	Lead	5W-846 6010B	1	06/02/2008 18:08	Thomas F McLamb Sr	1
07066	Silver	SW-846 6010B	1	06/01/2008 04:50	Tara L Snyder	1
04513	NY STARS waters by SW846 82608	SW-846 8260B	1	05/30/2008 15:48	Chelsea B Eastep	1
01163	GC/MS VOA Water Prep	SW-846 5030B	1	05/30/2008 15:48	Chelsea B Eastep	1
01848	WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	05/22/2008 08:34	Denise K Conners	1
05713	WW SW845 Hg Digest	SW-846 7470A	1	05/27/2008 16:15	Damary Valentin	1

Page 1 of 2

Lancaster Laboratories Sample No. WW5366356

Group No. 1092162

MW-6 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 15:02 by JC

Submitted: 05/20/2008 09:30 Reported: 06/09/2008 at 15:27

Discard: 06/24/2008

Account Number: 01907

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CIA06

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.119	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1
04513	NY STARS waters by SW846 8260B					
						_
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	1
05401	Benzene	71-43-2	290.	20.	ug/l	4
05407	Toluene	108-88-3	170.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	610.	20.	ug/l	4
05416	m+p-Xylene	1330-20-7	600.	5.	ug/l	1
05417	o-Xylene	95-47-6	30.	5.	ug/l	1
05420	Isopropylbenzene	98-82-8	110.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	200.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	290.	5.	ug/l	1
0542B	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	320.	20.	ug/l	4
05430	sec-Butylbenzene	135-98-8	16.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	9.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	30.	5.	ug/l	1
05439	Naphthalene	91-20-3	170.	5.	ug/l	1

This sample was field filtered for dissolved metals.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT	CAT			Analysis		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	05/28/2008 10:12	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	06/01/2008 04:54	Tara L Snyder	1

Page 2 of 2

Lancaster Laboratories Sample No. WW5366356 Group No. 1092162

MW-6 Grab Water Sample Ciabattoni 050409

Collected: 05/20/2008 15:02 by JC Account Number: 01907

 Submitted: 05/20/2008 09:30
 A2L Technologies

 Reported: 06/09/2008 at 15:27
 10220 Harney Road

 Discard: 06/24/2008
 Thonotosassa FL 33592

Selenium	SW-846 6010B	1	06/01/2008	04:54	Tara L Snyder	1
Barium	SW-845 6010B	1	06/01/2008	04:54	Tara L Snyder	1
Cadmium	SW-846 6010B	1	06/01/2008	04:54	Tara L Snyder	1
Chromium	SW-846 6010B	1	06/01/2008	04:54	Tara L Snyder	1
Lead	SW-846 6010B	1	06/02/2008	18:13	Thomas F McLamb Sr	1
Silver	SW-846 6010B	1	06/01/2008	04:54	Tara L Snyder	1
NY STARS waters by SW846 8260B	SW-846 8260B	1	05/30/2008	16:11	Chelsea B Eastep	4
NY STARS waters by SW846 8260B	SW-846 8260B	1	05/31/2008	10:39	Holly Berry	1
GC/MS VOA Water Prep	SW-846 5030B	1	05/31/2008	10:39	Holly Berry	1
GC/MS VOA Water Prep	SW-846 5030B	2	05/30/2008	16:11	Chelsea B Eastep	4
WW SW846 ICP Digest (tot rec)	SW-846 3005A	1	05/22/2008	DB:34	Denise K Conners	1
WW SW845 Hg Digest	SW-846 7470A	1	05/27/2008	16:15	Damary Valentin	1
	Barium Cadmium Chromium Lead Silver NY STARS waters by SW846 8260B NY STARS waters by SW846 8260B GC/MS VOA Water Prep GC/MS VOA Water Prep WW SW846 ICP Digest (tot rec)	### SW-845 6010B Cadmium	### Barium	Barium SW-845 6010B 1 06/01/2008 Cadmium SW-846 6010B 1 06/01/2008 Chromium SW-846 6010B 1 06/01/2008 Lead SW-846 6010B 1 06/02/2008 Silver SW-846 6010B 1 06/02/2008 NY STARS waters by SW846 SW-846 6010B 1 06/01/2008 NY STARS waters by SW846 SW-646 8260B 1 05/30/2008 8260B NY STARS waters by SW846 SW-846 8260B 1 05/31/2008 8260B GC/MS VOA Water Prep SW-846 5030B 1 05/31/2008 GC/MS VOA Water Prep SW-846 5030B 2 05/30/2008 WW SW846 ICP Digest (tot SW-846 3005A 1 05/22/2008 rec)	Barium SW-845 6010B 1 05/01/2008 04:54 Cadmium SW-846 6010B 1 06/01/2008 04:54 Chromium SW-846 6010B 1 06/01/2008 04:54 Lead SW-846 6010B 1 06/02/2008 18:13 Silver SW-846 6010B 1 06/02/2008 18:13 Silver SW-846 6010B 1 06/01/2008 04:54 NY STARS waters by SW846 SW-846 8260B 1 05/30/2008 16:11 8260B NY STARS waters by SW846 SW-846 8260B 1 05/31/2008 10:39 8260B GC/MS VOA Water Prep SW-846 5030B 1 05/31/200B 10:39 GC/MS VOA Water Prep SW-846 5030B 2 05/30/2008 16:11 NW SW846 ICP Digest (tot SW-846 3005A 1 05/22/2008 08:34 rec)	### Barium

Page 1 of 1

Group No. 1092162 Lancaster Laboratories Sample No. WW5366357

Trip Blank Water Sample Ciabattoni 050409

Account Number: 01907 Collected: 05/20/2008

Submitted: 05/20/2008 09:30 Reported: 06/09/2008 at 15:27

Discard: 06/24/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CIATE

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
04513	NY STARS waters by SW846 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/l	1
05401	Benzene	71-43-2	< 5.	5.	ug/l	1
05407	Toluene	108-88-3	< 5.	5.	ug/l	1
05415	Ethylbenzene	100-41-4	< 5.	5.	ug/l	1
05416	m+p-Xylene	1330-20-7	< 5.	5.	ug/l	1
05417	o-Xylene	95-47-6	< 5.	5.	ug/l	1
05420	Isopropylbenzene	98-82-6	< 5.	5.	ug/l	1
05424	n-Propylbenzene	103-65-1	< 5.	5.	ug/l	1
05426	1,3,5-Trimethylbenzene	108-67-8	< 5.	5.	ug/l	1
05428	tert-Butylbenzene	98-06-6	< 5.	5.	ug/l	1
05429	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/l	1
05430	sec-Butylbenzene	135-98-8	< 5.	5.	ug/l	1
05431	p-Isopropyltoluene	99-87-6	< 5.	5.	ug/l	1
05434	n-Butylbenzene	104-51-8	< 5.	5.	ug/l	1
05439	Naphthalene	91-20-3	< 5.	5.	ug/1	1
	•					

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Mathod	Trial	Date and Time	Analyst	Factor
04513	NY STARS waters by SW846	SW-846 8260B	1	05/30/2008 16:57	Chelsea B Eastep	1
01163	8260B GC/MS VOA Water Prep	SW-846 S030B	1	05/30/2008 16:57	Chelsea B Eastep	1

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092162 Reported: 06/09/08 at 03:27 PM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank LOO	Report Units	lcs <u>rec</u>	LCSD %RBC	LCS/LCSD <u>Limita</u>	RPD	RPD Kax
Batch number: 081421848004 Arsenic Selenium Barium Cadmium Chromium Lead Silver	Sample num < 0.0200 < 0.0200 < 0.0050 < 0.0050 < 0.0150 < 0.0150 < 0.0150	dber(s): 5 0.0200 0.0200 0.0050 0.0050 0.0150 0.0150 0.0050	366351-53 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1 mg/1	66356 103 105 103 103 104 104		90-119 80-120 90-110 90-112 90-110 90-113 90-118		
Batch number: 081445713005 Mercury	Sample num < 0.00020	nber(s): 5 0.00020	366351-53 mg/l	66356 89		80-120		
Batch number: NOB1511AA Methyl Tertiary Butyl Ether Benzene Toluene	Sample num < 5. < 5. < 5.	mber(s): 5 5. 5. 5.	366351-53 ug/l ug/l ug/l	90 93 93	92 96 95	73-119 78-119 85-115	3 2 2	30 30 30
Ethylbenzene m+p-Xylene o-Xylene Isopropylbenzene	< 5. < 5. < 5.	5. 5. 5.	ug/l ug/l ug/l ug/l	92 93 92 92	94 96 94 94	82-119 83-113 83-113 80-113	2 3 1 2	30 30 30 30
n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene	< 5. < 5. < 5. < 5.	5. 5. 5.	ug/l ug/l ug/l ug/l	90 92 91 92	92 92 92 94	78-119 78-116 74-114 78-117	1 0 1 2	30 30 30 30
sec-Butylbenzene p-Isopropyltoluene n-Butylbenzene Naphthalene	< 5. < 5. < 5.	5. 5. 5.	ug/l ug/l ug/l ug/l	90 91 90 85	92 93 90 89	72-120 72-118 75-120 61-116	2 1 0 4	30 30 30 30
Batch number: NO81513AA Methyl Tertiary Butyl Ether Toluene	Sample nu < 5.		-	92 95		73-119 85-115		
m+p-Xylene o-Xylene isopropylbenzene	< 5. < 5. < 5.	5	ug/l ug/l ug/l	95 95 95 95		83-113 83-113 80-113 78-119		
n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene sec-Butylbenzene	< 5. < 5. < 5.	5. 5. 5.	ug/1 ug/1 ug/1 ug/1	92 92 92		78-116 74-114 72-120		
p-Isopropyltoluene n-Butylbenzene Naphthalene	< 5. < 5. < 5.	5. 5. 5.	ug/l ug/l ug/l	92 89 84		72-118 75-120 61-116		

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 3

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092162

Reported: 06/09/08 at 03:27 PM

Sample Matrix Quality Control

Unapiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS MSD TREC TRE		RPD BKG MAX CORC	DUP Conc	DUP RPD	Dup RPD
Batch number: 081421848004 Arsenic Selenium Barium Cadmium Chromium Lead Silver	Sample numb 102 107 96 105 100 105 98 103 100 105 103 101	75-125 9 78-118 5 83-116 5 81-120 5 75-125 2	356 UNSPK: P36598 20 < 0.0200 20 < 0.0240 20 0.0140 20 < 0.0050 20 < 0.0150 20 < 0.0150 20 < 0.0050	<pre></pre>	0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1) 0 (1)	20 20 20 20 20 20 20
Batch number: 081445713005 Mercury	Sample number 92 92	er(s): 5366351-53663 80-120 1	356 UNSPK: P36756 20 < 0.000		B (1)	20
Batch number: NO81511AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene Isopropylbenzene n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene n-Butylbenzene Naphthalene	Sample numb 91 100 100 99 98 101 99 97 99 96 99	er(8): 5366351-5366: 69-127 83-128 83-127 82-129 82-130 82-130 74-138 75-132 76-128 80-125 73-137 74-135 70-141 57-125	357 UNSPK: P36501	4		
Batch number: NO81513AA Methyl Tertiary Butyl Ether	Sample numb	er(s): 5366256 UNSP 69-127 0	K: P367741 30			
Toluene m+p-Xylene o-Xylene Isopropylbenzene n-Propylbenzene 1,3,5.Trimethylbenzene tert.Eutylbenzene sec.Butylbenzene p-Isopropyltoluene n-Butylbenzene Naphthalene	104 104 103 100 100 100 100 100 100 100 100 100	83-127 1 82-130 1 82-130 1 81-130 1 274-138 0 75-132 0 176-128 2 273-137 0 174-135 1 70-141 0	30 30 30 30 30 30 30 30 30 30			

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY STARS waters by SW846 8260B

- *- Outside of specification
- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Lancaster Laboratories, inc 2425 New Holland Pikt FO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax 717-656-2681

78-113

Page 3 of 3

Quality Control Summary

77-113

Client Name: A2L Technologies

Group Number: 1092162

Reported: 06/09/08 at 03:27 PM

Surrogate Quality Control

80-113

Batch numb	er: N081511AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5366351	91	92	91	88
5366352	91	92	92	88
5366353	91	91	93	B B
5366354	91	91	92	90
5366355	91	92	91	6B
5366357	91	92	91	87
Blank	92	93	91	89
LCS	92	92	93	90
LCSD	93	93	93	89
MS	91	95	93	89
Limits:	90-116	77-113	80-113	78-113
Analysis h	Name: NY STARS waters by S	W846 8260B		
Batch numl	per: N081513AA			
	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5366356	91	93	92	93
Blank	91	92	93	BB
LCS	92	90	94	69
MS	92	91	94	90
MSD	91	95	93	90

*- Outside of specification

Limits:

80-116

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

ANALYTICAL RESULTS

Prepared for:

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

813-248-8558

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 1091896. Samples arrived at the laboratory on Saturday, May 17, 2008. The PO# for this group is 050409.05.

Client Description SB1-6 Grab Soil Sample	Lancaster Labs Number 5364998
SB1-6 Grab Soil Sample	5364999
SB2-18 Grab Soil Sample	5365000
SB2-18 Grab Soil Sample	5365001
SB3-24 Grab Soil Sample	5365002
SB3-24 Grab Soil Sample	5365003
SB4-18 Grab Soil Sample	5365004
SB4-18 Grab Soil Sample	5365005
SB5-8 Grab Soil Sample	5365006
SB5-8 Grab Soil Sample	5365007
SB6-18 Grab Soil Sample	5365008
SB6-18 Grab Soil Sample	5365009
SB7 Grab Soil Sample	5365010
SB8-1 Grab Soil Sample	5365011
SB9-1 Grab Soil Sample	5365012
SB10-1 Grab Soil Sample	5365013
SB11-1 Grab Soil Sample	5365014

1 COPY TO A2L Technologies

Attn: Joe Clemis

Questions? Contact Environmental Client Services

Respectfully Submitted,

Michele M. Turner
Michele M. Turner

Director

Lancaster Laboratories Sample No. SW5364998 Group No. 1091896

SB1-6 Grab Soil Sample Ciabattoni 050409

Collected: 05/12/2008 14:20 by JC Account Number: 01907

 Submitted: 05/17/2008 10:00
 A2L Technologies

 Reported: 05/29/2008 at 16:21
 10220 Harney Road

 Discard: 06/13/2008
 Thonotosassa FL 33592

SB16-

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
02829	Trivalent Chromium soils	16065-83-1	35.6	1.8	mg/kg	1
06951	Chromium	7440-47-3	35.6	1.80	mg/kg	1
06955	Lead	7439-92-1	8.15	1.80	mg/kg	1
00111	Moisture	n.a.	18.3	0.50	*	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.	in weight of t moisture resul	he sample after o t reported above	ven drying at is on an		
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.8	1.8	mg/kg	1
04514	NY STARS soils by SW846 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 6.	6.	ug/kg	0.99
05460	Benzene	71-43-2	< 6.	6.	ug/kg	0.99
05466	Toluene	108-89-3	< 6.	6.	ug/kg	0.99
05474	Ethylbenzene	100-41-4	< 6.	6.	ug/kg	0.99
05475	m+p-Xylene	1330-20-7	< 6.	6.	ug/kg	0.99
05476	o-Xylene	95-47-6	< 6.	б.	ug/kg	0.99
05479	Isopropylbenzene	98-82-B	< 6.	6.	ug/kg	0.99
05483	n-Propylbenzene	103-65-1	< 6.	6.	ug/kg	0.99
05485	1,3,5-Trimethylbenzene	108-67-8	< 6.	6.	ug/kg	0.99
05487	tert-Butylbenzene	98-06-6	< 6.	6.	ug/kg	0.99
05488	1,2,4-Trimethylbenzene	95-63-6	< 6.	6.	ug/kg	0.99
05489	sec-Butylbenzene	135-98-B	< 6.	6.	ug/kg	0.99
05490	p-Isopropyltoluene	99-87-6	< 6.	6.	ug/kg	0.99
05493	n-Butylbenzene	104-51-8	< 6.	6.	ug/kg	0.99
05498	Naphthalene	91-20-3	< 6.	6.	ug/kg	0.99

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 05:54	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 05:54	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1

Lancaster Laboratories Inc 2425 New Holland Pike FO 80x 12425 Lancaster, PA 17605-2425 712-656-2300 Fax 717 656 2681

Page 2 of 2

Lancaster Laboratories Sample No. SW5364998 Group No. 1091896

SB1-6 Grab Soil Sample Ciabattoni 050409

Collected: 05/12/2008 14:20 by JC Account Number: 01907

Submitted: 05/17/2008 10:00 A2L Technologies Reported: 05/29/2008 at 16:21 10220 Harney Road Thonotosassa FL 33592

Discard: 06/13/2008

SB16-						
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
04514	NY STARS soils by SW846	SW-846 8260B	1	05/24/2008 19:13	Chelsea B Eastep	0.99
00374	GC/MS - Bulk Sample Frep	SW-846 5030A	1	05/17/2008 18:01	Lois E Hiltz	n.a.
00374	GC/MS - Bulk Sample Frep	SW-846 5030A	2	05/17/2008 18:03	Lois E Hiltz	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	ı	05/17/2008 18:04	Lois E Hiltz	n.a.
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Lancaster Laboratories Sample No. TL5364999

Group No. 1091896

SB1-6 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION

Ciabattoni 050409

Collected: 05/12/2008 14:20 by JC Ac

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

Account Number: 01907

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received	As Received Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.517	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07056	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Pederal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Name	Method	Triel	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	05/25/2008 08:58	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	05/27/2008 08:21	Joanne M Gates	1
07036	Selenium	SW-846 6010B	1	05/28/2008 22:56	John P Hook	1
07046	Barium	SW-946 6010B	1	05/27/2008 08:21	Joanne M Gates	1
07049	Cadmium	SW-846 6010B	1	05/27/2008 08:21	Joanne M Gates	1
07051	Chromium	SW-846 6010B	1	05/27/2008 08:21	Joanne M Gates	1
07055	Lead	SW-846 6010B	1	05/28/2008 22:56	John P Hook	1
07066	Silver	SW-845 6010B	ı	05/27/2008 08:21	Joanne M Gates	1
00947	TCLP Non-volatile Extraction	SW-846 1311	1	05/21/2008 11:24	Jeremy L Weaver	n.a.
05705	WW/TL SW 846 ICP Digest (tot)	SW-846 301DA	1	05/22/2008 20:00	Jamea L Mertz	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/23/2008 11:50	Damary Valentin	1

Lancaster Laboratories Sample No. SW5365000 Group No. 1091896

SB2-18 Grab Soil Sample Ciabattoni 050409

Collected: 05/13/2008 13:59 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB218

				Dry		
CAT			Dxy	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Uni te	Pactor
02829	Trivalent Chromium soils	16065-83-1	31.5	1.8	mg/kg	1
06951	Chromium	7440-47-3	32.1	1.77	mg/kg	1
06955	Lead	7439-92-1	6.94	1.77	mg/kg	1
00111	Moisture	n.a.	16.2	0.50	*	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The : as-received basis.	in weight of t moisture resul	he sample after o t reported above	ven drying at ia on an		
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.8	1.8	mg/kg	1
04514	NY STARS soils by SW846 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 6.	6.	ug/kg	0.97
05460	Benzene	71-43-2	< 6.	6.	ug/kg	0.97
05466	Toluene	108-88-3	< 6.	6.	ug/kg	0.97
05474	Ethylbenzene	100-41-4	< 6,	6.	ug/kg	0.97
05475	m+p-Xylene	1330-20-7	< 6.	6.	ug/kg	0.97
05476	o-Xylene	95-47-6	< 6.	6.	ug/kg	0.97
05479	Isopropylbenzene	98-82-8	< 6.	Б.	ug/kg	0.97
05483	n-Propylbenzene	103-65-1	< 6.	6.	ug/kg	0.97
05485	1,3,5-Trimethylbenzene	108-67-8	< 6.	6.	ug/kg	0.97
054B7	tert-Butylbenzene	98-06-6	< 6.	6.	ug/kg	0.97
05488	1,2,4-Trimethylbenzene	95-63-6	< 6.	6.	ug/kg	0.97
05489	mec-Butylbenzene	135-98-8	< б.	6.	ug/kg	0.97
05490	p-Isopropyltoluene	99-87-6	< 6.	6.	ug/kg	0.97
05493	n-Butylbenzene	104-51-8	< 6.	6.	ug/kg	0.97
05498	Naphthalene	91-20-3	< б.	6,	ug/kg	0.97

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/200B 05:5B	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 05:56	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1

Page 2 of 2

Lancaster Laboratories Sample No. SW5365000 Group No. 1091896

SB2-18 Grab Soil Sample Ciabattoni 050409

Account Number: 01907 Collected: 05/13/2008 13:59 by JC

Submitted: 05/17/2008 10:00 A2L Technologies Reported: 05/29/2008 at 16:21 Discard: 06/13/2008 10220 Harney Road Thonotosassa FL 33592

SB218						
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
04514	NY STARS soils by SW846 8260B	SW-846 8260B	1	05/24/2008 19:36	Chelsea B Eastep	0.97
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:05	Lois E Hiltz	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	05/17/2008 18:06	Lois E Hiltz	n.a.
0570B	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:07	Lois E Hiltz	n.a.
07825	Hexavalent Cr (Extraction)	SW-846 3D60A	2	05/26/2008 06:00	Daniel S Smith	1

Lancaster Laboratories Sample No. TL5365001

Group No. 1091896

SB2-18 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION

Ciabattoni 050409

Collected: 05/13/2008 13:59 by JC Account Number: 01907

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Unite	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.304	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	0.0230	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

1 -	~~~	· ~ + /	~ ~~ 7	(' ' > > < < > 1	
1101	JUJE.	au	orv.		nicle

CAT					Analysis	1		Dilution
No.	Analysis Name	Method		Triel#	Date and 1	rime -	Analyst	Pactor
00259	Mercury	SW-845 7	7470A	1	05/25/2008	09:00	Damary Valentin	1
07035	Arsenic	SW-846 6	5010B	1	05/27/2008	08:25	Joanne M Gates	1
07036	Selenium	SW-846 6	5010B	1	05/28/2008	23:00	John P Hook	1
07046	Barium	SW-846 6	501.0B	1	05/27/2008	08:25	Joanne M Gates	1
07049	Cadmium	SW-846 6	5010B	ı	05/27/2008	08:25	Joanne M Gates	1
07051	Chromium	SW-846 6	5010B	1	05/27/2008	08:25	Joanne M Gates	1
07055	Lead	SW-846 6	6010B	1	05/28/2008	23:00	John P Hook	1
07066	Silver	SW-846 6	5010B	1	05/27/200B	08:25	Joanne M Gates	1
00947	TCLP Non-volatile	SW-846 1	1311	1	05/21/200B	11:24	Jeremy L Weaver	n.a.
05705	Extraction WW/TL SW 846 ICF Digest (tot)	SW-846 3	3010A	1	05/22/2008	20:00	James L Mertz	1
05713	WW SW846 Hg Digest	SW-846 7	7470A	1	05/23/2008	11:50	Damary Valentin	1

Lancaster Laboratories Sample No. SW5365002 Group No. 1091896

SB3-24 Grab Soil Sample Ciabattoni 050409

Collected: 05/13/2008 20:20 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB324

				Dry							
CAT			Dry	Limit of		Dilution					
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor					
02829	Trivalent Chromium soils	16065-83-1	21.0	1.7	mg/kg	1					
06951	Chromium	7440-47-3	21.3	1.70	mg/kg	1					
06955	Lead	7439-92-1	5.62	1.70	mg/kg	1					
00111	Moisture	n.a.	12.4	0.50	*	1					
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.										
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.7	1.7	mg/kg	1					
04514	NY STARS soils by SW846 82608										
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 5.	5.	ug/kg	0.95					
05460	Benzene	71-43-2	< 5.	5.	ug/kg	0.95					
05466	Toluene	108-88-3	< 5.	5.	ug/kg	0.95					
05474	Ethylbenzene	100-41-4	< 5.	5.	ug/kg	0.95					
05475	m+p-Xylene	2330-20-7	< 5.	5.	ug/kg	0.95					
05476	o-Xylene	95-47-6	< 5.	5.	ug/kg	0.95					
05479	Isopropylbenzene	98-82-8	< 5.	5.	ug/kg	0.95					
05483	n-Propylbenzene	103-65-1	< 5.	5.	ug/kg	0.95					
05485	1,3,5-Trimethylbenzene	108-67-8	< S.	5.	ug/kg	0.95					
05487	tert-Butylbenzene	98-06-6	< 5.	5.	ug/kg	0.95					
05488	1,2,4-Trimethylbenzene	95-63-6	< 5.	5.	ug/kg	0.95					
05489	sec-Butylbenzene	135-98-8	< 5.	5.	ug/kg	0.95					
05490	p-Isopropyltoluene	99-87-6	< 5.	5.	ug/kg	0.95					
05493	n-Butylbenzene	104-51-8	< 5.	5.	ug/kg	0.95					
05498	Naphthalene	91-20-3	< 5.	5.	ug/kg	0.95					

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:03	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:03	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1

Page 2 of 2

Lancaster Laboratories Sample No. SW5365002 Group No. 1091896

SB3-24 Grab Soil Sample Ciabattoni 050409

by JC Account Number: 01907 Collected: 05/13/2008 20:20

A2L Technologies Submitted: 05/17/2008 10:00 10220 Harney Road Thonotosassa FL 33592 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

SB32	4 Hexavalent Chromium	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
00423	(SOLIDS)	DII .010 11246	_	03,20,2000 20.00		_
04514	NY STARS soils by SW846 8260B	SW-846 8260B	1	05/24/2008 19:58	Chelsea B Eastep	0.95
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:09	Lois E Hiltz	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	05/17/2008 18:10	Lois E Hiltz	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:11	Lois E Hiltz	n.a.
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. TL5365003 Group No. 1091896

SB3-24 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION Ciabattoni 050409

Collected: 05/13/2008 20:20 by JC

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

Account Number: 01907

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received	As Received Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.613	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT					Analysis	l		Dilution
No.	Analysis Name	Method		Trialë	Date and T	ime	Analyst	Factor
0025	9 Mercury	SW-846 7	7470A	1	05/25/200B	09:01	Damary Valentin	1
0703	5 Arsenic	SW-846 6	5010B	1	05/27/2008	08:29	Joanne M Gates	1
0703	6 Selenium	SW-846 6	5010B	1	05/28/2008	23:03	John P Hook	1
0704	6 Barium	SW-846 6	5010B	1	05/27/2008	08:29	Joanne M Gates	1
0704	9 Cadmium	SW-846 6	5010B	1	05/27/2008	OB:29	Joanne M Gates	1
0705	1 Chromium	SW-846 6	5010B	1	05/27/2008	08:29	Joanne M Gates	1
0705	5 Lead	SW-846 6	5010B	1	05/28/2008	23:03	John P Hook	1
0706	6 Silver	SW-846 6	5010B	1	05/27/2008	08:29	Joanne M Gates	1
0094		SW-846 1	L311	1	05/21/2008	11:24	Jeremy L Weaver	n.a.
	Extraction							
0570	5 WW/TL SW 846 ICP Digest (tot)	SW-846 3	3010A	1	05/22/2008	20:00	James L Mertz	1
0571	3 WW SW846 Hg Digest	SW-846 7	7470A	1	05/23/2008	11:50	Damary Valentin	1

Lancaster Laboratories Sample No. SW5365004 Group No. 1091896

SB4-18 Grab Soil Sample Ciabattoni 050409

Collected: 05/14/2008 11:13 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB418

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
02829	Trivalent Chromium soils	16065-83-1	23.5	1.8	mg/kg	1
06951	Chromium	7440-47-3	23.6	1.77	mg/kg	1
06955	Lead	7439-92-1	21.6	1.77	mg/kg	1
00111	Moisture	n.a.	16.9	0.50	ł	1
	"Moisture" represents the loss : 103 - 105 degrees Celsius. The : as-received basis.					
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.8	1.8	mg/kg	1
04514	NY STARS soils by SW846 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 290.	290.	ug/kg	48.83
05460	Benzene	71-43-2	< 290.	290.	ug/kg	48.83
05466	Toluene	108-88-3	< 290.	290.	ug/kg	48.83
05474	Ethylbenzene	100-41-4	4,400.	290.	ug/kg	48.83
05475	m+p-Xylane	1330-20-7	13,000.	290.	ug/kg	48.83
05476	o-Xylene	95-47-6	< 290.	290.	ug/kg	48.83
05479	Isopropylbenzene	98-82-8	750.	290.	ug/kg	48.83
05483	n-Propylbenzene	103-65-1	2,400.	290.	ug/kg	48.83
05485	1,3,5-Trimethylbenzene	108-67-B	4,500.	290.	ug/kg	48.83
05487	tert-Butylbenzene	98-06-6	< 290.	290.	ug/kg	48.83
05488	1,2,4-Trimethylbenzene	95-63-6	14,000.	290.	ug/kg	48.83
05489	sec-Butylbenzene	135-98-8	< 290.	290.	ug/kg	48.83
05490	p-Isopropyltoluene	99-87-6	< 290.	290.	ug/kg	48.83
05493	n-Butylbenzene	104-51-8	940.	290.	ug/kg	48.83
05498	Naphthalene	91-20-3	1,500.	290.	ug/kg	48.83

All QC is compliant unless otherwise noted. Flease refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Dilution		
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:07	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:07	Choon Y Tian	1
00111	Moisture	SM20 2540 G	2	05/21/2008 15:17	Scott W Freisher	1

Lancaster Laboratories, Inc 2425 New Holland Fike PO Box 12425 Lancaster, PA 17605-2425 717-655-2300 Faii 717-656-2681

Page 2 of 2

Lancaster Laboratories Sample No. SW5365004 Group No. 1091896

SB4-18 Grab Soil Sample Ciabattoni 050409

Collected: 05/14/2008 11:13 by JC Account Number: 01907

Submitted: 05/17/2008 10:00 A2L Technologies Reported: 05/29/2008 at 16:21 10220 Harney Road Thonotosassa FL 33592

Discard: 06/13/2008

SB418						
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
04514	NY STARS soils by SW846 8260B	SW-846 8260B	1	05/23/2008 17:24	Kerri E Koch	48.83
00374	GC/MS - Bulk Sample Prep	5W-846 5030A	1	05/17/2008 18:12	Lois E Hiltz	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	05/17/2008 18:14	Lois E Hiltz	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	ı	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:15	Lois E Hiltz	n.a.
D7825	Hexavalent Cr (Extraction)	SW~846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Lancaster Laboratories Sample No. TL5365005 Group No. 1091896

SB4-18 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION

Ciabattoni 050409

Collected: 05/14/2008 11:13 Account Number: 01907 by JC

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	ı
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.580	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT			_	Analysis		Dilution
No.	Analysis Nama	Method	Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	05/25/2008 09:02	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	05/27/2008 08:33	Joanne M Gates	1
07036	Selenium	SW-846 6010B	1	05/28/2008 23:07	John P Hook	1
07046	Barium	SW-846 6010B	ı	05/27/200B 0B:33	Joanne M Gates	1
07049	Cadmium	SW-846 6010B	1	05/27/2008 08:33	Joanne M Gates	1
07051	Chromium	SW-846 6010B	1	05/27/2008 08:33	Joanne M Gates	1
07055	Lead	SW-846 6010B	1	05/28/2008 23:07	John P Hook	1
07066	Silver	SW-846 6010B	1	05/27/2008 08:33	Joanne M Gates	1
00947	TCLP Non-volatile	SW-846 1311	1	05/21/2008 11:24	Jeremy L Weaver	n.a.
	Extraction				-	
05705	WW/TL SW 846 ICP Digest	SW-846 3010A	1	05/22/2008 20:00	James L Mertz	1
	(tot)					
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/23/2008 11:50	Damary Valentin	1

Lancaster Laboratories Sample No. SW5365006 Group No. 1091896

SB5-8 Grab Soil Sample Ciabattoni 050409

Collected: 05/14/2008 14:35 by JC Account Number: 01907

 Submitted: 05/17/2008 10:00
 A2L Technologies

 Reported: 05/29/2008 at 16:21
 10220 Harney Road

 Discard: 06/13/2008
 Thonotosassa FL 33592

SB58-

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
02829	Trivalent Chromium soils	16065-83-1	18.6	1.7	mg/kg	7
06951	Chromium	7440-47-3	18.9	1.62	mg/kg	1
06955	Lead	7439-92-1	18.7	1.62	mg/kg	1
00111	Moisture	n.a.	10.1	0.50	*	1
	"Moisture" represents the loss: 103 - 105 degrees Celsius. The sas-received basis.	in weight of the moisture result	he sample after of reported above	ven drying at is on an		
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.7	1.7	mg/kg	1
04514	NY STARS soils by SW846 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< б.	6.	ug/kg	1
05460	Benzene	71-43-2	< 6.	6.	ug/kg	1
05466	Toluene	108-88-3	< 6.	6.	ug/kg	1
05474	Ethylbenzene	100-41-4	< 6.	6.	ug/kg	1
05475	m+p-Xylene	1330-20-7	< 6.	б.	ug/kg	1
05476	o-Xylene	95-47-6	< 6.	6.	ug/kg	1
05479	Isopropylbenzene	98-82-8	< 6.	6.	ug/kg	1
05483	n-Propylbenzene	103-65-1	< 6.	6.	ug/kg	1
05485	1,3,5-Trimethylbenzene	108-67-8	< 6.	6.	ug/kg	1
05487	tert-Butylbenzene	98-06-6	< 6.	6.	ug/kg	1
05488	1,2,4-Trimethylbenzene	95-63-6	< 6,	6.	ug/kg	1
05489	sec-Butylbenzene	135-98-B	< 6.	6.	ug/kg	1
05490	p-Isopropyltoluene	99-87-6	< 6.	6.	ug/kg	1
05493	n-Butylbenzene	104-51-B	< 6.	6.	ug/kg	1
05498	Naphthalene	91-20-3	< б.	6.	ug/kg	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No,	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
02829	Trivalent Chromium soils	SW-846 6010B modifie	1 1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:12	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:12	Choon Y Tian	1
00111	Moisture	SM2D 2540 G	1	05/20/2008 16:36	Scott W Freisher	1

Lançaster Laboratories Inc 2425 New Holland Fixe PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 | Fax | 717-656-2661

Page 2 of 2

Group No. 1091896 Lancaster Laboratories Sample No. SW5365006

SB5-8 Grab Soil Sample Ciabattoni 050409

Account Number: 01907 Collected: 05/14/2008 14:35 by JC

Submitted: 05/17/2008 10:00 A2L Technologies 10220 Harney Road Thonotosassa FL 33592 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

SB58-						
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
04514	NY STARS soils by SW846 8260B	SW-846 8260B	1	05/24/2008 20:21	Chelsea B Eastep	1
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:17	Lois E Hiltz	n.a.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	05/17/2008 18:18	Lois E Hiltz	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:19	Lois E Hiltz	n.a.
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. TL5365007 Group No. 1091896

SB5-8 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION

Ciabattoni 050409

Collected: 05/14/2008 14:35 by JC Account Number: 01907

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

				As Received		
CAT			As Received	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
00259	Hercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.317	0.0050	mg/l	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				Analysis		Dilution
No.	Analysis Name	Mathod	Trial#	Date and Time	Analyst	Factor
00259	Mercury	SW-846 7470A	1	05/25/2006 09:04	Damary Valentin	1
07035	Arsenic	SW-846 6010B	1	05/27/2008 08:37	Joanne M Gates	1
07036	Selenium	SW-846 6010B	1	05/28/2008 23:11	John F Hook	1
07046	Barium	SW-846 6010B	1	05/27/2008 08:37	Joanne M Gates	1
07049	Cadmium	SW-846 6010B	1	05/27/2008 08:37	Joanne M Gates	1
07051	Chromium	SW-846 6010B	1	05/27/2008 08:37	Joanne M Gates	1
07055	Lead	SW-846 6010B	1	05/28/2008 23:11	John P Hook	1
07066	Silver	SW-846 6010B	1	05/27/2008 08:37	Joanne M Gates	1
00947	TCLP Non-volatile	SW-846 1311	1	05/21/2008 11:24	Jeremy L Weaver	n.a.
	Extraction					
05705	WW/TL SW 846 ICP Digest	SW-846 3010A	1	05/22/2008 20:00	James L Mertz	1
	(tot)		_			_
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/23/2008 11:50	Damary Valentin	1

Lancaster Laboratories Sample No. SW5365008 Group No. 1091896

SB6-18 Grab Soil Sample Ciabattoni 050409

Collected: 05/15/2008 15:21 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB618

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Nama	CAS Number	Result	Quantitation	Dnits	Factor
02829	Trivalent Chromium soils	16065-83-1	15.2	1.6	mg/kg	1
06951	Chromium	7440-47-3	15.4	1.65	mg/kg	1
06955	Lead	7439-92-1	6.74	1.65	mg/kg	1
00111	Moisture	n.a.	9.0	0.50	*	1
	"Moisture" represents the loss in 103 - 105 degrees Celsius. The mas-received basis.					
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.6	1.6	mg/kg	1
04514	NY STARS soils by SW846 8260B					
02016	Methyl Tertiary Butyl Ether	1634-04-4	< 260.	260.	ug/kg	47.17
05460	Benzene	71-43-2	< 260.	260.	ug/kg	47.17
05466	Toluene	108-88-3	< 260.	260.	ug/kg	47.17
05474	Ethylbenzene	100-41-4	1,100.	260.	ug/kg	47.17
05475	m+p-Xylene	1330-20-7	3,200.	260.	ug/kg	47.17
05476	o-Xylene	95-47-6	510.	260.	ug/kg	47.17
05479	Isopropylbenzene	98-82-8	310.	260.	ug/kg	47.17
05483	n-Propylbenzene	103-65-1	850.	260.	ug/kg	47.17
05485	1,3,5-Trimethylbenzene	108-67-B	1,400.	260.	ug/kg	47.17
05487	tert-Butylbenzene	98-06-6	< 260.	260.	ug/kg	47.17
05488	1,2,4-Trimethylbenzene	95-63-6	4,600.	260.	ug/kg	47.17
05489	sec-Butylbenzene	135-98-8	< 260.	260.	ug/kg	47.17
05490	p-Isopropyltoluene	99-87-6	< 260.	260.	ug/kg	47.17
05493	n-Butylbenzene	104-51-B	< 260.	260.	ug/kg	47.17
05498	Naphthalene	91-20-3	380.	260.	ug/kg	47.17

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:16	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:16	Choon Y Tian	1
00111	Moisture	SM20 2540 G	I	05/20/2008 16:38	Scott W Freisher	1

Lancaster Laboratories Inc 2425 New Holland File PO Box 12425 Lancaster, PA 17605-2425 717-656-2300 Fax 717-656-2081

Page 2 of 2

Group No. 1091896 Lancaster Laboratories Sample No. SW5365008

SB6-18 Grab Soil Sample Ciabattoni 050409

Account Number: 01907 Collected:05/15/2008 15:21 by JC

A2L Technologies Submitted: 05/17/2008 10:00 10220 Harney Road Thonotosassa FL 33592 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

SB618						
00425	Hexavalent Chromium	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1.
04514	(SOLIDS) NY STARS soils by SW846 8260B	SW-846 8260B	1	05/28/2008 18:03	Kerri E Koch	47.17
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:21	Lois E Hiltz	п.а.
00374	GC/MS - Bulk Sample Prep	SW-846 5030A	2	05/17/2008 18:22	Lois E Hiltz	n.a.
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
06646	GC/MS HL Bulk Sample Prep	SW-846 5030A	1	05/17/2008 18:22	Lois E Hiltz	n.a.
07B25	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Lancaster Laboratories Sample No. TL5365009 G

Group No. 1091896

SB6-18 Grab Soil Sample TCLP NON-VOLATILE EXTRACTION

Ciabattoni 050409

Collected: 05/15/2008 15:21 by JC

Submitted: 05/17/2008 10:00 Reported: 05/29/2008 at 16:21

Discard: 06/13/2008

Account Number: 01907

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received	As Received Limit of		Dilution
No.	Analysis Name	CAE Number	Result	Quantitation	Unite	Pactor
00259	Mercury	7439-97-6	< 0.00020	0.00020	mg/l	1
07035	Arsenic	7440-38-2	< 0.0200	0.0200	mg/l	1
07036	Selenium	7782-49-2	< 0.0200	0.0200	mg/l	1
07046	Barium	7440-39-3	0.529	0.0050	mg/1	1
07049	Cadmium	7440-43-9	< 0.0050	0.0050	mg/l	1
07051	Chromium	7440-47-3	< 0.0150	0.0150	mg/l	1
07055	Lead	7439-92-1	< 0.0150	0.0150	mg/l	1
07066	Silver	7440-22-4	< 0.0050	0.0050	mg/l	1

If the analysis is for determination of Hazardous Waste Characteristics, see Table 1 in EPA Code of Federal Regulations 40 CFR 261.24.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT				ynalysis		Dilution
No.	Analysis Nama	Method	Trial#	Date and Time	Analyst	Pactor
00259	Mercury	SW-846 7470A	1	05/25/2008 09:05	Damary Valentin	1
07035	Arsenic	\$W-646 6010B	1	05/27/2008 08:40	Joanne M Gates	1
07036	Selenium	SW-846 6010B	1	05/28/2008 23:14	John F Hook	1
07046	Barium	SW-846 6010B	1	05/27/2008 08:40	Joanne M Gates	1
07049	Cadmium	SW-846 6010B	1	05/27/2008 08:40	Joanne M Gates	1
07051	Chromium	SW-846 6010B	1	05/27/2006 08:40	Joanne M Gates	1
07055	Lead	SW-846 6010B	1	05/28/2008 23:14	John P Hook	1
07066	Silver	SW-846 60108	1	05/27/2008 08:40	Joanne M Gates	1
00947	TCLP Non-volatile	SW-846 1311	1	05/21/2008 11:24	Jeremy L Heaver	n.a.
05705	Extraction WW/TL SW 846 ICP Digest (tot)	SW-846 3010A	1	05/22/2000 20:00	James L Mertz	1
05713	WW SW846 Hg Digest	SW-846 7470A	1	05/23/2008 11:50	Damary Valentin	1

Page 1 of 1

Lancaster Laboratories Sample No. SW5365010 Group No. 1091896

SB7 Grab Soil Sample Ciabattoni 050409

Collected: 05/15/2008 14:32 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

-SB7-

				Dry				
CAT			Dry	Limit of		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Pactor		
02829	Trivalent Chromium soils	16065-83-1	14.3	1.7	mg/kg	1		
06951	Chromium	7440-47-3	14.3	1.66	mg/kg	1		
06955	Lead	7439-92-1	6.73	1.66	mg/kg	1		
00111	Moisture	n.a.	12.1	0.50	*	1		
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.							
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.7	1.7	mg/kg	1		

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		~		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:20	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:20	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. SW5365011 Group No. 1091896

SB8-1 Grab Soil Sample Ciabattoni 050409

Collected: 05/15/2008 14:47 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB81-

				Dry				
CAT			DIA	Limit of		Dilution		
No.	Analysis Name	CAS Number	Result	Quantitation	Unite	Pactor		
02829	Trivalent Chromium soils	16065-83-1	14.7	1.8	mg/kg	1		
06951	Chromium	7440-47-3	14.9	1.78	mg/kg	1		
06955	Lead	7439-92-1	8.61	1.78	mg/kg	1		
00111	Moisture	n.a.	18.4	0.50	*	1		
	"Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an							
00425	as-received basis. Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.8	1.8	mg/kg	1		

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		_		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:33	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2009 06:33	Choon Y Tian	1
00111	Moisture	5M20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovita	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. SW5365012 Group No. 1091896

SB9-1 Grab Soil Sample Ciabattoni 050409

Collected: 05/15/2008 14:55 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB91-

				DEY			
CAT			Dry	Limit of		Dilution	
No.	Analysis Name	CAS Number	Result	Quantitation	Unite	Pactor	
0282	9 Trivalent Chromium soils	16065-83-1	14.0	1.7	mg/kg	1	
0695	1 Chromium	7440-47-3	14.1	1.62	mg/kg	1	
0695	5 Lead	7439-92-1	9.43	1.62	mg/kg	1	
0011	l Moisture	n.a.	10.1	0.50	*	1	
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.						
0042		18540-29-9	< 1.7	1.7	mg/kg	1	

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/200B 06:38	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:38	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
05708	SW SW846 ICP Digest	SW-B46 3050B	1	05/20/2008 19:30	Annamaria Stipkovita	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. SW5365013 Group No. 1091896

SB10-1 Grab Soil Sample Ciabattoni 050409

Collected: 05/16/2008 08:45 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB101

			Dry		
		Dry	Limit of		Dilution
Analysis Name	CAS Number	Result	Quantitation	Units	Factor
Trivalent Chromium soils	16065-83-1	21.2	1.8	mg/kg	1
Chromium	7440-47-3	21.4	1.73	mg/kg	1
Lead	7439-92-1	244.	1.73	mg/kg	1
Moisture	n.a.	15.2	0.50	*	1
103 - 105 degrees Celsius. The	in weight of to moisture resul	he sample aft t reported a	ter oven drying at pove is on an		
as-received basis. Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.8	1.8	mg/kg	1
	Trivalent Chromium soils Chromium Lead Moisture "Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.	Trivalent Chromium soils 16065-83-1 Chromium 7440-47-3 Lead 7439-92-1 Moisture n.s. "Moisture" represents the loss in weight of t 103 - 105 degrees Celsius. The moisture resul as-received basis.	Analysis Name CAS Number Result Trivalent Chromium soils Chromium 7440-47-3 Lead 7439-92-1 Analysis Name 7440-47-3 21.4 Lead Moisture 15.2 "Moisture" represents the loss in weight of the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd and services are certainly assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd assured to the sample afferd t	Analysis Name CAS Number Result Quantitation Trivalent Chromium soils 16065-83-1 21.2 1.8 Chromium 7440-47-3 21.4 1.73 Lead 7439-92-1 244. 1.73 Moisture n.a. 15.2 0.50 "Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.	Analysis Name CAS Number Result Quantitation Units Trivalent Chromium soils 16065-83-1 21.2 1.8 mg/kg Chromium 7440-47-3 21.4 1.73 mg/kg Lead 7439-92-1 244. 1.73 mg/kg Moisture n.a. 15.2 0.50 mg/kg "Moisture" represents the loss in weight of the sample after oven drying at 103 - 105 degrees Celsius. The moisture result reported above is on an as-received basis.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Laboratory Chronicle

CAT				Analysis		Dilution
No.	Analysis Name	Kethod	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	l	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:42	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:42	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/2008 10:35	Daniel S Smith	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Page 1 of 1

Lancaster Laboratories Sample No. SW5365014 Group No. 1091896

SB11-1 Grab Soil Sample Ciabattoni 050409

Collected: 05/16/2008 08:50 by JC Account Number: 01907

 Submitted:
 05/17/2008 10:00
 A2L Technologies

 Reported:
 05/29/2008 at 16:21
 10220 Harney Road

 Discard:
 06/13/2008
 Thonotosassa FL 33592

SB111

				Dry		
CAT			Dry	Limit of		Dilution
No.	Analysis Name	CAS Number	Result	Quantitation	Units	Factor
02829	Trivalent Chromium soils	16065-83-1	16.4	1.7	mg/kg	1
06951	Chromium	7440-47-3	16.7	1.66	mg/kg	1
06955	Lead	7439-92-1	18.7	1.66	mg/kg	1
00111	Moisture	n.a.	11.6	0.50	*	1
	"Moisture" represents the loss 103 - 105 degrees Celsius. The as-received basis.	in weight of t moisture resul	he sample aft t reported ab	er oven drying at move is on an		
00425	Hexavalent Chromium (SOLIDS)	18540-29-9	< 1.7	1.7	mg/kg	1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

CAT		-		Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
02829	Trivalent Chromium soils	SW-846 6010B modified	1	05/28/2008 11:45	Jennifer L Moyer	1
06951	Chromium	SW-846 6010B	1	05/21/2008 06:47	Choon Y Tian	1
06955	Lead	SW-846 6010B	1	05/21/2008 06:47	Choon Y Tian	1
00111	Moisture	SM20 2540 G	1	05/20/2008 16:38	Scott W Freisher	1
00425	Hexavalent Chromium (SOLIDS)	SW-846 7196A	2	05/26/200B 10:35	Daniel S Smith	1
05708	SN SW846 ICP Digest	SW-846 3050B	1	05/20/2008 19:30	Annamaria Stipkovits	1
07825	Hexavalent Cr (Extraction)	SW-846 3060A	2	05/26/2008 06:00	Daniel S Smith	1

Quality Control Summary

Client Name: A2L Technologies Reported: 05/29/08 at 04:21 PM Group Number: 1091896

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank LOO	Report <u>Units</u>	LCS	LCSD NREC	LCS/LCSD <u>Limita</u>	RPD	RPD Max
Batch number: 081415708002	Sample num	ber(s):	5364998,53	65000,53	65002,53650	04,5365006,5	3365008,5	365010-
Chromium Lead	< 1.50 < 1.50	1.50 1.50	mg/kg mg/kg	120 104		79-121 90-110		
Batch number: 08141820002B Moisture	Sample num	mber(s):	5364998,53	65000,53 100	65002,53650	99-101	365010-5	365014
Batch number: 08142820002A Moisture	Sample num	nber(s):	5365004	100		99-101		
Batch number: 081435705003 Arsenic Selenium Barium Cadmium Chromium Lead Silver Batch number: 081435713002 Mercury Batch number: 08147042501A	< 0.0200 < 0.0200 < 0.0250 < 0.0050 < 0.0150 < 0.0150 < 0.0050 Sample num < 0.00020	0.0200 0.0200 0.0050 0.0050 0.0150 0.0250 0.0050 nber(s):	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	65001,53 102 113 92 90 94 109 106	365003,5365	005,5365007,5 90-119 80-120 90-110 90-112 90-113 90-113 90-118 005,5365007,5 80-120	5365009	365010-
Hexavalent Chromium (SOLIDS)	5365014 < 1.5	1.5	mg/kg	90	,,,,,,,	80-120		303020
Batch number: B081451AA Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene m+p-Xylene o-Xylene Isopropylbenzene n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene sec-Butylbenzene p-Isopropyltoluene n-Butylbenzene Naphthalene	Sample num < 5. < 5. < 5. < 5. < 5. < 5. < 5. < 5.	mber(s): 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	5364998,53 ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg	965000,53 96 95 95 92 92 91 92 88 94 91 88 92 91 88	365002,5365 93 97 95 94 93 92 87 96 92 87 93 90 89	72-117 84-115 81-116 82-117 82-117 82-117 82-110 76-122 74-112 72-113 74-117 66-120 63-119 59-120 62-116	3 2 1 2 1 0 1 2 1 1 1 1 0 10	30 30 30 30 30 30 30 30 30 30 30 30 30
Batch number: Q081441AA	Sample nu	mber(s):	5365004					

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 4

Quality Control Summary

Client Name: A2L Technologies Group Number: 1091896

Reported: 05/29/08 at 04:21 PM

Laboratory Compliance Quality Control

Analysis Name Methyl Tertiary Butyl Ether Benzene Toluene Ethylbenzene m+p-Kylene o-Xylene Isopropylbenzene n-Propylbenzene 1,3,5-Trimethylbenzene tert-Butylbenzene 1,2,4-Trimethylbenzene	Blank Result < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250. < 250.	Blank LOQ 250. 250. 250. 250. 250. 250. 250. 250.	Report Unital Ug/kg LCS 103 100 93 92 92 92 85 88 82 874	LCSD %REC 100 97 91 90 91 84 86 79 87	LCS/LCSD Limits 72-117 84-115 81-116 82-115 82-117 82-117 62-110 76-122 74-112 72-113 74-117 66-120	RPD 2 2 2 2 2 1 1 1 2 4 4 2 1 1	RPD Max 30 30 30 30 30 30 30 30 30 30 30	
sec-Butylbenzene	< 250.	250.	ug/kg	74 78	77	63-119	î	30
p-Isopropyltoluene	< 250. < 250.	250. 250.	ug/kg ug/kg	70	70	59-120	ō	30
n-Butylbenzene Naphthalene	< 250.	250.	ug/kg	70	70	62-116	1	30
Maphicharene	· 250.		-5/5					
Batch number: Q081491AA	Sample n	umber(s):	5365008					
Methyl Tertiary Butyl Ether	< 250.	250.	ug/kg	106		72-117		
Benzene	< 250.	250.	ug/kg	106		84-115		
Toluene	< 250.	250.	ug/kg	94		B1-116		
Ethylbenzene	< 250.	250.	ug/kg	94		82-115		
m+p-Xylene	< 250.	250.	ug/kg	94		82-117		
o-Xylane	< 250.	250.	ug/kg	93		82-117		
Isopropylbenzene	< 250.	250.	ug/kg	91		82-110		
n-Propylbenzene	< 250.	250.	ug/kg	85		76-122		
1,3,5-Trimethylbenzene	< 250.	250.	ug/kg	8.6		74-112		
tert-Butylbenzene	< 250.	250.	ug/kg	79		72-113		
1,2,4-Trimethylbenzene	< 250.	250.	ug/kg	86		74-117		
sec-Butylbenzene	< 250.	250.	ug/kg	75		66-120		
p-Isopropyltoluene	< 250.	250.	ug/kg	77		63-119		
n-Butylbenzene	< 250.	250.	ug/kg	70		59-120		
Naphthalene	< 250.	250.	ug/kg	69		62-116		

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name		MSD TREC	MS/MSD Limita	RPD	RPD MAX	BKG Conc	DUP Corc	DUP RPD	Dup RPD
Batch number: 081415708002			: 5364998, 361417 BX			002,5365004	, 5365006 , 536	5008,536501	0 -
Chromium	108	107	75-125	0	20	17.9	18.3	2	20
Lead		66 (2)		19	20	153.	178.	15	20
Batch number: 08141620002B	Sample n	umber(s)	: 5364998	,536500	0,5365	002,5365006	,5365008,536	5010-536501	4 BKG:
Hoisture						20.8	21.7	5	15
Batch number: 08142820002A Moisture	Sample n	number (B)	: 5365004	BKG:	536500	16.9	19.5	14	15

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 3 of 4

Quality Control Summary

Group Number: 1091896 Client Name: A2L Technologies

Reported: 05/29/08 at 04:21 PM

Sample Matrix Quality Control
Unspiked (UNSPK) = the sample used in conjunction with the matrix spike
Background (BKG) = the sample used in conjunction with the duplicate

Analysis Name	MS NREC	msd Brec	MS/MSD Limite	RPD	RPD MAX	BRG Corc	DUP Conc	DUP RPD	Dup RPD Max
VIGTABLE MODIE				•					
Batch number: 081435705003	BKG: P3	164569						5009 UNSPK:	
Arsenic	111	108	75-125	3	20	< 0.0200	< 0.0200	0 (1)	20
Selenium	108	109	75-125	0	20	< 0.0200	< 0.0200	0 (1)	20
Barium	BB	85	76-118	2	20	0.838	0.814	3	20
Cadmium	91	8.8	83-116	2	20	< 0.0050	< 0.0050	2 (1)	20
Chromium	90	90	81-120	1	20	< 0.0150	< 0.0150	20 (1)	20
Lead	105	105	75-125	0	20	< 0.0150	< 0.0150	D (1)	20
Silver	104	102	75-125	2	20	< 0.0050	< 0.0050	0 (1)	20
Batch number: 081435713002	Sample BKG: P		: 5364999	, 536500	1,5365	003,5365005	,5365007,53	65009 UNSPK:	P364567
Mercury	117	117	80-120	D	20	< 0.00020	< 0.00020	0 (1)	20
Batch number: 08147042501A	Sample	number(s)	: 5364998;	,536500	0,5365	002,5365004	,5365006,53	65008,536501	0-
Newsyland Chambing (EOLIDE)	224201.	96	75-125	12*	11	< 1.5	< 1.5	200* (1)	20
Hexavalent Chromium (SOLIDS)									
Batch number: B081451AA	Sample	number(s)	: 5364998	,536500	0,5365	002,5365006	UNSPK: P36	4752	
Methyl Tertiary Butyl Ether	89		59-119						
Benzene	93		66-112						
Toluene	90		58-116						
Ethylbenzene	82		54-116						
m+p-Xylene	81		52-117						
o-Xylene	79		52-117						
Isopropylbenzene	77		54-113						
n-Propylbenzene	89		54-119						
1.3.5 Trimethylbenzene	84		52-117						
tert-Butylbenzene	86		51-116						
1,2,4-Trimethylbenzene	81		47-122						
sec-Butylbenzene	88		48-120						
p-Isopropyltoluene	82		51-118						
n-Butylbenzene	73		35-120						
Naphthalene	43		10-123						
D. C. L	Camala	number/s): 536500 0	IMEDY	תבאום. הבאום	nn4			
Batch number: Q081491AA		99	59-119	6	30	704			
Methyl Tertiary Butyl Ether	109 103	96	56-112	3	30				
Benzene		87	58-112	3	30				
Toluene	93	88	54-116	4	30				
Ethylbenzene	95			5	30				
m+p-Xylene	96	88	52-117	8	30				
o-Xylene	99	89	52-117	7	30				
Isopropyibenzene	98	87	54-113						
n-Propylbenzene	92	82	54-119	8 25	30 30				
1,3,5-Trimethylbenzene	114	85	52-117		-				
tert-Butylbenzene	90	90	51-116	B	30				
1,2,4-Trimethylbenzene	133*	87	47-122	30*	30				
sec-Burylbenzene	84	73	48-120	9	30				
p-lsopropyltoluene	88	76	51-118	11	30				
n-Butylbenzene	77	69	35-120	7	30				
Naphthalene	80	69	10-123	11	30				

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 4 of 4

Quality Control Summary

Client Name: A2L Technologies Reported: 05/29/08 at 04:21 PM Group Number: 1091896

Sample Matrix Quality Control

Unspiked (UNSPK) = the sample used in conjunction with the matrix spike

Background (BKG) = the sample used in conjunction with the duplicate

Dup RPD DUP DITE MSD MS/MSD RPD BKG MS REC **MREC** Limits MAX Conc Conc RPD Max Analysis Name

Surrogate Quality Control

Surrogate recoveries which are outside of the QC window are confirmed unless attributed to dilution or otherwise noted on the Analysis Report.

Analysis Name: NY STARS soils by SW846 B260B

Batch numb	per: B081451AA Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-dB	4-Bromofluorobenzene
5364998	90	86	90	82
5365000	90	86	89	82
5365002	89	83	90	87
5365006	87	84	93	78
Blank	92	91	90	85
LCS	92	8.9	92	86
LCSD	90	84	91	87
MS	90	85	95	82
Limits:	71-114	70-109	70-123	70-111

Analysis Name: NY STARS soils by SW846 8260B

Batch number: 0081441AA

Daten Henr	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5365004	86	85	91	81
Blank	103	100	93	86
LCS	90	9.4	81	94
LCSD	86	81	78	90
Limira	71~114	70-109	70-123	70-111

Analysis Name: NY STARS soils by SW846 8260B

Batth numb	Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
5365008 Blank LCS MS MSD	99 106 112 91	96 100 106 88	83 88 95 75 80	84 85 94 79 81
Limits:	71-114	70-109	70-123	70-111

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 1 of 3

Lancaster Laboratories Sample No. 5366075 AQ

Group No. 1092117

Summa Can #83 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Regult	LOQ	Unite	Result	LOQ	Units	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07201	Propene	115-07-1	310.	20.	ppb(v)	540.	34.	ug/m3	20
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb (v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-67-3	< 1.0	1.0	(v) dqq	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	3.6	2.0	ppb(v)	7.9	4.4	ug/m3	1
07208	Bromomethane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	pph(v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	61.	10.	ppb(v)	180.	30.	ug/m3	10
07214	Acrolein	107-02-8	< 2.0	2,0	ppb(v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	350.	40.	ppb(v)	830.	95.	ug/m3	20
07216	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.8	5.8	ug/m3	1
07219	Carbon Disulfide	75-15-0	23.	2.0	ppb(v)	71.	6.2	ug/m3	1
07220	Acetonitrile	75-05-8	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	19.	10.	ppb(v)	66.	35.	ug/m3	10
07227	1,1-Dichlorosthane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	8.6	2.0	ppb(v)	25.	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	16.	10.	ppb(v)	80.	49.	ug/m3	10
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb(v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
							-	-3,	-

Page 2 of 3

Lancaster Laboratories Sample No. 5366075 AQ

Group No. 1092117

Summa Can #83 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOO	Unite	Result	LOO	Units	DF
07238	Benzene	71-43-2	15.	1.0	ppb(v)	49.	3.2	ug/m3	1
07239	Isooctane	540-84-1	4.5	1.0	ppb(v)	21.	4.7	ug/m3	ı
07240	Heptane	142-82-5	15.	1.0	ppb(v)	63.	4.1	ug/m3	ī
07241	Trichloroethene	79-01-6	< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	î
07242	Ethyl Acrylate	140-88-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	ī
07243	1,2-Dichloropropane	78-87-5	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	ī
07244	Methyl Methacrylate	80-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb(v)	< 7.1	7.1	ug/m3	î
07246	1.4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	î
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	5.7	ug/m3	1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	i
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb(v)	< 8.2	8.2	ug/m3	1
07250	Toluene	108-88-3	45.	10.	ppb(v)	170.	38,	nd/wa	10
07251	Octane	111-65-9	12.	1.0	ppb(v)	58.	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb (v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	2.7	1.0	ppb(v)	18.	5.8	ug/m3	1
07256	2-Kexanone	591-78-6	2.8	2.0	ppb(v)	11.	6.2	ug/m3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 8.5	8.5	ug/m3	1
07258	1.2-Dibromoethane	106-93-4	< 1.0	1.0	ppb(v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-93-4	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07259	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0		< 6.9	6.9		1
07260	Ethylbenzene	100-41-4	12.	1.0	ppb (v)	52.		ug/m3	1
07261	m/p-Xylene	1330-20-7	42.	1.0	ppb(v)	180.	4.3	ug/m3	1
07262	o-Xylene	95-47-6	12.				4.3	ug/m3	_
	-			1.0	ppb(v)	54.	4.3	ug/m3	1
07264 07265	Styrene Bromoform	100-42-5 75-25-2	1.4	1.0	ppb(v)	5.9	4.3	ug/m3	1
07265	Cumene		< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	1
		98-82-8	1.1	1.0	ppb(v)	5.4	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb (v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb (v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-B	11.	1.0	pph(v)	55.	4.9	ug/m3	1
07271	1,3,5-Trimethylbenzene	108-67-8	2.7	1.0	ppb(v)	13.	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.8	4.8	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	8.2	1.0	ppb (v)	40.	4.9	ug/m3	1
07274	1,3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ng/w3	1
07275	1,4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1,2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07278	Hexachloroethane	67-72-1	5.8	1.0	ppb(v)	56.	9.7	ug/m3	1

Page 3 of 3

Lancaster Laboratories Sample No. 5366075 AQ

Group No. 1092117

Summa Can #83 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:48 by JC

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Account Number: 01907

CAT			As Received Final			λs Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Units	Result	LOQ	Units	DF
07279	1,2,4-Trichlorobenzene	120-82-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07280	Hexachlorobutadiene	87-68-3	< 2.0	2.0	ppb (v)	< 21.	21.	ug/m3	1
	Isopropanol was detected at an	estimated con-	centration	of 7 noby				-	

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ = Limit of Quantitation

CAT		_		Analysis		Dilution			
No.	Analysis Name	Method	Trial	Date and Time	Analyst	Pactor			
05298	TO 15 VOA Ext. List	EPA TO-15	1	05/29/2008 21:05	Jonathan K	1			
05298	TO 15 VOA Ext. List	EPA TO-15	7	05/30/2008 13:03	Nardelli Fanella S Zamcho	10			
			-	* *					
05298	TO 15 VOA Ext. List	EPA TO-15	1	05/30/2008 15:55	Fanella S Zamcho	20			

Page 1 of 3

Lancaster Laboratories Sample No. 5366076 AQ Group No. 1092117

Summa Can #333 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

AZL Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Unite	Result	LOQ	Units	DF
05298	TO 15 VOA Ext. List								
02076	text-Butyl Alcohol	75-65-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07201	Propene	115-07-1	< 1.0	1.0	ppb(v)	< 1.7	1.7	ug/m3	1
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-67-3	< 1.0	1.0	ppb(v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2,6	ug/m3	1
07207	1,3-Butadiene	106-99-0	< 2.0	2.0	pph(v)	< 4.4	4.4	ug/m3	1
07208	Bromomethane	74-83-9	< 1.0	1.0	pph(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb (v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07214	Acrolein	107-02-8	< 2.0	2.0	ppb (v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb (v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	7.7	2.0	ppb(v)	18.	4.8	ug/m3	1
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.8	5.8	ug/m3	1
07219	Carbon Disulfide	75-15-0	< 2.0	2.0	ppb(v)	< 6.2	6.2	11g/m3	1
07220	Acetonitrile	75-05-B	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ррb (v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb (ν)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	2.2	2.0	ppb (v)	6.6	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	pph(v)	< б.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1

Page 2 of 3

Lancaster Laboratories Sample No. 5366076 AQ

Group No. 1092117

Summa Can #333 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT			As Received Pinal			As Received			
No.	Analysis Name	CAS Number	Result	***	Units	Final			
07238	Benzene	71-43-2	< 1.0	LOQ 1.0		Result	LDQ 3.2	Unite	DF
07238	Isooctane		< 1.0		ppb(v)			ug/m3	1
07240		540-84-1	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07240	Heptane Trichloroethene	142-82-5 79-01-6			pph(v)	< 4.1	4.1	ug/m3	1
07241			< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
	Ethyl Acrylate	140-88-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07243	1,2-Dichloropropane	78-87-5	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07244	Methyl Methacrylate	BO-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb(v)	< 7.1	7.1	ug/m3	1
07246	1,4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	6.7	na/w3	1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb(v)	< 8.2	8.2	นg/๓3	1
07250	Toluene	108-88-3	< 1.0	1.0	ppb(v)	< 3.8	3.8	ug/m3	1
07251	Octane	111-65-9	< 1.0	1.0	ppb (v)	< 4.7	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb (v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	< 1.0	1.0	ppb(v)	< 6.8	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	< 2.0	2.0	ppb(v)	< 8.2	8.2	ug/m3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 8.5	8.5	ug/m3	1
07258	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb(v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07261	Ethylbenzene	100-41-4	< 1.D	1.0	ppb (v)	< 4.3	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07263	o-Xylene	95-47-6	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Bromoform	75~25-2	< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	1
07266	Cumene	98-82-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07271	1,3,5-Trimethylbenzene	108-67-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb (v)	< 4.8	4.6	ug/m3	ī
07273	1,2,4-Trimethylbenzene	95-63-6	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07274	1.3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07275	1.4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1.2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07278	Hexachloroethane	67-72-1	< 1.0	1.0	ppb(v)	< 9.7	9.7	ug/m3	1
V1270	riche bith of an extense	21-14-1	~ 4.0	4.4	Man (a)	× 2.1	2.1	ug/m3	T

Page 3 of 3

Lancaster Laboratories Sample No. 5366076 AQ

Group No. 1092117

Summa Can #333 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT

As
Received
Final
Result LOQ Units Result LOQ Units DF

No. Analysis Name CAS Number 07279 1,2,4-Trichlorobenzene 120-82-1 < 2.0 2.0 ppb(v) < 15. 15. ug/m3 1 07280 Hexachlorobutadiene 87-68-3 < 2.0 2.0 ppb(v) < 21. 21. ug/m3

Isopropanol was detected at an estimated concentration of 3 ppbv.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ = Limit of Quantitation

Laboratory Chronicle

CAT Analysis Dilution Nathod No. Analysis Name Trial# Date and Time Analyst **Factor** 05298 TO 15 VOA Ext. List EPA TO-15 05/29/2008 21:50 Jonathan K 1 Nardelli

Page 1 of 3

Lancaster Laboratories Sample No. 5366077 AQ

Group No. 1092117

Summa Can #343 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Unite	Result	LOQ	Units	DP
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	3.2	1.0	ppb(v)	9.6	3.0	ug/m3	1
07201	Propene	115-07-1	370.	20.	pph(v)	630.	34.	ug/m3	20
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-87-3	< 1.0	1.0	ppb(v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	4.5	2.0	ppb(v)	9.9	4.4	ug/m3	1
07208	Bromomerhane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb(v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	38.	20.	ppb(v)	110.	59.	ug/m3	20
07214	Acrolein	107-02-8	< 2.0	2.0	ppb(v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	430.	40.	ppb(v)	1,000.	95.	ug/m3	20
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.8	5.0	ug/m3	1
07219	Carbon Disulfide	75-15-0	3.7	2.0	ppb(v)	12.	6.2	ug/m3	1
07220	Acetonitrile	75-05-B	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylens Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	13.	1.0	ppb(v)	44.	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	14.	2.0	ppb(v)	42.	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	17.	1.0	ppb(v)	81.	4.9	ug/m3	ı
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb(v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1

Page 2 of 3

Lancaster Laboratories Sample No. 5366077 AQ

Group No. 1092117

Summa Can #343 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	POO	Unite	Result	rod	Units	DP
0723B	Benzene	71-43-2	7.0	1.0	ppb(v)	22.	3.2	ug/m3	1
07230	Isooctane	540-84-1	1.8	1.0	ppb(v)	8.2	4.7	ug/m3	1
07240	Heptane	142-82-5	14.	1.0	ppb(v)	59.	4.1	ug/m3	i
07241	Trichloroethene	79-01-6	< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
07241	Ethyl Acrylate	140-88-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	î
07242	1,2-Dichloropropane	78-87-5	< 1.0	1.0	ppb(v)	< 4.5	4.6	ug/m3	1
07243	Methyl Methacrylate	80-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb(v)	< 7.1	7.1	ug/m3	1
07245	1.4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
		75-27-4	< 1.0	1.0		< 6.7	6.7		1
07247	Bromodichloromethane				ppb(v)		4.5	ug/m3	1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5		ug/m3	
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb (v)	< 8.2	8.2	ug/m3	1
07250	Toluene	108-88-3	32.	20.	ppb(v)	120.	75.	ug/m3	20
07251	Octane	111-65-9	5.4	1.0	ppb(v)	25.	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb (v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	1.4	1.0	ppb(v)	9.7	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	5.0	2.0	ppb(v)	20.	8.2	ug/m3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb (v)	< 8.5	8.5	ug/m3	1
07258	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb (v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07261	Ethylbenzene	100-41-4	6.5	1.0	ppb(v)	28.	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	22.	1.0	ppb(v)	94.	4.3	ug/m3	1
07263	o-Xylene	95-47-6	6.3	1.0	ppb(v)	27.	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Bromoform	75-25-2	< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	1
07266	Сителе	9B-82-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-8	5.1	1.0	ppb(v)	25.	4.9	ug/m3	1
07271	1,3,5-Trimethylbenzene	100-67-8	1.3	1.0	ppb(v)	6.5	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.8	4.8	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	4.0	1.0	ppb(v)	20.	4.9	ug/m3	1
07274	1,3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.D	ug/m3	1
07275	1.4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1.2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	î
07278	Hexachloroethane	67-72-1	3.7	1.0	ppb(v)	36,	9.7	ug/m3	1
01218	VEYOCHTOTAETHGHE	n/-/Z-I	4 - 7	2.0	Sho (a)	Ju,	2 + 5	77/m2	-

Page 3 of 3

Lancaster Laboratories Sample No. 5366077 AQ

Group No. 1092117

Summa Can #343 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48

by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

10220 Harney Road Thonotosassa FL 33592

A2L Technologies

Discard: 06/28/2008

As

CAT			Received Final			Received Final			
No.	Analysis Nama	CAS Number	Regult	LOQ	Units	Result	LOQ	Units	DF
07279	1,2,4-Trichlorobenzene	120-82-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07280	Hexachlorobutadiene	87-68-3	< 2.0	2.0	ppb(v)	< 21.	21.	ug/m3	1
	Isopropanol was detected at an	estimated cond	entration	of 15 ppbv.					

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ = Limit of Quantitation

Laboratory Chronicle

CAT			Analysis	Dilution
No.	Analysis Name	Method	Trial# Date and Time Analyst	Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1 05/29/2008 22:35 Jonathan K	1
05298	TO 15 VOA Ext. List	EPA TO-15	Nardelli 1 05/30/2008 16:38 Fanella S Zamcho	20

Page 1 of 3

Lancaster Laboratories Sample No. 5366078 AQ

Group No. 1092117

Summa Can #324 Grab Air Sample

Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Nama	CAS Number	Result	LOO	Units	Result	LOO	Units	DF
			1100						
0529B	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07201	Propene	115-07-1	1.7	1.0	ppb(v)	2.9	1.7	ug/m3	1
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromechane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-87-3	< 1.0	1.0	ppb (v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	< 2.0	2.0	ppb (v)	< 4.4	4.4	ug/m3	1
07208	Bromomethane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb(v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	1.2	1.0	ppb (v)	3.4	3.0	ug/m3	1
07214	Acrolein	107-02-8	< 2.0	2.0	ppb(v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	51.	20.	ppb(v)	120.	48.	ug/m3	10
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.8	5.B	ug/m3	1
07219	Carbon Disulfide	75-15-0	< 2.0	2.0	ppb(v)	< 6.2	6.2	ug/m3	1
07220	Acetonitrile	75-05-8	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb (v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb (v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	2.3	2.0	ppb (v)	6.7	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb(v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.D	ug/m3	1
					'				

Page 2 of 3

Lancaster Laboratories Sample No. 5366078 AQ

Group No. 1092117

Summa Can #324 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:48 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

			As Received			As Received			
CAT No.	Analysis Name	CAS Number	Pinal Result	LOQ	Unite	Pinal		W-46-	DP
0723B	Benzene	71-43-2	< 1.0	1.0	ppb(v)	Result	100 3.2	Units ug/m3	1
07238	Ispoctane	540-84-1	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3 ug/m3	1
07240		142-82-5	< 1.0	1.0		< 4.1			
07240	Heptane Trichloroethene	79-01-6			ppb(v)		4.1	ug/m3	1
07241		140-88-5	< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
07242	Ethyl Acrylate 1,2-Dichloropropane	78-87-5	< 1.0 < 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07243					ppb(v)	< 4.6	4.6	ug/m3	1
	Methyl Methacrylate	80-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb(v)	< 7.1	7.1	ug/m3	1
07246	1,4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	5.7	ug/m3	1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb (v)	< 4.5	4.5	ug/m3	1
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb (v)	< 8.2	8.2	ug/m3	1
07250	Toluene	108-88-3	< 1.0	1.0	ppb(v)	< 3.8	3.8	ug/m3	1
07251	Octane	111-65-9	< 1.0	1.0	ppb (v)	< 4.7	4.7	ng/w3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	pph(v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb (v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	< 1.0	1.0	ppb (v)	< 6.B	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	< 2.0	2.0	ppb (v)	< B.2	8.2	ug/m3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 0.5	8.5	ug/m3	1
07258	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb (v)	< 7.7	7.7	ug/m3	3
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb (v)	< 4.6	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07261	Ethylbenzene	100-41-4	< 1.0	1.0	ppb (v)	< 4.3	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07263	o-Xylene	95-47-6	< 1.0	1.0	ppb (v)	< 4.3	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Browoform	75-25-2	< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	ı
07266	Cumene	98-82-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb (v)	< 6.9	6.9	ug/m3	1
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07271	1,3,5-Trimethylbenzene	108-67-8	< 1.0	1.0	ppb(v)	< 4.5	4.9	ug/m3	2
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.8	4.8	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07274	1.3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07275	1,4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1,2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07278	Hexachloroethane	67-72-1	< 1.0	1.0	ppb(v)	< 9.7	9.7	ug/m3	ì
0.2.0	and the state of t				PP-(1)		~	25/ 23	-

Page 3 of 3

Lancaster Laboratories Sample No. 5366078 AQ

Group No. 1092117

Summa Can #324 Grab Air Sample Ciabattoni 050409

by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Collected: 05/15/2008 17:48

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Aβ Received Received CAT Final Pinal Analysis Name No. CAS Number Result LOQ Units Result LOQ Unite DP 07279 1,2,4-Trichlorobenzene 120-82-1 < 2.0 2.0 ppb(v) < 15. 15. ug/m3 Hexachlorobutadiene 87-68-3 < 2.0 2.0 ppb(v) < 21. 21. ug/m3 1

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Isopropanol was detected at an estimated concentration of 7 ppbv.

LOQ = Limit of Quantitation

Laboratory Chronicle

		Haboracor	CHIOHICLE	
CAT			Analysis	Dilution
No.	Analysis Name	Method	Trial# Date and Time Analyst	Factor
05298	TO 15 VOA Ext. List	EPA TO-15	1 05/29/2008 23:20 Jonathan	K 1
05298	TO 15 VOA Ext. List	EPA TO-15	Nardelli 1 05/30/2008 14:29 Fanella :	S Zamcho 10

Page 1 of 3

Lancaster Laboratories Sample No. 5366079 AQ

Group No. 1092117

Summa Can #514 Grab Air Sample Clabattoni 050409

Collected:05/15/2008 17:46 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

			As Received			As Received			
CAT			Final			Final			
No.	Analysis Name	CAS Number	Result	roō	Units	Result	roō	Units	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 20.	20.	ppb(v)	< 61.	61.	ug/m3	20
07201	Propens	115-07-1	25.	20.	pph(v)	44.	34.	ug/m3	20
07202	Dichlorodifluoromethane	75-71-8	< 20.	20.	ppb (v)	< 99.	99.	ug/m3	20
07203	Chlorodifluoromethane	75-45-6	< 20.	20.	ppb(v)	< 71.	71.	ug/m3	20
07204	Freon 114	76-14-2	< 20.	20.	ppb (v)	< 140.	140.	ug/m3	20
07205	Chloromethane	74-87-3	< 20.	20.	ppb(v)	< 41.	41.	ug/m3	20
07206	Vinyl Chloride	75-01-4	< 20.	20.	ppb(v)	< 51.	51.	ug/m3	20
07207	1,3-Butadiene	106-99-0	< 40.	40.	ppb (v)	< 88.	88.	ug/m3	20
07208	Bromomethane	74-83-9	< 20.	20.	ppb(v)	< 78.	78.	ug/m3	20
07209	Chloroethane	75-00-3	< 20.	20.	ppb(v)	< 53.	53.	ug/m3	20
07210	Dichlorofluoromethane	75-43-4	< 20.	20.	ppb (v)	< 84.	84.	ug/m3	20
07212	Trichlorofluoromethane	75-69-4	< 20.	20.	ppb(v)	< 110.	110.	ug/m3	20
07213	Pentane	109-66-0	91.	20.	ppb(v)	270.	59.	ug/m3	20
07214	Acrolein	107-02-B	< 40.	40.	ppb(v)	< 92.	92.	ug/m3	20
07215	1,1-Dichloroethene	75-35-4	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07216	Freon 113	76-13-1	< 40.	40.	ppb(v)	< 310.	310.	ug/m3	20
07217	Acetone	67-64-1	160.	40.	ppb(v)	390.	95.	ug/m3	20
07218	Methyl Iodide	74-88-4	< 20.	20.	pph(v)	< 120.	120.	ug/m3	20
07219	Carbon Disulfide	75-15-0	< 40.	40.	ppb(v)	< 120.	120.	ug/m3	20
07220	Acetonitrile	75-05-8	< 40.	40,	ppb(v)	< 67.	67.	ug/m3	20
07221	3-Chloropropene	107-05-1	< 20.	20.	ppb(v)	< 63.	63.	ug/m3	20
07222	Methylene Chloride	75-09-2	< 20.	20.	ppb(v)	< 69.	69.	ug/m3	20
07223	Acrylonitrile	107-13-1	< 40.	40.	ppb(v)	< 87.	87.	ug/m3	20
07224	trans-1,2-Dichloroethene	156-60-5	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07225	Methyl t-Butyl Ether	1634-04-4	< 20.	20.	ppb(v)	< 72.	72.	ug/m3	20
07226	Hexane	110-54-3	< 20.	20.	ppb(v)	< 70.	70.	ug/m3	20
07227	1,1-Dichloroethane	75-34-3	< 20.	20.	ppb (v)	< 01.	81.	ug/m3	20
07228	Vinyl Acetate	108-05-4	< 20.	20.	ppb(v)	< 70.	70.	ug/m3	20
07230	cis-1,2-Dichloroethene	156-59-2	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07231	2-Butanone	78-93-3	110.	40.	ppb (v)	310.	120.	ug/m3	20
07232	Ethyl Acetate	141-78-6	< 20.	20.	ppb(v)	< 72.	72.	ug/m3	20
07233	Methyl Acrylate	96-33-3	< 20.	20.	ppb(v)	< 70.	70.	ug/m3	20
07234	Chloroform	67-66-3	< 20.	20,	ppb(v)	< 98.	98.	ug/m3	20
07235	1,1,1-Trichloroethane	71-55-6	< 20.	20.	ppb(v)	< 110.	110.	ug/m3	20
07236	Carbon Tetrachloride	56-23-5	< 20.	20.	ppb(v)	< 130.	130.	ug/m3	20
07237	1,2-Dichloroethane	107-06-2	< 20.	20.	ppb(v)	< 81.	81.	ug/m3	20
								3.	

Page 2 of 3

Lancaster Laboratories Sample No. 5366079 AQ

Group No. 1092117

Summa Can #514 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:46 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

λn Received Received CAT Final Final No. Analysis Name CAS Number Regult LOO Unite Result LOO Unite DF 07238 Benzene 71-43-2 < 20. 20. < 64. ppb(v) 64. ug/m3 07239 Teoccrane 540-84-1 < 20. 20. ppb(v) < 93. 93. ug/m3 20 < 20. < 82. 07240 Heotane 142-82-5 20. ppb (v) 82 ug/m3 20 ppb(v) 07241 Trichloroethene 79-01-6 < 20. 20. < 130. 110. ug/m3 20 07242 Ethyl Acrylate 140-88-5 < 20. 20. ppb(v) < 82. 82. 20 ua/m3 1,2-Dichloropropane 07243 78-87-5 < 20. < 92. 20. ppb (v) 92. ug/m3 07244 Methyl Methscrylate 80-62-6 < 20. 20. ppb(v) < 82. 82. ug/m3 20 07245 Dibromomethane 74-95-3 < 20. 20. ppb(v) < 140. 140. ug/m3 20 07246 1,4-Dioxane 123-91-1 < 20. 20. < 72. ppb(v) 72. ug/m3 20 ug/m3 07247 Bromodichloromethane 75-27-4 < 20. 20. ppb(v) < 130. 130. 20 07248 cis-1,3-Dichloropropene 10061-01-5 < 20. 20. ppb(v) < 91. 91. ug/m3 20 07249 4-Methyl-2-Pentanone 108-10-1 < 40. 40. ppb(v) < 160. 160. ug/m3 20 07250 Toluene 108-88-3 < 20. 20. ppb(v) < 75. 75. ug/m3 < 20. < 93. 07251 Octane 111-65-9 20. ppb(v) 93 ug/m3 20 07252 trans-1,3-Dichloropropene 20. 10061-02-6 < 20. ppb(v) < 91. 91. ug/m3 20 D7253 Ethyl Methacrylate 97-63-2 < 20. 20. ppb(v) < 93. 93. ug/m3 20 1,1,2-Trichloroethane 79-00-5 < 20. 07254 20. ppb(v) < 110. 110. ug/m3 20 07255 Tetrachloroethene 127-18-4 < 20. 20. ppb(v) < 140. ug/m3 140. 07256 2-Hexanone 591-78-6 < 40. 40. ppb(v) < 160. 160. ug/m3 20 07257 Dibromochloromethane < 170. 124-48-1 < 20. 20. ppb(v) 170. ug/m3 20 07258 1,2-Dibromoethane 106-93-4 < 20. 20. ppb(v) < 150. 150. ug/m3 20 07259 Chlorobenzene 108-90-7 < 20. 20. ppb(v) < 92. 92. ug/m3 20 1,1,1,2-Tetrachloroethane 07260 630-20-6 < 20. 2D. ppb (v) < 140. 140. ug/m3 20 07261 Ethylbenzene 100-41-4 < 20. 20. ppb(v) < 87. 87. ug/m3 07262 m/p-Xylene 1330-20-7 < 20. 20. ppb(v) < 87. 87. ug/m3 20 07263 < 20. < 87. o-Xylene 95-47-6 20. ppb(v) R7. ug/m3 20 07264 Styrene 20. ppb(v) < 85. 100-42-5 < 20. 85. ug/m3 20 07265 Bromoform 75-25-2 < 20. 20. ppb(v) < 210. 210. ua/m3 20 07266 Cumene 98-82-8 < 20. 20. ppb(v) < 98. ug/m3 20 07267 1,1,2,2-Tetrachloroethane 79-34-5 < 20. 20. ppb(v) < 140. 140. ug/m3 20 07268 1,2,3-Trichloropropane 96-18-4 < 20. 20. ppb(v) < 120. 120. ug/m3 20 < 20. < 130. 07269 Bromobenzene 108-86-1 20. ppb(v) 130. ug/m3 20 07270 4-Ethyltoluene 622-96-B < 20. 20. < 98. (v) dag 98. ug/m3 20 07271 1,3,5-Trimethylbenzene 108-67-8 < 20. 20. ppb (v) < 98. 98. ug/m3 20 07272 Alpha Methyl Styrene 98-83-9 < 20. 20. ppb(v) c 97. 97. ug/m3 20 07273 1,2,4-Trimethylbenzene 95-63-6 < 20. < 98. 20. (v) dgg 98. ug/m3 20 ug/m3 07274 1,3-Dichlorobenzene 541-73-1 < 20. 20. ppb(v) < 120. 120. 20 07275 1.4-Dichlorobenzene 106-46-7 < 20. 20 ppb (v) < 120. 120. ug/m3 20 07277 1.2-Dichlorobenzene 95-50-1 < 20. < 120. 20. ppb (v) 120. ug/m3 20

< 20.

20.

ppb(v)

< 190.

190.

67-72-1

Hexachloroethane

07278

ug/m3

20

Page 3 of 3

Lancaster Laboratories Sample No. 5366079 AQ

Group No. 1092117

Summa Can #514 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:46 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies

Discard: 06/28/2008

10220 Harney Road Thonotosassa FL 33592

CAT		As Received Final			As Received Final				
No.	Analysis Name	CAS Number	Result	LOQ	Units	Result	LOQ	Unite	DF
07279	1,2,4-Trichlorobenzene	120-82-1	< 40.	40.	ppb(v)	< 300.	300.	ug/m3	20
07280	Hexachlorobutadiene	87-68-3	< 40.	40.	ppb(v)	< 430.	430.	ug/m3	20
	and the second s	form the contract	_						

The reporting limits for the GC/MS volatile compounds were raised due to the level of non-target compounds.

Isopropanol was detected at an estimated concentration of 19000 ppbv.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ = Limit of Quantitation

Laboratory Chronicle

CAT Analysis Dilution No. Analysis Name Method Date and Time Analyst Factor 0529B TO 15 VOA Ext. List EPA TO-15 05/30/2008 00:03 1 Jonathan K 20 Nardelli

Page 1 of 3

Lancaster Laboratories Sample No. 5366080 AQ

Group No. 1092117

Summa Can #508 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:46 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies 10220 Harney Road Thonotomassa FL 33592

Discard: 06/28/2008

CAT			As Received Final			As Received			
No.	Analysis Name	CAS Number	Result	LOQ	Units	Final Result	LOQ	Onite	DF
10.	Mary are nowe	CAS Adminer	Kenart	nog	OUTER	Keentt	TOO	OHICE	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-D	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07201	Propene	115-07-1	< 1.0	1.0	ppb (v)	< 1.7	1.7	ug/m3	1
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-87-3	< 1.0	1.0	ppb(v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	pph(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	< 2.0	2.0	ppb(v)	< 4.4	4.4	ug/m3	1
07208	Bromomethane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	7.1	1.0	ppb(v)	19.	2.6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4,2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb(v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07214	Acrolein	107-02-8	< 2.0	2.0	ppb(v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	12.	2.0	ppb(v)	28.	4.8	ug/m3	1
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.B	5.8	ug/m3	1
07219	Carbon Disulfide	75-15-0	< 2.0	2.0	ppb(v)	< 6.2	6.2	ug/m3	1
07220	Acetonitrile	75-05-8	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.D	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	2.4	2.0	ppb(v)	6.9	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb(v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
					25-171			-3,	-

Page 2 of 3

Lancaster Laboratories Sample No. 5366080 AQ

Group No. 1092117

Summa Can #508 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:46 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT			As Received Final			As Received Pinal			
No.	Analysis Name	CAS Number	Result	LOO	Units	Result	LOQ	Unite	DF
07238	Benzene	71-43-2	< 1.0	1.0	ppb(v)	< 3.2	3.2	ug/m3	1
07238	Isooctane	540-64-1	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07240	Heptane	142-82-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	î
07241	Trichloroethene	79-01-6	< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
07242	Ethyl Acrylate	140-88-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07243	1.2-Dichloropropane	78-87-5	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	i
07244	Methyl Methacrylate	80-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb(v)	< 7.1	7.1	ug/m3	1
07246	1.4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	6.7	ug/m3	î
0724B	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb(v)	< B.2	8.2	ug/m3	1
07250	Toluene	108-88-3	< 1.0	1.0	ppb(v)	< 3.B	3.8	ug/m3	1
07251	Octane	111-65-9	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	ī
07253	Ethyl Methecrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	ī
07254	1.1.2-Trichloroethane	79-00-5	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	ī
07255	Tetrachloroethene	127-18-4	< 1.0	1.0	ppb(v)	< 6.8	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	< 2.0	2.0	ppb(v)	< B.2	B.2	ug/m3	î
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 0.5	8.5	ug/m3	1
07259	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb(v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb(v)	< 4.5	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	ī
07261	Ethylbenzene	100-41-4	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07263	o-Xylene	95-47-6	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Bromoform	75-25-2	< 1.0	1.0	ppb(v)	< 10.	10.	uq/m3	1
07266	Cumene	98-82-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	î
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	î
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	ı
07271	1.3.5-Trimethylbenzene	108-67-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.8	4.8	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07273	1.3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	5.0	ug/m3	1
07275	1,4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1.2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	Hexachloroethane	67-72-1	< 1.0	1.0	ppb(v)	< 9.7	9.7	ug/m3	1
07278	upyqeurologingng	0/-/2-1	< 1.0	1.0	Phu (A)	< 2.7	3.1	ոց/ այ	1

Page 3 of 3

Lancaster Laboratories Sample No. 5366080 AQ

Group No. 1092117

Summa Can #508 Grab Air Sample

Ciabattoni 050409

Collected: 05/15/2008 17:46 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 Discard: 06/28/2008

A2L Technologies

10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Units	Result	LOQ	Unita	DF
07279	1,2,4-Trichlorobenzene	120-82-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07280	Hexachlorobutadiene	87-68-3	< 2.0	2.0	ppb(v)	< 21.	21.	ug/m3	1
	Isopropanol was detected at an	estimated con-	centration	of 18 noby					

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ - Limit of Quantitation

Laboratory Chronicle

CAT			Analysis	Dilution
No.	Analysis Name	Method	Trial# Date and Time Ans	lyst Factor
05298	TO 15 VOA Ext. List	EPA TO-15		nathan K 1
			Na	delli

Page 1 of 3

Lancaster Laboratories Sample No. 5366081 AQ Group No. 1092117

Summa Can #024 Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 17:47 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

GAT.			As Received			As Recsived			
CAT No.	Analysis Name	CAS Number	Final Result	LOO	Unite	Pinel Result	T 00	Unite	DF
NO.	Analysis name	CAS MUMBORI	Keedic	Poo	UNICE	Keenic	POÖ	Unica	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 20.	20.	ppb (v)	< 61.	61.	ug/m3	20
07201	Propene	115-07-1	32.	20.	ppb(v)	56.	34.	ug/m3	20
07202	Dichlorodifluoromethane	75-71-8	< 20.	20.	ppb(v)	< 99.	99.	ug/m3	20
07203	Chlorodifluoromethane	75-45-6	< 20.	20.	ppb(v)	< 71.	71.	ug/m3	20
07204	Freon 114	76-14-2	< 20.	20.	ppb(v)	< 140.	140.	ug/m3	20
07205	Chloromethane	74-87-3	< 20.	20.	ppb (v)	< 41.	41.	ug/m3	20
07206	Vinyl Chloride	75-01-4	< 20.	20.	ppb(v)	< 51.	51.	ug/m3	20
07207	1,3-Butadiene	106-99-0	< 40.	40.	ppb(v)	< 88.	88.	ug/m3	20
07208	Bromomethane	74-83-9	< 20.	20.	ppb(v)	< 78.	78.	ug/m3	20
07209	Chloroethane	75-00-3	< 20.	20.	ppb(v)	< 53.	53.	ug/m3	20
07210	Dichlorofluoromethane	75-43-4	< 20.	20.	ppb(v)	< B4.	84.	ug/m3	20
07212	Trichlorofluoromethane	75-69-4	< 20.	20.	ppb(v)	< 110.	110.	սց/տ3	20
07213	Pentane	109-66-0	120.	20.	ppb(v)	350.	59.	ug/m3	20
07214	Acrolein	107-02-8	< 40.	40.	ppb(v)	< 92,	92.	ug/m3	20
07215	1,1-Dichloroethene	75-35-4	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07216	Freon 113	76-13-1	< 40.	40.	ppb (v)	< 310.	310.	ug/m3	20
07217	Acetone	67-64-1	160.	40.	ppb (v)	390.	95.	ug/m3	20
07218	Methyl Iodide	74-88-4	< 20.	20.	ppb(v)	< 120.	120.	ug/m3	20
07219	Carbon Disulfide	75-15-0	< 40,	40.	ppb (v)	< 120.	120.	ug/m3	20
07220	Acetonitrile	75-05-8	< 40.	40.	ppb(v)	< 67.	67.	ug/m3	20
07221	3-Chloropropene	107-05-1	< 20.	20.	ppb(v)	< 63.	63.	ug/m3	20
07222	Methylene Chloride	75-09-2	< 20.	20.	ppb(v)	< 69.	69.	ug/m3	20
07223	Acrylonitrile	107-13-1	< 40.	40.	ppb(v)	< 87.	87.	ug/m3	20
07224	trans-1,2-Dichloroethene	156-60-5	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07225	Methyl t-Butyl Ether	1634-04-4	< 20.	20.	ppb(v)	< 72.	72.	ug/m3	20
07226	Hexane	110-54-3	< 20.	20.	ppb(v)	< 70.	70.	ug/m3	20
07227	1,1-Dichloroethane	75-34-3	< 20.	20.	ppb(v)	< 81.	81,	ug/m3	20
07228	Vinyl Acetate	108-05-4	< 20.	20.	ppb(v)	< 70,	70.	ug/m3	20
07230	cis-1,2-Dichloroethene	156-59-2	< 20.	20.	ppb(v)	< 79.	79.	ug/m3	20
07231	2-Butanone	78-93-3	120.	40.	ppb(v)	350.	120.	ug/m3	20
07232	Ethyl Acetate	141-7B-6	< 20.	20.	ppb(v)	< 72.	72.	ug/m3	20
07233	Methyl Acrylate	96-33-3	< 20.	20.	ppb(v)	< 70.	70.	ug/m3	20
07234	Chloroform	67-66-3	< 20.	20.	ppb(v)	< 98.	98.	ug/m3	20
07235	1,1,1-Trichloroethane	71-55-6	< 20.	20.	ppb (v)	< 110.	110.	ug/m3	20
07236	Carbon Tetrachloride	56-23-5	< 20.	20.	ppb(v)	< 130.	130.	ug/m3	20
07237	1,2-Dichloroethane	107-06-2	< 20.	20.	ppb(v)	< 81.	B1.	ug/m3	20

Page 2 of 3

Lancaster Laboratories Sample No. 5366081 AQ

Group No. 1092117

Summa Can #024 Grab Air Sample

Ciabattoni 050409

Collected: 05/15/2008 17:47 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

CAT			As Received Final			As Received Final			
No.	Annlysis Name	CAS Number	Result	LOQ	Units	Result	roo	Unite	DF
07238	Benzene	71-43-2	< 20.	20.	ppb(v)	< 64.	64.	ug/m3	20
07239	Isooctane	540-84-1	< 20.	20.	ppb(v)	< 93.	93.	ug/m3	20
07240	Heptane	142-82-5	< 20.	20.	ppb(v)	< 82.	82.	ug/m3	20
07241	Trichloroethene	79-01-6	< 20.	20.	ppb(v)	< 110.	110.	ug/m3	20
07242	Ethyl Acrylate	140-86-5	< 20.	20.	ppb(v)	< 82.	82.	ug/m3	20
07243	1,2-Dichloropropane	78-87-5	< 20.	20.	ppb(v)	< 92.	92.	ug/m3	20
07244	Methyl Methacrylate	80-62-6	< 20.	20.	ppb(v)	< B2.	82.	ug/m3	20
07245	Dibromomethane	74-95-3	< 20.	20.	ppb(v)	< 140.	140.	ug/m3	20
07246	1,4-Dioxane	123-91-1	< 20.	20.	ppb(v)	< 72.	72.	ug/m3	20
07247	Bromodichloromethane	75-27-4	< 20.	20.	ppb(v)	< 130.	130.	ug/m3	20
0724B	cis-1,3-Dichloropropene	10061-01-5	< 20.	20.	ppb (v)	< 91.	91.	ug/m3	20
07249	4-Methyl-2-Pentanone	108-10-1	< 40.	40.	ppb(v)	< 160.	160.	ug/m3	20
07250	Toluene	108-88-3	< 20.	20.	ppb(v)	< 75.	75.	ug/m3	20
07251	Octane	111-65-9	< 20.	20.	ppb(v)	< 93.	93.	ug/m3	20
07252	trans-1,3-Dichloropropene	10061-02-6	< 20.	20.	ppb(v)	< 91.	91.	ug/m3	20
07253	Ethyl Methacrylate	97-63-2	< 20.	20.	ppb(v)	< 93.	93.	ug/m3	20
07254	1,1,2-Trichlorosthane	79-00-5	< 20.	20.	ppb(v)	< 110.	110.	ug/m3	20
07255	Tetrachloroethene	127-18-4	< 20.	20.	ppb(v)	< 140.	140.	ug/m3	20
07256	2-Hexanone	591-78-6	< 40.	40.	ppb(v)	< 160.	160.	ug/m3	20
07257	Dibromochloromethane	124-48-1	< 20.	20.	ppb(v)	< 170.	170.	ug/m3	20
07258	1,2-Dibromoethane	106-93-4	< 20.	20.	ppb(v)	< 150.	150.	ug/m3	20
07259	Chlorobenzene	108-90-7	< 20.	20.	ppb(v)	< 92.	92.	ug/m3	20
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 20.	20.	ppb (v)	< 140.	140.	ug/m3	20
07261	Ethylbenzene	100-41-4	< 20.	20.	ppb(v)	< 87.	87.	ug/m3	20
07262	m/p-Xylene	1330-20-7	< 20.	20.	ppb(v)	< 87.	87.	ug/m3	20
07263	o-Xylene	95-47-6	< 20.	20.	ppb(v)	< B7.	87.	ug/m3	20
07264	Styrene	100-42-5	< 20.	20.	ppb(v)	< 05.	85.	ug/m3	20
07265	Bromoform	75-25-2	< 20.	20.	ppb(v)	< 210.	210.	ug/m3	20
07266	Cumene	98-82-8	< 20.	20.	ppb(v)	< 98.	98.	ug/m3	20
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 20.	20.	ppb (v)	< 140.	140.	ug/m3	20
07268	1,2,3-Trichloropropane	96-18-4	< 20.	20.	ppb (v)	< 120.	120.	ug/m3	20
07269	Bromobenzene	108-86-1	< 20.	20.	ppb(v)	< 130.	130.	ug/m3	20
07270	4-Ethyltoluene	622-96-8	< 20.	20.	ppb(v)	< 98.	98.	ug/m3	20
07271	1,3,5-Trimethylbenzene	108-67-8	< 20.	20.	ppb(v)	< 98.	9B.	ug/m3	20
07272	Alpha Methyl Styrene	98-83-9	< 20.	20.	ppb (v)	< 97.	97.	ug/m3	20
07273	1,2,4-Trimethylbenzene	95-63-6	< 20.	20.	ppb (v)	< 98.	98.	ug/m3	20
07274	1,3-Dichlorobenzene	541-73-1	< 20.	20.	ppb (v)	< 120.	120.	ug/m3	20
07275	1,4-Dichlorobenzene	106-46-7	< 20.	20.	ppb(v)	< 120.	120.	ug/m3	20
07277	1,2-Dichlorobenzene	95-50-1	< 20.	20.	ppb(v)	< 120.	120.	ug/m3	20
07278	Hexachloroethane	67-72-1	< 20.	20.	ppb(v)	< 190.	190.	ug/m3	20

Page 3 of 3

Lancaster Laboratories Sample No. 5366081 AQ

Group No. 1092117

Summa Can #024 Grab Air Sample

Ciabattoni 050409

Collected: 05/15/2008 17:47 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

λa Aσ Received Received CAT Final Final Analysis Name CAS Number Result No. LOQ Unite Result LOQ Unite DF 07279 1,2,4-Trichlorobenzene 120-82-1 < 40. 40. ppb(v) < 300. 300. ug/m3 07280 Hexachlorobutadiene 87-68-3 < 40. 40. ppb(v) < 430. 430. ug/m3 20 Isopropanol was detected at an estimated concentration of 17000 ppbv.

The reporting limits for the GC/MS volatile compounds were raised due to the level of non-target compounds.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

LOQ = Limit of Quantitation

Laboratory Chronicle

CAT				Analysis				
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor		
05298	TO 15 VOA Ext. List	EPA TO-15	1	05/30/2008 17:22	Fanella S Zamcho	20		

Page 1 of 3

Lancaster Laboratories Sample No. 5366082 AQ

by JC

Group No. 1092117

Summa Can #122 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:47

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Units	Result	LOQ	Units	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	nā/w3	1
07201	Propene	115-07-1	< 1.0	1.0	ppb(v)	< 1.7	1.7	ug/m3	1
07202	Dichlorodifluoromethane	75-71-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	บg/ก3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-87-3	< 1.0	1.0	ppb(v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	< 2.0	2.0	ppb(v)	< 4.4	4.4	11g/m3	1
0720B	Bromomethane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chloroethane	75-00-3	1.4	1.0	ppb(v)	3.8	2,6	ug/m3	1
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	1
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb(v)	< 5.6	5.6	ug/m3	1
07213	Pentane	109-66-0	1.1	1.0	ppb(v)	3.2	3.0	ug/m3	1
07214	Acrolein	107-02-8	< 2.0	2.0	ppb(v)	< 4.6	4.6	ug/m3	ı
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	7.8	2.0	ppb(v)	19.	4.8	ug/m3	1
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb (v)	< 5.8	5.0	ug/m3	1
07219	Carbon Disulfide	75-15-0	< 2.0	2.0	ppb(v)	< 6.2	5.2	ug/m3	1
07220	Acetonitrile	75-05-8	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb (v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb (v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexans	110-54-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1.
07231	2-Butanone	78-93-3	2.2	2.0	ppb(v)	6.6	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb (v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb (v)	< 4.0	4.0	ug/m3	1

Page 2 of 3

Lancaster Laboratories Sample No. 5366082 AQ

Group No. 1092117

Summa Can #122 Grab Air Sample

Ciabattoni 050409

Collected:05/15/2008 17:47 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 Discard: 06/28/2008

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

			As Received			As Received Final			
CAT		CAS Number	Final Result	LOQ	Unite	Result	LOQ	Unite	DF
No.	Analysis Name	71-43-2	< 1.0	1.0	ppb(v)	< 3.2	3.2	uq/m3	1
07238	Benzene	71-43-2 540-84-1	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07239	Isooctane	142-82-5	< 1.0	1.0	ppb (v)	< 4.1	4.1	ug/m3	1
07240	Heptane		< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
07241	Trichloroethene	79-01-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07242	Ethyl Acrylate	140-88-5 78-87-5	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	ī
07243	1,2-Dichloropropane		< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07244	Methyl Methacrylate	80-62-6		1.0	ppb(v)	< 7.1	7.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0			< 3.6	3.6	ug/m3	1
07246	1,4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)			ug/m3	1
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	6.7		1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb(v)	< B.2	8.2	ug/m3	
07250	Toluene	108-88-3	< 1.0	1.0	ppb(v)	< 3.8	3.8	ug/m3	1
07251	Octane	111-65-9	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb(v)	< 4.7	4.7	nā\w3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	< 1.0	1.0	ppb(v)	< 6.8	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	< 2.0	2.0	ppb(v)	< 8.2	8.2	nd/w3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 8.5	8.5	na/wa	1
07258	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb(v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07261	Ethylbenzene	100-41-4	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	< 1.0	1.0	ppb (v)	< 4.3	4.3	ug/m3	1
07263	o-Xylene	95-47-6	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Bromoform	75-25-2	< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	1
07266	Cumene	98-82-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07268	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltoluene	622-96-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07271	1.3.5-Trimethylbenzene	108-67-8	< 1.0	1.0	ppb (v)	< 4.9	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.B	4 . B	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07274	1.3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.D	ug/m3	1
07275	1.4-Dichlorobenzens	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1.2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
0727B	Hexachloroethane	67-72-1	< 1.0	1.0	ppb(v)	< 9.7	9.7	ug/m3	1
4,2.6	4 6 Mr to the sec of a sign and and after the sec of a sidn of a	- · ·							

Page 3 of 3

Lancaster Laboratories Sample No. 5366082 AQ

Group No. 1092117

Summa Can #122 Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 17:47 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

λa AΒ Received Received CAT Final Final No. Analysis Name CAS Number Result LOQ Unite Result LOQ Units DΡ < 2.0 07279 1,2,4-Trichlorobenzene 120-82-1 2.0 ppb(v) < 15. 15. ug/m3 1 < 2.0 ug/m3 07280 Hexachlorobutadiene 87-68-3 2.0 ppb(v) < 21. 21. 1

Isopropanol was detected at an estimated concentration of 4 ppbv.

All QC is compliant unless otherwise noted. Flease refer to the Quality Control Summary for overall QC performance data and associated samples.

LOO = Limit of Quantitation

Laboratory Chronicle

CAT
No. Analysis Name
Method
Trial Date and Time
Analyst
Factor
05298
TO 15 VOA Ext. List
EPA TO-15
1 05/30/2008 18:07
Fanella S Zamcho
1

Page 1 of 3

Lancaster Laboratories Sample No. 5366083 AQ

Group No. 1092117

Summa Can #166-Trip Blank Grab Air Sample Ciabattoni 050409

Collected:05/15/2008 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49 A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT			As Recaived Final			As Received Final			
No.	Analysis Name	CAS Number	Result	ΓΟŌ	Units	Result	LOQ	Unite	DF
05298	TO 15 VOA Ext. List								
02076	tert-Butyl Alcohol	75-65-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07201	Propene	115-07-1	< 1.0	1.0	ppb(v)	< 1.7	1.7	ug/m3	1
07202	Dichlorodifluoromethane	75-71-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07203	Chlorodifluoromethane	75-45-6	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07204	Freon 114	76-14-2	< 1.0	1.0	ppb(v)	< 7.0	7.0	ug/m3	1
07205	Chloromethane	74-87-3	< 1.0	1.0	ppb(v)	< 2.1	2.1	ug/m3	1
07206	Vinyl Chloride	75-01-4	< 1.0	1.0	ppb(v)	< 2.6	2.6	ug/m3	1
07207	1,3-Butadiene	106-99-0	< 2.0	2.0	ppb (v)	< 4.4	4.4	ug/m3	1
07208	Bromomethane	74-83-9	< 1.0	1.0	ppb(v)	< 3.9	3.9	ug/m3	1
07209	Chlorosthane	75-00-3	< 1.0	1.0	ppb (v)	< 2.6	2.6	ug/m3	ı
07210	Dichlorofluoromethane	75-43-4	< 1.0	1.0	ppb(v)	< 4.2	4.2	ug/m3	2
07212	Trichlorofluoromethane	75-69-4	< 1.0	1.0	ppb (v)	< 5.6	5.6	ug/m3	ב
07213	Pentane	109-66-0	< 1.0	1.0	ppb(v)	< 3.0	3.0	ug/m3	1
07214	Acrolein	107-02-B	< 2.0	2.0	ppb (v)	< 4.6	4.6	ug/m3	1
07215	1,1-Dichloroethene	75-35-4	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	ı
07216	Freon 113	76-13-1	< 2.0	2.0	ppb(v)	< 15.	15.	ug/m3	1
07217	Acetone	67-64-1	< 2.0	2.0	ppb(v)	< 4.8	4.8	ug/m3	1
07218	Methyl Iodide	74-88-4	< 1.0	1.0	ppb(v)	< 5.8	5.8	ug/m3	1
07219	Carbon Disulfide	75-15-0	< 2.0	2.0	ppb(v)	< 6.2	6.2	ug/m3	1
07220	Acetonitrile	75-05-8	< 2.0	2.0	ppb(v)	< 3.4	3.4	ug/m3	1.
07221	3-Chloropropene	107-05-1	< 1.0	1.0	ppb(v)	< 3.1	3.1	ug/m3	1
07222	Methylene Chloride	75-09-2	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07223	Acrylonitrile	107-13-1	< 2.0	2.0	ppb(v)	< 4.3	4.3	ug/m3	1
07224	trans-1,2-Dichloroethene	156-60-5	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07225	Methyl t-Butyl Ether	1634-04-4	< 1.0	1.0	ppb(v)	< 3.6	3.6	ug/m3	1
07226	Hexane	110-54-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07227	1,1-Dichloroethane	75-34-3	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07228	Vinyl Acetate	108-05-4	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07230	cis-1,2-Dichloroethene	156-59-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1
07231	2-Butanone	78-93-3	< 2.0	2.0	ppb(v)	< 5.9	5.9	ug/m3	1
07232	Ethyl Acetate	141-78-6	< 1.0	1.0	ppb (v)	< 3.6	3.6	ug/m3	1
07233	Methyl Acrylate	96-33-3	< 1.0	1.0	ppb(v)	< 3.5	3.5	ug/m3	1
07234	Chloroform	67-66-3	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07235	1,1,1-Trichloroethane	71-55-6	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07236	Carbon Tetrachloride	56-23-5	< 1.0	1.0	ppb (v)	< 6.3	6.3	ug/m3	1
07237	1,2-Dichloroethane	107-06-2	< 1.0	1.0	ppb(v)	< 4.0	4.0	ug/m3	1

Page 2 of 3

Lancaster Laboratories Sample No. 5366083 AQ

Group No. 1092117

Summa Can #166-Trip Blank Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 by JC

Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

Discard: 06/28/2008

CAT			As Received Final			As Received Final			
No.	Analysis Name	CAS Number	Result	LOQ	Units	Result	POO	Units	DF
0723B	Benzene	71-43-2	< 1.0	1.0	ppb(v)	< 3.2	3.2	ug/m3	1
07239	Isooctane	540-84-1	< 1.0	1.0	ppb (v)	< 4.7	4.7	ug/m3	1
07240	Heptane	142-82-5	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07241	Trichloroethene	79-01-6	< 1.0	1.0	ppb(v)	< 5.4	5.4	ug/m3	1
07242	Ethyl Acrylate	140-88-5	< 1.0	1.0	ppb (v)	< 4.1	4.1	ug/m3	1
07243	1,2-Dichloropropane	78-87-5	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07244	Methyl Methacrylate	80-62-6	< 1.0	1.0	ppb(v)	< 4.1	4.1	ug/m3	1
07245	Dibromomethane	74-95-3	< 1.0	1.0	ppb (v)	< 7.1	7.1	ug/m3	1
07246	1,4-Dioxane	123-91-1	< 1.0	1.0	ppb(v)	< 3.6	3.6	na/wg	1
07247	Bromodichloromethane	75-27-4	< 1.0	1.0	ppb(v)	< 6.7	6.7	ug/m3	1
07248	cis-1,3-Dichloropropene	10061-01-5	< 1.0	1.0	ppb(v)	< 4.5	4.5	ug/m3	1
07249	4-Methyl-2-Pentanone	108-10-1	< 2.0	2.0	ppb (v)	< 0.2	8.2	ug/m3	1
07250	Toluene	108-88-3	< 1.0	1.0	ppb (v)	< 3.B	3.8	ug/m3	1
07251	Octane	111-65-9	< 1.0	1.0	ppb(v)	< 4.7	4.7	ug/m3	1
07252	trans-1,3-Dichloropropene	10061-02-6	< 1.0	1.0	ppb (v)	< 4.5	4.5	ug/m3	1
07253	Ethyl Methacrylate	97-63-2	< 1.0	1.0	ppb (v)	< 4.7	4.7	ug/m3	1
07254	1,1,2-Trichloroethane	79-00-5	< 1.0	1.0	ppb(v)	< 5.5	5.5	ug/m3	1
07255	Tetrachloroethene	127-18-4	< 1.0	1.0	ppb(v)	< 6.B	6.8	ug/m3	1
07256	2-Hexanone	591-78-6	< 2.0	2.0	ppb(v)	< 8.2	8.2	ug/m3	1
07257	Dibromochloromethane	124-48-1	< 1.0	1.0	ppb(v)	< 8.5	8.5	ug/m3	1
07258	1,2-Dibromoethane	106-93-4	< 1.0	1.0	ppb(v)	< 7.7	7.7	ug/m3	1
07259	Chlorobenzene	108-90-7	< 1.0	1.0	ppb(v)	< 4.6	4.6	ug/m3	1
07260	1,1,1,2-Tetrachloroethane	630-20-6	< 1.0	1.0	ppb(v)	< 6.9	6.9	ug/m3	1
07261	Ethylbenzene	100-41-4	< 1.0	1.0	bbp (n)	< 4.3	4.3	ug/m3	1
07262	m/p-Xylene	1330-20-7	< 1.0	1.0	bbp (A)	< 4.3	4.3	ug/m3	1
07263	o-Xylene	95-47-6	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07264	Styrene	100-42-5	< 1.0	1.0	ppb(v)	< 4.3	4.3	ug/m3	1
07265	Bromoform	75-25-2	< 1.0	1.0	ppb(v)	< 10.	10.	ug/m3	1
07266	Cumene	98-82-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07267	1,1,2,2-Tetrachloroethane	79-34-5	< 1.0	1.0	ppb (v)	< 6.9	6.9	ug/m3	1
0726B	1,2,3-Trichloropropane	96-18-4	< 1.0	1.0	pph(v)	< 6.0	6.0	ug/m3	1
07269	Bromobenzene	108-86-1	< 1.0	1.0	ppb(v)	< 6.4	6.4	ug/m3	1
07270	4-Ethyltolusne	622-96-B	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07271	1,3,5-Trimethylbenzene	108-67-8	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07272	Alpha Methyl Styrene	98-83-9	< 1.0	1.0	ppb(v)	< 4.B	4.8	ug/m3	1
07273	1,2,4-Trimethylbenzene	95-63-6	< 1.0	1.0	ppb(v)	< 4.9	4.9	ug/m3	1
07274	1,3-Dichlorobenzene	541-73-1	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07275	1,4-Dichlorobenzene	106-46-7	< 1.0	1.0	ppb(v)	< 6.0	6.0	ug/m3	1
07277	1,2-Dichlorobenzene	95-50-1	< 1.0	1.0	ppb(v)	< 6.0	5.0	ug/m3	1
07278	Hexachloroethane	67-72-1	< 1.0	1.0	ppb(v)	< 9.7	9.7	ug/m3	1

Page 3 of 3

15.

21.

DF

ug/m3

Lancaster Laboratories Sample No. 5366083 AQ

Group No. 1092117

Summa Can #166-Trip Blank Grab Air Sample Ciabattoni 050409

Collected: 05/15/2008 by JC Account Number: 01907

Submitted: 05/20/2008 09:30 Reported: 06/13/2008 at 10:49

07279 1,2,4-Trichlorobenzene

A2L Technologies 10220 Harney Road Thonotosassa FL 33592

ppb(v)

ppb(v) < 21.

Discard: 06/28/2008

Received Received CAT Final Pinal LOQ No. Analysis Name CAS Number Result LOO Units Regult Unite < 15. ug/m3

< 2.0

< 2.0

2.0

2.0

87-68-3 07280 Hexachlorobutadiene Isopropanol was not detected in this sample.

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

120-82-1

LOQ = Limit of Quantitation

Laboratory Chronicle

Dilution CAT Analysis Mathod Trial# Date and Time Analyst **Factor** Analysis Name No. 05/30/2008 23:05 Fanella S Zamcho EPA TO-15 05298 TO 15 VOA Ext. List 1 1

Page 1 of 5

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092117

Reported: 06/13/08 at 10:49 AM

Matrix QC may not be reported if site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD was performed, unless otherwise specified in the method.

Laboratory Compliance Quality Control

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	LOG	Unite	TREC	AREC	Limite	RPD	RPD Nax
Batch number: A0814930AB			5366075-53	66080				
tert-Butyl Alcohol	< 1.0	1.0	ppb(v)					
Propene	< 1.0	1.0	ppb(v)					
Dichlorodifluoromethane	< 1.0	1.0	ppb (v)	103	105	54-122	2	20
Chlorodifluoromethane	< 1.0	1.0	ppb (v)					
Freon 114	< 1.0	1.0	ppb (v)	101	105	58-125	4	20
Chloromethane	< 1.0	1.0	ppb(v)	102	107	50-127	5	20
Vinyl Chloride	< 1.0	1.0	ppb(v)	99	103	48-133	4	20
1,3-Buradiene	< 2.0	2.0	ppb (v)					
Bromomethane	< 1.0	1.0	ppb(v)	95	100	41-128	6	20
Chloroethane	< 1.0	1.0	ppb(v)	94	96	56-126	3	20
Dichlorofluoromethane	< 1.0	1.0	ppb(v)					
Trichlorofluoromethane	< 1.0	1.0	ppb(v)	98	102	60-126	4	20
Pentane	< 1.0	1.0	ppb(v)					
Acrolein	< 2.0	2.0	ppb(v)					
1,1-Dichloroethene	< 1.0	1.0	ppb(v)	105	112	56-127	6	20
Freon 113	< 2.0	2.0	ppb(v)	100	106	61-135	6	20
Acetone	< 2.0	2.0	ppb (v)					
Methyl Iodide	< 1.0	1.0	upb (v)					
Carbon Disulfide	< 2.0	2.0	ppb (v)					
Acetonitrile	< 2.0	2.0	ppb(v)					
3.Chloropropene	< 1.0	1.0	ppb(v)					
Methylene Chloride	< 1.0	1.0	ppb(v)	95	102	53-133	В	20
Acrylonitrile	< 2.0	2.0	ppb(v)					
trans-1,2-Dichloroethene	< 1.0	1.0	ppb(v)					
Methyl t-Butyl Ether	< 1.0	1.0	ppb (v)					
Hexane	< 1.0	1.0	ppb (v)					
1.1-Dichloroethane	< 1.0	1.0	ppb(v)	95	102	56-128	8	20
Vinyl Acetate	< 1.0	1.0	ppb(v)				_	
cis-1,2-Dichloroethene	< 1.0	1.0	ppb(v)	99	108	52-125	9	20
2-Butanone	< 2.0	2.0	ppb (v)		200	J- 1-5	-	20
Ethyl Acetate	< 1.0	1.0	ppb (v)					
Methyl Acrylate	< 1.0	1.0	ppb(v)					
Chloroform	< 1.0	1.0	ppb(v)	101	107	62-133	6	20
1,1,1-Trichloroethane	< 1.0	1.0	ppb (v)	104	110	57-136	5	20
Carbon Tetrachloride	< 1.0	1.0	ppb(v)	74	7B	53-123	6	20
1,2-Dichloroethane	< 1.0	1.0	ppb (v)	110	117	60-146	7	20
Benzene	< 1.0	1.0	ppb (v)	98	104	54-135	6	20
	< 1.0	1.0	ppb (v)	30	104	24-133	•	20
Isooctane	< 1.0	1.0						
Heptane			ppb (v)	123	125	57-138	2	20
Trichloroethene	< 1.0	1.0	ppb(v)	143	123	21-130	4	20
Ethyl Acrylate	< 1.0	1.0	ppb(v)	100		EE 343	-	20
1,2-Dichloropropane	< 1.0	1.0	ppb(v)	103	111	55-143	7	20
Methyl Methacrylate	< 1.0	1.0	ppb(v)					
Dibromomethane	< 1.0	1.0	ppb(v)					
1,4-Dioxane	< 1.0	1.0	ppb(v)					

*- Outside of specification

- (1) The result for one or both determinations was less than five times the LOQ.
- (2) The unspiked result was more than four times the spike added.

Page 2 of 5

Quality Control Summary

Client Name: A2L Technologies Reported: 06/13/08 at 10:49 AM Group Number: 1092117

	Blank	Blank	Report	LCS	LCSD	LC6/LCSD		
Analysis Name	Result	LOO	<u>Units</u>	SREC	*REC	Limita	RPD	RPD Max
Bromodichloromethane	< 1.0	1.0	ppb(v)					
cis-1,3-Dichloropropene	< 1.0	1.0	ppb (v)	85	93	48-132	8	20
4-Methyl-2-Pentanone	< 2.0	2.0	ppb(v)					
Toluene	< 1.0	1.0	ppb(v)	107	113	58-147	6	20
Octane	< 1.0	1.0	ppb(v)					
trans-1,3-Dichloropropene	< 1.0	1.0	ppb(v)	76	80	53-147	6	20
Ethyl Methacrylate	< 1.0	1.0	ppb(v)					
1,1,2-Trichloroethane	< 1.0	1.0	ppb(v)	105	113	54-132	7	20
Tetrachloroethene	< 1.0	1.0	ppb(v)	103	111	51-133	8	20
2-Hexanone	< 2.0	2.0	ppb(v)					
Dibromochloromethane	< 1.0	1.0	ppb(v)					
1,2-Dibromoethane	< 1.0	1.0	ppb(v)	105	116	53-158	9	20
Chlorobenzene	< 1.0	1.0	ppb(v)	107	114	60-137	7	20
1,1,1,2-Tetrachloroethane	< 1.0	1.0	ppb(v)					
Ethylbenzene	< 1.0	1.0	ppb(v)	107	114	63-140	7	20
m/p-Xylena	< 1.0	1.0	ppb(v)	102	107	63-136	4	20
o-Xylene	< 1.0	1.0	ppb (v)	110	116	62-160	6	20
Styrene	< 1.0	1.0	ppb(v)	89	92	58-169	4	20
Bromoform	< 1.0	1.0	ppb(v)				_	
Cumene	< 1.0	1.0	ppb(v)					
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ppb(v)	114	123	43-171	8	20
1,2,3-Trichloropropane	< 1.0	1.0	ppb(v)				•	
Bromobenzene	< 1.0	1.0	ppb(v)					
4-Ethyltoluene	< 1.0	1.0	ppb(v)					
1,3,5 Trimethylbenzene	< 1.0	1.0	ppb(v)	108	113	49-157	5	20
Alpha Methyl Styrene	< 1.0	1.0	ppb(v)	240	~=3	*** ***	_	
1,2,4-Trimethylbenzene	< 1.0	1.0	ppb(v)	102	107	44-164	5	20
1.3-Dichlorobenzene	< 1.0	1.0	ppb(v)	105	117	46-170	11	20
1.4-Dichlorobenzene	< 1.0	1.0	ppb(v)	96	106	39-169	9	20
1,2-Dichlorobenzene	< 1.0	1.0	ppb (v)	105	116	46-171	9	20
Hexachloroethane	< 1.0	1.0		103	YYD	40-7/1	,	20
1.2.4-Trichlorobenzene	< 2.0	2.0	ppb(v)	224	2.42	20 200	774	
Hexachlorobutadiene	< 2.0		ppb(v)	114	143	32-200	23*	20
Hexacutocopicaciene	< 2.0	2.0	ppb(v)	116	141	32-227	19	20
Batch number: A0814930AC	Sample n	umber(s):	5366075.53	66077-53	66078,5366	5081-5366082		
tert-Butyl Alcohol	< 1.0	1.0	ppb(v)					
Propene	< 1.0	1.0	pph (v)					
Dichlorodifluoromethane	< 1.0	1.0	ppb(v)	103	105	54-122	2	20
Chlorodifluoromethane	< 1.0	1.0	ppb(v)					
Freon 114	< 1.0	1.0	ppb(v)	101	105	58-125	4	20
Chloromethane	< 1.0	1.0	ppb(v)	102	107	50-127	5	20
Vinyl Chloride	< 1.0	1.0	ppb(v)	99	103	48-133	4	20
1,3-Butadiene	< 2.0	2.0	ppb(v)				_	
Bromomethane	< 1.0	1.0	ppb(v)	95	100	41-128	6	20
Chloroethane	< 1.0	1.0	ppb(v)	94	96	56-126	3	20
Dichlorofluoromethane	< 1.0	1.0	ppb(v)				-	
Trichlorofluoromethane	< 1.0	1.0	ppb(v)	98	102	60-126	4	20
Pentane	< 1.0	1.0	ppb (v)	20	202	00-220	*	2.0
Acrolein	< 2.0	2.0	ppb(v)					
1.1-Dichloroethene	< 1.0	1.0	ppb (v)	105	112	56-127	6	20
Freon 113	< 2.0	2.0	ppb(v)	100	106	61-135	6	20
Acetone	< 2.0	2.0	ppb(v)	100	100	01-133	0	20
Methyl Iodide	< 1.0	1.0	ppb (v)					
Carbon Disulfide	< 2.0							
CETNOR DISHTITGS	< 2.0	2.0	ppb(v)					

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Page 3 of 5

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092117 Reported: 06/13/08 at 10:49 AM

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	<u>roo</u>	<u>Units</u>	REC	*REC	Limite	RPD	RPD Mex
Acetonitrile	< 2.0	2.0	ppb(v)					
3-Chloropropene	< 1.0	1.0	ppb(v)					
Methylene Chloride	< 1.0	1.0	ppb(v)	95	102	53-133	В	20
Acrylonitrile	< 2.0	2.0	ppb(v)					
trans-1,2-Dichloroethene	< 1.0	1.0	ppb(v)					
Methyl t-Butyl Ether	< 1.0	1.0	ppb(v)					
Hexane	< 1.0	1.0	ppb(v)					
1,1-Dichloroethane	< 1.0	1.0	ppb(v)	95	102	56-128	8	20
Vinyl Acetate	< 1.0	1.0	ppb (v)					
cis-1,2-Dichloroethene	< 1.0	1.0	ppb(v)	99	108	52-125	9	20
2-Butanone	< 2.0	2.0	ppb(v)					
Ethyl Acetate	< 1.0	1.0	ppb(v)					
Methyl Acrylate	< 1.0	1.0	ppb(v)					
Chloroform	< 1.0	1.0	ppb(v)	101	107	62-133	6	20
1,1,1-Trichloroethane	< 1.0	1.0	ppb(v)	104	110	57-136	5	20
Carbon Tetrachloride	< 1.0	1.0	ppb(v)	74	78	53-123	6	20
1,2-Dichloroethane	< 1.0	1.0	ppb(v)	110	117	60-146	7	20
Benzene	< 1.0	1.0	ppb(v)	9 B	104	54-135	6	20
Isooctane	< 1.0	1.0	ppb(v)					
Heptane	< 1.0	1.0	ppb(v)					
Trichloroethene	< 1.0	1.0	ppb(v)	123	125	57-138	2	20
Ethyl Acrylate	< 1.0	1.0	ppb(v)					
1,2-Dichloropropane	< 1.0	1.0	ppb(v)	103	111	55-143	7	20
Methyl Methacrylate	< 1.0	1.0	ppb(v)					
Dibromomethane	< 1.0	1.0	ppb(v)					
1,4-Dioxane	< 1.0	1.0	ppb(v)					
Bromodichloromethane	< 1.0	1.0	ppb(v)					
cis-1,3-Dichloropropene	< 1.0	1.0	ppb(v)	85	93	48-132	8	20
4-Methyl-2-Pentanone	< 2.0	2.0	ppb(v)					
Toluene	< 1.0	1.0	ppb(v)	107	113	58-147	6	20
Octane	< 1.0	1.0	ppb(v)					
trans-1,3-Dichloropropene	< 1.0	1.0	ppb(v)	76	80	53-147	6	20
Ethyl Methacrylate	< 1.0	1.0	ppb(v)					
1,1,2-Trichloroethane	< 1.0	1.0	ppb(v)	105	113	54-132	7	20
Tetrachloroethene	< 1.0	1.0	ppb(v)	103	111	51-133	8	20
2-Hexanone	< 2.0	2.0	ppb(v)				•	
Dibromochloromethane	< 1.0	1.0	ppb(v)					
1.2-Dibromoethane	< 1.0	1.0	ppb(v)	105	116	53-158	9	20
Chlorobenzene	< 1.0	1.0	ppb(v)	107	114	60-137	7	20
1,1,1,2-Tetrachloroethane	< 1.0	1.0	ppb(v)					7.7
Ethylbenzene	< 1.0	1.0	ppb(v)	107	114	63-140	7	20
m/p-Xylene	< 1.0	1.0	ppb(v)	102	107	63-136	4	20
o-Xylene	< 1.0	1.0	ppb(v)	110	116	62-160	6	20
Styrene	< 1.0	1.0	ppb(v)	89	92	58-169	4	20
Bromoform	< 1.0	1.0	ppb(v)				-	20
Cumene	< 1.0	1.0	ppb(v)					
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ppb(v)	114	123	43-171	В	20
1,2,3-Trichloropropane	< 1.0	1.0	ppb(v)		45. ZZ _Z	49-717	0	40
Bromobenzene	< 1.0	1.0	ppb(v)					
4-Ethyltoluene	< 1.0	1.0	ppb (v)					
1,3,5-Trimethylbenzene	< 1.0	1.0	ppb (v)	108	113	49-157	5	20
Alpha Methyl Styrene	< 1.0	1.0	ppb(v)	700	444	43-731	3	40
1,2,4-Trimethylbenzene	< 1.0	1.0	ppb(v)	102	107	44-164	5	20
1,3-Dichlorobenzene	< 1.0	1.0	ppb(v)	102	117	46-170	11	20
T'I STRITTON CHACKE	4 1.0	2.0	Phn (A)	702	77,	40-710	7.7	20

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Page 4 of 5

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092117

Reported: 06/13/08 at 10:49 AM

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Regult	LOO	Units	BRBC	*REC	Limits	RPD	RPD Max
1,4-Dichlorobenzene	< 1.0	1.0	(v) dag	96	106	39-169	9	20
1,2-Dichlorobenzene	< 1.0	1.0	ppb(v)	105	116	46-171	9	20
Hexachloroethane	< 1.0	1.0	ppb(v)					
1.2.4-Trichlorobenzene	< 2.0	2.0	ppb(v)	114	143	32-200	23*	20
Hexachlorobutadiene	< 2.0	2.0	ppb(v)	116	141	32-227	19	20
			PP-(··					
Batch number: A0815130AA	Sample n	umber(s):	5366083					
tert-Butyl Alcohol	< 1.0	1.0	ppb(v)					
Propene	< 1.0	1.0	ppb(v)					
Dichlorodifluoromethane	< 1.0	1.0	ppb(v)	104	102	54-122	2	20
Chlorodifluoromethane	< 1.0	1.0	ppb(v)					
Freon 114	< 1.0	1.0	ppb(v)	105	105	58-125	0	20
Chloromethane	< 1.0	1.0	ppb(v)	108	106	50-127	2	20
Vinyl Chloride	< 1.0	1.0	ppb(v)	104	105	48-133	ī	20
1,3-Butadiene	< 2.0	2.0	ppb(v)				_	
Bromomethane	< 1.0	1.0	ppb(v)	102	98	41-128	3	20
Chloroethane	< 1.0	1.0	ppb(v)	98	101	56-126	3	20
Dichlorofluoromethane	< 1.0	1.0	ppb(v)	34	101	30 120	_	20
Trichlorofluoromethane	< 1.0	1.0	ppb(v)	102	101	60-126	1	20
Pencane	< 1.0	1.0	ppb (v)	102	101	00-120	-	20
Acrolein	< 2.0	2.0						
			ppb(v)	100	310	56-127	1	20
1,1-Dichloroethene	< 1.0	1.0	ppb(v)	109	110		Ö	
Freon 113	< 2.0	2.0	ppb(v)	102	101	61-135	U	20
Acetone	< 2.0	2.0	ppb (v)					
Methyl Iodide	< 1.0	1.0	ppb (v)					
Carbon Disulfide	< 2.0	2.0	ppb(v)					
Acetonitrile	< 2.0	2.0	ppb(v)					
3-Chloropropene	< 1.0	1.0	ppb(v)				_	
Methylene Chloride	< 1.0	1.0	ppb(v)	101	100	53~133	1	20
Acrylonitrile	< 2.0	2.0	ppb(v)					
trans-1,2-Dichloroethene	< 1.0	1.0	ppb (v)					
Methyl t-Butyl Ether	< 1.0	1.0	ppb (v)					
Hexane	< 1.0	1.0	ppb(v)					
1,1-Dichloroethane	< 1.0	1.0	ppb(v)	96	98	56~128	2	20
Vinyl Acetate	< 1.0	1.0	ppb(v)					
cis-1,2-Dichloroethene	< 1.0	1.0	ppb(v)	103	103	52-125	0	20
2-Butanone	< 2.0	2.0	ppb(v)					
Ethyl Acetate	< 1.0	1.0	ppb(v)					
Methyl Acrylate	< 1.0	1.0	ppb(v)					
Chloroform	< 1.0	1.0	ppb(v)	103	103	62-133	1	20
1,1,1-Trichloroethane	< 1.0	1.0	ppb(v)	105	103	57-136	2	20
Carbon Tetrachloride	< 1.0	1.0	ppb(v)	72	73	53-123	2	20
1,2-Dichloroethane	< 1.0	1.0	ppb(v)	108	110	60-146	2	20
Benzene	< 1.0	1.0	ppb(v)	98	102	54-135	5	20
Isooctane	< 1.0	1.0	ppb(v)					
Heptane	< 1.0	1.0	ppb(v)					
Trichloroethene	< 1.0	1.0	ppb(v)	120	126	57-138	4	20
Ethyl Acrylate	< 1.0	1.0	ppb(v)				-	
1,2-Dichloropropane	< 1.0	1.0	ppb(v)	107	107	55-143	1	20
Methyl Methacrylate	< 1.0	1.0	ppb(v)	m w 1	-21	JJ 41J	-	
Dibromomethane	< 1.0	1.0	ppb(v)					
1.4-Dioxane	< 1.0	1.0	ppb(v)					
Bromodichloromethane	< 1.0	1.0						
			ppb(v)	86	89	48-132	3	20
cis-1,3-Dichloropropene	< 1.0	1.0	ppb(v)	0.0	6.3	90-132	3	20

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Page 5 of 5

Quality Control Summary

Client Name: A2L Technologies Group Number: 1092117

Reported: 06/13/08 at 10:49 AM

	Blank	Blank	Report	LCS	LCSD	LCS/LCSD		
Analysis Name	Result	LOO	Units	*RBC	*REC	Limite	<u>RPD</u>	RPD Max
4-Methyl-2-Pentanone	< 2.0	2.0	ppb(v)					
Toluene	< 1.0	1.0	ppb(v)	107	100	58-147	1	20
Octane	< 1.0	1.0	ppb(v)					
trans-1,3-Dichloropropene	< 1.0	1.0	ppb(v)	70	76	53~147	8	20
Ethyl Methacrylate	< 1.0	1.0	(v) dąg					
1,1,2-Trichloroethane	< 1.0	1.0	ppb (v)	105	107	54-132	2	20
Tetrachloroethene	< 1.0	1.0	ppb (v)	102	105	51-133	3	20
2-Hexanone	< 2.0	2.0	ppb (v)					
Dibromochloromethane	< 1.0	1.0	ppb (v)					
1,2-Dibromoethane	< 1.0	1.0	ppb(v)	104	110	53-158	6	20
Chlorobenzene	< 1.0	1.0	ppb (v)	107	110	60-137	2	20
1,1,1,2-Tetrachloroethane	< 1.0	1.0	ppb(v)					
Ethylbenzene	< 1.0	1.0	ppb(v)	108	112	63-140	4	20
m/p-Xylene	< 1.0	1.0	ppb(v)	103	107	63-136	4	20
o-Xylene	< 1.0	1.0	ppb(v)	109	114	62-160	4	20
Styrene	< 1.0	1.0	ppb(v)	88	93	58-169	5	20
Bromoform	< 1.0	1.0	ppb(v)					
Cumene	< 1.0	1.0	ppb(v)					
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ppb(v)	114	121	43-171	5	20
1,2,3-Trichloropropane	< 1.0	1.0	ppb (v)					
Bromobenzene	< 1.0	1.0	ppb(v)					
4-Ethyltoluene	< 1.0	1.0	ppb(v)					
1,3,5-Trimethylbenzene	< 1.0	1.0	ppb(v)	106	112	49-157	5	20
Alpha Methyl Styrene	< 1.0	1.0	ppb(v)					
1,2,4 Trimethylbenzene	< 1.0	1.0	ppb(v)	103	106	44-164	3	20
1,3-Dichlorobenzene	< 1.0	1.0	ppb(v)	107	114	46-170	6	20
1,4-Dichlorobenzene	< 1.0	1.0	ppb(v)	100	109	39-169	8	20
1,2-Dichlorobenzene	< 1.0	1.0	ppb(v)	108	118	46-171	9	20
Hexachloroethane	< 1.0	1.0	ppb(v)					
1,2,4-Trichlorobenzene	< 2.0	2.0	ppb(v)	107	134	32-200	22*	20
Hexachlorobutadiene	< 2.0	2.0	ppb(v)	99	116	32-227	16	20

^{*-} Outside of specification

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

⁽²⁾ The unspiked result was more than four times the spike added.

Analytical Report

Work Order: RSJ0643

Project Description
Ciabattoni Brownfield Site

For:

Joseph Clemis

A2L Technologies 10220 Harney Road, NE Thonolosassa, FL 33592

Tony Bogolin

Tony Byli

Project Manager

tony.bogolin@testamericainc.com

Tuesday, November 3, 2009

The test results in this report meet all NELAP requirements for analytes for which accreditation is required or available. Any exception to NELAP requirements are noted in this report. Persuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this test report should be directed to the TestAmerica Project manager who has signed this report.

A2L Technologies 10220 Harney Road, NE Thonotosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

TestAmerica Buffalo Current Certifications

As of 1/27/2009

STATE	Program	Cert # / Lab ID
Arkansas	CWA, RCRA, SOIL	88-0686
California*	NELAP CWA, RCRA	01169CA
Connecticut	SDWA, CWA, RCRA, SOIL	PH-0568
Florida*	NELAP CWA, RCRA	E87672
Georgia*	SDWA, NELAP CWA, RCRA	956
Illinois*	NELAP SDWA, CWA, RCRA	200003
lowa	SW/CS	374
Kansas*	NELAP SDWA, CWA, RCRA	E-10187
Kentucky	SDWA	90029
Kentucky UST	UST	30
Louisiana*	NELAP CWA, RCRA	2031
Maine	SDWA, CWA	NY0044
Maryland	SDWA	294
Massachusetts	SDWA, CWA	M-NY044
Michigan	SDWA	9937
Minnesota	SDWA,CWA, RCRA	036-999-337
New Hampshire*	NELAP SDWA, CWA	233701
New Jersey*	NELAP, SDWA, CWA, RCRA,	NY455
New York*	NELAP, AIR, SDWA, CWA, RCRA,CLP	10026
Oklahoma	CWA, RCRA	9421
Pennsylvania*	NELAP CWA, RCRA	68-00281
Tennessee	SDWA	02970
Texas*	NELAP CWA, RCRA	T104704412-08-TX
USDA	FOREIGN SOIL PERMIT	S-41579
USDOE	Department of Energy	DOECAP-STB
Virgínia	SDWA	278
Washington*	NELAP CWA,RCRA	C1677
Wisconsin	CWA, RCRA	998310390
West Virginia	CWA,RCRA	252

[&]quot;As required under the indicated accreditation, the test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report.

Sample Data Summary Package

A2L Technologies 10220 Harney Road, NE Thonolosassa, FL 33592 Work Order: RSJ0643

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Received: 10/09/09 Reported: 11/03/09 12:07

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualifiers
S1	RSJ0643-01	Solid	10/06/09 10:00	10/09/09 09:20	
\$2	RSJ0643-02	Solid	10/06/09 10:15	10/09/09 09:20	
S3	RSJ0643-03	Solid	10/06/09 11:00	10/09/09 09:20	
S4	RSJ0643-04	Solid	10/06/09 11:15	10/09/09 09:20	
S5	RSJ0643-05	Solid	10/06/09 12:15	10/09/09 09:20	
S6	RSJ0643-06	Solld	10/06/09 12:30	10/09/09 09:20	
S7	RSJ0643-07	Solld	10/06/09 11:15	10/09/09 09:20	
S8	RSJ0643-08	Solld	10/06/09 15:45	10/09/09 09:20	
S9	RSJ0643-09	Solid	10/06/09	10/09/09 09:20	
S10	RSJ0643-10	Solid	10/06/09	10/09/09 09:20	
W1	RSJ0643-11	Ground Water	10/07/09 11:40	10/09/09 09:20	
W2	RSJ0643-12	Ground Water	10/07/09 14:19	10/09/09 09:20	
W3	RSJ0643-13	Ground Water	10/07/09 17:21	10/09/09 09:20	
W4	RSJ0643-14	Ground Water	10/08/09 10:35	10/09/09 09:20	
W5	RSJ0643-15	Ground Water	10/07/09 15:41	10/09/09 09:20	
W6	RSJ0643-16	Ground Water	10/07/09 18:30	10/09/09 09:20	
W7	RSJ0643-17	Ground Water	10/08/09 08:45	10/09/09 09:20	
W8	RSJ0643-18	Ground Water	10/07/09 18:30	10/09/09 09:20	
TRIP BLANK	RSJ0643-19	Waler	10/08/09	10/09/09 09:20	

A2L Technologies 10220 Harney Road, NE Thonolosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Clabationi Brownfield Site Project Number: 48001559-2

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfile, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

N-Nitrosodiphenylamine recovery was elevated in Laboratory Control Samples (LCS) 9J12044-BS1 and 9J12044-BS2 indicating a possible high bias. This compound was not detected in the associated samples.

Atrazine recovery was below QC limits for Laboratory Control Sample (LCS) 9J13065-BS1 and it's duplicate 9J13065-BSD1. The RPD for Benzaldehyde was elevated for the LCS/LCSD pair, though the individual recoveries were within QC limits for this analyte. Individual analyte exceedances for multicomponent analyses are allowed without qualifacation of the data per NELAC standard.

For the Pesticide dual column analysis, a Form 1 will be provided for both columns for the Quality Control samples (Blanks, Laboratory Control Samples, Matrix Spikes and Duplicates). The primary column for this analysis is the B column.

For the PCB dual column analysis, a Form 1 will be provided for both columns for the Quality Control samples (Blanks, Laboratory Control Samples, Matrix Spikes and Duplicates). The primary column for this analysis is the A column.

Mercury Continuing Calibration Blank RJ91938-CCB4 indicates that the found result is at or above the reporting limit; however, the reporting limit is 0.20 mg/l. The reporting limit listed on the form is taking into account the volumes used for the preparation of the samples. The initial volume is 30 ml and final volume is 50 ml resulting in the reporting limit of 0.12 mg/l presented on the form.

I certify that this data package is In compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Tony Bogolin

Project Manager

Tuesday, November 3, 2009

There are pertinent documents appended to this report, 4 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

A2L Technologies 10220 Harney Road, NE	Work Order: RSJ0643	Received: 10/09/09 Reported: 11/03/09 12:07
Thonolosassa, FL 33592	Project: Ciabattonl Brownfield Site Project Number: 48001559-2	

	DATA QUALIFIERS AND DEFINITIONS
В	Analyte was detected in the associated Method Blank.
B1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not impacted.
C4	Calibration Verification recovery was below the method control limit for this analyte.
D08	Dilution required due to high concentration of target analyte(s)
D10	Dilution required due to sample color
J	Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection
	Limit (MDL). Concentrations within this range are estimated.
L	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.
	Analyte not detected, data not impacted.
L1	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
L5	Analyte recovery outside of specified criteria. Individual analyte criteria exceedences allowed for multi-component analyses without disqualification of data per NELAC Standard, DOD QSM and/or AFCEE QAPP.
QFL	Florisil clean-up (EPA 3620) performed on extract.
QSU	Sulfur (EPA 3660) clean-up performed on extract.
R2	The RPD exceeded the acceptance limit.
T11	This compound is a calibrated analyte and therefore is qualitatively and quantitatively reported compared to a known standard that is in control.
T7	Tentatively identified compound. Concentration is estimated based on the closest internal standard.
NR	Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

TIC Analyzed by MS T.I.C. (Tentatively Identified Compound)

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

A2L Technologies 10220 Harney Road, NE Thonolosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Evacutiva	CHIMMON	Detections
EXECUTIVE	Summary -	Detections

		EX	ecnove :	Summai	y - Detec					
	Sample	Data				DII	Date	Lab	_	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-0	1 (S1 - Soli	id)			Samp	led: 1	0/06/09 10:00	Rec	vd: 10/09	/09 09:20
Volatile Organic Com	pounds by	EPA 8260B								
Acetone	12	J	30	1.3	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B
Methylene Chloride	1.8	J	5.9	1.2	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B
Semivolatile Organics	by GC/MS	ì								
Benzo[a]anthracene	21	J	200	3.4	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13085	8270C
Benzo(a)pyrene	18	J	200	4.8	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13085	8270C
Benzo[b]fluoranthene	21	J	200	3.8	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13085	8270C
Benzo[g,h,i]perylene	14	J	200	2.4	ug/kg dry	1.00	10/16/09 12:04			8270C
Benzo[k]fluoranthene	12	J	200	2.2	ug/kg dry	1.00	10/16/09 12:04			8270C
Chrysene	21	J	200	2.0	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Fluoranthene	35	J	200	2.9	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Indeno[1,2,3-cd]pyrene	12	J	200	5.5	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Phenanthrene	16	J	200	4.1	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Pyrene	36	J	200	1.3	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Organochlorine Pestl	cides by E	PA Method	8081A							
4,4'-DDD [2C]	0.97	QFL,J	1.9	0.37	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
4,4'-DDE [2C]	1.0	QFLJ	1.9	0.55	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
4,4'-DDT [2C]	1.7	QFLJ	1.9	0.44	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
alpha-BHC [2C]	1.6	QFL,J	1.9	0,35	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
delta-BHC [2C]	0.91	QFL,J	1.9	0,25	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
Dieldrin [2C]	0.61	QFL,J	1.9	0.48	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
Endrin ketone [2C]	0.70	QFL,J	1.9	0.47	ug/kg dry	1.00	10/16/09 07:23	DGB	9J10008	8081A
gamma-Chlordane [2C]	1.3	QFL,J	1.9	0.26	ug/kg dry	1.00	10/18/09 07:23	DGB	9J10008	8081A
Total Metals by SW 84	46 Series N	<u>lethods</u>								
Aluminum	10100		12.2	1,5	mg/kg dry	1.00	10/20/09 21:57	DAN	BJ15055	6010B
Arsenic	4.3	В	2.4	0.3	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Barium	61.8		0.611	0.032	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Beryllium	0.455	В	0.245	0.012	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Cadmium	0.152	J	0.245	0.049	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Calcium	3030		61.1	12.2	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Chromium	10.9		0.611	0.110	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Coball	8.05		0.611	0.061	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Copper	20.2		1.2	0.1	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Iron	19300		12.2	3.7	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Lead	7.6		1.2	0.1	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Megnesium	4050	В	24.5	1.1	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Manganese	433	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Nickel	14.3		6.11	860.0	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Potassium	1460		36.7	5.9	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Sodium	80.0	J	171	37.B	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Vanadium	19,9		0.611	0.049	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Zinc	47.1	В	2.4	0.2	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B
Mercury	0.0101	J	0.0248	0.0100	mg/kg dry	1.00	10/20/09 15:08	MXM	9J19064	7471A
General Chemistry Pa	arameters									
Percent Solids	B4		0.010	NR	%	1.00	10/12/09 15:32	JR	9J12049	Dry Weight
										-

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

A2L Technologies 10220 Harney Road, NE Thonotosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Executive Summary - Detections										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-02	2 (S2 - Sol	ld)			Samp	oled: 1	0/06/09 10:15	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
Methylene Chloride	2.0	J	5.5	1.1	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Organochlorine Pestic	ides by E	PA Method	B0B1A							
delta-BHC [2C]	0.86	QFL,J	1.8	0.24	ug/kg dry	1.00	10/16/09 07:59	DGB	9J10008	8081A
Total Metals by SW 84		<u>lethods</u>								
Aluminum	9250	_	10,3	1,3	mg/kg dry	1.00	10/20/09 22:02		•	6010B
Arsenic	3.5	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:02			6010B
Barium	52.6		0.513	0.027	mg/kg dry	1.00	10/20/09 22:02			6010B
Beryllium	0.423	В	0.205	0.010	mg/kg dry	1.00	10/20/09 22:02			6010B
Cadmium	0.077	J	0.205	0.041	mg/kg dry	1.00	10/20/09 22:02			6010B
Calcium	1490		51.3	10.3	mg/kg dry	1.00	10/20/09 22:02			6010B
Chromium	18.5		0.513	0.092	mg/kg dry	1.00	10/20/09 22:02			6010B
Cobalt	7.14		0.513	0.051	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
Copper	17.0		1.0	0.1	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
lron	18600		10.3	3.1	mg/kg dry	1,00	10/20/09 22:02	DAN	9J15055	60108
Lead	5.7		1.0	0.1	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
Magnesium	2990	В	20.5	1.0	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
Manganese	414	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:02			6010B
Nickel	12.8	D1, 0	5.13	0.082	mg/kg dry	1,00	10/20/09 22:02			6010B
Potassium	1460		30.8	5.0	mg/kg dry	1.00	10/20/09 22:02			6010B
Sodium	78.2	j	144	31.8		1.00	10/20/09 22:02			6010B
Thallium		J	6.2		mg/kg dry	1.00	10/20/09 22:02			6010B
	0.5	J		0.3	mg/kg dry	1.00	10/20/09 22:02			6010B
Venedium Zinc	16.8 38.8	В	0.513 2.1	0.041 0.2	mg/kg dry mg/kg dry	1.00	10/20/09 22:02			6010B
			2.1	U.E.	iliging dry	1,00	10120100 22.01		50 15555	00105
General Chemistry Pa										
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:34	JR	9J12049	Dry Weight
Sample ID: RSJ0643-03	3 (S3 - So	lid)			Samp	pled: '	10/06/09 11:00	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp		_	•							
Methylene Chloride	1.7	J	5.7	1.1	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Semivolatile Organics		_	46-	-	_		44444		- 146	*****
Benzo[a]anthracene	11	J	190	3.2	ug/kg dry	1.00	10/16/09 12:28			8270C
Fluoranthene	10	J	190	2.7	ug/kg dry	1.00	10/16/09 12:28			8270C
Pyrene	10	J	190	1.2	ug/kg dry	1.00	10/16/09 12:28	MKP	9J13065	8270C
Organochlorine Pestic							4040000000		0.140000	00011
4,4'-DDT [2C]	1.1	QFL,J	1.9	0.43	ug/kg dry	1.00	10/16/09 08:35			8081A
delta-BHC [2C]	0.90	QFL,J	1.9	0.25	ug/kg dry	1.00	10/16/09 08:35			8081A
gamma-Chlordane [2C]	0.29	QFL,J	1.9	0.26	ug/kg dry	1.00	10/16/09 08:35	DGB	9J10008	8081A
Total Metals by SW 84	6 Serles I	Methods								
Aluminum	9490		11.6	1.5	mg/kg dry	1.00	10/20/09 22:07	DAN	9J15055	6010B
Arsenic	3.6	В	2,3	0.3	mg/kg dry	1,00	10/20/09 22:07	DAN	9J15055	6010B
Barium	66.4		0.582	0.030	mg/kg dry	1.00	10/20/09 22:07	DAN	9J15055	6010B
Beryllium	0.436	В	0.233	0.012	mg/kg dry	1.00	10/20/09 22:07			6010B
•			_							

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	 -	Ex	ecutive	Summa	ry - Detec	tions				
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units_	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-4	03 (S3 - Sol	id) - cont.			Samp	oled: 1	0/06/09 11:00	Rec	vd: 10/09	/09 09:20
Total Metals by SW 8	46 Series N	<u> Aethods - co</u>	<u>nt</u>							
Cadmium	0.125	J	0.233	0.047	mg/kg dry	1.00	10/20/09 22:07			6010B
Calcium	3150		58.2	11.6	mg/kg dry	1.00	10/20/09 22:07			6010B
Chromium	9.02		0.582	0.105	mg/kg dry	1.00	10/20/09 22:07			6010B
Cobalt	6.64		0.582	0.058	mg/kg dry	1.00	10/20/09 22:07			6010B
Copper	17.9		1.2	0.1	mg/kg dry	1.00	10/20/09 22:07			6010B
Iron	17200		11.6	3.5	mg/kg dry	1.00	10/20/09 22:07			6010B
Lead	6.1		1.2	0.1	mg/kg dry	1.00	10/20/09 22:07			6010B
Magnesium	3590	В	23.3	1,1	mg/kg dry	1.00	10/20/09 22:07			6010B
Manganese	420	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:07			6010B
Nickel	11.3		5.82	0.093	mg/kg dry	1.00	10/20/09 22:07			6010B
Potassium	1350		34.9	5.7	mg/kg dry	1.00	10/20/09 22:07			6010B
Sodium	221		163	36.1	mg/kg dry	1.00	10/20/09 22:07			6010B
Vanadium	17.4		0.582	0.047	mg/kg dry	1.00	10/20/09 22:07			6010B
Zinc	37.9	В	2,3	0.2	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
General Chemistry P	<u>arameters</u>									
Percent Solids	87		0.010	NR	%	1.00	10/12/09 15:30	3 JR	9J12049	Dry Weight
Sample ID: RSJ0643-	04 (S4 - So	lld)			Samp	oled: 1	10/06/09 11:15	Rec	vd: 10/08	/09 09:20
Volatile Organic Com	npounds by	EPA 8260B								
Acetone	120	J	130	5.9	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
Ethylbenzene	29		27	1.9	ug/kg dry	1.00	10/10/09 20:49	PQ	BJ10019	82609
Isopropylbenzene	140		27	4.1	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
Methylcyclohexane	110		27	1.7	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	82608
Methylene Chloride	11	j	27	5.3	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
m-Xylene & p-Xylene	7.2	J	54	4.5	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
Organochlorine Pest	icides by E	PA Method	8081A							
delta-BHC [2C]	0.82	QFL,J	1.8	0.24	ug/kg dry	1.00	10/16/09 09:1	DGB	9J10008	8081A
Total Metals by SW 6	46 Series I	<u>Vethods</u>								
Aluminum	6660		11.6	1.5	mg/kg dry	1.00	10/20/09 22:12	2 DAN	9J15055	6010B
Arsenic	4.1	В	2.3	0.3	mg/kg dry	1.00	10/20/09 22:12	2 DAN	9J15055	6010B
Berium	54,5	_	0.580	0.030	mg/kg dry	1.00	10/20/09 22:1:			6010B
Beryllium	0.334	В	0.232	0.012	mg/kg dry	1.00	10/20/09 22:12	2 DAN	9J15055	6010B
Cadmium	0.101	Ĵ	0.232	0.046	mg/kg dry	1.00	10/20/09 22:12			6010B
Calcium	1970		58.0	11.6	mg/kg dry	1.00	10/20/09 22:12			6010B
Chromium	7.69		0.580	0.104	mg/kg dry	1.00	10/20/09 22:1:			6010B
Cobalt	6.86		0.580	0.058	mg/kg dry	1.00	10/20/09 22:13			6010B
Copper	16.0		1.2	0.1	mg/kg dry	1.00	10/20/09 22:1			6010B
Iron	15300		11.6	3.5	mg/kg dry	1.00	10/20/09 22:12			6010B
Lead	5.5		1.2	0.1	mg/kg dry	1.00	10/20/09 22:1			6010B
Magneslum	2790	В	23.2	1.1	mg/kg dry	1.00	10/20/09 22:1:			6010B
Manganese	210	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:1			6010B
Nickel	13.4	5., 5	5.80	0.093	mg/kg dry	1.00	10/20/09 22:1:			6010B
Potassium	1260		34.8	5.6	mg/kg dry	1.00	10/20/09 22:1			6010B
Sodium	144	J	162	36.0	mg/kg dry	1.00	10/20/09 22:1:			6010B
Thallium	0.3	J	7.0	0.3	mg/kg dry	1.00	10/20/09 22:1			6010B
	V.0	J	7.0	0.0	mg/xg ury		O'LO'O' ALI	_ =/111	50.5000	00100

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		Fv	ecutive	Summa	ry - Detec	tione	=			
	Sample	Data	-cutive	Julillia	.y - Delec	Dil		Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac		Tech	Batch	Method
Sample ID: RSJ0643-0	4 (\$4 - So	lid) - cont.			Samp	oled: 1	0/06/09 11:15	Rec	vd: 10/09	/09 09:20
Total Metals by SW 84	l <u>6 Series N</u>	Methods - co	<u>nt.</u>							
Vanadium	14.0		0.580	0.046	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Zinc	39.7	В	2.3	0.2	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
General Chemistry Pa	rameters									
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:38	JR	9J12049	Dry Weight
Cyanide	8.0	J	1.0	0.5	mg/kg dry	1.00	10/16/09 09:27			9012A
Sample ID: RSJ0643-0	5 (S5 - Sol	lid)				oled: 1	0/06/09 12:15	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	pounds by	EPA 8260B								
Cyclohexane	2.1	J	5.3	0.24	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
Methylene Chloride	1.5	J	5.3	1.1	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
Benzo(a)anthracene	67	 D10,J	880	15	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13065	8270C
Benzo[a]pyrene	61	D10,J	880	21	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13065	8270C
Benzo[b]fluoranthene	76	D10,J	880	17	ug/kg dry	5.00	10/16/09 12:53			B270C
Benzo[g,h,i]perylene	43	D10,J	880	11	ug/kg dry	5,00	10/16/09 12:53		9J13065	8270C
Chrysene	54	D10,J	880	8.8	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
Phenanthrene	41	D10,J	880	18	ug/kg dry	5.00	10/16/09 12:53			8270C
Pyrene	83	D10,J	880	5.7	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13065	8270C
Organochlorine Pestic	cides by E	PA Method	8081A							
4,4'-DDD [2C]	0.70	QFL,J	1.8	0.34	ug/kg dry	1.00	10/19/09 16:56 (DGB	9J10008	8081A
4,4'-DDE [2C]	0.66	QFL,J	1.8	0.51	ug/kg dry	1.00	10/19/09 16:56 [8081A
4,4'-DDT [2C]	1.6	QFL,J	1.8	0.40	ug/kg dry	1.00	10/19/09 16:56 (-		8081A
alpha-Chlordane [2C]	0.93	QFL,J	1.8	0.88	ug/kg dry	1,00	10/19/09 16:56 (8081A
delta-BHC [2C]	0.91	QFL,J	1.8	0.23	ug/kg dry	1.00	10/19/09 16:56 [8081A
Dieldrin (2C)	0.67	QFL,J	1.8	0.42	ug/kg dry	1.00	10/19/09 16:56 [8081A
gamma-Chlordane [2C]	0.86	QFL,C4, J	1.8	0.24	ug/kg dry	1.00	10/19/09 16:56 (8081A
Total Metals by SW 84	l6 Series N	/lethods								
Aluminum	9150		10.6	1.3	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Arsenic	3.1	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:17			6010B
Barium	46,3		0.531	0.028	mg/kg dry	1.00	10/20/09 22:17		9J15055	6010B
Beryllium	0.436	В	0.212	0.011	mg/kg dry	1.00	10/20/09 22:17			6010B
Cadmium	0.169	J	0.212	0.042	mg/kg dry	1.00	10/20/09 22:17			6010B
Calcium	36300		53.1	10.6	mg/kg dry	1.00	10/20/09 22:17			6010B
Chromium	9.73		0.531	0.096	mg/kg dry	1.00	10/20/09 22:17			6010B
Cobalt	6.84		0.531	0.053	mg/kg dry	1.00	10/20/09 22:17			6010B
Copper	12.4		1.1	0.1	mg/kg dry	1.00	10/20/09 22:17			6010B
Iron	15800		10.6	3.2	mg/kg dry	1.00	10/20/09 22:17			6010B
Lead	8,1		1,1	0.1	mg/kg dry	1.00	10/20/09 22:17 (6010B
Magneslum	22200	В	21.2	1.0	mg/kg dry	1.00	10/20/09 22:17 (6010B
Manganese	493	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:17			6010B
Nickel	12,5	•	5.31	0.085	mg/kg dry	1.00	10/20/09 22:17			6010B
Potassium	1190		31.8	5.2	mg/kg dry	1.00	10/20/09 22:17			6010B
Sodium	127	J	149	32.9	mg/kg dry	1.00	10/20/09 22:17			6010B
Vanadium	16.0		0.531	0.042	mg/kg dry	1.00	10/20/09 22:17			6010B
					- *					

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		Ex	(ecutive	Summa	ry - Detec	tions	1			
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-0	5 (S5 - Sol	id) - cont.			Samı	oled: 1	10/06/09 12:15	Rec	vd: 10/09	/09 09:20
Total Metals by SW 84	16 Series A	lethods - co	ont.							
Zinc	62.7	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Mercury	0.0090	J	0.0217	8800.0	mg/kg dry	1.00	10/20/09 15:23	MXM	9J19064	7471A
General Chemistry Pa	rameters									
Percent Solids	94		0.010	NR	%	1.00	10/12/09 15:40	JR	9J12049	Dry Weight
Sample ID: RSJ0643-0	6 (S6 - Sol	lid)			Samı	oled: 1	10/06/09 12:30	Rec	vd: 10/09	/09 09:20
Volatile Organic Com	pounds by	EPA 8260B	,							
Malhylene Chloride	1.7	J	5.7	1.1	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B
Organochlorine Pesti	cides by E	PA Method	8081A							
4,4'-DDT [2C]	1.1	QFLJ	1.9	0.43	ug/kg dry	1.00	10/16/09 09:47	DGB	9J10008	8081A
alpha-BHC [2C]	0.88	QFL,J	1.9	0.34	ug/kg dry	1.00	10/16/09 09:47			8081A
delta-BHC [2C]	0.92	QFL,J	1.9	0.25	ug/kg dry	1.00	10/16/09 09:47			8081A
gamma-BHC (Lindane) [2C]	0.58	QFL,J	1.9	0.33	ug/kg dry	1.00	10/16/09 09:47			8081A
gamma-Chlordane [2C]	0.30	QFL,J	1.9	0.26	ug/kg dry	1.00	10/16/09 09:47	DGB	9J10008	8081A
Total Metals by SW 84	16 Series N	dethods								
Aluminum	11900		10.8	1.4	mg/kg dry	1.00	10/20/09 22:22	DAN	9J15055	6010B
Arsenic	2.9	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:22	DAN	9J15055	60109
Barium	61.0		0.538	0.028	mg/kg dry	1.00	10/20/09 22:22			6010B
Beryllium	0.498	В	0.215	0.011	mg/kg dry	1.00	10/20/09 22:22	-		6010B
Cadmlum	0.088	J	0.215	0.043	mg/kg dry	1.00	10/20/09 22:22			6010B
Calcium	1520		53.8	10.8	mg/kg dry	1.00	10/20/09 22:22			6010B
Chromium	13.7		0.538	0.097	mg/kg dry	1.00	10/20/09 22:22			6010B
Cobalt	7.28		0.538	0.054	mg/kg dry	1.00	10/20/09 22:22			6010B
Copper	19.0		1.1	0,1	mg/kg dry	1.00	10/20/09 22:22			6010B
Iron	18900		10.8	3.2	mg/kg dry	1.00	10/20/09 22:22			6010B
Lead	5.2		1.1	0.1	mg/kg dry	1.00	10/20/09 22:22			6010B
Magnesium	3450	В	21.5	1.0	mg/kg dry	1.00	10/20/09 22:22			6010B
Manganese	330	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:22			6010B
Nickel	13.5	,-	5.38	0.086	mg/kg dry	1.00	10/20/09 22:22			6010B
Potassium	1480		32.3	5.2	mg/kg dry	1.00	10/20/09 22:22			6010B
Sodium	201		151	33.4	rng/kg dry	1.00	10/20/09 22:22		9J15055	6010B
Vanadium	22.2		0.538	0.043	mg/kg dry	1.00	10/20/09 22:22			6010B
Zine	36.2	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:22			6010B
Mercury	0.0101	J	0.0216	0.0087	mg/kg dry	1.00	10/20/09 15:25			7471A
General Chemistry Pa	rameters									
Percent Solids	87		0.010	NR	%	1.00	10/12/09 15:42	JR	9J12049	Dry Weigh
warm wandu	91		0.010	1417	70	1.00	10/12/08 10:42	JIK	3012010	

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			rojeat man		71005-2			_		
		Ex	ecutive	Summa	ry - Detec	tions				
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-0	7 (S7 - Sol	id)			Samı	pled: 1	10/06/09 11:15	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
2-Butanone (MEK)	8.2	J	27	2.0	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Acelone	39		27	1.2	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Benzene	1.9	J	5.4	0.27	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	6260B
Ethylbenzene	140		5.4	0.37	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Isopropylbenzene	33		5.4	0.82	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Methylcyclohexane	61		5.4	0.35	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Melhylene Chłoride	3.1	J	5.4	1.1	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
m-Xylene & p-Xylene	150		11	0,91	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	82608
o-Xylene	9.5		5.4	0.71	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Toluene	3.4	J	5.4	0.41	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Semivolatile Organics	by GC/MS	3								
2-Methylnaphthalene	310	_ D10,J	1900	22	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Benzo[a]anthracene	150	D10,J	1900	32	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Benzo[a]pyrene	100	D10,J	1900	45	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Benzo[b]fluoranthene	120	D10,J	1900	36	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Chrysene	100	D10,J	1900	19	ug/kg dry	10.0	10/16/09 13:16			8270C
Fluoranthene	160	D10.J	1900	27	ug/kg dry	10.0	10/16/09 13:18			8270C
Naphthalene	150	D10,J	1900	31	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Phenanthrene	86	D10,J	1900	39	ug/kg dry	10.0	10/16/09 13:18			8270C
Pyrene	190	D10,J	1900	12	ug/kg dry	10.0	10/16/09 13:18			8270C
Organochlorine Pestic	ides by E	PA Method 8	3081A							
4,4'-DDD [2C]	1.1	QFL,J	1.8	0.35	ug/kg dry	1.00	10/19/09 17:32	nga	9 110008	8081A
4,4'-DDE [2C]	2.0	QFL	1.8	0.53	ug/kg dry	1.00	10/19/09 17:32			8081A
4,4'-DDT [2C]	2.4	QFL	1.8	0.42	ug/kg dry	1.00	10/19/09 17:32			8081A
alpha-BHC [2C]	0.95	QFLJ	1.8	0.33	ug/kg dry	1.00	10/19/09 17:32			8081A
alpha-Chlordane [2C]	1.1	QFL,J	1.8	0.91	ug/kg dry	1.00	10/19/09 17:32			8081A
delta-BHC [2C]	0.85	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 17:32			8081A
Dieldrin [2C]	0.77	QFL,J	1.8	0.44	ug/kg dry	1,00	10/19/09 17:32			8081A
gamma-Chlordane [2C]	1.2	QFL,C4, J	1.8	0.25	ug/kg dry	1.00	10/19/09 17:32			8081A
		, -		-,	ograg ory		10,10,00		55 15555	000171
Polychlorinated Biphe			_							
Aroclor 1248	37	QSU	18	3.5	ug/kg dry	1.00	10/18/09 18:18			B082
Aroclor 1260	5.5	QSU,J	18	3.8	ug/kg dry	1.00	10/18/09 18:16	SCH	9J16100	8082
Total Metals by SW 84	6 Series N	<u>lethods</u>								
Aluminum	9510		11.0	1.4	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Arsenic	3.0	В	2,2	0.2	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Barium	46.2		0.549	0.029	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Beryllium	0.382	В	0.220	0.011	mg/kg dry	1,00	10/20/09 22:27	DAN	9J15055	6010B
Cadmium	0.121	J	0.220	0.044	mg/kg dry	1.00	10/20/09 22:27			6010B
Calcium	6330		54.9	11.0	mg/kg dry	1.00	10/20/09 22:27			6010B
Chromium	8.32		0.549	0.099	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Coball	8.93		0.549	0.055	mg/kg dry	1.00	10/20/09 22:27			6010B
Copper	38.8		1.1	0.1	mg/kg dry	1.00	10/20/09 22:27			6010B
Iron	24100		11.0	3.3	mg/kg dry	1.00	10/20/09 22:27			6010B
Lead	12.3		1.1	0.1	mg/kg dry	1.00	10/20/09 22:27			6010B
Magnesium	5550	В	22.0	1.0	mg/kg dry	1.00	10/20/09 22:27			6010B
Tool America Duffele										

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		Ex	ecutive	Summai	ry - Detec	tions				
	Sample	Data			-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: R\$J0643-0	7 (S7 - Sol	lid) - cont.			Samp	oled: 1	0/06/09 11:15	Rec	vd: 10/09	/09 0 9 :20
Total Metals by SW 84	6 Series N	<u> Methods - co</u>	nt.							
Manganese	320	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Nickel	11.8		5.49	0.088	mg/kg dry	1.00	10/20/09 22:27			6010B
Polassium	1170		32.9	5.3	mg/kg dry	1.00	10/20/09 22:27			6010B
Sodium	176		154	34.0	mg/kg dry	1.00	10/20/09 22:27			6010B
Vanadium	31.6		0.549	0.044	mg/kg dry	1.00	10/20/09 22:27			6010B
Zinc	51.6	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:27			6010B
Mercury	0.0112	J	0.0215	0.0087	mg/kg dry	1.00	10/20/09 15:26	MXM	9J19064	7471A
General Chemistry Pa	rameters									
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:44	JR	9J12049	Dry Weight
Sample ID: RSJ0643-0	8 (S8 - Sol	lid)			Samp	oled: 1	0/06/09 15:45	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	pounds by	EPA 8260B								
Methylene Chloride	1.7	J	5.8	1.2	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
Benzo[a]anthracene	120		2000	34	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C
Benzo[b]fluoranthene	100	D10,J	2000	39	ug/kg dry	10.0	10/16/09 13:42			8270C
Pyrene	110	D10,J	2000	13	ug/kg dry	10.0	10/16/09 13:42			8270C
Organochlorine Pestic	cides by E	PA Method	8081A							
4,4'-DDE [2C]	0.59	QFL,J	2.0	0.57	ug/kg dry	1.00	10/19/09 18:08	DGB	9J10008	8081A
4.4'-DDT [2C]	1.1	QFL,J	2.0	0.45	ug/kg dry	1.00	10/19/09 18:08			8081A
delta-BHC (2C)	0.99	QFL,J	2.0	0.26	ug/kg dry	1.00	10/19/09 18:08			8081A
gamma-Chlordane [2C]	0.52	QFL _i C4, J	2.0	0.27	ug/kg dry	1.00	10/19/09 18:08			8081A
Total Metals by SW 84	l6 Series N	Methods								
Aluminum	9460		11,5	1.4	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B
Arsenic	3,9	В	2.3	0.3	mg/kg dry	1,00	10/20/09 22:32			6010B
Barium	55.4	_	0.575	0.030	mg/kg dry	1.00	10/20/09 22:32			6010B
Beryllium	0.419	В	0.230	0.012	mg/kg dry	1.00	10/20/09 22:32			6010B
Cadmium	0.169	J	0.230	0.046	mg/kg dry	1.00	10/20/09 22:32			6010B
Calcium	10700		57.5	11.5	mg/kg dry	1.00	10/20/09 22:32			6010B
Chromium	12.0		0.575	0.104	mg/kg dry	1.00	10/20/09 22:32			6010B
Cobalt	7.90		0.575	0.058	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B
Copper	20,0		1.2	0.1	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B
Iron	18700		11.5	3.5	mg/kg dry	1.00	10/20/09 22:32			6010B
Lead	7.0		1.2	0.1	mg/kg dry	1.00	10/20/09 22:32			60108
Magneslum	4450	В	23.0	1.1	mg/kg dry	1.00	10/20/09 22:32			6010B
Manganese	700	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:32			6010B
Nickel	16.8		5.75	0.092	mg/kg dry	1.00	10/20/09 22:32			6010B
Potassium	1320		34.5	5.6	mg/kg dry	1.00	10/20/09 22:32			6010B
Sodium	120	J	161	35.7	mg/kg dry	1.00	10/20/09 22:32			6010B
Thellium	0.5	J	6.9	0.3	mg/kg dry	1.00	10/20/09 22:32			6010B
Vanadlum	17.2		0.575	0.046	mg/kg dry	1.00	10/20/09 22:32			6010B
Zinc	45.4	В	2.3	0.2	mg/kg dry	1.00	10/20/09 22:32			6010B
Mercury	0.0132	J	0.0221	0,0089	mg/kg dry	1.00	10/20/09 15:28			7471A

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Project: Clabattoni Brownfield Site Project Number: 48001559-2 ____

Received: 10/09/09

Reported: 11/03/09 12:07

		Fx	ecutive	Summa	ry - Detec	tione				
	Sample			Guillilla	y - Detec	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-0	8 (S8 - So	lld) - cont.			Samp	oled: 1	0/06/09 15:45	Rec	vd: 10/09	/09 09:20
General Chemistry Pa	rameters									
Percent Solids	84		0.010	NR	%	1.00	10/12/09 15:46	JR	9J12049	Dry Weight
Sample ID: RSJ0643-0	9 (S9 - So	lld)			Samp	oled: 1	10/06/09	Rec	vd: 10/09	/09 09:20
Volatile Organic Com	pounds by	EPA 8260B								
Cyclohexane	1.3	J	5.5	0.25	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B
Methylena Chloride	1.6	J	5.5	1,1	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B
Organochlorine Pesti	cides by E	PA Method	80B1A							
della-BHC [2C]	0.94	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 18:44	DGB	9J10008	8081A
gamma-BHC (Lindane)	0.65	QFL,J	1.8	0.32	ug/kg dry	1.00	10/19/09 18:44			8081A
[2C] gamma-Chlordane [2C]	0.53	QFL,C4, J	1.8	0.25	ug/kg dry	1.00	10/19/09 18:44	DGB	9,110008	8081A
Total Metals by SW 84					-9.1.9 -1.7					000
Aluminum	9060	Meti i Oti 2	11.9	4.5		4.00	40,000,000,00		0.145065	00400
Arsenic	3.5	В	2.4	1.5	mg/kg dry	1.00	10/20/09 22:37			6010B
Barium	52.2	Ь	0.593	0.3 0.031	mg/kg dry	1.00	10/20/09 22:37			6010B
Beryllium	0.378	В	0.393	0.031	mg/kg dry	1.00	10/20/09 22:37 10/20/09 22:37			6010B
Cadmium	0.138	J	0.237	0.012	mg/kg dry	1.00	10/20/09 22:37			6010B
Calcium	4040	J	59.3	11.9	mg/kg dry					60108
Chromium	12.4		0.593	0.107	mg/kg dry	1.00	10/20/09 22:37 10/20/09 22:37			6010B
Cobalt	7.68		0.593	0.107	mg/kg dry					6010B
Copper	29.3		1.2	0.039	mg/kg dry	1.00	10/20/09 22:37 10/20/09 22:37			6010B
Iron	18800		11.9	3.6	mg/kg dry	1.00	10/20/09 22:37			6010B 6010B
Lead	14.5		1.2	0.1	mg/kg dry	1.00	10/20/09 22:37			6010B
Magnesium	4280	В	23,7	1.1	mg/kg dry	1.00	10/20/09 22:37			60108
Manganese	280	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:37			6010B
Nickel	13.8	D1, D	5.93	0.095	mg/kg dry mg/kg dry	1.00	10/20/09 22:37			6010B
Potassium	1230		35.6	5.8		1.00	10/20/09 22:37			6010B
Sodium	287		166	36.7	mg/kg dry mg/kg dry	1.00	10/20/09 22:37			6010B
Vanadium	18.B		0.593	0.047	mg/kg dry	1.00	10/20/09 22:37			6010B
Zinc	49.9	В	2.4	0.047	mg/kg dry	1.00	10/20/09 22:37			6010B
Mercury	0.0097	J	0.0223	0.0090	mg/kg dry mg/kg dry	1.00	10/20/09 22:37			7471A
General Chemistry Pa	rameters				/					
Percent Solids	89		0.010	NR	%	1.00	10/12/09 15:48	JR	9J12049	Dry Welght

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		Ex	ecutive	Summa	ry - Detec	tions				·
	Sample	Deta				Dii	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-1	0 (S10 - Sc	olid)			Samp		0/06/09			/09 09:20
Volatile Organic Com	pounds by	EPA 8260B	.							
Methylene Chloride	1.5	J	5.5	1,1	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B
Semivolatile Organics	by GC/MS	S								
Benzo[g,h,i]perylene	75	D10,J	930	11	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C
Organochlorine Pestio	cides by E	PA Method	8081A							
4,4'-DDD [2C]	1.3	QFL,J	1.8	0.35	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A
4,4'-DDE [2C]	0.70	QFL,J	1.8	0.52	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A
4,4'-DDT [2C]	2.1	QFL	1.8	0.41	ug/kg dry	1,00	10/19/09 19:20) DGB	9J10008	8081A
delta-BHC [2C]	0.98	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A
Endosulfan II (2C)	0.46	QFL,C4, J	1.8	0.33	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A
gamma-Chlordane [2C]	0.41	QFL,J	1.8	0.25	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A
Total Metals by SW 84	6 Series N	lethods								
Aluminum	7140		11.9	1.5	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Arsenic	2.8	В	2.4	0.3	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Barium	54.1		0.597	0.031	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Beryllium	0.308	В	0.239	0.012	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Cadmium	0.091	J	0.239	0.048	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Calcium	1670		59.7	11.9	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Chromium	10.0		0.597	0.107	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Cobalt	5,24		0.597	0.060	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Copper	12,3		1.2	0.1	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Iron	14300		11.9	3.6	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Lead	48.2		1.2	0.1	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Magnesium	2730	В	23.9	1.1	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Manganese	236	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Nickel	9.69		5.97	0.096	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Potassium	1160		35.8	5.8	mg/kg dry	1.00	10/20/09 22:54	DAN	BJ15055	6010B
Sodium	67.9	J	167	37.0	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Vanadium	14.9		0.597	0.048	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Zinc	30,0	В	2,4	0.2	mg/kg dry	1.00	10/20/09 22:54	DAN	9J15055	6010B
Mercury	0.0449		0.0218	0.0088	mg/kg dry	1.00	10/20/09 15:31			7471A
General Chemistry Pa	rameters									
Percent Solids	80		0.010	NR	%	1.00	10/12/09 15:50	JR	9J12049	Dry Weight

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	_	Ex	ecutive	Summar	y - Dete	ctions	3			
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL _	MDL	Units_	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-1	1 (W1 - Gr	ound Water))		Sam	pled:	10/07/09 11:40	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/MS	<u>s</u>								
Diethyl phthalate	0.41	J, B	4.7	0.10	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C
Total Metals by SW 84	LG Sarias A	Aethode								
Barium	0.121	ii di ii da	0.0020	0.0003	mg/L	1.00	10/13/09 16:45	DAN	9.112089	6010B
Beryllium	0.0002	J	0.0020	0.0003	mg/L	1.00	10/13/09 16:45			6010B
Calcium	112	•	0.5	0.0002	mg/L	1.00	10/13/09 16:45			6010B
Cobalt	0.0026	J	0.0040	0.0008	mg/L	1.00	10/13/09 16:45			60108
Magnesium	24.7	J	0.200	0.043	_	1.00	10/13/09 16:45			6010B
_	0.0057		0.0030	0.0002	mg/L	1.00	10/13/09 16:45			6010B
Manganese Polassium	3.00		0.500	0.0002	mg/L	1.00	10/13/09 16:45			6010B
Sodium			1.0	0.030	mg/L	1.00	10/13/09 16:45			6010B
	230			0.0015	mg/L	1.00	10/13/09 16:45			6010B
Zinc	0.0017	J	0.0100	0.0015	mg/L					
Sample ID: RSJ0643-1	2 (W2 - Gr	ound Water)		Sam	pled:	10/07/09 14:19	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/M	<u>s</u>								
Diethyl phthalate	0.62	J, B	4.7	0.10	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Di-n-butyl phthalate	0.30	J	4.7	0.28	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Organochlorine Pesti	cides by E	PA Method_	B081A							
Heptachlor apoxide [2C]	0.026	J	0.047	0.0050	ug/L	1.00	10/14/09 03:02	DGB	9J09108	8081A
Total Metals by SW 84	l6 Series I	/lethods								
Barium	0.198		0.0020	0.0003	mg/L	1.00	10/13/09 16:50	DAN	9J12069	6010B
Berylllum	0.0003	J	0.0020	0.0002	mg/L	1.00	10/13/09 16:50			6010B
Calcium	238	•	0.5	0.1	mg/L	1.00	10/13/09 16:50			60108
Iron	0.020	J	0.050	0.019	mg/L	1.00	10/13/09 16:50			6010B
Magnesium	59.5	•	0.200	0.043	mg/L	1.00	10/13/09 16:50			6010B
Manganese	0.0102		0.0030	0.0002	_	1.00	10/13/09 16:50			6010B
Potassium	4.31		0.500	0.050	mg/L	1.00	10/13/09 16:50			60108
Sodium	223		1.0	0.030	mg/L	1.00				60108
				0.5	mg/L					
Sample ID: RSJ0643-1	3 (W3 - Gr	ound Water)		Sam	pled:	10/07/09 17:21	Rec	:vd: 10/09	/09 09:20
Volatile Organic Com	pounds by	/ EPA 8260B								
Acelone	4.4	J	5.0	1.3	ug/L	1.00	10/13/09 03:47			82608
Isopropylbenzene	18		1.0	0.19	ug/L	1.00				8260B
Methyl tert-Butyl Ether	0.48	J	1.0	0.16	ug/L	1.00	10/13/09 03:47	7 NMD	9J12089	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
Diethyl phthalate	0.39	J, B	4.8	0.10	ug/L	1.00				8270C
Di-n-butyl phthalate	0.46	J	4.8	0.28	ug/L	1.00	10/13/09 19:45	5 MKP	9J12044	8270C
Fluorene	0.25	J	4.8	0.070	ug/L	1.00		5 MKP	9J12044	8270C
Organochlorine Pestl	cides by E	PA Method	8081A							
4,4'-DDT [2C]	0.024	J	0,047	0.010	ug/L	1.00	10/14/09 03:38	B DGB	9J09108	8081A
delta-BHC [2C]	0.026	J	0.047	0.0095	ug/L	1.00	10/14/09 03:3	B DGB	9J09108	8081A
Total Metals by SW 84	46 Series I	Methods								
Barlum	0,232		0.0020	0.0003	mg/L	1,00	10/13/09 16:5	5 DAN	9J12069	6010B
					-					

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

		Ð	ecutive	Summar	y - Dete	ctions				· · · ·
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-1	3 (W3 - Gr	ound Water	- cont.		Sam	pled: 1	0/07/09 17:21	Rec	vd: 10/09	/09 09:20
Total Metals by SW 8-	46 Series A	Aethods - co	nt.							
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Calcium	116		0.5	0.1	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
iron	7.32		0.050	0.019	mg/L	1.00	10/13/09 16:55	DAN	9J12089	6010B
Magnesium	21.4		0.200	0.043	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Manganese	3.10		0.0030	0.0002	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Potassium	3.99		0.500	0.050	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Sodium	206		1.0	0.3	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Sample ID: RSJ0643-1	4 (W4 - Gr	ound Water)		Sam	pled: 1	0/08/09 10:35	Rec	vd: 10/09	/09 0 9 :20
Volatile Organic Com	pounds by	EPA 8260B								
1,2-Dichlorobenzene	0.40	J	1.0	0.20	ug/L	1.00	10/13/09 04:10	OMN (9J12089	8260B
Acetone	4.6	J	5.0	1.3	ug/L	1.00	10/13/09 04:10	DMN (9J12089	8260B
Benzene	2,6		1.0	0.41	ug/L	1.00	10/13/09 04:10	DMN	9J12089	8260B
Ethylbenzene	2.1		1.0	0.18	ua/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
(sopropylbenzene	29		1.0	0.19	ua/L	1.00	10/13/09 04:10	DMN	9J12089	8260B
Methyl tert-Butyl Ether	0.96	J	1.0	0.16	ug/L	1.00	10/13/09 04:10	DMM	9J12089	8260B
m,p-Xylene	0.78	J	2.0	0.66	ug/L	1.00	10/13/09 04:10	DMM	9J12089	8260B
Toluene	0.68	J	1.0	0.51	ug/L	1.00	10/13/09 04:10	DMN	9J12089	8260B
Semivolatile Organics	by GC/MS	S								
Acenaphthene	0.20	_ 	4.8	0.11	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
Diethyl phthalate	0.34	J, B	4.8	0.10	ug/L	1.00	10/13/09 20:10		BJ12044	8270C
Di-n-butyl phthalate	0.66	J	4.8	0.28	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Fluorene	0.23	Ţ	4.8	0.070	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Organochlorine Pesti	cides by E	PA Method	B081A							
4,4'-DDT [2C]	0.025	J	0.047	0.010	ug/L	1.00	10/14/09 04:13	DGB	9J09108	8081A
delta-BHC [2C]	0.024	J	0.047	0.0096	ug/L	1,00	10/14/09 04:13			8081A
Total Metals by SW 84	46 Series N	lethods								
Aluminum	0.056	J	0.200	0.040	mg/L	1.00	10/13/09 17:00	DAN	9J12069	6010B
Barium	0.274	•	0.0020	0.0003	mg/L	1.00	10/13/09 17:00			6010B
Beryllium	0.0003	J	0.0020	0.0003	mg/L	1.00	10/13/09 17:00			6010B
Calcium	169	Ū	0.5	0.0002	mg/L	1.00	10/13/09 17:00		9J12069	60108
Iron	3.15		0.050	0.019	•	1.00	10/13/09 17:00			6010B
Magnesium	39.3		0.200	0.043	mg/L mg/L	1.00	10/13/09 17:00			8010B
Manganese	3.66		0.0030	0.0002	mg/L	1.00	10/13/09 17:00			6010B
Polassium	7.05		0.500	0.050	mg/L	1.00	10/13/09 17:00			6010B
Sodium	259		1.0	0.030	mg/L	1.00	10/13/09 17:00			6010B
Zinc	0.0139		0.0100	0.0015	ma/L	1.00	10/13/09 17:00			6010B
Mercury	0.0001	J	0.0002	0.0013		1.00	10/17/09 18:05			7470A
	0.500	9	0.0002	0.0001	mg/L	1.00	10/17/09 10:03	IAINIAI	93 17 027	PALON

Reported: 11/03/09 12:07

A2L Technologies 10220 Hamey Road, NE Thonotosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	_		ecutive	Summar	y - Dete					
Anglisto	Sample	Data	D:	MD	11-14-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: R\$J0643-1	5 (W5 - Gro	und Water			Sam	pled: 1	0/07/09 15:41	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/MS	•								
Diethył phthelate	0.61	J, B	4.8	0.10	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C
Di-n-butyl phthalate	0.43	J	4.8	0.28	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C
Organochlorine Pestic	cides by Ef	A Method	8081A							
delta-BHC [2C]	0.021	J	0.048	0.0096	ug/L	1.00	10/14/09 04:49	DGB	9J09108	8081A
Total Metals by SW 84	6 Series M	ethods								
Barium	0,160		0.0020	0.0003	mg/L	1.00	10/13/09 17:05	DAN	9.112069	6010B
Beryllium	0.0003	J	0.0020	0.0002	mg/L	1.00	10/13/09 17:05			6010B
Calcium	174		0.5	0.1	mg/L	1.00	10/13/09 17:05			6010B
Cobalt	0.0006	J	0.0040	0.0006	mg/L	1.00	10/13/09 17:05			6010B
Iron	5.73	•	0.050	0.019	mg/L	1.00	10/13/09 17:05			6010B
Magnesium	36.3		0.200	0.043	mg/L	1.00	10/13/09 17:05			6010B
Manganese	1.72		0.0030	0.0002	_	1.00	10/13/09 17:05			
Polassium	3.64		0.500	0.050	mg/L	1.00	10/13/09 17:05			6010B
Sodium	278		1.0		mg/L					6010B
Zinc	0.0032	J		0.3	mg/L	1.00	10/13/09 17:05			6010B
			0.0100	0.0015	mg/L	1.00	10/13/09 17:05			6010B
Sample ID: RSJ0643-10	p (440 - GLO	una water			Şam	pled: 1	0/07/09 18:30	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp										
Benzene	8.5	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10	DHC	9J13014	82609
Cyclohexane	170	D08	4.0	2.1	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B
Ethylbenzene	270	D08	4.0	0.74	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B
Isopropylbenzene	63	D08	4.0	0.77	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B
Methylcyclohexane	97	D08	4.0	2.0	υg/L	4.00	10/13/09 12:10	DHC	9J13014	62608
m,p-Xylene	340	D08	8.0	2.6	ug/L	4.00	10/13/09 12:10			8260B
o-Xylene	14	D08	4.0	1.4	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B
Toluene	17	D08	4.0	2.0	ug/L	4.00	10/13/09 12:10			8260B
Semivolatile Organics	by GC/MS									
2-Methylnaphthalene	19		4.8	0.076	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C
1,1'-Biphenyl	0.68	J	4.8	0.62	ug/L	1.00	10/13/09 20:58	*****	BJ12044	8270C
Diethyl phthelate	0.30	J, B	4.8	0.10	սց/Լ	1.00	10/13/09 20:59		8J12044	8270C
Di-n-butyl phthalate	0.53	J	4.8	0.28	_	1.00	10/13/09 20:59		BJ12044	8270C
Fluorene	0.31	Ĵ	4.8	0.070	ug/L	1.00	10/13/09 20:59		BJ12044	
Naphthalene	72	3	4.8	0.070	ug/L ug/L	1.00	10/13/09 20:59			8270C 8270C
Organochlorine Pestic		A Mathad s	1084A		- 3-					-22
alpha-BHC [2C]	0.024	7 MATIOG (0.047	0.0000		4.00	40/44/00 05:05	200	0.100400	00044
delta-BHC [2C]				0.0062	ug/L	1.00	10/14/09 05:25			8081A
	0.024	J	0.047	0.0095	ug/L	1.00	10/14/09 05:25			8081A
Heplachlor epoxide [2C]	0.021	J	0.047	0.0050	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A
Total Metals by SW 84		•								
Arsenic	0.0091	J	0.0100	0.0056	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
	0.0778		0.0020	0.0003	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
	0.0710									
Barium Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 17:10			
		J	0.0020 0.5				10/13/09 17:10 10/13/09 17:10	DAN	9J12069	6010B 6010B

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		Ex	ecutive	Summar	y - Dete	ctions	-			-
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method_
Sample ID: RSJ0643-16	(W6 - Gr	ound Water	- cont.		Sam	pled: 1	10/07/09 18:30	Rec	vd: 10/09	/09 09:20
Total Metals by SW 844	Series M	Aethods - co	nt.							
Magnesium	B.65		0.200	0.043	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
Manganese	2.03		0.0030	0.0002	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
Polassium	2.12		0.500	0.050	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
Sodium	171		1.0	0.3	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B
Sample ID: RSJ0643-17	(W7 - Gr	ound Water)		Sam	pled: 1	10/08/09 0 B:45	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
Toluene	0.69	J	1.0	0.51	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
Diethyl phthalate	D.47	J, B	4.7	0.10	ug/L	1,00	10/13/09 21:24	MKP	9J12044	8270C
Organochlorine Pestic	des by E	PA Method	8081A							
Heplachlor epoxida [2C]	0.042	J	0.048	0.0050	ug/L	1.00	10/15/09 13:12	DGB	9J09108	8081A
Total Metals by SW 844	6 Series M	<u>lethods</u>								
Calcium	0.1	J	0.5	0.1	mg/L	1.00	10/13/09 17:20	DAN	9J12069	60108
Sample ID: R\$J0643-18	(W8 - Gr	ound Water)		Sam	pled: 1	10/07/09 18:30	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
Benzene	8.6	D08	4.0	1.6	ug/L	4.00	10/13/09 12:3:	DHC 8	9J13014	8260B
Cyclohexane	160	B0CI	4.0	2.1	ug/L	4.00	10/13/09 12:33	3 DHC	9J13014	8260B
Ethylbenzene	260	D08	4.0	0.74	ug/L	4.00	10/13/09 12:33	B DHC	9J13014	8260B
Isopropylbenzene	60	D08	4.0	0.77	ug/L	4.00	10/13/09 12:33	3 DHC	9J13014	8260B
Methylcyclohexane	87	D08	4.0	2.0	ug/L	4.00	10/13/09 12:3:	B DHC	9J13014	8260B
m,p-Xylene	330	D08	0.8	2.6	ug/L	4.00	10/13/09 12:33	3 DHC	9J13014	8260B
o-Xylene	14	D08	4.0	1.4	ug/L	4.00	10/13/09 12:33	B DHC	9J13014	8260B
Toluene	17	D08	4.0	2.0	ug/L	4.00	10/13/09 12:3	3 DHC	9J13014	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
2-Methylnaphthalene	22		4.7	0.077	ug/L	1.00	10/13/09 21:44	MKP	BJ12044	8270C
1,1'-Biphenyl	0.69	J	4.7	0.62	ug/L	1.00	10/13/09 21:44	MKP	9J12044	8270C
Di-n-butyl phthalate	0.54	J	4.7	0.28	ug/L	1.00	10/13/09 21:44	MKP	9J12044	8270C
Fluorene	0.30	J	4.7	0.070	ug/L	1.00	10/13/09 21:44	9 MKP	9J12044	8270C
Naphthalene	76		4.7	0.11	ug/L	1.00	10/13/09 21:44	3 MKP	9J12044	8270C
Phenanthrene	0.24	J	4.7	0.11	ug/L	1.00	10/13/09 21:44	8 MKP	9J12044	8270C
Organochlorine Pestic	ides by E	PA Method	8081A							
alpha-BHC [2C]	0.024	J	0.047	0.0062	ug/L	1.00	10/15/09 13:44	B DGB	9J09108	8081A
gamme-BHC (Lindane) [2C]	0.017	J	0.047	0.0057	ug/L	1,00	10/15/09 13:4	B DGB	9J09108	8081A
Heptachlor epoxide [2C]	0.037	J	0.047	0.0050	ug/L	1.00	10/15/09 13:44	B DGB	9J09108	8081A
Total Metals by SW 84	6 Series I	Methods								
Arsenic	0.0087	J	0.0100	0.0056	mg/L	1.00	10/13/09 17:3	3 DAN	9J12069	6010B
Barium	0.0737		0.0020	0.0003	mg/L	1.00	10/13/09 17:3			6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 17:3			6010B
Calcium	36.5		0.5	0.1	mg/L	1.00	10/13/09 17:3			6010B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

·			
Executive	Summary	_ 1	Detections

		CYCCOUAC	Sullilliai	y - Dele	CHOHS			
Analyte	Sample Da Result Quali		MDL	Units	Dil Fac	Date Analyzed	Lab Tech Batch	Method
Sample ID: RSJ00	643-18 (W8 - Ground \	Nater) - cont.		Sam	pled: 1	0/07/09 18:30	Recvd: 10/09	/09 09:20
Total Metals by S	SW 846 Series Method	ls - cont.						
Iron	7.15	0.050	0.019	mg/L	1.00	10/13/09 17:33	DAN 9J12069	6010B
Magnesium	8,22	0.200	0.043	mg/L	1.00	10/13/09 17:33	DAN 9J12069	6010B
Manganese	1.93	0,0030	0.0002	ma/L	1.00	10/13/09 17:33	DAN 9J12069	6010B
Polassium	2.01	0.500	0.050	mg/L	1.00	10/13/09 17:33	DAN 9J12069	6010B
Sodium	162	1.0	0.3	mg/L	1.00	10/13/09 17:33	DAN 9J12069	6010B

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report													
	Sample	Data				Dil	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-01	(\$1 - Sol	id)			Samı	oled:	10/06/09 10:00	Rec	vd: 10/09	/09 09 ;20			
Volatile Organic Comp	ounds by	EPA 8260B											
1,1,1-Trichloroethane	ND		5.9	0.43	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
1,1,2,2-Tetrachloroethane	ND		5.9	0.96	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
1,1,2-Trichloroethane	ND		5.9	0.30	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,1,2-Trichloro-1,2,2-Iriflu	ND		5.9	3.0	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
oroethane													
1,1-Dichloroethane	ND		5.9	0.29	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,1-Dichloroethene	ND		5.9	0.73	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,2,3-Trichlorobenzene	ND		5.9	0.63	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,2,4-Trichlorobenzene	ND		5.9	0.36	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,2-Dibromo-3-chloroprop	ND		5.9	3.0	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
ane 1,2-Dibromoethane	ND		5.9	0.23	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
(EDB)	NID			0.40		4.00	40/40/00 40:04	DO	0.140040	20000			
1,2-Dichlorobenzene	ND		5.9	0.46	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
1,2-Dichloroethane 1,2-Dichloropropane	ND		5.9	0.30	ug/kg dry	1.00	10/10/09 19:34 10/10/09 19:34		9J10019 9J10019	8260B			
1.3-Dichlorobenzene	ND ND		5.9	3.0	ug/kg dry	1.00		. —		6260B			
1,4-Dichlorobenzene	ND		5.9	0.31	ug/kg dry	1.00	10/10/09 19:34 10/10/09 19:34		9J10019 9J10019	8260B			
1,4-Dioxane	ND		5.9 240	0.83 29	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B 8260B			
2-Butanone (MEK)	ND				ug/kg dry		10/10/09 19:34		9J10019				
2-Hexanone	ND		30	2.2	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
4-Methyl-2-pentanone	ND		30 30	2.1 1.9	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B 8260B			
(MIBK)	ND		30	1.9	ug/kg dry	1.00	10/10/05 15.54	ru	50 100 18	020UD			
Acetone	12	j	30	1.3	ug/kg dry	1.00	10/10/09 19:34	PO	9J10019	8260B			
Benzene	ND		5.9	0.29	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Bromochloromethane	ND		5.9	0.43	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Bromodichloromethane	ND		5.9	0.31	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Bromoform	ND		5.9	3.0	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Bromomethane	ND		5.9	1.3	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Carbon disulfide	ND		5.9	0.51	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Carbon Tetrachloride	ND		5.9	0.58	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Chlorobenzene	ND		5.9	0.78	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Dibromochloromethane	ND		5.9	0.33	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Chloroethane	ND		5.9	2.5	ug/kg dry	1.00			9J10019	8260B			
Chloroform	ND		5.9	0.37	ug/kg dry	1.00			9J10019	8260B			
Chloromethane	ND		5.9	0.36	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
cis-1,2-Dichloroethene	ND		5.9	0.29	ug/kg dry	1.00			9J10019	8260B			
cis-1,3-Dichloropropene	ND		5.9	0.34	ug/kg dry	1.00			9J10019	8260B			
Cyclohexane	ND		5.9	0.27	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Dichlorodifluoromethane	ND		5.9	0.49	ug/kg dry	1.00			9J10019	8260B			
Elhylbenzene	ND		5.9	0.41	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
Isopropylbenzene	ND		5.9	0.90	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B			
Methyl Acetate	ND		5.9	0.32	ug/kg dry	1.00			9J10019	6260B			
Methyl tert-Butyl Ether	ND		5.9	0.58	ug/kg dry	1.00			8J10019	8260B			
Methylcyclohexane	ND		5.9	0.39	ug/kg dry	1.00			9J10019	8260B			
Methylene Chloride	1.8	J	5.9	1.2	ug/kg dry	1.00	10/10/09 19:34		9J10019	8260B			
m-Xyleпе & p-Xylene	ND		12	1.0	ug/kg dry	1.00			9J10019	8260B			
o-Xylene	ND		5.9	0.78	ug/kg dry	1.00			9J10019	8260B			
Styrene	ND		5.9	0.30	ug/kg dry	1.00			9J10019	8260B			
Tetrachloroethene	ND		5.9	0.80	ug/kg dry	1.00			9J10019	8260B			
Totuene	ND		5.9	0.45	ug/kg dry	1.00			9J10019	8260B			

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabationi Brownfield Site Project Number: 48001559-2

		-	An	alytical F	Report					
	Sample	Data		-	-	DII	Date	Lab		
Analyte	Result	Qualifiers	RL_	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-01	(S1 - Sol	id) - cont			Samı	oled: 1	10/06/09 10:00	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 82608	3 - cont.							
trans-1,2-Dichloroethene	ND		5.9	0.61	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B
trans-1,3-Dichloropropen	ND		5.9	0.29	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B
е										
Trichloroethene	ND		5.9	0.41	ug/kg dry	1.00	10/10/09 19:34		9J10019	82608
Trichlorofluoromethane	ND		5.9	0.56	ng/kg diy	1,00	10/10/09 19:34	_	9J10019	8260B
Vlnyl chloride	ND		12	0.73	ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B
1,2-Dichloroethane-d4	97 %		Surr Limits:	(64-126%)			10/10/09 19:34	PQ	9J10019	8260B
4-Bromofluorobenzene	112 %		Surr Limits:	(72-126%)			10/10/09 19:34	PQ	9J10019	8260B
Toluene-d8	115 %		Surr Limits:	(71-125%)			10/10/09 19:34	PQ	9J10019	8260B
Tentatively Identified (Compoun	ds by EPA	8260B							
No TICs found (NOTICS)	ND	17			ug/kg dry	1.00	10/10/09 19:34	PQ	9J10019	8260B
Semivolatile Organics	by GC/M	<u>5</u>								
1,2,4,5-Tetrachlorobenze ne	ND		200	18	ug/kg dry	1,00	10/16/09 12:04	MKP	9J13065	8270C
2,3,4,6-Tetrachlorophenol	ND		200	200	ug/kg dry	1.00	10/16/09 12:04	LMKP	9J13065	8270C
2,4,5-Trichlorophenol	ND		200	43	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,4,6-Trichlorophenol	ND		200	13	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,4-Dichlorophenol	ND		200	10	ug/kg diy	1.00	10/16/09 12:04		9J13065	8270C
2,4-Dimethylphenol	ND		200	53	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,4-Dinitrophenol	ND		390	69	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,4-Dinitrololuene	ND		200	31	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,6-Dinitrotoluene	ND		200	48	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2-Chloronaphthalene	ND		200	13	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2-Chlorophenol	ND		200	10	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
2-Methylnaphthalene	ND		200	2.4	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
2-Methylphenol	ND		200	6.1	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
2-Nitroaniline	ND		390	63	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
2-Nitrophenol	ND		200	9.0	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
3,3'-Dichlorobenzidine	ND		200	170	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
3-Nitroanlline	ND		390	45	ug/kg dry	1.00	10/16/09 12:04	1 MKP	9J13065	8270C
4,6-Dinitro-2-mathylphen	ND		390	68	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
ol 4-Bromophenyl phenyl	ND		200	63	ug/kg dry	1,00	10/16/09 12:04	1 MKP	9.113065	8270C
ether	ND		200	03	ug/kg ury	1,00	10/10/03 12.0	* 141141	001000	02100
4-Chloro-3-methylphenol	ND		200	8.1	ug/kg dry	1.00	10/16/09 12:04	1 MKP	9J13065	8270C
4-Chloroaniline	ND		200	58	ug/kg dry	1.00	10/16/09 12:04		- 14	8270C
4-Chlorophenyl phenyl	ND		200	4.2	ug/kg dry	1.00	10/16/09 12:04			8270C
elher					-65,	.,			***************************************	
4-Methylphenol	ND		390	11	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
4-Nitroanlline	ND		390	22	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
4-Nitrophenol	ND		390	48	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
Acenaphthene	ND		200	2.3	ug/kg dry	1.00				8270C
Acenaphthylene	ND		200	1.6	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	827DC
Acetophenone	ND		200	10	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
Anthracene	ND		200	5.1	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
Atrazine	ND		200	8.8	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Benzaldehyde	ND		200	22	ug/kg dry	1.00	10/16/09 12:04	4 MKP	9J13065	8270C
Benzo[a]anthracene	21	J	200	3.4	ug/kg dry	1.00				8270C
Benzo[a]pyrene	18	J	200	4.8	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Reported: 11/03/09 12:07

A2L Technologies 10220 Hamey Road, NE Thonotosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ana	ilytical R	leport					
	Sample	Data				DII	Date	Lab	Datab	47 41 -
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech		Method
ample ID: RSJ0643-01	(S1 - Sol	ld) - cont.			Samp	oled: '	10/06/09 10:00	Rec	vd: 10/09/	09 09:20
Semivolațile Organics	by GC/MS	S - cont.								
Benzo(b)fluoranthene	21	J	200	3.8	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Benzo[g,h,i]perylene	14	J	200	2.4	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Benzo(k)fluoranthene	12	J	200	2.2	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
1,1'-Biphenyl	ND		200	12	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
3is(2-chloroethoxy)metha	ND		200	11	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
ie .										
Bis(2-chloroethyl)ether	ND		200	17	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
2,2'-Oxybis(1-Chloroprop	ND		200	21	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
ane)										
Bis(2-ethylhexyl)	ND		200	64	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
phthelate										
Butyl benzyl phthalate	ND		200	53	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
Ceprotectam	ND		200	85	ug/kg dry	1.00	10/16/09 12:04		9J13065	8270C
Carbazole	ND		200	2.3	ug/kg dry	1,00	10/16/09 12:04		9J13065	8270C
Chrysene	21	J	200	2.0	ug/kg dry	1.00	10/16/09 12:04	I MKP	9J13065	8270C
Dibenz[a,h]anthracene	ND		200	2.3	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	6270C
Dibenzofuran	ND		200	2.1	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Diethyl phthalate	ND		200	6.0	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Dimethyl phthalate	ND		200	5.1	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Di-n-butyl phthalate	ND		200	68	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Di-n-octyl phthalate	ND		200	4.6	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Fluoranthene	35	J	200	2.9	ug/kg dry	1.00		MKP	9J13085	8270C
Fluorene	ND	•	200	4.5	ug/kg dry	1.00		MKP	9J13065	82700
Hexachlorobenzene	ND		200	9.8	ug/kg dry	1.00				8270C
Hexachlorobutadiene	ND		200	10	ug/kg dry	1,00				8270C
Hexachlorocyclopentadie	ND		200	60	ug/kg dry	1.00				8270C
ne	IND		200	00	ograg ury	1,00	10/10/05 12.0	* *****	2210000	02,00
Hexachloroethane	ND		200	15	ug/kg dry	1.00	10/16/09 12:04	MKP	9J13065	8270C
Indeno[1,2,3-cd]pyrene	12	J	200	5.5	ug/kg dry	1.00				8270C
isophorone	ND	v	200	9.9	ug/kg dry	1.00				8270C
Naphthalene	ND		200	3.3	ug/kg dry	1.00	•		-	8270C
Nitrobenzene	ND		200	8.7	ug/kg dry	1.00				8270C
	ND		200	16		1.00			9J13065	82700
N-Nitrosodi-n-propylamin	NU		200	10	ug/kg dry	1.00	10/10/05 12.0	4 MILLE	83 13000	ULTOC
0 N. Nitrocodinhonylamino	ND		200	44	unika da:	1.00	10/16/09 12:0	MKB	9J13065	82700
N-Nitrosodiphenylamine	ND		200 390	11 68	ug/kg dry	1.00				8270C
Pentachlorophenol		1	200	4.1	ug/kg dry	1.00				82700
Phenanthrene	16 ND	1			ug/kg dry	1.00				82700
Phenoi	ND		200	21	ug/kg dry					
Pyrene	36	J	200	1.3	ug/kg dry	1.00	10/10/09 12:0	+ IVIIN	93 13003	82700
2,4,6-Tribromophenol	59 %		Surr Limits:	(39-146%)			10/16/09 12:0	4 MKP	9J13065	82700
2-Fluorobiphenyl	56 %		Surr Limits:				10/16/09 12:0			82700
2-Fluorophenol	39 %		Surr Limits:				10/16/09 12:0			82700
Nitrobenzene-d5	52 %		Surr Limits:				10/16/09 12:0			82700
Phenol-d5	45 %		Surr Limits:				10/16/09 12:0			82700
p-Terphenyl-d14	60 %		Surr Limits:				10/16/09 12:0			8270C
Semivolatile Organics	TiCs by	GC/MS								
Unknown01 (none)	270	17, B	Ret Time: 1	1.744	ug/kg dry	1.00	10/16/09 12:0	4 MKP	9J13065	82700
, ,			•	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20.19 411		101.0100 1410			22.00
Organochlorine Pestic 4,4'-DDD [2C]						4.55	4014010000		0.14.000=	5004
	0.97	QFL,J	1.9	0.37	ug/kg dry	1.00	10/16/09 07:2	2 IN/20	เมาสากกาที	8081A

10 Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991

www.testamericalnc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical f	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-01	l (S1 - Sol	id) - cont.			Samı	oled: 1	0/06/09 10:00	Recv	d: 10/09/	09 09:20
Organochlorine Pestic	ides by E	PA Method	8081A - co	nt.						
4,4'-DDE [2C]	1.0	QFL,J	1.9	0.55	ug/kg dry	1.00	10/16/09 07:23	DGB 9	J10008	8081A
4,4'-DDT [2C]	1.7	QFL,J	1.9	0.44	ug/kg dry	1.00	10/16/09 07:23			8081A
Aldrin [2C]	ND	QFL	1.9	0,20	ug/kg dry	1.00	10/16/09 07:23	DGB 9	J10008	8081A
alpha-BHC [2C]	1.6	QFL,J	1.9	0.35	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
alpha-Chlordane [2C]	ND	QFL	1.9	0.96	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
beta-BHC [2C]	ND	QFL	1.9	1.4	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
della-BHC [2C]	0.91	QFL,J	1.9	0.25	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
Dieldrin [2C]	0.61	QFL,J	1.9	0.46	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
Endosulfan I [2C]	ND	QFL	1.9	0.41	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
Endosulfan II [2C]	ND	QFL	1.9	0.35	ug/kg dry	1.00	10/16/09 07:23	-		8081A
Endosulfan sulfate [2C]	ND	QFL,C	1.9	0.36	ug/kg dry	1.00	10/16/09 07:23	-		8081A
Endrin [2C]	ND	QFL	1.9	0.62	ug/kg dry	1.00	10/16/09 07:23			8081A
Endrin eldehyde [2C]	ND	QFL	1.9	0.49	ug/kg dry	1.00	10/16/09 07:23			8081A
Endrin ketone [2C]	0.70	QFL,J	1.9	0.47	ug/kg dry	1,00	10/16/09 07:23			8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.9	0.33	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
gamma-Chlordane [2C]	1.3	QFL,J	1.9	0.26	ug/kg dry	1.00	10/16/09 07:23	DGB 9	3J10008	8081A
Heplachlor [2C]	ND	QFL	1,9	0.30	ug/kg dry	1.00	10/16/09 07:23			8081A
Heptachlor epoxide [2C]	ND	QFL	1.9	0.49	ug/kg dry	1.00	10/16/09 07:23			8081A
Methoxychlor [2C]	ND	QFL	1.9	0.51	ug/kg dry	1.00	10/16/09 07:23			8081A
Toxaphene [2C]	ND	QFL	19	11	ug/kg dry	1.00	10/16/09 07:23			8081A
Decachlorobiphenyl [2C]	95 %	QFL.	Surr Limits:	(42-146%)			10/16/09 07:23	DGB S	J10008	8081A
Tetrachioro-m-xylene	73 %	QFL	Surr Limits:	(37-136%)			10/16/09 07:23	DGB S	9J10008	8081A
[2C]										
Polychlorinated Biphe	nyls by E	PA Method	8082							
Arodor 1016	ND		19	3.8	ug/kg dry	1,00	10/18/09 16:51	SCH 9	J16100	8082
Aroclor 1221	ND		19	3.8	ug/kg dry	1.00	10/18/09 16:51			8082
Arodor 1232	ND		19	3.8	ug/kg dry	1.00	10/18/09 16:51	-		8082
Aroclor 1242	ND		19	4.2	ug/kg dry	1.00	10/18/09 16:51			8082
Aroclor 1248	ND		19	3.8	ug/kg dry	1.00	10/18/09 16:51			8082
Arodor 1254	ND		19	4.1	ug/kg dry	1.00	10/18/09 16:51			8082
Aroclor 1260	ND		19	4.1	ug/kg dry	1.00	10/18/09 16:51			8082
Aroclor 1262	ND		19	4.1	ug/kg dry	1.00	10/18/09 16:51	SCH 9	J16100	8082
Arodor 1268	ND		19	4.1	ug/kg dry	1.00	10/18/09 16:51	SCH 8	3J16100	8082
Decachlorobiphenyl	80 %		Surr Limits:	(34-148%)			10/18/09 16:51	SCH S	9J16100	8082
Tetrachioro-m-xylene	86 %		Surr Limits:	(35-134%)			10/18/09 16:51	SCH 9	9J16100	8082
Total Metals by SW 84	6 Series M	<u>fethods</u>								
Aluminum	10100		12.2	1.5	mg/kg dry	1.00	10/20/09 21:57	DAN 9	J15055	6010B
Antimony	ND		18.3	0.7	rng/kg dry	1.00	10/20/09 21:57			6010B
Arsenic	4.3	В	2.4	0.3	mg/kg dry	1.00	10/20/09 21:57			6010B
Barium	61.8		0.611	0.032	mg/kg dry	1,00	10/20/09 21:57			6010B
Beryllium	0.455	В	0.245	0.012	mg/kg dry	1.00	10/20/09 21:57	DAN 9	J15055	6010B
Cadmium	0.152	J	0.245	0.049	mg/kg dry	1.00	10/20/09 21:57			6010B
Calcium	3030		61.1	12.2	mg/kg dry	1.00	10/20/09 21:57			6010B
Chromium	10.9		0.611	0.110	mg/kg dry	1.00	10/20/09 21:57			6010B
Coball	8.05		0.611	0.061	mg/kg dry	1.00	10/20/09 21:57			6010B
Copper	20.2		1.2	0.1	mg/kg dry	1.00	10/20/09 21:57			6010B
Iron	19300		12.2	3.7	mg/kg dry	1.00	10/20/09 21:57			6010B
							·			

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Percent Solids

Cyanide

84

ND

Work Order: RSJ0643

0.010

1.1

Received: 10/09/09

Reported: 11/03/09 12:07

1.00 10/12/09 15:32 JR 9J12049 Dry Weight

9012A

1.00 10/16/09 09:27 LRM 9J14035

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
Analyte	Sample Result	Data Qualifiers	RL.	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method		
Sample ID: RSJ06	43-01 (S1 - Sol	id) - cont.			Samp	oled: 1	0/06/09 10:00	Rec	vd: 10/09	09 09:20		
Total Metals by S	W 846 Series N	<u> Aethods - co</u>	nt.	•								
Lead	7.6		1.2	0.1	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Magneslum	4050	В	24.5	1.1	mg/kg dry	1,00	10/20/09 21:57	DAN	9J15055	6010B		
Manganese	433	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Nickel	14,3		6.11	0.098	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Polassium	1460		36.7	5.9	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Selenium	ND		4.9	0.7	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Silver	ND		0.611	0.086	mg/kg dry	1,00	10/20/09 21:57	DAN	9J15055	6010B		
Sodium	80.0	J	171	37.9	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Thallium	ND		7.3	0.4	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Vanadium	19.9		0.611	0.049	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Zinc	47.1	В	2.4	0.2	mg/kg dry	1.00	10/20/09 21:57	DAN	9J15055	6010B		
Mercury	0.0101	J	0.0248	0.0100	mg/kg dry	1.00	10/20/09 15:08	MXM	9J19064	7471A		

NR

0.5

%

mg/kg dry

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabatton1 Brownfield Site Project Number: 48001559-2

			Ar	alytical	Report	-				
	Sample	Data		•	•	Dil	Date	Lab		
Analyt e	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-02	! (\$2 - Sol	ld)			Samı	pled: 1	0/06/09 10:15	Rec	vd: 10/09/	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
1,1,2,2-Tetrachloroethane	ND		5.5	0.89	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
1,1,2-Trichloroethane	ND		5.5	0.27	ug/kg dry	1,00	10/10/09 19:59	PQ	9J10019	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
oroethane										
1,1-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
1,1-Dichloroethene	ND		5.5	0.67	ug/kg dry	1,00	10/10/09 19:59		9J10019	8260B
1,2,3-Trichlorobenzene	ND		5.5	0.58	ug/kg dry	1,00	10/10/09 19:59		9J10019	8260B
1,2,4-Trichlorobenzene	ND		5.5	0.33	ug/kg dry	1,00	10/10/09 19:59		9J10019	8260B
1,2-Dibromo-3-chloroprop	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
ane						4.00	404000405		0.140040	00000
1,2-Dibromoethane	ND		5.5	0.21	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
(EDB)	ND			0.42	un finn alma	4.00	10/10/09 19:59	N PO	9J10019	82609
1,2-Dichloroberizene 1,2-Dichloroethane	ND ND		5.5	0.43	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
1,2-Dichloropropane	ND		5.5 5.5	0.27 2.7	ug/kg dry ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
1.3-Dichlorobenzene	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
1,4-Dichlorobenzene	ND		5.5	0.77	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
1.4-Dioxane	ND		220	26	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
2-Butanone (MEK)	ND		27	2.0	цg/kg dry	1.00	10/10/09 19:59		9J10019	8260B
2-Hexanone	ND		27	1.0	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
4-Methyl-2-pentanone	ND		27	1.8	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
(MIBK)	112				-5/ng -1/		10,70,00			
Acelone	ND		27	1.2	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Benzere	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Bromochloromethane	ND		5.5	0.40	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Bromodichloromethane	ND		5,5	0.28	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Bromoform	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 19:59	PQ	9J10019	8260B
Bromomethane	ND		5.5	1.2	ug/kg dry	1.00	10/10/09 19:59	-	9J10019	8260B
Carbon disulfide	ND		5.5	0.47	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Carbon Tetrachloride	ND		5.5	0.53	ug/kg dry	1.00	10/10/09 19:59		BJ10019	8260B
Chlorobenzene	ND		5.5	0.72	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Dibromochloromethane	ND		5.5	0.30	ug/kg dry	1.00	10/10/09 19:59		BJ10019	8260B
Chloroethane	ND		5.5	2.3	ug/kg dry	1,00	10/10/09 19:59		9J10019	8260B
Chloroform	ND		5.5	0.34	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Chloromethane	ND		5.5	0.33	ug/kg dry	1.00	10/10/09 19:5		9J10019	8260B
cis-1,2-Dichloroethene	ND		5.5	0,27	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
cis-1,3-Dichloropropene	ND		5.5	0.31	ug/kg dry	1.00	10/10/09 19:50		9J10019	8260B
Cyclohexane	ND		5.5	0.25	ug/kg dry	1,00	10/10/09 19:59		9J10019	8260B
Dichlorodifluoromethane	ND		5.5	0.45	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Isopropylbenzene	ND		5.5	0.83	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
Methyl Acetate	ND		5.5	0.30	ug/kg dry	1.00	10/10/09 19:5		9J10019	8260B
Methyl tert-Butyl Ether	ND		5.5	0.54	ug/kg dry	1.00	-		9J10019	8260B
Methylcyclohexane	ND	,	5.5	0.35	ug/kg dry	1.00	10/10/09 19:59 10/10/09 19:59		9J10019 9J10019	8260B
Methylene Chloride	2,0	7	5.5	1.1	ug/kg dry	1.00				8260B
m-Xylene & p-Xylene	ND		11	0.92	ug/kg dry	1.00	10/10/09 19:59		9J10019	8260B
o-Xylene	ND		5.5	0.71	ug/kg dry	1.00	10/10/09 19:59 10/10/09 19:59		9J10019	8260B
Styrene	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 19:5		9J10019 9J10019	8260B 8260B
Tetrachloroethene Toluene	ND ND		5.5 5.5	0.73 0.41	ug/kg dry ug/kg dry	1.00 1,00	10/10/09 19:5		9J10019	8260B
LOIDEIDE	IND		0.0	0.41	ugrky ury	1,00	10/10/05 13.5	o ru	20 100 13	02,000

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

48001559-2 Project Number: Analytical Report Sample DII Date Lab Data Tech Batch Result MDL Units Fac Analyzed Method Analyte Qualifiers RL Sampled: 10/06/09 10:15 Recvd: 10/09/09 09:20 Sample ID: RSJ0643-02 (S2 - Solid) - cont. Volatile Organic Compounds by EPA 8260B - cont. 8260B PQ 9,110019 trans-1,2-Dichloroethene ND 0.56 ug/kg dry 1.00 10/10/09 19:59 8260B 10/10/09 19:59 PQ 9J10019 ND 1.00 trans-1,3-Dichloropropen 5.5 0.27 ug/kg dry 1.00 9J10019 ND 0.38 10/10/09 19:59 PQ 8260B Trichloroethene 5.5 ug/kg dry Trichlorofluoromethane ND 5.5 0.52 ug/kg dry 1.00 10/10/09 19:59 PQ 9J10019 8260B 8260B 10/10/09 19:59 PQ 9J10019 Vinyl chloride ND 0.67 ug/kg dry 1.00 11 8260B 10/10/09 19:59 PQ 9J10019 1,2-Dichloroethane-d4 99 % Surr Limits: (64-126%) 4-Bromofluorobenzene 110 % Surr Limits: (72-126%) 10/10/09 19:59 PQ 9J10019 8260B 10/10/09 19:59 PQ 8260B 9J10019 Toluene-d8 111 % Surr Limits: (71-125%) Tentatively Identified Compounds by EPA 8260B 10/10/09 19:59 PQ 9J10019 8260B No TICs found (NOTICS) ND ug/kg dry 1.00 Semiyolatile Organics by GC/MS 1.00 10/15/09 21:32 MKP 9J13065 8270C 1,2,4,5-Tetrachlorobenze 190 17 ug/kg dry ne 10/15/09 21:32 MKP 9J13065 8270C 190 1.00 2,3,4,6-Tetrachlorophenol ND 190 ug/kg dry ND 190 **4**0 1.00 10/15/09 21:32 MKP 9J13065 8270C 2,4,5-Trichlorophenol ug/kg dry 1.00 2.4.6-Trichlorophenol ND 190 12 ug/kg dry 10/15/09 21:32 MKP 9J13065 8270C 10/15/09 21:32 MKP 9J13065 8270C ND 2,4-Dichlorophenol 190 9.7 ug/kg dry 1.00 2,4-Dimethylphenol ND 190 50 1.00 10/15/09 21:32 MKP 9J13065 8270C ug/kg dry 10/15/09 21:32 MKP 9J13065 2.4-Dinitrophenol ND 360 65 ug/kg dry 1,00 **B270C** 10/15/09 21:32 MKP 9J13065 8270C 2.4-Dinitrololuene ND 190 29 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 8270C 2.6-Dinitrotoluene ND 190 45 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 8270C 2-Chloronaphthalene ND 190 12 ug/kg dry 1.00 2-Chlorophenol ND 190 9.4 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 8270C 10/15/09 21:32 MKP 9J13065 8270C ND 190 2.2 1.00 2-Methylnaphthalene ug/kg dry 10/15/09 21:32 MKP 8270C 2-Methylphenol ND 190 5.7 ug/kg dry 1.00 9J13065 10/15/09 21:32 MKP 8270C 2-Nitroaniline ND 360 59 ug/kg dry 1.00 9J13065 1.00 10/15/09 21:32 MKP 8270C ND 9.113065 2-Nitrophenol 190 8.5 ug/kg dry 3,3'-Dichlorobenzidine ND 190 160 ug/kg dry 1.00 10/15/09 21:32 MKP 9.113065 8270C 8270C 3-Nitroaniline ND 360 43 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 360 1.00 10/15/09 21:32 MKP 9J13065 8270C ND 64 4,6-Dinitro-2-methylphen ug/kg dry ol 8270C 4-Bromophenyl phenyl ND 190 59 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 ether 4-Chloro-3-methylphenol ND 190 7.6 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 8270C 10/15/09 21:32 MKP 9J13065 8270C 4-Chloroanlline ND 190 54 ug/kg dry 1.00 8270C ND 190 3.9 1.00 10/15/09 21:32 MKP 9J13065 4-Chlorophenyl phenyl ug/kg dry ND 360 10 10/15/09 21:32 MKP 9J13065 8270C 4-Methylphenol ug/kg dry 1.00 4-Nitroaniline ND 360 21 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 8270C 10/15/09 21:32 MKP 9J13065 8270C 4-Nitrophenol ND 360 45 ug/kg dry 1.00 2.2 1.00 10/15/09 21:32 MKP 9J13065 8270C ND 190 Acenaphthene ug/kg dry 8270C Acenaphthylene ND 190 1.5 ug/kg dry 1.00 10/15/09 21:32 MKP 9J13065 10/15/09 21:32 MKP 9J13065 Acetophenone ND 190 9.5 ug/kg dry 1.00 8270C Anthracene ND 190 4.7 1.00 10/15/09 21:32 MKP 9J13065 8270C ug/kg dry ug/kg dry 10/15/09 21:32 MKP 8270C ND 190 8.2 1.00 9J13065 Atrazine

TestAmerica Buffalo

Benzaldehyde

Benzo[a]pyrene

Benzo(a)anthracene

190

190

190

ug/kg dry

ug/kg dry

ug/kg dry

20

3.2

1.00

1.00

1.00

10/15/09 21:32 MKP

10/15/09 21:32 MKP 9J13065

10/15/09 21:32 MKP 9J13065

9J13065

B270C

8270C

8270C

ND

ND

ND

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
	Sample	Data		•	·	DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-02	2 (S2 - Sol	lid) - cont.			Samp	oled:	10/06/09 10:15	Rec	vd: 10/09	/09 09:20		
Semivolațiie Organics	by GC/MS	S - cont.										
Benzo[b]fluoranthene	ND		190	3.6	ug/kg dry	1.00	10/15/09 21:32	MKP	9J13065	8270C		
Benzo[g,h,i]perylene	ND		190	2.2	ug/kg dry	1.00	10/15/09 21:32		9J13065	8270C		
Benzo[k]fluoranthene	ND		190	2.0	ug/kg dry	1.00	10/15/09 21:32			8270C		
1,1'-Biphenyl	ND		190	12	ug/kg dry	1.00	10/15/09 21:32		9J13065	8270C		
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	10/15/09 21:32	MKP	9J13065	8270C		
ne	ND		400	46	unika das	1.00	10/15/09 21:32	MKD	9J13065	8270C		
Bis(2-chloroethyl)ether	ND ND		190 190	16 19	ug/kg dry ug/kg dry	1.00	10/15/09 21:32		9J13085	8270C		
2,2'-Oxybis(1-Chloroprop ane)	שא		150	10	ogrky dry	1.00	10/10/00 21:02		001000	02.00		
Bis(2-ethylhexyl)	ND		190	60	ug/kg dry	1,00	10/15/09 21:32	MKP	9J13065	8270C		
phthalate	***											
Butyl benzyl phthalate	ND		190	50	ug/kg dry	1.00	10/15/09 21:32		BJ13065	8270C		
Caprolactam	ND		190	80	ug/kg dry	1.00	10/15/09 21:32			8270C		
Carbazole	ND		190	2.1	ug/kg dry	1.00	10/15/09 21:32		9J13065	8270C		
Chrysene	ND		190	1.9	ug/kg dry	1,00	10/15/09 21:32		9J13065	8270C		
Dibenz[a,h]anthracene	ND		190	2.2	ug/kg dry	1.00	10/15/09 21:32			8270C		
Dibenzofuran	ND		190	1.9	ug/kg dry	1.00	10/15/09 21:32			8270C		
Diethyl phthalate	ND		190	5.6	ug/kg dry	1.00	10/15/09 21:32			8270C		
Dimethyl phthalate	ND		190	4.8	ug/kg dry	1.00	10/15/09 21:32			8270C		
Di-n-butyl phthalate	ND		190	64	ug/kg dry	1.00				8270C		
Di-n-octyl phthalate	ND		190	4.3	ug/kg dry	1.00				8270C		
Fluoranthene	ND		190	2.7	ug/kg dry	1.00				8270C		
Fluorene	ND		190	4.3	ug/kg dry	1,00	10/15/09 21:3	2 MKP	9J13065	8270C		
Hexachlorobenzene	ND		190	9.2	ug/kg dry	1.00				8270C		
Hexachtorobutadiene	ND		190	9.5	ug/kg dry	1.00	10/15/09 21:3	2 MKP		8270C		
Hexachlorocyclopentadie	ND		190	56	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13065	8270C		
ne					•							
Hexachloroethane	ND		190	14	ug/kg dry	1.00				8270C		
Indeno[1,2,3-od]pyrene	ND		190	5.1	ug/kg dry	1.00				8270C		
Isophorone	ND		190	9.2	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13065	8270C		
Naphthelene	ND		190	3.1	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13065	8270C		
Nitrobenzene	ND		190	8.2	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13065	8270C		
N-Nitrosodi-n-propylamin	ND		190	15	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13085	8270C		
8			400	4.0		4.00	404500 21.2	2 MVD	9J13065	8270C		
N-Nitrosodiphenylamine	ND		190	10	ug/kg dry	1.00				8270C		
Pentachlorophenol	ND		360	63	ug/kg dry	1.00				8270C		
Phenanthrene	ND		190	3.9	ug/kg dry	1.00						
Phenol	ND		190	19	ug/kg dry	1.00				8270C		
Pyrene	_ ND		190	1.2	ug/kg dry	1.00	10/15/09 21:3	2 MIKP	8013062	8270C		
2,4,6-Tribromophenol	78 %		Surr Limits:	(39-146%))		10/15/09 21:3			8270C		
2-Fluorobiphenyl	71 %		Sur Limits:	(37-120%))		10/15/09 21:3			8270C		
2-Fluorophenol	54 %		Surr Limits:	(18-120%))		10/15/09 21:3			8270C		
Nitrobenzene-d5	67 %		Surr Limits:				10/15/09 21:3	2 MKP	9J13065	8270C		
Phenol-d5	57 %		Sur Limits:	(11-120%))		10/15/09 21:3	2 MKP	9J13065	8270C		
p-Terphenyl-d14	84 %		Sur Limits:				10/15/09 21:3	2 MKP	9J13065	8270C		
Semivolatile Organics	s TICs by	GC/MS										
Unknown01 (none)	310	17, B	Ret Time: 1	1 749	ug/kg dry	1.00	10/15/09 21:3	2 MKP	9J13065	8270C		
Chkilowho i (none)	370	17, 0	Let tille: I	1.173	ugrag ury	1.00	, id: id: 00 £ 1.0	_ 1-1131	0010000	22100		
Organochlorine Pesti							10116: 5			0004		
4,4'-DDD [2C]	ND	QFL	1.8	0.35	ug/kg dry	1.00	0 10/16/09 07:5	9 DGB	9J10008	8081A		
TestAmerica Buffalo												

TestAmerica Buffalo

10 Hazelwood Drive Amhersl, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			- TOJECT NUMB							
			Ana	alytical F	teport					
Amalida	Sample	Data	-	MOI	11-14-	Dil	Date	Lab	Ratah	المراجع الأراز
Analyte	Result	Qualifiers	RL_	MDL	Units	Fac			Batch	Method
Sample ID: RSJ0643-02	! (S2 - Sol	id) - cont.			Samp	oled: 1	0/06/09 10:15	Rec	vd: 10/09	/09 09:20
Organochlorine Pestic	ldes by E	PA Method	8081A - co	nt.						
4,4'-DDE [2C]	ND	QFL	1.8	0.53	ug/kg dry	1,00	10/16/09 07:59	_		8081A
4,4'-DDT [2C]	ND	QFL	1.8	0.42	ug/kg dry	1.00	10/16/09 07:59			8081A
Aldrin [2C]	ND	QFL	1.8	0.19	ug/kg dry	1.00	10/16/09 07:59			8081A
alpha-BHC [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/16/09 07:59			8081A
alpha-Chlordane [2C]	ND	QFL	1.8	0.91	ug/kg dry	1.00	10/16/09 07:59			8081A
bela-BHC [2C]	ND	QFL	1.8	1,3	ug/kg dry	1.00	10/16/09 07:59			8081A
delle-BHC [2C]	0.06	QFL,J	1.8	0.24	ug/kg dry	1.00	10/16/09 07:59			8081A
Dieldrin [2C]	ND	QFL	1.8	0.44	ug/kg dry	1.00	10/16/09 07:59			8081A
Endosulfan I [2C]	ND	QFL	1.8	0.39	ug/kg dry	1.00	10/16/09 07:59			8081A
Endosulfan II [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/16/09 07:59			8081A
Endosulfan sulfate [2C]	ND	QFL,C	1.8	0.34	ug/kg dry	1.00	10/16/09 07:59			8081A
Endrin [2C]	ND	QFL	1.8	0.59	ug/kg dry	1.00	10/16/09 07:59			8081A
Endrin aldehyde [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/16/09 07:59			8081A
Endrin ketone [2C]	ND	QFL	1.8	0.45	ug/kg dry	1.00	10/16/09 07:59			8081A 8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.8	0.32	ug/kg dry	1.00	10/16/09 07:59			
gamma-Chlordane [2C]	МĐ	QFL	1.8	0.25	ug/kg dry	1.00	10/16/09 07:59			B081A
Heptachlor [2C]	ND	QFL	1.8	0.29	ug/kg dry	1,00	10/16/09 07:59			8081A
Heptachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/16/09 07:59			8081A
Methoxychlor [2C]	ND	QFL	1.8	0.49	ug/kg dry	1,00	10/16/09 07:59			8081A
Toxaphene [2C]	ND	QFL	18	11	ид/kg dry	1.00	10/16/09 07:59	DGB	9J10008	8081A
Decechlorobiphenyl [2C]	81 %	QFL	Surr Limits:	(42-146%)			10/16/09 07:59	DGB	9J10008	8081A
Tetrachioro-m-xylene	67 %	QFL	Sur Limits:	(37-136%)			10/16/09 07:59	DGB	9J10008	8081A
[2C]										
Polychlorinated Biphe	nyls by E	PA Method	B082							
Arocior 1016	ND		18	3.5	ug/kg dry	1.00	10/16/09 17:05	SCH	9J16100	8082
Aroclor 1221	ND		18	3.5	ug/kg dry	1,00	10/18/09 17:05	SCH	9J16100	8082
Aroclor 1232	ND		18	3.5	ug/kg dry	1.00	10/18/09 17:05	SCH	9J16100	8082
Aroclor 1242	ND		16	3.9	ug/kg dry	1.00	10/18/09 17:05	SCH	9J16100	8082
Aroclor 1248	ND		18	3.6	ug/kg dry	1.00	10/16/09 17:05			8082
Aroclor 1254	ND		18	3,6	ug/kg dry	1.00	10/18/09 17:05			8082
Aroclor 1260	ND		18	3.8	ug/kg dry	1.00	10/18/09 17:05			8082
Aroclor 1262	ND		18	3.8	ug/kg dry	1.00	10/18/09 17:05			8082
Aroclor 1268	ND		18	3.8	ug/kg dry	1.00	10/18/09 17:05	SCH	9J16100	8082
Decachlorobiphenyl	87 %		Surr Limits:	(34-148%)			10/18/09 17:05	SCH	9J16100	8082
Tetrachloro-m-xylene	80 %			(35-134%)			10/18/09 17:05			8082
Total Metals by SW 84		<u>Methods</u>								
Aluminum	9250		10.3	1.3	mg/kg dry	1.00	10/20/09 22:02			6010B
Antimony	ND		15.4	0.6	mg/kg dry	1.00	10/20/09 22:02			6010B
Arsenic	3.5	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:02			6010B
Barium	52,6		0.513	0.027	mg/kg dry	1.00	10/20/09 22:02			6010B
Beryllium	0.423	В	0.205	0.010	mg/kg dry	1.00	10/20/09 22:02			6010B
Cadmium	0.077	J	0.205	0.041	mg/kg dry	1.00	10/20/09 22:02			6010B
Calcium	1490		51.3	10.3	mg/kg dry	1.00	10/20/09 22:02			6010B
Chromium	18.5		0.513	0.092	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
Cobalt	7.14		0.513	0.051	mg/kg dry	1.00	10/20/09 22:02	DAN 2	9J15055	6010B
Соррег	17.0		1.0	0.1	mg/kg dry	1.00	10/20/09 22:02			6010B
Iron	18600		10.3	3.1	mg/kg dry	1.00	10/20/09 22:02	DAN	9J15055	6010B
					•					

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
			АП	aiyucai	Report							
	Sample	Data				DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ064	13-02 (S2 - Sol	ld) - cont			Samp	oled: 1	0/06/09 10:15	Rec	vd: 10/09	/09 09:20		
Total Metals by \$V	V 846 Series N	lethods - co	<u>nt.</u>									
Lead	5.7		1.0	0.1	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	6010B		
Magnesium	2990	В	20.5	1.0	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	6010B		
Mangenese	414	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	60108		
Nickel	12.6		5.13	0.082	mg/kg dry	1,00	10/20/09 22:02	2 DAN	9J15055	6010B		
Potassium	1460		30.8	5.0	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	6010B		
Selenium	ND		4.1	0.6	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	6010B		
Silver	ND		0.513	0.072	mg/kg dry	1,00	10/20/09 22:02	2 DAN	9J15055	6010B		
Sodium	78.2	J	144	31.8	mg/kg dry	1.00	10/20/09 22:0	2 DAN	9J15055	6010B		
Thallium	0.5	J	6.2	0.3	mg/kg dry	1.00	10/20/09 22:0		9J15055	6010B		
Vanadium	16.8		0.513	0.041	mg/kg dry	1.00	10/20/09 22:0	2 DAN	9J15055	6010B		
Zinc	36.6	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:02	2 DAN	9J15055	6010B		
Mercury	ND		0.0220	0.0089	mg/kg dry	1.00	10/20/09 15:14	4 MXM	9J19064	7471A		
General Chemistr	<u> Parameters</u>											
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:3	4 JR	9J12049	Dry Weigl		
Cyanide	ND		1.0	0.5	mg/kg dry	1.00	10/16/09 09:2	7 LRM	9J14035	9012A		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	_		Ar	nalytical	Report	_				
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-03	(S3 - So	id)			Samı	oled: '	10/06/09 11:00		vd: 10/09	<u> </u>
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		5.7	0.41	ug/kg dry	1,00	10/10/09 20:24	PO	9J10019	8260B
1,1,2,2-Tetrachloroethane	ND		5.7	0.92	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,1,2-Trichloroethane	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.7	2.8	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
oroethane										
1,1-Dichloroethane	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
1,1-Dichloroethene	ND		5.7	0.69	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,2,3-Trichlorobenzene	ND		5.7	0,60	ug/kg dry	1.00	10/10/09 20:24		9J10019	82608
1,2,4-Trichlorobenzene	ND		5.7	0.35	ug/kg dry	1.00	10/10/09 20:24	-	9J10019	8260B
1,2-Dibromo-3-chloroprop	ND		5.7	2.8	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
1,2-Dibromoethane	ND		5.7	0.22	ualko dar	1.00	10/10/09 20:24	PO.	9J10019	8260B
(EDB)	ND		J.1	0,22	ug/kg dry	1.00	(0/10/08/20/24	Fu	5010018	6200B
1,2-Dichlorobenzene	ND		5.7	0.44	ug/kg dry	1.00	10/10/09 20:24	PΩ	8J10019	8260B
1,2-Dichloroethane	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,2-Dichloropropane	ND		5.7	2.8	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,3-Dichlorobenzene	ND		5.7	0.29	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
1,4-Dichlorobenzene	ND		5.7	0.79	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
1,4-Dioxane	ND		230	27	ug/kg dry	1,00	10/10/09 20:24	PQ	9J10019	8260B
2-Butanone (MEK)	ND		28	2.1	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
2-Hexanone	ND		28	2.0	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
4-Methyl-2-pentanone	ND		28	1.9	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
(MIBK)										
Acetone	ND		28	1.2	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Benzene	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Bromochloromethane	ND		5.7	0.41	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Bromodichloromethane Bromoform	ND ND		5.7	0.29	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Bromomethane	ND		5.7	2.8	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Carbon disulfide	ND		5.7 5.7	1.3 0.49	ug/kg dry	1.00 1.00	10/10/09 20:24 10/10/09 20:24		9J10019 9J10019	8260B 8260B
Carbon Tetrachloride	ND		5.7 5.7	0.49	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Chlorobenzene	ND		5.7	0.33	ug/kg dry ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Dibromochloromethane	ND		5.7	0.73	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Chloroethane	ND		5.7	2.4	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Chloroform	ND		5.7	0.35	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Chloromethane	ND		5.7	0.34	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
cis-1,2-Dichloroethene	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
cis-1,3-Dichloropropene	ND		5.7	0.32	ug/kg dry	1.00	10/10/09 20:24		9J10019	B260B
Cyclohexane	ND		5.7	0.26	ug/kg dry	1.00	10/10/09 20:24	-	9J10019	6260B
Dichlorodifiuoromethane	ND		5.7	0.47	ug/kg dry	1.00	10/10/09 20:24		9J10019	6260B
Ethylbenzene	ND		5.7	0.39	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Isopropylbanzene	ND		5.7	0.86	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Methyl Acetate	ND		5.7	0.31	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Methyl tert-Butyl Ether	ND		5.7	0.56	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Methylcyclohexane	ND		5.7	0.37	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Methylene Chloride	1.7	J	5.7	1.1	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
m-Xylene & p-Xylene	ND		11	0.95	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
o-Xylene	ND		5.7	0.74	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Styrene	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Tetrachloroethene	ND		5.7	0.76	ug/kg dry	1.00	10/10/09 20:24		9J10019	B260B
Toluene	ND		5.7	0.43	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	B260B

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical F	Report					
	Sample	Data		-	-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-03	(S3 - Sol	id) - cont.		•	Samı	oled: 1	10/06/09 11:00	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 82601	B - cont.							
trans-1,2-Dichloroethene	ND		5.7	0.59	ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
trans-1,3-Dichloropropen	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
е										
Trichloroethene	ND		5.7	0.39	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Trichlorofluoromelhane	ND		5.7	0.54	ug/kg dry	1.00	10/10/09 20:24		9J10019	8260B
Vinyl chloride	ND		11	0.69	ug/kg dry	1.00	10/10/09 20:24	PQ	8J10019	8260B
1,2-Dichloroethane-d4	97 %	_	Sur Limits:				10/10/09 20:24	-	9J10019	8260B
4-Bromofluorobenzene	111 %		Surr Limits:	(72-126%)			10/10/09 20:24	I PQ	9J10019	8260B
Toluene-d8	113 %		Surr Limits:	(71-125%)			10/10/09 20:24	PQ	9J10019	82609
Tentatively Identified 0	Compoun	ds by EPA	8260B							
No TICs found (NOTICS)	ND	77			ug/kg dry	1.00	10/10/09 20:24	PQ	9J10019	8260B
Semivolatile Organics	by GC/M	<u>s</u>								
1,2,4,5-Tetrachlorobenze	ND		190	17	ug/kg dry	1.00	10/16/09 12:28	MKP	9J13065	8270C
ne										
2,3,4,6-Tetrachlorophenol	ND		190	190	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C
2,4,6-Trichlorophenol	ND		190	12	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C
2,4-Dichlorophenol	ND		190	9.8	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C
2,4-Dimethylphenol	ND		190	51	ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
2,4-Dinitrophenol	ND		370	66	ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
2,4-Dinitrotoluene	ND		190	29	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C 8270C
2,6-Dinitrotoluene	ND ND		190	46	ug/kg dry	1.00	10/16/09 12:28 10/16/09 12:28		9J13065 9J13065	8270C
2-Chloronaphthalene	ND		190 190	13 9.6	ug/kg dry	1,00	10/16/09 12:20		9J13065	8270C
2-Chlorophenol	ND		190	2.3	ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
2-Methylnaphthalene 2-Methylphenol	ND		190	2.3 5.8	ug/kg dry	1.00	10/16/09 12:20			8270C
2-Nitroaniline	ND		370	5.6 60	ug/kg dry ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
2-Nitrophenol	ND		190	8.6	ug/kg dry	1.00	10/16/09 12:20			8270C
3,3'-Dichlorobenzidine	NO		190	160	ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
3-Nitroaniline	ND		370	43	ug/kg dry	1.00	10/16/09 12:20			8270C
4,6-Dinitro-2-mathylphen	ND		370	65	ug/kg dry	1.00	10/16/09 12:20			8270C
ol	110		0.0	00	oging oil	1,00	10/10/00 12/2			
4-Bromophenyl phenyl	ND		190	60	ug/kg dry	1.00	10/16/09 12:28	MKP	9J13065	8270C
ether										
4-Chloro-3-methylphenol	ND		190	7.7	ug/kg dry	1.00	10/16/09 12:2	B MKP	9J13065	8270C
4-Chloroaniline	ND		190	55	ug/kg dry	1.00	10/16/09 12:2	B MKP	9J13065	8270C
4-Chlorophenyl phenyl	ND		190	4.0	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
ether										
4-Methylphenol	ND		370	10	ug/kg dry	1.00	10/16/09 12:2			8270C
4-Nitroaniline	ND		370	21	ug/kg dry	1,00	10/16/09 12:2			8270C
4-Nitrophenol	ND		370	46	ug/kg dry	1.00	10/16/09 12:2			8270C
Acenaphthene	ND		190	2,2	ug/kg dry	1.00				8270C
Acenaphthylene	ND		190	1.5	ug/kg dry	1.00				8270C
Acetophenone	ND		190	9.6	ug/kg dry	1.00	10/16/09 12:2			8270C
Anthracene	ND		190	4.8	ug/kg dry	1.00				8270C
Alrazine	ND		190	8.4	ug/kg dry	1.00	10/16/09 12:2			8270C
Benzaldehyde	ND		190	21	ug/kg dry	1.00				8270C
Benzo[a]anthracene	11	J	190	3.2	ug/kg dry	1.00				8270C
Benzo[a]pyrene	ND		190	4.5	ug/kg dry	1.00	10/16/09 12:2	S MKP	9J13065	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ana	lytical R	teport					
	Sample	Data			•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-03	(S3 - S ol	id) - cont.			Samp	oled: 1	0/06/09 11:00	Rec	vd: 10/09/	09 09:20
Semivolatile Organics	by GC/MS	\$ - con <u>t.</u>								
Benzo[b]fluoranthene	ND	_	190	3.6	ug/kg dry	1.00	10/16/09 12:28			8270C
Benzo[g,h,i]perylene	ND		190	2.3	ug/kg dry	1.00	10/16/09 12:28		9J13065	8270C
Benzo[k]fluoranthene	ND		190	2.1	ug/kg dry	1.00	10/16/09 12:28			8270C
1,1'-Biphenyl	ND		190	12	ug/kg dry	1.00	10/16/09 12:20	MKP	9J13065	8270C
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	10/16/09 12:28	3 MKP	9J13065	8270C
пе										
Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	1.00	10/16/09 12:28			6270C
2,2'-Oxybis(1-Chloroprop	ND		190	20	ug/kg dry	1.00	10/16/09 12:20	8 MKP	9J13065	8270C
ane)			400	0.4		4.00	10/16/09 12:20	MVD	0.143065	8270C
Bis(2-ethylhexyl)	ND		190	61	ug/kg dry	1.00	10/10/09 12:20) MICE	83 13003	82700
phthalate	ME		190	50	unika dar	1.00	10/16/09 12:20	R MKP	9J13065	8270C
Butyl benzyl phihalate	ND			50	ug/kg dry	1.00	10/16/09 12:2		9J13065	8270C
Caprolactam	ND		190	81	ug/kg dry	1.00	10/16/09 12:20			8270C
Carbazole	ND		190	2.2	ug/kg dry	1.00	10/16/09 12:20		9J13065	8270C
Chrysene	ND		190	1.9	ug/kg dry		10/16/09 12:2			8270C
Dibenz[a,h]anthracene	ND		190	2.2	ug/kg dry	1.00				8270C
Dibenzofuran	ND		190	2.0	ug/kg dry	1.00	10/16/09 12:2			8270C
Diethyl phthalate	ND		190	5.7	ug/kg dry	1.00	10/16/09 12:2			
Dimethyl phthalate	ND		190	4.9	ug/kg dry	1.00	10/16/09 12:2			8270C
Di-n-butyl phthalale	ND		190	65	ug/kg dry	1.00	10/16/09 12:2			8270C
Di-n-octyl phthalate	ND		190	4.4	ug/kg dry	1.00	10/16/09 12:2			8270C
Fluoranthene	10	L	190	2.7	ug/kg dry	1,00	10/16/09 12:2			8270C
Fluorene	ND		190	4.3	ug/kg dry	1.00	10/16/09 12:2			8270C
Hexachlorobenzene	ND		190	9.3	ug/kg dry	1.00	10/16/09 12:2			8270C
Hexachlorobutadiene	ND		190	9.6	ug/kg dry	1.00	10/16/09 12:2			8270C
Hexachlorocyclopentadie	ND		190	57	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
ne										
Hexachloroethane	ND		190	15	ug/kg dry	1.0D	10/16/09 12:2			8270C
Indeno[1,2,3-od]pyrene	ND		190	5.2	ug/kg dry	1.00	10/16/09 12:2			8270C
Isophorone	ND		190	9.4	ug/kg dry	1.00	10/16/09 12:2			8270C
Naphthalene	ND		190	3.1	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
Nitrobenzene	ND		190	8.3	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
N-Nitrosodi-n-propylamin	ND		190	15	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
е										
N-Nitrosodiphenylamine	ND		190	10	ug/kg dry	1.00	10/16/09 12:2	8 MKP		8270C
Pentachlorophenol	ND		370	64	ug/kg dry	1.00	10/16/09 12:2			8270C
Phenanthrene	ND		190	3.9	ug/kg dry	1.00	10/16/09 12:2			8270C
Phenol	ND		190	20	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
Pyrene	10	J	190	1.2	ug/kg dry	1.00	10/16/09 12:2	8 MKP	9J13065	8270C
			Currel I - Ital	/20 4 460/1			10/16/09 12:2	R MKD	0 113065	8270C
2,4,6-Tribromophenol	61 %		Sur Limits:				10/16/09 12:2			8270C
2-Fluorobiphenyl	55 %		Sur Limits:				10/16/09 12:2			8270C
2-Fluorophenol	41 %		Sur Limits:				10/16/09 12:2			8270C
Nitrobenzene-d5	53 %		Sun Limits:							8270C
Phenol-d5	47 %		Surr Limits:	[11-120%,	,		10/16/09 12:2			
p-Terphenyl-d14	61 %		Surr Limits:	(58-147%))		10/16/09 12:2	O MAP	9313005	8270C
Semivolatile Organics	TICs by	GC/MS								
Unknown01 (none)	210	T7, B	Ret Time: 1	1.744	ug/kg dry	1.00	10/16/09 12:2	28 MKP	9J13065	8270C
Organochlorine Pesti	cides by I	EPA Methor	1 8081A							
4,4'-DDD (2C)	ND	QFL	1.9	0.37	ug/kg dry	1.00	10/16/09 08:3	35 DGB	9J10008	8081A
TeslAmerica Buffalo		••	·							
1 DSIVILIDING DUIIGIU										

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www,testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

			Toject Nomo							
			Ana	alytical R	eport					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL_	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-03	3 (\$3 - Sol	ld) - cont.			Samp	oled: 1	0/06/09 11:00	Rec	vd: 10/09/	09 09:20
Organochlorine Pestic	ides by E	PA Method	8081A - co	n <u>t.</u>						
4,4'-DDE [2C]	ND	QFL	1.9	0.54	ug/kg dry	1.00	10/16/09 08:35			8081A
4,4'-DDT [2C]	1.1	QFL,J	1.9	0.43	ug/kg dry	1.00	10/16/09 08:35			8081A
Aldrin [2C]	ND	QFL	1.9	0.19	ug/kg dry	1.00	10/16/09 08:35			8081A
alpha-BHC [2C]	ND	QFL	1.9	0.34	ug/kg dry	1.00	10/16/09 08:35			8081A
alpha-Chlordane [2C]	ND	QFL	1.9	0.94	ug/kg dry	1.00	10/16/09 08:35			8081A
beta-BHC [2C]	ND	QFL	1.9	1.4	ug/kg dry	1.00	10/16/09 08:35	DGB	9J10008	8081A
delta-BHC [2C]	0.90	QFL,J	1.9	0.25	ug/kg dry	1.00	10/16/09 08:35			8081A
Dieldrin [2C]	ND	QFL	1.9	0.45	ug/kg dry	1.00	10/18/09 08:35			8081A
Endosulfan I [2C]	ND	QFL	1.9	0.40	ug/kg dry	1.00	10/16/09 08:35	DGB	9J10008	8081A
Endosulfan II (2C)	ND	QFL	1.9	0.34	ug/kg dry	1.00	10/16/09 08:35	DGB	9J10008	8081A
Endosulfan sulfate [2C]	ND	QFL,C	1.9	0.35	ug/kg dry	1.00	10/16/09 08:35			8081A
Endrin [2C]	ND	QFL	1.9	0.61	ug/kg dry	1.00	10/16/09 08:35			8081A 8081A
Endrin aldehyde [2C]	ND	QFL	1.9	0.48	ug/kg dry	1.00	10/16/09 08:35			8081A
Endrin kelone [2C]	ND	QFL	1.9	0,46	ug/kg dry	1.00	10/16/09 08:35	DOB	9010008	8081A
gamma-BHC (Lindane)	ND	QFL	1.9	0.33	ug/kg dry	1.00	10/16/09 08:3	DGB	8110000	DUD 1A
[2C] gamma-Chlordane [2C]	0.29	QFL,J	1.9	0.26	up/kg dry	1.00	10/16/09 08:35	DGB	9J10008	8081A
Heptachlor [2C]	ND	QFL	1.9	0.30	ug/kg dry	1.00	10/16/09 08:35			8081A
Heptachior epoxide [2C]	ND	QFL	1.9	0.49	ug/kg dry	1.00	10/16/09 08:3			8081A
Methoxychlor [2C]	ND	QFL	1.9	0.50	ug/kg dry	1.00	10/16/09 08:3!	5 DGB	9J10008	8081A
Toxaphene [2C]	ND	QFL	19	11	ug/kg dry	1.00	10/16/09 08:3	5 DGB	9J10008	8081A
Decachlorobiphenyl [2C]	89 %	QFL	Surr Limits:	(42-146%)			10/16/09 08:3			8081A
Tetrachloro-m-xylene	76 %	QFL	Surr Limits:				10/16/09 08:3	5 DGB	9J10008	8081A
[20]				, ,						
Polychlorinated Biphe	envis by E	PA Method	8082							
Aroctor 1016	ND		19	3.7	ug/kg dry	1.00	10/18/09 17:2			8082
Aroclor 1221	ND		19	3.7	ug/kg dry	1.00	10/18/09 17:2	D SCH	9J16100	8082
Aroclor 1232	ND		19	3.7	บg/kg dry	1,00	10/18/09 17:2	D SCH	9J16100	8082
Arodor 1242	ND		19	4.1	ug/kg dry	1.00	10/18/09 17:2			6082
Aroclor 1248	ND		19	3.7	ug/kg dry	1.00	10/18/09 17:2			8082
Arodor 1254	ND		19	4.0	ug/kg dry	1.00	10/18/09 17:2			8082
Aroclor 1260	ND		19	4.0	ug/kg dry	1.00	10/18/09 17:2	0 SCH	9J16100	8082
Aroclor 1262	ND		19	4.0	ug/kg dry	1.00	10/18/09 17:2	O SCH	9J16100	8082
Arodor 1268	ND		19	4.0	ug/kg dry	1.00	10/18/09 17:2			8082
Decachlorobiphenyl	98 %		Surr Limits:				10/18/09 17:2	o SCH	9J16100	8082
Tetrachloro-m-xylene	86 %		Surr Limits:	(35-134%)			10/18/09 17:2	o SCH	9J16100	8082
Total Metals by SW 84	46 Series	Methods								
Aluminum	9490		11.6	1.5	mg/kg dry	1.00	10/20/09 22:0			6010B
Anlimony	ND		17.5	0.6	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Arsenic	3.6	В	2.3	0.3	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Barium	66,4	_	0.582	0.030	mg/kg dry	1.00	10/20/09 22:0			6010B
Beryllium	0.436	В	0.233	0.012	mg/kg dry	1.00	10/20/09 22:0			6010B
Cadmium	0.125	j	0.233	0.047	mg/kg dry	1.00	10/20/09 22:0			6010B
Calclum	3150	•	58.2	11.6	mg/kg dry	1.00	10/20/09 22:0			6010B
Chromium	9.02		0.582	0.105	mg/kg dry	1.00	10/20/09 22:0			6010B
Coball	6.64		0.582	0.058	mg/kg dry	1.00	10/20/09 22:0			6010B
Copper	17.9		1.2	0.00	mg/kg dry	1.00	10/20/09 22:0			6010B
	17.9		11.6	3.5	mg/kg dry	1.00	10/20/09 22:0			6010B
Iron	17200		11.0	5.5	inging ory		. 0,20,00			

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical	Report					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ064	13-03 (53 - Sol	id) - cont.			Samp	oled: 1	0/06/09 11:00	Rec	vd: 10/09	/ 09 09:20
Total Metals by SV	V 846 Series N	lethods - co	nt.							
Lead	6.1		1.2	0.1	mg/kg dry	1.00	10/20/09 22:07	DAN	9J15055	6010B
Magnesium	3590	В	23.3	1.1	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
Manganese	420	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:07	DAN	9J15055	6010B
Nickel	11.3		5.82	0.093	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
Polassium	1350		34.9	5.7	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
Selenium	ND		4.7	0.7	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
Silver	ND		0.582	0.081	mg/kg dry	1.00	10/20/09 22:07	7 DAN	9J15055	6010B
Sodium	221		163	36.1	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Thallium	ND		7.0	0.3	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Vansdium	17.4		0.582	0.047	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Zinc	37.9	В	2.3	0.2	mg/kg dry	1.00	10/20/09 22:0	7 DAN	9J15055	6010B
Mercury	ND		0.0232	0.0094	mg/kg dry	1.00	10/20/09 15:10	MXM 8	9J19064	7471A
General Chemistry	v Parameters									
Percent Solids	87		0.010	NR	%	1.00	10/12/09 15:3	B JR	9J12049	Dry Weigh
Cyanide	ND		1.0	0.5	mg/kg dry	1.00	10/16/09 09:2	7 LRM	9J14035	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

			rojeci Num		U1559-Z					
			Ап	alytical	Report					
	Sample	Data		-	-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-04	(S4 - Sol	lid)			Samp	pled: 1	0/06/09 11:15	Rec	vd: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		27	2,0	ug/kg dry	1.00	10/10/09 20:49	PO	9J10019	8260B
1,1,2,2-Tetrachloroethane	ND		27	4.4	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,1,2-Trichloroethane	ND		27	1.4	ug/kg dry	1.00	10/10/09 20:49	-	9J10019	82608
1,1,2-Trichloro-1,2,2-triflu	ND		27	13	ug/kg dry	1.00	10/10/09 20:49	_	9J10019	8260B
oroethane					-33					
1,1-Dichloroethane	ND		27	1.3	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
1,1-Dichloroethene	ND		27	3.3	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
1,2,3-Trichlorobenzene	ND		27	2.9	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
1,2,4-Trichlorobenzene	ND		27	1.6	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
1,2-Dibromo-3-chloroprop	ND		27	13	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
ane										
1,2-Dibromoethane	ND		27	1.0	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
(EDB)										
1,2-Dichlorobenzene	ND		27	2.1	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,2-Dichloroethane	ND		27	1.4	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,2-Dichloropropane	ND		27	13	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,3-Dichlorobenzene	ND		27	1.4	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,4-Dichlorobenzene	ND		27	3.8	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
1,4-Dioxane	ND		1100	130	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
2-Butanone (MEK)	ND		130	9.9	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
2-Hexanone	ND		130	9.4	ug/kg dry	1.00	10/10/09 20:49	. –	9J10019	8260B
4-Methyl-2-pentanone	ND		130	8.8	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
(MIBK)										
Acetone	120	J	130	5.9	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Benzene	ND		27	1.3	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Bromochloromethane	ND		27	1.9	ug/kg dry	1.00	10/10/09 20:48		9J10019	8260B
Bromodichloromethane	ND		27	1.4	ug/kg diy	1.00	10/10/09 20:49		9J10019	8260B
Bromoform	ND		27	13	ug/kg dry	1.00	10/10/09 20:49		9J10019	82608
Bromomethane	ND		27	6.0	ug/kg dry	1.00	10/10/09 20:49		9J10019	82 6 08
Carbon disulfide	ND		27	2.3	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Carbon Tetrachloride	ND		27	2.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Chlorobenzene	ND		27	3.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Dibromochloromethane Chloroethane	ND		27	1,5	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
	ND		27	11	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Chloroform	ND		27	1,7	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Chloromethane	ND		27	1.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
cis-1,2-Dichloroethene	ND		27	1.3	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
cls-1,3-Dichloropropene	ND		27	1.5	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Cyclohexane	ND		27	1.2	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Dichlorodifluoromethane	ND		27	2.2	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Ethylbenzene	29		27	1.9	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Isopropylbenzene	140		27	4.1	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Methyl Acetate	ND		27	15	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Methyl tert-Butyl Ether	ND		27	2.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Methylcyclohexane	110		27	1.7	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Methylene Chloride	11	i,	27	5.3	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
m-Xylene & p-Xylene	7.2	J	54	4.5	ug/kg dry	1,00	10/10/09 20:49		9J10019	8260B
o-Xylene	ND		27	3.5	ug/kg dry	1,00	10/10/09 20:49		9J10019	8260B
Styrene	ND		27	1.3	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Tetrachloroethene	ND		27	3.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Toluene	ND		27	2.0	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ana	lytical F	Report				_	
	Sample	Data		_	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-04	(S4 - Sol	id) - cont			Samp	oled: 1	0/06/09 11:15	Rec	vd: 10/09	09 09:20
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.							
trans-1,2-Dichloroethene	ND		27	2.8	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
Irans-1,3-Dichloropropen	ND		27	1.3	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
8					00.					
Trichloroethene	ND		27	1.9	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Trichlorofluoromethane	ND		27	2.6	ug/kg dry	1.00	10/10/09 20:49		9J10019	8260B
Vinyl chloride	ND		54	3,3	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
1,2-Dichloroethane-d4	95 %	<u> </u>	Sur Limits:	(64-126%)			10/10/09 20:49	PQ	9J10019	8260B
4-Bromofluorobenzene	107 %		Surr Limits:				10/10/09 20:49	PQ	9J10019	8260B
Toluene-d8	116 %		Sur Limits:				10/10/09 20:49		9J10019	8260B
Tentatively Identified (Compoun	de by FPA i	R260B	, .						
1H-Indene,	630	T7	Rel Time: 11	200	ug/kg dry	1.00	10/10/09 20:49	PO	9J10019	8260B
2,3-dihydro-1,6-dimethyl-	030	17	RECTIME. 11	.200	ARIVE OIL	1,00	.0/10/00 20/7		J	
(017059-48-2)										
1H-Indene,	1100	17	Ret Time: 10).904	ug/kg dry	1.00	10/10/09 20:49	PQ	9J10019	8260B
2,3-dihydro-4-methyl-										
(000824-22-6)						4.00	40/40/00 00:46		0.140040	9260D
Benzene,	610	77	Ret Time: 10).234	ug/kg dry	1.00	10/10/09 20:49	PU	9J10019	8260B
(2-methyl-2-propenyl)-										
(003290-53-7)	1100	T7	Rel Time: 10	1496	ug/kg dry	1,00	10/10/09 20:49	PO	9J10019	8260B
Benzene, 1,2,4,5-tetramethyl-	1100	17	Net line. It	J.48Q	oging diy	1,00	10/10/00 25/11		00.00.0	
(000095-93-2)										
Benzene, 1,2-diethyl-	950	77	Rel Time: 9.	687	ug/kg dry	1.00	10/10/09 20:41	9 PQ	9J10019	8260B
(000135-01-3)							4044000000		0.140040	00000
Benzene,	1500	T7	Ret Time: 10	0.137	ug/kg dry	1.00	10/10/09 20:4	9 PG	9J10019	8260B
1-ethyl-2,3-dimethyl-										
(000933-98-2) Benzene, propyl-	620	T 7	Ret Time: 8.	AA	ug/kg dry	1.00	10/10/09 20:4	9 PQ	9J10019	8260B
(000103-65-1)	620	"	116(11116. 0.		ograg ary		10, 10, 00			
Unknown01 (none)	560	17	Ret Time: 5.	185	ug/kg dry	1.00	10/10/09 20:4	9 PQ	9J10019	8260B
Unknown02 (none)	650	17	Ret Time: 5.	361	ug/kg dry	1.00	10/10/09 20:4	9 PQ	9J10019	8260B
. ,		T7	Ret Time: 1			1.00	10/10/09 20:4		9J10019	8260B
Unknown03 (none)	580	17	Ret Time: 1	1.214	ug/kg dry	1.00	10/10/09 20.4	e ru	90 100 13	02000
Semivolatile Organics	by GC/M	<u>\$</u>								2222
1,2,4,5-Telrachlorobenze	ND		190	17	ug/kg dry	1.00	10/15/09 22:2	Z WKP	9J13065	8270C
ne			4	400		4.00	40/45/00 00-0	2 8420	9J13065	8270C
2,3,4,6-Tetrachlorophenol			190	190	ug/kg dry	1.00	10/15/09 22:2			8270C
2,4,5-Trichlorophenol	ND		190	41	ug/kg dry	1.00	10/15/09 22:2			
2,4,6-Trichlorophenol	ND		190	12	ug/kg dry	1.00	10/15/09 22:2			8270C
2,4-Dichlorophenol	ND		190	9.8	ng/kg diy	1.00	10/15/09 22:2			8270C
2,4-Dimethylphenol	ND		190	50	ug/kg dry	1.00	10/15/09 22:2			8270C
2,4-Dinitrophenol	ND		360	65	ug/kg dry	1.00	10/15/09 22:2			8270C
2,4-Dinitrotoluene	ND		190	29	ug/kg dry	1.00				8270C
2,6-Dinitrotoluene	ND		190	46	ug/kg dry	1.00				8270C
2-Chloronaphthalene	ND		190	12	паука qıx	1.00	10/15/09 22:2			82700
2-Chlorophenol	ND		190	9.5	ug/kg dry	1.00				82700
2-Methylnaphthalene	ND		190	2.3	ug/kg dry	1.00				82700
2-Methylphanol	ND		190	5.7	ug/kg dry	1.00	10/15/09 22:2			82700
2-Nitroaniline	ND		360	60	ug/kg dry	1.00				82700
2-Nitrophenol	ND		190	8.5	ug/kg dry	1.00				82700
3.3'-Dichlorobenzidine	ND		190	160	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

A2L Technologies 10220 Hamey Road, NE Work Order: RSJ0643

Reported: 11/03/09 12:07

Received: 10/09/09

8270C

1.00 10/15/09 22:22 MKP 9J13065

Thonotosassa, FL 33592			oject: Ciat oject Num		vnfield Site 01559-2					
			An	alytical	Report					
	Sample	Data		•	•	Dij	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-04	(S4 - Sol	id) - cont.		-	Samı	oled: 1	0/06/09 11:15	Rec	vd: 10/09/	09 09:20
Semivolatile Organics	by GC/MS	S - cont.								
3-Nitroaniline	ND		360	43	ug/kg dry	1.00	10/15/09 22:22		9J13065	8270C
4,6-Dinitro-2-methylphen	ND		360	64	ug/kg dry	1.00	10/15/09 22:22	MKP	9J13065	8270C
ol						4.00	4045000000	MVD	0.142065	82700
4-Bromophenyl phenyl	ND		190	59	ug/kg dry	1.00	10/15/09 22:22	2 MIKE	9J13065	02700
ether	A175		400	7.7	unika da	1.00	10/15/09 22:22	MKP	9J13065	82700
4-Chloro-3-methylphenol	ND		190 190	7.7 55	ug/kg dry ug/kg dry	1.00	10/15/09 22:22		9J13065	8270C
4-Chloroaniline	ND ND		190	4.0	ug/kg dry	1.00	10/15/09 22:2:			82700
4-Chlorophenyl phenyl	ND		190	7.0	ndiva and	(,00	10/10/00 22/2		55.255	
ether 4-Methylphenol	ND		360	10	ug/kg dry	1.00	10/15/09 22:2:	2 MKP	9J13065	82700
4-Nitroaniline	ND		360	21	ug/kg dry	1.00	10/15/09 22:2:		9J13065	82700
4-Nitrophenol	ND		360	45	ug/kg dry	1.00	10/15/09 22:2:	2 MKP	9J13065	82700
Acenaphthene	ND		190	2.2	ug/kg dry	1.00	10/15/09 22:2:	2 MKP	9J13065	82700
Acenaphthylene	ND		190	1.5	ug/kg dry	1.00	10/15/09 22:2:			82700
Acetophenone	ND		190	9.5	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	82700
Anthracene	ND		190	4.8	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	82700
Alrazine	ND		190	8.3	ug/kg dry	1.00	10/15/09 22:2			82700
Benzaldehyde	ND		190	20	ug/kg dry	1.00	10/15/09 22:2			82700
Benzoja]anthracene	ND		190	3.2	ug/kg dry	1.00	10/15/09 22:2			82700
Benzo[a]pyrene	ND		190	4.5	ug/kg dry	1.00	10/15/09 22:2			82700
Benzo[b]fluoranthene	ND		190	3.6	ug/kg dry	1.00	10/15/09 22:2			82700
Benzo[g,h,i]perylene	ND		190	2.2	ug/kg dry	1.00	10/15/09 22:2			82700
Benzo[k]fluoranthene	ND		190	2.0	ug/kg dry	1.00	10/15/09 22:2			B2700
1,1'-Biphenyl	ND		190	12	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	B2700
Bis(2-chloroethoxy)metha	_		190	10	ug/kg dry	1.00	10/15/09 22:2			82700
ne										
Bis(2-chloroethyl)ether	ND		190	16	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	82700
2,2'-Oxybis(1-Chloroprop	ND		190	19	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	82700
ane) Bis(2-ethylhexyl)	ND		190	60	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9J13065	82700
phthalate	MD		190	50	ug/kg dry	1.00	10/15/09 22:2	2 MKP	9.113065	8270
Butyl benzyl phthalate	ND ND		190	80	ug/kg dry	1.00	10/15/09 22:2			8270
Caprolactam	ND		190	2.2	ug/kg dry	1.00		2 MKP	9.113065	8270
Carbazole	ND		190	1.9	ug/kg dry	1.00	10/15/09 22:2			8270
Chrysene	ND		190	2.2	ug/kg dry	1.00				8270
Dibenz[a,h]anthracene			190	1.9	ug/kg dry	1.00	10/15/09 22:2			8270
Dibenzofuran	ND		190	5.6	ug/kg dry	1.00				8270
Diethyl phthalate	ND		190	4.9	ug/kg dry	1.00				8270
Dimethyl phthalate	ND ND		190	64	ug/kg dry	1,00				8270
Di-n-butyl phthelate	ND ND		190	4.4	ug/kg dry	1.00				8270
Di-n-octyl phthalate	ND ND		190	2.7	ug/kg dry	1.00				8270
Fluoranthene	ND		190	4.3	ug/kg dry	1.00				8270
Fluorene	ND		190	9.2	ug/kg dry	1.00				8270
Hexachlorobenzene	ND ND		190	9.2 9.5	ug/kg dry	1.00				8270
Hexachlorobutadiene Hexachlorocyclopentadie			190	5.5 56	ug/kg dry	1.00				8270
ne			4.5.5			4 55	40/45/00 00:	20 6425	0 142005	0270
Hexachloroethane	ND		190	14	паука qu					8270
Indeno[1,2,3-cd]pyrene	ND		190	5.1	nByka qiv					8270
Isophorone	ND		190	9.3	ug/kg dry					8270
Naphthalene	ND		190	3.1	ng/kg dry					8270 8270
Alltrahanzana	MD		100	8.2	un/ka dry	1.00	10/15/09 22:3	// DAK -	รายสายสาย	62.70

ug/kg dry

8.2

Nltrobenzene

190

ND

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order, R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

	<u>-</u>		Ana	alytical R	leport				·	
	Sample	Data				Dil	Date	Lab	D. C.	
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-04	(S4 - Sol	id) - cont.			Samı	oled: 1	0/06/09 11:15	Rec	vd: 10/09/	09 09:20
Semivolatile Organics	by GC/M	<u>S - cont.</u>								
N-Nitrosodi-n-propylamin e	ND		190	15	ug/kg dry	1.00	10/15/09 22:22	MKP	9J13065	8270C
N-Nitrosodiphenylamine	ND		190	10	ug/kg dry	1.00	10/15/09 22:22		9J13065	8270C
Pentachlorophenol	ND		360	64	ug/kg dry	1.00	10/15/09 22:22	MKP	9J13065	8270C
Phenanthrene	ND		190	3.9	ug/kg dry	1.00	10/15/09 22:22			8270C
Phenol	ND		190	20	ug/kg dry	1,00	10/15/09 22:22			8270C
Pyrene	ND		190	1.2	ug/kg dry	1.00	10/15/09 22:22	MKP	9J13065	8270C
2,4,6-Tribromophenol	90 %		Surr Limits:				10/15/09 22:22			8270C
2-Fluorobiphenyl	<i>82</i> %		Surr Limits:				10/15/09 22:22			8270C
2-Fluorophenol	<i>5</i> 9 %		Surr Limits:				10/15/09 22:22			8270C
Nitrobenzene-d5	73 %		Sun Limits:				10/15/09 22:22			8270C
Phenoi-d5	63 %		Sur Limits:				10/15/09 22:22			8270C
p-Terphenyi-d14	92 %		Surt Limits:	(58-147%)			10/15/09 22:22	2 MKP	9J13065	8270C
Semivolatile Organics	TICs by 0	GC/MS								
No TICs found (NOTICS)	ND				ug/kg dry	1.00	10/15/09 22:22	MKP	9J13065	8270C
Organochlorine Pestic	ides by E	PA Method	8081A							
4,4'-DDD [2C]	ND	QFL	1.8	0.36	ug/kg dry	1.00	10/16/09 09:11			8081A
4,4'-DDE [2C]	ND	QFL	1.8	0.53	ug/kg dry	1.00	10/16/09 09:11	DGB	9J10008	8081A
4,4'-DDT [2C]	ND	QFL	1.8	0.42	ug/kg dry	1.00	10/16/09 09:11			8081A
Aldrin [2C]	ND	QFL	1.8	0.19	ug/kg dry	1,00	10/16/09 09:11			8081A
alpha-BHC [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/16/09 09:11			8081A
alpha-Chlordane (2C)	ND	QFL	1.8	0.91	ug/kg dry	1.00	10/16/09 09:11			8081A
beta-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	10/16/09 09:11			8081A
delta-BHC [2C]	0.82	QFL,J	1.8	0.24	ug/kg dry	1.00	10/16/09 09:11			8081A
Dieldrin [2C]	ND	QFL	1.8	0.44	ug/kg dry	1.00	10/16/09 09:11			8081A
Endosulfan I [2C]	ND	QFL	1.8	0.39	ug/kg dry	1.00	10/16/09 09:11			B081A
Endosulfan II [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/16/09 09:11			8081A
Endosulfan sulfate (2C)	ND	QFL,C	1.8	0.34	ug/kg dry	1.00	10/16/09 09:11			8081A
Endrin [2C]	ND	QFL	1.8	0.59	ug/kg dry	1.00	10/16/09 09:11		-	8081A
Endrin aldehyde [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/16/09 09:11		-	8081A
Endrin kelone [2C]	ND	QFL	1.8	0.45	ug/kg dry	1.00	10/16/09 09:11			8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.8	0.32	ug/kg dry	1.00	10/16/09 09:1	I DGB	9110008	8081A
gamma-Chlordane [2C]	ND	QFL	1.8	0.25	ug/kg dry	1.00	10/16/09 09:1	1 DGB	9J10008	8081A
Heptachlor [2C]	ND	QFL	1.8	0.29	ug/kg dry	1.00	10/16/09 09:1	1 DGB	9J10008	8081A
Heptachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/16/09 09:1			8081A
Methoxychlor [2C]	ND	QFL.	1.8	0.49	ug/kg dry	1.00	10/16/09 09:1			8081A
Toxaphene [2C]	ND	QFL	18	11	ug/kg dry	1.00	10/16/09 09:1			8081A
Decachlorobiphenyl [2C]	78 %	QFL	Sur Limits:	(42-146%)			10/16/09 09:1	1 DGB	9,110008	8081A
Tetrachloro-m-xylane	70 %	QFL		(37-136%)			10/16/09 09:1			8081A
[2C]	, 5 ,0	Ser E	Jon Linds.	(0, ,00/8)			, u, . u, y y v d, 1		30,3000	230 171
17										
Polychlorinated Biphe	nyls by E	PA Method	8082							
	<u>nyls by E</u> ND	PA Method QSU	<u>8082</u> 18	3.6	ug/kg dry	1.00	10/18/09 17:3	4 SCH	9J16100	6082
Polychlorinated Biphe	_			3.6 3.6	ug/kg dry ug/kg dry	1.00 1.00	10/18/09 17:3- 10/16/09 17:3-			6082 8082
Polychlorinated Blphe Arodor 1016	ND	QSU	18		~ ~ .			4 SCH	9J16100	
Polychlorinated Biphe Arodor 1016 Arodor 1221	ND ND	QSU QSU	18 18	3.6	ug/kg dry	1.00	10/18/09 17:3	4 SCH 4 SCH	9J16100 9J16100	8082

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownlield Site Project Number: 48001559-2

			Ana	alytical F	Report					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-	04 (S4 - Soli	d) - cont.	-		Samı	oled:	10/06/09 11:15	Rec	vd: 10/09	/09 09:20
Polychlorinated Blph	enyls by EP	A Method	808 <u>2 - con</u> t	<u>t.</u>						
Aroclor 1254	ND	QSU	18	3,9	ug/kg dry	1.00	10/18/09 17:34	SCH	9J16100	8082
Aroclor 1260	ND	QSU	18	3.9	ug/kg dry	1.00	10/18/09 17:34		-	8082
Aroclor 1262	ND	QSU	18	3.9	ug/kg dry	1.00	10/18/09 17:34			8082
Aroclor 1268	ND	QSU	18	3.9	ug/kg dry	1.00	10/18/09 17:34	SCH	9J16100	8082
Decachlorobiphenyl	108 %	QSU	Surr Limits:	(34-148%)			10/18/09 17:34	SCH	9J16100	8082
Tetrachloro-m-xylene	84 %	QSU	Surr Limits:				10/18/09 17:34	SCH	9J16100	8082
Total Metals by SW 6	146 Series M	ethods								
Aluminum	6660		11.6	1,5	mg/kg dry	1,00	10/20/09 22:12	DAN	9J15055	6010B
Antimony	ND		17.4	0.6	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Arsenic	4.1	В	2.3	0.3	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Barium	54.5		0.580	0.030	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Beryllium	0.334	В	0.232	0.012	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Cadmium	0.101	J	0.232	0.046	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Calcium	1970		58.0	11.6	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Chromium	7.69		0.580	0.104	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Cobalt	6.86		0.580	0.058	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Copper	16.0		1.2	0.1	mg/kg dry	1,00	10/20/09 22:12	DAN	9J15055	6010B
Iron	15300		11.6	3.5	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Lead	5.5		1.2	0.1	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Magnesium	2790	В	23.2	1,1	mg/kg dry	1,00	10/20/09 22:12	DAN	9J15055	6010B
Manganese	210	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Nickel	13.4		5.80	0.093	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Polassium	1260		34.8	5.6	mg/kg dry	1,00	10/20/09 22:12	DAN	9J15055	6010B
Selenium	ND		4.6	0.7	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Silver	ND		0.580	0,081	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Sodium	144	J	162	36.0	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Thallium	0.3	J	7.0	0.3	mg/kg dry	1.00	10/20/09 22:12	DAN 3	9J15055	6010B
Venadium	14.0		0.580	0.046	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Zinc	39.7	В	2.3	0.2	mg/kg dry	1.00	10/20/09 22:12	DAN	9J15055	6010B
Mercury	ND		0.0221	0.0089	mg/kg dry	1.00	10/20/09 15:21	MXM	9J19064	7471A
General Chemistry P	arameters									
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:38	JR	9J12049	Dry Weigh
Cyanide	0.8	J	1.0	0.5	mg/kg dry	1.00	10/16/09 09:27		9J14035	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ar	nalytical	Report				_	
	Sample	Data		•	•	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-05	(S5 - Sol	ld)			Samı	oled: 1	0/06/09 12:15	Rec	vd: 10/09	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		5.3	0.39	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
1,1,2,2-Tetrachloroethane	ND		5.3	0.86	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,1,2-Trichloroethane	ND		5.3	0.27	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		5.3	2.7	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
oroethane										
1,1-Dichloroethane	ND		5.3	0.26	ug/kg dry	1,00	10/10/09 21:14		9J10019	8260B
1,1-Dichloroethene	ND		5.3	0.65	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,2,3-Trichlorobenzene	ND		5.3	0.56	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,2,4-Trichlorobenzene	ND		5.3	0.32	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,2-Dibromo-3-chloroprop	ND		5.3	2.7	ug/kg dry	1.00	10/10/09 21:14	Pu	9J10019	8260B
ane 1,2-Dibromoethane	ND		5.3	0.20	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
(EDB)					• • •					
1,2-Dichlorobenzene	ND		5.3	0.41	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,2-Dichloroethane	ND		5.3	0.27	ug/kg dry	1.00	10/10/09 21:14		9J10019	6260B
1,2-Dichloropropane	ND		5.3	2.7	ug/kg dry	1.00	10/10/09 21:14		9J10019	82608
1,3-Dlchlorabenzene	ND		5.3	0,27	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,4-Dichlorobenzene	ND		5.3	0.74	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
1,4-Dloxane	ND		210	26	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
2-Butanone (MEK)	ND		27	1.9	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
2-Нехаполе	ND		27	1.8	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
4-Methyl-2-pentanone	ND		27	1.7	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
(MIBK)	N.D.			4.5		4.00	4014000004.4	- 50	0.14.004.0	00000
Acetone	ND		27	1.2	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Benzene	ND		5.3	0.26	ug/kg dry	1.00	10/10/09 21:14		9J10019	9260B
Bromochloromethane	ND		5.3	0.38	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Bromodichloromethane	ND		5.3	0.27	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Bromoform	ND		5.3	2.7	ug/kg dry	1.00	10/10/09 21:14 10/10/09 21:14		9J10019 9J10019	6260B 8260B
Bromomethane Carbon disulfide	ND ND		5.3 5.3	1.2 0.46	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Carbon Tetrachloride	ND				ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Chlorobenzene	ND		5.3 5.3	0. 51 0.70	ug/kg dry ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Dibromochloromethane	ND		5.3	0.70	ug/kg dry	1.00	10/10/09 21:14		9J10019	82608
Chloroethane	ND		5.3	2.2	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Chloroform	ND		5.3	0.33	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Chloromethane	ND		5.3	0.32	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
cis-1,2-Dichloroethene	ND		5.3	0.26	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
cis-1,3-Dichloropropene	ND		5.3	0.30	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Cyclohexane	2.1	J	5.3	0.24	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Dichlorodifluoromethane	ND	-	5.3	0.44	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Ethylbenzene	ND		5.3	0.37	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Isopropyibenzene	ND		5.3	0.80	ug/kg dry	1.00	10/10/09 21:14		9J10019	82608
Methyl Acetate	ND		5.3	0.29	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Methyl tert-Butyl Ether	ND		5.3	0.52	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Methylcyclohexane	ND		5.3	0.34	ug/kg dry	1.00	10/10/09 21:14	-	9J10019	8260B
Methylene Chloride	1.5	J	5.3	1.1	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
m-Xylene & p-Xylene	ND	·	11	0.89	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
o-Xylene	ND		5.3	0.69	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Styrene	ND	•	5.3	0.27	ug/kg dry	1,00	10/10/09 21:14		9J10019	8260B
Tetrachloroethene	ND	,	5.3	0.71	ug/kg dry	1,00	10/10/09 21:14	_	9J10019	82608
Toluene	ND	i .	5.3	0.40	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
					,					

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical F	Report					
	Sample	Data		-	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-05	(S5 - Sol	id) - cont.			Samı	oled:	10/06/09 12:15	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.							
trans-1,2-Dichloroethene	ND	_	5.3	0.55	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
trans-1,3-Dichloropropen	ND		5.3	0.26	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
е					-53,					
Trichloroethene	ND		5.3	0.37	ug/kg dry	1.00	10/10/09 21:14		9J10019	8260B
Trichlorofluoromethane	ND		5.3	0.50	ug/kg dry	1.00	10/10/09 21:14	-	9J10019	8260B
Vinyl chloride	ND		11	0.65	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
1,2-Dichloroethane-d4	97 %		Surr Limits:	(64-126%)			10/10/09 21:14	PQ	9J10019	8260B
4-Bromofluorobenzene	114 %		Sur Limits:				10/10/09 21:14	PQ	9J10019	8260B
Toluene-d8	115 %		Sur Limits:	(71-125%)			10/10/09 21:14	PQ	9J10019	8260B
Tentatively Identified (Compound	ds by EPA	8260B							
Unknown01 (none)	5.3	T7	Ret Time: 8	.385	ug/kg dry	1.00	10/10/09 21:14	PQ	9J10019	8260B
Semivolatile Organics	by GC/MS	<u>s</u>								
1,2,4,5-Tetrachlorobenze	ND	D10	880	80	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13085	8270C
ne										
2,3,4,6-Tetrachlorophenol	ND	D10	880	880	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4,5-Trichlorophenol	ND	D10	880	190	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4,6-Trichlorophenol	ND	D10	880	58	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4-Dichlorophenol	ND	D10	880	46	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4-Dimethylphenol	ND	D10	880	240	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4-Dinitrophenol	ND	D10	1700	310	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,4-Dinitrotoluene	ND	D10	880	140	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
2,6-Dinitrotoluene	ND	D10	880	210	ug/kg dry	5.00	10/16/09 12:53		9J13065 9J13065	8270C
2-Chloronaphthalene	ND ND	D10	880	59 46	ug/kg dry	5.00	10/16/09 12:53			8270C
2-Chlorophenol 2-Methylnaphthalene	ND	D10 D10	880 880	45 11	ug/kg dry	5.00 5.00	10/16/09 12:5: 10/16/09 12:5:		9J13065 9J13065	8270C 8270C
2-Methylphenol	ND	D10	880	27	ug/kg dry	5.00	10/16/09 12:5:		9J13065	8270C
2-Nitroanlline	ND	D10	1700	280	ug/kg dry	5.00	10/16/09 12:5:		9J13065	8270C
2-Nitrophenol	ND	D10	880	∡80 40	ug/kg dry	5.00	10/16/09 12:5:		9J13065	8270C
3,3'-Dichlorobenzidine	ND	D10	860	770	ug/kg dry ug/kg dry	5.00	10/16/09 12:5:			8270C
3-Nitroaniline	ND	D10	1700	200	ug/kg dry	5.00	10/16/09 12:5:		9J13065	8270C
4,6-Dinitro-2-methylphen	ND	D10	1700	300	ug/kg dry	5.00	10/16/09 12:5:		9J13065	8270C
ol	.,,,	5.0	1100	000	aging ary	0.00	10110/05 12:01	<i>-</i> 1111 (1	0010000	02100
4-Bromophenyl phenyl	ND	D10	880	280	ug/kg dry	5.00	10/16/09 12:5	3 MKP	9J13085	8270C
ether					5 5 7					
4-Chloro-3-methylphenol	ND	D10	880	36	ug/kg dry	5.00	10/16/09 12:53	3 MKP	9J13065	8270C
4-Chloroaniline	ND	D10	880	260	ug/kg dry	5.00	10/16/09 12:53	3 MKP	9J13065	8270C
4-Chlorophenyl phenyl	ND	D10	880	19	ug/kg dry	5.00	10/16/09 12:5	3 MKP	9J13065	8270C
ether										
4-Methylphenol	ND	D10	1700	49	ug/kg dry	5.00	10/16/09 12:5			8270C
4-Nitroaniline	ND	D10	1700	98	ug/kg dry	5.00	10/16/09 12:53			8270C
4-Nitrophenol	ND	D10	1700	210	ug/kg dry	5.00	10/16/09 12:5			8270C
Acenaphthene	ND	D10	880	10	ug/kg dry	5.00	10/16/09 12:5			8270C
Acenaphthylene	ND	D10	880	7.2	ug/kg dry	5.00	10/16/09 12:5			8270C
Acetophenone	ND	D10	880	45	ug/kg dry	5.00	10/16/09 12:5			8270C
Anthracene	ND	D10	880	22	ug/kg dry	5.00	10/16/09 12:5			8270C
Atrazine	ND	D10	880	39	ug/kg dry	5.00	10/16/09 12:5			8270C
Benzaldehyde	ND	D10	880	96	ug/kg dry	5.00	10/16/09 12:5			8270C
Benzo[a]anthracene	67	D10,J	880	15	ug/kg dry	5.00	10/16/09 12:5			8270C
Benzo(a)pyrene	61	D10,J	880	21	ug/kg dry	5.00	10/16/09 12:5	3 MKP	9J13065	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ana	alytical R						
	Sample	Data		•	-	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL_	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-05	(S5 - Sol	id) - cont.			Samp	led: 1	0/06/09 12:15	Rec	vd: 10/09/	09 09:20
Semivolatile Organics	by GC/MS	S - cont.								
Benzo[b]fluoranthene	76	D10,J	880	17	ug/kg dry	5.00	10/16/09 12:53			8270C
Benzo[g,h,i]perylene	43	D10,J	880	11	ug/kg dry	5.00	10/16/09 12:53		9J13065	8270C
Benzo[k]fluoranthene	ND	D10	880	9.6	ug/kg dry	5.00	10/16/09 12:53			8270C
1,1'-Biphenyl	ND	D10	880	55	ug/kg dry	5,00	10/16/09 12:53			8270C
Bis(2-chloroethoxy)metha	ND	D10	880	48	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13065	8270C
ne Bis(2-chloroethyl)ether	ND	D10	880	76	ug/kg dry	5.00	10/16/09 12:53	MKP	9J13065	8270C
2,2'-Oxybis(1-Chloroprop	ND	D10	880	91	ug/kg dry	5.00	10/16/09 12:53			8270C
ane)	ND	סוט	000	31	nging diy	0.00	10, (0.00 12.00	, ,,,,,		
Bis(2-ethylhexyl)	ND	D10	880	280	ug/kg dry	5.00	10/16/09 12:53	3 MKP	9J13065	8270C
phthalate	ND	D40	980	240	ualka da:	5.00	10/16/09 12:53	3 MKD	9J13065	8270C
Butyl benzyl phthalate	ND	D10	880 880	240	ug/kg dry	5.00	10/16/09 12:53			8270C
Caprolectam	ND	D10		380	ug/kg dry		10/16/09 12:53			8270C
Carbazole	ND	D10	880	10	ug/kg dry	5.00 5.00	10/16/09 12:5:			8270C
Chrysene	54	D10,J	880	8.8	ug/kg dry		10/16/09 12:53			8270C
Dibenz[a,h]anthracene	ND	D10	880	10	ug/kg dry	5.00	10/16/09 12:5			8270C
Dibenzofuren	ND	D10	880	9.1	ug/kg dry	5.00				8270C
Dielhyl phthalate	ND	D10	880	26	ug/kg dry	5.00	10/16/09 12:53			
Dimethyl phthalate	ND	D10	880	23	ug/kg dry	5.00	10/16/09 12:5			8270C
Di-n-butyl phthalate	ND	D10	880	300	ug/kg dry	5.00	10/16/09 12:5			8270C
Di-n-octyl phthalate	ND	D10	880	20	ug/kg dry	5.00	10/16/09 12:5			8270C
Fluoranthene	ND	D10	880	13	ug/kg dry	5.00	10/16/09 12:5		9J13065	8270C
Fluorene	ND	D10	880	20	ug/kg dry	5.00	10/16/09 12:5			8270C
Hexachlorobenzene	ND	D10	880	43	ug/kg dry	5.00	10/16/09 12:5			8270C
Hexachlorobutadiene	ND	D10	880	45	ug/kg dry	5.00	10/16/09 12:5		9J13065	8270C
Hexachlorocyclopentadie	ND	D10	880	260	ug/kg dry	5.00	10/16/09 12:5	3 МКР	9J13065	8270C
ne					a	F 00	404000 40-5	2 MAND	0.142005	92700
Hexachloroethane	ND	D10	880	68	ug/kg dry	5.00	10/16/09 12:5		9J13065	8270C
Indeno[1,2,3-cd]pyrene	ND	D10	880	24	ug/kg dry	5.00	10/16/09 12:5			8270C
Isophorone	ND	D10	880	44	ug/kg dry	5.00	10/16/09 12:5			8270C
Naphthalene	ND	D10	880	15	ид/kg dry	5.00	10/16/09 12:5			8270C
Nitrobenzene	ND	D10	880	39	ug/kg dry	5,00	10/16/09 12:5			8270C
N-Nitrosodi-n-propylamin	ND	D10	880	69	ug/kg dry	5.00	10/16/09 12:5	3 МКР	9J13065	8270C
e N Nadebender	MO	D40	0.00	40	unden des	6.00	10/16/09 12:5	3 MKD	9J13065	8270C
N-Nitrosodiphenylamine	ИD	D10	880	48	ug/kg dry	5.00	10/16/09 12:5			8270C
Pentachlorophenol	ND	D10	1700	300	ug/kg dry	5.00	10/16/09 12:5			
Phenanthrene	41	D10,J	880	18	ug/kg dry	5.00	10/16/09 12:5			8270C 8270C
Phenol	ND	D10 D10,J	880 880	92 5.7	ug/kg dry ug/kg dry	5.00 5.00	10/16/09 12:5			8270C
Pyrene	83									
2,4,6-Tribromophenol	86 %	D10		(39-146%)			10/16/09 12:5			8270C
2-Fluorobiphenyl	97 %	D10	Surr Limits:				10/16/09 12:5			8270C
2-Fluorophenol	68 %	D10		(18-120%)			10/16/09 12:5			8270C
Nitrobenzene-d5	84 %	D10		(34-132%)			10/16/09 12:5			8270C
Phenoi-d5	84 %	D10		(11-120%)			10/16/09 12:5			8270C
p-Terphenyl-d14	101 %	D10	Surr Limits:	(58-147%)			10/16/09 12:5	3 MKP	9373065	8270C
Semivolatile Organics									= t4655	
No TICs found (NOTICS)	ND	D10			ug/kg dry	5.00	10/16/09 12:5	з МКР	9J13065	8270C
Organochlorine Pesti	cides by E		8081A							_
4,4'-DDD [2C]	0.70	QFL,J	1.8	0.34	ug/kg dry	1.00	10/19/09 16:5	6 DGB	9J10008	8081A
TestAmerica Buffalo										

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamerlcainc.com

Work Order: RSJ0643

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Received: 10/09/09

Reported: 11/03/09 12:07

			Project Numb	er: 48001	559-2					
			Ana	alytical R	Report					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-0	5 (S5 - Soli	id) - cont			Samp	led: 1	0/06/09 12:15	Rec	vd: 10/09/	09 09:20
Organochlorine Pestlo	ides by El	PA Method	8081A - co	nt.						
4,4'-DDE [2C]	0.66	QFL,J	1.8	0.51	ug/kg dry	1.00	10/19/09 16:56			6081A
4,4'-DDT [2C]	1.6	QFL,J	1.8	0.40	ug/kg dry	1.00	10/19/09 16:56			8081A
Aldrin [20]	ND	QFL	1.8	0.18	ug/kg dry	1.00	10/19/09 16:56			8081A
alpha-BHC [2C]	ND	QFL	1.8	0.32	ug/kg dry	1.00	10/19/09 18:56			8081A
alpha-Chlordane [2C]	0.93	QFL,J	1.8	0.88	ug/kg dry	1.00	10/19/09 16:56			8081A
beta-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	10/19/09 16:56			8081A
della-BHC [2C]	0.91	QFL,J	1.8	0.23	ug/kg dry	1.00	10/19/09 16:56			8081A
Dieldrin [2C]	0.67	QFL,J	1.8	0.42	ug/kg dry	1.00	10/19/09 16:56			8081A
Endosulfan I [2C]	ND	QFL	1.8	0.38	ug/kg dry	1.00	10/19/09 16:56			8081A
Endosulfan II [2C]	ND	QFL,C4	1.8	0.32	ug/kg dry	1.00	10/19/09 16:56			8081A
Endosulfan sulfate (2C)	ND	QFL	1.8	0,33	ug/kg dry	1.00	10/19/09 16:56			8081A
Endrin [20]	ND	QFL,C4	1.8	0.57	ug/kg dry	1.00	10/19/09 16:56			8081A
Endrin aldehyde [2C]	ND	QFL,C4	1.8	0.45	ug/kg dry	1.00	10/19/09 16:56			8081A
Endrin ketone [2C]	ND	QFL	1.8	0.44	ug/kg dry	1.00	10/19/09 16:56			8081A
gamma-BHC (Lindane) [2C]	ND	QFL	1.8	0.31	ug/kg dry	1.00	10/19/09 16:56			8081A
gamma-Chlordane (2C)	0.86	QFL,C4, J	1.8	0.24	ug/kg dry	1.00	10/19/09 16:56			8081A
Heptachlor (2C)	ND	QFL	1.6	0.28	ug/kg dry	1.00	10/19/09 16:56			8081A
Heptachlor epoxide [2C]	ND	QFL	1.8	0.46	ug/kg dry	1.00	10/19/09 16:56			8081A
Methoxychlor [2C]	ND	QFL,C4	1.8	0.47	ug/kg dry	1.00	10/19/09 16:56			8081A
Toxaphene [2C]	ND	QFL	18	10	ug/kg dry	1.00	10/19/09 16:56	DGB	9J10008	8081A
Decachlorobiphenyl [2C]	81 %	QFL	Surr Limits:	(42-146%)			10/19/09 16:50	5 DGB	9J10008	8081A
Tetrachloro-m-xylene [2C]	71 %	QFL	Surr Limits:				10/19/09 16:50	5 DGB	9J10008	8081A
Polychlorinated Blphe	enyls by E	PA Method	8082							
Aroclor 1016	ND	-	18	3.4	ug/kg dry	1,00	10/18/09 17:49	9 SCH	9J16100	B082
Arodor 1221	ND		18	3.4	ug/kg dry	1.00	10/18/09 17:49	9 SCH	9J16100	8082
Arodor 1232	ND		18	3.4	ug/kg dry	1.00	10/18/09 17:49	9 SCH	9J16100	8082
Arodor 1242	ND		18	3.8	ug/kg dry	1.00	10/18/09 17:49	9 SCH	9J16100	8082
Aroclor 1248	ND		18	3.5	ug/kg dry	1.00	10/18/09 17:41	9 SCH	9J16100	8082
Aroclor 1254	ND		18	3.7	ug/kg dry	1.00	10/18/09 17:49	9 SCH	9J16100	8082
Aroclor 1260	ND		18	3.7	ug/kg dry	1.00	10/18/09 17:49	9 SCH	9J16100	8082
Aroclor 1262	NO		18	3.7	ug/kg dry	1.00	10/18/09 17:4			8082
Aroclor 1268	ND		18	3.7	ug/kg dry	1.00	10/18/09 17:4	9 SCH	9J16100	8082
Decachlorobiphenyl	98 %		Sur Limits:	/34-148%1			10/18/09 17:4	9 SCH	9,116100	8082
Tetrachioro-m-xylene	88 %		Sur Limits:				10/18/09 17:4			8082
Total Metals by SW 8	46 Sarias I	Methods								
Aluminum	9150		10.6	1.3	mg/kg dry	1.00	10/20/09 22:1	7 DAN	9J15055	6010B
			15.9	0.6	mg/kg dry	1.00	10/20/09 22:1			6010B
Antimony Arsenic	ND 3.1	В	2.1	0.8	mg/kg dry	1.00	10/20/09 22:1			6010B
	3.1	D		0.028	mg/kg dry	1.00				6010B
Barium	46.3	В	0.531				10/20/09 22:1			6010B
Beryllium	0.436	В	0.212	0.011	mg/kg dry	1.00				6010B
Cadmium	0.169	J	0.212	0.042	mg/kg dry	1.00	10/20/09 22:1			
Calcium	36300		53.1	10.6	mg/kg dry	1.00				6010B
Chromium	9.73		0.531	0.096	mg/kg dry	1.00				6010B
Cobalt	6.84		0.531	0.053	mg/kg dry	1.00				6010B
Copper	12.4		1.1	0.1	mg/kg dry	1.00				6010B
Iron	15800		10.6	3,2	mg/kg dry	1.00	10/20/09 22:1		u 115/055	6010B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Cyanide

ND

Work Order: RSJ0643

1.0

Received: 10/09/09

Reported: 11/03/09 12:07

9012A

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	DII Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: R\$J064	3-05 (S5 - Sol	id) - cont.			Samp	oled: 1	0/06/09 12:15	Rec	vd: 10/09	/09 09:20
Total Metals by SV	V 846 Series N	Methods - co	nt.							
Lead	8.1		1.1	0.1	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Magnesium	22200	В	21.2	1.0	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Manganese	493	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Nickel	12.5		5.31	0.085	mg/kg dry	1.00	10/20/09 22:17	DAN.	9J15055	6010B
Potassium	1190		31.8	5.2	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Selenium	ND		4.2	0.6	mg/kg dry	1.00	10/20/09 22:17	DAN.	9J15055	6010B
Silver	ND		0.531	0.074	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Sodium	127	J	149	32.9	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Thallium	ND		6.4	0.3	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Vanadium	16.0		0.531	0.042	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Zinc	62.7	В	2.1	0.2	mg/kg dry	1.00	10/20/09 22:17	DAN	9J15055	6010B
Mercury	0.0090	J	0.0217	0.0088	mg/kg dry	1.00	10/20/09 15:23	MXM 8	9J19064	7471A
General Chemistry	Parameters									
Percent Solids	94		0.010	NR	%	1.00	10/12/09 15:40) JR	9J12049	Dry Weigl

0.5

mg/kg dry

1.00 10/16/09 09:27 LRM 9J14035

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report Sample Data Dil Date Lab												
	Sample	Data		•	•	Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-06	(S6 - Sol	lld)			Samı	pled: 1	0/06/09 12:30	Rec	vd: 10/09/	09 09:20		
Volatile Organic Comp	ounds by	EPA 8260B										
1,1,1-Trichloroethane	ND		5.7	0.41	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
1,1,2,2-Tetrachloroethane	ND		5.7	0.93	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
1,1,2-Trichloroethane	ND		5.7	0.29	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
1,1,2-Trichloro-1,2,2-triflu	ND		5.7	2.9	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
oroethane												
1,1-Dichloroethane	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
1,1-Dichloroethene	ND		5.7	0.70	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
1,2,3-Trichlorobenzene	ND		5.7	0.61	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	6260B		
1,2,4-Trichlorobenzene	ND		5.7	0.35	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
1,2-Dibromo-3-chloroprop	ND		5.7	2.9	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
ane												
1,2-Dibromoethane	ND		5.7	0.22	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
(EDB)												
1,2-Dichlorobenzene	ND		5.7	0.45	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
1,2-Dichloroethane	ND		5.7	0.29	ug/kg diy	1.00	10/10/09 21:39		9J10019	82 6 0B		
1,2-Dichloropropane	ND		5.7	2.9	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
1,3-Dichlorobenzene	ND		5.7	0.29	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
1,4-Dichlorobenzene	ND		5.7	0.80	ug/kg dry	1.00	10/10/09 21:39	-	9J10019	8260B		
1,4-Dioxane	ND		230	27	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
2-Butanone (MEK)	ND		29	2.1	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
2-Hexanone	ND		29	2.0	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
4-Methyl-2-pentanone	ND		29	1.9	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B		
(MIBK) Acetone	ND		20	4.5		1.00	40/40/00 04:20	DO.	0.140040	00000		
Benzene	ND		29 5.7	1.3	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Bromochloromethane	ND		5.7	0.28	ug/kg dry ug/kg dry	1.00 1.00	10/10/09 21:39 10/10/09 21:39		9J10019 9J10019	8260B 8260B		
Bromodichloromethane	ND		5.7	0.41 0.29		1.00	10/10/09 21:39		9J10019	8260B		
Bromoform	ND		5.7	2.9	ug/kg dry ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Bromomethane	ND		5.7	1.3		1.00	10/10/09 21:39		9J10019	8260B		
Carbon disulfide	ND		5.7	0.49	ug/kg dry ug/kg dry	1.00	10/10/09 21:39		9J10019	82608		
Carbon Tetrachloride	ND		5.7	0.45		1.00	10/10/09 21:39	_	9J10019	8260B		
Chlorobenzene	ND		5.7	0.75	ug/kg dry ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Dibromochloromethane	ND		5.7	0.73	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Chloroethane	ND		5.7	2.4	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Chloroform	ND		5.7	0.35	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Chloromethane	ND		5.7	0.34	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
cis-1,2-Dichloroethene	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
cis-1,3-Dichloropropene	ND		5.7	0.23	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Cyclohexane	ND		5.7	0.26	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Dichlorodifluoromethane	ND		5.7	0.47	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Ethylbenzene	ND		5.7	0.39	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Isopropyibenzene	ND		5.7	0.86	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Methyl Acetate	ND		5.7	0.31	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Methyl lert-Butyl Ether	ND		5.7	0.56	ng/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
Methylcyclohexane	ND		5.7	0.37	ug/kg dry	1.00	10/10/09 21:39	-	9J10019	8260B		
Methylene Chloride	1.7	J	5.7	1.1	ug/kg dry	1,00	10/10/09 21:39		9J10019	82609		
m-Xylene & p-Xylene	ND	•	11	0.96	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B		
o-Xylene	ND		5.7	0.75	,	1.00	10/10/09 21:39		9J10019	8260B		
Styrene	ND		5.7 5.7	0.75	ug/kg dry	1.00	10/10/09 21:39		9J10019			
Tetrachloroethene	ND		5.7	0.29	ug/kg dry ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B 8260B		
Toluene	ND		5.7	0.43		1.00	10/10/09 21:39		9J10019			
	140		0.1	0.43	ug/kg dry	1.00	10/10/03 21:38	FU	97 100 18	8260B		

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

A2L Technologies 10220 Hamey Road, NE Thonolosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

			An	alytical F	Report					
	Sample	Data		_	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-06	(S6 - Sol	lid) - cont.		•	Sam	pled: '	10/06/09 12:30	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 82601	3 - cont.							
trans-1,2-Dichloroethene	ND		5.7	0.59	ug/kg dry	1.00	10/10/09 21:39	PO	9J10019	8260B
trans-1,3-Dichloropropen	ND		5.7	0.28	ug/kg dry	1.00	10/10/09 21:39		9J10019	8260B
e					-33					
Trichloroethene	ND		5.7	0.39	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	82608
Trichlorofluoromethane	ND		5.7	0.54	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B
Vinyl chloride	ND		11	0.70	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B
1,2-Dichloroethane-d4	100 %		Surr Limits:	(64-126%)			10/10/09 21:39	PQ	9J10019	82608
4-Bromofluorobenzene	114 %		Surr Limits:	(72-126%)			10/10/09 21:39	PQ	9J10019	8260B
Toluene-d8	115 %		Surr Limits:	(71-125%)			10/10/09 21:39	PQ	9J10019	8260B
Tentatively Identified C	ompoun	ds by EPA	8260B							
Unknown01 (none)	730	77	Rei Time: 1	.249	ug/kg dry	1.00	10/10/09 21:39	PQ	9J10019	8260B
Semivolatile Organics	by GC/MS	s								
1,2,4,5-Tetrachlorobenze	ND	-	190	16	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C
ne										
2,3,4,6-Tetrachlorophenol	ND		190	190	ug/kg dry	1.00	10/15/09 23:10			8270C
2,4,5-Trichlorophenol	ND		190	42	ug/kg dry	1.00	10/15/09 23:10			8270C
2,4,6-Trichlorophenol	ND		190	13	ug/kg dry	1.00	10/15/09 23:10			8270C
2,4-Dichlorophenol	ND		190	10	ug/kg dry	1.00	10/15/09 23:10			8270C
2,4-Dimethylphenol	ND		190	52	ug/kg dry	1.00	10/15/09 23:10		9J13065	8270C
2,4-Dinitrophenol	ND		380	67	ug/kg dry	1.00	10/15/09 23:10			8270C
2,4-Dinitrotoluene	ND		190	30	ug/kg dry	1.00	10/15/09 23:10			8270C
2,6-Dinitrotoluene 2-Chloronaphthalene	ND ND		190 190	47	ug/kg dry	1.00	10/15/09 23:10			8270C
2-Chlorophenol	ND		190	13 9.8	ug/kg dry	1,00	10/15/09 23:10 10/15/09 23:10		9J13065 9J13065	8270C
2-Methylnaphthalene	ND		190	2.3	ug/kg dry ug/kg dry	1.00	10/15/09 23:10		9J13065	8270C 8270C
2-Methylphenol	ND		190	5.9	ug/kg dry	1.00	10/15/09 23:10			8270C
2-Nitroaniline	ND		380	62	ug/kg dry	1.00	10/15/09 23:10		9J13065	8270C
2-Nitrophenol	ND		190	8.8	ug/kg dry	1.00	10/15/09 23:10		9J13085	8270C
3,3'-Dichlorobenzidine	ND		190	170	ug/kg dry	1.00	10/15/09 23:10			8270C
3-Nitroaniline	ND		380	44	ug/kg dry	1.00	10/15/09 23:10		9J13065	8270C
4,6-Dinitro-2-methylphen	ND		380	67	ug/kg dry	1.00	10/15/09 23:10		BJ13065	8270C
ol										
4-Bromophenyl phenyl	ND		190	61	ug/kg dry	1.00	10/15/09 23:10) MKP	9J13065	8270C
ether										
4-Chloro-3-methylphenol	ND		190	7.9	ug/kg dry	1.00	10/15/09 23:10			8270C
4-Chloroaniline	ND		190	57	ug/kg dry	1.00	10/15/09 23:10			8270C
4-Chlorophenyl phenyl ether	ND		190	4.1	ug/kg dry	1.00	10/15/09 23:10) MKP	9J13065	8270C
4-Methylphenol	ND		200	4.4		4.00	40/45/00 00:40	LAND	0.140005	20722
4-Nitroaniline	ND		380 380	11	ug/kg dry	1,00	10/15/09 23:10			8270C
4-Nitrophenol	ND		380	22 47	ug/kg dry ug/kg dry	1.00	10/15/09 23:10			8270C
Acenaphthene	ND		190	2.3		1.00	10/15/09 23:10 10/15/09 23:10			8270C
Acenaphthylene	ND		190	1.6	ug/kg dry ug/kg dry	1.00	10/15/09 23:10			8270C 8270C
Acetophenone	ND		190	9.9	ug/kg dry	1.00	10/15/09 23:10			8270C 8270C
Anthracene	ND		190	4.9	ug/kg dry	1.00	10/15/09 23:10			8270C 8270C
Atrazine	ND		190	8.6	ug/kg dry	1.00	10/15/09 23:10			
Benzaldehyde	ND		190	21	ug/kg dry	1.00	10/15/09 23:10			8270C
Benzo[a]anthracene	ND		190	3.3	ug/kg diy	1.00	10/15/09 23:10			8270C
Benzo[a]pyrene	ND		190	4.6	ug/kg dry	1.00	10/15/09 23:10			8270C
			180	7.0	agray ary	1.00	(W 15/0 8 25:10	INICL	90 19000	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	Analytical Report													
	Sample	Data	711	ury wear r	(Sport	DII	Date	Lab						
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method				
Sample ID: RSJ0643-06	6 (S6 - Sol	**			Sam	pled: 1	10/06/09 12:30		vd: 10/09	09 09:20				
Semivolatile Organics	by GC/MS	S - cont.												
Benzo(b)fluoranthene	ND		190	3.7	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
Benzo[g,h,i]perylene	ND		190	2.3	ug/kg dry	1.00	10/15/09 23:10			8270C				
Benzo[k]fluoranthene	ND		190	2.1	ug/kg dry	1.00	10/15/09 23:10			8270C				
1,1'-Biphenyl	ND		190	12	ug/kg dry	1.00	10/15/09 23:10			8270C				
Bis(2-chloroethoxy)metha	ND		190	10	ug/kg dry	1.00	10/15/09 23:10			8270C				
ne			190	10		1.00	10/13/05 23,10	MILL	80 13003	02700				
Bis(2-chloroethyl)ether	ND		190	17	ug/kg dry	1.00	10/15/09 23:10			8270C				
2,2'-Oxybis(1-Chloroprop	ND		190	20	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
ane)	ND		400			4.00			0.140000	22722				
Bis(2-ethylhexyl)	ND		190	62	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
phihalate Butyl benzyl phihalate	ND		190	52	ualko dar	1.00	10/15/09 23:10	DAM	0 112005	8270C				
Caprolactam	ND		190	83	ug/kg dry	1.00	10/15/09 23:10			8270C 8270C				
Carbazole	ND				ug/kg dry					8270C				
Chrysene	ND		190 190	2.2	ug/kg dry	1,00	10/15/09 23:10 10/15/09 23:10							
•	ND			1.9	ug/kg dry	1.00				8270C				
Dibenz(a,h)anthracene			190	2.3	ug/kg dry	1.00	10/15/09 23:10			8270C				
Dibenzofuran	ND		190	2.0	ug/kg dry	1.00	10/15/09 23:10			8270C				
Diethyl phthalate	ND		190	5.8	ug/kg dry	1.00	10/15/09 23:10			8270C				
Dimethyl phthalate	ND		190	5.0	ug/kg dry	1.00	10/15/09 23:10			8270C				
Di-n-butyl phthalate	ND		190	67	ug/kg dry	1.00	10/15/09 23:10			8270C				
Di-n-octyl phthalate	ND		190	4.5	ug/kg dry	1.00	10/15/09 23:10			8270C				
Fluoranthene	ND		190	2.8	ug/kg dry	1.00	10/15/09 23:10			8270C				
Fluorene	ND		190	4.4	ug/kg dry	1.00	10/15/09 23:10			8270C				
Hexachlorobenzene	ND		190	9.6	ug/kg dry	1.00	10/15/09 23:10			8270C				
Hexachlorobutadiene	ND		190	9.9	ug/kg dry	1.00	10/15/09 23:10			8270C				
Hexachlorocyclopentadie	ND		190	58	n8/k8 qu	1.00	10/15/09 23:10	MKP	9J13065	8270C				
ne Hexachloroethane	ND		190	15	ug/kg dry	1.00	10/15/09 23:10	MKD	9J13065	8270C				
	ND		190							8270C				
Indeno[1,2,3-cd]pyrene	ND			5.3	ug/kg dry	1.00	10/15/09 23:10							
Isophorone			190	9.6	ug/kg dry	1.00	10/15/09 23:10			8270C				
Naphthalene Nitrobenzene	ND		190	3.2	ug/kg dry	1.00	10/15/09 23:10			8270C				
	ND		190	8.5	ug/kg dry	1.00	10/15/09 23:10			8270C				
N-Nitrosodi-n-propytamin e	ND		190	15	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
N-Nitrosodiphenylamine	ND		190	11	ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
Pentachlorophenol	ND		380	66	ug/kg dry	1.00	10/15/09 23:10			8270C				
Phenanthrene	ND		190	4.0	ug/kg dry	1.00	10/15/09 23:10			8270C				
Phenol	ND		190	20	ug/kg dry	1.00	10/15/09 23:10			8270C				
Pyrene	ND		190	1.2	ug/kg dry	1.00	10/15/09 23:10			8270C				
2,4,6-Tribromophenol	82 %			(39-146%)			10/15/09 23:10			8270C				
2-Fluorobiphenyl	78 %			(37-120%)			10/15/09 23:10			8270C				
2-Fluorophenol	60 %			(18-120%)			10/15/09 23:10			8270C				
Nitrobenzene-d5	73 %									8270C				
Phenol-d5	73 % 65 %			(34-132%)			10/15/09 23:10							
	84 %			(11-120%)			10/15/09 23:10			8270C				
p-Terphenyi-d14	04 7h		ourr Limits:	(58-147%)			10/15/09 23:10) IVIKP	9J73005	8270C				
Semivolatile Organics	TICs by (GC/MS												
No TICs found (NOTICS)	ND				ug/kg dry	1.00	10/15/09 23:10	MKP	9J13065	8270C				
Organochlorine Pestic	ides by E	PA Method	1 8081A											
4,4'-DDD [2C]	ND	QFL	1.9	0.37	ug/kg dry	1.00	10/16/09 09:47	7 DGB	9J10008	8081A				
TestAmerica Buffalo		<u>_</u>			g1)				32.3444					
. Jos III.o. log Bollolo														

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericalnc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

			Project Numb	per: 48001	1559-2					
		-	Ana	alytical F	Report					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-00	6 (S6 - Soll	d) - cont			Samp	oled: 1	0/06/09 12:30	Rec	vd: 10/09/	09 09:20
Organochlorine Pestic	ides by Ef	PA Method	8081A - co	nt.						
4,4'-DDE [2C]	ND	QFL	1.9	0.55	ug/kg dry	1.00	10/16/09 09:47			8081A
4,4'-DDT [2C]	1.1	QFL,J	1.9	0.43	ug/kg dry	1.00	10/16/09 09:47			8081A
Aldrin [2C]	ND	QFL	1.9	0.19	ug/kg dry	1.00	10/16/09 09:47			8081A
alpha-BHC [2C]	0.88	QFL,J	1.9	0.34	ug/kg dry	1.00	10/16/09 09:47	_		8081A
alpha-Chlordane [2C]	ND	QFL	1.9	0.94	ug/kg dry	1.00	10/16/09 09:47			8081A
beta-BHC [2C]	ND	QFL	1.9	1.4	ug/kg dry	1.00	10/16/09 09:47			8081A
delta-BHC [2C]	0.92	QFL,J	1.9	0.25	ug/kg dry	1.00	10/16/09 09:47			8081A
Dieldrin [2C]	ND	QFL	1.9	0.45	ug/kg dry	1.00	10/16/09 09:47			8081A
Endosulfan I [2C]	ND	QFL	1.9	0.40	ug/kg dry	1.00	10/16/09 09:47			8081A
Endosulfan II [20]	ND	QFL	1.9	0.34	ug/kg dry	1.00	10/16/09 09:47			8081A
Endosulian sulfate (2C)	ND	QFL,C	1.9	0.35	ug/kg dry	1.00	10/16/09 09:47			8081A
Endrin [2C]	ND	QFL	1.9	0.61	ug/kg dry	1.00	10/16/09 09:47			8081A
Endrin aldehyde [2C]	ND	QFL	1.9	0.48	ug/kg dry	1.00	10/16/09 09:47 10/16/09 09:47			8081A 8081A
Endrin ketone [2C]	ND	QFL	1.9	0.47	ug/kg dry	1.00	10/16/09 09:47			8081A
gamma-BHC (Lindane) [2C]	0.58	QFL,J	1.9	0.33	ug/kg dry	1.00	10/10/09 09:47	DGB	P3 10009	
gamma-Chlordane [2C]	0.30	QFL,J	1.9	0.26	ug/kg dry	1.00	10/16/09 09:47	DGB	9J10008	8081A
Heplachior (2C)	ND	QFL	1.9	0.30	ug/kg dry	1.00	10/16/09 09:47			8081A
Heptachlor epoxide [2C]	ND	QFL	1.9	0.49	ug/kg dry	1.00	10/16/09 09:47			8081A
Methoxychlor [2C]	ND	QFL	1.9	0.51	ug/kg dry	1.00	10/16/09 09:47			8081A
Toxaphene [2C]	ND	QFL	19	11	ug/kg dry	1.00	10/16/09 09:47	DGB	9J10008	8081A
Decachiorobiphenyl [2C]	85 %	QFL	Surr Limits:	(42-146%)			10/15/09 09:47	DGB	9J10008	8081A
Tetrachioro-m-xylene	79 %	QFL	Sur Limits:				10/16/09 09:47			8081A
[2C]	12 /0	٦		(
Polychlorinated Biphe	enyls by EF	A Method	80B2							
Arocior 1016	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:03	SCH	9J16100	8082
Aroclor 1221	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:03	SCH	9J16100	8082
Aroclor 1232	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:03	SCH	9J16100	8082
Aroclor 1242	ND		19	4.0	ug/kg dry	1.00	10/18/09 18:03	SCH	9J16100	8082
Aroclor 1248	ND		19	3.7	ug/kg dry	1.00	10/18/09 18:03			8082
Aroclor 1254	ND		19	3.9	ug/kg dry	1.00	10/18/09 18:03			8082
Aroclor 1260	ND		19	3.9	ug/kg dry	1.00	10/18/09 18:03			8082
Arodor 1262	ND		19	3.9	ug/kg dry	1.00	10/18/09 18:03			8082
Aroclor 1268	ND		19	3.9	ug/kg dry	1.00	10/18/09 18:03	SCH	9J16100	8082
Decachlorobiphenyl	104 %			(34-148%)			10/18/09 18:03	3 SCH	9J16100	8082
Tetrachloro-m-xylene	85 %		Surr Limits:	(35-134%)			10/18/09 18:03	SCH	9J16100	8082
Total Metals by SW 84	46 Series M	lethods								
Aluminum	11900		10.8	1.4	mg/kg dry	1.00	10/20/09 22:22			6010B
Antimony	ND		16.1	0.6	mg/kg dry	1.00	10/20/09 22:22			6010B
Arsenic	2.9	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:22			6010B
Barium	61.0		0.538	0.028	mg/kg dry	1.00	10/20/09 22:22			6010B
Beryllium	0.498	В	0.215	0.011	mg/kg dry	1.00	10/20/09 22:22			6010B
Cadmium	880.0	J	0.215	0.043	mg/kg dry	1.00	10/20/09 22:22			6010B
Calcium	1520		53.8	10.8	mg/kg dry	1.00	10/20/09 22:2:	2 DAN	9J15055	6010B
Chromium	13.7		0.538	0.097	mg/kg dry	1.00	10/20/09 22:2:			6010B
Cobalt	7.28		0.538	0.054	mg/kg dry	1.00	10/20/09 22:22			6010B
Соррег	19.0		1.1	0.1	mg/kg dry	1,00	10/20/09 22:22	DAN	9J15055	6010B
Cupper	13.0		111	3.2	marke and	1,00	10/20/09 22:2:			6010B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
	Sample	Data				DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	_Tech	Batch	Method		
Sample ID: RSJ0643	3-06 (S6 - Sol	ld) - cont.			Samp	oled: 1	0/06/09 12:30	Rec	vd: 10/09	/09 09:20		
Total Metals by SW	846 Series N	<u>lethods - co</u>	ont.									
Lead	5.2		1.1	0.1	mg/kg dry	1.00	10/20/09 22:22	DAN	9J15055	6010B		
Magnesium	3450	В	21.5	1.0	mg/kg dry	1.00	10/20/09 22:22	DAN	9J15055	6010B		
Manganese	330	B1, B	0.2	0.03	mg/kg dry	1.00	10/20/09 22:22	DAN 2	9J15055	6010B		
Nicke)	13.5		5.38	0.086	mg/kg dry	1.00	10/20/09 22:22	DAN 2	9J15055	6010B		
Potassium	1480		32.3	5.2	mg/kg dry	1.00	10/20/09 22:22	DAN 2	9J15055	6010B		
Selenium	ND		4.3	0.6	mg/kg dry	1.00	10/20/09 22:22	DAN 2	9J15055	6010B		
Silver	ND		0.538	0.075	mg/kg dry	1.00	10/20/09 22:22	2 DAN	9J15055	6010B		
Sodium	201		151	33.4	mg/kg dry	1.00	10/20/09 22:22	2 DAN	9J15055	6010B		
Thallium	ND		6.5	0.3	mg/kg dry	1.00	10/20/09 22:22	DAN 2	9J15055	6010B		
Vanadium	22.2		0.538	0.043	mg/kg dry	1.00	10/20/09 22:22	2 DAN	9J15055	6010B		
Zinc	36.2	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:22	DAN	9J15055	6010B		
Mercury	0.0101	J	0.0216	0.0087	mg/kg dry	1.00	10/20/09 15:25	MXM 5	9J19064	7471A		
General Chemistry	<u>Parameters</u>											
Percent Solids	87		0.010	NR	%	1.00	10/12/09 15:42	2 JR	9J12049	Dry Weigh		
Cyanide	ND		1.1	0.5	mg/kg dry	1.00	10/16/09 09:27	LRM	9J14035	9012A		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ar	nalytical	Report					
	Sample	Data				ווס	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ <mark>06</mark> 43-07	(S7 - Sol	ld)			Sam	pled: '	10/06/09 11:15	Rec	vd: 10/09	/ 09 09:2 0
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		5.4	0.39	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
1,1,2,2-Tetrachloroethane	ND		5.4	0.88	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
1,1,2-Trichloroethane	ND		5.4	0.27	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
1,1,2-Trichloro-1,2,2-Iriflu	ND		5.4	2.7	ug/kg dry	1,00	10/10/09 22:04	PQ	9J10019	8260B
oroethane										
1,1-Dichloroethane	ND		5.4	0.27	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
1,1-Dichloroethene	ND		5.4	0.66	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
1,2,3-Trichlorobenzene	ND		5.4	0.57	ug/kg dry	1.00	10/10/09 22:04	-	9J10019	8260B
1,2,4-Trichlorobenzene	ND		5.4	0.33	ug/kg dry	1.00	10/10/09 22:04	-	9J10019	8260B
1,2-Dibromo-3-chloroprop	ND		5.4	2.7	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
ane 1,2-Dibromoethane	ND		E 4	0.04	والمسالمين	4 00	40/40/00 00-04	DO.	0.140040	99900
(EDB)	MD		5.4	0.21	ug/kg dry	1,00	10/10/09 22:04	PQ	9J10019	8260B
1,2-Dichlorobenzene	ND		5.4	0.42	ualka dar	1.00	10/10/09 22:04	PO	9J10019	8260B
1,2-Dichloroethane	ND		5.4	0.42	ug/kg dry ug/kg dry	1.00	10/10/09 22:04	_	9J10019	8260B
1,2-Dichloropropane	ND		5.4	2.7	ug/kg dry	1.00	10/10/09 22:04	-	9J10019	8260B
1.3-Dichlorobenzene	ND		5.4	0.28	ug/kg dry	1.00	10/10/09 22:04		8J10019	8260B
1,4-Dichlorobenzene	ND		5.4	0.26	ug/kg dry	1.00	10/10/09 22:04	-	9J10019	8260B
1,4-Dioxane	ND		220	26	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
2-Butanone (MEK)	8.2	J	27	2.0	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
2-Hexanone	ND	•	27	1.9	⊔g/kg dry	1.00	10/10/09 22:04		9J10019	8260B
4-Methyl-2-pentanone	ND		27	1.8	ug/kg dry	1.00	10/10/09 22:04	. –	9J10019	8260B
(MIBK)	140		LI	1.0	ug/kg ury	1.00	10/10/08 22.04	FGE	3010018	0200B
Acetone	39		27	1.2	ug/kg dry	1.00	10/10/09 22:04	PO	9J10019	8260B
Велгене	1.9	J	5.4	0,27	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Bromochloromethane	ND	-	5.4	0.39	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Bromodichloromethane	ND		5.4	0.28	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Bromoform	ND		5.4	2.7	ug/kg dry	1.00	10/10/09 22:04	-	9J10019	8260B
Bromomethane	ND		5.4	1.2	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Carbon disulfide	ND		5.4	0.46	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Carbon Tetrachloride	ND		5.4	0.52	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Chlorobenzene	ND		5.4	0.71	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Dibromochloromethane	ND		5.4	0.30	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Chloroethane	ND		5.4	2.3	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Chloroform	ND		5.4	0.33	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Chloromethane	ND		5.4	0.33	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
cis-1,2-Dichloroethene	ПD		5.4	0.27	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
cis-1,3-Dichloropropene	ND		5.4	0.31	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Cyclohexane	ND		5.4	0.25	ug/kg dry	1,00	10/10/09 22:04		9J10019	8260B
Dichlorodifluoromethane	ND		5.4	0.45	ug/kg dry	1,00	10/10/09 22:04		9J10019	8260B
Ethylbenzene	140		5.4	0.37	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Isopropyibenzene	33		5.4	0.82	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
Methyl Acetate	ND		5.4	0.29	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Methyl tert-Butyl Ether	ND		5.4	0.53	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Methylcyclohexane	61		5.4	0.35	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Methylene Chloride	3.1	J	5.4	1.1	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
m-Xylene & p-Xylene	150		11	0.91	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
o-Xylene	9.5		5.4	0.71	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Styrene	ND		5.4	0.27	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Tetrachloroethene	ND		5.4	0.73	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Toluene	3.4	J	5.4	0.41	ug/kg dry	1,00	10/10/09 22:04		9J10019	8260B

¹⁰ Hazelwood Drive Amherst, NY 14228 (el 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical F	Report					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-07	' (S7 - Sol	ld) - cont			Samı	pled: '	10/06/09 11:15	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 82601	3 - cont.							
trans-1,2-Dichloroethene	ND		5.4	0.56	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
trans-1,3-Dichloropropen	ND		5.4	0.27	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	6260 B
e Trichloroethene	ND		5.4	0.37	ug/kg dry	1.00	10/10/09 22:04	DO.	9J10019	8260B
Trichlorofluoromethane	ND		5.4	0.51	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
Vinyl chloride	ND		11	0.66	ug/kg dry	1.00	10/10/09 22:04		9J10019	8260B
1,2-Dichloroethane-d4	98 %		Surr Limits:	(64-126%)			10/10/09 22:04	I PQ	9J10019	8260B
4-Bromofluorobenzene	108 %		Sur Limits:				10/10/09 22:04		9J10019	8260B
Toluene-d8	113 %		Surr Limits:				10/10/09 22:04	PQ	9J10019	8260B
Tentatively Identified (ompoun	ds by EPA	8260B							
1H-Indene,	77	17	Ret Time: 10	0.77	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
2,3-dihydro-4-methyl- (000824-22-6)										
Benzene,	97	77	Ret Time: 10	0.49	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
1,2,3,5-tetramethyi- (000527-53-7)										
Benzene, 1,2,3-trimethyl-	300	T7	Rel Time: 9.	036	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
(01) (000526-73-8) Benzene, 1,2,3-trimethyl-	98	17	Ret Time: 9.	496	ug/kg dry	1.00	10/10/09 22:04	PO	9J10019	8260B
(02) (000526-73-8)	30	17	Not tillio, 9,	400	ug/kg ury	1.00	10/10/09 22.04	FU	3310018	020UD
Benzene,	180	77	Ret Time: 9.	687	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
1-ethenyl-2-methyl- (000611-15-4)										
Benzene, 1-ethyl-2-methyl-	98	77	Rel Time: 8.	561	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
(01) (000611-14-3) Benzene, 1-ethyl-2-methyl-	120	T7	Ret Time: 8.	947	volka dav	1.00	10/10/09 22:04	BO.	9J10019	8260B
(02) (000611-14-3)	120		ret tille, o.	.047	ug/kg dry	1.00	10/10/05 22.04	r ru	2710018	DZGUD
Benzene.	140	17	Rel Time: 10	0.131	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
4-ethyl-1,2-dimethyl- (000934-80-5)										
Indan, 1-methyl-	95	T7	Rel Time: 10	0.234	ug/kg dry	1.00	10/10/09 22:04	PQ	9J10019	8260B
(000767-58-8) Unknown01 (none)	160	17	Ret Time; 16	าดกา	ug/kg dry	1.00	10/10/09 22:04	P0	9J10019	8260B
• •			110111110, 11	J.J00	ograg ory	1.00	10/10/05 22:0-	r i sa	20 (00 (3	02000
Semivolatile Organics		•								
1,2,4,5-Tetrachlorobenze	ND	D10	1900	170	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
ne 2,3,4,6-Tetrachlorophenol	ND	D10	1900	1900	ug/kg dry	10.0	10/16/09 13:18	MKP	0 113085	8270C
2,4,5-Trichlorophenol	ND	D10	1900	400	ug/kg dry	10.0				8270C
2,4,6-Trichlorophenol	ND	D10	1900	120	ug/kg dry	10.0	10/16/09 13:18			8270C
2,4-Dichlorophenol	ND	D10	1900	97	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
2,4-Dimethylphenol	ND	D10	1900	500	ug/kg dry	10.0	10/16/09 13:18			8270C
2,4-Dinitrophenol	ND	D10	3600	650	ug/kg dry	10.0	10/16/09 13:18			8270C
2,4-Dinitrotoluene	ND	D10	1900	290		10.0	10/16/09 13:18			8270C
2,6-Dinitrotoluene	ND	D10	1900		ug/kg dry	10.0	10/16/09 13:16			
2-Chloronaphthalene	DI	D10	1900	450	ug/kg dry					8270C
2-Chlorophenol	ND	D10		120	ug/kg dry	10.0	10/16/09 13:18			8270C
2-Methylnaphthalene		D10.J	1900	94	ug/kg dry	10.0	10/16/09 13:18			8270C
	310		1900	22	цg/kg dry	10.0	10/16/09 13:18			8270C
2-Methylphenol	ND	D10	1900	57	ug/kg dry	10.0	10/16/09 13:18			8270C
2-Nitroaniline	ND	D10	3600	590	ug/kg dry	10.0	10/16/09 13:18			8270C
2-Nitrophenol	ND	D10	1900	85	ug/kg dry	10.0	10/16/09 13:18			8270C
3,3'-Dichlorobenzidine	ND	D10	1900	1600	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical	Report					
	Sample	Data				Dit	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-07	' (\$7 - So	lid) - cont.			Sam	pled: 1	0/06/09 11:15	Rec	vd: 10/09/	09 09:20
Semivolatile Organics	by GC/M	S - cont.								
3-Nitroaniline	ND	D10	3600	430	ug/kg dry	10.0	10/16/09 13:18	МКР	9J13065	8270C
4,8-Dinitro-2-methylphen	ND	D10	3600	640	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
4-Bromophenyl phenyl ether	ND	D10	1900	590	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
4-Chloro-3-methylphenol	ND	D10	1900	76	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
4-Chloroanlline	ND	D10	1900	540	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
4-Chlorophenyl phenyl	ND	D10	1900	40	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
ether										
4-Methylphenol	ND	D10	3600	100	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
4-Nitroanlline	ND	D10	3600	210	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
4-Nitrophenol	ND	D10	3600	450	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Acenaphthene	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 13:18			8270C
Acenaphthylene	ND	D10	1900	15	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Acetophenone	ND	D10	1900	95	ug/kg dry	10.0	10/16/09 13:18			8270C
Anthracene	ND	D10	1900	47	ug/kg dry	10.0	10/16/09 13:18			8270C
Atrazine	ND	D10	1900	83	ug/kg dry	10.0	10/16/09 13:16			8270C
Benzaldehyde	ND	D10	1900	200	ug/kg dry	10.0	10/16/09 13:16		9J13065	8270C
Benzo[a]anthracene	150	D10,J	1900	32	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Benzo(a)pyrene	100	D10,J	1900	45	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Benzo[b]fluoranthene	120	D10,J	1900	36	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Benzo[g,h,i]perylene	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Benzo[k]fluoranthene	ND	D10	1900	20	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
1,1'-Biphenyl	ND	D10	1900	120	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Bis(2-chloroethoxy)metha	ND	D10	1900	100	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
ne Sie (California (Laboration) and										
Bis(2-chloroethyl)ether	ND	D10	1900	160	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
2,2'-Oxybis(1-Chloroprop ane)	ND	D10	1900	190	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Bis(2-ethylhexyl) phthalate	ND	D10	1900	600	ug/kg dry	10.0	10/16/09 13:18		9J13065	8270C
Butyl benzyl phthalate	ND	D10	1900	500	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Caprolectem	ND	D10	1900	800	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Carbazole	ND	D10	1900	21	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Chrysene	100	D10,J	1900	19	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Dibenz[a,h]anthracene	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Dibenzofuran	ND	D10	1900	19	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Diethyl phthalate	ND	D10	1900	56	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Dimethyl phthalate	ND	D10	1900	48	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C
Di-n-butyl phthalate	ND	D10	1900	640	ug/kg dry	10.0	10/16/09 13:18			8270C
Di-n-octyl phthalate	ND	D10	1900	43	ug/kg dry	10.0	10/16/09 13:18			8270C
Fluoranthene	160	D10,J	1900	27	ug/kg dry	10.0	10/16/09 13:18			8270C
Fluorene	ND	D10	1900	43	ug/kg dry	10.0	10/16/09 13:18			8270C
Hexachlorobenzene	ND	D10	1900	92	ug/kg dry	10.0	10/16/09 13:18			8270C
Hexachlorobutadiene	ND	D10	1900	95	ug/kg dry	10.0	10/16/09 13:18			8270C
Hexachlorocyclopentadie	ND	D10	1900	560	ug/kg dry	10.0	10/16/09 13:18			8270C
ne		-			-63)	. 5.0	.0.10.00 10,10	SAU ZI	-D 10000	02100
Hexachloroethane	ND	D10	1900	140	ug/kg dry	10.0	10/16/09 13:18	MKP	9.113085	8270C
Indeno[1,2,3-cd]pyrene	ND	D10	1900	51	ug/kg dry	10.0	10/16/09 13:18			8270C
Isophorone	ND	D10	1900	93	ug/kg dry	10.0	10/16/09 13:18			8270C
Naphthalene	150	D10,J	1900	31	ug/kg dry	10.0	10/16/09 13:18			8270C
·		10		V 1	ageng dry	10.0	10/10/03 13,10	*****	2013000	OZIOC

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.lestamericainc.com

Work Order; RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

Analytical Report												
	Sample	Data				Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-07	7 (S7 - Sol	id) - cont			Samı	pled: 1	10/06/09 11:15	Rec	vd: 10/09	09 09:20		
Semivolatile Organics	by GC/MS	S - cont.										
Nitrobenzene	ND	D10	1900	82	ug/kg dry	10.0	10/16/09 13:18			8270C		
N-Nitrosodi-n-propylamin	ND	D10	1900	150	ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C		
e N-Nitrosodiphenylemine	ND	D10	1900	100	ug/kg dry	10.0	10/16/09 13:18	MKP	9.113065	8270C		
Pentachlorophenol	ND	D10	3600	640	ug/kg dry	10.0	10/16/09 13:18			8270C		
Phenanthrene	88	D10,J	1900	39	ug/kg dry	10.0	10/16/09 13:18			8270C		
Phenol	ND	D10	1900	200	ug/kg dry	10.0	10/16/09 13:18			8270C		
Pyrene	190	D10,J	1900	12	ug/kg dry	10.0	10/16/09 13:18			8270C		
2,4,6-Tribromophenol	79 %	D10	Surr Limits:	(39-146%)			10/15/09 13:18	MKP	9J13065	8270C		
2-Fluorobiphenyl	84 %	D10	Surr Limits:				10/16/09 13:18			8270C		
2-Fluorophenol	54 %	D10	Surr Limits:				10/16/09 13:18			8270C		
Nitrobenzene-d5	71 %	D10	Surr Limits:				10/16/09 13:18	MKP	9J13065	8270C		
Phenol-d5	66 %	D10	Surr Limits:				10/16/09 13:18	MKP	9J13065	8270C		
o-Terphenyl-d14	100 %	D10	Surr Limits:				10/16/09 13:18	3 MKP	9J13065	8270C		
Semivolatile Organics	TICs by 6	SC/MS										
No TICs found (NOTICS)	ND	D10			ug/kg dry	10.0	10/16/09 13:18	MKP	9J13065	8270C		
, ,					-39,					02.00		
<u> Organochlorine Pestlo</u>	ides by E		8081A									
1,4'-DDD [2C]	1.1	QFL,J	1.8	0.35	ug/kg dry	1.00	10/19/09 17:32	DGB	9J10008	8081A		
1,4'-DDE [2C]	2.0	QFL	1.8	0.53	ug/kg dry	1.00	10/19/09 17:32	2 DGB	9J10008	8081A		
1,4'-DDT [2C]	2.4	QFL	1.8	0.42	ug/kg dry	1,00	10/19/09 17:32	2 DGB	9J10008	8081A		
Aldrin [2C]	ND	QFL	1.8	0.19	ug/kg dry	1,00	10/19/09 17:32	DGB	9J10008	8081A		
alpha-BHC [2C]	0.95	QFL,J	1.8	0.33	ug/kg dry	1.00	10/19/09 17:32	2 DGB	9J10008	8081A		
alpha-Chlordane [2C]	1.1	QFL,J	1.8	0.91	ug/kg dry	1.00	10/19/09 17:32	DGB	9J10008	8081A		
eta-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	10/19/09 17:32			8081A		
delta-BHC [2C]	0.85	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 17:32			8081A		
Dieldrin [2C]	0.77	QFL,J	1.8	0.44	ug/kg dry	1.00	10/19/09 17:32	DGB	9J10008	8081A		
Endosulfan I (2C)	ND	QFL	1.8	0.39	ug/kg dry	1.00	10/19/09 17:32	DGB	9J10008	8081A		
Endosulian II [2C]	ND	QFL,C4	1.8	0.33	ug/kg dry	1.00	10/19/09 17:32			8081A		
Endosulfan sulfate [2C]	ND	QFL	1.8	0.34	ug/kg dry	1.00	10/19/09 17:32			8081A		
Endrin [2C]	ND	QFL,C4	1.8	0.59	ug/kg dry	1.00	10/19/09 17:32			8081A		
Endrin aldehyde [2C]	ND	QFL,C4	1.8	0.47	ug/kg dry	1.00	10/19/09 17:32			8081A		
Endrin ketone (2C)	ND	QFL	1.8	0.45	ug/kg dry	1.00	10/19/09 17:32			8081A		
gamma-BHC (Lindane) (2C)	ND	QFL	1.8	0.32	ug/kg dry	1.00	10/19/09 17:32	2 DGB	9J10008	8081A		
gamma-Chlordane [2C]	1.2	QFL,C4, J	1.8	0.25	ug/kg dry	1.00	10/19/09 17:32	2 DGB	9J10008	8081A		
Heptachlor (2C)	ND	QFL	1.8	0.29	ug/kg dry	1.00	10/19/09 17:32	DGB	9J10008	8081A		
leptachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/19/09 17:32			8081A		
Methoxychlor [2C]	ND	QFL,C4	1.8	0.49	ug/kg dry	1.00	10/19/09 17:32			8081A		
Toxaphene (2C)	ND	QFL	18	11	ug/kg dry	1.00	10/19/09 17:32			8081A		
Decachlorobiphenyl [2C]	73 %	QFL	Surr Limits:	(42-146%)			10/19/09 17:32	2 DGB	9J10008	8081A		
Tetrachloro-m-xylane [2C]	69 %	QFL	Sur Limits:	, ,			10/19/09 17:32			8081A		
	aula bu 🕾	DA Master 3	0000									
Polychlorinated Biphe				2.5		4.00	404000 40 40		0.140400			
Aroclor 1016 Aroclor 1221	ND	QSU	18	3.5	ug/kg dry	1.00	10/18/09 18:18			8082		
	ND	QSU	18	3.5	ug/kg dry	1.00	10/18/09 18:18			8082		
Aroclor 1232	ND	QSU	18	3.5	ug/kg dry	1.00	10/18/09 18:18			8082		
Aroclor 1242	ND	QSU	18	3.9	ug/kg dry	1.00	10/18/09 18:18	SCH	9J16100	8082		

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical F	Report					_
	Sample	Data			•	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Samplè ID: RSJ0643-0	7 (S7 - Sol	id) - conL			Samı	oled:	10/06/09 11:15	Rec	vd: 10/09	/09 09:20
Polychlorinated Biphe	envis by El	A Method	8082 - conf	t.						
Aroclor 1248	37	QSU	18	3.5	ug/kg dry	1.00	10/18/09 18:18	SCH	9J16100	8082
Aroclor 1254	ND	QSU	18	3.8	ug/kg dry	1.00	10/18/09 18:18	SCH	9J18100	8082
Aroclor 1260	5.5	QSU,J	18	3.8	ug/kg dry	1.00	10/18/09 18:18	SCH	9J16100	8082
Aroclor 1262	ND	QSU	18	3.8	ug/kg dry	1.00	10/18/09 18:16	SCH	BJ16100	8082
Aroclor 1268	ND	QSU	18	3.8	ug/kg dry	1.00	10/18/09 18:18	SCH	9J16100	BD82
Decachlorobiphenyl	84 %	QSU	Surr Limits:	(34-148%)			10/18/09 18:18	SCH	9J16100	8082
Tetrachloro-m-xylane	111 %	QSU	Surr Limits:	(35-134%)			10/18/09 18:18	SCH	9J16100	8082
Total Metals by SW 84	6 Series N	lethods								
Aluminum	9510		11.0	1.4	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Antimony	ND		16.5	0.6	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Arsenic	3.0	В	2.2	0.2	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Barium	46.2		0.549	0.029	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Beryllium	0.382	В	0.220	0.011	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Cadmium	0.121	J	0.220	0.044	mg/kg dry	1,00	10/20/09 22:27	DAN	9J15055	6010B
Calcium	6330		54.9	11.0	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Chromium	8.32		0.549	0.099	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Cobalt	8.93		0.549	0.055	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Copper	38.8		1,1	0.1	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Iron	24100		11.0	3.3	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Lead	12.3		1.1	0.1	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Magnesium	5550	В	22.0	1.0	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Manganese	320	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:27			6010B
Nickel	11.8	•	5.49	0.088	mg/kg dry	1,00	10/20/09 22:27			6010B
Potassium	1170		32.9	5.3	mg/kg dry	1.00	10/20/09 22:27			6010B
Selenium	ND		4.4	0.6	mg/kg dry	1.00	10/20/09 22:27			6010B
Silver	ND		0.549	0.077	mg/kg dry	1.00	10/20/09 22:27			6010B
Sodium	176		154	34.0	mg/kg dry	1.00	10/20/09 22:27	DAN	9J15055	6010B
Thellium	ND		6.6	0.3	mg/kg dry	1.00	10/20/09 22:27			6010B
Vanadlum	31.6		0.549	0.044	mg/kg dry	1.00	10/20/09 22:27			6010B
Zinc	51.6	B	2.2	0.2	mg/kg dry	1.00	10/20/09 22:27			6010B
Mercury	0.0112	Ĵ	0.0215	0.0087	mg/kg dry	1.00	10/20/09 15:26			7471A
General Chemistry Pa	rameters									
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:44	JR	9J12049	Dry Weigi
Cyanide	ND		1.1	0.5	mg/kg dry	1.00	10/16/09 09:27	_		9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report Sample Data Data Lab												
	Sample	Data		•	•	DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-08	(SB - Sol	id)			Samp	pled:	10/06/09 15:45	Rec	vd: 10/09/	09 09:20		
Volatile Organic Comp	ounds by	EPA 8260B										
1.1.1-Trichloroethane	ND		5.8	0.42	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,1,2,2-Tetrachioroethane	ND		5.8	0.95	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,1,2-Trichloroethane	ND		5.8	0.29	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,1,2-Trichloro-1,2,2-Iriflu	ND		5.8	2.9	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
oroethane												
1,1-Dichloroethane	ND		5.8	0.29	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,1-Dichloroethene	ND		5.8	0.71	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
1,2,3-Trichlorobenzene	ND		5.8	0.62	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
1,2,4-Trichlorobenzene	ND		5.8	0.35	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
1,2-Dibromo-3-chioroprop	ND		5.8	2.9	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
ane												
1,2-Dibromoethene (EDB)	ND		5.8	0.22	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,2-Dichlorobenzene	ND		5.8	0.46	ug/kg dry	1.00	10/10/09 22:30	PQ	8J10019	8260B		
1.2-Dichloroethane	ND		5.8	0.29	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,2-Dichloropropane	ND		5.8	2.9	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,3-Dichlorobenzene	ND		5.8	0.30	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,4-Dichlorobenzene	ND		5.8	0.82	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
1,4-Dioxane	ND		230	28	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
2-Bulanone (MEK)	ND		29	2.1	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
2-Hexanone	ND		29	2,0	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
4-Methyl-2-pentanone	ND		29	1.9	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
(MIBK) Acetone	ND		29	1.2	un/kn dos	1.00	10/10/09 22:30	DO.	9J10019	8260B		
Benzene	ND		5.8	1.3 0.29	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Bromochloromethane	ND		5.8	0.42	ug/kg dry ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Bromodichloromethane	ND		5.8	0.30	ug/kg dry	1.00			9J10019	8260B		
Bromoform	ND		5.8	2.9	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Bromomethane	ND		5.8	1.3	ug/kg dry	1.00			9J10019	8260B		
Carbon disulfide	ND		5.8	0.50	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Carbon Tetrachloride	ND		5.8	0.56	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Chlorobenzene	ND		5.8	0.77	ug/kg dry	1.00			9J10019	8260B		
Dibromochloromethane	ND		5.8	0.32	ug/kg dry	1.00			9J10019	82 6 0B		
Chloroethane	ND		5.8	2.4	ug/kg dry	1.00			9J10019	8260B		
Chloroform	ND		5.8	0.36	ug/kg dry	1.00			9J10019	8260B		
Chloromethane	ND		5.8	0.35	ug/kg dry	1.00		PQ	9J10019	8260B		
cls-1,2-Dichloroethene	ND		5.8	0.29	ug/kg dry	1.00			9J10019	8260B		
cis-1,3-Dichloropropene	ND		5.8	0.33	ug/kg dry	1.00			9J10019	8260B		
Cyclohexane	ND		5.8	0.27	ug/kg dry	1.00			9J10019	8260B		
Dichlorodifluoromethane	ND		5.8	0.48	ug/kg dry	1.00		PQ	9J10019	8260B		
Ethylbenzene	ND		5.8	0.40	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
Isopropylbenzene	ND		5.8	0.88	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
Methyl Acetale	ND		5.8	0.32	ug/kg dry	1.00			9J10019	82608		
Methyl tert-Butyl Ether	ND		5.8	0.57	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
Methylcyclohexane	ND		5.8	0.38	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
Methylene Chloride	1.7	J	5.8	1.2	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
m-Xylene & p-Xylene	ND		12	0.98	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
o-Xylene	ND		5.8	0.76	ug/kg dry	1.00			9J10019	82 6 0B		
Styrene	ПN		5.8	0,29	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B		
Tetrachloroethene	ND		5.8	0.78	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B		
Toluene	ND		5.8	0.44	ug/kg dry	1.00		PQ	9J10019	8260B		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data	All	ary acar I	(epoil	DII	Date	16			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Lab	Batch	Method	
			- NL	MIDE							
Sample ID: RSJ0643-08	(S8 - S0I	id) - cont.			Samı	oled: 1	10/06/09 15:45	Rec	vd: 10/09	09 09:20	
Volatile Organic Comp	ounds by	EPA 8260	3 - cont.								
trans-1,2-Dichloroethene	ND		5.8	0.60	ug/kg dry	1,00	10/10/09 22:30	PQ	9J10019	8260B	
trans-1,3-Dichloropropen	ND		5.8	0.29	ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B	
e					•						
Trichloroethene Trichlorofluoromethane	ND		5.8	0.40	ug/kg dry	1.00	10/10/09 22:30		9J10019	8260B	
Vinyl chloride	ND ND		5.8 12	0.55 0.71	ug/kg dry	1.00	10/10/09 22:30 10/10/09 22:30		9J10019 9J10019	8260B 8260B	
					ug/kg dry	1.00				_	
1,2-Dichloroethana-d4	99 %		Sur Limits:				10/10/09 22:30		9J10019	8260B	
4-Bromofluorobenzene	113 %			(72-126%)			10/10/09 22:30		9J10019	8260B	
Toluene-d8	113 %		Surr Limits:	(71-125%)			10/10/09 22:30	PQ	9J10019	8260B	
Tentatively Identified C	ompoun	ds by EPA	8260B								
No TICs found (NOTICS)	ND	T7			ug/kg dry	1.00	10/10/09 22:30	PQ	9J10019	8260B	
		-			• • •						
Semivolatile Organics	-	_									
1,2,4,5-Tetrachlorobenze	ND	D10	2000	180	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
ne 2,3,4,6-Tetrachlorophenol	ND	D40	2000	0000		400	4044000 40.46	AUZD	0.140005	00700	
	ND	D10	2000	2000	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4,5-Trichlorophenol	-	D10	2000	430	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4,6-Trichlorophenol	ND	D10	2000	130	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4-Dichlorophenol	ND	D10	2000	100	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4-Dimethylphenol	ND	D10	2000	540	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4-Dinttrophenol	ND	D10	3900	700	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2,4-Dinitrotoluene	ND	D10	2000	310	ug/kg dry	10.0	10/16/09 13:42		9J13085	8270C	
2,6-Dinitrotoluene	ND	D10	2000	490	ug/kg dry	10.0	10/16/09 13:42	2 MKP	9J13065	8270C	
2-Chloronaphthalene	ND	D10	2000	130	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
2-Chlorophenol	ND	D10	2000	100	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
2-Methylnaphthalene	ND	D10	2000	24	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
2-Methylphenol	ND	D10	2000	61	ug/kg dry	10.0	10/16/09 13:42	MKP	BJ13065	8270C	
2-Nitroanitine	ND	D10	3900	640	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
2-Nilrophenol	ND	D10	2000	91	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13085	8270C	
3,3'-Dichlorobenzidine	ND	D10	2000	1700	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
3-Nitroaniline	ND	D10	3900	460	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
4,6-Dinitro-2-methylphen	ND	D10	3900	690	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
ol					-						
4-Bromophenyl phenyl	ND	D10	2000	630	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
ether	.10	D40									
4-Chloro-3-methylphenol	ND	D10	2000	82	ug/kg dry	10.0	10/16/09 13:42			8270C	
4-Chloroaniline	ND	D10	2000	580	ug/kg dry	10,0	10/16/09 13:42		9J13065	8270C	
4-Chlorophenyl phenyl	ND	D10	2000	42	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
ether		=									
4-Methylphenol	ND	D10	3900	110	ug/kg dry	10.0	10/16/09 13:42			8270C	
4-Nitroaniline	ND	D10	3900	220	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
4-Nitrophenol	ND	D10	3900	480	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
Acenaphthene	ND	D10	2000	23	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
Acenaphthylene	ND	D10	2000	16	ug/kg dry	10.0	10/16/09 13:42	2 MKP	9J13065	8270C	
Acetophenone	ND	D10	2000	100	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
Anthracene	ND	D10	2000	51	ug/kg dry	10.0	10/16/09 13:42	MKP	9J13065	8270C	
Atrazine	ND	D10	2000	88	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
Benzaldehyde	ND	D10	2000	220	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
Benzo[a]anthracene	120	D10,J	2000	34	ug/kg dry	10.0	10/16/09 13:42		9J13065	8270C	
Benzo(a)pyrene	ND	D10	2000	48	ug/kg dry	10.0	10/16/09 13:42			8270C	
,					-0 -0 -1						

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data	,			DII	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech B	atch	Method	
Sample ID: RSJ0643-08	(S8 - Sol	id) - cont			Samp	oled: 1	0/06/09 15:45	Recvd	: 10/09/	09 09:20	
Semivolatile Organics	by GC/MS	<u> </u>									
Benzo[b]fluoranthene	100	D10,J	2000	39	ug/kg dry	10.0	10/16/09 13:42			8270C	
Benzo[g,h,i]perylene	ND	D10	2000	24	ug/kg dry	10.0	10/16/09 13:42			8270C	
Benzo[k]fluoranthene	ND	D10	2000	22	ug/kg diy	10.0	10/16/09 13:42			8270C	
1,1'-Biphenyl	ND	D10	2000	120	ug/kg dry	10.0	10/16/09 13:42			8270C	
Bis(2-chloroethoxy)metha	ND	D10	2000	110	ug/kg dry	10.0	10/16/09 13:42	MKP 9J	13065	8270C	
ne Bis(2-chloroethyl)ether	ND	D10	2000	170	ug/kg dry	10.0	10/16/09 13:42	MKP 9J	13065	8270C	
2,2'-Oxybis(1-Chloroprop	ND	D10	2000	210	ug/kg dry	10.0	10/16/09 13:42		13065	8270C	
ane)		2.5			-307						
Bis(2-ethylhexyl)	ND	D10	2000	640	ug/kg dry	10.0	10/16/09 13:42	2 MKP 9J	13065	8270C	
phthalate						40.0	404000 40.41	NAMED DI	10005	02700	
Butyl benzyl phthalate	ND	D10	2000	530	ug/kg dry	10.0	10/16/09 13:42 10/16/09 13:42			8270C 8270C	
Caprolactam	ND	D10	2000	860	ug/kg dry	10.0				8270C 8270C	
Carbazole	ND	D10	2000	23	ug/kg dry	10.0	10/16/09 13:42 10/16/09 13:42			8270C	
Chrysene	ND	D10	2000	20	ug/kg dry	10.0				8270C	
Dibenz(a,h)anthracene	ND	D10	2000	23	ug/kg dry	10.0	10/16/09 13:42			-	
Dibenzofuren	ND	D10	2000	21	ug/kg dry	10.0	10/16/09 13:42			8270C	
Diethyl phthalate	ND	D10	2000	60	ug/kg dry	10.0	10/16/09 13:4			8270C	
Dimethyl phthalate	ND	D10	2000	52	ug/kg dry	10.0	10/16/09 13:4:			8270C	
DI-n-butyl phthalate	ND	D10	2000	690	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Di-n-octyl phthalate	ND	D10	2000	46	ug/kg dry	10.0	10/16/09 13:42			8270C	
Fluoranthene	ND	D10	2000	29	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Fluorene	ND	D10	2000	46	ug/kg dry	10.0	10/16/09 13:4			8270C	
Hexachlorobenzene	ND	D10	2000	99	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Hexachlorobuladiene	ND	D10	2000	100	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Hexachiorocyclopentadle	ND	D10	2000	600	ug/kg dry	10.0	10/16/09 13:4:	2 MKP 9J	113065	8270C	
ne											
Hexachloroethane	ND	D10	2000	150	ug/kg dry	10.0	10/16/09 13:4:			8270C	
indeno[1,2,3-cd]pyrene	ND	D10	2000	55	ug/kg dry	10.0	10/16/09 13:4			8270C	
Isophorone	ND	D10	2000	99	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Naphthalene	ND	D10	2000	33	ug/kg dry	10.0	10/16/09 13:4:			8270C	
Nitrobenzene	ND	D10	2000	88	ug/kg dry	10.0	10/16/09 13:4:			8270C	
N-Nitrosodi-n-propylamin	ND	D10	2000	160	ug/kg dry	10.0	10/16/09 13:4:	2 MKP 9.	113065	8270C	
e											
N-Nitrosodiphenylamine	ND	D10	2000	110	ug/kg dry	10.0	10/16/09 13:4			8270C	
Pentachlorophenol	ND	D10	3900	680	ug/kg dry	10.0	10/16/09 13:4			8270C	
Phenanthrene	ND	D10	2000	42	ug/kg dry	10.0	10/16/09 13:4			8270C	
Phenol	ND	D10	2000	210	ug/kg dry	10.0	10/16/09 13:4			8270C	
Pyrene	110	D10,J	2000	13	ug/kg dry	10.0	10/16/09 13:4	2 MKP 9.	113065	8270C	
2,4,6-Tribromophenol	66 %	D10	Surr Limits:	(39-146%)			10/16/09 13:4	2 MKP 9.	/13065	8270C	
2-Fluorobiphenyl	83 %	D10	Sur Limits:				10/16/09 13:4			8270C	
2-Fluorophenol	63 %	D10	Sur Limits:				10/16/09 13:4			8270C	
2-Pluorophenoi Nitrobenzene-d5	71 %	D10	Sur Limits:				10/16/09 13:4			8270C	
Phenol-d5	70 %	D10	Sun Limits:				10/16/09 13:4			8270C	
	83 %	D10	Sur Limits:				10/16/09 13:4			8270C	
p-Terphenyl-d14	03.79	טוע	Sun Limits:	(30-14/70)			10/10/05 13.4	- 1411 G - 31	,,,,,,,,	02100	
Semivolatile Organics		-				45.0	4040000	OLAND C	142005	00700	
No TICs found (NOTICS)	ND	D10			ug/kg dry	10.0	10/16/09 13:4	2 MKP 9.	113065	8270C	
Organochlorine Pestic	ides by E	PA Method	A18081								
4,4'-DDD [2C]	ND	QFL	2.0	0.38	ug/kg dry	1.00	10/19/09 18:0	8 DGB 9.	J10008	8081A	
TestAmerica Buffalo											

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Comple	De4=	япа	nyucai N	ehorr	DII	Date	Lab			
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method	
Sample ID: RSJ0643-08					Sampled: 10/06/09 15:45 Recvd: 10/09/09 09:20						
Organochlorine Pestlo	ides by E	PA Method	8081A - coi	nt.							
4,4'-DDE [2C]	0.59	QFL,J	2.0	0,57	ug/kg dry	1.00	10/19/09 18:08	DGB	9J10008	8081A	
4,4'-DDE [2C]	1.1	QFL,J	2.0	0.45	ug/kg dry	1.00	10/19/09 18:08			8081A	
Aldrin [20]	ND	QFL	2.0	0.20	ug/kg dry	1.00	10/19/09 18:08			8081A	
alpha-BHC [2C]	ND	QFL	2.0	0.36	ug/kg dry	1.00	10/19/09 18:08			8081A	
alpha-Chlordane [2C]	ND	QFL	2.0	0.99	ug/kg dry	1.00	10/19/09 18:08			B081A	
beta-BHC [2C]	ND	QFL	2.0	1.4	ug/kg dry	1.00	10/19/09 18:08	DGB	9J10008	8081A	
delta-BHC [2C]	0.99	QFL,J	2.0	0.26	ug/kg dry	1.00	10/19/09 18:08			8081A	
Dieldrin [20]	ND	QFL	2.0	0,48	ug/kg dry	1.00	10/19/09 18:08	DGB	9J10008	8081A	
Endosulfan I [2C]	ND	QFL	2.0	0.42	ug/kg dry	1,00	10/19/09 18:08	B DGB	9J10008	8081A	
Endosulfan II [2C]	ND	QFL,C4	2.0	0.36	ug/kg dry	1.00	10/19/09 18:08	B DGB	9J10008	8081A	
Endosulfan sulfate [2C]	ND	QFL	2.0	0.37	ug/kg dry	1.00	10/19/09 18:08	B DGB	9J10008	8081A	
Endrin (2C)	ND	QFL,C4	2.0	0.64	ug/kg dry	1.00	10/19/09 18:00	B DGB	9J10008	8081A	
Endrin aldehyde [2C]	ND	QFL,C4	2.0	0.51	ug/kg dry	1.00	10/19/09 18:00	BDGB	9J10008	B081A	
Endrin ketone [2C]	ND	QFL	2.0	0.49	ug/kg dry	1.00	10/19/09 18:00			B081A	
gamma-BHC (Lindane) [2C]	ND	QFL	2.0	0.34	ug/kg dry	1.00	10/19/09 18:04	B DGB	9J10008	8081A	
gamma-Chlordane [2C]	0.52	QFL,C4, J	2.0	0.27	ug/kg dry	1.00	10/19/09 18:04			8081A	
Heplachlor [2C]	ИD	QFL	2.0	0.31	ug/kg dry	1.00	10/19/09 18:0			8081A	
Heptachlor epoxide [2C]	ND	QFL	2.0	0.51	ug/kg dry	1.00	10/19/09 18:0			8081A	
Methoxychlor [2C]	ND	QFL,C4	2.0	0.53	ug/kg dry	1.00	10/19/09 18:0			8081A	
Toxaphene [2C]	ND	QFL	20	12	ug/kg dry	1.00	10/19/09 18:0	8 DGB	9J10008	8081A	
Decachlorobiphenyl [2C]	93 %	QFL	Surr Limits:	(42-146%)			10/19/09 18:0			8081A	
Tetrachloro-m-xylene [2C]	85 %	QFL	Surr Limits:	(37-136%)			10/19/09 18:0	8 DGB	9J10008	8081A	
Polychlorinated Biphe	enyls by E	PA Method	8082								
Aroclor 1016	ND		20	3.8	ug/kg dry	1.00	10/18/09 18:3	2 SCH	9J16100	8082	
Aroclor 1221	ND		20	3.8	ug/kg dry	1.00				8082	
Aroclor 1232	ND		20	3.8	ug/kg dry	1.00				8082	
Aroclor 1242	ND		20	4.2	ug/kg dry	1.00				B082	
Arocior 1248	ND		20	3.8	ug/kg dry	1.00	10/18/09 18:3	2 SCH	9J16100	8082	
Aroclor 1254	ND		20	4.1	ug/kg dry	1.00	10/18/09 18:3			8082	
Aroclor 1260	ND		20	4.1	ug/kg dry	1.00				8082	
Aroclor 1262	ND		20	4.1	ug/kg dry	1.00				8082	
Aroclor 1268	ND		20	4.1	ug/kg dry	1.00				8082	
Decachiorobiphenyl	83 %		Sur Limits:	(34-148%)			10/18/09 18:3			8082	
Tetrachloro-m-xylene	86 %		Sur Limits:	(35-134%)			10/18/09 18:3	12 SCH	9J16100	8082	
Total Metals by SW 8	46 Serles	Methods									
Aluminum	9460		11.5	1.4	mg/kg dry	1.00				6010B	
Antimony	ND		17.3	0.8	mg/kg dry	1.00				6010B	
Arsenic	3.9	8	2.3	0.3	mg/kg dry	1.00				6010B	
Barium	55.4		0.575	0.030	mg/kg dry					6010B	
Beryllium	0.419	В	0.230	0.012	mg/kg dry					60108	
Cadmlum	0.169	J	0.230	0.046	mg/kg dry					60108	
Calcium	10700		57.5	11.5	mg/kg dry					6010B	
Chromium	12.0		0.575	0.104	mg/kg dry					6010B	
Coball	7.90		0.575	0.058	mg/kg dry					6010B	
Copper	20.0		1.2	0.1	mg/kg dry			32 DAN	9J15055	6010B	
Iron	18700		11.5	3.5	mg/kg dry			32 DAN	9J15055	6010B	
11.40.1	.0100		,		5 .5 -7						

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattonl Brownfield Site Project Number: 48001559-2

Analytical Report														
	Sample	Data				Dif	Date	Lab						
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method				
Sample ID: RSJ0643-00	Sample ID: RSJ0643-08 (S8 - Solid) - cont.							Sampled: 10/06/09 15:45 Recvd: 10/09/09 09:20						
Total Metals by SW 846 Series Methods - cont.														
Lead	7.0	_	1.2	0.1	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Magnesium	4450	В	23.0	1.1	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Manganese	700	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Nickel	16.8		5.75	0.092	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Potassium	1320		34.5	5.6	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Selenium	ND		4.6	0.7	mg/kg dry	1.00	10/20/09 22:32	DAN :	9J15055	6010B				
Silver	ND		0.575	0.081	mg/kg dry	1.00	10/20/09 22:32	DAN :	9J15055	6010B				
Sodium	120	J	161	35.7	mg/kg dry	1.00	10/20/09 22:32	DAN 2	9J15055	6010B				
Thallium	0.5	J	6.9	0.3	mg/kg dry	1.00	10/20/09 22:32	DAN 2	9J15055	6010B				
Vanadium	17.2		0.575	0.046	mg/kg dry	1.00	10/20/09 22:32	DAN	9J15055	6010B				
Zinc	45.4	В	2.3	0.2	mg/kg dry	1.00	10/20/09 22:32	DAN 2	9J15055	6010B				
Mercury	0.0132	J	0.0221	0.0089	mg/kg dry	1.00	10/20/09 15:20	MXM	9J19064	7471A				
General Chemistry Pa	rameters													
Percent Solids	84		0.010	NR	%	1.00	10/12/09 15:46	3 JR	BJ12049	Dry Weight				
Cyanide	ND		1.2	0.6	mg/kg dry	1.00	10/16/09 09:23	7 LRM	9J14035	9012A				

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data				DII	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-09	(S9 - Sol	id)			Sampled: 10/06/09 Recvd: 10/09/09 0						
Volatile Organic Comp	ounds by	EPA 8260B									
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,1,2,2-Tetrachloroethane	ND		5.5	0.89	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,1,2-Trichloroethane	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,1,2-Trichloro-1,2,2-triflu	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
oroethane											
1,1-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,1-Dichloroethene	ND		5,5	0.67	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,2,3-Trichlorobenzene	ND		5.5	0.58	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,2,4-Trichlorobenzene	ND		5.5	0.33	ug/kg dry	1.00	10/10/09 22:55	PQ	8J10019	8260B	
1,2-Dibromo-3-chloroprop	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
ane											
1,2-Dibromoethane (EDB)	ΝD		5.5	0,21	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,2-Dichlorobenzene	ND		5. 5	0.43	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,2-Dichloroethane	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,2-Dichloropropane	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,3-Dichlorobenzene	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	82608	
1,4-Dichlorobenzene	ND		5.5	0.76	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
1,4-Dloxane	ND		220	26	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
2-Butanone (MEK)	ND		27	2.0	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
2-Hexanone	ND		27	1.9	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
4-Methyl-2-pentenone	ND		27	1.8	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
(MIBK)					• • •						
Acelone	ND		27	1.2	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	6260B	
Benzene	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Bromochloromethane	ND		5.5	0.39	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Bromodichloromethane	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	6260B	
Bromoform	ND		5.5	2.7	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Bromomethane	ND		5.5	1,2	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Carbon disuffide	ND		5,5	0.47	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Carbon Tetrachloride	ND		5.5	0.53	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Chlorobenzene	ND		5.5	0.72	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Dibromochloromethane	ND		5.5	0.30	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Chloroethane	ND		5.5	2.3	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
Chloroform	ND		5.5	0.34	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Chloromethane	ND		5.5	0.33	ug/kg dry	1.00	10/10/09 22:55		9J10019	82 6 0B	
cis-1,2-Dichloroethene	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55		9J10019	82 6 0B	
cis-1,3-Dichloropropene	ND		5.5	0.31	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Cyclohexane	1.3	J	5.5	0.25	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Dichlorodifluoromethane	ND	•	5.5	0.45	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Isopropylbenzene	ND		5.5	0.82	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Methyl Acetate	ND		5.5	0.30	ug/kg dry	1.DO	10/10/09 22:55		9J10019	8260B	
Methyl terl-Butyl Ether	ND		5.5	0.54	ug/kg dry	1.00	10/10/09 22:55	-	9J10019	8260B	
Methylcyclohexane	ND		5.5	0.35	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Methylene Chloride	1.6	J	5.5	1.1		1.00	10/10/09 22:55		9J10019	8260B	
m-Xylene & p-Xylene	ND	3	11	0.92	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
o-Xylene	ND				ug/kg dry		10/10/09 22:55		9J10019		
Styrene	ND		5.5 5.5	0.71	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Tetrachloroethene			5.5	0.27	ug/kg dry	1.00				8260B	
	ND		5.5	0.73	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Toluene	ND		5.5	0.41	ug/kg dry	1.00	10/10/09 22:55	ru	9J10019	8260B	

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data	- 700	•	•	DII	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method_	
Sample ID: RSJ0643-08	(S9 - Sol	id) - cont.			Samj	oled:	10/06/09	Rec	vd: 10/08	/09 09:20	
Volatile Organic Comp	ounds by	EPA 8260	3 - cont.								
trans-1,2-Dichloroethene	ND		5.5	0.56	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
trans-1,3-Dichloropropen	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 22:55	PQ	9J10019	8260B	
e											
Trichloroethene	ND		5.5	0.38	ug/kg dry	1.00	10/10/09 22:5!		9J10019	82608	
Trichlorofluoromethane	ND		5.5	0.52	ug/kg dry	1.00	10/10/09 22:55		9J10019	8260B	
Vinyl chloride	ND		11	0,67	ug/kg dry	1.00	10/10/09 22:5		9J10019	8260B	
1,2-Dichloroethane-d4	98 %		Surr Limits:				10/10/09 22:5		9J10019	8260B	
4-Bromofluorobenzene	112 %			(72-126%)			10/10/09 22:5		9J10019	8260B	
Toluene-d8	112 %		Surr Limits:	(71-125%)			10/10/09 22:5:	5 PQ	9J10019	8260B	
Tentatively Identified (Compoun	ds by EPA	8260B								
No TICs found (NOTICS)	ND	17			ug/kg dry	1.00	10/10/09 22:5	5 PQ	9J10019	8280B	
Semivolatile Organics	hy GC/M	s									
1,2,4,5-Tetrachlorobenze	ND	= D10	1900	170	ug/kg dry	10.0	10/18/09 14:01	7 MKP	9.113065	8270C	
ne	110	0.0	1000	110	ograg ary		70,10,00	, ,,,,,,,		02.00	
2,3,4,6-Tetrechlorophenol	ND	D10	1900	1900	ug/kg dry	10.0	10/16/09 14:0		9J13065	8270C	
2,4,5-Trichlorophenol	ND	D10	1900	410	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,4,6-Trichlorophenol	ND	D10	1900	120	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,4-Dichlorophenol	ND	D10	1900	98	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,4-Dimethylphenol	ND	D10	1900	510	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,4-Dinitrophenol	ND	D10	3700	650	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,4-Dinitrotoluene	ND	D10	1900	290	ug/kg dry	10.0	10/16/09 14:0			8270C	
2,6-Dinitrotoluene	ND	D10	1900	460	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Chloronaphthalene	ND	D10	1900	130	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Chlorophenol	ND	D10	1900	95	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Methylnaphthalene	ND	D10	1900	23	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Methylphenol	ND	D10	1900	58	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Nitroaniline	ND	D10	3700	600	ug/kg dry	10.0	10/16/09 14:0			8270C	
2-Nitrophenol	ND	D10	1900	86	ug/kg dry	10.0	10/16/09 14:0			8270C	
3,3'-Dichlorobenzidine	ND	D10	1900	1600	ug/kg dry	10.0	10/16/09 14:0			8270C	
3-Nitroaniline	ND	D10	3700	430	ug/kg dry	10.0	10/16/09 14:0			8270C	
4,6-Dinitro-2-methylphen	ND	D10	3700	650	ug/kg dry	10.0	10/16/09 14:0	/ MINP	9J13065	8270C	
4-Bromophenyl phanyl	ND	D10	1900	600	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C	
ether				-	-567	,,,,	, , , , , , , , , , , , , , , , , , , ,			32,75	
4-Chloro-3-methylphenol	ND	D10	1900	77	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C	
4-Chloroaniline	ND	D10	1900	550	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C	
4-Chlorophenyl phenyl	ND	D10	1900	40	ug/kg dry	10.0		7 MKP	9J13065	8270C	
ether					• • •						
4-Methylphenol	ND	D10	3700	100	ug/kg dry	10.0				8270C	
4-Nitroaniline	ND	D10	3700	210	ug/kg dry	10.0				8270C	
4-Nitrophenol	ND	D10	3700	450	ug/kg dry	10.0				8270C	
Acenaphthene	ND	D10	1900	22	ug/kg dry	10.0				8270C	
Acenaphthylene	ND	D10	1900	15	ug/kg dry	10.0				8270C	
Acetophenone	ND	D10	1900	96	ug/kg dry	10.0				8270C	
Anthracene	ND	D10	1900	48	ug/kg dry	10.0			-	8270C	
Alrazine	ND	D10	1900	83	ug/kg dry	10.0				8270C	
Benzaldehyde	ND	D10	1900	210	ug/kg dry	10.0				8270C	
Benzo(a)anthracene	ND	D10	1900	32	ug/kg dry	10.0				8270C	
Benzo(a)pyrene	ND	D10	1900	45	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C	

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
	Sample	Data				DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-09	(S9 - Sol	id) - cont.			Samp	oled: 1	0/06/09	Rec	vd: 10/09	09 09:20		
Semivolatile Organics	by GC/M	S - cont.										
Benzo[b]fluoranthene	ND	D10	1900	36	ug/kg dry	10.0	10/16/09 14:07	MKP	9J13065	8270C		
Benzo[g,h,i]perylene	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 14:07		9J13065	8270C		
Benzo[k]fluoranthene	ND	D10	1900	21	ug/kg dry	10.0	10/16/09 14:07		BJ13065	8270C		
1,1'-Biphenyl	ND	D10	1900	120	ug/kg dry	10.0	10/16/09 14:07		9J13065	8270C		
Bis(2-chloroethoxy)metha	ND	D10	1900	100	ug/kg dry	10.0	10/16/09 14:07	MKP	BJ13065	8270C		
ne Bis(2-chloroethyl)ether	ND	D10	1900	160	ug/kg dry	10.0	10/16/09 14:0	MKP	9J13065	8270C		
2,2'-Oxybis(1-Chiloroprop	ND	D10	1900	200	ug/kg dry	10.0	10/16/09 14:07		9J13065	8270C		
ane)	ND	510	1800	200	uging uly	10.0	10/10/00 14.0	(911.5)	0010000	02.700		
Bis(2-ethylhexyl)	ND	D10	1900	600	ug/kg dry	10.0	10/16/09 14:07	7 MKP	9J13065	8270C		
phthalate					5 .							
Butyl benzyl phthalate	ND	D10	1900	500	ug/kg dry	10.0	10/16/09 14:01		9J13065	8270C		
Caprolactam	ND	D10	1900	810	ug/kg dry	10.0	10/16/09 14:0		9J13065	8270C		
Carbazole	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 14:01		9J13065	8270C		
Chrysene	ND	D10	1900	19	ug/kg dry	10.0	10/16/09 14:01	7 MKP	9J13065	8270C		
Dibenz[a,h]anthracene	ND	D10	1900	22	ug/kg dry	10.0	10/16/09 14:0		9J13065	8270C		
Dibenzofuran	ND	D10	1900	19	ug/kg dry	10.0	10/16/09 14:01	7 MKP	9J13065	8270C		
Diethyl phthalate	ND	D10	1900	57	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Dimethyl phthalate	ND	D10	1900	49	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Di-n-butyl phthalate	ND	D10	1900	650	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Di-n-octyl phthalate	ND	D10	1900	44	ug/kg dry	10.0	10/16/09 14:0			8270C		
Fluoranthene	ND	D10	1900	27	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Fluorene	ND	D10	1900	43	ug/kg dry	10.0	10/16/09 14:0			8270C		
Hexachlorobenzene	ND	D10	1900	93	ug/kg dry	10.0	10/16/09 14:0			8270C		
Hexachlorobutadiene	ND	D10	1900	96	ug/kg dry	10.0	10/16/09 14:0			8270C		
Hexachlorocyclopentadie	ND	D10	1900	570	ug/kg dry	10.0	10/16/09 14:0		9J13065	8270C		
ne	ND	010	1300	370	office my	10.0	10,10,000 14.0		50 10000	02,100		
Hexachloroethane	ND	D10	1900	140	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Indeno[1,2,3-cd]pyrene	ND	D10	1900	52	ug/kg dry	10.0	10/16/09 14:0			8270C		
Isophorone	ND	D10	1900	94	ug/kg dry	10.0	10/16/09 14:0			8270C		
Naphthalene	ND	D10	1900	31	ug/kg dry	10.0	10/16/09 14:0			8270C		
Nitrobenzene	ND	D10	1900	83	ug/kg dry	10.0	10/16/09 14:0			8270C		
N-Nitrosodi-n-propylamin	ND	D10	1900	150	ug/kg dry	10.0	10/16/09 14:0			8270C		
e	NU	סוע	1900	150	ugrkg ury	10.0	10/10/08 14.0	1 MILL	\$112000	02700		
N-Nitrosodiphenylamine	ND	D10	1900	100	ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
Pentachlorophenol	ND	D10	3700	640	ug/kg dry	10.0	10/16/09 14:0			8270C		
Phenanthrene	ND	D10	1900	39	ug/kg dry	10.0	10/16/09 14:0			8270C		
Phenol	ND	D10	1900	200	ug/kg dry	10.0	10/16/09 14:0			8270C		
Pyrene	ND	D10	1900	12	ug/kg dry	10.0	10/16/09 14:0			8270C		
					-8.1.8 -1.7							
2,4,6-Tribromophenol	79 %	D10	Surr Limits:				10/16/09 14:0			8270C		
2-Fluorobiphenyl	98 %	D10	Sun Limits:				10/16/09 14:0			8270C		
2-Fluorophenol	77 %	D10	Surr Limits:	• /			10/16/09 14:0			8270C		
Nitrobenzene-d5	90 %	D10	Sur Limits:				10/16/09 14:0			8270C		
Phenol-d5	87 %	D10	Sun Limits:				10/16/09 14:0			8270C		
p-Terphenyl-d14	95 %	D10	Surr Limits:	(58-147%)			10/16/09 14:0	7 MKP	9J13065	8270C		
Semivolatile Organics	TICs by	GC/MS										
No TICs found (NOTICS)	ND	D10			ug/kg dry	10.0	10/16/09 14:0	7 MKP	9J13065	8270C		
					-931							
Organochlorine Pestic												
4,4'-DDD [2C]	ND	QFL	1.8	0.36	ug/kg dry	1.00	10/19/09 18:4	4 DGB	9J10008	8081A		
Tool America Buffala												

¹⁰ Hazelwood Drive Amherst, NY 14228 (el 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Project Number: 48001559-2											
			Ana	lytical R	leport						
	Sample	Data				DII	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-09					Samo	led: 10	0/06/09	Rec	vd: 10/09/	09 09:20	
Sample ID: KSJV643-03	(33 - 301	iu) - conic			Odinp	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Organochlorine Pestic	Ides by E	PA Method	8081A - co	nt.							
4,4'-DDE [2C]	ND	QFL	1.8	0.53	ug/kg dry	1.00	10/19/09 18:44			8081A	
4,4'-DDT [2C]	ND	QFL	1.8	0.42	ug/kg dry	1.00	10/19/09 18:44			8081A	
Aldrin [2C]	ND	QFL	1.8	0.19	ug/kg dry	1.00	10/19/09 18:44			8081A	
alpha-BHC [2C]	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/19/09 18:44			8081A	
alpha-Chlordane [2C]	ND	QFL	1.8	0,91	ug/kg dry	1.00	10/19/09 18:44			8081A	
bela-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	10/19/09 18:44			8081A	
delta-BHC [2C]	0.94	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 18:44			8081A	
Dieldrin [2C]	ND	QFL	1.8	0.44	ug/kg dry	1.00	10/19/09 18:44			8081A	
Endosulfan I [2C]	ND	QFL	1.8	0.39	ug/kg dry	1.00	10/19/09 16:44			8081A	
Endosutfan II [2C]	ND	QFL,C4	1.8	0.33	ug/kg dry	1.00	10/19/09 18:44			8081A	
Endosulfan sulfate [2C]	ND	QFL	1.8	0.34	ug/kg dry	1.00	10/19/09 18:44			8081A	
Endrin [2C]	ND	QFL,C4	1.8	0.59	ug/kg dry	1.00	10/19/09 18:44		9J10008	8081A	
Endrin aldehyde [2C]	ND	QFL,C4	1.8	0.47	ug/kg dry	1.00	10/19/09 18:44			B081A	
Endrin kelone [2C]	ND	QFL	1.8	0.45	ug/kg dry	1.00	10/19/09 18:44			8081A	
gamma-BHC (Lindane)	0.65	QFL,J	1.8	0.32	ug/kg dry	1.00	10/19/09 18:44	4 DGB	9J10008	8081A	
[2C]		051.04.1	4.0	0.25	confirmation	1.00	10/19/09 18:4	LDGR	9.1100008	8081A	
gamma-Chlordane [2C]	0.53	QFL,C4, J	1.8	0.25	ug/kg dry	1.00	10/19/09 18:4			8081A	
Heptachlor [2C]	ND	QFL	1.8	0.29	ug/kg dry		10/19/09 18:4			8081A	
Heptachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00				8081A	
Methoxychlor [2C]	ND	QFL,C4	1.8	0.49	ug/kg dry	1.00	10/19/09 18:4 10/19/09 18:4			8081A	
Toxaphene [2C]	ND	QFL	18	11	ug/kg dry	1.00					
Decachlorobiphenyl [2C]	82 %	QFL	Surr Limits:	(42-146%)			10/19/09 18:4			8081A	
Tetrachloro-m-xylene	82 %	QFL	Surr Limits:	(37-136%)			10/19/09 18:4	4 DGB	9J10008	8081A	
[20]											
Polychlorinated Biphe	anvis by E	PA Method	8082								
Arodor 1016	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:4	7 SCH	9J16100	8082	
	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:4			8082	
Aroclor 1221 Aroclor 1232	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:4			8082	
	ND		19	4.0	ug/kg dry	1.00	10/18/09 18:4			8082	
Aroctor 1242	ND		19	3.6	ug/kg dry	1.00	10/18/09 18:4			8082	
Aroclor 1248	ND ND		19	3.9	ug/kg dry	1.00	10/18/09 18:4			8082	
Arodor 1254			19	3.9	ug/kg dry	1.00	10/18/09 18:4			6082	
Aroclor 1260	ND		19	3.9	ug/kg dry	1.00	10/18/09 18:4	7 SCH	9,16100	8082	
Aroclor 1262 Aroclor 1268	ND ND		19	3.9	ug/kg dry	1.00	10/18/09 18:4			8082	
							10/18/09 18:4			8082	
Decachlorobiphenyl	70 %		Surr Limits:							8082	
Tetrachioro-m-xylene	78 %		Surr Limits:	(35-134%)			10/18/09 18:4	7 301	3010100	0002	
Total Metals by SW 6	46 Series	Methods									
Aluminum	9060		11.9	1.5	mg/kg dry	1.00	10/20/09 22:3	7 DAN	9J15055	6010B	
Antimony	ND		17.8	0.6	mg/kg dry	1.00	10/20/09 22:3	7 DAN	9J15055	6010B	
Aritimony	3.5	В	2.4	0.3	mg/kg dry	1.00	10/20/09 22:3			6010B	
		D	0.593	0.031	mg/kg dry	1.00	10/20/09 22:3			6010B	
Berium	52.2		0.333	0.031	mg/kg dry	1.00	10/20/09 22:3			6010B	
Beryllium	0.378	В				1.00	10/20/09 22:3			6010B	
Cadmium	0.138	J	0.237	0.047	mg/kg dry		10/20/09 22:3			6010B	
Calclum	4040		59.3	11.9	mg/kg dry	1.00	10/20/09 22:3			60108	
Chromium	12.4		0.593	0.107	mg/kg dry	1.00					
Cobalt	7.68		0.593	0.059	mg/kg dry	1.00	10/20/09 22:3			6010B	
Copper	29.3		1.2	0.1	mg/kg dry	1.00	10/20/09 22:3			60108	
Iron	18800		11.9	3.6	mg/kg dry	1.00	10/20/09 22:3	7 DAN	9J15055	6010B	

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Proje

ici: Ciapationi	BLOWULISIO 2168
ect Number:	48001559-2

Analytical Report											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-09 (S9 - Solid) - cont.					Samp	oled: 1	0/06/09	Rec	Recvd: 10/09/09 09:20		
Total Metals by SW 846 Series Methods - cont.											
Lead	14.5		1.2	0.1	mg/kg dry	1.00	10/20/09 22:37	DAN	9J15055	6010B	
Magnesium	4280	8	23.7	1.1	mg/kg dry	1.00	10/20/09 22:37	7 DAN	9J15055	6010B	
Manganese	280	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:37	7 DAN	9J15055	6010B	
Nickel	13.8		5.93	0.095	mg/kg dry	1.00	10/20/09 22:37	7 DAN	9J15055	6010B	
Potassium	1230		35.6	5.8	mg/kg dry	1.00	10/20/09 22:3	7 DAN	9J15055	6010B	
Selenium	ND		4.7	0.7	mg/kg dry	1.00	10/20/09 22:37	DAN	9J15055	6010B	
Silver	ND		0.593	0.083	mg/kg dry	1.00	10/20/09 22:37	7 DAN	9J15055	6010B	
Sodium	287		166	36.7	mg/kg dry	1.00	10/20/09 22:3	7 DAN	9J15055	6010B	
Thalilum	ND		7.1	0.4	mg/kg dry	1.00	10/20/09 22:3		9J15055	6010B	
Vanadium	18.8		0.593	0.047	mg/kg dry	1.00	10/20/09 22:31		9J15055	6010B	
ZInc	49.9	В	24	0,2	mg/kg dry	1.00	10/20/09 22:3		9J15055	6010B	
Mercury	0.0097	J	0.0223	0.0090	mg/kg dry	1.00	10/20/09 15:29	MXM 6	9J19064	7471A	
General Chemistry Pa	rameters										
Percent Solids	89		0.010	NR	%	1.00	10/12/09 15:4	3 JR	9J12049	Dry Weight	
Cyanide	ND		1.1	0.5	mg/kg dry	1.00	10/16/09 09:2	7 LRM	BJ14035	9012A	

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-10	(S10 - Sc	olid)			Sampled: 10/06/09			Recvd: 10/09/09 09:20			
Volatile Organic Comp	ounds by	EPA 8260B									
1,1,1-Trichloroethane	ND		5.5	0.40	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
1,1,2,2-Tetrachloroethane	ND		5.5	0.90	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
1,1,2-Trichloroethane	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
1,1,2-Trichloro-1,2,2-triflu	ND		5.5	2.8	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
oroethane 1,1-Dichloroethane	NO					4.00	10/10/00 00:00		5446646		
1,1-Dichloroethene	ND ND		5.5	0.27	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
1,2,3-Trichlorobenzene	ND		5.5 5.5	0.68 0.59	ug/kg dry	1.00	10/10/09 23:20		9J10019 9J10019	8260B	
1,2,4-Trichlorobenzene	ND		5.5 5.5	0.34	ug/kg dry	1.00	10/10/09 23:20 10/10/09 23:20		9J10019 9J10019	8260B 8260B	
1,2-Dibromo-3-chloroprop	ND		5.5 5.5	2.8	ug/kg dry ug/kg dry	1,00	10/10/09 23:20		9J10019	8260B	
ane	110		5.5	2.0	agrey ary	1.00	10/10/08 25.20	ru	85 100 13	0200B	
1,2-Dibromoethane (EDB)	NO		5.5	0.21	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
1,2-Dichlorobenzene	ND		5.5	0.43	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
1,2-Dichloroethane	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
1,2-Dichloropropane	ND		5.5	2.8	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
1,3-Dichlorobenzene	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 23:20	PQ	BJ10019	8260B	
1,4-Dichlorobenzene	ND		5.5	0.77	ug/kg dry	1.00	10/10/09 23:20	PQ	BJ10019	8260B	
1,4-Dloxane	ND		220	27	ug/kg dry	1.00	10/10/09 23:20	PQ	BJ10019	6260B	
2-Butanone (MEK)	ND		28	2.0	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	6260B	
2-Hexanone	ND		28	1.9	ug/kg dry	1.00	10/10/09 23:20	. –	9J10019	8260B	
4-Methyl-2-pentanone (MIBK)	ND		28	1.8	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
Acelone	ND		28	1.2	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Benzene	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Bromochloromethane	ND		5.5	0.40	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Bromodichloromethane	ND		5.5	0.28	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Bromoform	ND		5.5	2.8	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Bromomethane Carbon disulfide	ND		5.5	1.2	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Carbon Tetrachloride	ND ND		5.5	0.47	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Chlorobenzene	ND		5.5 5.5	0.53 0.73	ug/kg dry	1.00 1.00	10/10/09 23:20 10/10/09 23:20		9J10019 9J10019	8260B	
Dibromochloromethane	ND		5.5	0.73	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B 8260B	
Chloroethane	ND		5.5	2.3	ug/kg dry ug/kg dry	1.00	10/10/09 23:20	. –	9J10019	8260B	
Chloroform	ND		5.5	0.34	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Chloromethane	ND		5.5	0.33	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
cis-1,2-Dichloroethene	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 23:20	-	9J10019	8260B	
cis-1,3-Dichloropropene	ND		5.5	0.31	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Cyclohexane	ND		5.5	0.25	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Dichlorodifluoromethane	ND		5.5	0.46	ug/kg dry	1,00	10/10/09 23:20		9J10019	8260B	
Ethylbenzene	ND		5.5	0.38	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Isopropylbenzene	ND		5.5	0.83	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
Methyl Acetate	ND		5.5	0.30	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
Methyl tert-Butyl Ether	ND		5.5	0.54	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	
Methylcyclohexane	ND		5.5	0,36	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Methylene Chloride	1.5	J	5.5	1.1	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
m-Xylene & p-Xylene	ND		11	0.93	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
o-Xylene	ND		5.5	0.72	ug/kg dry	1.00	10/10/09 23;20		9J10019	8260B	
Styrene	ND		5.5	0.28	ug/kg dry	1,00	10/10/09 23:20		9J10019	8260B	
Tetrachloroethene	ND		5.5	0.74	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B	
Toluene	ND		5.5	0.42	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B	

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

Analytical Report												
	Sample	Data				Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-10	(S10 - Sc	oild) - cont.			Samı	oled: 1	0/06/09	Rec	vd: 10/09	09 09:20		
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.									
trans-1,2-Dichloroethene	ND		5.5	0.57	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B		
trans-1,3-Dichloropropen	ND		5.5	0.27	ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B		
e ~												
Trichloroethene	ND		5.5	0.38	ug/kg dry	1.00	10/10/09 23:20		9J10019	8260B		
Trichlorofluoromethane Vinyl chloride	ND ND		5.5 11	0.52 0.67	ug/kg dry	1.00	10/10/09 23:20 10/10/09 23:20		9J10019 9J10019	8260B 8260B		
					ug/kg dry	1.00						
1,2-Dichloroethane-d4	99 %		Surr Limits:				10/10/09 23:20		9J10019	8260B		
4-Bromofluorobenzene	112 %		Surr Limits:				10/10/09 23:20	-	9J10019	8260B		
Toluene-d8	112 %		Surr Limits:	(71-125%)			10/10/09 23:20	PQ	9J10019	8260B		
Tentatively Identified C	ompoun	ds by EPA	8260B									
No TICs found (NOTICS)	ND	T7			ug/kg dry	1.00	10/10/09 23:20	PQ	9J10019	8260B		
Semivolatile Organics	by GC/MS	5										
1,2,4,5-Tetrachlorobenze	ND	D10	930	84	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
ne												
2,3,4,6-Tetrachlorophenol	ND	D10	930	930	ug/kg dry	5.00	10/16/09 14:32			8270C		
2,4,5-Trichlorophenal	ND	D10	930	200	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
2,4,6-Trichlorophenol	ND	D10	930	61	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
2,4-Dichlorophenol	ND	D10	930	48	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2,4-Dimethylphenol	ND	D10	930	250	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
2,4-Dinitrophenol	ND	D10	1800	320	ug/kg dry	5.00	10/16/09 14:32	! MKP	9J13065	8270C		
2,4-Dinitrotoluene	ND	D10	930	140	ug/kg dry	5.00	10/1 8 /09 14:32			8270C		
2,6-Dinitrotoluene	ND	D10	930	230	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Chloronaphthalene	ND	D10	930	62	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Chlorophenol	ND	D10	930	47	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Methylnaphthalene	ND	D10	930	11	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Methylphenol	ND	D10	930	26	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Nitroaniline	ND	D10	1800	300	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
2-Nitrophenol	ND	D10	930	42	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
3,3'-Dichlorobenzidine	ND	D10	930	810	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
3-Nitroaniline	ND	D10	1800	210	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
4,6-Dinitro-2-methylphen	ND	D10	1800	320	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
ol_												
4-Bromophenyl phenyl	ND	D10	930	290	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C		
elher	. 15	545										
4-Chloro-3-methylphenol	ND	D10	930	38	ug/kg dry	5.00	10/16/09 14:32			8270C		
4-Chloroaniline	ND	D10	930	270	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
4-Chlorophenyl phenyl	ND	D10	930	20	ug/kg dry	5.00	10/16/09 14:32	2 MKP	9J13065	8270C		
ether												
4-Methylphenol	ND	D10	1800	51	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
4-Nitroanlline	ND	D10	1800	100	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
4-Nitrophenol	ND	D10	1800	220	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C		
Acenaphthene	ND	D10	930	11	ug/kg dry	5.00	10/16/09 14:32			8270C		
Acenaphthylene	ND	D10	930	7.6	ug/kg dry	5.00	10/16/09 14:32			8270C		
Acetophenone	ND	D10	930	47	ug/kg dry	5,00	10/16/09 14:32	MKP	9J13065	8270C		
Anthracene	ND	D10	930	24	ug/kg dry	5.00	10/16/09 14:32	2 MKP	9J13065	8270C		
Alrazine	ND	D10	930	41	ug/kg dry	5.00	10/16/09 14:32			8270C		
Benzaldehyde	ND	D10	930	100	ug/kg dry	5.00	10/16/09 14:32			8270C		
Benzo(a)anthracene	ND	D10	930	16	ug/kg dry	5.00	10/16/09 14:32			8270C		
ocuro(a)aun nacene												

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ana	alytical R	leport					
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-10	(S10 - Sc	olid) - cont.			Samp	oled: 1	0/06/09	Rec	vd: 10/09/	/09 0 9 :20
Semivolatile Organics	by GC/MS	S - cont.								
Benzo[b]fluoranthene	ND	D10	930	18	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C
Benzo[g,h,l]perylene	75	D10,J	930	11	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C
Benzo[k]fluoranthene	ND	D10	930	10	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C
1,1'-Biphenyl	ND	D10	930	58	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C
Bls(2-chloroethoxy)metha	ND	D10	930	50	ug/kg dry	5,00	10/16/09 14:32	MKP	9J13065	8270C
ne										
Bis(2-chloroethyl)ether	ND	D10	930	80	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C
2,2'-Oxybis(1-Chloroprop	ND	D10	930	97	ug/kg dry	5.00	10/16/09 14:32	MKP	9J13065	8270C
ane)					- • •					
Bis(2-ethylhexyl)	ND	D10	930	300	ug/kg dry	5.00	10/16/09 14:32	2 MKP	9J13065	8270C
phthalate										
Butyl benzyl phthalate	ND	D10	930	250	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C
Caprolactam	ND	D10	930	400	ug/kg dry	5.00	10/16/09 14:32		9J13065	8270C
Carbazole	ND	D10	930	11	ug/kg dry	5.00	10/16/09 14:3		9J13065	8270C
Chrysene	ND	D10	930	9.2	ug/kg dry	5.00	10/16/09 14:32			8270C
Dibenz[a,h]anthracene	ND	D10	930	11	ug/kg dry	5.00	10/16/09 14:32			8270C
Dibenzofuran	ND	D10	930	9.6	ug/kg dry	5.00	10/16/09 14:32	2 MKP	9J13065	8270C
Diethyl phthalate	ND	D10	930	28	ug/kg dry	5.00	10/16/09 14:33	2 MKP	9J13065	8270C
Dimethyl phthalate	ND	D10	930	24	ug/kg dry	5.00	10/16/09 14:33	2 MKP	9J13065	8270C
Di-n-butyl phthalate	ND	D10	930	320	ug/kg dry	5,00	10/16/09 14:33	2 MKP	9J13065	8270C
Di-n-octyl phthalate	ND	D10	930	22	ug/kg dry	5.00	10/16/09 14:3:	2 MKP	9J13065	8270C
Fluoranthene	ND	D10	930	13	ug/kg dry	5.00	10/18/09 14:33		9J13065	8270C
Fluorene	ND	D10	930	21	ug/kg dry	5.00	10/16/09 14:3:	2 MKP	9J13065	8270C
Hexachlorobenzene	ND	D10	930	46	ug/kg dry	5.00	10/16/09 14:33			8270C
Hexachlorobuladiena	ND	D10	930	47	ug/kg dry	5.00	10/16/09 14:3		9J13065	8270C
Hexachlorocyclopentadie	ND	D10	930	280	ug/kg dry	5.00	10/16/09 14:3	2 MKP	9J13065	8270C
ne	110	0.0	000		ug ng un,	5.55				
Hexachloroethane	ND	D10	930	72	ug/kg dry	5.00	10/16/09 14:3:	2 MKP	9J13065	8270C
Indeno[1,2,3-cd]pyrene	ND	D10	930	26	ug/kg dry	5.00	10/16/09 14:3			8270C
Isophorone	ND	D10	930	46	ug/kg dry	5.00	10/16/09 14:3			8270C
Naphthalene	ND	D10	930	15	ug/kg dry	5.00	10/16/09 14:3			8270C
Nitrobenzene	ND	D10	930	41	ug/kg dry	5.00	10/16/09 14:3			8270C
N-Nitrosodi-n-propylamin	ND	D10	930	73	ug/kg dry	5.00	10/16/09 14:3			8270C
a a second secon	ND	D10	330	,,,	oavea or t	0.00	10,10,00 14,0	. ,,,,,	0010000	02.00
N-Nitrosodiphenylamine	ND	D10	930	51	ug/kg dry	5.00	10/16/09 14:3	2 MKP	9J13065	8270C
Pentachlorophenol	ND	D10	1800	320	ug/kg dry	5.00	10/16/09 14:3			8270C
Phenanthrene	ND	D10	930	19	ug/kg dry	5.00	10/16/09 14:3			8270C
Phenol	ND	D10	930	97	ug/kg dry	5.00	10/16/09 14:3			8270C
	ND	D10	930	6.0		5.00	10/16/09 14:3			8270C
Pyrene					ug/kg dry					
2,4,6-Tribromophenol	78 %	D10	Sur Limits:				10/16/09 14:3			8270C
2-Fluorobiphenyl	81 %	D10	Sun Limits:				10/16/09 14:3			8270C
2-Fluorophenol	64 %	D10	Sur Limits:				10/16/09 14:3			8270C
Nitrobenzene-d5	76 %	D10	Sur Limits:				10/16/09 14:3			8270C
Phenol-d5	72 %	D10	Sun Limits:				10/16/09 14:3			8270C
p-Terphenyl-d14	79 %	D10	Surr Limits:	(58-147%)			10/16/09 14:3	2 MKP	9J13065	8270C
Semivolatile Organics	TICs by	GC/MS								
No TICs found (NOTICS)	ND	D10			ug/kg dry	5,00	10/16/09 14:3	2 MKP	9J13065	8270C
, ,					J . J ,					
Organochlorine Pestic	-								01/0000	00011
4,4'-DDD [2C]	1.3	QFL,J	1.8	0.35	ug/kg dry	1.00	10/19/09 19:2	0 DGB	9J10008	8081A
TestAmerica Buffalo										

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
	Sample	Data	7 4100	, 2001		Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method		
Sample ID: RSJ0643-10) (S10 - Sc	olid) - cont			Samp	oled: 1	0/06/09	Rec	vd: 10/09	/09 09:20		
Organochlorine Pestlo	ides by E	PA Method	8081A - co	nt.								
4,4'-DDE [2C]	0.70	QFL,J	1.8	0.52	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
4,4'-DDT [2C]	2.1	QFL	1.8	0.41	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
Aldrin [2C]	ND	QFL	1.B	0.19	ug/kg dry	1.00	10/19/09 19:20			8081A		
alpha-BHC (2C)	ND	QFL	1.8	0.33	ug/kg dry	1.00	10/19/09 19:20			8081A		
alpha-Chlordane [2C]	ND	QFL	1.8	0.90	ug/kg dry	1.00	10/19/09 19:20			8081A		
beta-BHC [2C]	ND	QFL	1.8	1.3	ug/kg dry	1.00	10/19/09 19:20			8081A		
delta-BHC [2C]	0.98	QFL,J	1.8	0.24	ug/kg dry	1.00	10/19/09 19:20			8081A		
Dieldrin [20]	ND	QFL	1.8	0.44	ug/kg dry	1.00	10/19/09 19:20			8081A		
Endosulfan I [2C]	ND	QFL	1.8	0.38	ug/kg dry	1.00	10/19/09 19:20			8081A		
Endosulfan II [2C]	0.46	QFL,C4, J	1.8	0.33	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
Endosulfan sulfate [2C]	ND	QFL	1.8	0.34	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	6081A		
Endrin [2C]	ND	QFL,C4	1.8	0.59	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
Endrin aldehyde [2C]	ND	QFLC4	1.8	0.46	ug/kg dry	1.00	10/19/09 19:20			8081A		
Endrin ketone [2C]	ND	QFL	1.8	0.45	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
gamma-BHC (Lindane) [2C]	ND	QFL.	1.8	0.32	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
gamma-Chlordane [2C]	0.41	QFL.J	1.8	0.25	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
Heptachlor (2C)	ND	QFL	1.B	0.28	ug/kg dry	1.00	10/19/09 19:20	DGB	9J10008	8081A		
Heplachlor epoxide [2C]	ND	QFL	1.8	0.47	ug/kg dry	1.00	10/19/09 19:20			8081A		
Methoxychlor [2C]	ND	QFL	1.8	0.48	ug/kg dry	1.00	10/19/09 19:20			8081A		
Toxaphene [2C]	ND	QFL	18	11	ug/kg dry	1.00	10/19/09 19:20			8081A		
Decachlorobiphenyl [2C]	91 %	QFL	Surr Limits:	(42-146%)			10/19/09 19:20	DGB	9J10008	8081A		
Tetrachloro-m-xylene	90 %	QFL	Sur Limits:				10/19/09 19:20	DGB	9J10008	8081A		
[20]												
Polychlorinated Biphe	nyls by E	PA Method	8082									
Aroctor 1016	ND		18	3.5	ug/kg dry	1.00	10/18/09 19:03	2 SCH	9J16100	8082		
Aroclor 1221	ND		18	3.5	ug/kg dry	1.00	10/18/09 19:03	2 SCH	9J16100	8082		
Aroclor 1232	ND		18	3.5	ug/kg dry	1.00	10/18/09 19:03	2 SCH	9J16100	8082		
Aroclor 1242	ND		18	3.9	ug/kg dry	1,00	10/18/09 19:03	2 SCH	9J16100	8082		
Aroclor 1248	ND		18	3.5	ug/kg dry	1.00	10/18/09 19:03	2 SCH	9J16100	8082		
Aroclor 1254	ND		18	3.8	ug/kg dry	1.00	10/18/09 19:03	2 SCH	9J16100	8082		
Arodor 1260	ND		18	3.8	ug/kg dry	1.00	10/18/09 19:0	2 SCH	9J16100	8082		
Arodor 1262	ND		18	3.8	ug/kg dry	1.00	10/18/09 19:0	2 SCH	9J16100	8082		
Aroclor 1268	ND		18	3.8	ug/kg dry	1.00	10/18/09 19:0	2 SCH	9J16100	8082		
Decachlorobiphenyl	85 %			(34-148%)			10/18/09 19:0			8082		
Telrachioro-m-xylene	83 %		Surr Limits:	(35-134%)			10/18/09 19:0	2 SCH	9J16100	8082		
Total Metals by SW 84		Methods										
Aluminum	7140		11.9	1.5	mg/kg dry	1.00	10/20/09 22:5			6010B		
Antimony	ND		17.9	0.6	mg/kg dry	1.00	10/20/09 22:5			6010B		
Arsenic [*]	2.8	В	2.4	0.3	mg/kg dry	1.00	10/20/09 22:5			6010B		
Barium	54.1		0.597	0.031	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Beryllium	0.308	В	0,239	0.012	mg/kg dry	1.00	10/20/09 22:5			6010B		
Cadmium	0.091	J	0.239	0.048	mg/kg dry	1.00	10/20/09 22:5			6010B		
Calcium	1670	·	59.7	11.9	mg/kg dry	1.00	10/20/09 22:5			6010B		
Chromium	10.0		0.597	0.107	mg/kg dry	1.00	10/20/09 22:5			6010B		
Cobalt	5.24		0.597	0.060	mg/kg dry	1.00	10/20/09 22:5			60108		
	12.3		1.2	0.000	mg/kg dry	1.00	10/20/09 22:5			6010B		
Copper	14300		11.9	3.6		1.00	10/20/09 22:5			6010B		
Iron	14300		11,3	3.0	mg/kg dry	1.00	10120103 22.3	T DAIN	90 10000	00 10B		

¹⁰ Hazelwood Drive Amhersl, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Reported: 11/03/09 12:07

Analytical Report												
	Sample	Data		-	•	Dil	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ064	3-10 (S10 - Sc	olid) - cont.			Samp	oled: 1	0/06/09	Rec	vd: 10/09	/09 09:20		
Total Metals by SW	/ 646 Series N	lethods - co	ont.									
Lead	48.2		1.2	0.1	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Magnesium	2730	В	23.9	1,1	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Manganese	236	B1, B	0.2	0.04	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Nickel	9.69		5.97	0.096	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	60108		
Potassium	1160		35.8	5.8	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Selenium	ND		4.8	0.7	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Silver	ND		0.597	0.084	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Sodium	67.9	J	167	37.0	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Thallium	ND		7.2	0.4	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Vanadium	14.9		0.597	0.048	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	6010B		
Zinc	30.0	В	2.4	0.2	mg/kg dry	1.00	10/20/09 22:5	4 DAN	9J15055	60108		
Mercury	0.0449		0.0218	0.0088	mg/kg dry	1.00	10/20/09 15:3	1 MXM	9J19064	7471A		
General Chemistry	<u>Parameters</u>											
Percent Solids	90		0.010	NR	%	1.00	10/12/09 15:5	D JR	9J12049	Dry Weight		
Cyanide	ND		1.1	0.5	mg/kg dry	1.00	10/16/09 09:2	7 LRM	9J14035	9012A		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ar	nalytical F	Report			_		
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-11	(W1 - Gr	ound Water)			Sam	pled:	10/07/09 11:40	Recv	/d: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 03:02	NMD	9J12089	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/13/09 03:02			8260B
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
oroethane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 03:02			8260B
1,1-Dichloroethene	ND		1.0	0,29	ug/L	1.00	10/13/09 03:02			8260B
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:02			8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 03:02 10/13/09 03:02			8260B 8260B
1,2-Dibromo-3-chloroprop	ND		1,0	0.39	ug/L	1.00	10/13/09 03.02	עווווו	8312008	02008
1,2-Dibromoethane (EDB)	ND		1.0	0.17	ug/L	1,00	10/13/09 03:02	2 NMD	9J12089	8260B
1.2-Dichlorobenzene	ND		1.0	0,20	ug/L	1.00	10/13/09 03:02	NMO	0.112080	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 03:02			8260B
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:02			8260B
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:02			8260B
1.4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:02			8260B
1,4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 03:02	QMN 2	9J12089	8260B
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/13/09 03:02	DMN S	9J12089	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
(MIBK)										_
Acetone	ND		5.0	1.3	ug/L	1.00	10/13/09 03:02			B260B
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 03:02			8260B
Bromochloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:02			8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:02			8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	10/13/09 03:02			8260B 8260B
Bromomethane Carbon disulfide	ND ND		1.0	0.28	ug/L	1.00	10/13/09 03:02			8260B
Carbon districte	ND		1.0	0.19 0.27	ug/L	1.00	10/13/09 03:02			8260B
Chlorobenzene	ND		1.0 1.0	0.32	ug/L ug/L	1.00	10/13/09 03:02			8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:02			8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:02			8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	10/13/09 03:0			8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/13/09 03:02			8260B
ds-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/13/09 03:02		BJ12089	8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:02			8260B
Cyclohexane	ND		1.0	0.53	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	82608
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
Ethylberizene	ND		1.0	0.18	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
Isopropylbenzene	ND		1.0	0.19	ug/L	1.00	10/13/09 03:02	2 NMD	9J12089	8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00				8260B
Methyl tert-Butyl Ether	ND		1.0	0.16	սց/Լ	1.00				8260B
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00				8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00				8260B
m,p-Xylene	ND		2.0	0.66	na/L	1.00				8260B
o-Xylene	ND		1.0	0.36	ug/L	1.00				8260B
Styrene	ND		1.0	0.18	ug/L	1.00				8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00				8260B
Toluene	ND		1.0	0.51	ug/L	1,00	10/13/09 03:0	ZMMU	9J12089	8260B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
	Sample	Data				DII	Date	Lab				
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method		
Sample ID: RSJ0643-11	(W1 - Gr	ound Wate	r) - cont		Sam	pled:	10/07/09 11:40	Rec	vd: 10/09	/09 09:20		
Volatile Organic Comp	ounds by	EPA 82601	3 - cont.									
trans-1.2-Dichloroethene	ND		1.0	0.42	ug/L	1,00	10/13/09 03:02	NMD.	9J12089	8260B		
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/13/09 03:02			8260B		
е					•							
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 03:02	NMD	9J12089	8260B		
Trichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/13/09 03:02	DMN:	9J12089	8260B		
Vinyl chloride	ND		1.0	0.24	ug/L	1,00	10/13/09 03:02	DMN	9J12089	8260B		
1,2-Dichloroethane-d4	95 %		Surr Limits:	(66-137%)	_		10/13/09 03:02	NMD	9J12089	8260B		
4-Bromofluorobenzene	96 %		Surr Limits:	(73-120%)			10/13/09 03:02	NMD	9J12089	8260B		
Toluene-d8	96 %		Sur Limits:	(71-126%)			10/13/09 03:02	NMD	9J12089	8260B		
Tentatively Identified (Compound	ds by EPA	8260B									
No TICs found (NOTICS)	ND	77			ug/L	1.00	10/13/09 03:02	NMD	9J12089	8260B		
Semivolatile Organics	by GC/M!	s										
1,2,4,5-Tetrachlorobenze	ND	_	4.7	0.77	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
2,3,4,8-Tetrachiorophenol	ND		4.7	2.0	ug/L	1.00	10/13/09 18:56	MKP	BJ12044	8270C		
2,4,5-Trichlorophenol	ND		4.7	0.94	ug/L	1.00	10/13/09 18:56		9J12044	8270C		
2,4,6-Trichlorophenol	ND		4.7	0.94	ug/L	1.00	10/13/09 18:56		9J12044	8270C		
2,4-Dichlorophenol	ND		4.7	0.75	ug/L	1.00	10/13/09 18:56		9J12044	6270C		
2,4-Dimethylphenol	ND		4.7	0,91	ug/L	1.00	10/13/09 18:56		8J12044	8270C		
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 18:56			8270C		
2,4-Dinitrotoluene	ND		4.7	0.42	ug/L	1.00	10/13/09 18:56		9J12044	8270C		
2,6-Dinitrotoluene	ND		4.7	0.48	ug/L	1.00	10/13/09 18:56		9J12044	8270C		
2-Chloronaphthalene	ND		4.7	0.080	ug/L	1.00	10/13/09 18:56			8270C		
2-Chlorophenol	ND		4.7	0.48	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
2-Methylnaphthalene	ND		4.7	0.078	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
2-Methylphenol	ND		4.7	0.22	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
2-Nitroanillne	ND		9.5	0.47	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
2-Nitrophenol	ND		4.7	0.57	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
3,3'-Dichlorobenzidine	ND		4.7	0.35	ug/L	1.00	10/13/09 18:56		9 J12044	8270C		
3-Nitroaniline	ND		9.5	1.5	ug/L	1.00	10/13/09 18:56		9J12044	8270C		
4,6-Dinitro-2-methylphen of	ND		9.5	2.2	ug/L	1.00	10/13/09 18:56	3 МКР	9J12044	8270C		
4-Bromophenyl phenyl	ND		4.7	0.85	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C		
ether 4-Chloro-3-methylphenol	ND		4.7	0.56	ue fi	4.00	10/13/09 18:56	MKD	0.142044	8270C		
4-Chloroaniline	ND				ug/L	1.00 1.00						
4-Chlorophenyl phenyl	ND		4.7 4.7	0.31	ug/L	1.00	10/13/09 18:56			8270C 8270C		
ether	NU		4.7	0.16	ug/L	7.00	10/13/09 10.50	NINE	83 (2044	8270C		
4-Methylphenol	ND		9.5	0.55	ug/L	1.00	10/13/09 18:56	MKP	9.112044	8270C		
4-Nitroaniline	ND		9.5	0.43	ug/L	1.00				8270C		
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00				8270C		
Acenaphthene	ND		4.7	0.11	ug/L	1.00				8270C		
Acenaphthylene	ND		4.7	0.045	ug/L	1.00				8270C		
Acelophenone	ND		4.7	0.97	ug/L	1.00				8270C		
Anthracene	ND		4.7	0.053	ug/L	1.00				8270C		
Atrazine	ND		4.7	1.0	ug/L	1.00				8270C		
Benzaldehyde	ND		4.7	0.25	ug/L	1.00				8270C		
Benzo[a]anthracene	ND		4.7	0.061	ug/L	1.00				8270C		
Benzo[a]pyrene	ND		4.7	0.086	ug/L	1.00				8270C		

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-11	(W1 - Gr	ound Water	r) - cont.		Sam	ipled: 1	0/07/09 11:40	Rec	vd: 10/09	09 09:20	
Semivolatile Organics	by GC/MS	S - cont.									
Benzo[b]fluoranthene	ND		4.7	0.060	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
Benzo[g,h,i]perylene	ND		4.7	0.074	ug/L	1.00	10/13/09 18:56	MKP	9J12D44	8270C	
Benzo[k]fluoranthene	ND		4.7	0.063	ug/L	1,00	10/13/09 18:56		9J12044	8270C	
1,1'-Biphenyl	ND		4.7	0.62	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
Bis(2-chloroethoxy)metha	ND		4.7	0.36	ug/L	1,00	10/13/09 18:56			8270C	
ne					-a-						
Bis(2-chloroethyl)ether	ND		4.7	0.17	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
nel				-10-	-9						
Bis(2-ethylhexyl)	ND		4.7	4.5	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
phthalate					-3 -						
Butyl benzyl phthalate	ND		4.7	1.6	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
Caprolactam	ND		4.7	4.4	ug/L	1.00	10/13/09 18:56	MKP	9J12044	8270C	
Carbazole	ND		4.7	0.084	ug/L	1.00	10/13/09 18:56		9J12044	8270C	
Chrysene	ND		4.7	0.26	ug/L	1.00	10/13/09 18:56	MKP		8270C	
Dibenz[a,h]anthracene	ND		4.7	0.19	ug/L	1.00	10/13/09 18:56		9J12044	8270C	
Dibenzofuran	ND		9.5	1.5	ug/L	1.00	10/13/09 18:56			8270C	
Diethyl phthalate	0.41	J, B	4.7	0.10	ug/L	1.00	10/13/09 18:56			8270C	
Dimethyl phthalate	ND	5, 5	4.7	0.28	ug/L	1.00	10/13/09 18:56		9J12044	8270C	
Di-n-butyl phthalate	ND		4.7	0.28	ug/L	1.00	10/13/09 18:56			8270C	
Di-n-octyl phthalate	ND		4.7	0.23	ug/L	1.00	10/13/09 18:56		9J12044	8270C	
Fluoranthene	ND		4.7	0.093	υg/L ug/L	1.00	10/13/09 18:56			8270C	
Fluorene	ND		4.7	0.070	ug/L	1.00	10/13/09 18:56			B270C	
Hexachlorobenzene	ND		4.7	0.42	_	1.00	10/13/09 18:56			8270C	
Hexachlorobutadiene	ND		4.7	2.5	пВ/Г	1.00	10/13/09 18:56			8270C	
	ND				ug/L	1.00	10/13/09 18:56		9J12044	8270C	
Hexachlorocyclopentadie	MD		4.7	2.4	ug/L	1.00	וטוו פטוגוווטו	MIKE	8312044	62700	
ne Hexachloroethane	ND		4.7	0.7		1.00	10/13/09 18:58	NAVD	9J12044	8270C	
	ND		4.7	2.7	ug/L				9J12044	8270C	
Indeno[1,2,3-cd]pyrene	ND		4.7	0.15	ug/L	1.00	10/13/09 18:56 10/13/09 18:56			8270C 8270C	
Isophorone	-		4.7	0.30	ug/L	1.00					
Naphthalene	ND		4.7	0.11	ug/L	1.00	10/13/09 18:56			8270C	
Nitrobenzene	ND		4.7	0.51	ug/L	1.00	10/13/09 18:50		8J12044	8270C	
N-Nitrosodi-n-propylamin	ND		4.7	0.43	ug/L	1.00	10/13/09 18:56	MIKP	9J12044	8270C	
e N Nitrocodinhanulamina	ND		4.7	0.25		4.00	10/13/09 18:56	MVD	0.140044	8270C	
N-Nitrosodiphenylamine	ND	L	4.7	0.25	ug/L	1.00					
Pentachiorophenol Phenanthrene	ИD		9.5	4.9	ug/L	1.00	10/13/09 18:50			8270C 8270C	
			4.7	0.11	ug/L	1.00	10/13/09 18:50				
Phenol	ND		4.7	0.42	ug/L	1.00	10/13/09 18:50			8270C	
Pyrene	ND		4.7	0.064	ug/L	1.00	10/13/09 18:56	MIKP	9312044	8270C	
2,4,6-Tribromophenol	109 %		Surr Limits:	(52-132%)			10/13/09 18:5	5 MKP	9J12044	8270C	
2-Fluorobiphenyl	92 %		Sur Limits:				10/13/09 18:5	S MKP	9J12044	8270C	
2-Fluorophenol	41 %		Surr Limits:				10/13/09 18:5			8270C	
Nitrobenzene-d5	97 %		Surr Limits:				10/13/09 18:5			8270C	
Phenol-d5	29 %		Sur Limits:				10/13/09 18:5			8270C	
p-Terphenyl-d14	89 %		Surr Limits:				10/13/09 18:5			8270C	
Semivolatile Organics	TICs by	GC/MS									
2,6,10,14,18,22-Tetracosahe xaene, 2,6,10,15,19 (000111-02-4)	9.5	17	Ret Time: 1	4.778	ug/L	1.00	10/13/09 18:50	MKP	9J12044	8270C	
(000111-02-4) Benzene, chloro- (000108-90-7)	5.2	17	Ret Time: 3	.714	ug/L	1.00	10/13/09 18:50	5 MKP	9J12044	8270C	
TootAmerica Buffelo											

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	8J12044 8J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP	8J12044 8J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044 9J12044	8270C 8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044 9J12044	8270C 8270C
18:56 MKP 18:56 MKP 18:56 MKP	9J12044 9J12044	8270C
18:56 MKP 18:56 MKP	9J12044	
18:56 MKP		
	LANCH D	8270C
AOLEO MAZO	30 12077	8270C
18:56 MKP	9J12044	8270C
18:56 MKP	9J12044	8270C
02:26 DGE	9,109108	8081A
02:26 DGE		8081A
02:26 DGE		8081A
02:26 DGE	9,09108	8081A
		6081A
		8081A
		60B1A
		B081A
		8081A
		8081A 8081A
		8081A
		B081A
9 02:26 DGE	3 9J09108	8081A
9 02:26 DGE	9J09108	8081A
		8081A
		8081A
9 02:26 DGE	3 9J09108	8081A
9 02:06 JxM	1 9J09109	8082
	02:26 DGE 02:26 DGE	02:26 DGB 9J09108 02:26 DGB 9J09108

TestAmerica Buffaio

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Projec

d	Number:	48001559-2	
_			_

Analytical Report											
	Sample	Data				Dil	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method	
Sample ID: RSJ0643-	11 (W1 - Gr				Sam	pled: 1	0/07/09 11:40		vd: 10/09		
Polychlorinated Biph	envis by El	PA Method	8082 - con	<u>t.</u>							
Aroclor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 02:06	JxM 8	9J09109	8082	
Aroclor 1242	ND		0.47	0.17	ug/L	1.00	10/12/09 02:06	JxM	9J09109	8082	
Aroclor 1248	ND		0.47	0.17	ug/L	1.00	10/12/09 02:06	JxM	9J09109	8082	
Aroclor 1254	ND		0.47	0.24	ug/L	1.00	10/12/09 02:06	JxM	9J09109	8082	
Aroclor 1260	ND		0.47	0.24	ug/L	1,00	10/12/09 02:06	JxM	9J09109	8082	
Aroclor 1262	ND		0.47	0.24	ug/L	1,00	10/12/09 02:08	JxM	9J09109	8082	
Aroclor 1288	ND		0.47	0.24	ug/L	1.00	10/12/09 02:06	MxL 8	9J09109	8082	
Decachlorobiphenyl	76 %		Surr Limits:	(12-137%)			10/12/09 02:08	5 JxM	9J09109	8082	
Tetrachlom-m-xylene	76 %		Surr Limits:				10/12/09 02:00		9J09109	8082	
Total Metals by SW 8	46 Series N	<u>lethods</u>									
Aluminum	ND		0.200	0.040	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Antimony	ND		0.0200	8800.0	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Arsenic	ND		0.0100	0.0056	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Berium	0.121		0.0020	0.0003	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 16:45		9J12069	6010B	
Cadmium	ND		0.0010	0.0003	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Calcium	112		0.5	0.1	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 16:45		9J12069	6010B	
Cobalt	0.0026	J	0.0040	0.0006	mg/L	1.00	10/13/09 16:45		9J12089	6010B	
Copper	ND		0.0100	0.0013	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Iron	ND		0.050	0.019	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Lead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Magnesium	24.7		0.200	0.043	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Manganese	0.0057		0.0030	0.0002	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Nickel	ND		0.0100	0.0013	mg/L	1.00	10/13/09 16:45		9J12069	6010B	
Polassium	3.00		0.500	0.050	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Selenium	ND		0.0150	0.0087	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Silver	ND		0.0030	0.0012	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Sodium	230		1.0	0.3	mg/L	1.00	10/13/09 16:45	DAN	9J12069	6010B	
Thellium	ND		0.0200	0.0102	ma/L	1,00	10/13/09 16:45		9J12069	6010B	
Vanadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 16:45			6010B	
Zinc	0.0017	J	0.0100	0.0015	mg/L	1.00	10/13/09 18:45			6010B	
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:00			7470A	
General Chemistry P.	arameters				-						
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:27	7 LRM	9J14038	9012A	

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Аг	nalytical	Report				_	
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-12	(W2 - Gr	ound Water)			Sam	pled: 1	0/07/09 14:19	Rec	vd: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 03:25	NMD	9J12089	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 03:25	DMN	9J12089	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/13/09 03:25	DMN	9J12089	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	10/13/09 03:25	S NMD	9J12089	8260B
oroethane					_					
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 03:25			8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 03:25			8260B
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:25			8260B 8260B
1,2,4-Trichlorobenzene 1,2-Dibromo-3-chloroprop	ND ND		1.0	0.41	ug/L	1.00 1.00	10/13/09 03:25			8260B
ane	NO		1.0	0.39	ug/L	1.00	10/13/09 03.23	IAIAID	3J 12Q03	02000
1,2-Dibromoethane (EDB)	ND		1,0	0.17	ug/L	1.00	10/13/09 03:25	NMD	9J12089	8260B
1.2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/13/09 03:25	OMN 2	9J12089	8260B
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 03:25			8260B
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:25	_		8260B
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:25			82608
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:25			8260B
1,4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 03:25	NMD	9J12089	8260B
2-Bulanone (MEK)	ND		5.0	1.3	ug/L	1,00	10/13/09 03:25	OMN	9J12089	8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 03:25	5 NMD	9J12089	8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/13/09 03:25	5 NMD	9J12089	8260B
(MIBK)										
Acetone	ND		5.0	1.3	ug/L	1.00	10/13/09 03:25		BJ12089	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 03:2			8260B
Bromochloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:25			8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:25			82609
Bromoform	ND		1.0	0,26	ug/L	1.00	10/13/09 03:25			8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/13/09 03:2			8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/13/09 03:25			8260B
Carbon Tetrachloride Chlorobenzene	ND ND		1.0	0.27	ug/L	1.00	10/13/09 03:25			8260B 8260B
Dibromochloromethane	ND		1.0	0.32 0.32	ug/L	1.00	10/13/09 03:25			8260B
Chloroethane	ND		1.0 1.0	0.32	ug/L ug/L	1.00	10/13/09 03:2			8260B
Chloroform	ND		1.0	0.32	ug/L	1.00	10/13/09 03:2			8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/13/09 03:25			8260B
cis-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/13/09 03:25			8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:25			8260B
Cyclohexane	ND		1.0	0.53	ug/L	1.00	10/13/09 03:25			8260B
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00	10/13/09 03:29			8260B
Ethylbenzene	ND		1.0	0.18	ug/L	1.00	10/13/09 03:2			8260B
Isopropylbenzene	ND		1.0	0.19	ug/L	1.00	10/13/09 03:2			8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00	10/13/09 03:25			8260B
Methyl tert-Butyl Ether	ND		1.0	0.18	ug/L	1.00	10/13/09 03:25			8260B
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00	10/13/09 03:25			8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00	10/13/09 03:25			8260B
m,p-Xylene	ND		2.0	0.66	ug/L	1.00	10/13/09 03:25			8260B
o-Xylene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:25			8260B
Styrene	ND		1.0	0.18	ug/L	1.00	10/13/09 03:25			8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:2			8260B
Toluene	ND		1.0	0.51	ug/L	1.00	10/13/09 03:25			8260B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sits Project Number: 48001559-2

			An	alytical R	eport	_				
	Sample	Data		_	-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-12	(W2 - Gr	ound Wate	r) - cont.		Şam	pled:	10/07/09 14:19	Rec	vd: 10/09	09 09:20
Volatile Organic Comp	ounds by	/ EPA 8260I	3 - cont.							
trans-1,2-Dichloroethene	ND	•	1,0	0.42	ug/L	1.00	10/13/09 03:25	S NMD	9J12089	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/13/09 03:25	DMN	9J12089	8260B
е					-					
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 03:25			8260B
Trichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/13/09 03:25			8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/13/09 03:25	NMD	9J12089	8260B
1,2-Dichloroethane-d4	94 %		Surr Limits:	(66-137%)			10/13/09 03:25	5 NMD	9J12089	8260B
4-Bromofluorobenzene	94 %		Surr Limits:	(73-120%)			10/13/09 03:25	5 NMD	9J12089	8260B
Toluene-d8	95 %		Surr Limits:	(71-126%)			10/13/09 03:2	5 NMD	9J12089	8260B
Tentatively Identified (Compoun	ds by EPA	9260B							
No TICs found (NOTICS)	ND	17			ug/L	1.00	10/13/09 03:25	SNMD	9J12089	8260B
					•					
Semivolatile Organics	by GC/M	<u>s</u>								
1,2,4,5-Tetrachlorobenze	ND		4.7	0.77	ug/L	1.00	10/13/09 19:21	I MKP	9J12044	8270C
ne	AUD		. ~		-	4.00	4044000 40.0		0140014	20722
2,3,4,6-Tetrachlorophenol	ND ND		4.7	2.0	ug/L	1.00	10/13/09 19:21		9J12044	8270C
2,4,6-Trichlorophenol	ND		4.7 4.7	0.94 0.94	ug/L	1.00	10/13/09 19:21 10/13/09 19:21		9J12044	8270C 8270C
2,4-Dichlorophenol	ND		4.7	0.75	ug/L ug/L	1.00	10/13/09 19:2			8270C
2,4-Dimethylphenol	ND		4.7	0.73	ug/L	1.00	10/13/09 19:21		9J12044	8270C
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 19:2			8270C
2,4-Dinitrotoluene	ND		4.7	0.42	ug/L	1.00	10/13/09 19:21			8270C
2,6-Dinitrotoluene	ND		4.7	0,48	ug/L	1.00	10/13/09 19:21			8270C
2-Chloronaphthalene	ND		4.7	0.080	ug/L	1.00	10/13/09 19:21	1 MKP	9J12044	8270C
2-Chlorophenol	ND		4.7	0.48	ug/L	1.00	10/13/09 19:21	1 MKP	9J12044	8270C
2-Methylnaphthalene	ND		4.7	0.078	ug/L	1,00				8270C
2-Methylphenol	ND		4.7	0.22	ug/L	1.00	10/13/09 19:2			8270C
2-Nitroaniline	ND		9,5	0.47	ug/L	1.00			-	8270C
2-Nitrophenol	ND		4.7	0.57	ug/L	1.00	-		9J12044	8270C
3,3'-Dichlorobenzidine 3-Nitroaniline	ND ND		4.7	0.35	ug/L	1,00			9J12044 9J12044	8270C 8270C
4,6-Dinitro-2-methylphen	ND		9.5 9.5	1.5 2.2	ug/L	1.00	10/13/09 19:2		9J12044	8270C
ol	ND		9.0	2.2	ug/L	1.00	10/10/08 18.2	I MILLS	33 120-1-1	02700
4-Bromophenyl phenyl	ND		4.7	0.85	ug/L	1.00	10/13/09 19:21	1 MKP	9J12044	8270C
ether					-0-					
4-Chloro-3-methylphenol	ND		4.7	0.56	ug/L	1.00	10/13/09 19:21	1 MKP	BJ12044	8270C
4-Chloroaniline	ND		4.7	0.31	υg/L	1.00				8270C
4-Chlorophenyl phenyl	ND		4.7	0.16	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
ether	ND		2.5	0.55		4.00	1044000 10:0	4 4 11 / 15	0.140044	
4-Methylphenol 4-Nitroaniline	ND ND		9.5	0.55	ug/L	1.00				8270C
4-Nitrophenol	ND		9.5 9.5	0.43 1.4	ug/L ug/L	1.00			9J12044	8270C 8270C
Acenaphthene	ND		9.5 4.7	0.11	ug/L	1,00				8270C
Acenaphthylene	ND		4.7	0.045	ug/L	1.00				8270C
Acelophenone	ND		4.7	0.97	υg/L	1.00			_	8270C
Anthracene	ND		4.7	0.053	ug/L	1.00				8270C
Atrazine	ND		4.7	1.0	ug/L	1.00				8270C
Benzaldehyde	ND		4.7	0.25	ug/L	1.00				8270C
Benzo[a]anthracene	ND		4.7	0.061	ug/L	1.00	10/13/09 19:21	1 MKP	9J12044	8270C
Benzo(a)pyrene	ND		4.7	0.086	ug/L	1.00	10/13/09 19:2	1 MKP	9J12D44	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Analytical Report										
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-12 (W2 - Ground Water) - cont. Sampled: 10/07/09 14:19 Recvd: 10/09/09 0									09 09:20	
Semivolatile Organics by GC/MS - cont.										
Benzo[b]fluoranthene	ND		4.7	0.060	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Benzo[g,h,i]perylene	ND		4.7	0.074	ug/L	1.00	10/13/09 19:21			8270C
Bertzo[k]fluoranthene	ND		4.7	0.063	ug/L	1.00	10/13/09 19:21			8270C
1,1'-Biphenyl	ND		4.7	0.62	υg/L,	1,00	10/13/09 19:21	MKP	9J12044	8270C
Bis(2-chloroethoxy)metha	ND		4.7	0.36	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
ne `			. –			4.00	10110100 10.01	LIVE	0.140044	8270C
Bis(2-chloroe(hyl)ether	ND		4.7	0.17	ug/L	1.00	10/13/09 19:21			
2,2'-oxybis[1-chloropropa nel	ND		3.8	3.8	ug/L	1.00	10/13/09 19:21	MIKP	9J12044	8270C
Bis(2-ethylhexyl)	ND		4.7	4.5	սց/ւ	1,00	10/13/09 19:21	MKP	9J12044	8270C
phthalate	ND		4.7	1.6	ug/L	1.00	10/13/09 19:21	МКР	BJ12044	8270C
Butyl benzyl phthalate	ND		4.7	4.4	ug/L	1.00	10/13/09 19:21		9J12044	8270C
Caprolectem Carbazole	ND		4.7	0.084	ug/L	1.00	10/13/09 19:21		9J12044	8270C
Chrysene	ND		4.7	0.26	ug/L	1.00	10/13/09 19:21			8270C
•	ND		4.7	0.19	ug/L	1.00	10/13/09 19:21			8270C
Dibenz[a,h]anthracene	ND		9.5	1.5	ug/L ug/L	1.00	10/13/09 19:21		9J12044	8270C
Dibenzofuran	0.62	J, B	9.5 4.7	0.10	ug/L	1.00	10/13/09 19:21			8270C
Diethyl phthalate	-	J, D				1.00	10/13/09 19:21			8270C
Dimethyl phthalate	ND	1	4.7	0.28	ug/L	1.00	10/13/09 19:21		9J12044	8270C
Di-n-butyl phthalate	0.30	J	4.7	0.28	ug/L	1.00	10/13/09 19:2			8270C
Di-n-octyl phthalate	ND		4.7	0.23	ug/L	1,00	10/13/09 19:2			8270C
Fluoranthene	ND		4.7	0.093	ug/L		10/13/09 19:2			8270C
Fluorene	ND		4.7	0.070	ug/L	1.00	10/13/09 19:2			8270C
Hexachlorobenzene	ND		4.7	0.42	ug/L	1,00	10/13/09 19:2			8270C
Hexachlorobutadiene	ND		4.7	2.5	ug/L	1.00	10/13/09 19:2			8270C
Hexachlorocyclopentadie ne	ND		4.7	2.4	ug/L	1.00				
Hexachloroethane	ND		4.7	2.7	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
Indeno[1,2,3-cd]pyrene	ND		4.7	0.15	ug/L	1.00	10/13/09 19:2			8270C
Isophorone	ND		4.7	0.30	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
Naphthelene	ND		4.7	0.11	ug/L	1.00	10/13/09 19:2			8270C
Nitrobenzene	ND		4.7	0.51	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
N-Nitrosodi-n-propylamin	ND		4.7	0.43	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
е					_				0.1400.44	20722
N-Nitrosodiphenylamine	ND	L	4.7	0.25	ug/L	1.00	10/13/09 19:2			8270C
Pentachlorophenol	ND		9.5	4.9	ug/L	1.00	10/13/09 19:2			8270C
Phenanthrene	ND		4.7	0.11	ug/L	1.00	10/13/09 19:2			8270C
Phenol	ND		4.7	0.42	ug/L	1.00	10/13/09 19:2			8270C
Pyrene	ND		4.7	0,064	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
2,4,6-Tribromophenol	115 %		Surr Limits:	(52-132%)			10/13/09 19:2			8270C
2-Fluorobiphenyl	99 %		Surr Limits:				10/13/09 19:2			8270C
2-Fluorophenol	48 %		Sur Limits:	(20-120%)			10/13/09 19:2			8270C
Nitrobenzene-d5	101 %		Surr Limits:				10/13/09 19:2			8270C
Phenol-d5	34 %		Sun Limits:	(16-120%)			10/13/09 19:2			8270C
p-Terphenyl-d14	87 %		Sur Limits:				10/13/09 19:2	1 MKP	9J12044	8270C
Semivolatile Organics	TICs by	GC/MS								
Benzene, chloro-	4.3		Ret Time: 3	.72	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
(000108-90-7) Unknown01 (none)	5.2	17, B	Ret Time: 1	1 744	ug/L	1.00	10/13/09 19:2	1 MKP	9J12044	8270C
•					-	1.00				8270C
Unknown02 (none)	6.0	T7, 8	Ret Time: 1	1.75	ug/L	1.00	10/13/03 18:2	I WILL	3012074	02700

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Project Number: 48001559-2										
Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dii Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0643-12	2 (W2 - Gr	ound Water	r) - cont.		Sam	pled: 1	10/07/09 14:19	Rec	vd: 10/09	
Semivolatile Organics	TICs by G	C/MS - cor	nt.							
Urknown03 (none)	15	17, B	Rel Time: 1	12.657	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Unknown04 (none)	18	T7, B	Rel Time: 1	12.791	ug/L	1,00	10/13/09 19:21	MKP	9J12044	8270C
Unknown05 (none)	16	T7, B	Rel Time: 1	13.485	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Unknown06 (none)	13	T7, B	Rel Time: 1	13.512	ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Unknown07 (none)	38	T7, B	Rel Time: 1		ug/L	1.00	10/13/09 19:21	MKP	9J12044	8270C
Unknown08 (none)	21	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 19:21		BJ12044	8270C
Unknown09 (none)	24	T7, B	Rel Time: 1		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown10 (none)	6.7	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown11 (none)	82	T7, B	Ret Time; 1		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown12 (none)	8.4	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 19:21		9J12044	8270C
UNKNOWN13 (none)	45	T7, B	Ret Time: 1	-	ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown14 (none)	25	17, B	Ret Time:		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown15 (none)	5.5	17, B	Ret Time: 1		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown16 (none)	11	T7, B	Ret Time:		ug/L	1.00	10/13/09 19:21		9J12044	8270C
Unknown17 (none)	10						10/13/09 19:21		9J12044	8270C
Unknown18 (none)		T7, B	Rel Time: 1		ug/L	1.00				
Unknown19 (none)	4.8 6.0	17 17	Ret Time: 1		ug/L ug/L	1.00	10/13/09 19:21		9J12044 9J12044	8270C 8270C
- (name)	0.0	17	Net Tille.	10.51	ogic	1.00	10/13/08 18.2	HIN	90 12041	02700
Organochlorine Pestic	ides by E	PA Method	8081A							
4,4'-DDD [2C]	ND		0.047	0.016	ug/L	1.00	10/14/09 03:02			8081A
4,4'-DDE [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 03:02			8081A
4,4'-DDT [2C]	ND		0.047	0.010	υg/L	1.00	10/14/09 03:02			8081A
Aldrin [2C] alpha-BHC [2C]	ND ND		0.047 0.047	0,0062 0,0062	ug/L ug/L	1.00	10/14/09 03:02			8081A 8081A
alpha-Chlordane [2C]	ND		0.047	0.0002	nd\r	1.00	10/14/09 03:02			8081A
bete-BHC [2C]	ND		0.047	0.023	ug/L	1.00	10/14/09 03:02			8081A
della-BHC [2C]	ND		0.047	0.0095	ug/L	1.00	10/14/09 03:02	2 DGB	9J09108	8081A
Dieldrin [20]	ND		0.047	0.018	ug/L	1.00	10/14/09 03:02			8081A
Endosulfan I [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 03:02			8081A
Endosulfan II [2C] Endosulfan sulfate [2C]	ND ND		0.047 0.047	0.011 0.015	ug/L	1.00	10/14/09 03:02 10/14/09 03:02			8081A 8081A
Endrin [2C]	ND		0.047	0.013	ug/L ug/L	1.00	10/14/09 03:02			8081A
Endrin aldehyde [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 03:0			8081A
Endrin ketone [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 03:02			8081A
gamma-BHC (Lindane) [2C]	ND		0.047	0.0057	ug/L	1.00	10/14/09 03:02	2 DGB	9J09108	8081A
gamma-Chlordane [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 03:02	2 DGB	9J09108	8081A
Heptachlor [2C]	ND		0.047	0.0080	ug/L	1.00	10/14/09 03:02			8081A
Heptachlor epoxide [2C]	0.026	J	0.047	0.0050	ug/L	1.00	10/14/09 03:02			8081A
Methoxychlor [2C]	ND		0.047	0.013	ug/L	1.00	10/14/09 03:02			8081A
Toxaphene [2C]	ND		0.47	0.11	ug/L	1.00	10/14/09 03:02	2 DGB	9J09108	8081A
Decachlorobiphenyl [2C]	76 %			: (15-139%)			10/14/09 03:0			8081A
Tetrachloro-m-xylene [2C]	62 %		Surr Limits	: (30-139%)			10/14/09 03:0	2 DGB	9J09108	8081A
Polychlorinated Biphe	nvis bv F	PA Method	8082							
Arodor 1016	ND	t moniou	0.47	0.17	ug/L	1.00	10/12/09 02:20	JxM	9J09109	8082
	- 1-				-5			,,,,,,		

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

Analytical Report										
	Sample	Data				Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-1	12 (W 2 - Gr		·		Sam	pled: 1	0/07/09 14:19		vd: 10/09	/09 09:20
Polychlorinated Biphenyls by EPA Method 8082 - cont.										
Arodor 1221	ND		0.47	0.17	ug/L	1.00	10/12/09 02:20	JxM	9J09109	8082
Aroclor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 02:20) JxM	9J09109	8082
Aroclor 1242	ND		0.47	0.17	ug/L	1.00	10/12/09 02:20) JxM	9J09109	8082
Aroclor 1248	ND		0.47	0.17	ug/L	1.00	10/12/09 02:20) JxM	9J09109	8082
Aroclor 1254	ND		0.47	0.24	ug/L	1.00	10/12/09 02:20) JxM	9J09109	8082
Arador 1260	ND		0.47	0.24	ug/L	1.00	10/12/09 02:20	MxL (9J09109	8082
Arodor 1262	ND		0.47	0.24	ug/L	1.00	10/12/09 02:20	JxM	9J09109	8082
Arodor 1268	ND		0.47	0.24	ug/L	1.00	10/12/09 02:20	MxL C	9J09109	8082
Decachlorobiphenyl	91 %		Sur Limits:	(12-137%)			10/12/09 02:20) JxM	9J09109	8082
Tetrachloro-m-xylene	71 %			(35-121%)			10/12/09 02:20	JxM	9J09109	8082
Total Metals by SW 846 Series Methods										
Aluminum	ND		0.200	0.040	mg/L	1.00	10/13/09 16:50	DAN	9J12069	6010B
Antimony	ND		0.0200	0.0088	mg/L	1.00	10/13/09 16:50			6010B
Arsenic	ND		0.0100	0.0056	mg/L	1.00	10/13/09 16:50			6010B
Barium	0.198		0.0020	0.0003	mg/L	1.00	10/13/09 16:50			6010B
Beryllium	0.0003	J	0.0020	0.0002	mg/L	1.00	10/13/09 16:50			6010B
Cadmium	ND	•	0.0010	0.0003	mg/L	1.00	10/13/09 16:50			6010B
Calcium	238		0.5	0.1	mg/L	1.00	10/13/09 16:50			6010B
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 16:50			60108
Coball	ND		0.0040	0.0006	mg/L	1.00	10/13/09 16:50			6010B
Copper	ND		0.0100	0.0013	mg/L	1.00	10/13/09 16:50			6010B
Iron	0.020	J	0.050	0.0013	mg/L	1.00	10/13/09 16:50			6010B
Lead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 16:50			6010B
Magnesium	59.5		0.200	0.0030	mg/L	1.00	10/13/09 16:50			6010B
Manganese	0.0102		0.0030	0.0002	-	1.00	10/13/09 10:50			60108
Nickel	ND		0.0030	0.0002	mg/L	1.00	10/13/09 16:50			6010B
Potassium	4.31		0.500	0.050	mg/L		10/13/09 16:50			6010B
Selenium					mg/L	1.00				
Silver	ND		0.0150	0.0087	mg/L	1.00	10/13/09 16:50			6010B
Sodium	ND		0.0030	0.0012	mg/L	1.00	10/13/09 16:50			6010B
	223		1.0	0.3	mg/L	1.00	10/13/09 16:50			6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	10/13/09 16:50			6010B
Vanadlum	ND		0.0050	0.0011	mg/L	1.00	10/13/09 16:50			6010B
Zinc	ND		0.0100	0.0015	mg/L	1.00	10/13/09 16:50			6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:03	MXM S	9J17027	7470A
General Chemistry Pa	<u>arameters</u>									
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:23	7 LRM	9J14038	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			A	nalytical R	eport			_		
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-13	(W3 - Gr	ound Water)			Sam	pled: 1	0/07/09 17:21	Rec	vd: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
oroethane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 03:47			8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 03:47			8260B
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:47			8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 03:47			82608
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/13/09 03:47	NMU	9J12089	8260B
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
(EDB) 1,2-Dichlorobenzene	ND		4.0	0.20	0	4.00	10/13/09 03:47	r NIMPS	0.142000	92600
1,2-Dichloroethane	ND		1.0 1.0	0.20 0.21	ug/L	1.00 1.00	10/13/09 03:47			8260B 8260B
1,2-Dichloropropane	ND		1.0	0.21	ug/L ug/L	1.00	10/13/09 03:47			8260B
1.3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:47			8260B
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 03:47			8260B
1,4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 03:47			8260B
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/13/09 03:47			8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 03:47			8260B
4-Methyl-2-pentanone (MIBK)	ND		5.0	0.91	ug/L	1.00	10/13/09 03:47			8260B
Àcetone	4.4	J	5.0	1.3	ug/L	1.00	10/13/09 03:47	7 NMD	9J12089	8260B
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
Bromochloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 03:47	OMN 7	9J12089	8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	10/13/09 03:47	NMD	PJ12089	82608
Bromomethane	ND		1.0	0,28	ug/L	1.00	10/13/09 03:47	7 NMD	9J12089	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/13/09 03:47			8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/13/09 03:47			8260B
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	10/13/09 03:47			8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:47			8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	10/13/09 03:47			8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	10/13/09 03:47			8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/13/09 03:47			8260B
cis-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/13/09 03:47			8260B
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/13/09 03:47			8260B
Cyclohexane Dichlorodifluoromethane	ND		1.0	0.53	ug/L	1.00	10/13/09 03:47			8260B
Ethylbenzene	ND ND		1.0	0.29	ug/L	1.00	10/13/09 03:47			8260B
Isopropylbenzene	18		1.0	0.18	ug/L	1.00	10/13/09 03:47 10/13/09 03:47			8260B
Methyl Acetate	ND		1.0	0.19	ug/L	1.00				8260B
Methyl tert-Butyl Ether	0.48	J	1.0 1.0	0.50	ug/L.	1.00	10/13/09 03:47 10/13/09 03:47			8260B
Methylcyclohexana	ND	J		0.16	ug/L	1,00	10/13/09 03:47			8260B
Methylene Chloride	ND		1.0	0.50	ug/L	1.00				8260B
m,p-Xylene	ND		1.0 2.0	0.44	ug/L	1.00 1.00	10/13/09 03:47 10/13/09 03:47			8260B
o-Xylene	ND		1.0	0.66 0.36	ug/L	1.00	10/13/09 03:47			8260B 8260B
Styrene	ND		1.0	0.30	ug/L ug/L	1.00	10/13/09 03:47			6260B
Tetrachloroethene	ND		1.0	0.16	-	1.00	10/13/09 03:47			6260B
Toluene	ND		1.0	0.51	ug/L ug/L	1.00	10/13/09 03:47			8260B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

			Ana	alytical R	eport					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-13	(W3 - Gr	ound Water	r) - cont.		Sam	pled:	10/07/09 17:21	Rec	vd: 10/09	09 09:20
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.							
Irans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/13/09 03:47			8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/13/09 03:47	NMD	9J12089	8260B
e					_	4.00	4044000000		0.140000	00000
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 03:47 10/13/09 03:47			8260B 8260B
Trichloroffuoromethane Vinyl chloride	ND ND		1.0 1.0	0.15 0.24	ug/L ug/L	1.00	10/13/09 03:41			8260B
					- ug/L	1.00				
1,2-Dichloroethane-d4	93 %		Sur Limits:	(66-137%)			10/13/09 03:4			8260B
4-Bromofluorobenzene	83 %		Sur Limits:				10/13/09 03:4			8260B 8260B
Toluene-d8	82 %		Surr Limits:	(/1-120%)			10/13/09 03:4	עואוא	9312069	02008
Tentatively Identified (Compoun									
1H-Indene,	20	17	Ret Time: 12	2.567	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
2.3-dihydro-1,3-dimethyl- (004175-53-5)										
Benzene,	26	T7	Rel Time: 1	1.737	ug/L	1,00	10/13/09 03:4	7 NMD	9J12089	8260B
1,2,3,5-tetramethyl-					_					
(000527-53-7) Benzene, 1-ethenyl-3-ethyl-	51	T7	Ret Time: 1	1 493	ug/L	1,00	10/13/09 03:4	7 NMD	9J12089	8260B
(007525-62-4)	51	• • •	rect rime. I	1.400	- Ugi -	1,00				
Butene, 2,2-dimethyl-	29	77	Rel Time: 2.	.623	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
(000076-83-2) Butane, 2,3-dimethyl-	38	77	Ret Time: 3	038	ug/L	1.00	10/13/09 03:4	7 NMD	9.112089	8260B
(000079-29-8)	30	17	Net Time. 5	.036	ug/c	1.00	10/10/03/05.4	I I WIND	00 12000	02000
Cyclopeniane,	29	17	Ret Time: 6.	.062	ug/L	1,00	10/13/09 03:4	7 NMD	9J12089	8260B
1,2,4-trimethyl-, (1.aipha.,2,be (016883-48-0)										
Hexane, 2,4-dimethyl-	22	77	Ret Time: 5	867	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
(000589-43-5)		• • •	. 101 1		-8		,			
Hexane, 2,5-dimethyl-	30	T7	Ret Time: 5	.818	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
(000592-13-2) Penlane, 2,3,3-trimethyl-	31	17	Ret Time: 6	33	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
(000560-21-4)	•				•					
Pentane, 2,4-dimethyl- (000108-08-7)	21	T7	Rel Time: 4	.038	ug/L	1.00	10/13/09 03:4	7 NMD	9J12089	8260B
Semivoletile Organics	by GC/M	S								
1,2,4,5-Tetrachlorobenze	ND	_	4.8	0.78	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
ne										
2,3,4,6-Tetrachlorophenol	ND		4.8	2.0	ug/L	1.00	10/13/09 19:4			8270C
2,4,5-Trichlorophenol	ND		4.8	0.94	ug/L	1.00	10/13/09 19:4			8270C
2,4,6-Trichlorophenol	ND		4.8	0.95	ug/L	1.00	10/13/09 19:4			8270C
2,4-Dichlorophenol	ND		4.8	0.75	ug/L	1.00	10/13/09 19:4			8270C
2,4-Dimethylphenol	ND		4.8	0.92	ug/L	1.00	10/13/09 19:4			8270C
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 19:4			8270C
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L	1.00	10/13/09 19:4			8270C
2,6-Dinitrololuene	ND		4.8	0.49	ug/L	1.00	10/13/09 19:4			8270C
2-Chloronaphthalene	ND		4.8	0.080	ug/L	1.00	10/13/09 19:4			8270C
2-Chlorophenol	ND		4.8	0.48	ug/L	1.00				8270C
2-Methylnaphthalene	DN		4.8	0.078	ug/L	1.00				8270C
2-Methylphenol	ND		4.8	0.22	ug/L	1.00	10/13/09 19:4			8270C
2-Nitroaniline	ND		9.5	0.47	ug/L	1.00				8270C
2-Nitrophenol	ND ND		4.8	0.57	ug/L	1.00 1.00				8270C 8270C
3,3'-Dichlorobenzidine 3-Nitroanlline	ND		4.8 9.5	0.36 1.5	ug/L	1.00				8270C
O TANDAMMIC	ND		<i>3.</i> 5	1,0	ug/L	1.00	10/10/03 10/4	₩ 1411.7E	5512077	02,00

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ап	alytical I	Report				-	
	Sample	Data		-	-	Dii	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-13) (W3 - Gr	ound Water)	- cont.		Sam	pled: 1	0/07/09 17:21	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/M	<u>S - cont.</u>								
4,6-Dinitro-2-methylphen	ND		9.5	2.2	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
4-Bromophenyl phenyl ether	ND		4.8	0.86	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
4-Chloro-3-methylphenol	ND		4.8	0.57	ug/L	1,00	10/13/09 19:45	MKP	9J12044	8270C
4-Chloroaniline	ND		4.8	0.31	υg/L	1.00	10/13/09 19:45		9J12044	8270C
4-Chlorophenyl phenyl ether	ND		4.8	0.16	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
4-Methylphenol	ND		9.5	0.55	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
4-Nitroaniline	ND		9.5	0.43	ug/L	1.00	10/13/09 19:45		9J12044	8270C
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Acenaphthene	ND		4.8	0.11	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Acenaphthylene	ND		4.8	0.045	ug/L	1.00	10/13/09 19:45			8270C
Acetophenone	ND		4.8	0.97	ug/L	1.00	10/13/09 19:45			8270C
Anthracene	ND		4.8	0.053	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Atrazine	ND		4.8	1.0	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Benzeldehyde	ND		4.8	0.25	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
Benzo(a)anthracene	ND		4.8	0.061	ug/L	1,00	10/13/09 19:45	MKP	9J12044	8270C
Benzo[a]pyrene	ND		4.8	0.087	ug/L	1.00	10/13/09 19:45			8270C
Benzo[b]fluoranthene	ND		4.8	0.060	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Benzo[g,h,i]perylene	ND		4.8	0.074	ug/L	1,00	10/13/09 19:45			8270C
Benzo[k]fluoranthene	ND		4.8	0.063	ug/L	1.00	10/13/09 19:45		9J12044	8270C
1,1'-Biphenyl	ND		4.8	0.62	ug/L	1.00	10/13/09 19:45		9J12044	8270C
Bis(2-chloroethoxy)metha	ND		4.8	0.36	ug/L	1.00	10/13/09 19:45		9J12044	8270C
ne	ND		4.0	0.47		4.00	40400040-40-41	- 14125	0.140044	
Bis(2-chloroethyl)ether	ND		4.8	0.17	ug/L	1.00	10/13/09 19:45		9J12044	8270C
2,2'-oxybis[1-chloropropa ne]	ND		3.8	3.8	ug/L	1,00	10/13/09 19:45	MKP	9J12044	8270C
Bis(2-ethylhexyl) phthalate	ND		4.8	4.5	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
Butyl benzyl phthalate	ND		4.8	1.7	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
Caprolactam	ND		4.8	4.4	ug/L	1.00	10/13/09 19:45			8270C
Carbazole	ND		4.8	0.085	ug/L	1.00	10/13/09 19:45			8270C
Chrysene	ND		4.8	0.26	ug/L	1.00	10/13/09 19:45			8270C
Dibenzia.hlanthracene	ND		4.8	0.19	ug/L	1.00	10/13/09 19:45			8270C
Dibenzofuran	ND		9.5	1.5	ug/L	1.00	10/13/09 19:45			8270C
Diethyl phthalate	0.39	J, B	4.8	0.10	ug/L	1.00	10/13/09 19:45			8270C
Dimethyl phthalate	ND	5, 5	4.8	0.29	ug/L	1.00	10/13/09 19:45			8270C
Di-n-butyl phthalate	0.46	J	4.8	0.28	υg/L	1.00	10/13/09 19:4			8270C
Di-n-octyl phthalate	ND	•	4.8	0.23	ug/L	1.00	10/13/09 19:45			8270C
Fluoranthene	ND		4.8	0.093	ug/L	1.00	10/13/09 19:4			8270C
Fluorene	0.25	J	4.8	0.033	ug/L	1.00	10/13/09 19:4			8270C
Hexachlorobenzene	ND	-	4.8	0.42	ng/L	1.00	10/13/09 19:4			8270C
Hexachlorobutadiene	ND		4.8	2,5	na/F	1.00	10/13/09 19:4			8270C
Hexachlorocyclopentadie	ND		4.8	2.4	ug/L	1.00	10/13/09 19:45			8270C
ne					_					
Hexachloroethane	ND		4.8	2.7	υg/L	1.00	10/13/09 19:4			8270C
Indeno(1,2,3-cd)pyrene	ND		4.8	0.15	ug/L	1.00	10/13/09 19:45			8270C
Isophorone	ND		4.8	0.30	ug/L	1.00	10/13/09 19:4			8270C
Naphthalene	ND		4.8	0.11	ug/L	1.00	10/13/09 19:4!			8270C
Nitrobenzene	ND		4.8	0.51	ug/L	1.00	10/13/09 19:4	MKP	9J12044	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Project Num							
		_	An	alytical R	eport		_			
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dii Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0643-13							0/07/09 17:21		vd: 10/09	
•	•		,							
Semivolatile Organics		<u>S - cont.</u>			_					
N-Nitrosodi-n-propylamin	ND		4.8	0.43	ug/L	1.00	10/13/09 19:45	MKP	9J12044	8270C
e N-Nitrosodlphenylamine	ND	L	4.8	0.25	ug/L	1.00	10/13/09 19:45	MKP	9.112044	8270C
Pentachlorophenol	ND	_	9.5	4.9	ug/L	1.00	10/13/09 19:4			8270C
Phenanthrene	ND		4.8	0.11	ug/L	1.00	10/13/09 19:4			8270C
Phenol	ND		4.8	0.42	ug/L	1.00	10/13/09 19:45	5 MKP	9J12044	8270C
Pyrene	ND		4.8	0.065	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
2,4,6-Tribromophenol	107 %		Surr Limits:	(52-132%)			10/13/09 19:4:	5 MKP	9J12044	8270C
2-Fluorobiphenyl	87 %		Surr Limits:				10/13/09 19:4			8270C
2-Fluorophenol	39 %		Surr Limits:	(20-120%)			10/13/09 19:4			8270C
Nitrobenzene-d5	86 %		Surr Limits:				10/13/09 19:4			8270C
Phenol-d5	28 %		Sur Limits:				10/13/09 19:4			8270C
p-Terphenyl-d14	77 %		Surr Limits:	(24-136%)			10/13/09 19:4	5 MKP	9J12 0 44	8270C
Semivolatile Organics	TICs by (GC/MS								
Benzene, (1-methylethyl)-	13	T7	Ret Time: 4	.772	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
(000098-82-8) Unknown01 (none)	5.4	T7, B	Ret Time: 3	148	υ ց/ L	1.00	10/13/09 19:4	S MKD	9J12044	8270C
Unknown02 (none)		•			_				9J12044	8270C
	6.5	17, B	Rel Time: 3		ug/L	1.00	10/13/09 19:4			
Unknown03 (none)	14	T7, B	Rel Time: 6		υg/L	1.00	10/13/09 19:4		9J12044	8270C
Unknown04 (none)	7.5	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 19:4			8270C
Unknown05 (none)	5.6	17, B	Ret Time: 1	-	ug/L	1.00	10/13/09 19:4		9J12044	8270C
Unknown06 (none)	12	17, B	Ret Time: 1	2.657	ug/L	1.00	10/13/09 19:4		9J12044	8270C
Unknown07 (none)	55	T7, B	Ret Time: 1	2.791	ug/L	1,00	10/13/09 19:4	5 MKP	9J12044	8270C
Unknown08 (norte)	12	T7, B	Ret Time: 1	2.84	ug/L	1.00	10/13/09 19:4	5 MKP	8J12044	8270C
Unknown09 (none)	18	T7, B	Ret Time: 1	3.608	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
Unknown10 (none)	15	T7, B	Ret Time: 1	4,201	ug/L	1.00	10/13/09 19:4	5 MKP	8J12044	8270C
Unknown11 (none)	11	T7, B	Rel Time: 1	4.223	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
Unknown12 (none)	62	17, B	Ret Time: 1		ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
UNKNOWN13 (none)	41	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 19:4			8270C
Unknown14 (none)	13	17, B	Ret Time: 1		ug/L	1.00	10/13/09 19:4		9J12044	8270C
Unknown15 (none)	29	17, B	Ret Time: 1	-•	_	1.00	10/13/09 19:4			8270C
UnknownAlkene01 (none)	· · · · · ·				ug/L		10/13/09 19:4			8270C
UnknownBenzeneDerivative	8.7 8.2	17 17	Ret Time: 7 Ret Time: 6		ug/L ug/L	1.00 1.00	10/13/09 19:4			8270C
01 (none) UnknownBenzeneDerivative	4.9	17	Ret Time: 6		ug/L	1.00	10/13/09 19:4			8270C
02 (none)					•					
UnknownBenzeneDerivative 03 (none)	12	Т7	Ret Time: 7	.63	ug/L	1.00	10/13/09 19:4	5 MKP	9J12044	8270C
Organochlorine Pestic	cides by E	PA Method	B081A							
4,4'-DDD [2C]	ND		0.047	0.016	ug/L	1.00	10/14/09 03:3			8081A
4,4'-DDE [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 03:3			8081A
4,4'-DDT [2C]	0.024	J	0.047	0.010	υg/L	1.00	10/14/09 03:3			8081A
Aldrin (2C)	ND		0.047	0.0062	ug/L	1.00	10/14/09 03:3			8081A
alpha-BHC [2C]	ND		0.047	0.0062	ug/L	1.00	10/14/09 03:3			8081A
alpha-Chlordane (2C)	ND		0.047	0.014	ug/L	1.00	10/14/09 03:3			8081A
beta-BHC [2C]	ND		0.047	0.023	ug/L	1.00	10/14/09 03:3	B DGB	9J09108	8081A

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical R	eport					
	Sample	Data		,		DII	Date	Lab		
Analyte	Result	Qualifiers	RL_	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-13	(W3 - Gr	ound Water	r) - cont		Sam	pled: '	10/07/09 17:21	Rec	vd: 10/09	/09 09:20
Organochlorine Pestic	ides by E	PA Method	8081A - co	nt.						
delta-BHC [2C]	0,026	J	0.047	0.0095	ug/L	1.00	10/14/09 03:38	DGB	9J09108	8081A
Dieldrin [2C]	ND		0.047	0.018	ug/L	1.00	10/14/09 03:38			8081A
Endosulfan I [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 03:38	DGB	9J09108	8081A
Endosulfan II [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 03:38	DGB	9J09108	8081A
Endosulfan sulfate [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 03:38			8081A
Endrin (2C)	ND		0.047	0.013	ug/L	1.00	10/14/09 03:38			8081A
Endrin aldehyde (2C)	ND		0.047	0.015	ug/L	1.00	10/14/09 03:38	-		8081A
Endrin ketone (2C)	ND		0.047	0.011	ug/L	1.00	10/14/09 03:38			8081A
gamma-BHC (Lindane) [2C]	ND		0.047	0.0057	ug/L	1.00	10/14/09 03:38			8081A
gamma-Chlordane (2C)	ND		0.047	0.010	ug/L	1.00	10/14/09 03:38			8081A
Heptachlor [2C]	ND		0.047	0.0080	ug/L	1.00	10/14/09 03:38			8081A
Heptachlor epoxide [2C]	ND		0.047	0.0050	ug/L	1.00	10/14/09 03:38			8081A
Melhoxychlor [2C]	ND		0.047	0.013	ug/L	1.00	10/14/09 03:38			8081A
Toxaphene [2C]	ND		0.47	0.11	ug/L	1.00	10/14/09 03:38	DGB	9J09108	8081A
Decachlorobiphenyl [2C]	63 %		Surr Limits:	(15-139%)			10/14/09 03:38	DGB	9J09108	8081A
Tetrachioro-m-xylene	55 %		Sur Limits:	(30-139%)			10/14/09 03:30	B DGB	9J09108	8081A
[2C]				,						
Polychlorinated Biphe	nyls by E	PA Method	8082							
Aroclor 1016	ND		0.47	0.17	ug/L	1.00	10/12/09 02:35	JxM	9J09109	6082
Aroclor 1221	ND		0.47	0.17	ug/L	1.00	10/12/09 02:35	JbdM.	9J09109	8082
Aroclor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 02:35	JxM c	9J09109	8082
Aroctor 1242	ND		0.47	0.17	ug/L	1.00	10/12/09 02:35	JxM	9J09109	8082
Aroctor 1248	ND		0.47	0.17	ug/L	1.00	10/12/09 02:39	JxM	9J09109	8082
Aroctor 1254	ND		0.47	0.24	ug/L	1.00	10/12/09 02:3	5 JxM	9J09109	8082
Arodor 1260	ND		0.47	0.24	ug/L	1.00	10/12/09 02:3	MxU 5	9J09109	8082
Aroclor 1262	ND		0.47	0.24	ug/L	1.00	10/12/09 02:3	5 JxM	9J09109	8082
Arodor 1268	ND		0.47	0.24	ug/L	1.00	10/12/09 02:3	5 JxM	9J09109	8082
Decachlorobiphenyl	83 %		Surr Limits:	(12-137%)			10/12/09 02:3:	5 JxM	9J09109	8082
Tetrachloro-m-xylena	72 %			(35-121%)			10/12/09 02:3	5 JxM	9J09109	8082
Total Metals by SW 84	6 Series I	Methods								
Aluminum	ND		0.200	0.040	mg/L	1.00	10/13/09 16:5	5 DAN	9J12069	6010B
Antimony	ND		0.0200	8800.0	mg/L	1.00				6010B
Arsenic	ND		0.0100	0.0056	mg/L	1.00				60108
Barium	0.232		0.0020	0.0003	mg/L	1.00				6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00				6010B
Cadmium	ND	_	0.0010	0.0003	mg/L	1.00	_			6010B
Calcium	116		0.5	0.1	mg/L	1.00				6010B
Chromium	ND		0.0040	0.0009	mg/L	1.00				6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00				6010B
Copper	ND		0.0100	0.0013	mg/L	1.00				6010B
iron	7.32		0.050	0.019	mg/L	1.00				6010B
Lead	ND		0.0050	0.0030	mg/L	1,00				6010B
Magnesium	21.4		0.200	0.043	mg/L	1.00				6010B
Manganese	3.10		0.0030	0.0002	mg/L	1.00				60108
Nickel	ND		0.0100	0.0013	mg/L	1.00				6010B
Polassium	3.99		0.500	0.050	mg/L	1.00				6010B
Selenium	ND		0.0150	0.0087	mg/L	1.00				6010B
					<u>.</u>					

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project

l	Number:	48001559-2

			An	alytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	DII Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0643-13	(W3 - Gr	ound Water)	- cont.		Sam	pled: 1	0/07/09 17:21	Rec	vd: 10/09/	09 09:20
Total Metals by SW 840	Series N	lethods - co	nt.							
Silver	ND		0.0030	0.0012	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Sodium	208		1.0	0.3	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	10/13/09 16:55	DAN	9J12069	6010B
Vanadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 16:55	DAN	BJ12069	6010B
Zinc	ND		0.0100	0.0015	mg/L	1.00	10/13/09 16:55	DAN	9J12069	60108
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:04	MXM	9J17027	7470A
General Chemistry Par	ameters									
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:27	LRM	9J14038	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

			Ar	nalytical l	Report					
	Sample	Data		-	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-14	(W4 - Gr	ound Water)			Sam	pled:	10/08/09 10:35	Recy	d: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1,00	10/13/09 04:10	NMD 8	J12089	8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 04:10	NMD 8	J12089	8260B
1,1,2-Trichloroethane	ND		1,0	0.23	ug/L	1.00	10/13/09 04:10			8260B
1,1,2-Trichloro-1,2,2-triffu	ND		1.0	0.31	ug/L	1.00	10/13/09 04:10	NMD 8	ม12089	8260B
oroelhane										
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 04:10			82608
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 04:10		· · ·	8260B
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 04:10			8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 04:10			8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/13/09 04:10	MMD 8	JJ12089	8260B
ane 1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/13/09 04:10	NMD 9	3J12089	8260B
(EDB) 1,2-Dichlorobenzene	0.40	J	1.0	0.20	i mil	1.00	10/13/09 04:10	NIMPS C	142000	8260B
1,2-Dichloroethane	ND	J	1.0	0.20	ug/L	1.00	10/13/09 04:10			8260B
1,2-Dichloropropane	ND		1.0	0.21	ug/L ug/L	1.00	10/13/09 04:10			8260B
1,3-Dichlorobenzene	ND		1.0	0.38	ug/L	1.00	10/13/09 04:10			8260B
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 04:10			8260B
1.4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 04:10			8260B
2-Bulanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/13/09 04:10			8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 04:10			8260B
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00	10/13/09 04:10			8260B
(MIBK)			0.0	0.01	08.2		101140000	.,		
Acetone	4.6	J	5.0	1.3	ug/L	1.00	10/13/09 04:10	D NMD 9	3J12089	8260B
Benzene	2.6		1.0	0.41	ug/L	1,00	10/13/09 04:10	OMMO 9	9J12089	8260B
Bromochloromethane	ND		1.0	0.39	ug/L	1.00				8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 04:10	NMD 8	9J12089	82608
Bromoform	ND		1.0	0,26	ug/L	1.00	10/13/09 04:10	OMMO 9	3J12089	8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/13/09 04:10	DMMD 8	9J12089	8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/13/09 04:10	D MMD	9J12089	8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/13/09 04:10	D NMD	3J12089	82608
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	10/13/09 04:10	D NMD 9	9J12089	8260B
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00			9J12089	8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00				8260B
Chloroform	ND		1.0	0.34	ug/L	1.00				8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00				8260B
cls-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00				8260B
cls-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00				82608
Cyclohexane	ND		1.0	0.53	ug/L	1.00				8260B
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00				8260B
Ethylbenzene	2.1		1.0	0.18	ug/L	1.00				8260B
Isopropylbenzene	29		1.0	0.19	ug/L	1.00				8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00				8260B
Methyl tert-Butyl Ether	0.96	J	1.0	0.16	ug/L	1.00				8260B
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00		_		8260B
Methylene Chloride	ND		1.0	0.44	ug/L	1.00				8260B
m,p-Xylene	0.78	J	2.0	0.66	ug/L	1,00				8260B
o-Xylene	ND		1.0	0.36	ug/L	1.00				8260B
Slyrene	ND		1.0	0.18	ug/L	1.00				8260B
Tetrachioroethene	ND		1.0	0.36	ug/L	1.00				8260B
Toluene	0.66	J	1.0	0.51	ug/L	1.00	10/13/09 04:1	CHIND	97 IZU09	8260B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

			Ana	alytical R	eport					
	Sample	Data		-	·	Dit	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	-	Batch	Method
Sample ID: RSJ0643-14	(W4 - Gr		· · · · · · · · · · · · · · · · · · ·		Sam	pled:	10/08/09 10:35		/d: 10/09	09 09:20
Yolatile Organic Comp	ounds by	EPA 82608	3 - cont.							
trans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/13/09 04:10	NMD :	9J12089	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/13/09 04:10		. —	8260B
е					-8 -					
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
Trichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/13/09 04:10			8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
1,2-Dichloroethane-d4	97 %		Sur Limits:	(66-137%)			10/13/09 04:10	NMD	9J12089	8260B
4-Bromofluorobenzene	74 %		Surr Limits:				10/13/09 04:10	NMD	9J12089	8260B
Toluene-d8	73 %		Surr Limits:	(71-126%)			10/13/09 04:10	NMD	9J12089	8260B
Tentatively identified C	ompoun	ds by EPA	8260B							
Benzene,	80	17	Rel Time: 11	1.738	ug/L	1.00	10/13/09 04:10	NMD	8J12089	B260B
1,2,3,5-tetramethyl- (000527-53-7)										
Benzene, 1-ethenyl-3-ethyl- (007525-62-4)	91	77	Rel Time: 11	.494	ug/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
Butane, 2,3-dimethyl- (000079-29-8)	72	77	Ret Time: 3.	038	ug/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
Butane, 2-methyl- (01) (000078-78-4)	34	17	Ret Time: 1.	916	ug/L	1.00	10/13/09 04:10	NMD	9J12089	8260B
Butane, 2-methyl- (02)	46	77	Ret Time: 1,	971	ug/L	1.00	10/13/09 04:10	DMN	9J12089	8260B
(000078-78-4) Cyclopeniane,	36	77	Ret Time: 6.	082	ug/L	1.00	10/13/09 04:10	OMMO	9J12089	8260B
1,2,4-trimethyl-,		• •			-0					
(1 a)pha. 2 be (016883-48-0)		Y-9	Dat Taxas 4	020		4.00	40/42/00 04:46	NIMP	0.142000	92900
Pentane, 2,4-dimethyl- (000108-08-7)	38	17	Ret Time: 4.	038	ug/L	1.00	10/13/09 04:10	טואוט	9312009	8260B
Pentane, 3-methyl- (000096-14-0)	49	T7	Ret Time: 3.	288	ug/L	1.00	10/13/09 04:10	DMM	9J12089	8260B
Unknown01 (none)	44	77	Ret Time: 5.	808	ug/L	1.00	10/13/09 04:10	DMMD	9J12089	8260B
Unknown02 (none)	46	77	Ret Time: 6.		ug/L	1.00				8260B
			1101 111110, 0,	001	08. E	1.00	(5, (5,5)		00 12000	02000
Semivolatile Organics 1,2,4,5-Tetrachlorobenze	ND	ž	4.8	0.78	ug/L	1.00	10/13/09 20:10	MKP	9J12044	B270C
ne	110		4.5	0.10	ng/ L	1,00	10/10/00 20:11		0012077	DETOO
2,3,4,6-Tetrachlorophenol	ND		4.8	2.0	ug/L	1,00	10/13/09 20:10	MKP	9J12044	8270C
2,4,5-Trichlorophenol	ND		4.8	0.94	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
2,4,6-Trichlorophenol	ND		4.8	0.95	ug/L	1.00	10/13/09 20:10) MKP	9J12044	8270C
2,4-Dichlorophenol	ND		4.8	0.75	ug/L	1.00	10/13/09 20:10) MKP	9J12044	8270C
2,4-Dimethylphenol	ND		4.8	0.92	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
2.4-Dinitrotoluene	ND		4.8	0.43	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
2,6-Dinitrotoluene	ND		4.8	0.49	ug/L	1.00			9J12044	8270C
2-Chloronaphthalane	ND		4.8	0.080	ug/L	1.00			9J12044	8270C
2-Chlorophenol	ND		4.8	0.48	ug/L	1.00				8270C
2-Methylnaphthalene	ND		4.8	0.078	ug/L	1.00				8270C
2-Methylphenol	ND		4.8	0.22	ug/L	1.00			9J12044	8270C
2-Nitroanitine	ND		9.5	0.47	ug/L	1.00				8270C
2-Nitrophenol	ND		4.8	0.57	ug/L	1.00			9J12044	8270C
3.3'-Dichlorobenzidine	ND		4.8	0.36	ug/L	1.00				8270C
3-Nitroaniline	ND		9.5	1.5	ug/L	1.00				8270C
4,6-Dinitro-2-methylphen	ND		9.5 9.5	2.2	_	1.00				8270C
ol	RD		3.5	4.4	ug/L	1.00	10, 10,05 ZU, 10	, 1411 (L.	00120	02700

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

			Ап	alytical F	Report					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-14	(W4 - Gr	ound Water) -	cont.		Sam	pled: 1	0/08/09 10:35	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/M	S - cont.								
4-Bromophenyl phenyl elher	ND		4.8	0.86	ug/L	1.00	10/13/09 20:10	MKP	BJ12044	8270C
4-Chloro-3-methylphenol	ND		4.8	0.57	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
4-Chloroaniline	ND		4.8	0.31	ug/L	1.00	10/13/09 20:10		9J12044	8270C
4-Chlorophenyl phenyl	ND		4.8	0.16	ug/L	1.00	10/13/09 20:10		9J12044	8270C
ether					-8-					
4-Methylphenol	ND		9.5	0.55	սց/Լ.	1.00	10/13/09 20:10	MKP	9J12044	8270C
4-Nitroaniline	ND		9.5	0.43	ug/L	1.00	10/13/09 20:10		9J12044	8270C
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
Acenaphthene	0.20	J	4.8	0.11	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
Acenaphthylene	ND		4.8	0.045	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Acetophenone	ND		4.8	0.97	ug/L	1.00	10/13/09 20:10			8270C
Anthracene	ND		4.8	0.053	ug/L	1,00	10/13/09 20:10	MKP	9J12044	8270C
Atrazine	ND		4.8	1.0	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Benzaldehyde	ND		4.8	0.25	ug/L	1.00	10/13/09 20:10			8270C
Benzo[a]anthracene	ND		4.8	0.061	ug/L	1.00	10/13/09 20:10			8270C
Benzo(B)pyrene	ND		4.8	0.087	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Benzo(b)fiuoranthene	ND		4.8	0.060	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Benzo(g,h,i)perylene	ND		4.8	0.074	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Benzo[k]fluoranihene	ND		4.8	0.063	ug/L	1.00	10/13/09 20:10			8270C
1,1'-Biphenyl	ND		4.8	0.62	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Bis(2-chloroethoxy)methane	ND		4.8	0.36	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
Bis(2-chloroethyl)ether	ND		4.8	0.17	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
Bis(2-ethylhexyl)	ND		4.8	4.5	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
phthalate	MD		4.0	4.7		1.00	40/42/00 20:4/	MVD	0.112044	P270C
Butyl benzyl phthalate	ND ND		4.8	1.7	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Caprolectam	-		4.8	4.4	ug/L	1.00	10/13/09 20:10			8270C
Carbazole	ND		4.8	0.085	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Chrysene	ND		4.8	0.26	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Dibenz[a,h]anthracene	ND		4.6	0.19	ug/L	1.00	10/13/09 20:10		9J12044 9J12044	8270C
Dibenzofuran	ND	1.0	9.5	1.5	ug/L	1.00	10/13/09 20:10			8270C
Diethyl phthalate	0.34	J, B	4.8	0.10	ug/L	1.00	10/13/09 20:11			8270C
Dimethyl phthalate	ND		4.8	0.29	ug/L	1.00	10/13/09 20:10			8270C
Di-n-butyl phthalate	0.66	J	4.8	0.28	ug/L	1.00	10/13/09 20:10			8270C
Di-n-octyl phthalate	ND		4.8	0.23	ug/L	1.00	10/13/09 20:10			8270C
Fluoranthene	ND		4.8	0.093	ug/L	1.00	10/13/09 20:10			8270C
Fluorene	0.23	J	4.8	0.070	ug/L	1.00	10/13/09 20:10			8270C
Hexachlorobenzene	ND		4.8	0.42	ug/L	1.00	10/13/09 20:10			8270C
Hexachlorobutadiene	ND		4.8	2.5	ug/L	1.00	10/13/09 20:10			8270C
Hexachlorocyclopentadie ne	ND		4.8	2.4	ug/L	1,00	10/13/09 20:10			8270C
Hexachloroethane	ND		4.8	2.7	ug/L	1.00	10/13/09 20:10			8270C
Indeno[1,2,3-cd]pyrene	ИD		4.8	0.15	ug/L	1.00	10/13/09 20:10			8270C
Isophorone	ND		4.8	0.30	ug/L	1.00	10/13/09 20:10			8270C
Naphthalene	ND		4.8	0.11	ug/L	1.00	10/13/09 20:10			8270C
Nitrobenzene	ND		4.8	0.51	ug/L	1.00	10/13/09 20:10			8270C
N-Nitrosodi-n-propylamin e	ND		4.8	0.43	ug/L	1.00	10/13/09 20:10			8270C
N-Nitrosodiphenylamine	ND	L	4.8	0.25	ug/L	1.00	10/13/09 20:10	MKP	9J12044	8270C
TestAmerica Buffalo					•					

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

·			An	alytical R	eport					
	Sample	Data		-	-	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-14	l (W4 - Gr	ound Water	r) - cont.		Sam	pled: 1	0/08/09 10:35	Rec	/d: 10/09/	09 09:20
Semivolatile Organics	by GC/M	5 - <u>cont.</u>								
Pentachlorophenol	ND		9.5	4.9	ug/L	1.00	10/13/09 20:10		9J12044	8270C
Phenanthrene	ND		4.8	0.11	ug/L	1,00	10/13/09 20:10		9J12044	8270C
Phenol	ND		4.8	0.42	ug/L	1.00	10/13/09 20:10			8270C
Pyrene	ND		4.8	0.065	ug/L	1.00	10/13/09 20:10	JMKP	9J12044	8270C
2,4,6-Tribromophenol	112 %		Surr Limits:	(52-132%)			10/13/09 20:10		9J12044	8270C
2-Fluorobiphenyl	89 %		Surr Limits:				10/13/09 20:10			8270C
2-Fluorophenol	39 %		Surr Limits:				10/13/09 20:1			8270C
Nitrobenzene-d5	92 %		Surr Limits:				10/13/09 20:10			8270C 8270C
Phenoi-d5	28 %		Surr Limits:				10/13/09 20:1			8270C
p-Terphenyi-d14	79 %		Surr Limits:	(24-136%)			10/13/09 20:1	UMAP	3012077	02700
Semivolatile Organics	TICs by	GC/MS						- 4 - 1 - 2 -		2220
Benzene, (1-methylethyl)- (000098-82-8)	28	T7	Ret Time: 4	.772	ug/L	1.00	10/13/09 20:1		9J12044	8270C
Benzene, propyl-	47	17	Ret Time: 5	,157	ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
(000103-65-1) Unknown01 (none)	13	T7, B	Ret Time: 3	.148	ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
Unknown02 (none)	12	17, B	Ret Time: 3		ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
• •			Ret Time: 6		ug/L	1.00	10/13/09 20:1		9J12044	8270C
Unknown03 (none)	25	17, B			-	1.00	10/13/09 20:1		9J12044	8270C
Unknown04 (none)	12	T7, B	Ret Time: 7		ug/L		10/13/09 20:1		9J12044	8270C
Unknown05 (none)	13	77, B	Ret Time: 1		ug/L	1.00		•		8270C
Unknown06 (none)	47	77, B	Ret Time: 1		ug/L	1,00	10/13/09 20:1		9J12044	
Unknown07 (none)	14	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 20:1		9J12044	8270C
Unknown08 (none)	12	77, B	Ret Time: 1	13.512	ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
Unknown09 (none)	28	17, B	Rel Time: 1	13.608	ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
Unknown10 (none)	18	T7, B	Ret Time: 1	14,201	ug/L	1.00	10/13/09 20:1	0 MKP	9J12044	8270C
Unknown11 (none)	12	T7, B	Ret Time:	14.223	ug/L	1,00	10/13/09 20:1	O MKP	9J12044	8270C
Unknown12 (none)	71	17, B	Ret Time:		ug/L	1.00		OMKP	9J12044	8270C
, ,			Ret Time:		ug/L	1.00			9J12044	8270C
UNKNOWN13 (none)	40	T7, B			•	1.00			9J12044	8270C
Unknown14 (none)	19	T7, B	Ret Time:		ug/L				9J12044	8270C
UnknownBenzeneDerivative 01 (none)	14	Τ7	Ret Time: (ug/L	1.00				
UnknownBenzeneDerivative 02 (none)	12	17	Ret Time:	6.353	ug/L	1.00				8270C
UnknownBenzeneDerivative 03 (none)	49	17	Ret Time:	6.925	ug/L	1,00	10/13/09 20:1	10 MKP	9J12044	8270C
UnknownBenzeneDervative 04 (none)	23	17	Ret Time:	7.63	ug/L	1.00	10/13/09 20:	10 MKP	9J12044	B270C
Organochlorine Pesti	icides by	EPA Method	d 8081A							
4,4'-DDD [2C]	ND		0.047	0.016	ug/L	1.00				
4,4'-DDE (2C)	ND		0.047	0.011	ug/L	1.00				
4,4'-DDT [2C]	0.025	J	0.047	0.010	ug/L	1.00				
Aldrin [2C]	ND		0.047	0,0063	ug/L	1.00		-		
alpha-BHC [2C]	ND		0.047	0.0063	ug/L	1.00				
alpha-Chlordane [2C]	ND		0.047	0.014	ug/L	1.00				
bela-BHC [2C]	ND		0.047	0.024	ug/L	1.00				
della-BHC [2C]	0.024	J	0.047	0.0096	ug/L	1.00				
Dieldrin [2C]	ND		0.047	0.018	ug/L	1.00	10/14/09 04:	13 065	8109100	8081A

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamerlcainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical R	eport					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-14	(W4 - Gr	ound Wate	r) - cont.		Sam	pled: 1	10/08/09 10:35	Rec	vd: 10/09/	09 09:20
Organochlorine Pestic	ides by E	PA Method	8081A - co	nt.						
Endosulfan I (2C)	ND		0.047	0.010	ug/L	1.00	10/14/09 04:13			8081A
Endosulfen II (2C)	ND		0.047	0.011	ug/L	1.00	10/14/09 04:13			8081A
Endosulfan sulfate [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 04:13			8081A
Endrin (2C)	ND		0.047	0.013	ug/L	1.00	10/14/09 04:13			8081A
Endrin aldehyde [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 04:13			8081A
Endrin ketone [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 04:13			8081A
gamma-BHC (Lindane) 2C]	ND		0.047	0.0057	ug/L	1.00	10/14/09 04:13	DGB	9J09108	8081A
jamma-Chlordane [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 04:13	DGB	9J09108	8081A
leptachlor [2C]	ND		0.047	0.0081	ug/L	1.00	10/14/09 04:13			8081A
deptachlor epoxide [2C]	ND		0.047	0.0050	ug/L	1.00	10/14/09 04:13			8081A
Methoxychlor [2C]	ND		0.047	0.013	ug/L	1.00	10/14/09 04:13			8081A
Toxaphene [2C]	ND		0.47	0.11	ug/L	1.00	10/14/09 04:13	DGB	9J09108	8081A
Decachlorobiphenyl [2C]	53 %		Surr Limits:				10/14/09 04:13			8081A
Tetrachioro-m-xylene	<i>50</i> %		Surr Limits:	(30-139%)			10/14/09 04:13	DGB	9J09108	8081A
[2C]										
Polychlorinated Blphe		PA Method				4.00	40445150.05.44		0.100400	200
Aroclor 1016	ND		0.47	0.17	ug/L	1.00	10/12/09 03:19		9J09109	8082
Arodor 1221	ND		0.47	0.17	ug/L	1.00	10/12/09 03:19		9J09109	8082
Aroclor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 03:19		9J09109	8082
Aroclor 1242	ND		0.47	0.17	ug/L	1.00	10/12/09 03:19		9J09109	8082
Aroclor 1248	ND		0.47	0.17	ug/L	1.00	10/12/09 03:19		9J09109	8082
Aroclor 1254	ND		0.47	0.24	ug/L	1.00	10/12/09 03:19			8082
Aroclor 1260	ND		0.47	0.24	ug/L	1.00	10/12/09 03:19		9J09109 9J09109	8082
Aroclor 1262 Aroclor 1268	ND ND		0.47 0.47	0.24 0.24	ug/L ug/L	1.00 1.00	10/12/09 03:19 10/12/09 03:19			8082 8082
Decachlorobiphenyl	73 %		Sur Limits:				10/12/09 03:19		9J09109	8082
Tetrachioro-m-xylene	72 %		Surr Limits:				10/12/09 03:19			8082
Total Metals by SW 84	& Sorine N	lathode		,						
<u>19tai metais by 344 64</u> Aluminum		uarii (Ans								
	0,056	J	0,200	0.040	ma/L	1.00	10/13/09 17:00	DAN	9J12069	6010B
Antimony	0.056 ND	J	0,200 0,0200	0.040 0.0068	mg/L mg/L	1.00 1.00	10/13/09 17:00 10/13/09 17:00			
•	ND	J	0.0200	0.0068	mg/L		10/13/09 17:00	DAN	9J12069	6010B
Arsenic	ND ND	J	0.0200 0.0100	0.0068 0.0056	mg/L mg/L	1.00		DAN DAN	9J12069 9J12069	6010B
Arsenic Barium	ND ND 0.274		0.0200 0.0100 0.0020	0.0068 0.0056 0.0003	mg/L mg/L mg/L	1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN	9J12069 9J12069 9J12069	6010B 6010B 6010B
Arsenic Barium Beryllium	ND ND 0.274 0.0003	n n	0.0200 0.0100 0.0020 0.0020	0.0068 0.0056 0.0003 0.0002	mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium	ND ND 0.274 0.0003 ND		0.0200 0.0100 0.0020 0.0020 0.0010	0.0068 0.0056 0.0003 0.0002 0.0003	mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium	ND ND 0.274 0.0003 ND 169		0.0200 0.0100 0.0020 0.0020 0.0010 0.5	0.0068 0.0056 0.0003 0.0002 0.0003 0.1	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium	ND ND 0.274 0.0003 ND 169 ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009	mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt	ND ND 0.274 0.0003 ND 169 ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	BJ12068 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt Copper	ND ND 0.274 0.0003 ND 169 ND ND ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt Copper Iron	ND ND 0.274 0.0003 ND 169 ND ND ND ND ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt Copper Iron	ND ND 0.274 0.0003 ND 169 ND ND ND ND ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobatt Copper Iron Lead Magneslum	ND ND 0.274 0.0003 ND 169 ND ND ND ND 3.15 ND 39.3		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0040 0.0100 0.050 0.0050 0.200	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019 0.0030 0.043	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089 9J12089	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobett Copper Iron Lead Magneslum Manganese	ND ND 0.274 0.0003 ND 169 ND ND ND ND 3.15 ND 39.3 3.66		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0100 0.050 0.0050 0.200 0.0030	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019 0.0030 0.043 0.043	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobett Copper Iron Lead Magneslum Manganese Nickel	ND ND 0.274 0.0003 ND 169 ND ND ND 3.15 ND 39.3 3.66 ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019 0.0030 0.043 0.043	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089 9J12069 9J12069 9J12069	6010E 6010E 6010E 6010E 6010E 6010E 6010E 6010E 6010E 6010E 6010E
Arsenic Barium Beryllium Cadmium Calcium Chromium Cobett Copper Iron Lead Magneslum Manganese Nickel	ND ND 0.274 0.0003 ND 169 ND ND ND 3.15 ND 39.3 3.66 ND 7.05		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100 0.500	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019 0.0030 0.043 0.0002 0.0013 0.050	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B
Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobelt Copper Iron Lead Magneslum Manganese Nickel Potassium Selenium Silver	ND ND 0.274 0.0003 ND 169 ND ND ND 3.15 ND 39.3 3.66 ND		0.0200 0.0100 0.0020 0.0020 0.0010 0.5 0.0040 0.0100 0.050 0.0050 0.200 0.0030 0.0100	0.0068 0.0056 0.0003 0.0002 0.0003 0.1 0.0009 0.0006 0.0013 0.019 0.0030 0.043 0.043	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	10/13/09 17:00 10/13/09 17:00	DAN DAN DAN DAN DAN DAN DAN DAN DAN DAN	9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12069 9J12089 9J12089 9J12089 9J12069 9J12069 9J12069 9J12069	6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B 6010B

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

			An	alytical I	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch .	Method
Sample ID: RSJ0	643-14 (W4 - Gro	ound Water) - cont.		Sam	pled: 1	0/08/09 10:35	Recvo	J: 10/09/	09 09:20
Total Metals by	SW 846 Series M	lethods - co	ont.							
Thallium	ND		0.0200	0.0102	mg/L	1.00	10/13/09 17:00	DAN 9	J12069	60108
Vanadium	ND		0.0050	0.0011	mg/∟	1.00	10/13/09 17:00	DAN 9	J12089	6010B
Zinc	0.0139		0.0100	0.0015	mg/L	1.00	10/13/09 17:00	DAN 9	J12089	6010B
Mercury	0,0001	J	0.0002	0.0001	mg/L	1.00	10/17/09 18:05	MXM 9	J 17027	7470A
General Chemis	try Parameters									
Cvanide	ND	L	0.0100	0.0050	ma/L	1.00	10/16/09 09:27	LRM 9	J14038	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report											
	Sample	Data				Dii	Date	Lab			
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech Batch	Method		
Sample ID: RSJ0643-15	/M5 - Gr	ound Water)			\$am	nlod:	10/07/09 15:41	Recvd: 10/0			
oampio io. Rooso43-13	(443 - 61	ound water,			Sam	pied.	10/0//05 15.41	Recva. 10/0	5/08 08:20		
Volatile Organic Comp	ounds by	EPA 8260B									
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,1,2,2-Telrachloroethane	ND		1.0	0.21	ug/L	1.00		NMD 9J12089			
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00		NMD 9J12089	8260B		
1,1,2-Trichloro-1,2,2-triffu	ND		1.0	0.31	ug/L	1.00		NMD 9J12089	8260B		
oroethane					-5						
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
ane					•						
1,2-Dibromoethane (EDB)	ND		1.0	0.17	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1,00	10/13/09 04:32	NMD 9J12089	82608		
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
1,4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
2-Bulanone (MEK)	ND		5.0	1.3	ug/L	1.00		NMD 9J12089			
2-Hexanone	ND		5.0	1.2	ug/L	1.00		NMD 9J12089			
4-Methyl-2-pentanone	ND		5.0	0.91	ug/L	1.00		NMD 9J12089			
(MIBK)					-3-						
Acelone	ND		5.0	1.3	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 04:32	NMD 9J12089	8260B		
Bromochloromethane	ND		1.0	0.39	ug/L	1.00		NMD 9J12089	6260B		
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00		NMD 9J12089	8260B		
Bromoform	ND		1.0	0.26	ug/L	1,00		NMD 9J12089			
Bromomelhane	ND		1.0	0.28	ug/L	1,00		NMD 9J12089	8260B		
Carbon disulfide	ND		1.0	0.19	ug/L	1.00		NMD 9J12089			
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00		NMD 9J12089			
Chlorobenzene	ND		1.0	0.32	ug/L	1.00		NMD 9J12089	8260B		
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00		NMD 9J12089			
Chloroethane	ND		1.0	0.32	ug/L	1.00	_	NMD 9J12089			
Chloroform	ND		1.0	0.34	ug/L	1.00		NMD 9J12089			
Chloromethane	ND		1.0	0.35	ug/L	1.00		NMD 9J12089			
cis-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00		NMD 8J12089	8260B		
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00		NMD 9J12089	8260B		
Cyclohexane	ND		1.0	0.53	ug/L	1.00		NMD 9J12089	8260B		
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1,00		NMD 9J12089	8260B		
Ethylbenzene	ND		1.0	0.18	ug/L	1.00		NMD 9J12089	8260B		
Isopropylbenzene	ND		1.0	0.19	ug/L	1.00		NMD 9J12089	8260B		
Methyl Acetate	ND		1.0	0.50	ug/L	1.00		NMD 9J12089	8260B		
Methyl terl-Butyl Ether	ND		1.0	0.16	ug/L	1.00		NMD 9J12089	8260B		
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00		NMD 9J12089	8260B		
Methylene Chloride	ND		1.0	0.44	ug/L	1.00		NMD 9J12089	8260B		
m,p-Xylene	ND		2.0	0.66	ug/L	1.00		NMD 9J12089	8260B		
о-Хујеле	ND		1.0	0.36	ug/L	1.00		NMD 9J12089	8260B		
Styrene	ND		1.0	0.18	ug/L	1.00		NMD 9J12089	8260B		
Tetrachioroethene	ND		1.0	0.36	ug/L	1.00		NMD 9J12089	8260B		
Toluene	ND		1.0	0.50	ug/L	1.00		NMD 9J12089	8260B		
	, , , ,			0.01	OME	1.00	10/10/03 04.32	11MD 3312008	0200D		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattonl Brownfield Site Project Number: 48001559-2

			Ana	alytical R	eport					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-15	(W5 - Gr	ound Wate	r) - cont.		Sam	pled: 1	0/07/09 15:41	Rec	/d: 10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.							
trans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1.00	10/13/09 04:32			8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1.00	10/13/09 04:32	NMD	9J12089	8260B
e Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 04:32	NMD	9,112089	8260B
Trichlorofluoromethane	ND		1.0	0.46	ug/L	1.00	10/13/09 04:32			8260B
Vinyl chloride	ND		1.0	0.13	ug/L	1.00	10/13/09 04:32			8260B
					-3-		10/13/09 04:32	2 NMD	0 112080	8260B
1,2-Dichloroethane-d4	91 % 99 %		Surr Limits:				10/13/09 04:32			8260B
4-Bromofluorobenzene	95 %		Sur Limits:				10/13/09 04:32			8260B
Toluene-d8	90 76		Surr Limits:	(11-120%)			10/10/03 04.02	LIVIND	0012000	02000
Tentatively Identified C	ompoun	ds by EPA	8260B							
No TICs found (NOTICS)	ND	77			ug/L	1.00	10/13/09 04:3	NMD	9J12089	8260B
	oc 55									
Semivolatile Organics		<u>s</u>				4.00	40/40/00 70/2	4 141/0	0.142044	8270C
1,2,4,5-Tetrachlorobenze	ND		4.8	0.78	ug/L	1.00	10/13/09 20:34	4 MINP	9J12044	82700
ne 2,3,4,6-Tetrachlorophenol	ND		4.8	2.0	ug/L	1.00	10/13/09 20:3	4 MKP	9,112044	8270C
2.4.5-Trichlorophenol	ND		4.8	0.94	ug/L	1.00	10/13/09 20:3		9J12044	8270C
2,4,6-Trichlorophenol	ND		4.8	0.95	ug/L	1.00	10/13/09 20:3		9J12044	8270C
2,4-Dichlorophenol	ND		4.8	0.75	ug/L	1.00	10/13/09 20:3		9J12044	8270C
2,4-Dimethylphenol	ND		4.8	0.92	ug/L	1.00	10/13/09 20:3			8270C
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 20:3			8270C
2,4-Dinitrotoluene	ND		4.8	0.43	ug/L	1.00	10/13/09 20:3			8270C
2,6-Dinitrotoluene	ND		4.8	0.49	ug/L	1.00	10/13/09 20:3			8270C
2-Chloronaphthalene	ND		4.8	0.080	ug/L	1.00	10/13/09 20:3			8270C
2-Chlorophenol	ND		4.8	0.48	ug/L	1.00	10/13/09 20:3			8270C
2-Methylnaphthalene	ND		4.8	0.078	υg/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
2-Methylphenol	ND		4.8	0,22	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
2-Nitroanillne	ND		9.5	0.47	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
2-Nitrophenol	ND		4.8	0.57	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
3,3'-Dichlorobenzidine	ND		4.8	0.36	ug/L	1,00	10/13/09 20:3	4 MKP	9J12044	8270C
3-Nitroaniline	ND		9.5	1.5	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
4,6-Dinitro-2-methylphen	ND		9.5	2.2	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
ol					_			4 1 41 45	0.140044	00700
4-Bromophenyl phenyl	ND		4.8	0.86	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
ether						4.00	4044200 20.2	ANNO	0.142044	8270C
4-Chloro-3-methylphenol	ND		4.6	0.57	ug/L	1.00	10/13/09 20:3			
4-Chloroaniline	ND		4.6	0.31	ug/L	1.00	10/13/09 20:3 10/13/09 20:3			8270C 8270C
4-Chlorophenyl phenyl	ND		4.8	0.16	ug/L	1.00	10/ (3/09 20:3	א ואור/ר	3J 1ZU44	02100
ether 4-Methylphenol	ND		9.5	0.55	ug/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C
4-Nitroaniline	ND		9.5	0.33	ug/L	1.00	10/13/09 20:3			8270C
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00				82700
Acenaphihene	ND		4.8	0.11	ug/L	1.00				8270C
Acenaphthylene	ND		4.8	0.045	ug/L	1.00		_	9J12044	8270C
Acelophenone	ND		4.8	0.97	ug/L	1.00				8270C
Anthracene	ND		4.8	0.053	ug/L	1.00				82700
Atrazine	ND		4.8	1.0	ug/L	1.00				8270C
Benzaldehyde	ND		4.8	0.25	ug/L	1.00				82700
Benzolalanthracena	ND		4.8	0.061	ug/L	1.00				82700
nous of a law manager is	ND		4.8	0.087	ug/L	1.00				8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamerlcainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report													
	Sample	Data		Dil	Date	Lab							
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-15	(W5 - Gr	ound Water) - cont.		Sam	pled: 1	0/07/09 15:41	Recv	d: 10/09/	09 09:20			
Semiyolatile Organics	by GC/MS	S - cont.											
Benzo[b]fluoranthene	ND		4.8	0.060	ug/L	1.00	10/13/09 20:34	MKP :	9J12044	B270C			
Benzo(g,h,i)perylene	ND		4.8	0.074	ug/L	1.00	10/13/09 20:34		9J12044	B270C			
Benzo[k]fluoranthene	ND		4.8	0,063	ug/L	1.00	10/13/09 20:34	MKP !	9J12044	8270C			
1,1'-Biphenyl	ND		4.8	0.62	ug/L	1.00	10/13/09 20:34	MKP 1	9J12044	8270C			
Bis(2-chloroethoxy)metha	ND		4.8	0.36	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
ne					-0 -								
Bis(2-chloroethyl)ether	ND		4.8	0.17	ug/L	1.00	10/13/09 20:34	MKP :	9J12044	8270C			
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 20:34	MKP !	9J12044	8270C			
ne)					•								
Bis(2-ethylhexyl)	ND		4.8	4.5	ug/L	1.00	10/13/09 20:34	MKP :	9J12044	8270C			
phthalate					•								
Butyi benzyl phthalate	ND		4.8	1.7	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Caprolactam	ND		4.8	4.4	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Carbazole	ND		4.8	0.085	ug/L	1.00	10/13/09 20:34		9J12D44	8270C			
Chrysene	ND		4.8	0.26	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Dibenz(a,h)anthracene	ND		4.8	0.19	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Dibenzofuran	ND		9.5	1.5	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Diethyl phthalate	0.61	J, B	4.8	0.10	ug/L	1,00	10/13/09 20:34	MKP	9J12044	8270C			
Dimethyl phthalate	ND	• •	4.B	0.29	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Di-n-butyl phthalate	0.43	J	4.8	0.28	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Di-n-octyl phthalate	ND	-	4.8	0.23	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Fluoranthene	ND		4.8	0.093	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Fluorene	ND		4.8	0.070	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Hexachlorobenzene	ND		4.8	0.42	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Hexachlorobuladiene	ND		4.8	2.5	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Hexachiorocyclopentadie	ND		4.8	2.4	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
ne nexacillorocycloperitadie	NO		7.0	2.7	Ug-	7.00	10.1200 20.0						
Hexachloroethane	ND		4.8	2.7	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Indeno[1,2,3-cd]pyrene	ND		4.8	0.15	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Isophorone	ND		4.8	0.30	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Naphthalene	ND		4.8	0.11	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Nitrobenzene	ND		4.8	0.51	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
N-Nitrosodi-n-propylamin	ND		4.8	0.43	ug/L	1.00	10/13/09 20:34		9J12044	8270C			
	ND		4.0	0.43	ugr	1.00	10/13/08 20:04	TIVIIV	OUISON	02,00			
e N-Nitrosodiphenylamine	ND	L	4.8	0.25	ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Pentachlorophenol	ND	L	9.5	4.9	ug/L	1.00	10/13/09 20:3		9J12044	8270C			
Phenanthrene	ND		4.8	0.11	ug/L	1.00	10/13/09 20:3		9J12044	8270C			
Phenol	ND		4.8	0.42	ug/L	1.00	10/13/09 20:3			8270C			
	ND		4.8	0.065	_	1.00	10/13/09 20:3		- 44 44	8270C			
Pyrene					ug/L_	1,00			<u></u>				
2,4,6-Tribromophenol	109 %		Sur Limits	: (52-132%)			10/13/09 20:3			8270C			
2-Fluorobiphenyl	95 %		Surr Limits	: (48-120%)			10/13/09 20:3			8270C			
2-Fluorophenol	42 %		Surr Limits	: (20-120%)			10/13/09 20:3			8270C			
Nitrobenzene-d5	95 %		Surr Limits	: (46-120%)			10/13/09 20:3			8270C			
Phenol-d5	29 %		Surr Limits	: (16-120%)			10/13/09 20:3			8270C			
p-Terphenyl-d14	82 %			: (24-136%)			10/13/09 20:3	4 MKP	9J12044	8270C			
Semivolatile Organics	TICs by	GC/MS											
Unknown01 (none)	13	T7, B	Ret Time:	3.57	υg/L	1.00	10/13/09 20:3	4 MKP	9J12044	8270C			
Unknown02 (none)	7.0	17, B	Ret Time:		ug/L	1.00			9J12044	8270C			
		-			=					8270C			
Unknown03 (none)	6.0	T7, B	Ret Time:	11./6	ug/L	1.00	10/13/09 20:3	4 MKP	3J 12U94	02/UL			

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report													
	Sample	Data	An	aiyucai R	ehort	Dil	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method			
Sample ID: RSJ0643-1	5 (W5 - Gr	ound Water	r) - cont.		Sam	pled: 1	0/07/09 15:41	Rec	vd: 10/09/	09 09:20			
Semivolatile Organics	TICs by 6	SC/MS - cor	<u>1t.</u>										
Unknown04 (none)	4.0	T7, B	Ret Time: 1	1.776	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Unknown05 (none)	13	T7, B	Ret Time; 1:	2,657	ug/L	1.00	10/13/09 20:34	MKP	9J12044	8270C			
Unknown06 (none)	61	T7, B	Rel Time: 12	2.791	ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Unknown07 (none)	15	T7, B	Rel Time: 13	3.49	ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Unknown08 (none)	11	T7, B	Ret Time: 13	3.512	ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Unknown09 (none)	35	17, B	Ret Time: 1		ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Unknown10 (none)	19	T7, B	Ret Time: 14		ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Unknown11 (none)	12	17, B	Ret Time: 1		ug/L	1,00	10/13/09 20:34		9J12044	8270C			
Unknown12 (none)	73	17, B	Ret Time: 1		ug/L	1.00	10/13/09 20:34		9J12044	8270C			
UNKNOWN13 (none)	43	T7, B	Rel Time: 1		ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Unknown14 (none)	19	T7, B	Rel Time: 1		-	1.00	10/13/09 20:34		9J12044	8270C			
Unknown15 (none)		-			ug/L		10/13/09 20:34		9J12044	8270C			
, ,	4.8	17, B	Rel Time: 1		ug/L	1.00							
Unknown16 (none)	8.9	17, B	Rel Time: 1:		ug/L	1.00	10/13/09 20:34		8J12044	8270C			
Unknown17 (none)	8.7	17, B	Ret Time: 1:		ug/L	1.00	10/13/09 20:34		9J12044	8270C			
Unknown16 (none)	3.9	T7	Ret Time: 1	6.91	ug/L	1.00	10/13/09 20:34	4 MKP	9J12044	8270C			
Organochlorine Pestle	cides by E	PA Method	8081A										
4,4'-DDD [2C]	ND		0.048	0.016	ug/L	1.00	10/14/09 04:41			8081A			
4,4'-DDE [2C]	ND		0.048	0.011	ug/L	1.00	10/14/09 04:41			8081A			
4,4'-DDT [2C]	ND		0.048	0.010	ug/L	1.00	10/14/09 04:49			8081A 8081A			
Aldrin [2C] aipha-BHC [2C]	ND ND		0.048 0.048	0.0063 0.0063	ug/L ug/L	1.00	10/14/09 04:49			8081A			
alpha-Chiordane [2C]	ND		0.048	0.014	ug/L	1.00	10/14/09 04:49			8081A			
beta-BHC [2C]	ND		0.048	0.024	ug/L	1,00	10/14/09 04:49			8081A			
delta-BHC [2C]	0.021	J	0.048	0.0096	ug/L	1.00	10/14/09 04:49	9 DGB	9J09108	8081A			
Dieldrin [2C]	ND		0.048	0.019	ug/L	1.00	10/14/09 04:4		9J09108	8081A			
Endosulfen I [2C]	ND		0.048	0.010	ug/L	1.00	10/14/09 04:4		9J09108	8081A			
Endosulfan II [2C]	ND		0.048	0.011	ug/L	1.00	10/14/09 04:4			8081A			
Endosulfan sulfate [2C]	ND		0.048	0.015	ug/L	1.00	10/14/09 04:4			8081A			
Endrin [2C]	ND		0.048	0.013	ug/L	1.00	10/14/09 04:4			8081A			
Endrin aldehyde [2C] Endrin kelone [2C]	ND ND		0.048 0.048	0.016 0.011	ug/L	1.00 1.00	10/14/09 04:4: 10/14/09 04:4:			8081A 8081A			
gamma-BHC (Lindans)	ND		0.048	0.0057	ug/L ug/L	1.00	10/14/09 04:4			8081A			
[2C]	110		0.040	0.0001	OBIL	1.00	10/14/00 04:40	0 000	0000100	000171			
gamma-Chlordane [2C]	ND		0.048	0.010	ug/L	1.00	10/14/09 04:4	9 DGB	9J09108	8081A			
Heptachior [2C]	ND		0.048	0.0081	ug/L	1.00	10/14/09 04:4			8081A			
Heptachlor epoxide [2C]	ND		0.048	0.0050	ug/L	1.00	10/14/09 04:4			8081A			
Methoxychlor [2C]	ND		0,048	0.013	ug/L	1.00	10/14/09 04:4			8081A			
Toxaphene [2C]	ND		0.48	0.11	ug/L	1.00	10/14/09 04:4	9 DGB	9J09108	8081A			
Decachlorobiphenyl [2C]	68 %		Surr Limits:	(15-139%)			10/14/09 04:4	9 DGB	9J09108	B081A			
Tetrachloro-m-xylene [2C]	68 %		Surr Limits:	(30-139%)			10/14/09 04:4	9 DGB	9J09108	8081A			
Polychlorinated Bipho	anyls by E	PA Method	8082										
Aroclor 1016	ND		0.48	0.17	ug/L	1.00	10/12/09 03:3	3 ЈхМ	9J09109	8082			
Aroclor 1221	ND		0.48	0.17	ug/L	1,00	10/12/09 03:3	MxL 6	9J09109	8082			
Aroclor 1232	ND		0.48	0.17	ug/L	1.00	10/12/09 03:3		9J09109	8082			
Arodor 1242	ND		0.48	0.17	ug/L	1,00	10/12/09 03:3	3 JxM	9J09109	8082			
TestAmerica Buffalo													

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report													
	Sample	Data		-		DII	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-1	5 (W5 - Gr	ound Water) - cont.		Sam	pled: 1	10/07/09 15:41	Rec	vd: 10/09/	09 09:20			
Polychlorinated Bipho	enyls by El	PA Method	8082 - con	<u>ıt.</u>									
Aroclor 1248	ND	<u>-</u>	0.48	0.17	ug/L	1.00	10/12/09 03:33	JxM	9J09109	8082			
Aroclor 1254	ND		0.48	0.24	ug/L	1.00	10/12/09 03:33	3 JxM	9J09109	8082			
Aroclor 1260	ND		0.48	0.24	ug/L	1.00	10/12/09 03:33	JxM	9J09109	8082			
Aroclor 1262	ND		0.48	0.24	ug/L	1.00	10/12/09 03:33		9J09109	8082			
Aroclor 1268	ND		0.48	0.24	ug/L	1.00	10/12/09 03:33	MxC 8	9J0910 9	8082			
Decachlorobiphenyl	87 %		Sur Limits:	(12-137%)			10/12/09 03:33	JxM	9J09109	8082			
Tetrachloro-m-xylene	80 %			(35-121%)			10/12/09 03:33	3 JxM	9J09109	8082			
Total Metals by SW 8	46 Series N	<u>lethods</u>											
Aluminum	ND		0,200	0.040	mg/L	1.00	10/13/09 17:05	DAN	9J12069	6010B			
Antimony	ND		0.0200	0.0068	mg/L	1.00	10/13/09 17:05	5 DAN	9J12069	6010B			
Arsenic	ND		0.0100	0.0056	mg/L	1.00	10/13/09 17:05	DAN	9J12069	6010B			
Barium	0.180		0.0020	0.0003	mg/L	1.00	10/13/09 17:05	DAN	9J12069	6010B			
3eryllium	0.0003	J	0.0020	0.0002	mg/L	1,00	10/13/09 17:05	5 DAN	9J12069	6010B			
Cadmium	ND		0.0010	0.0003	mg/L	1.00	10/13/09 17:09	DAN	9J12069	6010B			
Calcium	174		0.5	0.1	mg/L	1.00	10/13/09 17:05	DAN	9J12069	6010B			
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Cobalt	0.0006	J	0.0040	0.0006	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Copper	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Iron	5.73		0.050	0.019	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Lead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Magnesium	36.3		0.200	0.043	mg/L	1.00	10/13/09 17:0	5 DAN	9J12069	6010B			
Manganese	1.72		0.0030	0.0002	rng/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Nickel	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Potassium	3.64		0.500	0.050	mg/L	1.00	10/13/09 17:0	5 DAN	9J12069	6010B			
Selenium	ND		0.0150	0.0087	mg/L	1.00	10/13/09 17:09	5 DAN	9J12069	6010B			
Silver	ND		0.0030	0.0012	mg/L	1.00	10/13/09 17:0	5 DAN	9J12069	6010B			
Sodium	278		1.0	0.3	mg/L	1.00	10/13/09 17:0			6010B			
Thallium	ND		0.0200	0.0102	mg/L	1,00	10/13/09 17:0	5 DAN	9J12069	6010B			
Vanadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 17:0			6010B			
Zinc	0.0032	J	0.0100	0.0015	mg/L	1,00	10/13/09 17:0	5 DAN	9J12069	6010B			
Mercury	ND	-	0.0002	0.0001	mg/L	1.00	10/17/09 18:0	7 MXM	9J17027	7470A			
General Chemistry Pa	arameters												

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

			Ar	nalytical	Report			-		
	Sample	Data		•	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		ıtch	Method
Sample ID: RSJ0643-16	(W6 - Gr	ound Water)			Sam	pled: 1	10/07/09 18:30	Recvd:	10/09/	09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	82608
1,1,2,2-Tetrachloroethane	ND	D08	4.0	0.85	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
1,1,2-Trichloroethane	ND	D08	4.0	0.92	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	4.0	1.2	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
oroelhane					_					
1,1-Dichloroethane	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
1,1-Dichloroethene	ND	D08	4.0	1.2	ug∕L	4.00	10/13/09 12:10		3014	8260B
1,2,3-Trichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10		3014	8260B
1,2,4-Trichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10			8260B
1,2-Dibromo-3-chloroprop	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
ane					_					
1,2-Dibromoelhane (EDB)	ND	B0G	4.0	0.66	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	82608
1,2-Dichlorobenzene	ND	D08	4.0	0.81	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	82608
1,2-Dichloroethane	ND	D08	4.0	0.86	ug/L	4.00	10/13/09 12:10		3014	8260B
1.2-Dichloropropane	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:10		3014	8260B
1.3-Dichlorobenzene	ND	D08	4.0	1.4	ug/L	4.00	10/13/09 12:10		3014	8260B
1,4-Dichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10		3014	8260B
1,4-Dloxane	ND	D08	160	160	ug/L	4.00	10/13/09 12:10		3014	8260B
2-Butanone (MEK)	ND	D08	20	5.3	ug/L	4.00	10/13/09 12:10			8260B
2-Hexanone	ND	D08	20	5.0	ug/L	4.00	10/13/09 12:10			8260B
4-Methyl-2-pentanone	ND	D08	20	3.6	ug/L	4,00	10/13/09 12:10			8260B
(MIBK)				-10	-5-	****				
Acetone	ND	D08	20	5.4	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Benzene	8.5	D08	4.0	1.6	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Bromochloromethane	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Bromodichloromethane	ND	D08	4.0	1.5	ug/L	4,00	10/13/09 12:10			8260B
Bromoform	ND	D08	4.0	1.0	ug/L	4.00	10/13/09 12:10		3014	8260B
Bromomethane	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:10			8260B
Carbon disulfide	ND	D08	4.0	0.78	ug/L	4.00	10/13/09 12:10			8260B
Carbon Tetrachloride	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:10			8260B
Chlorobenzene	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Dibromochloromethane	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:10			8260B
Chloroethane	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Chloroform	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:10	DHC 9J1	3014	8260B
Chloromethane	ND	80G	4.0	1.4	ug/L	4,00	10/13/09 12:10	DHC 9J1	3014	B260B
cis-1,2-Dichloroethene	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:10		3014	8260B
cis-1,3-Dichloropropene	ND	B00	4.0	1.4	ug/L	4.00	10/13/09 12:10			8260B
Cyclohexane	170	D08	4.0	2,1	ug/L	4.00	10/13/09 12:10			8260B
Dichlorodifluoromethane	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:10			8260B
Ethylbenzene	270	D08	4.0	0.74	ug/L	4.00	10/13/09 12:10			8260B
Isopropylbenzene	63	D08	4.0	0.77	ug/L	4,00	10/13/09 12:10		-	8260B
Methyl Ácetate	ND	D08	4.0	2.0	ug/L	4.00	10/13/09 12:10			8260B
Methyl tert-Butyl Ether	ND	D08	4.0	0.64	ug/L	4.00	10/13/09 12:10			8260B
Methylcyclohexane	97	D08	4.0	2.0	ug/L	4.00	10/13/09 12:10			8260B
Methylene Chloride	ND	D08	4.0	1.8	ug/L	4.00	10/13/09 12:10			8260B
m,p-Xylene	340	D08	8.0	2.6	ug/L	4.00	10/13/09 12:10			8260B
o-Xylane	14	D08	4.0	1.4	ug/L	4.00	10/13/09 12:10			8260B
Styrene	ND	D08	4.0	0.74	ug/L	4.00	10/13/09 12:10			8260B
Tetrachloroethene	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:10			8260B
Toluene	17	D08	4.0	2.0	ug/L	4.00	10/13/09 12:10			8260B
	.,	500	7.0	2.0	-g/L	7.00	10/10/03 12.10	, 5, 10 - 30 1	JU 14	OZOVB

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report Sample Data Dil Date Lab													
	Sample	Data		-									
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-16	(W6 - Gr	ound Wate	r) - cont.		Sam	pled: 1	0/07/09 18:30	Rec	vd: 10/09	09 09:20			
Volatile Organic Comp	ounds by	EPA 8260	B - cont.										
trans-1,2-Dichloroethene	ND	D08	4.0	1.7	ug/L	4.00	10/13/09 12:10			8260B			
trans-1,3-Dichloropropen	ND	D08	4.0	1,5	ug/L	4.00	10/13/09 12:10	DHC	BJ13014	8260B			
e Trichloroethena	ND	D08	4.0	1.8	ug/L	4.00	10/13/09 12:10	DHC	BJ13014	8260B			
Trichlorofluoromethane	ND	D08	4.0	0.61	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
Vinyl chloride	ND	D08	4.0	0.97	ug/L	4.00	10/13/09 12:10	DHC C	9J13014	8260B			
1,2-Dichloroethane-d4	86 %	D08	Sur Limits:	(66-137%)			10/13/09 12:10	DHC	9J13014	8260B			
4-Bromoffuorobenzene	84 %	D08	Sur Limits:				10/13/09 12:10			8260B			
Toluene-d8	84 %	D08	Surr Limits:				10/13/09 12:10	DHC 0	9J13014	8260B			
Tentatively Identified C	Compound	ds by EPA	8260B										
1H-Indene, 2,3-dihydro-4-methyl- (000824-22-6)	160	D08,T7	Ret Time: 12	2.164	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
Benzene 1,2,3-trimethyl- (000526-73-8)	120	D08,T11,	Ret Time: 10	0.78	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
Benzene, 1-ethenyi-3-ethyl- (007525-62-4)	120	D08,T7	Ret Time: 11	1.494	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
Benzene, 1-ethyl-2-methyl- (000611-14-3)	130	D08,T7	Ret Time: 10	0.207	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
Benzene, 2-ethyl-1,3-dimethyl-	190	D08,T7	Rel Time: 11	1.384	ug/L	4.00	10/13/09 12:10	DHC	9J13014	8260B			
(002870-04-4) Benzene, propyl- (000103-65-1)	190	D08,T7	Ret Time; 9.	817	ug/L.	4.00	10/13/09 12:10	OHO	9J13014	8260B			
Butane. 2-methyl- (000078-78-4)	120	D08,T7	Ret Time: 1.	965	ug/L	4.00	10/13/09 12:1	0 DHC	9J13014	8260B			
Cyclopentane, methyl- (000096-37-7)	170	D68,T7	Ret Time: 4.	117	ug/L	4.00	10/13/09 12:1	0 DHC	9J13014	8260B			
Indane (000496-11-7)	320	D08,T7	Ret Time: 10	0.969	ug/L	4.00	10/13/09 12:1	O DHC	9J13014	8260B			
Pentane, 2-msthyl- (000107-83-5)	200	D08,T7	Rel Time: 3.	.044	ug/L	4.00	10/13/09 12:1	0 DHC	9J13014	8260B			
Semivolatile Organics	by GC/M	<u>s</u>											
1,2,4,5-Tetrachlorobenze	ND	_	4.8	0.78	ug/L	1.00	10/13/09 20:5	9 MKP	9J12044	8270C			
2,3,4,6-Tetrachlorophenol	ND		4.8	2.0	ug/L	1.00	10/13/09 20:5	9 MKP	9J12044	8270C			
2,4,5-Trichlorophenol	ND		4.8	0.94	ug/L	1.00	10/13/09 20:5	9 MKP	9J12044	8270C			
2,4,6-Trichlorophenol	ND		4.8	0.95	ug/L	1.00	10/13/09 20:5	9 MKP	9J12044	8270C			
2,4-Dichlorophenol	ND		4.8	0.75	ug/L	1,00	10/13/09 20:5			8270C			
2,4-Dimethylphenol	ND		4.8	0.92	ug/L	1.00	10/13/09 20:5			8270C			
2,4-Dinitrophenol	ND		9.5	2.1	ug/L	1.00	10/13/09 20:5			8270C			
2,4-Dinitrololuene	ND		4.8	0.43	ug/L	1.00	10/13/09 20:5			8270C			
2,6-Dinitrotoluene	ND		4.8	0.49	ug/L	1.00	10/13/09 20:5			8270C			
2-Chloronaphthalene	ND		4.8	0.080	ug/L	1.00	10/13/09 20:5			8270C			
2-Chlorophenol	ND		4.8	0.48	ug/L	1.00	10/13/09 20:5 10/13/09 20:5			8270C 8270C			
2-Methylnaphthalene	19		4.8	0.078	ug/L	1.00	10/13/09 20:5						
2-Methylphenol	ND		4.8	0.22	ug/L	1.00 1.00	10/13/09 20:5			8270C 8270C			
2-Nitroanlline 2-Nitrophenol	ND ND		9.5 4.8	0.47 0.57	ug/L ug/L	1.00	10/13/09 20:5			8270C			
3,3'-Dichlorobenzidine	ND		4.8	0.37	ug/L	1.00	10/13/09 20:5			8270C			
3-Nitroaniline	ND		9.5	1.5	ug/L	1.00	10/13/09 20:5			8270C			

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report													
	Sample	Data				DII	Date	Lab	D-4-b				
Analyte	Result	Qualifiers	_RL_	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-16	(W6 - Gr	ound Water)	- cont.		Sart	ipled: 1	0/07/09 18:30	Rec	vd: 10/09	/09 09:20			
Semivolatile Organics	by GC/M	S - cont.											
4,6-Dinitro-2-methylphen ol	ND		9.5	2.2	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
4-Bromophenyl phenyl ether	ND		4.8	0.86	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
4-Chloro-3-methylphenol	ND		4.8	0.57	ug/L	1.00	10/13/09 20:59	MKP	BJ12044	8270C			
4-Chloroaniline	ND		4.8	0.31	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
4-Chlorophenyi phenyi ether	ND		4.8	0.16	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
4-Methylphenol	ND		9.5	0.55	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
4-Nitroanillne	ND		9.5	0.43	ug/L	1.00	10/13/09 20:59	MKP	8J12044	8270C			
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Acenaphthene	ND		4.8	0.11	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Acenaphthylene	ND		4.8	0.045	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Acetophenone	ND		4.8	0.97	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Anthracene	ND		4.8	0.053	ug/L	1.00	10/13/09 20:59			8270C			
Atrazine	ND		4.8	1.0	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzaldehyde	ND		4.8	0.25	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzo(a)anthracene	ND		4.8	0.061	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzo(a)pyrene	ND		4.8	0.087	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzo[b]fluorenthene	ND		4.8	0.060	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzo[g,h,i]perylene	ND		4.8	0.074	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Benzo[k]fluoranthene	ND		4.8	0.063	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
1,1'-Biphenyl	0.68	J	4.8	0.62	ug/L	1.00	10/13/09 20:59	MKP.	9J12044	8270C			
Bis(2-chloroethoxy)metha ne	ND		4.8	0.36	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Bis(2-chloroethyl)ether	ND		4.8	0.17	ug/L	1.00	10/13/09 20:51	MKP.	9J12044	8270C			
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Bis(2-ethylhexyl) phlhalale	ND		4.8	4.5	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Bulyl benzyl phihalate	ND		4.8	1.7	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Caprolactam	ND		4.8	4.4	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Carbazole	ND		4.8	0.085	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Chrysene	ND		4.8	0.26	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Dibenzia,hjanthracene	ND		4.8	0.19	ug/L	1.00	10/13/09 20:59	MKP		8270C			
Dibenzofuran	ND		9.5	1.5	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Diethyl phthalate	0.30	J. B	4.8	0.10	ug/L	1.00	10/13/09 20:59	9 MKP	9J12044	8270C			
Dimethyl phthalate	ND	-,-	4.8	0.29	ug/L	1.00	10/13/09 20:59			8270C			
Di-n-butyi phthalate	0.53	J	4.8	0.28	ug/L	1.00	10/13/09 20:59			8270C			
Di-n-octyl phthalate	ND	-	4.8	0.23	ug/L	1.00	10/13/09 20:59			8270C			
Fluoranthene	ND		4.8	0.093	ug/L	1.00	10/13/09 20:5			8270C			
Fluorene	0.31	J	4.8	0.070	ug/L	1.00	10/13/09 20:59			8270C			
Hexachlorobenzene	ND	·	4.8	0.42	ug/L	1.00	10/13/09 20:5			8270C			
Hexachlorobutadiene	ND		4.8	2.5	ug/L	1.00	10/13/09 20:5			8270C			
Hexachlorocyclopentadie ne	ND		4.8	2.4	ug/L	1.00	10/13/09 20:5			8270C			
Hexachloroethane	ND		4.8	2.7	ug/L	1.00	10/13/09 20:59	MKP	9.112044	8270C			
Indeno(1,2,3-cd)pyrene	ND		4.8	0.15	ug/L	1.00	10/13/09 20:59			8270C			
Isophorone	ND		4.8 4.8	0.15	ug/L ug/L	1.00	10/13/09 20:5			8270C			
Naphthalene	72		4.8 4.8	0.30	ug/L ug/L	1.00	10/13/09 20:5			8270C			
Nitrobenzene	ND		4.8		_	1.00	10/13/09 20:5			8270C			
MUDDELIZERE	MD		7.0	0.51	ug/L	1.00	10/10/03 20.0	A MILKE	30 120-14	OZ 100			

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report													
	Sample	Data				Dil	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ0643-16	6 (W6 - Gr	ou <mark>nd Wat</mark> e	r) - cont.		Sam	pled:	10/07/09 18:30	Rec	vd: 10/09	09 09:20			
Semivolatile Organics	by GC/MS	S - cont.											
N-Nitrosodl-n-propylamin e	ND		4.8	0.43	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
N-Nitrosodiphenylamine	ND	L	4.8	0.25	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Pentachlorophenol	ND		9.5	4.9	ug/L	1.00	10/13/09 20:59			8270C			
Phenanthrene	ND		4.8	0.11	ug/L	1.00	10/13/09 20:59			8270C			
Phenol	ND		4.8	0.42	ug/L	1.00	10/13/09 20:59		9J12044	8270C			
Pyrene	ND		4.8	0.065	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
2,4,6-Tribromophenol	105 %			(52-132%)			10/13/09 20:5			8270C			
2-Fluorobiphenyl	93 %			(48-120%)			10/13/09 20:51			8270C			
2-Fluorophenol	43 %			(20-120%)			10/13/09 20:5!			8270C			
Nilrobenzene-d5 Phenoi-d5	97 % 29 %			(46-120%)			10/13/09 20:5!			8270C 8270C			
p-Terphenyl-d14	83 %			(16-120%) (24-136%)			10/13/09 20:5! 10/13/09 20:5!			8270C			
		0000	Sun Lums.	(24-13076)			10/13/05 20.5	, MILLE	30 / 2044	02700			
<u>Sernivolațile Organics</u> Benzene, propyl-	90	77	Ret Time: 5	157	ug/L	1.00	10/13/09 20:59	MKD	9J12044	8270C			
(000103-65-1)					•								
Ethylbanzene (100-41-4)	220	T7	Ret Time: 3		ug/L	1.00	10/13/09 20:59		9J12044	8270C			
	52	T7	Ret Time: 4	-	ug/L	1.00	10/13/09 20:59		9J12044	8270C			
	51	17	Ret Time: 5	.285	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
	80	17	Ret Time: 5	.46	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
	110	17	Ret Time: 5	.983	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
	71	T7	Ret Time: 6	.231	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
	28	T7	Ret Time: 6	.925	ug/L	1.00	10/13/09 20:51	MKP	9J12044	8270C			
Unknown01 (none)	23	T7, B	Ret Time: 3	.153	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Unknown02 (nane)	140	T7, B	Ret Time: 6	.118	ug/L	1.00	10/13/09 20:51	MKP	9J12044	8270C			
Unknown03 (nane)	82	T7, B	Rel Time: 6	.321	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Unknown04 (none)	31	T7, B	Ret Time: 6	.423	ug/L	1.00	10/13/09 20:59	MKP	9J12044	8270C			
Unknown05 (nane)	41	T7, B	Ret Time: 7	.246	ug/L	1.00	10/13/09 20:50	MKP	9J12044	B270C			
Unknown06 (none)	77	T7, B	Ret Time: 1	2.791	ug/L	1.00	10/13/09 20:51	MKP	9J12044	8270C			
Unknown07 (none)	42	T7, B	Rel Time: 1		ug/L	1.00	10/13/09 20:59		9J12044	8270C			
Unknown08 (none)	25	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 20:59		9J12044	8270C			
Unknown09 (none)	29	17, B	Rel Time: 1		ug/L	1.00	10/13/09 20:5		9J12044	8270C			
Unknown 10 (none)	55	T7. B	Ret Time: 1		ug/L	1.00	10/13/09 20:5		9J12044	8270C			
Unknown11 (none)		•			•								
Unknown12 (none)	40	Т7, В	Ret Time: 1		ug/L	1.00	10/13/09 20:50			8270C			
Olikilowii 12 (IIb(ie)	36	T7, B	Ret Time: 1	5.088	ug/L	1.00	10/13/09 20:59	MINP	9J12044	8270C			
Organochlorine Pestic		PA Method	•										
4,4'-DDD [2C]	ND		0.047	0.016	ng/L	1.00	10/14/09 05:2			8081A			
4,4'-DDE [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 05:2			8081A			
4,4'-DDT [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 05:2			8081A			
Aldrin [2C]	ND 0.024		0.047	0.0062	ug/L	1.00	10/14/09 05:29			8081A			
alpha-BHC [2C]	0.024	J	0.047	0.0062	ug/L	1.00	10/14/09 05:29			8081A			
alpha-Chlordane [2C] beta-BHC [2C]	ND ND		0.047 0.047	0.014	ug/L	1.00	10/14/09 05:25 10/14/09 05:25			8081A			
		J	0.047	0.023 0.0095	ug/L ug/L	1.00	10/14/09 05:2			8081A 8081A			
delta-BHC [2C]	0.024			UUUMA									

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 (ax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report													
An to a	Sample	Data				Dil	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech		Method			
Sample ID: RSJ0643-16	5 (W 6 - Gr	ound Water	r) - cont.		Sarr	ipled: 1	0/07/09 18:30	Rec	vd: 10/09	/09 09:20			
Organochlorine Pestic	ides by E	PA Method	8081A - co	nt.									
Endosulfan I (2C)	ND		0.047	0.010	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
Endosulien II [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
Endosulfan sulfate [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
Endrin (2C)	ND		0.047	0.013	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
Endrin aldehyde [2C]	ND		0.047	0.015	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
Endrin ketone [2C]	ND		0.047	0.011	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
jamma-BHC (Lindane)	ND		0.047	0.0057	ug/L	1.00	10/14/09 05:25	DGB	9J09108	8081A			
2C]					-								
amma-Chlordane [2C]	ND		0.047	0.010	ug/L	1.00	10/14/09 05:25			8081A			
leptachlor [2C]	ND		0.047	0.0080	ug/L	1.00	10/14/09 05:25			8081A			
leptachlor epoxide [2C]	0.021	J	0.047	0.0050	ug/L	1.00	10/14/09 05:25			8081A			
Methoxychlor [2C]	ND		0.047	0.013	ug/L	1,00	10/14/09 05:25			B081A			
Toxaphene [2C]	ND		0.47	0.11	ug/L	1,00	10/14/09 05:25	DGB	9J09108	8081A			
Decachlorobiphenyl [2C]	37 %		Surr Limits:	(15-139%)			10/14/09 05:25	DGB	9J09108	8081A			
Tetrachloro-m-xylene	<i>53</i> %		Surr Limits:	(30-139%)			10/14/09 05:25	5 DGB	9J09108	8081A			
2C)				•									
Polychlorinated Biphe	nyls by El	PA Method	8082										
Araclor 1016	ND	-	0.47	0.17	ug/L	1.00	10/12/09 03:48	MxL 8	9J09109	8082			
Aroclor 1221	ND		0.47	0.17	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Arodor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Aroclor 1242	ND		0.47	0.17	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Arodor 1248	ND		0.47	0.17	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Arodor 1254	ND		0.47	0.24	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Vrocior 1260	ND		0.47	0.24	ug/L	1.00	10/12/09 03:46		9J09109	8082			
Arodor 1262	ND		0.47	0.24	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Arodor 1268	ND		0.47	0.24	ug/L	1.00	10/12/09 03:48		9J09109	8082			
Decachlorobiphenyl	52 %		Surr Limits:	(12-137%)			10/12/09 03:48	JxM	9J09109	8082			
Tetrachloro-m-xylene	68 %		Surr Limits:				10/12/09 03:48	JxM	9J09109	8082			
Total Metals by SW 84	6 Series N	/lethods											
luminum	ND	<u> </u>	0.200	0.040	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B			
Antimony	ND		0.0200	0.0068	mg/L	1.00	10/13/09 17:10			6010B			
Arsenic	0.0091	J	0.0100	0.0056	mg/L	1.00	10/13/09 17:10			6010B			
Barium	0.0778	-	0.0020	0.0003	mg/L	1.00	10/13/09 17:10			6010B			
Beryllum	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 17:10			6010B			
Cadmium	ND	•	0.0010	0.0003	mg/L	1.00	10/13/09 17:10			6010B			
Calcium	38.5		0.0070	0.0003	mg/L	1.00	10/13/09 17:10			6010B			
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 17:10			6010B			
Coball	ND		0.0040	0.0009		1.00	10/13/09 17:10			6010B			
Copper	ND		0.0100	0.0008	mg/L	1.00	10/13/09 17:10			6010B			
tou Sobbei	7.53		0.050	0.0013	mg/L	1.00	10/13/09 17:10						
-ead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 17:10		-	6010B			
Magnesium					mg/L					6010B			
	8.65		0,200	0.043	mg/L	1.00	10/13/09 17:10			6010B			
Aanganese	2.03		0.0030	0.0002	mg/L	1.00	10/13/09 17:10			6010B			
Nickel	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:10			6010B			
Data a air ma	7 4 7		0.500	0.050	mg/L	1.00	10/13/09 17:10	JUAN	9J12069	6010B			
	2.12				_								
Selenium	ND		0.0150	0.0087	mg/L	1.00	10/13/09 17:10			6010B			
Potassium Selenium Silver Sodium					_		10/13/09 17:10 10/13/09 17:10 10/13/09 17:10	DAN	9J12069	6010B 6010B 6010B			

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report													
Ameliata	Sample	Data			1.1-14	DI)	Date	Lab					
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method			
Sample ID: RSJ064	43-16 (W6 - Gro	und Water)	- cont.		Sam	pled: '	10/07/09 18:30	Rec	vd: 10/09/	09 09:20			
Total Metals by SV	W 846 Series M	ethods - co	nt.										
Thallium	ND		0.0200	0.0102	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B			
Vanadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B			
Zinc	ND		0.0100	0.0015	mg/L	1.00	10/13/09 17:10	DAN	9J12069	6010B			
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:09	MXM	9J17027	7470A			
General Chemistr	y Parameters												
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:27	LRM	9J14038	9012A			

A2L Technologies 10220 Harney Road, NE Thonolosassa, FL 33592 Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Analytical Report												
Analyte	Sample Result	Data		MDL	Units	Dil Fac	Date Analyzed	Lab	Batch	Mathad		
	•	Qualifiers	RL	MDL						Method		
Sample ID: RSJ0643-17	(W7 - Gr	ound Water)			Sam	pled: '	10/08/09 0B:45	Rec	vd: 10/09/	09 09:20		
Volatile Organic Comp	ounds by	EPA 8260B										
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 05:17	' NMD	9J12089	8260B		
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/13/09 05:17			8260B		
1,1,2-Trichloro-1,2,2-triflu	ND		1.0	0.31	ug/L	1.00	10/13/09 05:17	'NMD	9J12089	8260B		
oroethane												
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 05:17	'NMD	9J12089	8260B		
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 05:17	NMD	BJ12089	8260B		
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 05:17	' NMD	9J12089	8260B		
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 05:17	' NMD	9J12089	8260B		
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/13/09 05:17	'NMD	9J12089	8260B		
ane					_							
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1.00	10/13/09 05:17	'NMD	9J12089	6260B		
(EDB)												
1,2-Dichlorobenzene	ND		1.0	0.20	ug/L	1.00	10/13/09 05:17	' NMD	9J12089	8260B		
1,2-Dichloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1.00	10/13/09 05:17			8260B		
1,3-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/13/09 05:17			8260B		
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1.00	10/13/09 05:17	'NMD	BJ12089	8260B		
1,4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
2-Butanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 05:17	DMN	9J12089	82608		
4-Methyl-2-pentanone	ND		5.0	0.91	υg/L	1.00	10/13/09 05:17	OMN 7	BJ12089	8260B		
(MIBK)												
Acetone	ND		5.0	1.3	ug/L	1,00	10/13/09 05:17	DMN 7	9J12089	8260B		
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
Bromochloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 05:17	NMD	9J12089	8260B		
Bromoform	ND		1.0	0.26	ug/L	1.00	10/13/09 05:17	7 NMD	9J12089	8260B		
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/13/09 05:17			8260B		
Carbon disulfide	ND		1.0	0.19	ug/L	1,00	10/13/09 05:17	DMN 7	9J12089	8260B		
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/13/09 05:17			8260B		
Chlorobenzene	ND		1.0	0.32	ug/L	1.00	10/13/09 05:17			8260B		
Dibromochloromethane	ND		1.0	0.32	ug/L	1.00	10/13/09 05:17			8260B		
Chloroethane	ND		1.0	0.32	ug/L	1.00	10/13/09 05:17			82608		
Chloroform	ND		1.0	0.34	ug/L	1.00	10/13/09 05:17			8260B		
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/13/09 05:11			8260B		
cis-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/13/09 05:11			8260B		
cis-1,3-Dichloropropene	ND		1.0			1.00	10/13/09 05:11			8260B		
Cyclohexane	ND		1.0	0.36 0.53	ug/L ug/L	1.00	10/13/09 05:11			8260B		
Dichlorodifluoromethane	ND		1.0	0.33	ug/L	1.00	10/13/09 05:17			8260B		
Elhylbenzene	ND		1.0		_	1.00	10/13/09 05:17			8260B		
Isopropylbenzene	ND			0.18	ug/L							
			1.0	0.19	ug/L	1.00				8260B		
Methyl Acetate	ND		1.0	0.50	ug/L	1.00				8260B		
Methyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00				8260B		
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00				8260B		
Methylene Chloride	ND		1.0	0.44	ug/L	1.00				8260B		
m,p-Xylene	ND		2.0	0.66	ug/L	1.00				8260B		
o-Xylene	ND		1.0	0.36	ug/L	1.00				8260B		
Styrene	ND		1.0	0.18	ug/L	1.00				8260B		
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00				8260B		
Toluene	0.69	J	1.0	0.51	ug/L	1.00	10/13/09 05:1	7 NMD	9J12089	8260B		

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical R	eport					
	Sample	Data		•	•	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-17	' (W7 - Gr	ound Wate	r) - cont.		Sarr	pled:	10/08/09 08:45	Rec	vd: 10/09	09 09:20
Volatile Organic Comp	ounds by	EPA 82601	B - cont.							
trans-1,2-Dichloroethene	ND		1,0	0.42	ug/L	1.00	10/13/09 05:17	DMN 7	9J12089	8260B
trans-1,3-Dichloropropen	ND		1.0	0.37	ug/L	1,00	10/13/09 05:17			82608
<u>e</u>					_					
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 05:17			8260B
Trichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/13/09 05:17			8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/13/09 05:17	NMU	9J12089	8260B
1,2-Dichloroethene-d4	89 %		Surr Limits:				10/13/09 05:17	7 NMD	9J12089	8260B
4-Bromofluorobenzene	99 %		Surr Limits:				10/13/09 05:17	7 NMD	9J12089	8260B
Toluene-d8	99 %		Surr Limits:	(71-126%)			10/13/09 05:17	7 NMD	9J12089	8260B
Tentatively identified (ompound	ds by EPA	8260B							
No TICs found (NOTICS)	DN	17			ug/L	1.00	10/13/09 05:17	7 NMD	9J12089	8260B
•					-6					
Semivolatile Organics	by GC/MS	<u>S</u>								
1,2,4,5-Tetrachlorobenze	ND		4.7	0.77	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
ne					_					
2,3,4,6-Tetrachlorophenol	ND		4.7	2.0	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,4,5-Trichlorophenol	ND		4.7	0.94	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,4,6-Trichlorophenol	ND		4.7	0.94	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,4-Dichlorophenol	ND		4.7	0.75	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,4-Dimethylphenol	ND		4.7	0.91	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,4-Dinitrophenol 2,4-Dinitrotoluene	ND ND		9.5 4.7	2.1	ug/L	1.00 1.00	10/13/09 21:24 10/13/09 21:24		9J12044 9J12044	8270C
2,6-Dinitrotoluene	ND		4.7	0.42 0.48	ug/L ug/L	1.00	10/13/09 21:24		9J12044	8270C 8270C
2-Chloronaph(halene	ND		4.7	0.080	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2-Chlorophenol	ND		4.7	0.48	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2-Methylnaphthalene	ND		4.7	0.078	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2-Methylphenol	ND		4.7	0.22	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2-Nitroaniline	ND		9.5	0.47	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2-Nitrophenol	ND		4.7	0.57	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
3,3'-Dichlorobenzidine	ND		4.7	0.35	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
3-Nitroaniline	ND		9.5	1.5	ug/L	1,00	10/13/09 21:24		9J12044	8270C
4,6-Dinitro-2-methylphen	ND		9.5	2.2	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
ol 4 Brownshand should	ND		4.7	0.05	0	4.00	40140700 04.0	4 NAVO	0.1400.44	
4-Bromophenyl phenyl ether	ND		4.7	0.85	ug/L	1.00	10/13/09 21:24	WINE	9J12044	8270C
4-Chloro-3-methylphenol	ND		4.7	0.56	ug/L	1.00	10/13/09 21:24	4 MKD	0.112044	8270C
4-Chloroaniline	ND		4.7	0.31	ug/L	1.00	10/13/09 21:24			8270C
4-Chlorophenyl phenyl	ND		4.7	0.16	ug/L	1.00	10/13/09 21:24			8270C
ether				00	-5-		70.70.00		0012011	02100
4-Methylphenol	ND		9.5	0.55	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
4-Nitroaniline	ND		9.5	0.43	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
4-Nitrophenol	ND		9.5	1.4	ug/L	1.00				8270C
Acenaphthene	ND		4.7	0.11	ug/L	1.00				8270C
Acenaphthylene	ND		4.7	0.045	ug/L	1.00				8270C
Acetophenone	ND		4.7	0.97	ug/L	1.00				8270C
Anthracene	ND		4.7	0.053	ug/L	1.00				8270C
Atrazine	ND		4.7	1.0	ng/L	1.00				8270C
Benzaldehyde	ND		4.7	0.25	ug/L	1.00				8270C
Benzo(a)anthracene Benzo(a)pyrene	ND		4.7	0.061	ug/L	1.00				8270C
	ND		4.7	0.086	ug/L	1.00	10/13/09 21:24	+ MIKE	8J 12U44	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Ar	nalytical R	eport					_
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: R\$J0643-17	(W7 - Gr	ound Wate	r) - cont		Sam	pled: 1	0/08/09 08:45	Rec	vd: 10/09	09 09:20
Semiyolatile Organics	by GC/MS	S - cont.								
Benzo[b]fluoranthene	ND		4.7	0.060	ug/L	1.00	10/13/09 21:24	МКР	9.112044	8270C
Benzo[g,h,i]perylene	ND		4.7	0.074	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Benzo[k]fluoranthene	ND		4.7	0.063	ug/L	1.00	10/13/09 21:24		9J12044	8270C
1,1'-Biphenyl	ND		4.7	0.62	ug/L	1.00	10/13/09 21:24		-	8270C
Bis(2-chloroethoxy)metha	ND		4.7	0.36	ug/L	1.00	10/13/09 21:24		9J12044	8270C
ne					_					
Bis(2-chloroethyl)ether	ND		4.7	0.17	ug/L	1.00	10/13/09 21:24		9J12044	8270C
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Bis(2-ethylhexyl)	ND		4.7	4.5	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
phthalate Butyl benzyl phthalate	ND		4.7	1.6	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Caprolactem	ND		4.7	4.4	ug/L	1.00	10/13/09 21:24			8270C
Carbazole	ND		4.7	0.084	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Chrysane	ND		4.7	0.26	ug/L	1.00	10/13/09 21:24			8270C
Dibenz[a,h]anthracene	ND		4.7	0.19	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Dibenzofuren	ND		9.5	1.5	ug/L	1,00	10/13/09 21:24			8270C
Diethyl phthalate	0.47	J, B	4.7	0.10	ug/L	1.00	10/13/09 21:24			8270C
Dimethyl phthelate	ND	0, 5	4.7	0.28	ug/L	1.00	10/13/09 21:24			8270C
Di-n-butyl phthalate	ND		4.7	0.28	υg/L	1.00	10/13/09 21:24		9J12044	8270C
Di-n-octyl phthalate	ND		4.7	0.23	ug/L	1.00	10/13/09 21:24			8270C
Fluoranthene	ND		4.7	0.093	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Fluorene	ND		4.7	0.070	ug/L	1.00	10/13/09 21:24		8J12044	8270C
Hexachlorobenzene	ND		4.7	0.42	ug/L	1,00	10/13/09 21:24		9J12044	8270C
Hexachlorobutadiene	ND		4.7	2.5	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Hexachlorocyclopentadie	ND		4.7	2.4	ug/L	1.00	10/13/09 21:24			8270C
ne Hexachloroethane	ND		4.7	2.7	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Indeno[1,2,3-cd]pyrene	ND		4.7	0.15	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Isophorone	ND		4.7	0.30	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Naphthalene	ND		4.7	0.11	ug/L	1.00	10/13/09 21:24		9J12044	8270C
Nitrobenzene	ND		4.7	0.51	ug/L	1.00	10/13/09 21:24		9J12044	8270C
N-Nitrosodi-n-propylamin	ND		4.7	0.43	ug/L	1.00	10/13/09 21:24		9J12044	8270C
e N-Nitrosodiphenylamine	ND	L	4.7	0.25		4.00	40/42/00 04-04	MKD	0.142044	00700
Pentachlorophenol	ND	L	4.7 9.5	0.25 4.9	ug/L	1,00	10/13/09 21:24 10/13/09 21:24		9J12044 9J12044	8270C
Phenanthrene	ND		9.5 4.7		ug/L	1,00	10/13/09 21:24			8270C
Phenoi	ND		4.7	0.11	ug/L	1.00			9J12044	8270C
Pyrene	ND		4.7 4.7	0.42 0.064	ug/L ug/L	1.00 1.00	10/13/09 21:24 10/13/09 21:24			8270C 8270C
2,4,6-Tribromophenol	115 %		_	(52-132%)			10/13/09 21:24			8270C
2-Fluorobiphenyl	95 %			(48-120%)			10/13/09 21:24			8270C
2-Fluorophenol	40 %			(20-120%)			10/13/09 21:24			8270C
Nitrobenzene-d5	92 %			(46-120%)			10/13/09 21:24			8270C
Phenol-d5	28 %			(16-120%)			10/13/09 21:24		-	8270C
p-Terphenyl-d14	96 %			(24-136%)			10/13/09 21:24			8270C
Semivolatile Organics	TICs by G	C/MS								
2-Pentanone,	9.3		Ret Time: 4	1.558	шg/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
4-methoxy-4-methyl- (000107-70-0)										
Unknown01 (none)	15	T7, B	Ret Time: 3	3.57	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Project Nur		1559-2					
	Č===1=	5.4	Ai	nalytical R	eport	611	D-4-			
Analyte	Sample Result	Data Qualifiers	RL.	MDL	Units	DII Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0643-17	7 (W 7 - Gr	ound Water	r) - cont.		Sam	pled: 1	10/08/09 08:45	Rec	vd: 10/09	09 09:20
Semivolatile Organics	TICs by G	C/MS - cor	<u>ıt.</u>							
Unknown02 (none)	4.0	17, B	Ret Time:	11.776	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Unknown03 (none)	14	T7, B	Rel Time:	12.657	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
Unknown04 (none)	48	T7, B	Rel Time:	12.786	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Unknown05 (none)	15	T7, B	Rel Time:	13.485	ug/L	1.00	10/13/09 21:24	4 MKP	9J12044	8270C
Unknown06 (none)	11	T7, B	Rel Time:	13.512	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Unknown07 (none)	40	T7, B	Ret Time:	13.61	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Unknown08 (none)	60	T7, 8	Ret Time:	13.635	ug/L	1,00	10/13/09 21:24	MKP	9J12044	8270C
Unknown09 (none)	21	T7, B	Ret Time:	14.201	ug/L	1.00	10/13/09 21:24	IMKP	BJ12044	8270C
Unknown10 (none)	10	77, B	Ret Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
Unknown11 (none)	27	T7, B	Ret Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
Unknown12 (none)	47	T7, B	Rel Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
UNKNOWN13 (none)	20	17, B	Ret Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
Unknown14 (none)	4.6	T7, B	Ret Time:		_	1.00	10/13/09 21:24		9J12044	
Unknown15 (none)	10				ug/L					8270C
Unknown16 (none)		T7, B	Rel Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
• •	9.8	17. B	Rel Time:		ug/L	1.00	10/13/09 21:24		9J12044	8270C
Uriknown17 (none)	5.0	T7. B	Ret Time:	16.91	ug/L	1.00	10/13/09 21:24	MKP	9J12044	8270C
Organochlorine Pestic	ides by E	PA Method	ROR1A							
4,4'-DDD [2C]	ND	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.048	0.016	ug/L	1.00	10/15/09 13:12	DGB	9J09108	8081A
4,4'-DDE [2C]	ND		0.048	0.011	ug/L	1.00	10/15/09 13:12			8081A
4,4'-DDT [2C]	ND		0.048	0.010	ug/L	1.00	10/15/09 13:12			8081A
Aldrin [2C]	ND		0.048	0.0063	ug/L	1.00	10/15/09 13:12	2 DGB	BJ09108	8081A
alpha-BHC [2C]	ND		0.048	0.0063	ug/L	1.00	10/15/09 13:12			8081A
alpha-Chlordane [2C]	ND		0.048	0.014	ug/L	1.00	10/15/09 13:12			8081A
beta-BHC [2C] delta-BHC [2C]	ND ND		0.048 0.048	0.024 0.0096	ug/L	1.00	10/15/09 13:12 10/15/09 13:12			BOB1A BOB1A
Dieldrin [20]	ND		0.048	0.0090	ug/L ug/L	1.00	10/15/09 13:12			8081A
Endosulfan I [2C]	ND		0.048	0.010	ug/L	1,00	10/15/09 13:12			B081A
Endosulfan II [2C]	ND		0.048	0.011	ug/L	1.00	10/15/09 13:12			8081A
Endosulfan sulfate [2C]	ND		0.048	0.015	ug/L	1.00	10/15/09 13:12	2 DGB	9J09108	BOB1A
Endrin [2C]	ND		0.048	0.013	ug/L	1.00	10/15/09 13:12	-		8081A
Endrin aldehyde [2C]	ND		0.048	0.016	ug/L	1.00	10/15/09 13:12			8081A
Endrin kelone [2C] gamma-BHC (Lindane)	ND ND		0.048 0.048	0.011 0.0057	ug/L	1.00 1.00	10/15/09 13:12 10/15/09 13:12	_		8081A 8081A
[2C]	HD		0.046	0.0057	ug/L	1.00	10/10/09 13:12	ניייי	9109100	0V0 I/A
gamma-Chlordane [2C]	ND		0.048	0.010	ug/L	1.00	10/15/09 13:12	2 DGB	9J09108	8081A
Heptachlor [2C]	ND		0.048	0.0081	пб/Г	1.00	10/15/09 13:12			8081A
Heptachlor epoxide [2C]	0.042	J	0.048	0.0050	ug/L	1.00	10/15/09 13:12			8081A
Methoxychlor [2C]	ND		0.048	0.013	ug/L	1.00	10/15/09 13:12			8081A
Toxaphene [2C]	ND		0.48	0,11	ug/L	1.00	10/15/09 13:12	Z DGB	9J09108	8081A
Decachlorobiphenyl [2C]	88 %			: (15-139%)			10/15/09 13:12			8081A
Tetrachioro-m-xylene	66 %		Surr Limits	: (30-139%)			10/15/09 13:1:	2 DGB	9J09108	8081A
[2C]										
Polychlorinated Biphe	nyls by El	PA Method	8082							
Aroclor 1016	ND		0.48	0.17	ug/L	1.00	10/12/09 04:03	MxL E	9J09109	8082
Aroclor 1221	ND		0.48	0.17	ug/L	1.00	10/12/09 04:03			6082

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericalnc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

			An	alytical R	eport					
	Sample	Data		-	-	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-	17 (W7 - Gro	und Water	r) - cont.		Sam	pled: 1	0/08/09 08:45	Rec	vd: 10/09/	09 09:20
Polychlorinated Bipt	enyls by EP	A Method	8082 - con	ıt.						
Araclor 1232	ND	_	0.48	0.17	ug/L	1.00	10/12/09 04:03	JxM 8	9J09109	8082
Aroclor 1242	ND		0.48	0.17	ug/L	1.00	10/12/09 04:03	MxL 8	9J09109	8082
Aroclor 1248	ND		0.48	0.17	ug/L	1.00	10/12/09 04:03	JxM	9J09109	8082
Arocior 1254	ND		0.48	0.24	ug/L	1.00	10/12/09 04:03	MxU 8	9J09109	8082
Aroclor 1260	ND		0.48	0.24	ug/L	1.00	10/12/09 04:03	JxM	9J09109	8082
Aroclor 1262	ND		0.48	0.24	ug/L	1.00	10/12/09 04:03	JxM	9J09109	8082
Aroclor 1268	ND		0.48	0.24	ug/L	1.00	10/12/09 04:03	JxM	9J09109	8082
Decachlorobiphenyl	97 %		Surr Limits:	(12-137%)			10/12/09 04:03	3 JxM	9J09109	8082
Tetrachloro-m-xylene	69 %			(35-121%)			10/12/09 04:03	JxM	9J09109	8082
Total Metals by SW I	346 Şeries M	ethods								
Numinum	ND		0.200	0.040	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Arsenic	ND		0.0100	0.0056	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Barium	ND		0.0020	0.0003	mg/L	1.00	10/13/09 17:28	DAN	BJ12069	6010B
Berylllum	ND		0.0020	0.0002	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Cadmium	ND		0.0010	0.0003	mg/L	1.00	10/13/09 17:28	DAN	9J12089	8010B
Calcium	0.1	J	0.5	0.1	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Copper	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:28	DAN	9J12089	6010B
ron	ND		0.050	0.019	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
_ead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
/lagneslum	ND		0.200	0.043	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Vlanganese	ND		0.0030	0.0002	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Nickel	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Potassium	ND		0.500	0.050	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Selenlum	ND		0,0150	0.0087	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Silver	ND		0.0030	0.0012	mg/L	1.00	10/13/09 17:28	DAN.	9J12069	6010B
Sodium	ND		1.0	0.3	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Thallium	ND		0.0200	0.0102	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
/anadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 17:28	B DAN	9J12069	6010B
Zinc	ND		0.0100	0.0015	mg/L	1.00	10/13/09 17:28	DAN	9J12069	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:10	MXM C	9J17027	7470A
General Chemistry P	arameters									
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:27	7 LRM	9J14038	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

-			Ar	nalytical F	Report					
	Sample	Data		•	-	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	atinU	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-18	(W8 - Gr	ound Water)			Sam	pled:	10/07/09 18:30	Rec	vd: 10/09/	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
1,1,2,2-Tetrachloroethane	ND	D08	4.0	0.85	ug/L	4.00	10/13/09 12:33		9J13014	8260B
1,1,2-Trichloroethane	ND	D08	4.0	0.92	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
1,1,2-Trichloro-1,2,2-triflu	ND	D08	4.0	1.2	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
oroethane					_					
1,1-Dichloroethane	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:33		9J13014	8260B
1,1-Dichloroethene	ND	D08	4.0	1.2	ug/L	4.00	10/13/09 12:33		9J13014	8260B
1,2,3-Trichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:33		9J13014	8260B
1,2,4-Trichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:33			8260B
1,2-Dibromo-3-chloroprop	ND	B0Q	4.0	1.6	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
1,2-Dibromoethane	ND	D08	4.0	0.66		4.00	10/12/00 12:22	DHC	0.142044	8260B
(ED8)	ND	000	4.0	0.00	ug/L	4.00	10/13/09 12:33	טחכ	9J13014	0,2000
1,2-Dichlorobenzene	ND	D08	4.0	0.81	ug/L	4.00	10/13/09 12:33	DHC	9113014	8260B
1.2-Dichloroethane	ND	D08	4.0	0.86	ug/L	4.00	10/13/09 12:33			8260B
1,2-Dichloropropane	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:33			8260B
1,3-Dichlorobertzene	ND	D08	4.0	1.4	ug/L	4.00	10/13/09 12:33		9J13014	8260B
1,4-Dichlorobenzene	ND	D08	4.0	1.6	ug/L	4.00	10/13/09 12:33			8260B
1,4-Dioxane	ND	D08	160	160	ug/L	4.00	10/13/09 12:33			82608
2-Butanone (MEK)	ND	D08	20	5.3	ug/L	4.00	10/13/09 12:33			8260B
2-Hexanone	ND	D08	20	5.0	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
4-Methyi-2-pentanone	ND	DOB	20	3.6	ug/L	4.00	10/13/09 12:33	DHC	9J13014	82608
(MIBK)					_					
Acelone	ND	D08	20	5.4	ug/L	4.00	10/13/09 12:33		9J13014	8260B
Benzene	B.6	D08	4.0	1.8	ug/L	4.00	10/13/09 12:33			8260B
Bromochloromethane	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:33		9J13014	8260B
Bromodichloromethane	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:33			8260B
Bromoform	ND	D08	4.0	1.0	ug/L	4.00	10/13/09 12:33			8260B
Bromomethane	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:33			8260B
Carbon disulfide	ND	DOB	4.0	0.78	ug/L	4.00	10/13/09 12:33			8260B
Carbon Tetrachloride	ND	D08	4.0	1.1	ug/L	4.00	10/13/09 12:33			8260B
Chlorobenzene	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:33			8260B
Dibromochloromethane	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:33			8260B
Chloroethane Chloroform	ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:33			8260B
Chloromethane	ND ND	D08	4.0	1.3	ug/L	4.00	10/13/09 12:33			8260B
cis-1,2-Dichloroethene	ND	D08	4.0	1.4	ug/L	4.00	10/13/09 12:33			8260B
cis-1,3-Dichloropropene	ND	D08 D08	4.0	1.5	ug/L	4.00	10/13/09 12:33			8260B
Cyclohexane	160	D08	4.0 4.0	1.4 2.1	ug/L	4.00 4.00	10/13/09 12:33 10/13/09 12:33			8260B 8260B
Dichlorodifluoromethane	ND	D08			ug/L					
Ethylbenzene	260	D08	4.0 4.0	1.1 0.74	ug/L	4.00 4.00				82608
Isopropylbenzene	60	D08	4.0		ug/L	4.00				82608
Methyl Acetate	ND	D08	4.0	0.77 2.0	ug/L	4.00				8260B
Methyl tert-Butyl Ether	ND	D08	4.0	2.0 0.64	ug/L	4.00				8260B
Methylcyclohexane	87	D08	4.0		ug/L	4.00				8260B
Methylene Chloride	ND			2.0	ug/L		10/13/09 12:33			8260B
m,p-Xylene	330	D08 D08	4.0 8.0	1.8 2.6	ug/L	4.00 4.00				8260B
o-Xylene	14	D08	4.0		ug/L	4.00				8260B
Styrene	ND	D08		1.4	ug/L					8260B
Tetrachloroethene	ND	D08	4.0	0.74	ug/L	4.00				8260B
Toluene	17	D08	4.0	1.5	ug/L	4.00				8260B
I SIGETIE	17	D09	4.0	2.0	ng/L	4,00	10/13/09 12:33	PINC	9313014	8260B

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

			Ana	alytical R	eport					
	Sample	Data		•	-	DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-18	(W8 - Gr	ound Wate	r) - cont.		Sam	pled: 1	0/07/09 18:30	Rec	vd: 10/09	/09 09:20
Volatile Organic Comp	ounds by	EPA 8260	B - cont.							
trans-1,2-Dichloroethene	ND	D08	4.0	1.7	ug/L	4.00	10/13/09 12:33			8260B
trans-1,3-Dichloropropen	ND	D08	4.0	1.5	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
e Tables at least	ND	500		4.5			1041000010010		0140541	
Trichloroethene Trichlorofluoromethane	ND ND	D08 D08	4.0	1.8	ug/L	4.00	10/13/09 12:33		9J13014	8260B
Vinyl chloride	ND	D08	4.0 4.0	0.61 0.97	ug/L ug/L	4.00	10/13/09 12:33 10/13/09 12:33		9J13014 9J13014	8260B 8260B
						4.00				
1,2-Dichloroethane-d4	84 %	D08	Surr Limits:				10/13/09 12:33			8260B
4-Bromofluorobenzene	<i>85</i> %	D08	Sun Limits:				10/13/09 12:33			8260B
Toluene-d8	83 %	D08	Sur Limits:	(/1-126%)			10/13/09 12:33	DHC	9J73014	8260B
Tentatively Identified (
Benzene, (1-methyl-1-propenyl)-, (E)- (000768-00-3)	160	D08,17	Rel Time: 12	2.164	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Benzene, 1-ethyl-2-methyl- (000611-14-3)	130	D08,T7	Ret Time: 10).207	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Benzene, 1-methyl-2- (1-methylethyl) (000527-84-4)	190	D08,T7	Ret Time: 11	.384	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Benzene, propyl- (000103-65-1)	180	D08,T7	Rel Time: 9.	823	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Butane, 2-methyl- (000078-78-4)	120	D08,T7	Ret Time: 1.	971	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Indan, 1-methyl- (000767-58-8)	120	D08,17	Rel Time: 11	1.493	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Pentane, 2-methyl- (000107-83-5)	180	D08,T7	Ret Time: 3.		ug/L	4.00	10/13/09 12:33			8260B
Pentane, 3-methyl- (000096-14-0)	110	D08,T7	Rel Time: 3.		ug/L	4.00	10/13/09 12:33			8260B
Unknown01 (none)	180	D08,17	Ret Time: 4.		ug/L	4.00	10/13/09 12:33		9J13014	8260B
Unknown02 (none)	310	D08,T7	Ret Time: 10).969	ug/L	4.00	10/13/09 12:33	DHC	9J13014	8260B
Semivolatile Organics		<u>S</u>								
1,2,4,5-Tetrachlorobenze ne	ND		4.7	0.77	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,3,4,6-Tetrachlorophenol	ND		4.7	2.0	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4,5-Trichlorophenol	ND		4.7	0.93	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4,6-Trichlorophenol	ND		4.7	0.94	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4-Dichlorophenol	ND		4.7	0.74	ug/L	1,00	10/13/09 21:48	MKP	9J12044	8270C
2,4-Dimethylphenol	ND		4.7	0.91	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4-Dinitrophenol	ND		9.4	2.1	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4-Dinitrotoluene	ND		4.7	0.42	ug/L	1.00	10/13/09 21:48	MKP.	9J12044	8270C
2,6-Dinitrololuene	ND		4.7	0.48	ug/L	1,00	10/13/09 21:48	MKP	9J12044	8270C
2-Chloronaphthalene	ИD		4.7	0.079	ug/L	1.00	10/13/09 21:48	MKP		8270C
2-Chlorophenol	ND		4.7	0.48	ug/L	1.00	10/13/09 21:48			8270C
2-Methylnaphthalene	22		4.7	0.077	ug/L	1.00	10/13/09 21:46		9J12044	8270C
2-Methylphenol	ND		4.7	0.22	ug/L	1.00	10/13/09 21:48		9J12044	8270C
2-Nitroaniline	ND		9.4	0.47	ug/L	1.00	10/13/09 21:48			8270C
2-Nitrophenol	ND		4.7	0.57	ug/L	1.00	10/13/09 21:48			8270C
3.3'-Dichlorobenzidine	ND		4.7	0.35	ug/L ug/L	1.00	10/13/09 21:46			8270C
3-Nitroaniline	ND		9.4	1.5		1.00	10/13/09 21:46			
4,6-Dinitro-2-methylphen	ND		9.4	2.1	ug/L	1.00	10/13/09 21:46			8270C
ol	NU		J.4	۷.۱	ug/L	1.00	10/13/08 Z 1:40	יייייייייייייייייייייייייייייייייייייי	3J (2 044	8270C

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

N-Nitrosodiphenylamine

TestAmerica Buffalo

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

			oject Num		1559-2					
			Ar	nalytical l	Report					
Analyte	Sample Result	Data	D.	MDI	11-34-	Dil	Date	Lab	Datab	Residence
-		Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-18	(W8 - Gr	ound Water)	- cont.		Sam	pled: 1	10/07/09 18:30	Rec	vd: 10/09	/09 09:20
Semivolatile Organics	by GC/M	S - cont.								
4-Bromophenyl phenyl	ND		4.7	0.85	ug/L	1.00	10/13/09 21:4	8 MKP	9J12044	8270C
ether 4-Chloro-3-methylphenol	ND		4.7	0.50		4.00	40/40/00 04:41	O SALCO	0.140044	8270C
4-Chloroaniline	ND		4.7 4.7	0.56 0.31	ug/L	1.00	10/13/09 21:48 10/13/09 21:48		9J12044 9J12044	8270C
4-Chlorophenyl phenyl	ND		4.7	0.31	ла\г	1.00	10/13/09 21:40		9J12044	8270C
ether	ND		4.7	0.16	ug/L	1.00	10/13/08 21.40	D MIL/L	83 12044	02700
4-Methylphenol	ND		9.4	0.55	ug/L	1.00	10/13/09 21:44	A MKP	9J12044	8270C
4-Nitroaniline	ND		9.4	0.43	ug/L	1.00	10/13/09 21:4			8270C
4-Nitrophenol	ND		9.4	1.4	ug/L	1.00	10/13/09 21:44			8270C
Acenaphthene	ND		4.7	0.11	ug/L	1.00	10/13/09 21:4			8270C
Acenaphthylene	ND		4.7	0.044	ug/L	1.00	10/13/09 21:4			8270C
Acetophenone	ND		4.7	0.96	ug/L	1.00	10/13/09 21:4			8270C
Anthracene	ND		4.7	0.053	ug/L	1.00	10/13/09 21:4			8270C
Atrazine	ND		4.7	1.0	ug/L	1.00	10/13/09 21:44			8270C
Benzaldehyde	ND		4.7	0.25	_	1.00	10/13/09 21:4			8270C
Benzo[a]anthracene	ND		4.7	0.080	ug/L	1.00	10/13/09 21:4			8270C
Велио[а]рутеле	ND		4.7	0.086	ug/L	1.00	10/13/09 21:4			8270C
Benzo(b)fluoranthene	ND				ug/L					
	_		4.7	0.059	ug/L	1.00	10/13/09 21:44			8270C
Benzo[g,h,i]perylene	ND ND		4.7	0.074	ug/L	1.00	10/13/09 21:44			8270C
Benzo[k]fluoranthene			4.7	0.062	ug/L	1.00	10/13/09 21:4			8270C
1,1'-Biphenyl	0.69	J	4.7	0.62	ug/L	1.00	10/13/09 21:4			8270C
Bls(2-chloroethoxy)metha ne	ND		4.7	0.35	ug/L	1.00	10/13/09 21:40	R WKD	9J12044	8270C
Bis(2-chloroethyl)ether	ND		4.7	0.17	ug/L	1.00	10/13/09 21:44	в МКР	9J12044	8270C
2,2'-oxybis[1-chloropropa	ND		3.8	3.8	ug/L	1.00	10/13/09 21:44	в мкр	9J12044	8270C
ne)										
Bis(2-ethy/hexyl)	ND		4.7	4.5	ug/L	1.00	10/13/09 21:44	в мкр	9J12044	8270C
phthalate				***	-3	*****				
Butyl benzyl phthalate	ND		4.7	1.6	սք/Լ	1.00	10/13/09 21:44	в мкр	9J12044	8270C
Caprolactam	ND		4.7	4.3	ug/L	1.00	10/13/09 21:44			8270C
Carbazole	ND		4.7	0.084	ug/L	1.00	10/13/09 21:44			8270C
Chrysene	ND		4.7	0.26	ug/L	1.00	10/13/09 21:44			8270C
Dibenz(a,h)anthracene	ND		4.7	0.19	ug/L	1.00	10/13/09 21:44			8270C
Dibenzofuran	ND		9.4	1.5	ug/L	1.00	10/13/09 21:4			8270C
Diethyl phthalate	ND		4.7	0.10	ug/L	1.00	10/13/09 21:4			8270C
Dimethyl phthalate	ND		4.7	0.10	ug/L	1.00	10/13/09 21:4			8270C
Di-n-butyl phthalate	0.54	J	4.7							
Di-n-octyl phthalate	ND	J		0.28	ug/L	1.00	10/13/09 21:44 10/13/09 21:44			8270C
Fluoranthene	ND		4.7	0.23	ug/L	1.00	10/13/09 21:44			8270C
Fluorene	0.30	1	4.7	0.092	ug/L	1.00				8270C
Hexachlorobenzene	ND	J	4.7	0.070	ug/L	1.00	10/13/09 21:4			8270C
			4.7	0.42	ug/L	1.00	10/13/09 21:4			8270C
Hexachlorobutadiene	ND		4.7	2.4	ug/L	1.00	10/13/09 21:4			8270C
Hexachlorocyclopentadie ne	ND		4.7	2.4	ug/L	1.00	10/13/09 21:44	o MKP	9J1ZU44	8270C
Hexachioroethane	ND		4.7	2.7	ug/L	1.00	10/13/09 21:4	8 MKP	9J12044	8270C
Indeno[1,2,3-cd]pyrene	ND		4.7	0.14	ug/L	1,00	10/13/09 21:4			8270C
Isophorone	ND		4.7	0.30	ug/L	1.00	10/13/09 21:4			8270C
Naphthalene	76		4.7	0.11	ug/L	1.00	10/13/09 21:4			8270C
Nitrobenzene	ND		4.7	0.51	_	1.00	10/13/09 21:4			8270C
N-Nitrosodi-n-propylamin	ND		4.7		ug/L	1.00	10/13/09 21:4			
e			7.1	0.43	ug/L	1.00	10/13/08 21:4	O WILL	83 12044	8270C
N. Nikosandiahanulamina	ARM		4.7				404000000			

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

4.7

0.25

ug/L

1.00 10/13/09 21:48 MKP 9J12044

8270C

ND

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical R	eport					
	Sample	Data				DII	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed	Tech	Batch	Method
Sample ID: RSJ0643-11	3 (W8 - Gr	ound Water	r) - cont.		Sam	pled: 1	10/07/09 18:30	Rec	vd: 10/09	09 09:20
Semivolatile Organics	by GC/MS	S - cont.								
Pentachlorophenol	ND		9.4	4.8	ug/L	1.00	10/13/09 21:48		9J12044	8270C
Phenanthrene	0.24	J	4.7	0.11	ug/L	1.00	10/13/09 21:46			8270C
Phenol	ND		4.7	0.42	ug/L	1.00	10/13/09 21:46		9J12044	8270C
Pyrene	ND		4.7	0.064	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
2,4,6-Tribromophenol	114 %	_	Surr Limits:	(52-132%)			10/13/09 21:40	MKP	9J12044	8270C
2-Fluorobiphenyl	97 %		Surr Limits:				10/13/09 21:48	MKP	9J12044	8270C
2-Fluorophenol	41 %		Sur Limits:	(20-120%)			10/13/09 21:40			8270C
Vilrobenzene-d5	98 %		Sur Limits:				10/13/09 21:48			8270C
Phenol-d5	29 %		Sur Limits:				10/13/09 21:41			8270C
o-Terphenyi-d14	88 %		Sur Limits:	(24-136%)			10/13/09 21:48	MKP	9J12044	8270C
Semivolatile Organics	TICs by G	C/MS								
3enzene, (1-mathylethyl)- 000098-82-8)	48	17	Ret Time: 4	.772	ug/L	1.00	10/13/09 21:46	MKP	9J12044	8270C
Benzene, propyl- (000103-65-1)	67	17	Ret Time: 5	.157	ug/L.	1.00	10/13/09 21:48	MKP	9J12044	8270C
ndane (000496-11-7)	150	17	Ret Time: 6	.118	ug/L	1,00	10/13/09 21:48	MKP	9J12044	8270C
Jnknown01 (none)	25	T7, B	Ret Time: 3	.148	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
Jnknown02 (none)	81	T7, B	Ret Time: 6	.316	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
Jnknown03 (none)	31	T7, B	Ret Time: 6	423	ug/L	1.00	10/13/09 21:48		9J12044	8270C
Jnknown04 (none)	41	T7, B	Ret Time: 7		ug/L	1.00	10/13/09 21:48		9J12044	8270C
Jnknown05 (none)	79				_	1.00	10/13/09 21:40		9J12044	8270C
• •		T7, B	Ret Time: 1		ug/L					
Jnknown06 (none)	37	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 21:40		9J12044	8270C
Unknown07 (none)	24	T7, B	Ret Time: 1		ug/L	1.00	10/13/09 21:40		9J12044	8270C
Unknown08 (none)	28	17, B	Rel Time: 1	4.223	ug/L	1,00	10/13/09 21:48		9J12044	8270C
Unknown09 (none)	90	T7, B	Ret Time: 1	4.34	ug/L	1.00	10/13/09 21:48		9J12044	8270C
Unknown10 (none)	56	T7, B	Ret Time; 1	4.938	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
Unknown11 (none)	25	T7, B	Rel Time: 1	4.97	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
UnknownBenzeneDerivative 01 (none)	52	17	Ret Time: 5	.285	ug/L	1.00	10/13/09 21:48	MKP	9J12044	8270C
UnknownBenzeneDerivative 02 (none)	84	77	Ret Time: 5	.461	ug/L	1.00	10/13/09 21:4	3 MKP	9J12044	8270C
UnknownBenzeneDerivative O3 (none)	120	T7	Ret Time: 5	.963	ug/L	1.00	10/13/09 21:4	MKP	9J12044	8270C
UnknownBenzeneDerivative (none)	72	77	Ret Time: 6	.231	ug/L	1.00	10/13/09 21:4	MKP	9J12044	8270C
UnknownBenzeneDerivative 05 (none)	28	77	Ret Time: 6	.925	ug/L	1.00	10/13/09 21:4	3 MKP	9J12044	8270C
Organochlorine Pestic	ides by E	PA Mathad	ROR1A							
4,4'-DDD (2C)	ND	· A inetilon	0.047	0.016	ug/L	1,00	10/15/09 13:44	nce	Q I0010P	8081A
4,4'-DDE [2C]	ND		0.047	0.016	ug/L	1.00	10/15/09 13:44			8081A
4,4'-DDT [2C]	ND		0.047	0.010	ug/L	1.00	10/15/09 13:44			8081A
Aldrin [2C]	ND		0.047	0.0062	ug/L	1.00	10/15/09 13:4			8081A
alpha BHC [2C]	0.024	J	0.047	0.0062	ug/L	1.00	10/15/09 13:4			8081A
alpha-Chlordane [2C]	ND		0.047	0.014	ug/L	1.00	10/15/09 13:44			8081A
pela-BHC [2C]	ND		0.047	0.023	ug/L	1,00	10/15/09 13:44			8081A
delta-BHC (2C)	ND		0.047	0.0095	ug/L	1.00	10/15/09 13:44			8081A
Dieldrin [20]	ND		0.047	0.018	ug/L	1.00	10/15/09 13:44			8081A
Endosulfan i [2C]	ND		0.047	0.010	ug/L	1,00	10/15/09 13:41			8081A

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			An	alytical R	eport					-
	Sample	Data		•	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-1	8 (W8 - Gr	ound Water	r) - cont.		Sarr	pled: '	10/07/09 18:30	Rec	vd: 10/09	/09 09:20
Organochlorina Pestic	ides by E	PA Method	8081A - co	ont.						
Endosulfan II [2C]	ND		0.047	0.011	ug/L	1.00	10/15/09 13:48	DGB	9J09108	8081A
Endosulfan sulfate [2C]	ND		0.047	0.015	ug/L	1.00	10/15/09 13:48	DGB	9J09108	8081A
Endrin (2C)	ND		0.047	0.013	ug/L	1.00	10/15/09 13:48			6081A
Endrin aldehyde [2C]	ND		0.047	0.015	ug/L	1.00	10/15/09 13:48			8081A
Endrin ketone [2C]	ND		0.047	0.011	ug/L	1,00	10/15/09 13:48			8081A
gamma-BHC (Lindane) [2C]	0.017	J	0.047	0.0057	ug/L	1.00	10/15/09 13:48			8081A
gemma-Chlordane [2C]	ND		0.047	0.010	ug/L	1.00	10/15/09 13:48			8081A
Heptachlor [2C]	ND	_	0.047	0.0080	ug/L	1.00	10/15/09 13:48			8081A
Heptachlor epoxide [2C]	0.037	J	0.047	0.0050	ug/L	1.00	10/15/09 13:48			8081A
Methoxychlor [2C]	ND		0.047	0.013	ug/L	1.00	10/15/09 13:48			8081A
Toxaphene [2C]			0.47	0.11	ug/L	1.00	10/15/09 13:48	DGB	9J09108	8081A
Decachlorobiphenyl [2C]	<i>5</i> 5 %	_	Surr Limits:	(15-139%)	_	_	10/15/09 13:46	DGB	9J09108	8081A
Tetrachloro-m-xylene	66 %		Surr Limits:	(30-139%)			10/15/09 13:48	DGB	9J09108	8081A
[2C]										
Polychlorinated Biphe Aroclor 1016		PA Method		5.45	-		4514615655446		0.100.400	4574
	ND		0.47	0.17	ug/L	1.00	10/12/09 04:18		9J09109	8082
Aroclor 1221	ND		0.47	0.17	ug/L	1.00	10/12/09 04:18		9J09109	8082
Aroclor 1232	ND		0.47	0.17	ug/L	1.00	10/12/09 04:18		9J09109	8082
Aroclor 1242 Aroclor 1248	ND ND		0.47	0.17	ug/L	1.00	10/12/09 04:18		9J09109	8082
Aroclor 1254	ND		0.47 0.47	0.17 0.24	ug/L	1.00 1.00	10/12/09 04:18 10/12/09 04:18		9J09109 9J09109	8082 8082
Arodor 1260	ND		0.47	0.24	ug/L ug/L	1.00	10/12/09 04:18		9J09109	8082
Aroclor 1262	ND		0.47	0.24	ug/L	1.00	10/12/09 04:16		9J09109	8082
Aroclor 1268	ND		0.47	0.24	ug/L	1.00	10/12/09 04:16		9J09109	8082
Dooroblombiohemid	72 %				-3					
Decachlorobiphenyl Tetrachloro-m-xylene	80 %			(12-137%) (35-121%)			10/12/09 04:18 10/12/09 04:18		9J09109 9J09109	8082 8082
Total Metals by SW 84	6 Series N	<u>Methods</u>								
Aluminum	ND		0.200	0.040	mg/L	1.00	10/13/09 17:33		9J12069	6010B
Antimony	ND		0.0200	0.0068	mg/L	1.00	10/13/09 17:33			6010B
Arsenic	0.0087	J	0.0100	0.0056	mg/L	1.00	10/13/09 17:33		9J12069	6010B
Barium	0.0737		0,0020	0.0003	mg/L	1.00	10/13/09 17:33			6010B
Beryllium	0.0002	J	0.0020	0.0002	mg/L	1.00	10/13/09 17:33			6010B
Cadmium	ND		0.0010	0.0003	mg/L	1.00	10/13/09 17:33			60108
Calcium	36,5		0.5	0.1	mg/L	1.00				6010B
Chromium	ND		0.0040	0.0009	mg/L	1.00	10/13/09 17:33			6010B
Cobalt	ND		0.0040	0.0006	mg/L	1.00				6010B
Copper	ND		0.0100	0.0013	mg/L	1.00	10/13/09 17:33			6010B
Iron	7.15		0.050	0.019	mg/L	1.00	10/13/09 17:33			6010B
Lead	ND		0.0050	0.0030	mg/L	1.00	10/13/09 17:33			6010B
Magnesium	8.22		0.200	0,043	mg/L	1.00	10/13/09 17:33			6010B
Manganese Nickel	1.93		0.0030	0.0002	mg/L	1.00	10/13/09 17:33			6010B
	ND 2.04		0.0100	0.0013	mg/L	1.00	10/13/09 17:33			6010B
Potassium Selenium	2.01		0.500	0.050	mg/L	1.00	10/13/09 17:33			6010B
Selenium Silver	ND		0.0150	0.0087	mg/L	1.00	10/13/09 17:33			6010B
Sodium	ND		0.0030	0.0012	mg/L	1.00	10/13/09 17:33			6010B
Thallium	162 ND		1.0	0.3	mg/L	1.00	10/13/09 17:33			60108
(najkoj)	ND		0.0200	0.0102	mg/L	1.00	10/13/09 17:33	DAN	30 (2008	60108

¹⁰ Hazelwood Drive Amhersl, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Projec

ct Number:	48001559-2	

			An	alytical F	Report					
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dii Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0	643-18 (W8 - Gro	und Water)	- cont.		Sam	pled: 1	0/07/09 18:30	Rec	vd: 10/09/	09 09:20
Total Metals by	SW 846 Series Me	thods - co	nt.							
Vanadium	ND		0.0050	0.0011	mg/L	1.00	10/13/09 17:33	DAN	9J12069	6010B
Zinc	ND		0.0100	0.0015	mg/L	1.00	10/13/09 17:33	DAN	9J12069	6010B
Mercury	ND		0.0002	0.0001	mg/L	1.00	10/17/09 18:12	MXM	9J17027	7470A
General Chemis	try Parameters									
Cyanide	ND	L	0.0100	0.0050	mg/L	1.00	10/16/09 09:27	LRM	9J14038	9012A

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

Analytical Report										
	Sample	Data		-	•	Dil	Date	Lab		
Analyte	Result	Qualifiers	RL	MDL	Units	Fac	Analyzed		Batch	Method
Sample ID: RSJ0643-19 (TRIP BLANK - Water))		Sampled: 10/08/09			Recvd: 10/09/09 09:20		
Volatile Organic Comp	ounds by	EPA 8260B								
1,1,1-Trichloroethane	ND		1.0	0.26	ug/L	1.00	10/13/09 06:0			8260B
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L	1.00	10/13/09 06:03			8260B
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L	1.00	10/13/09 06:0			8260B
1,1,2-Trichloro-1,2,2-Iriflu	ND		1.0	0.31	ug/L	1.00	10/13/09 06:0	2 NMD	9J12089	8260B
oroethane						4.50	40140400 00-0	a NIMB	0.142000	8260B
1,1-Dichloroethane	ND		1.0	0.38	ug/L	1.00	10/13/09 06:0 10/13/09 06:0			8260B
1,1-Dichloroethene	ND		1.0	0.29	ug/L	1.00	10/13/09 06:0			8260B
1,2,3-Trichlorobenzene	ND		1.0	0.39	ug/L	1,00	10/13/09 06:0			8260B
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L	1.00	10/13/09 06:0			8260B
1,2-Dibromo-3-chloroprop	ND		1.0	0.39	ug/L	1.00	10/13/09 00.0	Z INIVID	3012003	82008
ane	ND		4.0	0.17	unh	1.00	10/13/09 06:0	2 NMD	9.112089	8260B
1,2-Dibromoethane	ND		1.0	0.17	ug/L	1,00	10/13/08 00.0	Z MIND	30 12000	02000
(EDB)	ND		1.0	0.20	ug/L	1.00	10/13/09 06:0	2 NMO	9J12089	8260B
1,2-Dichlorobenzene 1,2-Dichloroelhane	ND		1.0	0.21	ug/L	1.00	10/13/09 06:0			8260B
1,2-Dichloropropane	ND		1.0	0.32	ug/L	1,00	10/13/09 06:0			8260B
1,2-Dichlorobenzene	ND		1.0	0.36	ug/L	1.00	10/13/09 06:0			8260B
1,4-Dichlorobenzene	ND		1.0	0.39	ug/L	1,00	10/13/09 06:0			8260B
1.4-Dioxane	ND		40	40	ug/L	1.00	10/13/09 06:0			8260B
2-Bulanone (MEK)	ND		5.0	1.3	ug/L	1.00	10/13/09 06:0			8260B
2-Hexanone	ND		5.0	1.2	ug/L	1.00	10/13/09 06:0			8260B
4-Methyl-2-penianone	ND		5.0	0.91	ug/L	1,00	10/13/09 06:0			8260B
(MIBK)	110		0.0	0.01	-6	,,,,,				
Acetone	ND		5,0	1.3	ug/L	1.00	10/13/09 06:0	2 NMD	9J12089	82608
Benzene	ND		1.0	0.41	ug/L	1.00	10/13/09 06:0			8260B
Bromochloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 06:0	2 NMD	9J12089	8260B
Bromodichloromethane	ND		1.0	0.39	ug/L	1.00	10/13/09 06:0			8260B
Bromoform	ND		1.0	0.26	ug/L	1.00	10/13/09 06:0			8260B
Bromomethane	ND		1.0	0.28	ug/L	1.00	10/13/09 06:0			8260B
Carbon disulfide	ND		1.0	0.19	ug/L	1.00	10/13/09 06:0			8260B
Carbon Tetrachloride	ND		1.0	0.27	ug/L	1.00	10/13/09 06:0			8260B
Chlorobenzene	ND		1,0	0.32	ug/L	1.00	10/13/09 06:0)2 NMC	9J12089	8260B
Dibromochloromethane	ND		1,0	0.32	ug/L	1.00	10/13/09 06:0			8260B
Chloroethane	ND		1.0	0.32	ug/L	1.00	10/13/09 08:0			8260B
Chloroform	ND		1.0	0.34	ug/L	1.00	10/13/09 06:0			8260B
Chloromethane	ND		1.0	0.35	ug/L	1.00	10/13/09 06:0			8260B
cls-1,2-Dichloroethene	ND		1.0	0.38	ug/L	1.00	10/13/09 08:0			8260B
cls-1,3-Dichloropropene	ND		1.0	0.36	ug/L	1.00	10/13/09 06:0			8260B
Cyclohexane	ND		1.0	0.53	ug/L	1,00				8260B
Dichlorodifluoromethane	ND		1.0	0.29	ug/L	1.00				8260B
Ethylbenzene	ND		1.0	0.18	ug/L	1,00				8260B
lsopropylbenzene	ND		1,0	0.19	ug/L	1.00				8260B
Methyl Acetate	ND		1.0	0.50	ug/L	1.00				8260B
Melhyl tert-Butyl Ether	ND		1.0	0.16	ug/L	1.00				8260B
Methylcyclohexane	ND		1.0	0.50	ug/L	1.00		-		
Methylene Chloride	ND		1.0	0.44	ug/L	1.00				
m,p-Xylene	ND		2.0	0.66	ug/L	1.00				
o-Xylene	ND		1.0	0.36	ug/L	1.00				
Styrene	ND		1.0	0.18	ug/L	1.00				8260B
Tetrachloroethene	ND		1.0	0.36	ug/L	1.00				
Toluene	ND		1.0	0.51	ug/L	1.00	10/13/09 06:	02 NM[9J12089	8260B

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Analytical Report										
Analyte	Sample Result	Data Qualifiers	RL	MDL	Units	Dil Fac	Date Analyzed	Lab Tech	Batch	Method
Sample ID: RSJ0643-19 (TRIP BLANK - Water) - cont.					Sam	pled: 1	0/08/09	Recvd: 10/09/0		09 09:20
Volatile Organic Comp	ounds by	EPA 8260E	3 - cont.							
trans-1,2-Dichloroethene	ND		1.0	0.42	ug/L	1,00	10/13/09 06:02	NMD	9J12089	8260B
trans-1,3-Dichloropropeл	ND		1.0	0.37	ug/L	1.00	10/13/09 08:02	MMD	9J12089	8260B
е										
Trichloroethene	ND		1.0	0.46	ug/L	1.00	10/13/09 06:02	NMD	9J12089	8260B
Trichlorofluoromethane	ND		1.0	0.15	ug/L	1.00	10/13/09 06:02	NMD	9J12089	8260B
Vinyl chloride	ND		1.0	0.24	ug/L	1.00	10/13/09 06:02	NMD	9J12089	8260B
1,2-Dichloroethane-d4	89 %		Surr Limits:	(66-137%)			10/13/09 06:02	NMD	9J12089	8260B
4-Bromofluorobenzene	99 %			(73-120%)			10/13/09 06:02	NMD	9J12089	8260B
Toluene-d8	98 %		Surr Limits:	(71-126%)			10/13/09 06:02	NMD	9J12089	8260B
Tentatively Identified	Compoun	ds by EPA	8260B							
No TICs found (NOTICS)	ND				ug/L	1.00	10/13/09 06:02	NMD	9J12089	8260B

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	WI/Vol Extracte	Units	Extract Volume	Units	Date Prepared		Lab Tech	Extraction Method
General Chemistry Parame	lers									
9012A	9J14035	R\$J0643-09	0.50	g	50.00	mL	10/14/09 10:	24 /	AMP	Cn Digestion
9012A	9J14035	RSJ0643-06	0.51	g	50.00	mL	10/14/09 10:	24 /	AMP	Cn Digestion
9012A	9J14035	RSJ0643-07	0.51	g	50.00	mL	10/14/09 10:	24 /	AMP	Cn Digestion
9012A	9J14035	RSJ0643-08	0.52	Q	50.00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14035	RSJ0643-10	0.52	Ω	50.00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14035	RSJ0643-05	0.53	Ω	50.00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14035	R\$J0643-02	0.53	9	50.00	mL	10/14/09 10:	24 .	AMP	Cn Digestion
9012A	9J14035	RSJ0643-04	0.54	Ω	50,00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14035	RSJ0643-01	0.55	Ω	50.00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14035	RSJ0643-03	0,57	А	50.00	mL	10/14/09 10:	24	AMP	Cn Digestion
9012A	9J14038	RSJ0643-11	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-12	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-13	50.00	mL	50.00	mL,	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-14	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-15	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-16	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-17	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
9012A	9J14038	RSJ0643-18	50.00	mL	50.00	mL	10/14/09 10:	30	AMP	Cn Digestion
Dry Welght	9J12049	RSJ0643-01	10.00	g	10.00	q	10/12/09 10:	54	JRR	Dry Weight
Dry Weighl	9J12049	RSJ0643-02	10.00	q	10.00	g	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	RSJ0643-03	10.00	q	10.00	я	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	RSJ0643-04	10.00	Д	10.00	g	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	R\$J0643-05	10.00	q	10.00	g	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	RSJ0643-06	10.00	q	10.00	g	10/12/09 10:	54	JRR	Dry Welght
Dry Weight	9J12049	RSJ0643-07	10.00	q	10.00	g	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	RSJ0643-08	10.00	Ω	10.00	Я	10/12/09 10:	54	JRR	Dry Weight
Dry Weight	9J12049	RSJ0643-09	10.00	q	10.00	g	10/12/09 10:	54	JRR	Dry Welghl
Dry Weight	9J12049	RSJ0643-10	10.00	9	10.00	q	10/12/09 10:	54	JRR	Dry Weight
Organochlorine Pesticides										
8081A	9J09108	RSJ0643-15	1,050.00) mL	10.00	mL	10/10/09 OB:			3510C GC
8081A	9J09108	RSJ0643-17	1,050.00		10.00	mL	10/10/09 08:			3510C GC
8081A	9J09108	RSJ0643-14	1,055.00) mL	10.00	mL	10/10/09 08:	20	BML	3510C GC
8081A	9J09108	RSJ0643-11	1,060.00		10.00	mL	10/10/09 08:	20	BML	3510C GC
8081A	9J09108	RSJ0643-12	1,060.00	mL)	10.00	mL	10/10/09 08:			3510C GC
8081A	9J09108	RSJ0643-13	1,060.00	mL)	10.00	mL	10/10/09 08:			3510C GC
8081A	9J09108	RSJ0643-16	1,060.00	mL (10.00	mĻ	10/10/09 08:	20	BML	3510C GC

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
8081A	9J09108	RSJ0643-18	1,060.00	mL	10.00	mL	10/10/09 08:21	BML	3510C GC
8081A	9J10008	RSJ0643-08	30.12	Q	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-05	30,14	Q	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-06	30.17	я	10,00	mL	10/12/09 08:30	CXM	3550B GC
8061A	9J10008	R\$J0643-07	30.29	g	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-03	30.32	q	10.00	mL	10/12/09 08:3	CXM	3550B GC
8081A	9J10008	RSJ0643-04	30.41	Я	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-09	30.54	Я	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-10	30.60	А	10.00	mL	10/12/09 08:30	CXM	3550B GC
8081A	9J10008	RSJ0643-02	30.61	Ω	10.00	mL	10/12/09 08:36	CXM	3550B GC
8081A	9J10008	RSJ0643-01	30.99	g	10.00	mL	10/12/09 08:30	CXM	3550B GC
Polychlorinated Blphenyls by	EPA Metho	d 8082							
8082	9J09109	RSJ0643-15	1,050.00	mL	10.00	mĻ	10/10/09 08:2	BML	3510C GC
8082	9J09109	RSJ0643-17	1,050.00	mĹ	10.00	mĹ	10/10/09 08:2:	BML	3510C GC
8082	9J09109	RSJ0643-14	1,055.00	mL	10.00	mL.	10/10/09 08:2	BML	3510C GC
8082	9J09109	RSJ0643-11	1,060.00	mŁ	10.00	mL	10/10/09 08:2	BML	3510C GC
8082	9J09109	RSJ0643-12	1,060.00	mL	10.00	mL	10/10/09 08:2	2 BML	3510C GC
8082	9J09109	RSJ0643-13	1,060.00	mĹ	10.00	mL	10/10/09 08:22	2 BML	3510C GC
8082	9J09109	RSJ0643-16	1,060.00	mL	10.00	mL	10/10/09 08:2	2 BML	3510C GC
8082	9J09109	RSJ0643-18	1,060.00	mL	10.00	mL	10/10/09 08:22	2 BML	3510C GC
8082	9J16100	RSJ0643-09	30.21	д	10.00	mL	10/17/09 08:00	EKD	3550B GC
8082	9J16100	RSJ0643-04	30.31	g	10.00	mL.	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-05	30.33	g	10.00	mL.	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-03	30.46	g	10.00	mL	10/17/09 08:0	EKD	3550B GC
8082	9J16100	R\$J0643-08	30,55	q	10.00	mL	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-01	30.65	g	10.00	mL	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-07	30.67	Q	10.00	mL	10/17/09 08:00	EKD	3550B GC
8082	9J16100	RSJ0643-06	30.68	Q	10.00	mL	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-10	30.74	q	10.00	mL	10/17/09 08:0	EKD	3550B GC
8082	9J16100	RSJ0643-02	30,76	Ω	10.00	mL	10/17/09 08:0	EKD	3550B GC
Semivolatile Organics by GC	/MS								
8270C	9J13065	RSJ0643-06	30.05	q	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-07	30.19	Д	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-04	30,26	g	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-09	30.32	д	1.00	mĽ	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-08	30.37	g	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-10	30.42	g	1.00	шГ	10/14/09 09:1	EKD	3550B MB

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site

Project Number: 48001559-2

SAMPLE EXTRACTION DATA

Dommatar	Detak	lab bloomban	WI/Vol	1-14-	Extract Volume	* 1=74=	Data Bransrad	Lab	Extraction Mathed
Parameter	Batch	Lab Number	Extracte (•			Date Prepared	Tech	Extraction Method
8270C	9J13065	RSJ0643-01	30.52	Д	1.00	mL 	10/14/09 09:15		3550B MB
8270C	9J13065	RSJ0643-02	30.55	g	1.00	mL	10/14/09 09:1:		3550B MB
8270C	9J13065	RSJ0643-03	30.84	Q	1.00	mL	10/14/09 09:1		3550B MB
8270C	9J13065	RSJ0643-05	30.87	q	1.00	mL	10/14/09 09:15		3550B MB
8270C	9J12044	RSJ0643-13	1,050.00		1.00	mL	10/12/09 16:00		3510C MB
8270C	9J12044	RSJ0643-14	1,050.00		1.00	mL	10/12/09 16:0		3510C MB
8270C	9J12044	RSJ0643-15	1,050.00		1.00	mL	10/12/09 16:0		3510C MB
8270C	9J12044	RSJ0643-16	1,050.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J120 44	RSJ0643-11	1,055.00	шĽ	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-12	1,055.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-17	1,055.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-18	1,060.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
Semivolatile Organics TICs by									
8270C	9J13065	RSJ0643-06	30.05	Д	1.00	mL	10/14/09 09:1		3550B MB
8270C	9J13065	RSJ0643-07	30.19	д	1.00	mL	10/14/09 09:1		3550B MB
8270C	9J13065	RSJ0643-04	30,26	Я	1.00	mL	10/14/09 09:1		3550B MB
8270C	9J13065	RSJ0643-09	30.32	Q	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-08	30.37	Q	1.00	mL	10/14/09 09:1		3550B MB
8270C	9J13065	RSJ0643-10	30.42	Д	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-01	30.52	Ø	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-02	30.55	Ω	1.00	mL.	10/14/09 09:1	EKD	3550B MB
8270C	9J13065	RSJ0643-03	30.84	g	1.00	mL	10/14/09 09:1	5 EKD	3550B MB
8270C	9J13065	RSJ0643-05	30.87	g	1.00	mL	10/14/09 09:1	EKD	3550B MB
8270C	9J12044	RSJ0643-13	1,050.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-14	1,050.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-15	1,050.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-16	1,050,00	mL.	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-11	1,055.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-12	1,055.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-17	1,055.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
8270C	9J12044	RSJ0643-18	1,060.00	mL	1.00	mL	10/12/09 16:0	KMB	3510C MB
Tentatively Identified Compos	unds by EP.	A 8260B							
8260B	9J13014	R\$J0643-16	5.00	mL	5.00	mL	10/13/09 10:5	DHC	5030B MS
8260B	9J13014	RSJ0643-18	5.00	mL	5.00	mL	10/13/09 10:5	DHC	5030B MS
8260B	9J12089	RSJ0643-11	5.00	mL	5.00	mL	10/12/09 20:2	DMN 8	5030B MS
8260B	9J12089	RSJ0643-12	5.00	mL	5.00	mL	10/12/09 20:2	NMD	5030B MS
8260B	9J12089	RSJ0643-13	5,00	mL	5.00	mL	10/12/09 20:2	NMD	5030B MS

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracte	Unils	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
8260B	9J12089	RSJ0643-14	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B	9J12089	RSJ0643-15	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B	9J12089	RSJ0643-17	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B	9J12089	RSJ0643-19	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B	9J10019	RSJ0643-04	1.03	g	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-01	5.00	Я	5.00	mL	10/10/09 12:18	TRB	5030B MS
82608	9J10019	RSJ0643-06	5.01	g	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-05	5.03	Д	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-10	5.03	д	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-03	5.04	Д	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-02	5.10	g	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-07	5.11	Я	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-08	5.11	Я	5.00	mL	10/10/09 12:18	TRB	5030B MS
8260B	9J10019	RSJ0643-09	5.13	д	5.00	mL	10/10/09 12:18	TRB	5030B MS
Total Metals by SW 846 Se	eries Methods								
6010B	9J12069	RSJ0643-11	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-12	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-13	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-14	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-15	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-16	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-17	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J12069	RSJ0643-18	50.00	mL	50.00	mL	10/13/09 09:15	KCW	3005A
6010B	9J15055	RSJ0643-10	0.47	g	50.00	mL	10/15/09 14:10	KCW	3050B
6010B	9J15055	RSJ0643-09	0.47	g	50.00	mL	10/15/09 14:10	KCW	30508
6010B	9J15055	RSJ0643-04	0.48	Q	50.00	mL	10/15/09 14:10	KCW	3050B
6010B	9J15055	RSJ0643-01	0.49	g	50.00	mL	10/15/09 14:10	KCW	30508
6010B	9J15055	RSJ0643-03	0.49	Я	50.00	mL	10/15/09 14:10	KCW	30508
6010B	9J15055	RSJ0643-05	0.50	q	50.00	mL	10/15/09 14:10	KCW	3050B
6010B	9J15055	RSJ0643-07	0.50	q	50.00	mL	10/15/09 14:10	KCW	3050B
6010B	9J15055	RSJ0643-08	0.52	q	50.00	mL	10/15/09 14:10	KCW	3050B
6010B	9J15055	RSJ0643-06	0.53	р	50.00	mL	10/15/09 14:10	KCW	30508
6010B	9J15055	RSJ0643-02	0.54	Д	50.00	mL	10/15/09 14:10	KCW	3050B
7470A	9J17027	RSJ0643-11	30.00	mL	50.00	mL	10/17/09 14:45	MXM	7470A
7470A	9J17027	RSJ0643-12	30.00	mL	50.00	mL	10/17/09 14:45	МХМ	7470A
7470A	9J17027	RSJ0643-13	30,00	mL	50,00	mĻ	10/17/09 14:45	МХМ	7470A
7470A	9J17027	RSJ0643-14	30.00	mL	50.00	mL	10/17/09 14:45		7470A
					-				

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericalnc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

SAMPLE EXTRACTION DATA

7470A 9J17027 RSJ0643-15 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7470A 9J17027 RSJ0643-16 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7470A 9J17027 RSJ0643-17 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7470A 9J17027 RSJ0643-18 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7471A 9J19064 RSJ0643-18 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7471A 9J19064 RSJ0643-01 0.58 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-18 5.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-18 5.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19069 RSJ0643-11 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19069 RSJ0643-11 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19069 RSJ0643-11 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19089 RSJ0643-11 5.00 mL 50.00 mL 10/12/09 20:28 NMD 5030B MS 7460B 9J12089 RSJ0643-13 5.00 mL 50.00 mL 10/12/09 20:28 NMD 5030B MS 7460B 9J12089 RSJ0643-15 5.00 mL 50.00 mL 10/12/09 20:28 NMD 5030B MS 7460B 9J10019 RSJ0643-07 5.00 mL 50.00 mL 10/12/09 20:28 NMD 5030B MS 7460B 9J10019 RSJ0643-07 5.00 mL 50.00 mL 10/12/09 20:28 NMD 5030B MS 7460B 9J10019 RSJ0643-07 5.00 mL 50.00 mL 10/10/09 12:18 PJQ 5030B MS 7460B 9J10019 RSJ0643-07 5.00 mL 50.00 mL 10/10/09 12:18 PJQ 5030B MS 7460B 9J10019 RSJ0643-07 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 7460B 9J10019 RSJ0643-07 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 7460B 9J10019 RSJ0643-07 5.11 q 5.00	Parameter	Balch	Lab Number	Wt/Vol Extracte	Units	Extract Volume	Units	Date Prepared	Lab Tech	Extraction Method
7470A 9J17027 RSJ0643-17 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7470A 9J17027 RSJ0643-18 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7471A 9J19064 RSJ0643-01 0.58 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-05 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-05 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 a 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 a 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 a 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-01 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 ML 50	7470A	9J17027	RSJ0643-15	30.00	mL	50.00	mL	10/17/09 14:45	MXM	7470A
7470A 9J19064 RSJ0643-18 30.00 mL 50.00 mL 10/17/09 14:45 MXM 7470A 7471A 9J19064 RSJ0643-01 0.58 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-05 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-16 5.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-16 5.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19064 RSJ0643-16 5.00 mL 5.00 mL 10/20/09 12:30 MXM 7471A 7471A 9J19084 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J19019 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-16 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/10 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/1	7470A	9J17027	RSJ0643-16	30.00	mL	50.00	шL	10/17/09 14:45	MXM	7470A
7471A 9J19064 RSJ0643-01 0.58 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-05 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-09 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 0.64 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/120/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/120/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/120/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/120/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/120/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 10/10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.00 mL 10/10/10/09 12:18 PJQ 5030B MS 8260B 9J1	7470A	9J17027	RSJ0643-17	30.00	mL	50.00	mL	10/17/09 14:45	MXM	7470A
7471A 9J19064 RSJ0643-05 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-18 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 g 5.00	7470A	9J17027	RSJ0643-18	30.00	mL	50.00	mL	10/17/09 14:45	MXM	7470A
7471A 9J19064 RSJ0643-03 0.59 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-06 0.64 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-06 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19084 RSJ0643-16 5.00 mL 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19084 RSJ0643-16 5.00 mL 50.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260	7471A	9J19064	RSJ0643-01	0.58	д	50.00	mL	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-09 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-01 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/20/09 12:30 MXM 7471A_	7471A	9J19064	RSJ0643-05	0.59	Д	50.00	mĻ	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-04 0.60 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-02 0.61 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.64 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 7471A_ 9J19064 RSJ0643-08 0.65 g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 7471A_ 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J1009 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJ	7471A	9J19064	RSJ0643-03	0.59	д	50.00	mL	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-02 0.61 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-10 0.61 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.66 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-10 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8	7471A	9J19064	RSJ0643-09	0.60	Я	50.00	mL	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-10 0.61 q g 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-06 0.64 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.	7471A	9J19064	RSJ0643-04	0.60	д	50.00	mL	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-07 0.62 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-06 0.64 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-16 5.00 mL 5.00 mL 10/20/09 12:30 MXM 7471A_ 7471A_ 7471A 9J1904 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 mL 5.00 mL 10/10/09 12:18 PJ	7471A	9J19064	RSJ0643-02	0.61	Ω	50.00	mL	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-06 0.64 q 50.00 mL 10/20/09 12:30 MXM 7471A_ 7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ Volatile Organic Compounds by EPA 8260B 8260B 9J13014 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00 mL 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	7471A	9J190 64	RSJ0643-10	0.61	g	50.00	mŁ	10/20/09 12:30	MXM	7471A_
7471A 9J19064 RSJ0643-08 0.65 q 50.00 mL 10/20/09 12:30 MXM 7471A_ Volatile Organic Compounds by EPA 8260B 8260B 9J13014 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089	7471A	9J19064	RSJ0643-07	0.62	q	50.00	mL	10/20/09 12:30	MXM	7471A_
Volatilis Organic Compounds by EPA 8260B 8260B 9J13014 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B <td>7471A</td> <td>9J19064</td> <td>RSJ0643-06</td> <td>0.64</td> <td>q</td> <td>50.00</td> <td>mL</td> <td>10/20/09 12:30</td> <td>MXM</td> <td>7471A_</td>	7471A	9J19064	RSJ0643-06	0.64	q	50.00	mL	10/20/09 12:30	MXM	7471A_
8260B 9J13014 RSJ0643-16 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-01 5.00	7471A	9J19064	R\$J0643-08	0,65	Q	50.00	mL	10/20/09 12:30	MXM	7471A_
8260B 9J13014 RSJ0643-18 5.00 mL 5.00 mL 10/13/09 10:59 DHC 5030B MS 8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 <	Volatila Organic Compo	ounds by EPA 826	60B							
8260B 9J12089 RSJ0643-11 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B	8260B	9J13014	RSJ0643-16	5.00	mL	5.00	mL	10/13/09 10:59	DHC	5030B MS
8260B 9J12089 RSJ0643-12 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12019 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS	8260B	9J13014	RSJ0643-18	5.00	mL	5.00	mL	10/13/09 10:59	DHC	5030B MS
8260B 9J12089 RSJ0643-13 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-14 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-04 1.03 g 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B	8260B	9J12089	RSJ0643-11	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J12089 RSJ0643-14 5,00 mL 5,00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-15 5,00 mL 5,00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-17 5,00 mL 5,00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5,00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1,03 q 5,00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5,00 q 5,00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5,03 q 5,00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9	8260B	9J12089	RSJ0643-12	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J12089 RSJ0643-15 5.00 mL 5.00 mL 10/12/09 20:28 NMD 50308 MS 8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 50308 MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 50308 MS 8260B 9J10019 RSJ0643-04 1.03 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL <t< td=""><td>8260B</td><td>9J12089</td><td>RSJ0643-13</td><td>5.00</td><td>mL</td><td>5.00</td><td>mL</td><td>10/12/09 20:28</td><td>NMD</td><td>5030B MS</td></t<>	8260B	9J12089	RSJ0643-13	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J12089 RSJ0643-17 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 q 5.00 mL <td< td=""><td>8260B</td><td>9J12089</td><td>RSJ0643-14</td><td>5,00</td><td>mL</td><td>5.00</td><td>mL</td><td>10/12/09 20:28</td><td>NMD</td><td>5030B MS</td></td<>	8260B	9J12089	RSJ0643-14	5,00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J12089 RSJ0643-19 5.00 mL 5.00 mL 10/12/09 20:28 NMD 5030B MS 8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-10 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL	8260B	9J12089	RSJ0643-15	5.00	mL	5.00	mL	10/12/09 20:28	NMD	50308 MS
8260B 9J10019 RSJ0643-04 1.03 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS <td>8260B</td> <td>9J12089</td> <td>RSJ0643-17</td> <td>5.00</td> <td>mL</td> <td>5.00</td> <td>mL</td> <td>10/12/09 20:28</td> <td>NMD</td> <td>5030B MS</td>	8260B	9J12089	RSJ0643-17	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J10019 RSJ0643-01 5.00 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-01 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS <td>8260B</td> <td>9J12089</td> <td>RSJ0643-19</td> <td>5.00</td> <td>mL</td> <td>5.00</td> <td>mL</td> <td>10/12/09 20:28</td> <td>NMD</td> <td>5030B MS</td>	8260B	9J12089	RSJ0643-19	5.00	mL	5.00	mL	10/12/09 20:28	NMD	5030B MS
8260B 9J10019 RSJ0643-06 5.01 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-10 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B	8260B	9J10019	RSJ0643-04	1.03	g	5.00	mL	10/10/09 12:18	PJQ	5030B MS
8260B 9J10019 RSJ0643-05 5.03 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-03 5.04 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	8260B	9J10019	RSJ0643-01	5.00	q	5.00	mL	10/10/09 12:18	PJQ	5030B MS
8260B 9J10019 RSJ0643-10 5.03 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-03 5.04 g 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-02 5.10 g 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS 8260B	8260B	9J10019	RSJ0643-06	5.01	q	5.00	mL	10/10/09 12:18	PJQ	5030B MS
8260B 9J10019 RSJ0643-03 5.04 Q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-02 5.10 Q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 Q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 Q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	8260B	9J10019	RSJ0643-05	5.03	q	5.00	mL	10/10/09 12:18	PJQ	5030B MS
8260B 9J10019 RSJ0643-02 5.10 g 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	8260B	9J10019	RSJ0643-10	5.03	Q	5.00	mL	10/10/09 12:18	PJQ	50308 MS
82608 9J10019 RSJ0643-07 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS 8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	8260B	9J10019	RSJ0643-03	5.04	ρ	5.00	mL	10/10/09 12:18	PJQ	50308 MS
8260B 9J10019 RSJ0643-08 5.11 q 5.00 mL 10/10/09 12:18 PJQ 50308 MS	8260B	9J10019	RSJ0643-02	5.10	Д	5.00	mL	10/10/09 12:18	PJQ	5030B MS
	82608	9J10019	RSJ0643-07	5.11	Q	5.00	mL	10/10/09 12:18	PJQ	5030B MS
8260B 9J10019 RSJ0643-09 5.13 q 5.00 mL 10/10/09 12:18 PJQ 5030B MS	82608	9J10019	RSJ0643-08	5.11	Q	5.00	mL	10/10/09 12:18	PJQ	50308 MS
	8260B	9J10019	RSJ0643-09	5.13	Q	5.00	mĻ	10/10/09 12:18	PJQ	5030B MS

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD Data RPD Limit Qualifiers
Volatile Organic Comp	ounds b	y EPA 826	50B						
Blank Analyzed: 10/10/	/09 (Lab	Number:							
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND			
1,1,2,2-Tetrachloroethane			5.0	0,81	ug/kg wet	ND			
1,1,2-Trichloroethane			5.0	0.25	ug/kg wet	ND			
1,1,2-Trichloro-1,2,2-trifluoroethane			5.0	2.5	ug/kg wet	ND			
1,1-Dichloroethane			5.0	0.25	ug/kg wet	ND			
1,1-Dichloroethene			5.0	0.61	ug/kg wel	ND			
1,2,3-Trichlorobenzene			5.0	0.53	ug/kg wet	ND			
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND			
1,2-Dibromo-3-chloroprop ane			5.0	2.5	ug/kg wet	ND			
1,2-Dibromoethane (EDB)			5.0	0.19	ug/kg wet	ND			
1,2-Dichlorobenzene			5.0	0.39	ug/kg wel	ND			
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND			
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND			
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND			
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND			
1,4-Dioxane			200	24	ug/kg wet	ND			
2-Butanone (MEK)			25	1.8	ug/kg wet	ND			
2-Hexanone			25	1.7	ug/kg wet	ND			
4-Methyl-2-pentanone (MIBK)			25	1.6	ug/kg wet	ND			
Acetone			25	1.1	ug/kg wet	ND			
Benzene			5.0	0.24	ug/kg wet	ND			
Bromochloromethane			5.0	0.36	ug/kg wet	ND			
Bromodichloromethane			5.0	0,26	ug/kg wet	ND			
Bromoform			5.0	2.5	ug/kg wet	ND			
Bromomethane			5.0	1,1	ug/kg wet	ND			
Carbon disulfide			5.0	0.43	ug/kg wet	ND			
Carbon Tetrachloride			5.0	0.48	ug/kg wet	ND			
Chlorobenzene			5.0	0.66	ug/kg wet	ND			
Dibromochloromethane			5.0	0.28	ug/kg wet	ND			
Chloroethane			5.0	2.1	ug/kg wet	ND			
Chloroform			5.0	0.31	ug/kg wet	ND			
Chloromethane			5.0	0.30	ug/kg wet	ND			
cis-1,2-Dichloroethene			5.0	0.25	ug/kg wel	ND			
cis-1,3-Dichloropropene			5.0	0.28	ug/kg wet	ND			
Cyclohexane			5.0	0.23	ug/kg wel	ND			
					_				

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

- 1 Δ	RO	PA	TORY	OC.	DATA	A
			IORI	w	$\nu \sim \nu$	~

			LA	BORATOR	Y QC DATA						
	Source	Spike					%	% REC	% RPI		Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Lim	it Qua	alifiers
Volatile Organic Comp	pounds b	<u>y EPA 82</u>	260B								
Blank Analyzed: 10/10	109 (Lah	Number	-9.110019.	BIK1 Batch	9.110019)						
Dichlorodifluoromethane	(202)		5.0	0.41	ug/kg wet	ND					
Ethylbenzene			5.0	0.34	ug/kg wet	ND					
Isopropylbenzene			5.0	0.75	ug/kg wet	NO					
Methyl Acetale			5.0	0.27	ug/kg wet	ND					
Methyl tert-Butyl Ether			5.0	0.49	ug/kg wet	ND					
Methylcyclohexane			5.0	0.32	ug/kg wet	ND					
Methylene Chloride			5.0	0.99	ug/kg wet	ND					
m-Xylene & p-Xylene			10	0.84	ug/kg wel	ND					
o-Xylene			5.0	0.65	ug/kg wet	ND					
Styrene			5.0	0.25	ug/kg wel	ND					
Tetrachloroethene			5.0	0.67	ug/kg wet	ND					
Toluene			5.0	0.38	ug/kg wet	ND					
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wel	ND					
trans-1,3-Dichloropropen			5.0	0.24	ug/kg wel	ND					
e Triablassathana			5.0	0.04		ND					
Trichloroethene			5.0	0.34	ug/kg wet	ND					
Trichlorofluoromethane			5.0	0.47	ug/kg wel	ND					
Vinyl chloride			10	0.61	ug/kg wet	ND		_			
Surrogate: 1,2-Dichloroethane-d4					ug/kg wet		95	64-126			
Surrogate:					ug/kg wet		112	72-126			
4-Bromofluorobenzene											
Surrogate: Toluene-d8					ug/kg wet		114	71-125			
LCS Analyzed: 10/10/0	09 (Lab N	lumber:9	J10019-E	S1, Batch: 9J	10019)						
1,1,1-Trichloroethane			5.0	0.36	ug/kg wet	ND		77-121			
1,1,2,2-Tetrachloroethane	•		5.0	0.81	ug/kg wel	ND		80-120			
1,1,2-Trichloroethane			5.0	0.25	ug/kg wel	ND		78-122			
1,1,2-Trichloro-1,2,2-trifiu			5.0	2.5	ug/kg wet	ND		60-140			
oroethane 1,1-Dichloroethane			5.0	0.25	un/ka wat	ND		79-126			
1,1-Dichloroethens		50.0	5.0	0.25	ug/kg wet ug/kg wet	66.7	133	65-153			
1,2,3-Trichlorobenzene		50.0	5.0	0.53	• •	ND	133	60-120			
1,2,4-Trichlorobenzene			5.0	0.30	ug/kg wet	ND		64-120			
1,2-Dibromo-3-chloroprop			5.0	2.5	ug/kg wet	ND		63-124			
ane	,			2.5	ug/kg wet			03-124			
1,2-Dibromoethane (EDB)			5.0	0.19	ug/kg wet	ND		78-120			
1,2-Dichlorobenzene			5.0	0.39	ug/kg wet	ND		75-120			
1,2-Dichloroethane			5.0	0.25	ug/kg wet	ND		77-122			
1,2-Dichloropropane			5.0	2.5	ug/kg wet	ND		75-124			
TestAmerica Buffalo											

TestAmerica Buffalo

www.testamericainc.com

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: R\$J0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Reported: 11/03/09 12:07

LABORATORY QC DATA

	Source	Spike			40 0,		%	% REC	% RPD Data
Analyte	Result	Leyel	RL	MDL	Units	Result			RPD Limit Qualifiers
Volatile Organic Com	pounds b								
_									
LCS Analyzed: 10/10/0	9 (Lab N	lumber:9.		-		NID		74 120	
1,3-Dichlorobenzene			5.0	0.26	ug/kg wet	ND		74-120	
1,4-Dichlorobenzene			5.0	0.70	ug/kg wet	ND		73-120	
2-Butanone (MEK)			25	1.8	ug/kg wet	ND		70-134	
2-Hexanone			25	1.7	ug/kg wet	ND		59-130	
4-Methyl-2-pentanone (MIBK)			25	1.6	ug/kg wet	ND		65-133	
Acelone			25	1.1	ug/kg wel	ND	400	61-137	
Benzene		50.0	5.0	0,24	ug/kg wel	50.2	100	79-127	
Bromochloromethane			5.0	0.36	ug/kg wel	ND		75-134	
Bromodichloromethane			5.0	0.26	ug/kg wet	ND		80-122	
Bromoform			5.0	2.5	ug/kg wet	ND		68-126	
Bromomethane			5.0	1.1	ug/kg wet	ND		37-149	
Carbon disulfide			5.0	0.43	ug/kg wel	ND		64-131	
Carbon Tetrachloride			5.0	0.48	ug/kg wel	ND		75-135	
Chlorobenzene		50,0	5.0	0.66	ug/kg wel	50.8	102	76-124	
Dibromochloromethane			5.0	0.28	ug/kg wet	ND		7 6 -125	
Chloroethane			5.0	2.1	ug/kg wet	ND		69-135	
Chloroform			5.0	0.31	ug/kg wet	ND		80-118	
Chloromethane			5.0	0.30	ug/kg wel	ND		63-127	
cis-1,2-Dichloroethene			5.0	0.25	ug/kg wel	ND		81-117	
cis-1,3-Dichloropropene			5.0	0.28	ug/kg wel	ND		82-120	
Cyclohexane			5.0	0.23	ug/kg wet	4.89		70-130	J
Dichlorodifluoromethane			5.0	0.41	ug/kg wet	ND		57-142	
Ethylbenzene			5.0	0.34	ug/kg wet	ND		80-120	
Isopropylbenzene			5.0	0.75	ug/kg wet	ND		72-120	
Methyl Acetate			5.0	0.27	ug/kg wet	ND		60-140	
Methyl tert-Butyl Ether			5.0	0.49	ug/kg wet	ND		63-125	
Methylcyclohexane			5.0	0.32	ug/kg wel	ND		60-140	
Methylene Chloride			5.0	0.99	ug/kg wel	ND		61-127	
m-Xylene & p-Xylene			10	0.84	ug/kg wel	ND		70-130	
o-Xylene			5.0	0.65	ug/kg wet	ND		70-130	
Styrene			5.0	0.25	ug/kg wet	ND		80-120	
Tetrachloroethene			5.0	0.67	ug/kg wet	ND		74-122	
Toluene		50.0	5.0	0.38	ug/kg wet	51.1	102	74-128	
trans-1,2-Dichloroethene			5.0	0.52	ug/kg wet	ND		78-126	
trans-1,3-Dichloropropen e			5.0	0.24	ug/kg wel	ND		73-123	
Trichloroethene		50.0	5.0	0.34	ug/kg wet	51.2	102	77-129	
Trichlorofluoromethane			5.0	0.47	ug/kg wet	ND		65-146	
TestAmerica Buffalo									

TeşlAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattonl Brownfield Sile Project Number: 48001559-2

	LABORATORY QC DATA											
	Source	Spike		ADDIONI OR	I WO DATA		04	P/ DEC				
Analyte	Result	Level	RL	MDL	Units_	Result	% REC	% REC % RPD Data Limits RPD Limit Qualifiers				
Volatile Organic Comp	ounds b	y EPA 82	<u>60B</u>									
LCS Analyzed: 10/10/0	9 (Lab N	umber:9.	110019-	BS1. Batch: 9J	10019)							
Vinyl chloride	. ,		10	0.61	ug/kg wet	ND		61-133				
Surrogale:	_				ug/kg wet		96	64-126				
1,2-Dichloroethane-d4 Surrogate:					ug∕kg wet		109	72-126				
4-Bromofluorobenzene Surrogete: Toluene-d8					ug/kg wet		112	71-125				
Volatile Organic Comp	ounds b	v EPA 82	80B									
	_											
Blank Analyzed: 10/12/	09 (Lab	Number:										
1,1,1-Trichloroethane			1.0	0.26	u g/L	ND						
1,1,2,2-Telrachloroethane			1.0	0.21	υg/L	ND						
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND						
1,1,2-Trichloro-1,2,2-triflu oroethane			1.0	0.31	ug/L	ND						
1,1-Dichloroethane			1.0	0.38	ug/L	ND						
1,1-Dichloroethene			1.0	0.29	ug/L	ND						
1,2,3-Trichlorobenzene			1.0	0.41	ug/L	ND						
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND						
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND						
1,2-Dibromoelhane (EDB)			1.0	0.17	ug/L	ND						
1,2-Dichlorobenzene			1.0	0.20	ug/L	ND						
1,2-Dichloroethane			1.0	0.21	ug/L	ND						
1,2-Dichloropropane			1.0	0.33	ug/L	ND						
1,3-Dichlorobenzene			1.0	0.36	ug/L	ND						
1,4-Dichlorobenzene			1.0	0.39	ug/L	ND						
1,4-Dioxane			40	9.3	ug/L	ND						
2-Butanone (MEK)			5.0	1.3	ug/L	ND						
2-Hexanone			5.0	1.2	ug/L	ND						
4-Methyl-2-pentanone (MIBK)			5.0	0,91	ug/L	ND						
Acetone			5.0	1.3	ug/L	ND						
Benzene			1.0	0.41	ug/L	ND						
Bromochioromethane			1.0	0.39	ug/L	ND						
Bromodichloromethane			1.0	0.39	ug/L	ND						
Bromoform			1.0	0.26	ug/L	ND						
Bromomethane			1.0	0.28	ug/L	ND						
Carbon disulfide			1.0	0.19	ug/L	ND						

TestAmerica Buffalo

Carbon Tetrachloride

1.0

0.27

ND

ug/L

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

Thonotosassa, FL 33592				Ciabattoni Brov Number: 4800	1559-2				
		· · · · · ·	LAI	BORATORY	QC DATA			_	
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD Dat
Volatile Organic Com	pounds by	v EPA 820	60B						
Blank Analyzed: 10/12	7/00 (I ab	Number	0 142000 1	DIK4 Datahi	0.142000\				
Chiorobenzene	deal) con	Hullinel .:	1.0	0.32	ug/L	ND			
Dibromochloromethane			1.0	0.32	ug/L	ND			
Chloroethane			1.0	0,32	ug/L	ND			
Chloroform			1.0	0.34	ug/L	ND			
Chloromethane			1.0	0.35	ug/L	ND			
cis-1,2-Dichloroethene			1.0	0.38	ug/L	ND			
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND			
Cyclohexane			1.0	0.53	ug/L	ND			
Dichlorodifluoromethane			1,0	0.29	ug/L	ND			
Elhylbenzene			1.0	0.18	ug/L	ND			
Isopropylbenzene			1,0	0.19	ug/L	ND			
Methyl Acetate			1.0	0.50	ug/L	ND			
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND			
Methylcyclohexane			1.0	0.50	ug/L	ND			
Methylene Chloride			1.0	0.44	ug/L	ND			
m,p-Xylene			2.0	0.66	ug/L	ND			
o-Xylene			1.0	0.36	ug/L	ND			
Styrene			1.0	0.18	ug/L	ND			
Tetrachloroethene			1.0	0.36	ug/L	ND			
Toluene			1.0	0.51	ug/L	ND			
Irans-1,2-Dichloroethene			1.0	0.42	ug/L	ND			
trans-1,3-Dichloropropen			1.0	0.37	ug/L	ND			
e					_				
Trichloroethene			1.0	0.46	ug/L	ND			
Trichlorofluoromethane			1.0	0.15	ug/L	ND			
Vinyl chloride			1.0	0.24	ug/L	ND			
Surrogale:					ug/L		93	66-137	
1,2-Dichloroethane-d4 Surrogate: 4-Bromofluorobenzene					ug/L		95	73-120	
Surrogale: Toluene-d8					ug/L		96	71-126	
LCS Analyzed: 10/12/)9 (Lab N	umber:9.	J12089-R	S1. Batch: 9.5	12089)				
1,1,1-Trichloroethane	,=== 11	25.0	1.0	0.26	ug/L	24.8	99	73-126	
1,1,2,2-Tetrachloroethane		25.0	1.0	0,21	ug/L	23.8	95	70-126	
1,1,2-Trichloroethane		25.0	1.0	0.23	ug/L	22.8	91	76-122	
1,1,2-Trichloro-1,2,2-triflu oroethane		25.0	1.0	0.31	ug/L	23.0	92	60-140	
1,1-Dichloroethane		25.0	1.0	0.38	ug/L	25.4	101	71-129	

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 46001559-2

LABORATORY QC DATA

	Source	Spike					%	% REC % RPD Date	à
Analyte	Result	Level	RL	MDL	Units	Result		Limits RPD Limit Qualifi	ers
Volatile Organic Comp	ounds b	y EPA 82	260B						
LCS Analyzed: 10/12/0	9 (Lab N	lumber:9	J12089-B	S1. Batch: 9J:	(2089)				
1,2,3-Trichlorobenzene	- (=== /.	25.0	1.0	0.41	ug/L	23.6	94	64-121	
1,2,4-Trichlorobenzene		25.0	1.0	0.41	ug/L	24.1	96	70-122	
1,2-Dibromo-3-chloroprop		25.0	1.0	0.39	ug/L	20.2	81	56-134	
ane									
1,2-Dibromoethane (EDB)		25.0	1.0	0.17	ug/L	22.5	90	77-120	
1,2-Dichlorobenzene		25.0	1,0	0.20	ug/L	23.2	93	77-120	
1,2-Dichloroethana		25.0	1.0	0.21	ug/L	21.6	86	75-127	
1,2-Dichloropropene		25.0	1.0	0.33	ug/L	24.1	97	76-120	
1,3-Dichlorobenzene		25.0	1.0	0.36	ug/L	23.2	93	77-120	
1,4-Dichlorobenzene		25.0	1.0	0.39	ug/L	22.8	91	75-120	
1,4-Dioxane			40	9.3	ug/L	ND			
2-Bulanone (MEK)		125	5.0	1.3	ug/L	108	86	57-140	
2-Hexanona		125	5.0	1.2	ug/L	112	90	65-127	
4-Mathyl-2-pentanone (MIBK)		125	5.0	0.91	ug/L	111	88	71-125	
Acetone		125	5.0	1.3	ug/L	113	90	56-142	
Benzene		25.0	1.0	0.41	υg/L	24.5	98	71-124	
Bromochloromethane		25.0	1.0	0.39	ug/L	24.4	98	72-130	
Bromodichloromethane		25.0	1.0	0.39	ug/L	24.0	96	80-122	
Bromoform		25.0	1.0	0.26	ug/L	19.7	79	66-128	
Bromomethane		25.0	1.0	0,28	ug/L	22.1	88	36-150	
Carbon disulfide		25.0	1.0	0.19	ug/L	26.1	104	59-134	
Carbon Tetrachloride		25.0	1,0	0.27	ug/L	23.9	95	72-134	
Chlorobenzene		25.0	1.0	0.32	ug/L	23.0	92	72-120	
Dibromochioromethane		25.0	1.0	0.32	ug/L	20.6	83	75-125	
Chloroethane		25.0	1.0	0.32	ug/L	20.2	81	69-136	
Chloroform		25.0	1.0	0.34	ug/L	24.2	97	73-127	
Chloromethane		25.0	1.0	0.35	ug/L	25.8	103	49-142	
cis-1,2-Dichloroethene		25.0	1.0	0.38	ug/L	25.3	101	74-124	
cis-1,3-Dichloropropene		25.0	1.0	0.36	ug/L	24.2	97	74-124	
Cyclohexane		25,0	1.0	0.53	ug/L	24.1	97	70-130	
Dichlorodifluoromethane		25.0	1.0	0.29	ug/L	20.5	82	33-157	
Ethylbenzene		25.0	1.0	0.18	ug/L	23.6	94	77-123	
Isopropyibenzene		25.0	1.0	0.19	ug/L	24.2	97	77-122	
Methyl Acetate		25.0	1.0	0.50	ug/L	27.0	108	60-140	
Methyl tert-Butyl Ether		25.0	1.0	0.16	ug/L	25.0	100	64-127	
Methylcyclohexane		25.0	1.0	0.50	ug/L	24.7	99	60-140	
Methylene Chloride		25.0	1.0	0.44	ug/L	25.5	102	57-132	
-			_		- a -				

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

			LAI	BORATORY	C QC DATA	1			
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	
Volatile Organic Comp	ounds b	y EPA 82	60B						
LCS Analyzed: 10/12/0	9 (Lab N	lumber:9.	J12089-B	S1, Batch: 9J	12089)				
m,p-Xylene		50.0	2.0	0.66	ug/L	47.5	95	76-122	
o-Xylene		25.0	1.0	0.36	ug/L	24.2	97	76-122	
Styrene		25.0	1.0	0.18	ug/L	24.6	99	70-130	
Tetrachloroethene		25.0	1.0	0.36	ug/L	22.2	89	74-122	
Toluene		25.0	1.0	0.51	ug/L	22.7	91	70-122	
trans-1,2-Dichloroethene		25.0	1.0	0.42	ug/L	25.6	102	73-127	
trans-1,3-Dichloropropen e		25.0	1.0	0.37	ug/L	22.8	91	72-123	
Trichloroethene		25.0	1.0	0.46	ug/L	23.2	93	74-123	
Trichlorofluoromethane		25.0	1.0	0.15	ug/L	23.7	95	62-152	
Vinyl chloride		25.0	1.0	0.24	ug/L	25.5	102	65-133	
Surrogete: 1,2-Dichloroethane-d4					ug/L	_	89	66-137	-
Surrogate: 4-Bromofluorobanzene					ug/L		99	73-120	
Surrogate: Toluene-d8					ug/L		97	71-126	
Volatile Organic Comp	oounds b	<u>y EPA 82</u>	60B						
Blank Analyzed: 10/13	/09 (Lab	Number:	9J13014-	BLK1, Batch:	9J13014)				
1,1,1-Trichloroethane			1.0	0.26	ug/L	ND			
1.1.7.2 Talrachiamathana			4.0	0.04		ND			

Blank Analyzed: 10/13/09	(Lab Number:9J13)	014-BLK1, B	atch: 9J13014)	
1,1,1-Trichloroethane	1.0	0.20	6 ug/L	ND
1,1,2,2-Telrachloroethane	1.0	0.2	1 ug/L	ND
1,1,2-Trichloroethane	1.0	0.2	3 ug/L	ND
1,1,2-Trichloro-1,2,2-triflu oroethane	1.0	0.3	1 ug/L	ND
1,1-Dichloroethane	1.0	0.3	8 ug/L	ND
1,1-Dichloroethene	1.0	0.2	9 ug/L	ND
1,2,3-Trichlorobenzene	1.0	0,4	1 ug/L	ND
1,2,4-Trichlorobenzene	1.0	0.4	1 ug/L	ND
1,2-Dibromo-3-chloroprop ane	1.0	0.39	9 ug/L	ND
1,2-Dibromoethane (EDB)	1.0	0.1	7 ug/L	ND
1,2-Dichlorobenzene	1.0	0.20	0 ug/L	ND
1,2-Dichloroethane	1.0	0.2	1 ug/L	ND
1,2-Dichloropropane	1.0	0.3	3 ug/L	ND
1,3-Dichlorobenzene	1.0	0.30	6 ug/L	ND
1,4-Dichlorobenzene	1.0	0.3	9 ug/L	ND
1,4-Dloxane	40	9.3	ug/L	ND
2-Bulanone (MEK)	5.0	1,3	ug/L	ND
2-Hexanone	5.0	1.2	ug/L	ND

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

IAR	OPA	TO	DV.	OC.	DATA
		LI V		WU.	UAIA

	Source	Spike					%	% REC % RPD Data			
Analyte	Result	Level	RL	MDL	Units	Result		Limits RPD Limit Qualifiers			
Volatile Organic Com	pounds b	y EPA 826	60B								
Blank Analyzed: 10/13/09 (Lab Number:9J13014-BLK1, Batch: 9J13014)											
4-Methyl-2-pentanone	1/09 (L8D	Number:	9J13014 5.0	I-BLK1, Batch: 1 0.91	•	NO					
(MIBK)			5.0	0.91	ug/L	ND					
Acetone			5.0	1.3	ug/L	ND					
Benzen e			1.0	0.41	ug/L	ND					
Bromochloromethane			1.0	0.39	ug/L	ND					
Bromodichloromethane			1.0	0.39	ug/L	ND					
Bromoform			1.0	0.26	ug/L	ND					
Bromomethane			1.0	0.28	ug/L	ND					
Carbon disulfide			1.0	0.19	ug/L	ND					
Carbon Tetrachloride			1.0	0.27	ug/L	NO					
Chlorobenzene			1.0	0.32	ug/L	ND					
Dibromochloromethane			1.0	0.32	ug/L	ND					
Chloroethane			1.0	0.32	ug/L	ND					
Chloroform			1.0	0.34	ug/L	ND					
Chloromethane			1.0	0.35	ug/L	ND					
cis-1,2-Dichloroethene			1.0	0.38	ug/L	ND					
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND					
Cyclohexane			1.0	0.53	ug/L	ND					
Dichlorodifluoromethane			1.0	0.29	и g/ L	ND					
Ethylbenzene			1.0	0.18	ug/L	ND					
Isopropylbenzene			1.0	0.19	ug/L	ND					
Methyl Acetale			1.0	0.50	ug/L	ND					
Methyl tert-Butyl Ether			1.0	0.16	ug/L	ND					
Methylcyclohexane			1.0	0.50	ug/L	ND					
Methylene Chloride			1.0	0.44	ug/L	ND					
m,p-Xylene			2.0	0.66	ug/L	ND					
o-Xylene			1.0	0.36	ug/L	ND					
Styrene			1.0	0.18	ug/L	ND					
Tetrachloroethene			1.0	0.36	ug/L	ND					
Toluene			1.0	0.51	' ug/L	ND					
trans-1,2-Dichloroethene			1.0	0.42	ug/L	ND					
trans-1,3-Dichloropropen			1.0	0.37	ug/L	ND					
e Trichloroethene			1.0	0.46		AID					
Trichlorofluoromethane			1.0	0.46 0.15	ug/L	ND					
Vinyl chloride					ug/L	ND					
		_	1.0	0.24	ug/L	ND .					
Surrogate; 1.2-Dichlomethane-d4					ug/L		83	66-137			

TestAmerica Buffalo

1,2-Dichloroethane-d4

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile

Project Number: 48001559-2

LABORATORY QC DATA											
	Source	Spike					%	% REC % RPD Data			
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualiflers			
Volatile Organic Compounds by EPA 8260B											
Blank Analyzed: 10/13/	/09 (Lab	Number:	9,113014-1	BLK1. Batch:	9,113014)						
Surrogale:			00100141	DEICH, Daton.	υg/L		96	73-120			
4-Bromofluorobenzene							06	74 406			
Surrogate: Toluene-d8					ug/L		96	71-126			
LCS Analyzed: 10/13/09 (Lab Number:9J13014-BS1, Batch: 9J13014)											
1,1,1-Trichloroethane			1.0	0.26	ug/L	ND		73-126			
1,1,2,2-Tetrachloroethane			1.0	0.21	ug/L	ND		70-126			
1,1,2-Trichloroethane			1.0	0.23	ug/L	ND		76-122			
1,1,2-Trichloro-1,2,2-triflu oroethane			1.0	0.31	ug/L	ND		60-140			
1,1-Dichloroethane			1.0	0.38	ug/L	ND		71-129			
1,1-Dichloroethene		25.0	1.0	0.29	ug/L	24.8	99	65-138			
1,2,3-Trichlorobenzene			1.0	0.41	ug/L	ND		64-121			
1,2,4-Trichlorobenzene			1.0	0.41	ug/L	ND		70-122			
1,2-Dibromo-3-chloroprop ane			1.0	0.39	ug/L	ND		56-134			
1,2-Dibromoethane (EDB)			1.0	0.17	п д/Г	ND		77-120			
1,2-Dichlorobenzene			1.0	0.20	ug/L	ND		77-120			
1,2-Dichloroethane			1.0	0.21	ug/L	ND		75-127			
1,2-Dichloropropane			1.0	0.33	ug/L	ND		76-120			
1,3-Dichlorobenzene			1.0	0.36	ug/L	ND		77-120			
1,4-Dichlorobenzene			1.0	0.39	ug/L	ND		75-120			
1,4-Dloxane			40	9.3	ug/L	ND					
2-Butanone (MEK)			5.0	1.3	ug/L	ND		57-140			
2-Hexanone			5.0	1.2	ug/L	ND		65-127			
4-Methyl-2-pentanone (MIBK)			5.0	0.91	ug/L	ND		71-125			
Acetone			5.0	1.3	ug/L	ND		56-142			
Benzene		25.0	1.0	0.41	ug/L	23.9	96	71-124			
Bromochloromethane			1.0	0.39	ug/L	ND		72-130			
Bromodichloromethane			1.0	0.39	ug/L	ND		80-122			
Bromoform			1.0	0.26	ug/L	ND		66-128			
Bromomethane			1.0	0.28	υg/L	ND		36-150			
Carbon disulfide			1.0	0.19	ug/L	ND		59-134			
Carbon Tetrachloride			1.0	0.27	ug/L	ND		72-134			
Chlorobenzene		25.0	1.0	0.32	ug/L	23,0	92	72-120			
Dibromochloromethane			1.0	0.32	ug/L	ND		75-125			
Chloroethane			1.0	0.32	ug/L	ND		69-136			
Chloroform			1.0	0.34	ug/L	ND		73-127			
Chloromethane			1.0	0.35	υg/L	ND		49-142			
TestAmerica Buffalo					_						

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

						•		
	Source	Spike					%	% REC % RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualifier
Volatile Organic Comp	oounds by	/ EPA 82	60B					
LCS Analyzed: 10/13/0	9 (Lab N	umber:9	J13014-B	S1, Batch: 9J	13014)			
cis-1,2-Dichloroethene			1.0	0.38	ug/L	ND		74-124
cis-1,3-Dichloropropene			1.0	0.36	ug/L	ND		74-124
Cyclohexane			1.0	0.53	ug/L	ND		70-130
Dichlorodifluoromethane			1.0	0.29	ug/L	ND		33-157
Ethylbenzene			1.0	0.18	ug/L	ND		77-123
Isopropylbenzene			1.0	0.19	ug/L	ND		77-122
Methyl Acetate			1.0	0.50	ug/L	ND		60-140
Methyl tert-Butyl Ether			1.0	0.16	υg/L	ND		64-127
Methylcyclohexane			1.0	0.50	ug/L	ND		60-140
Methylene Chloride			1.0	0.44	սց/ L	ND		57-132
m,p-Xylene			2.0	0.66	ug/L	ND		76-122
o-Xylene			1.0	0.36	ug/L	ND		7 6 -122
Styrene			1.0	0.18	ug/L	ND		70-130
Tetrachloroethene			1.0	0.36	ug/L	ND		74-1 <u>22</u>
Toluene		25.0	1.0	0.51	ug/L	22.7	91	70-122
trans-1,2-Dichloroethene			1.0	0.42	ug/L	ND		73-127
trans-1,3-Dichloropropen a			1.0	0.37	ug/L	ND		72-123
Trichloroethene		25.0	1.0	0.46	ug/L	22.4	90	74-123
Trichlorofluoromethane			1.0	0.15	ug/L	ND		62-152
Vinyl chloride			1.0	0.24	ug/L	ND		65-133
Surrogate: 1,2-Dichloroethane-d4		_			ug/L		87	66-137
Surrogate: 4-Bromofluorobenzene					u g/ L		96	73-120
Surrogate: Toluene-d8					ug/L		96	71-126

No TICs found

Work Order: RSJ0643

NA

Received: 10/09/09

Reported: 11/03/09 12:07

T7

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC % RPD Data Limits RPD Limit Qualifie		
Tentatively Identified	Tentatively Identified Compounds by EPA 8260B									
Blank Analyzed: 10/10/09 (Lab Number:9J10019-BLK1, Batch: 9J10019)										
No TICs found			NA	NR	ug/kg wel	ND		17		
Tentatively Identified	Tentatively Identified Compounds by EPA 8260B									
Blank Analyzed: 10/1	2/09 (Lab	Number:	9J 1208 9	-BLK1, Batch: 9	J12089)					
No TICs found			NA		ug/L	ND		17		
Tentatively Identified Compounds by EPA 8260B										
Blank Analyzed: 10/13/09 (Lab Number:9J13014-BLK1, Batch: 9J13014)										

ND

ug/L

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

Project Number: 48001559-2

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC % RPD Data Limits RPD Limit Qualifiers			
Semivolatile Organics	by GC/M	<u>s</u>									
Blank Analyzed: 10/13/09 (Lab Number:9J12044-BLK1, Batch: 9J12044)											
1,2,4,5-Tetrachlorobenze	rus (Lab	Mumber:	5.0	0.82	93 (2044) ug/L	ND					
ne			0.0	0.02	ug/L	ND					
2,3,4,6-Tetrachlorophenol			5.0	2.1	ug/L	ND					
2,4,5-Trichlorophenol			5.0	0.99	ug/L	ND					
2,4,6-Trichlorophenol			5.0	0.99	ug/L	ND					
2,4-Dichlorophenol			5.0	0.79	ug/L	ND					
2,4-Dimethylphenol			5.0	0.96	ug/L	ND					
2,4-Dinitrophenol			10	2.2	ug/L	ND					
2,4-Dinitrotoluene			5.0	0.45	ug/L	ND					
2,6-Dinitrotoluene			5.0	0.51	ug/L	ND					
2-Chloronaphthalene			5.0	0.084	ug/L	ND					
2-Chlorophenol			5.0	0.50	ug/L	ND					
2-Methylnaphthalene			5.0	0.082	ug/L	ND					
2-Methylphenol			5.0	0.23	ug/L	ND					
2-Nitroaniline			10	0.50	ug/L	ND					
2-Nitrophenol			5.0	0.60	u g/ L	ND					
3,3'-Dichlorobenzidine			5.0	0.37	ug/L	ND					
3-Nitroaniline			10	1.6	ug/L	ND					
4,6-Dinitro-2-methylphen ol			10	2.3	սց/Լ	ND					
4-Bromophenyl phenyl ether			5.0	0.90	ug/L	ND					
4-Chloro-3-methylphenol			5.0	0.60	ug/L	ND					
4-Chloroaniline			5.0	0,33	ug/L	ND					
4-Chlorophenyl phenyl ether			5.0	0.17	ug/L	ND					
4-Methylphenol			10	0.58	ng/L	ND					
4-Nitroaniline			10	0.46	ug/L	ND					
4-Nitrophenol			10	1.5	ug/L	ND					
Acenaphthene			5.0	0.11	ug/L	ND					
Acenaphthylene			5.0	0.047	ug/L	ND					
Acetophenone			5.0	1.0	ug/L	ND					
Anthracene			5.0	0.056	ug/L	ND					
Atrazine			5.0	1.1	ug/L	ND					
Benzaldehyde			5.0	0.27	ug/L	ND					
Benzo[a]anthracene			5.0	0.064	ug/L	ND					
Benzo(a)pyrene			5.0	0.091	ug/L	ND					
Benzo[b]fluoranthene			5.0	0.063	ug/L	ND					
Benzo[g,h,i]perylene			5.0	0.078	ug/L	ND					

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

Project Number: 48001559-2

1 8	DO	DA1		100	DATA	
	VDU	TA.	IUKI		DAIA	ı

_Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC % RPD Data Limits RPD Limit Qualiflers			
Semivolatile Organics	by GC/M	S									
Blank Analyzed: 10/13/09 (Lab Number:9J12044-BLK1, Batch: 9J12044)											
Benzo[k]fluoranthene	5/09 (Lab	Number:	9J12044 5.0	-BLK1, Batch: 1 0.066		ND					
1,1'-Biphenyl			5.0	0.65	ug/L ug/L	ND					
Bis(2-chloroethoxy)meths	,		5.0	0.38	ug/L	ND					
ne			5.0	0.56	ug/L	ND					
Bis(2-chloroethyl)ether			5.0	0.18	ug/L	ND					
2,2'-oxybis[1-chloropropa ne]			4.0	4.0	ug/L	ND					
Bis(2-ethylhexyl) phthalale			5.0	4.8	ug/L	ND					
Butyl benzyl phthalate			5.0	1.7	ug/L	ND					
Caprolactam			5.0	4.6	ug/L	ND					
Carbazole			5.0	0.089	ug/L	ND					
Chrysene			5.0	0.27	ug/L	NĎ					
Dibenz[a,h]anthracene			5.0	0.20	ug/L	ND					
Dibenzofuran			10	1.6	ug/L	ND					
Diethyl phthalate			5.0	0.11	ug/L	1.7		J			
Dimethyl phthalate			5.0	0.30	ug/L	ND					
Di-n-butyl phthalate			5.0	0.30	ug/L	ND					
Di-n-octyl phthalate			5.0	0.24	ug/L	ND					
Fluoranthene			5.0	0.098	ug/L	ND					
Fluorene			5.0	0.074	ug/L	ND					
Hexachlorobenzene			5.0	0.44	ug/L	ND					
Hexachlorobutadiene			5.0	2.6	ug/L	ND					
Hexachlorocyclopentadie ne			5.0	2.5	ug/L	ND					
Hexachloroethane			5.0	2.8	ug/L	ND					
Indeno[1,2,3-cd]pyrene			5.0	0.15	ug/L	ND					
Isophorone			5.0	0.32	ug/L	ND					
Naphthalene			5.0	0.12	ug/L	ND					
Nitrobenzene			5.0	0.54	ug/L	ND					
N-Nitrosodi-n-propylamin e			5.0	0.45	ug/L	ND					
N-Nitrosodiphenylamine			5.0	0.26	ug/L	ND					
Penlachlorophenol			10	5.1	ug/L	ND					
Phenanthrene			5.0	0.11	ug/L	ND					
Phenol			5.0	0.45	ug/L	ND					
Pyrene			5.0	0.068	ug/L	ND					
Surrogate: 2,4,6-Tribromophenol					ug/L		100	52-132			
Surrogate: 2-Fluorobiohenvi					ug/L		72	48-120			

2-Fluorobiphenyl TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

LAB	DRATO	RY OC	DATA
LAD		ITI WO	UAIA

	Source	Spike					%	% REC % RPD Data
Analyte	Result	Level	RL	MDL	Units	Result		Limits RPD Limit Qualifiers
Semivolatile Organics	by GC/N	<u>IS</u>						
Blank Analyzed: 10/13	/00 /1 ah	Numbert	14204	LBI K4 Batabi 0	142044\			
Surrogate:	ios (ran	Number.	331204	POLNI, DAICH. 9	ug/L		46	20-120
2-Fluorophenol					-			
Surrogete: Nitrobenzene-d5					ug/L		93	46-120
Surrogate: Phenol-d5					ug/L		33	16-120
Surrogate:					ug/L		80	24-136
p-Terphenyl-d14								
Blank Analyzed: 10/13	/09 (Lab	Number:	9J12044	1-BLK2, Batch: 9	J12044)			
1,2,4,5-Tetrachlorobenze ne			5.0	0.82	ug/L	ND		
2,3,4,6-Tetrachlorophenol			5.0	2.1	ug/L	ND		
2,4,5-Trichlorophenol			5.0	0.99	ug/L	ND		
2,4,6-Trichlorophenol			5.0	0.99	ug/L	ND		
2,4-Dichlorophenol			5.0	0.79	ug/L	ND		
2,4-Dimethylphenol			5.0	0.96	ug/L	ND		
2,4-Dinitrophenol			10	2.2	ng/L	ND		
2,4-Dinitrotoluene			5.0	0.45	ug/L	ND		
2,6-Dinitrotoluene			5.0	0.51	ug/L	ND		
2-Chloronaphthalene			5.0	0.084	ug/L	ND		
2-Chlorophenol			5.0	0.50	ug/L	ND		
2-Methylnaphthalene			5.0	0.082	ug/L	ND		
2-Methylphenol			5.0	0.23	ug/L	ND		
2-Nitroaniline			10	0.50	ug/L	ND		
2-Nitrophenol			5.0	0.60	ug/L	ND		
3,3'-Dichlorobenzidine			5.0	0.37	ug/L	ND		
3-Nitroaniline			10	1.6	ug/L	ND		
4,6-Dinitro-2-methylphen ol			10	2.3	ug/L	ND		
4-Bromophenyl phenyl ether			5.0	0.90	ug/L	ND		
4-Chloro-3-methylphenol			5.0	0.60	ug/L	ND		
4-Chloroaniline			5.0	0.33	ug/L	ND		
4-Chlorophenyl phenyl ether			5.0	0.17	u g/ L	ND		
4-Methylphenol			10	0.58	ug/L	ND		
4-Nitroaniline			10	0.46	ug/L	ND		
4-Nitrophenol			10	1.5	ug/L	ND		
Acenaphthene			5.0	0.11	ug/L	ND		
Acenaphthylene			5.0	0.047	ug/L	ND		
Acetophenone			5.0	1.0	ug/L	ND		
Anthracene			5.0	0.056	ug/L	ND		
TestAmerica Buffalo								

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPE	Data t Qualifiers
Semivolatile Organics	by GC/M	IS			0,1110					
		_								
Blank Analyzed: 10/13 Atrazine	3/09 (Lab	Number:	9 J1204 4 5.0	4-BLK2, Batch: 9		ND				
Benzaldehyde			5.0	0.27	ug/L	ND				
Benzo(a)anthracene			5.0	0.064	ug/L	ND				
Benzo[a]pyrene			5.0		ug/L					
Benzo[b]fluoranthene			5.0	0.091	ug/L	ND				
				0.063	ug/L	ND				
Benzo[g,h,i]perylene Benzo[k]fluoranthene			5.0	0.078	ug/L	ND				
• •			5.0	0.066	ug/L	ND				
1,1'-Biphenyl			5.0	0.65	ug/L	ND				
Bis(2-chloroethoxy)metha	l		5.0	0.38	ug/L	ND				
Bis(2-chloroethyl)ether			5.0	0.18	ug/L	ND				
2,2'-oxybis[1-chloropropa ne]			4.0	4.0	ug/L	ND				
Bis(2-ethylhexyl) phthalale			5.0	4.8	ug/L	ND				
Butyl benzyl phthalate			5.0	1.7	ug/L	ND				
Caprolectam			5.0	4.6	ug/L	ND				
Carbazole			5.0	0.089	ug/L	ND				
Chrysene			5.0	0.27	ug/L	ND				
Dibenz[a,h]anthracene			5.0	0.20	ug/L	ND				
Diberzofuran			10	1.6	ug/L	ND				
Diethyl phthalate			5.0	0.11	ug/L	1.4				J
Dimethyl phthalate			5.0	0.30	ug/L	ND				
Di-n-butyl phthalate			5.0	0.30	ug/L	ND				
Di-n-octyl phthalate			5.0	0.24	ug/L	ND				
Fluoranthene			5.0	0.098	ug/L	ND				
Fluorene			5.0	0.074	ug/L	ND				
Hexachlorobenzene			5.0	0.44	ug/L	ND				
Hexachlorobutadlene			5.0	2.6	ug/L	ND				
Hexachlorocyclopentadie ne			5.0	2.5	ug/L	ND				
Hexachloroethane			5.0	2.8	ug/L	ND				
Indeno[1,2,3-cd]pyrene			5.0	0.15	ug/L	ND				
Isophorone			5.0	0.32	ug/L	ND				
Naphthalene			5.0	0.12	ug/L	ND				
Nitrobenzene			5,0	0.54	ug/L	ND				
N-Nitrosodi-n-propylamin			5.0	0.45	ug/L	ND				
N-Nitrosodiphenylamine			5.0	0.26	ug/L	ND				
Pentachlorophenol			10	5.1	ug/L	ND				

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

- 1	ADC	\D 4	TO	DV	\sim	DATA	4
	44 114					1 1 4 3 1 4	ъ.

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC % RPD Data Limits RPD Limit Qualifiers
Semivolatile Organics	by GC/M	<u>IS</u>						
Plank Analysis de 40/42	100 (I -L	M	0.140044	D1 1/4 D 4 1				
Blank Analyzed: 10/13, Phenanthrene	na (rap	Number:	9J12044- 5.0	BLK2, Batch: 0.11	9J12044) ug/L	ND		
Phenol			5.0	0.45	ug/L	ND		
Pyrene			5.0	0.068	ug/L	ND		
<u> </u>						ND		
Surrogate: 2,4,6-Tribromophenol					ug/L		105	52-132
Surrogete: 2-Fluorobiphenyl					ug/L		73	48-120
Surrogate: 2-Fluorophenol					и д/ L		27	20-120
Surrogate: Nitrobenzene-d5					u g/L		85	46-120
Surrogate: Phenol-d5					ug/L		30	16-120
Surrogate: p-Terphenyl-d14					ug/L		74	24-136
LCS Analyzed: 10/13/0	9 (Lab N	lumber:9.			2044)			
1,2,4,5-Tetrachlorobenze ne		100	5.0	0.82	ug/L	70.5	70	40-160
2,3,4,6-Tetrachlorophenol		100	5.0	2.1	ug/L	108	108	40-160
2,4,5-Trichlorophenol		100	5.0	0.99	ug/L	104	104	65-126
2,4,6-Trichlorophenol		100	5.0	0.99	ug/L	103	103	64-120
2,4-Dichlorophenol		100	5.0	0.79	ug/L	94.1	94	64-120
2,4-Dimethylphenol		100	5.0	0.96	ug/L	83.4	83	57-120
2,4-Dinitrophenol		100	10	2.2	ug/L	91.4	91	42-153
2,4-Dinitrotoluane		100	5.0	0.45	ug/L	121	121	59-125
2,6-Dinitrotoluene		100	5.0	0.51	ug/L	118	118	74-134
2-Chloronaphthalene		100	5.0	0.084	ug/L	82.7	83	52-120
2-Chlorophenol		100	5.0	0.50	ug/L	73.1	73	48-120
2-Methylnaphthalene		100	5.0	0.082	ug/L	80.1	80	48-120
2-Methylphenol		100	5.0	0.23	ug/L	72.3	72	39-120
2-Nitroanlline		100	10	0.50	ug/L	106	106	67-136
2-Nitrophenol		100	5.0	0.60	ug/L	84.6	85	59-120
3,3'-Dichlorobenzidine		100	5.0	0.37	ug/L	64.4	64	33-140
3-Nitroaniline		100	10	1.6	ug/L	99.7	100	69-129
4,6-Dinitro-2-methylphen of		100	10	2.3	ug/L	131	131	64-159
4-Bromophenyl phenyl ether		100	5.0	0.90	ug/L	108	108	71-126
4-Chloro-3-methylphenol		100	5.0	0.60	ug/L	106	106	64-120
4-Chloroaniline		100	5.0	0.33	ug/L	85.9	86	60-124
4-Chlorophenyl phenyl ether		100	5.0	0.17	ug/L	96.8	97	71-122

¹⁰ Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

r. RSJ0643

Project: Clabationi Brownfield Site Project Number: 48001559-2 analisads di

Received: 10/09/09

Reported: 11/03/09 12:07

LABORATORY QC DATA

					40 DAIA	1			
A - A - A	Source		D1				%	% REC	% RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit Qualifler
Semivolatile Organics	by GC/M	<u>s</u>							
LCS Analyzed: 10/13/0	9 (Lab N	lumber:9	J12044-B	S1. Batch: 9J	12044)				
4-Methylphenol		100	10	0.58	ug/L	69.5	69	36-120	
4-Nitroaniline		100	10	0.46	ug/L	70.4	70	64-135	
4-Nitrophenol		100	10	1.5	ug/L	60.0	60	16-120	
Acenaphthene		100	5.0	0.11	ug/L	98.6	99	60-120	
Acenaphthylene		100	5.0	0.047	ug/L	94.4	94	63-120	
Acetophenone		100	5.0	1.0	ug/L	87.0	87	45-120	
AnIhracene		100	5.0	0.056	ug/L	110	110	69-131	
Atrazine		100	5.0	1.1	ug/L	116	116	70-129	
Benzaldehyde		100	5.0	0.27	ug/L	98.3	98	30-140	
Benzo(a)anthracene		100	5.0	0.064	ug/L	108	108	73-138	
Benzo(a)pyrene		100	5.0	0.091	ug/L	110	110	74-126	
Benzo(b)fluorenthene		100	5.0	0.083	ug/L	99.1	99	75-133	
Benzo[g,h,i]perylene		100	5.0	0.078	ug/L	115	115	66-152	
Benzo[k]fluoranthene		100	5.0	0.068	ug/L	114	114	75-133	
1,1'-Biphenyl		100	5.0	0.65	ug/L	79.9	80	30-140	
Bis(2-chloroethoxy)metha na		100	5.0	0.38	ug/L	68.0	68	62-120	
Bis(2-chloroethyl)ether		100	5.0	0.18	ug/L	76.8	77	51-120	
2,2'-oxybis[1-chloropropa ne]		100	4.0	4.0	ug/L	93.5	94	47-120	
Bis(2-ethylhexyl) phthalate		100	5.0	4.8	ug/L	111	111	69-136	
Butyl benzyl phthalate		100	5.0	1.7	ug/L	126	126	62-149	
Caprolactam		100	5.0	4.6	ug/L	30.3	30	30-140	
Carbazole		100	5.0	0.089	ug/L	115	115	68-133	
Chrysene		100	5.0	0.27	ug/L	109	109	69-140	
Dibenz(a,h)anthracene		100	5.0	0.20	ug/L	109	109	67-144	
Dibenzofuran		100	10	1.6	ug/L	98.7	99	66-120	
Diethyl phthalate		100	5.0	0.11	ug/L	120	120	78-128	В
Dimethyl phthalate		100	5.0	0.30	ug/L	112	112	73-127	
Di-n-butyl phthalate		100	5.0	0.30	ug/L	116	116	67-132	
Di-n-octyl phthalate		100	5.0	0.24	ug/L	110	110	72-145	
Fluoranthene		100	5.0	0.098	ug/L	111	111	67-133	
Fluorene		100	5.0	0.074	ug/L	110	110	66-129	
Hexachlorobenzene		100	5.0	0.44	ug/L	101	101	38-131	
Hexachlorobutadiene		100	5.0	2.6	ug/L	62.7	63	30-120	
Hexachlorocyclopentadie ne		100	5.0	2.5	ug/L	54.4	54	23-120	
Hexachloroethane		100	5.0	2.8	ug/L	60.9	61	25-120	

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabationi Brownfield Site

Thonotosassa, FL 33592			Project: Clabattonl Brownfield Site Project Number: 48001559-2						
			LAI	BORATORY	QC DATA	_			
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD Data RPD Limit Qualifiers
Semivolatile Organics	by GC/M	IS							
LCS Analyzed: 10/13/0	9 (Lab N	iumher:9.	112044 - R	S1 Ratch: Q1	12044\				
Indeno[1,2,3-cd]pyrene	0 (2001)	100	5.0	0.15	ug/L	113	113	69-146	
Isophorone		100	5.0	0.32	ug/L	86.5	86	64-120	
Naphthalene		100	5.0	0.12	ug/L	77.7	78	48-120	
Nitrobenzene		100	5.0	0.54	ug/L	104	104	52-120	
N-Nitrosodi-n-propylamin e		100	5.0	0.45	ug/L	95.4	95	56-120	
N-Nitrosodiphenylamine		100	5.0	0.26	ug/L	135	135	25-125	L1
Pentachlorophenol		100	10	5.1	ug/L	107	107	39-136	
Phonanthrene		100	5.0	0.11	ug/L	116	116	67-130	
Phenol		100	5.0	0.45	ug/L	38.0	38	17-120	
Pyrene		100	5.0	0.068	ug/L	115	115	58-136	
Surrogate: 2,4,6-Tribromophenol			<u>-</u>		ug/L		110	52-132	
Surrogate: 2-Fluorobiphenyt					ug/L		76	48-120	
Surrogate: 2-Fluorophenol					ug/L		45	20-120	
Surrogate: Nitrobenzene-d5 Surrogate: Phenoi-d5					ug/L		94 33	46-120 16-120	
Surrogale: p-Terphenyl-d14					ug/L ug/L		88	24-136	
LCS Analyzed: 10/14/0	9 (Lah N	lumber:9	112044.B	S2 Batch: 01	12044)				
1,2,4,5-Tetrachlorobenze	o (man is	100	5,0	0.82	ug/L	73.1	73	40-160	
ne		100			-				
2,3,4,6-Tetrachlorophenol		100	5.0	2.1	ug/L	126	126	40-160	
2,4,5-Trichlorophenol		100	5.0	0.99	ug/L	107	107	65-126	
2,4,6-Trichlorophenol		100	5.0	0.99	ug/L	106	106	64-120	
2,4-Dichloraphenol		100	5.0	0.79	սց/Լ	93.3	93	64-120	
2,4-Dimethylphenol		100	5.0	0.96	ug/L	75.8	76	57-120	
2,4-Dinitrophenol		100	10	2.2	ug/L	98.9	99	42-153	
2,4-Dinitrotoluene		100	5.0	0.45	ug/L	113	113	59-125	
2,6-Dinitrotoluene		100	5.0	0.51	ug/L	116	116	74-134	
2-Chloronaphthalene		100	5.0	0.084	ug/L	80.2	80	52-120	
2-Chlorophenol		100	5.0	0.50	u g/ L	75.4	75	48-120	
2-Methylnaphthalene		100	5.0	0.082	ug/L	77.0	77	48-120	
2-Methylphenol		100	5.0	0.23	ug/L	73.6	74	39-120	
2-Nitroaniline		100	10	0.50	ug/L	95.3	95	67-136	
2-Nitrophenol		100	5.0	0.60	ug/L	86.0	86	59-120	
3,3'-Dichlorobenzidine		100	5.0	0.37	ug/L	59.1	59	33-140	
3-Nitroaniline		100	10	1.6	ug/L	90.5	91	69-129	
					-9				

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

LABORATORY QC DATA

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD Data RPD Limit Qualifiers
Semivolatile Organics	by GC/M	<u>s</u>							
LCS Analyzed: 10/14/0	Q (I ah N	umbore	142044 D	ICO Bataba 0 Id	19044				
4,6-Dinitro-2-methylphen	o (Lab re	100	10	2.3	ug/L	120	120	64-159	
4-Bromophenyl phenyl ether		100	5.0	0.90	ug/L	104	104	71-126	
4-Chloro-3-methylphenol		100	5.0	0.60	ug/L	94.4	94	64-120	
4-Chtoroaniline		100	5.0	0.33	ug/L	83.8	84	60-124	
4-Chlorophenyl phenyl ether		100	5.0	0.17	ug/L	86.6	87	71-122	
4-Methylphenol		100	10	0,58	ug/L	68.6	69	36-120	
4-Nitroanlline		100	10	0.46	ug/L	65.0	65	64-135	
4-Nitrophenol		100	10	1.5	ug/L	43.8	44	16-120	
Acenaphthene		100	5.0	0.11	ug/L	92.0	92	60-120	
Acenaphthylene		100	5.0	0.047	ug/L	93.2	93	63-120	
Acetophenone		100	5.0	1.0	ug/L	104	104	45-120	
Anthracene		100	5.0	0.056	ug/L	108	108	69-131	
Atrazine		100	5.0	1.1	ug/L	113	113	70-129	
Benzaldehyde		100	5.0	0.27	ug/L	122	122	30-140	
Benzo(a)anthracene		100	5.0	0.064	ug/L	102	102	73-138	
Benzo(a)pyrene		100	5.0	0.091	ug/L	109	109	74-126	
Benzo[b]fluoranthene		100	5.0	0.063	ug/L	100	100	75-133	
Benzo[g,h,i]perylene		100	5.0	0.078	ug/L	104	104	66-152	
Benzo[k]fluoranthene		100	5.0	0.066	ug/L	117	117	75-133	
1,1°-Biphenyl		100	5.0	0.65	ug/L	84.0	84	30-140	
Bis(2-chloroethoxy)methane		100	5.0	0.38	ug/L	71.2	71	62-120	
Bis(2-chloroethyl)ether		100	5.0	0.18	ug/L	82.6	83	51-120	
2,2'-oxybis[1-chloropropa ne]		100	4.0	4.0	ug/L	75.2	75	47-120	
Bis(2-ethylhexyl) phthalate		100	5.0	4.8	ug/L	92.5	92	69-136	
Butyl benzyl phthalate		100	5.0	1.7	ug/L	99.9	100	62-149	
Caprolactam		100	5.0	4.6	ug/L	30.6	31	30-140	
Carbazole		100	5.0	0.089	ug/L	111	111	68-133	
Chrysene		100	5.0	0.27	ug/L	104	104	69-140	
Dibenz[a,h]anthracene		100	5.0	0.20	ug/L	101	101	67-144	
Dibenzofuran		100	10	1.6	ug/L	91.6	92	66-120	
Diethyl phthalale		100	5.0	0.11	ug/L	106	106	78-128	В
Dimethyl phthalate		100	5.0	0.30	ug/L	104	104	73-127	
Di-n-butyl phthalate		100	5.0	0.30	ug/L	112	112	67-132	
Di-n-octyl phthalate		100	5.0	0.24	ug/L	97.9	98	72-145	

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2 Reported: 11/03/09 12:07

LABORATORY QC DATA

			LAE	BORATORY	QC DATA				
	Source	Spike					%	% REC	% RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit Qualifier
Semivolatile Organics	by GC/M	<u>s</u>							
LCS Analyzed: 10/14/0	9 (Lab N	lumber:9	J12044-B	S2. Batch: 9J	12044)				
Fluoranthene	•	100	5.0	0.098	ug/L	110	110	67-133	
Fluorene		100	5.0	0.074	u g/ L	96,9	97	66-129	
Hexachlorobenzene		100	5.0	0.44	ug/L	98.2	98	38-131	
Hexachlorobutadiene		100	5.0	2.6	ug/L	56.8	57	30-120	
Hexachlorocyclopentadie ne		100	5.0	2.5	ug/L	52.9	53	23-120	
Hexachloroethane		100	5.0	2.8	ug/L	57.2	57	25-120	
Indeno[1,2,3-cd]pyrene		100	5.0	0.15	ug/L	104	104	69-146	
Isophorone		100	5.0	0.32	ug/L	85.1	85	64-120	
Naphthalene		100	5.0	0.12	ug/L	77.4	77	48-120	
Nitrobenzene		100	5.0	0.54	u g/ L	96.2	96	52-120	
N-Nitrosodi-n-propylamin e		100	5.0	0.45	ug/L	78.6	79	56-120	
N-Nitrosodiphenylamine		100	5.0	0.26	ug/L	128	128	25-125	L
Pentachtorophenol		100	10	5.1	ug/L	106	106	39-136	
Phenanthrene		100	5.0	0.11	ug/L	106	106	67-130	
Phenol		100	5.0	0.45	ug/L	41.3	41	17-120	
Pyrene		100	5.0	0.068	ug/L	103	103	58-136	
Surrogate:					ug/L		110	52-132	
2,4,6-Tribromophenol Surrogate: 2-Fluorobiphenyl					ug/L		76	48-120	
2 ruorobiphenyi Surrogate: 2-Fluorophenol					ug/L		46	20-120	
Surrogate: Nitrobenzene-d5					ug/L		87	46-120	
Surrogate: Phenol-d5					ug/L		36	16-120	
Surrogate: p-Terphenyl-d14					ug/L		79	24-136	
Semivolatile Organics	by GC/N	<u>IS</u>							
Blank Analyzed: 10/15	/09 (Lab	Number	::9J13065-	BLK1, Batch:	9J13065)				
1,2,4,5-Tetrachlorobenze ne			170	15	ug/kg wel	ND			
2,3,4,6-Tetrachlorophenol			170	170	ug/kg wei	ND			
2,4,5-Trichlorophenol			170	37	ug/kg wel	ND			
2,4,6-Trichlorophenol			170	11	ug/kg wet	ND			
2,4-Dichlorophenol			170	8.8	ug/kg wel	ND			
2,4-Dimethylphenol			170	45	ug/kg wet	ND			
2,4-Dinitrophenol			330	59	ug/kg wet	ND			
•			170	26					

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

				DOIGHOR	do buil				
	Source						%	% REC	
_Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit Qualifiers
Semivolatile Organics	by GC/M	<u> S</u>							
Blank Analyzed: 10/15	i/09 (Lab	Number:	9J13065	-BLK1. Batch: 9	9J13065)				
2,6-Dinitrololuene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		170	41	ug/kg wel	ND			
2-Chloronaphthalene			170	11	ug/kg wet	ND			
2-Chlorophenol			170	8.5	ug/kg wet	ND			
2-Methylnaphthalene			170	2.0	ug/kg wet	ND			
2-Methylphenol			170	5.2	ug/kg wet	ND			
2-Nitroaniline			330	54	ug/kg wel	ND			
2-Nitrophenol			170	7.7	ug/kg wet	ND			
3,3'-Dichlorobenzidine			170	150	ug/kg wet	ND			
3-Nitroaniline			330	39	ug/kg wel	ND			
4,6-Dinitro-2-methylphen of			330	58	ug/kg wet	ND			
4-Bromophenyl phenyl ether			170	53	ug/kg wel	ND			
4-Chloro-3-methylphenol			170	6.9	ug/kg wet	ND			
4-Chloroaniline			170	49	ug/kg wet	ND			
4-Chlorophenyl phenyl ether			170	3.6	ug/kg wet	ND			
4-Methylphenol			330	9.3	ug/kg wel	ND			
4-Nitroaniline			330	19	ug/kg wet	ND			
4-Nitrophenol			330	41	ug/kg wet	ND			
Acenaphthene			170	2.0	ug/kg wet	ND			
Acenaphthylene			170	1.4	ug/kg wet	ND			
Acetophenone			170	8.6	ug/kg wel	ND			
Anthracene			170	4.3	ug/kg wet	ND			
Atrazine			170	7.5	ug/kg wel	ND			
Benzaldehyde			170	18	ug/kg wei	ND			
Benzo[a]anthracene			170	2.9	ug/kg wet	ND			
Benzo(a)pyrene			170	4.0	ug/kg wet	ND			
Benzo[b]fluoranthene			170	3.3	ug/kg wet	ND			
Benzo(g,h,l)perylene			170	2.0	ug/kg wel	ND			
Benzo[k]fluoranthene			170	1.8	ug/kg wet	ND			
1,1'-Biphenyl			170	10	ug/kg wet	ND			
Bis(2-chloroethoxy)methane	3		170	9.1	ug/kg wet	ND			
Bis(2-chloroethyl)ether			170	14	ug/kg wel	ND			
2,2'-Oxybis(1-Chloroprop ane)			170	18	ug/kg wel	ND			
Bis(2-ethylhexyl) phthalate			170	54	ug/kg wei	ND			
Butyl benzyl phthalate			170	45	ug/kg wet	ND			

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericalnc.com

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Sile Project Number: 48001559-2

1.7	ARC	TRA	TOP	YOC	DATA
		JELH	LLIZE	1 4	

				COIGHOIL	40 DAIN				
	Source		ъ.				%	% REC % RPD Data	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualifiers	
Semivolatile Organics	DY GUIN	18							
Blank Analyzed: 10/15/09 (Lab Number:9J13065-BLK1, Batch: 9J13065)									
Caprolactam	•		170	73	ug/kg wel	ND			
Carbazole			170	1.9	ug/kg wel	ND			
Chrysene			170	1.7	ug/kg wet	ND			
Dibenz[a,h]anthracene			170	2.0	ug/kg wet	ND			
Dibenzofuran			170	1.7	ug/kg wet	ND			
Diethyl phthalate			170	5.1	ug/kg wet	ND			
Dimethyl phthalate			170	4.4	ug/kg wet	ND			
Di-n-butyl phthalate			170	58	ug/kg wel	ND			
Di-n-octyl phthalate			170	3.9	ug/kg wet	ND			
Fluoranthene			170	2.4	ug/kg wet	ND			
Fluorene			170	3.9	ug/kg wet	ND			
Hexachlorobenzene			170	8.3	ug/kg wet	ND			
Hexachlorobutadiene			170	8.6	ug/kg wet	ND			
Hexachlorocyclopentadie			170	51	ug/kg wet	ND			
ne									
Hexachloroethane			170	13	ug/kg wel	ND			
Indeno[1,2,3-cd]pyrene			170	4.6	ug/kg wet	ND			
Isophorone			170	8.4	ug/kg wet	ND			
Naphthalene			170	2.8	ug/kg wel	ND			
Nitrobenzene			170	7.4	ug/kg wet	ND			
N-Nitrosodi-n-propytamin e			170	13	ug/kg wet	ND			
N-Nitrosodiphenylamine			170	9.2	ug/kg wet	ND			
Pentachlorophenol			330	58	ug/kg wet	ND			
Phenanthrene			170	3.5	ug/kg wet	ND			
Phenol			170	18	ug/kg wel	ND			
Pyrene			170	1.1	ug/kg wet	ND			
Surrogate:					ug/kg wet		91	39-146	
2,4,6-Tribromophenol Surrogele:					ug/kg wel		85	37-120	
2-Fluorobiphenyl Surrogate:					ug/kg wet		68	18-120	
2-Fluorophenol Surrogate: Nitrobenzene-d5					ug/kg wel		82	34-132	
Surrogete: Phenol-d5					ug/kg wel		74	11-120	
Surrogale: p-Terphenyl-d14					ug/kg wet		91	58-147	
			14555						
LCS Analyzed: 10/15/									
1,2,4,5-Tetrachlorobenze ne	•	3260	170	15	ug/kg wet	2680	82		
Total American D. (C.)									

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 lel 716-691-2600 fax 716-691-7991

www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL_	MDL	Units	Result	REC	Limits	RPD Limit Q	ualifiers
Semivolatile Organics	by GC/M	<u>s</u>								
LCS Analyzed: 10/15/0	9 (Lab N	umber:9	J13065-B	S1, Batch: 9J1	3065)					
2,3,4,6-Tetrachiorophenol		3260	170	170	ug/kg wet	2940	80			
2,4,5-Trichlorophenol		3260	170	36	ug/kg wet	2970	91	59-126		
2,4,6-Trichlorophenol		3260	170	11	ug/kg wet	2900	89	59-123		
2,4-Dichlorophenol		3260	170	8.7	ug/kg wei	2830	87	52-120		
2,4-Dimethylphenol		3260	170	45	ug/kg wet	2790	86	36-120		
2,4-Dinitrophenol		3260	320	58	ug/kg wet	2520	77	35-146		
2,4-Dinitrotoluene		3260	170	26	ug/kg wet	3260	100	55-125		
2,6-Dinitrotoluene		3260	170	40	ug/kg wet	3180	98	66-128		
2-Chloronaphthalene		3260	170	11	ug/kg wet	2830	87	57-120		
2-Chlorophenol		3260	170	8.4	ug/kg wel	2360	72	38-120		
2-Methylnaphthalene		3260	170	2.0	ug/kg wet	2880	88	47-120		
2-Methylphenol		3260	170	5.1	ug/kg wet	2620	80	48-120		
2-Nitroaniline		3260	320	53	ug/kg wet	3580	110	61-130		
2-Nitrophenol		3260	170	7.5	ug/kg wet	2620	80	50-120		
3,3'-Dichlorobenzidine		3260	170	140	ug/kg wet	3160	98	48-126		
3-Nitroanillne		3260	320	38	ug/kg wet	2750	84	61-127		
4,6-Dinitro-2-methylphen ol		3260	320	57	ug/kg wet	3490	107	49-155		
4-Bromophenyl phenyl ether		3260	170	52	ug/kg we1	3080	94	58-131		
4-Chloro-3-methylphenol		3260	170	6.8	ug/kg wet	3040	93	4 9 -125		
4-Chloroaniline		3260	170	48	ug/kg wet	2570	79	49-120		
4-Chlorophenyl phenyl ether		3260	170	3.5	ug/kg wet	2810	86	63-124		
4-Methylphenol		3260	320	9.2	ug/kg wet	2780	85	50-119		
4-Nitroaniline		3260	320	18	ug/kg wet	3060	94	63-128		
4-Nitrophenol		3260	320	40	ug/kg wel	3640	112	43-137		
Acenaphthene		3260	170	1.9	ug/kg wet	3050	94	53-120		
Acenaphthylene		3260	170	1.3	ug/kg wet	2950	91	58-121		
Acetophenone		3260	170	8.5	ug/kg wel	2520	77	66-120		
Anthracene		3260	170	4.2	ug/kg wel	3120	96	62-129		
Atrazine		3260	170	7.3	ug/kg wel	1910	58	73-133		L5
Benzaldehyde		3260	170	18	ug/kg wet	1880	58	21-120		
Benzo(a)anthracene		3260	170	2.8	ug/kg wet	3210	99	65-133		
Benzo(a)pyrene		3260	170	4.0	ug/kg wel	3500	107	64-127		
Benzo[b]fluoranthene		3260	170	3.2	ug/kg wet	3150	97	64-135		
Benzo[g,h,i]perylene		3260	170	2.0	ug/kg wet	3490	107	50-152		
Benzo(k)fluoranthene		3260	170	1.8	ug/kg wel	3650	112	58-138		
1,1'-Biphenyl		3260	170	10	ug/kg wel	2740	84	71-120		

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattonl Brownfield Site Project Number: 48001559-2

1 4	A D	AP.	ΑТ	OPI	V DC	DATA

			6 71	SOIGHION	WO DAIN				
	Source	Spike					%		% RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RI	PD Limit Qualifiers
Semivolatile Organics	by GC/M	<u>\$</u>							
LCS Analyzed: 10/15/0	9 (Lab N	umber:9	J13065-B	S1. Batch: 9J	13065)				
Bis(2-chloroethoxy)metha	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3260	170	9.0	ug/kg wet	2030	62	61-133	
ne Di (O. II) III B. II					_				
Bis(2-chloroethyl)ether		3260	170	14	ug/kg wet	2180	67	45-120	
2,2'-Oxybis(1-Chioroprop ane)		3260	170	17	ug/kg wet	2750	84	44-120	
Bis(2-ethylhexyl) phthalate		3260	170	53	ug/kg wet	3210	99	61-133	
Butyl benzyl phthalale		3260	170	44	ug/kg wet	3460	106	61-129	
Caprolactam		3260	170	71	ug/kg wet	2920	90	54-133	
Carbazole		3260	170	1.9	ug/kg wet	3140	96	59-129	
Chrysene		3260	170	1.6	ug/kg wet	3270	100	64-131	
Dibenz[a,h]anthracene		3260	170	1.9	ug/kg wet	3430	105	54-148	
Dibenzofuran		3260	170	1.7	ug/kg wet	2960	91	56-120	
Diethyl phthalate		3260	170	5.0	ug/kg wet	3200	98	66-126	
Dimethyl phthalate		3260	170	4.3	ug/kg wet	3090	95	65-124	
Di-n-butyl phthalate		3260	170	57	ug/kg wet	3230	99	58-130	
Di-n-octyl phthalate		3260	170	3.9	ug/kg wel	3150	97	62-133	
Fluoranthene		3260	170	2.4	ug/kg wel	3150	97	62-131	
Fluorene		3260	170	3.8	ug/kg we(3120	96	63-126	
Hexachlorobenzene		3260	170	8.2	ug/kg wei	2890	89	60-132	
Hexachlorobutadiene		3260	170	8.4	ug/kg wet	2530	78	45-120	
Hexachlorocyclopentadle ne		3260	170	50	ug/kg wel	2460	76	31-120	
Hexachloroethane		3260	170	13	ug/kg wet	2320	71	41-120	
Indeno[1,2,3-cd]pyrene		3260	170	4.6	ug/kg wet	3490	107	56-149	
Isophorone		3260	170	8.2	ug/kg wet	2650	81	56-120	
Naphthalene		3260	170	2.7	ug/kg wel	2610	80	46-120	
Nitrobenzene		3260	170	7.3	ug/kg wel	2740	84	49-120	
N-Nitrosodi-n-propylamin		3260	170	13	ug/kg wet	2780	85	46-120	
N-Nitrosodiphenylamine		3260	170	9.0	ug/kg wet	3860	118	20-119	
Pentachlorophenol		3260	320	57	ug/kg wel	3030	93	33-136	
Phenanthrene		3260	170	3.5	ug/kg wet	3170	97	60-130	
Phenol		3260	170	17	ug/kg wet	2450	75	36-120	
Pyrene		32 6 0	170	1.1	ug/kg wet	3280	101	51-133	
Surrogate: 2,4,6-Tribromophenol		· · · · · · · ·			ug/kg wet		96	39-146	
Surrogale: 2-Fluorobiphenyl					ug/kg wel		87	37-120	
Surrogate: 2-Fluorophenol					ug/kg wel		66	18-120	

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			_		-
 AROR	470	_\ \	\sim	DAT	
		BY.	II 14 .	1 3 Ab. 1	-

	Course	Calka			_		4/	% DEC	%	RPD D)ata
Analista	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC		Limit Qua	
Analyte			1/12	MDF	Units	Result	KLO	FIIIII		Limit Que	IIIII
Semivolatile Organics	DY GC/M	<u> </u>									
LCS Analyzed: 10/15/0	9 (Lab N	umber:9.	J13065-BS	31, Batch: 9J	13065)						
Surrogate:					ug/kg wet		87	34-132			
Nitrobenzene-d5 Sumpgate: Phenol-d5					ug∕kg wei		73	11-120			
Surrogale:					ug/kg wet		88	58-147			
p-Terphenyl-d14					-3.13						
LC\$ Dup Analyzed: 10	/15/09 /1	ah Numb	er:9.1130f	5-RSD1 Bet	ch: 9J13065)						
1,2,4,5-Tetrachlorobenze	, , , , , , , , , , , , , , , , , , , ,	3300	170	15	ug/kg wet	2610	79		3		
ne		3300			-3.1.3		, -		_		
2,3,4,6-Tetrachlorophenol		3300	170	170	ug/kg wet	3030	92		3		
2,4,5-Trichlorophenol		3300	170	36	ug/kg wet	2970	90	59-126	0.1	18	
2,4,6-Trichlorophenol		3300	170	11	ug/kg wet	3010	91	59-123	4	19	
2,4-Dichlorophenol		3300	170	8.8	ug/kg wet	2840	86	52-120	0.3	19	
2,4-Dimethylphenol		3300	170	45	ug/kg wel	2830	86	36-120	1	42	
2,4-Dinitrophenol		3300	330	58	ug/kg wet	2370	72	35-146	6	22	
2,4-Dinitrotoluene		3300	170	26	ug/kg wet	3330	101	55-125	2	20	
2,6-Dinitrololuene		3300	170	41	ug/kg wet	3340	101	66-128	5	15	
2-Chloronaphthalene		3300	170	11	ug/kg wet	2880	87	57-120	2	21	
2-Chlorophenol		3300	170	8.5	ug/kg wet	2300	70	38-120	2	25	
2-Methylnaphthalene		3300	170	2.0	ug/kg wel	2830	86	47-120	2	21	
2-Methylphenol		3300	170	5.1	ug/kg wel	2610	79	48-120	0.5	27	
2-Nitroaniline		3300	330	54	ug/kg wet	3660	111	61-130	2	15	
2-Nitrophenol		3300	170	7.6	ug/kg wel	2560	78	50-120	2	18	
3,3'-Dichlorobenzidine		3300	170	150	ug/kg wet	3650	111	48-126	14	25	
3-Nitroaniline		3300	330	38	ug/kg wet	3120	94	61-127	13	19	
4,6-Dinitro-2-methylphen		3300	330	58	ug/kg wet	3550	107	49-155	1	15	
ol							- 04	50 404		45	
4-Bromophenyl phenyl ether		3300	170	53	ug/kg wet	3000	91	58-131	3	15	
4-Chloro-3-methylphenol		3300	170	6.9	ug/kg wel	3020	92	49-125	0.5	27	
4-Chloroaniline		3300	170	49	ug/kg wet	2830	86	49-120	10	22	
4-Chlorophenyl phenyl		3300	170	3.6	ug/kg wel	2790	85	63-124	0.7	16	
ether		5555									
4-Methylphenol		3300	330	9.3	ug/kg wel	2730	83	50-119		24	
4-Nitroaniline		3300	330	19	ug/kg wel	3070	93	63-128		24	
4-Nitrophenol		3300	330	40	ug/kg wet	3620	110	43-137		25	
Acenaphthene		3300	170	2.0	ug/kg wet	3060	93	53-120		35	
Acenaphthylene		3300	170	1.4	ug/kg wet	2960	90	58-121		18	
Acelophenone		3300	170	8.6	ug/kg wet	2440	74	66-120		20	
Anthracene		3300	170	4.3	ug/kg wel	3160	96	62-129		15	
Atrazine		3300	170	7.4	ug/kg wel	2060	63	73-133	8	20	L5

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

20-119 0.4

33-136 4

60-130 2

15

35

15

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

		_	LAI	BORATORY	QC DATA						
Analyto	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	RPD Limit	Data Qualifiers
Analyte Semivolatile Organics			110	INDL	Ointa	* COUNT					
Sentivolatile Organics	DY GOIN	<u> </u>									
LCS Dup Analyzed: 10	/15/09 (L	.ab Numl						04 400	00	20	60
Benzaldehyde		3300	170	18	ug/kg wet	2360	72	21-120		20	R2
Benzo[a]anthracene		3300	170	2.9	ug/kg wel	3280	99	65-133		15	
Benzo[a]pyrene		3300	170	4.0	ug/kg wet	3450	105	64-127		15	
Benzo[b]fluoranthene		3300	170	3.2	ug/kg wet	3360	102	64-135		15	
Benzo[g,h,i]perylene		3300	170	2.0	ug/kg wet	3340	101	50-152		15	
Benzo[k]fluoranthene		3300	170	1.8	ug/kg wel	3230	98		12	22	
1,1'-Biphenyl		3300	170	10	ug/kg wet	2760	84	71-120		20	
Bis(2-chloroethoxy)metha ne		3300	170	9.1	ug/kg wet	2040	62	61-133		17	
Bis(2-chloroethyl)ether		3300	170	14	ug/kg wet	2100	64	45-120		21	
2,2'-Oxybis(1-Chloroprop ane)		3300	170	17	ug/kg wet	2610	79	44-120		24	
Bis(2-elhylhexyl) phthalate		3300	170	54	ug/kg wet	3220	97	61-133		15	
Butyl benzyl phthalate		3300	170	45	ug/kg wet	3510	106	61-129		16	
Caprolactam		3300	170	72	ug/kg wet	2920	88	54-133			
Carbazole		3300	170	1.9	ug/kg wet	3180	96	59-129		20	
Chrysene		3300	170	1.7	ug/kg wel	3360	102	64-131		15	
Dibenz(a,h)anthracene		3300	170	2.0	ug/kg wel	3270	99	54-148		15	
Dibenzofuran		3300	170	1.7	ug/kg wet	2980	90	56-120		15	
Diethyl phthalate		3300	170	5.0	ug/kg wel	3250	98	66-128		15	
Dimethyl phthalate		3300	170	4.4	ug/kg wet	3120	95	65-124		15	
Di-n-bulyi phthalate		3300	170	58	ug/kg wet	3240	98	58-130		15	
Di-n-octyl phthalate		3300	170	3.9	ug/kg wet	3160	96	62-133		16	
Fluoranthene		3300	170	2.4	ug/kg wel	3220	98	62-131		15	
Fluorene		3300	170	3.8	ug/kg wel	3150	96	63-126		15	
Hexachlorobenzene		3300	170	8.3	ug/kg wel	2970	90	60-132		15	
Hexachlorobutadiene		3300	170	8.5	ug/kg wet	2490	75	45-120		44	
Hexachlorocyclopentadie ne	:	3300	170	51	ug/kg wet	2410	73	31-120		49	
Hexachloroethane		3300	170	13	ug/kg wet	2150	65	41-120		46	
Indeno[1,2,3-cd]pyrene		3300	170	4.6	ug/kg wel	3390	103	56-149		15	
Isophorone		3300	170	8.3	ug/kg wet	2660	81	56-120		17	
Naphthalene		3300	170	2,8	ug/kg wel	2570	78	46-120		29	
Nitrobenzene		3300	170	7.4	ug/kg wel	2650	80	49-120		24	
N-Nitrosodi-n-propylamin	ı	3300	170	13	ug/kg wel	2710	82	46-120	2	31	
•											

ug/kg wet

ug/kg wet

ug/kg wel

3870

2800

3250

117

88

TestAmerica Buffalo

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

3300

3300

3300

170

330

170

9.1

57

3.5

¹⁰ Hazelwood Drive Amhersl, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

	LAB	ORA	TORY	QC	DATA
--	-----	------------	------	----	------

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD	RPD Limit	Data Qualifiers
Semivolatile Organic	c by GC/M	c			91100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Semitolatile Organic	2 DA GOLWI	<u>3</u>									
LCS Dup Analyzed: 1	0/15/09 (L	ab Numt	oer:9J1306	5-BSD1, Bat	tch: 9J13065)						
Phenol	-	3300	170	18	ug/kg wet	2480	75	36-120	1	35	
Pyrene		3300	170	1.1	ug/kg wet	3300	100	51-133	0.4	35	
Surrogale:					ug/kg wet		95	39-146			
2,4,6-Tribromophenol Surrogete:					ug/kg wet		89	37-120			
2-Fluorobiphenyl							66	18-120			
Surrogate: 2-Fluorophenol					ug/kg wet		00	10-120			
Surrogate:					ug/kg wet		87	34-132			
Nitrobenzene-d5 Surrogate: Phenol-d5					ug/kg wet		74	11-120			
Surrogate:					ug/kg wet		88	58-147			
p-Terphenyl-d14											

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Sile

			Project	Number: 48	001559-2			
			LA	BORATOR	Y QC DATA			
Analyte	Source Result	Spike Level	RL	MDL	Units	Result_	% REC	% REC % RPD Data Limits RPD Limit Qualifiers
Semivolatile Organic	s TICs by	GC/MS						
Blank Analyzed: 10/1	3/09 (Lab	Number:	9J12044-	BLK1. Batch	n: 9J12044)			
Berizenesulfonamide, N-butyl-	·		NA	·	ug/L	43		17
Unknown01			NA		ug/L	7.4		17
Unknown02			NA		ug/L	8.3		Т7
Unknown03			NA		ug/L	9.9		17
Unknown04			NA		ug/L	47		17
Unknown05			NA		ug/L	11		T7
Unknown06			NA		ug/L	9.3		77
Unknown07			NA		ug/L	13		77
Unknown08			NA		ug/L	16		77
Unknown09			NA		пВ/Г	10		17
Unknown10			NA		ug/L	20		Т7
Unknown11			NA		ug/L	9.6		77
Unknown12			NA		ug/L	8.1		17
UNKNOWN13			NA		ug/L	36		Т7
Unknown14			NA		ug/L	4.3		Т7
Unknown15			NA		ug/L	7.2		77
Unknown16			NA		ug/L	8.2		T7
Unknown17			NA		ug/L	4.3		77
Semiyolatile Organic	s TICs by	GC/MS						
Blank Analyzed: 10/1	5/09 (Lab	Number:	9J13065-	BLK1, Batch	n: 9J13065)			
Unknown01			NA		ug/kg wet	240		Т7

Work Order: RSJ0643

Received: 10/09/09

Re

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

	Source	Spike Level	RL	up:	limita	Boowle	% BEC	% REC % RPD Data Limits RPD Limit Qualiflers
Analyte	Result			MDL	Units	Result	REC	Lilling IV D Lilling Qualifiers
Organochlorine Pesti	CIGES DY I	PA Meth	<u>oa 80817</u>	3				
Blank Analyzed: 10/14	4/09 (Lab	Number:	9J09108-	BLK1, Batch: 9	J09108)			
4,4'-DDD			0.050	0.017	ug/L	ND		
4,4'-DDD [2C]			0.050	0.017	ug/L	ND		
4,4'-DDE			0.050	0.012	ug/L	ND		
4,4'-DDE [2C]			0.050	0.012	ug/L	ND		
4,4'-DDT			0.050	0.011	ug/L	ND		C4
4,4'-DDT [2C]			0.050	0.011	ug/L	ND		
Aldrin			0.050	0.0066	ug/L	ND		
Aldrin [2C]			0.050	0.0066	ug/L	ND		
alpha-BHC			0.050	0.0066	ug/L	ND		С
alpha-BHC [2C]			0.050	0.0066	ug/L	ND		
alpha-Chlordane			0.050	0.015	ug/L	ND		
alpha-Chlordane [2C]			0.050	0.015	ug/L	ND		
beta-BHC			0.050	0.025	ug/L	ND		
beta-BHC [2C]			0.050	0.025	ug/L	ND		
delta-BHC			0.050	0.010	ug/L	ND		
delta-BHC (2C)			0.050	0.010	ug/L	ND		
Dieldrin			0.050	0.020	ug/L	ND		
Dieldrin [2C]			0.050	0.020	ug/L	ND		
Endosulfan I			0.050	0,011	ug/L	ND		
Endosulfan I [2C]			0.050	0.011	ug/L	ND		
Endosulfan II			0.050	0.012	ug/L	ND		
Endosulfan II [2C]			0.050	0.012	ug/L	ND		
Endosulfan sulfale			0.050	0.016	ug/L	ND		
Endosulfan sulfate (2C)			0.050	0.016	ug/L	ND		
Endrin			0.050	0.014	ug/L	ND		
Endrin [2C]			0.050	0.014	ug/L	ND		
Endrin aldehyde			0.050	0.016	ug/L	ND		
Endrin aldehyde (2C)			0.050	0.016	ug/L	ND		
Endrin kelone			0.050	0.012	ug/L	ND		
Endrin kelone [2C]			0.050	0.012	ug/L	ND		
gamma-BHC (Lindane)			0.050	0.0060	ug/L	ND		С
gamma-BHC (Lindane) [2C]			0.050	0.0060	ug/L	ND		
gamma-Chlordane			0.050	0.011	ug/L	ND		
gamma-Chlordane [2C]			0.050	0.011	ug/L	ND		
Heptachlor			0.050	0.0085	ug/L	ND		
Heptachlor (2C)			0.050	0.0085	n g /L	ND		
Heptachlor epoxide			0.050	0.0053	ug/L	ND		

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

_		
LABORAT	ORY QC	DATA
	0111 40	

				DOIDTION	GO DAIA	•			
Acces to Acc	Source Result	Spike Level	D.		** **	- 1	%	% REC	% RPD Data
Analyte Recti			RL POSAA	MDL	Units	Result	REC	Limits	RPD Limit Qualifiers
Organochlorine Pesti	CIOSS DY I	EFA MOU	100 BUBIA	L					
Blank Analyzed: 10/14	4/09 (Lab	Number:	9J09108-	BLK1, Batch:	9J09108)				
Heptachlor epoxide [2C]			0.050	0.0053	ug/L	ND			
Methoxychlor			0.050	0.014	ug/L	ND			
Methoxychlor [2C]			0.050	0.014	ug/L	ND			
Toxaphene			0.50	0.12	ug/L	ND			
Toxaphene [2C]			0.50	0.12	ug/L	ND			
Surrogate: Decachlorobiphenyl		-			ug/L		74	15-139	
Surrogate: Decachlorobiphenyl [2C]					ug/L		63	15-139	
Surrogate: Tetrachloro-m-xylene					ug/L		60	30-139	
Surrogate: Tetrachloro-m-xylene					ug/L		65	30-139	
LCS Analyzed: 10/14/	09 (Lab N	lumber:9	J09108-B	S1, Batch: 9J0	9108)				
4,4'-DDD		0.500	0.050	0.017	υg/L	0.415	83	25-139	
4,4'-DDD [2C]		0.500	0.050	0.017	ng/L	0.452	90	25-139	
4,4'-DDE		0.500	0.050	0.012	ug/L	0.387	77	49-127	
4,4'-DDE [2C]		0.500	0.050	0.012	ug/L	0.402	80	49-127	
4,4'-DDT		0.500	0.050	0.011	ug/L	0.375	75	47-130	C4
4,4'-DDT [2C]		0.500	0.050	0.011	ug/L	0.420	84	47-130	
Aldrin		0.500	0.050	0.0066	ug/L	0.396	79	35-120	
Aldrin (2C)		0.500	0.050	0.0066	ug/L	0.370	74	35-120	
alpha-BHC		0.500	0.050	0.0066	ug/L	0.512	102	39-121	С
alphe-BHC [2C]		0.500	0.050	0.0066	ug/L	0.391	78	39-121	
alpha-Chlordane		0.500	0.050	0.015	ug/L	0.391	78	40-160	
alpha-Chlordane [2C]		0.500	0.050	0.015	ug/L	0.412	82	40-160	
beta-BHC		0.500	0.050	0.025	ug/L	0.494	99	39-138	
beta-BHC [2C]		0.500	0.050	0.025	ug/L	0.434	87	39-138	
delta-BHC		0.500	0.050	0.010	u g/L	0.442	88	40-121	
delta-BHC [2C]		0,500	0.050	0.010	ug/L	0.382	76	40-121	
Dieldrin		0.500	0.050	0.020	ug/L	0.402	80	41-131	
Dieldrin (2C)		0.500	0.050	0.020	ug/L	0.407	81	41-131	
Endosulfan I		0.500	0.050	0.011	ug/L	0.369	74	41-126	
Endosulfan I [2C]		0.500	0.050	0.011	ug/L	0.386	77	41-126	
Endosulfan II		0.500	0.050	0.012	ug/L	0.366	73	32-134	
Endosulfan II [2C]		0.500	0.050	0.012	ug/L	0.450	90	32-134	
Endosulfan sulfate		0.500	0.050	0.016	υg/L	0.486	97	46-131	
Endosulfan sulfate [2C]		0.500	0.050	0.016	ug/L	0.472	94	46-131	
Endrin		0.500	0.050	0.014	ng/L	0.415	83	43-134	
					_				

TestAmerica Buffalo

10 Hazelwood Orive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

40-121 7

0.474

ug/L

95

50

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

			Project N	Number: 4800	1559-2		_				
			LAE	BORATORY	QC DATA						
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit	Qualifi ers
Organochlorine Pestlo	ides by I	EPA Meth	od 8081A								
LCS Analyzed: 10/14/0	9 (Lab N	lumber:9	J09108-B5	S1. Batch: 9J0	9108)						
Endrin [2C]	. (222 (0.500	0.050	0.014	ug/L	0.402	80	43-134			
Endrin aldehyde		0.500	0.050	0.016	ug/L	0.401	80	39-128			
Endrin aldehyde [2C]		0.500	0.050	0.016	ug/L	0.518	104	39-128			
Endrin ketone		0.500	0.050	0.012	ug/L	0.449	90	50-150			
Endrin kelone [2C]		0.500	0.050	0.012	ug/L	0,446	89	50-150			
gamma-BHC (Lindane)		0.500	0.050	0.0060	ug/L	0.497	99	68-120			С
gamma-BHC (Lindane) [2C]		0.500	0.050	0.0060	nB\r	0.402	80	68-120			
gamma-Chlordane		0.500	0.050	0.011	ug/L	0.387	77	40-160			
gamma-Chlordane [2C]		0.500	0.050	0.011	ug/L	0.379	76	40-16 0			
Heptachlor		0.500	0.050	0.0085	ug/L	0.452	90	52-120			
Heptachlor [2C]		0.500	0.050	0.0085	ug/L	0.389	78	52-120			
Heptachlor epoxide		0,500	0,050	0.0053	ug/L	0.419	84	65-120			
Heptachlor epoxide [2C]		0.500	0.050	0.0053	ug/L	0.419	84	65-120			
Methoxychlor		0.500	0.050	0.014	ug/L	0.421	84	52-142			
Methoxychlor [2C]		0.500	0.050	0.014	ug/L	0.475	95	52-142			
Surrogate: Decachlorobiphenyl					ug/L		77	15-139			-
Surrogale: Decachlorobiphenyl [2C]					υg/L		62	15-139			
Surrogate: Tetrachloro-m-xylene					ug/L		57	30-139			
Surrogate: Tetrachloro-m-xylene					ug/L		62	30-139			
LCS Dup Analyzed: 10	0/14/09 (1	Lab Num	ber:9J091	08-BSD1, Bate	ch: 9J09108)						
4,4'-DDD		0.500	0.050	0.017	ug/L	0.446	89	25-139	7	50	
4,4'-DDD [2C]		0.500	0.050	0.017	ug/L	0.475	95	25-139	5	50	
4,4'-DDE		0.500	0.050	0.012	ug/L	0.413	83	49-127	6	50	
4,4'-DDE [2C]		0.500	0.050	0.012	ug/L	0.429	86	49-127	6	50	
4,4'-DDT		0.500	0.050	0.011	ug/L	0.401	80	47-130	7	50	C4
4,4'-DDT (2C)		0.500	0.050	0.011	ug/L	0.425	85	47-130	1	50	
Aldrin		0.500	0.050	0.0066	ug/L	0.418	84	35-120	5	50	
Aldrin [2C]		0.500	0.050	0,0066	ug/L	0.391	78	35-120	6	50	
alpha-BHC		0.500	0.050	0.0066	ug/L	0.543	109	39-121		50	C
alpha-BHC [2C]		0.500	0.050	0,0066	ug/L	0.413	83	39-121	5	50	
alpha-Chlordane		0.500	0.050	0.015	ug/L	0.416	83	40-160		50	
alpha-Chlordane [2C]		0.500	0.050	0.015	ug/L	0.437	87	40-160	6	50	
beta-BHC		0.500	0.050	0.025	ug/L	0.529	106	39-138	7	50	
beta-BHC [2C]		0.500	0.050	0.025	ug/L	0.458	92	39-138	5	50	
					_			40 404	~		

0.010

TestAmerica Buffalo

delta-BHC

0.500

0.050

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

	4000	ATORY	OC DATA	
_		AIFIUY	IN TIALA	

	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result)ualifiers
Organochlorine Pestic	ides by I		od 8081A		011120	1100011					
LCS Dup Analyzed: 10)/14/09 (L	.ab Numl	per:9J0910	08-BSD1, Bate	:h: 9J09108)						
della-BHC [2C]		0.500	0.050	0.010	ug/L	0.408	81	40-121	6	50	
Dieldrin		0.500	0.050	0.020	ug/L	0.426	85	41-131	6	50	
Dieldrin (2C)		0.500	0.050	0.020	ug/L	0.432	86	41-131	6	50	
Endosulfan I		0.500	0.050	0.011	υg/L	0.393	79	41-126	6	50	
Endosulfan I [2C]		0.500	0.050	0.011	ug/L	0.410	82	41-126	6	50	
Endosulfan II		0.500	0.050	0.012	ug/L	0.396	79	32-134	6	50	
Endosulfan II [2C]		0.500	0.050	0.012	ug/L,	0.467	93	32-134	4	50	
Endosulfan sulfate		0.500	0.050	0.016	ug/L	0.520	104	46-131	7	50	
Endosulfan sulfate (2C)		0.500	0.050	0.016	ug/L	0.500	100	46-131	6	50	
Endrin		0.500	0.050	0.014	ug/L	0.441	88	43-134	6	50	
Endrin (2C)		0.500	0.050	0.014	ug/L	0.432	88	43-134	7	50	
Endrin aldehyde		0.500	0.050	0.016	ug/L	0.465	93	39-128	15	50	
Endrin aldehyde [2C]		0.500	0.050	0.016	ug/L	0.554	111	39-128	7	50	
Endrin ketone		0.500	0.050	0.012	ug/L	0.481	96	50-150	7	50	
Endrin kelone [2C]		0.500	0.050	0.012	ug/L	0.473	95	50-150	6	50	
gamma-BHC (Lindane)		0.500	0.050	0.0060	ug/L	0.529	106	68-120	6	50	С
gamma-BHC (Lindane) [2C]		0.500	0.050	0.0060	ug/L	0.425	85	68-120	6	50	
gamma-Chlordane		0.500	0.050	0.011	ug/L	0.413	83	40-160	7	50	
gamma-Chlordane [2C]		0.500	0.050	0.011	ug/L	0.407	81	40-160	7	50	
Heptachlor		0.500	0.050	0.0085	ug/L	0.483	97	52-120	7	50	
Heptachlor [2C]		0.500	0.050	0.0085	ug/L	0.413	83	52-120	6	50	
Heptachlor epoxide		0.500	0.050	0.0053	ug/L	0.446	89	65-120	6	50	
Heptachlor epoxide [2C]		0.500	0.050	0.0053	ug/L	0.444	89	65-120	6	50	
Methoxychlor		0.500	0.050	0.014	ug/L	0.452	90	52-142	7	50	
Methoxychlor [2C]		0.500	0.050	0.014	ug/L	0.502	100	52-142	6	50	
Surrogate: Decachlorobiphenyl					ug/L		77	15-139			
Surrogate: Decachlorobiphenyl [2C]					ug/L		63	15-139			
Surrogate: Tetrachloro-m-xylene					ug/L		60	30-139			
Surrogate: Tetrachloro-m-xylene					ug/L		66	30-139			
Organochlorine Pesti	cides by	EPA Meti	nod 8081A								

0.32

0.32

ND

ND

ug/kg wet

ug/kg wel

QSU,QFL

QSU,QFL

TestAmerica Buffalo

4,4'-DDD

4,4'-DDD [2C]

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

1.6

1.6

Blank Analyzed: 10/15/09 (Lab Number:9J10008-BLK1, Batch: 9J10008)

Work Order: RSJ0643

Received: 10/09/09

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Reported: 11/03/09 12:07

LABORATORY QC DATA

	_				CO DRIN		_	
	Source		D.				%	% REC % RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualifiers
Organochlorine Pest	icides by I	EPA Metho	od 8081/	<u> </u>				
Blank Analyzed: 10/1	5/09 (Lab	Number:9	J1000B	BLK1. Batch:	9J1000B)			
4,4'-DDE	•		1.6	0.47	ug/kg wel	ND		QSU,QFL
4,4'-DDE [2C]			1.6	0.47	ug/kg wel	ND		QSU,QFL
4,4'-DDT			1.6	0.37	ug/kg wel	ND		QSU,QFL
4,4'-DDT [2C]			1.6	0.37	ug/kg wet	ND		QSU,QFL
Aldrin			1.6	0.17	ug/kg wel	ND		QSU,QFL
Aldrin (2C)			1.6	0.17	ug/kg wet	ND		QSU,QFL
alpha-BHC			1.6	0.30	ug/kg wet	ND		QSU,QFL, C
alpha-BHC [2C]			1.6	0.30	ug/kg wat	ND		QSU,QFL
alpha-Chlordane			1.6	0.82	ug/kg wet	ND		QSU,QFL
alpha-Chlordane [2C]			1.6	0.82	ug/kg wet	ND		QSU,QFL
bela-BHC			1.6	1.2	ug/kg wet	ND		QSU,QFL, C
beta-BHC [2C]			1.6	1.2	ug/kg wet	ND		QSU,QFL
detta-BHC			1.6	0.22	ug/kg wet	ND		QSU,QFL
delta-BHC [2C]			1.6	0.22	ug/kg wet	ND		QSU,QFL
Dieldrin			1.6	0.39	ug/kg wet	ND		QSU,QFL
Dieldrin [2C]			1.6	0.39	ug/kg wel	ND		QSU,QFL
Endosulfan I			1.6	0.35	ug/kg wel	ND		QSU,QFL
Endosulfan I [2C]			1.6	0.35	ug/kg wet	ND		QSU,QFL
Endosulfan II			1.6	0.30	ug/kg wet	ND		QSU,QFL
Endosulfan II [2C]			1.6	0.30	ug/kg weł	ND		QSU,QFL
Endosulfan sulfate			1.6	0.31	ug/kg wel	ND		QSU,QFL
Endosulfan sulfate [2C]			1.6	0.31	ug/kg wet	ND		QSU,QFL
Endrin			1.6	0.53	ug/kg wet	ND		QSU,QFL
Endrin [2C]			1.6	0.53	ug/kg wet	ND		QSU,QFL
Endrin aldehyde			1.6	0.42	ug/kg wet	ND		QSU,QFL
Endrin aldehyde (2C)			1.6	0.42	ug/kg wet	ND		QSU,QFL
Endrin ketone			1.6	0.40	ug/kg wet	ND		QSU,QFL
Endrin kelone [2C]			1.6	0.40	ug/kg wet	ND		Q\$U,QFL
gamma-BHC (Lindane)			1.6	0.29	ug/kg wet	ND		QSU,QFL, C
gamma-BHC (Lindane) [2C)			1.6	0.29	ug/kg wel	ND		QSU,QFL
gamma-Chlordane			1.6	0.23	ug/kg wet	ND		QSU,QFL
gamma-Chlordane [2C]			1.6	0.23	ug/kg wet	ND		QSU,QFL
Heptachlor			1.6	0.26	ug/kg wet	ND		QSU,QFL
Heptachlor [2C]			1.6	0.26	ug/kg wet	ND		QSU,QFL
Heptachlor epoxide			1.6	0.42	ug/kg wet	ND		QSU,QFL

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site

Project Number: 48001559-2

Methoxychlor 1.6				Project	Number: 480	001559-2				
Part Part				LA	BORATOR	Y QC DATA				
Blank Analyzed: 10/15/09 (Lab Number: 9J10008-BLK1, Batch: 9J10008) Heptachlor epoxide [2C]	Analyte		-	RL	MDL	Units	Result			
Heptachlor epoxide [2C]	Organochlorine Pestic	cides by L	EPA Meth	od 8081A	4					
Heptachlor epoxide [2C]	Blank Analyzed: 10/15	5/09 (Lah	Number	9.14000R <u>-</u>	RLK1 Batch	- 0.14nnnR\				
Methoxychlor		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	110111111111111111111111111111111111111				ND			QSU,QFL
Toxaphene [Cc] 16 9.6 ug/kg wel ND SUJAFL Surrogate:	Methoxychlor			1.6	0.44		ND			QSU,QFL
Toxaphene	Methoxychlor [2C]			1.6	0.44	ug/kg wel	ND			QSU,QFL
Surrogate:	Toxaphene			16	9.6	ug/kg wel	ND			QSU,QFL
Decachiorobiphenyl Surrogale: Sug/kg wel 92 42-146 QSU,QFL	Toxaphene [2C]			16	9.6	ug/kg wel	ND			QSU,QFL
Surrogale:		-				ug/kg wet		96	42-146	QSU,QFL
Surrogate:	Surrogate:					ug/kg wet		92	42-146	QSU,QFL
Surrogate:	Surrogate:					ug/kg wet		69	37-136	QSU,QFL
4,4*-DDD 16.1 1.6 0.31 ug/kg wet 11.7 72 55-129 QSU,QFL 4,4*-DDE 16.1 1.6 0.31 ug/kg wet 12.9 80 55-129 QSU,QFL 4,4*-DDE 16.1 1.6 0.47 ug/kg wet 11.2 69 59-120 QSU,QFL 4,4*-DDT 16.1 1.6 0.47 ug/kg wet 12.0 74 59-120 QSU,QFL 4,4*-DDT 16.1 1.6 0.37 ug/kg wet 11.2 69 59-120 QSU,QFL 4,4*-DDT [2C] 16.1 1.6 0.37 ug/kg wet 11.7 72 47-145 QSU,QFL Aldrin 16.1 1.6 0.16 ug/kg wet 11.7 72 47-145 QSU,QFL Aldrin [2C] 16.1 1.6 0.16 ug/kg wet 11.6 72 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.29 ug/kg wet 11.0<	Surrogate:					ug/kg wet		75	37-136	QSU,QFL
4.4*-DDD [2C] 16.1 1.6 0.31 ug/kg wel 12.9 80 55-129 QSU,QFL 4.4*-DDE 16.1 1.6 0.47 ug/kg wel 11.2 69 59-120 QSU,QFL 4.4*-DDE [2C] 16.1 1.6 0.47 ug/kg wel 11.2 69 59-120 QSU,QFL 4.4*-DDT 16.1 1.6 0.37 ug/kg wel 11.2 69 47-145 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.37 ug/kg wel 11.2 69 47-145 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.37 ug/kg wel 11.7 72 47-145 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.16 ug/kg wel 11.0 74 35-120 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.16 ug/kg wel 11.0 72 35-120 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.16 ug/kg wel 11.0 72 35-120 QSU,QFL 4.4*-DDT [2C] 16.1 1.6 0.29 ug/kg wel 11.0 72 35-120 QSU,QFL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	LCS Analyzed: 10/15/0	09 (Lab N	lumber:9.	J10008-B	S1, Batch: 9.	110008)				
4.4'-DDE	4,4'-DDD		16.1	1.6	0.31	ug/kg wet	11.7	72	55-129	QSU,QFL
4.4°-DDE [2C] 16.1 1.6 0.47 ug/kg wet 12.0 74 59-120 QSU,QFL 4.4°-DDT 16.1 1.6 0.37 ug/kg wet 11.2 69 47-145 QSU,QFL 4.4°-DDT [2C] 16.1 1.6 0.37 ug/kg wet 11.7 72 47-145 QSU,QFL Aldrin 16.1 1.6 0.16 ug/kg wet 12.0 74 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.16 ug/kg wet 11.6 72 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.29 ug/kg wet 13.2 82 49-120 QSU,QFL QSU,QFL Aldrin [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL QSU,QFL C QSU,QFL Q	4,4'-DDD (2C)		16.1	1.6	0.31	ug/kg wel	12.9	80	55-129	QSU,QFL
4,4'-DDT 16.1 1.6 0.37 ug/kg wel 11.2 69 47-145 QSU,QFL 4,4'-DDT [2C] 16.1 1.6 0.37 ug/kg wel 11.7 72 47-145 QSU,QFL Aldrin 16.1 1.6 0.16 ug/kg wel 12.0 74 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.16 ug/kg wel 11.6 72 35-120 QSU,QFL alpha-BHC 16.1 1.6 0.29 ug/kg wel 13.2 82 49-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.29 ug/kg wel 11.0 68 55-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.80 ug/kg wel 12.1 75 55-120 QSU,QFL beta-BHC 16.1 1.6 0.80 ug/kg wel 12.1 75 55-120 QSU,QFL C 16.1 1.6 0.80 ug/kg wel 12.0 74 56-120 QSU,QFL C 16.1 1.6 0.20 ug/kg wel 12.0	4,4'-DDE		16.1	1.6	0.47	ug/kg wet	11.2	69	59-120	QSU,QFL
4.4-DDT [2C] 16.1 1.6 0.37 ug/kg wel 11.7 72 47-145 QSU,QFL Aldrin 16.1 1.6 0.16 ug/kg wel 12.0 74 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.16 ug/kg wel 11.6 72 35-120 QSU,QFL alpha-BHC 16.1 1.6 0.29 ug/kg wel 13.2 82 49-120 QSU,QFL c elpha-BHC [2C] 16.1 1.6 0.29 ug/kg wel 11.2 70 49-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.80 ug/kg wel 11.0 68 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wel 12.1 75 55-120 QSU,QFL beta-BHC 16.1 1.6 0.80 ug/kg wel 13.4 83 56-120 QSU,QFL beta-BHC 16.1 1.6 1.2 ug/kg wel 13.4 83 56-120 QSU,QFL delta-BHC [2C] 16.1 1.6 1.2 ug/kg wel 12.0 74 56-120 QSU,QFL delta-BHC 16.1 1.6 0.21 ug/kg wel 12.4 77 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wel 11.6 72 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wel 11.3 70 57-120 QSU,QFL delta-BHC [2C] 16.1 1.6 0.39 ug/kg wel 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wel 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wel 11.0 68 29-125 QSU,QFL Endosulfan I 16.1 1.6 0.29 ug/kg wel 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wel 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wel 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wel 11.7 72 39-121 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.29 ug/kg wel 11.5 71 43-120 QSU,QFL	4,4'-DDE [2C]		16.1	1.6	0.47	ug/kg wet	12.0	74	59-120	QSU,QFL
Aldrin 16.1 1.6 0.16 ug/kg wet 12.0 74 35-120 QSU,QFL Aldrin [2C] 16.1 1.6 0.16 ug/kg wet 11.6 72 35-120 QSU,QFL alpha-BHC 16.1 1.6 0.29 ug/kg wet 13.2 82 49-120 QSU,QFL alpha-BHC [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.80 ug/kg wet 11.0 68 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 12.1 75 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 13.4 83 56-120 QSU,QFL beta-BHC 16.1 1.6 1.2 ug/kg wet 13.4 83 56-120 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 12.0 74 56-120 QSU,QFL della-BHC 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.29 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.5 71 43-120 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.29 ug/kg wet 11.5 71 43-120 QSU,QFL	4,4'-DDT		16.1	1.6	0.37	ug/kg wel	11.2	69	47-145	QSU,QFL
Aldrin [2C] 16.1 1.6 0.16 ug/kg wet 11.6 72 35-120 QSU,QFL alpha-BHC 16.1 1.6 0.29 ug/kg wet 13.2 82 49-120 QSU,QFL C elpha-BHC [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.80 ug/kg wet 11.0 68 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 12.1 75 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 12.1 75 55-120 QSU,QFL beta-BHC 16.1 1.6 1.2 ug/kg wet 13.4 63 56-120 QSU,QFL C C Dela-BHC [2C] 16.1 1.6 1.2 ug/kg wet 12.0 74 56-120 QSU,QFL C C Dela-BHC [2C] 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL della-BHC 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL della-BHC [2C] 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.34 ug/kg wet 11.0 88 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.29 ug/kg wet 11.5 71 43-120 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	4,4'-DDT [2C]		16.1	1.6	0.37	ug/kg wel	11.7	72	47-145	QSU,QFL
alpha-BHC 16.1 1.6 0.29 ug/kg wet 13.2 82 49-120 QSU,QFL, C elpha-BHC [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL QSU,QSU QSU,QFL Q	Aldrin		16.1	1.6	0.16	ug/kg wel	12.0	74	35-120	QSU,QFL
C alpha-BHC [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL	Aldrin [2C]		16.1	1.6	0.16	ug/kg wet	11.6	72	35-120	QSU,QFL
elpha-BHC [2C] 16.1 1.6 0.29 ug/kg wet 11.2 70 49-120 QSU,QFL alpha-Chlordane 16.1 1.6 0.80 ug/kg wet 11.0 68 55-120 QSU,QFL alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 12.1 75 55-120 QSU,QFL beta-BHC 16.1 1.6 1.2 ug/kg wet 13.4 83 56-120 QSU,QFL beta-BHC [2C] 16.1 1.6 1.2 ug/kg wet 12.0 74 56-120 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL della-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.6 72 45-123 QSU,QFL Endosulfan I 16.1 1.6 0.39 ug/kg wet 11.3 70	alpha-BHC		16.1	1.6	0.29	ug/kg wet	13,2	82	49-120	QSU,QFL, C
alpha-Chlordane [2C] 16.1 1.6 0.80 ug/kg wet 12.1 75 55-120 QSU,QFL beta-BHC 16.1 1.6 1.2 ug/kg wet 13.4 83 56-120 QSU,QFL c C <t< td=""><td>alpha-BHC [2C]</td><td></td><td>16.1</td><td>1.6</td><td>0.29</td><td>ug/kg wet</td><td>11.2</td><td>70</td><td>49-120</td><td>QSU,QFL</td></t<>	alpha-BHC [2C]		16.1	1.6	0.29	ug/kg wet	11.2	70	49-120	QSU,QFL
beta-BHC 16.1 1.6 1.2 ug/kg wet 13.4 83 56-120 QSU,QFL, C C C C beta-BHC [2C] 16.1 1.6 1.2 ug/kg wet 12.0 74 56-120 QSU,QFL delta-BHC 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	alpha-Chlordane		16.1	1.6	0.80	ug/kg wet	11.0	68	55-120	QSU,QFL
beta-BHC [2C] 16.1 1.6 1.2 ug/kg wet 12.0 74 56-120 QSU,QFL delta-BHC 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.5 71 43-120 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	alpha-Chlordane [2C]		16.1	1.6	0.80	ug/kg wet	12.1	75	55-120	QSU,QFL
beta-BHC [2C] 16.1 1.6 1.2 ug/kg wet 12.0 74 56-120 QSU,QFL delta-BHC 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan III 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 <t< td=""><td>beta-BHC</td><td></td><td>16.1</td><td>1.6</td><td>1.2</td><td>ug/kg wet</td><td>13.4</td><td>83</td><td>56-120</td><td>QSU,QFL, C</td></t<>	beta-BHC		16.1	1.6	1.2	ug/kg wet	13.4	83	56-120	QSU,QFL, C
della-BHC 16.1 1.6 0.21 ug/kg wet 12.4 77 45-123 QSU,QFL delta-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I [2C] 16.1 1.6 0.29 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL	beta-BHC [2C]		16.1	1.6	1.2	ug/kg wet	12.0	74	56-120	
delta-BHC [2C] 16.1 1.6 0.21 ug/kg wet 11.6 72 45-123 QSU,QFL Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan III 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan Sulfate 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL	della-BHC			1.6	0.21			77	45-123	
Dieldrin 16.1 1.6 0.39 ug/kg wet 11.3 70 57-120 QSU,QFL Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I 12C] 16.1 1.6 0.29 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 12C) 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan III 12C) 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	delta-BHC [2C]			1.6	0.21	ug/kg wet	11.6	72	45-123	
Dieldrin [2C] 16.1 1.6 0.39 ug/kg wet 11.9 74 57-120 QSU,QFL Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I (2C) 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	Dieldrin			1.6	0.39	ug/kg wet	11.3	70	57-120	
Endosulfan I 16.1 1.6 0.34 ug/kg wet 10.5 65 29-125 QSU,QFL Endosulfan I (2C) 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C) 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	Dieldrin [2C]									QSU,QFL
Endosulfan I (2C) 16.1 1.6 0.34 ug/kg wet 11.0 68 29-125 QSU,QFL Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C) 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	Endosulfan I			1.6	0.34		10.5		29-125	QSU,QFL
Endosulfan II 16.1 1.6 0.29 ug/kg wet 11.1 69 39-121 QSU,QFL Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	Endosulfan I (2C)						11.0	68		QSU,QFL
Endosulfan II [2C] 16.1 1.6 0.29 ug/kg wet 11.7 72 39-121 QSU,QFL Endosulfan sulfate 16.1 1.6 0.30 ug/kg wet 11.5 71 43-120 QSU,QFL	Endosulfan II									QSU,QFL
Endosulfan sulfate 16.1 1.6 0.30 ug/kg wel 11.5 71 43-120 QSU,QFL	Endosulfan II [2C]						11.7	72		QSU,QFL
	Endosulfan sulfate									QSU,QFL
	Endosulfan sulfate [2C]									

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: R\$J0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

			LAI	BUKATUK	T QC DATA						
	Source	Splke					%	% REC			Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPDL	lmit Qua	aliflers
Organochiorine Pestic	ldes by E	<u>EPA Metl</u>	nod 8081A	1							
LCS Analyzed: 10/15/0	9 (Lah N	lumber:9	LI10000 R.B.	S1 Batch: 9.i	10008\						
Endrin	- 1205 14	16.1	1,6	0.52	ug/kg wet	11.7	73	54-127		Q!	SU,QFL
Endrin (2C)		16.1	1.6	0.52	ug/kg wet	13.0	80	54-127		Q	SU,QFL
Endrin aldehyde		16.1	1.6	0.41	ug/kg wet	8.31	51	33-120		Q	SU,QFL
Endrin aldehyde (2C)		16.1	1.6	0.41	ug/kg wet	10.7	66	33-120		Q	SU,QFL
Endrin ketone		16.1	1.6	0.40	ug/kg wet	11.8	73	50-150		Q	SU,QFL
Endrin ketone [2C]		16.1	1.6	0.40	ug/kg wet	11.3	70	50-150		Q	SU,QFL
gamma-BHC (Lindane)		16.1	1.6	0.28	ug/kg we1	13.1	81	50-120		QS	SU,QFL,
gamma-BHC (Lindane) [2C]		16.1	1.6	0.28	ug/kg wet	11.3	70	50-120		Q	C SU,QFL
gamma-Chlordane		16.1	1.6	0.22	ug/kg wel	11.3	70	61-120		Q	SU,QFL
gamma-Chlordane [2C]		16.1	1.6	0.22	ug/kg wet	11.9	73	61-120		Q	SU,QFL
Heptachlor		16.1	1.6	0.25	ug/kg wet	12.9	80	47-120		Q	SU,QFL
Heptachlor (2C)		16.1	1.6	0.25	ug/kg wet	11.9	74	47-120		Q	SU,QFL
Heptachlor epoxide		16.1	1.6	0.42	ug/kg wet	11.5	71	44-122		Q	SU,QFL
Heptachlor apoxide [2C]		16.1	1.6	0.42	ug/kg wet	11.8	73	44-122		Q	SU,QFL
Methoxychlor		16.1	1.6	0.43	ug/kg wat	11.7	72	46-152		Q	SU,QFL
Methoxychlor (2C)		16.1	1.6	0.43	ug/kg wet	12.2	76	46-152		Q	SU,QFL
Surrogate: Decachlorobiphenyl					ug/kg wet		83	42-146		Q	SU,QFL
Surrogate: Decachlorobiphenyl [2C]					ug/kg wet		78	42-146		Q	SU,QFL
Surrogale: Tetrachloro-m-xylene					ug/kg wet		62	37-136		Q	SU,QFL
Surrogale: Tetrachloro-m-xylena					ug/kg wet		67	37-136		Q.	SU,QFL
LCS Dup Analyzed: 10	/15/09 (L	ab Numi	ber:9J100	08-BSD1, Bat	tch: 9J10008)						
4,4'-DDD		16.4	1.6	0.32	ug/kg wet	12.4	76	55-129	6	50 Q	SU,QFL
4,4'-DDD [2C]		16.4	1.6	0.32	ug/kg wet	14.2	86	55-129	9	50 Q	SU,QFL
4,4'-DDE		16.4	1.6	0.47	ug/kg wet	11.9	73	59-120	6	50 Q	SU,QFL
4,4'-DDE [2C]		16.4	1.6	0.47	ug/kg wet	11.8	72	59-120	1	50 Q	SU,QFL
4,4'-DDT		16.4	1.6	0.37	ug/kg wet	11.4	70	47-145	2	50 Q	SU,QFL
4,4'-DDT (2C)		16.4	1.6	0.37	ug/kg wel	11.9	73	47-145	2	50 Q	SU,QFL
Aldrin		16.4	1.6	0.17	ug/kg wet	12.8	78	35-120	6	50 Q	SU,QFL
Aldrin [2C]		16.4	1.6	0.17	ug/kg wet	12.3	75	35-120	6	50 Q	SU,QFL
alpha-BHC		16.4	1.6	0.29	ug/kg wet	14.0	85	49-120	5	50 Q	SU,QFL, C
alpha-BHC [2C]		16.4	1.6	0,29	ug/kg wel	11.7	71	49-120	4	50 Q	SU,QFL
alpha-Chlordane		16.4	1.6	0.82	ug/kg wel	11.8	72	55-120			SU,QFL
alpha-Chlordane [2C]		16.4	1.6	0.82	ug/kg wet	12,5	76	55-120	3		SU,QFL

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

Amaluka	Source Result	Spike Level	RL	MD	11*	D#	%	% REC	% BBD	RPD	Data
Analyte Organochlorine Pestic				MDL	Units	Result	REC	Limits	KPU	Limit	Qualiflers
Oldanochiotine Labric	TORS DA E	<u> FFA Meur</u>	OG BUBT	<u> </u>							
LCS Dup Analyzed: 10	/15/09 (L	ab Numb	er:9J100	008-BSD1, Betc	h: 9J10008)						
beta-BHC		16.4	1,6	1.2	ug/kg wet	14.1	86	56-120	5	50	QSU,QFL,
beta-BHC [2C]		40.4	1.6	1.2	ug/kg wel	12.6	77	56-120	5	50	C QSU,QFL
delta-BHC		16.4 16.4	1.6	0.22	ug/kg wet	13.0	ВО		5	50	QSU,QFL
delta-BHC [2C]		16.4	1.6	0.22	ug/kg wel	12.2	74	45-123	-	50	QSU,QFL
Dieldrin			1.6	0.22	ug/kg wel	11.9	73	57-120		50	QSU,QFL
Dieldrin (2C)		16.4	1.6	0.39	ug/kg wet	11.7	73 72	57-120		50	QSU,QFL
Endosulfen I		16.4	1.6	0.35	ug/kg wel	11.1	68	29-125		50	QSU,QFL
Endosulfan I [2C]		16.4	1.6	0.35	ug/kg wet	11.4	70	29-125		50	QSU,QFL
Endosulfan II		16.4 16.4	1.6	0.29	ug/kg wet	11.6	71		4	50	QSU,QFL
Endosulfan II (2C)		16.4	1.6	0.29	ug/kg wet	13.1	80	39-121		50	QSU,QFL
Endosulfan sulfate		16.4	1.6	0.23	ug/kg wel	11.1	68	43-120		50	QSU,QFL
Endosulfan sulfate [2C]		16.4	1.6	0.31	ug/kg wel	11.8	72	43-120		50	QSU,QFL
Endrin		16.4	1.6	0.53	ug/kg wel	12.4	76	54-127		50	QSU,QFL
Endrin [2C]		16.4	1.6	0.53	ug/kg wet	14.1	86	54-127		50	QSU,QFL
Endrin aldehyde		16.4	1.6	0.42	ug/kg wel	7.22	44	33-120		50	QSU,QFL
Endrin aldehyde [2C]		16.4	1.6	0.42	ug/kg wel	9.65	60	33-120		50	QSU,QFL
Endrin ketone		16.4	1.6	0.40	ug/kg wel	11.7	72	50-150		50	QSU,QFL
Endrin ketone [2C]		16.4	1.6	0.40	ug/kg wel	11.3	69	50-150		50	QSU,QFL
gamma-BHC (Lindane)		16.4	1.6	0.28	ug/kg wel	13.8	84	50-120		50	QSU,QFL,
5		10.7	1.0	0,2,0	ograg wer	10.0	•	00 120		-	C
gamma-BHC (Lindane) [2C]		16.4	1.6	0.28	ug/kg wel	11.9	72	50-120	5	50	QSU,QFL
gamma-Chlordane		16.4	1.6	0.23	ug/kg wet	11.9	73	61-120	5	50	QSU,QFL
gamma-Chlordane (2C)		16.4	1.6	0.23	ug/kg wel	12.5	76	61-120	5	50	QSU,QFL
Heptachlor		16.4	1.6	0.26	ug/kg wet	13.5	83	47-120	5	50	QSU,QFL
Heptachlor [2C]		16.4	1.6	0.26	ug/kg wet	12.4	76	47-120	4	50	QSU,QFL
Heptachlor epoxide		16.4	1.6	0.42	ug/kg wel	12.2	74	44-122	6	50	QSU,QFL
Heptachlor epoxide [2C]		16.4	1.6	0.42	ug/kg wel	12.8	78	44-122	9	50	QSU,QFL
Methoxychlor		16.4	1.6	0.44	ug/kg wel	12.0	73	46-152	2	50	QSU,QFL
Methoxychlor [2C]		16.4	1.6	0.44	ug/kg wet	12.2	74	46-152	0.2	50	QSU,QFL
Surrogate: Decachlorobiphenyl					ug/kg wet		87	42-146			QSU,QFL
Surrogale: Decachlorobiphenyl [2C]					ug/kg wet		82	42-146			QSU,QFL
Surrogale: Telrachloro-m-xylene					ug/kg wet		64	37-136			QSU,QFL
Surrogate: Tetrachloro-m-xylene					ug/kg wel		69	37-136			QSU,QFL

Work Order: RSJ0643

R

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

 1005	ATOM	V 00	DATA
 AMIL	, a i i ib	v (11:	11010

Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC	% RPD Data RPD Limit Qualiflers
Polychlorinated Biphe		PA Meth	·	111111111111111111111111111111111111111	01110	7100000			
Biank Analyzed: 10/12	709 (Lab	Number:		*					
Aroclor 1016			0.50	0.18	ug/L	ND			
Arodor 1016 [2C]			0.50	0.18	ug/L	ND			
Arodor 1221			0.50	0.18	ug/L	ND			
Arodor 1221 [2C]			0.50	0.18	ug/L	ND			
Aroclor 1232			0.50	0.18	ug/L	ND			
Arodor 1232 [2C]			0.50	0.18	ug/L	ND			
Aroclor 1242			0.50	0.18	ug/L	ND			
Aroclor 1242 [2C]			0.50	0.18	пд/Г	ND			
Aroclor 1248			0.50	0.18	ug/L	ND			
Aroclor 1248 [2C]			0.50	0.18	ug/L	ND			
Arodor 1254			0.50	0.25	ug/L	ND			
Arodor 1254 [2C]			0.50	0.25	ug/L	ND			
Arodor 1260			0.50	0.25	ug/L	ND			
Arodor 1260 [2C]			0.50	0.25	ng/L	ND			
Arodor 1262			0.50	0.25	ug/L	ND			
Arodor 1262 [2C]			0.50	0.25	ug/L	ND			
Aroclor 1268			0.50	0.25	ug/L	ND			
Aroclor 1268 [2C]			0.50	0.25	ug/L	ND			
Surrogate:					ug/L		73	12-137	
Decachlorobiphenyl Surrogale:					ug/L		64	12-137	
Decachlorobiphenyl [2C] Surrogale:					ug/L		68	35-121	
Tetrachioro-m-xylene					Ugr		00	00-121	
Surrogale: Tetrachioro-m-xylene					ug/L		56	35-121	
•									
LCS Analyzed: 10/12/	09 (Lab N	łumber:9		S1, Batch: 9J0	9109)				
Aroclor 1016		5.00	0.50	0.18	ug/L	4.25	85	61-123	
Aroclor 1016 [2C]		5.00	0.50	0,18	ug/L	3.57	71	61-123	
Arodor 1260		5.00	0.50	0.25	ug/L	4,58	92	52-128	
Arodor 1260 [2C]		5.00	0.50	0.25	ug/L	3.78	76	52-128	
Surrogate: Decachlorobiphenyl					ug/L		91	12-137	
Surrogate: Decachlorobiphenyl [2C]					ug/L		78	12-137	
Surrogate:					и g/ L		78	35-121	
Tetrachloro-m-xylene Surrogate: Tetrachloro-m-xylene					ug/L		60	35-121	

LCS Dup Analyzed: 10/12/09 (Lab Number:9J09109-BSD1, Batch: 9J09109)

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Received: 10/09/09

Reported: 11/03/09 12:07

1	AD	OP	AT		DV	00	DA	TA
-1-	AΟ		ΑI	u	K I	uL	UM	18

				ONATOR	I QC DAIA					
	Source	Splke					%	% REC	% RPD	
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualiflers
Polychlorinated Biphe	anyls by E	PA Meti	hod 8082							
LCS Dup Analyzed: 16	0/12/09 (L	ab Num	ber:9J0910	9-BSD1, Bat	tch: 9J091091					
Arodor 1016	-,, ,	5.00	0.50	0.1B	ug/L	4.39	88	61-123	3 50	
Aroclor 1016 [2C]		5.00	0.50	0.18	ug/L	3.73	75	61-123	4 50	
Aroclor 1260		5.00	0.50	0.25	ug/L	4.76	95	52-128	4 50	
Arodor 1260 [2C]		5.00	0.50	0.25	ug/L	4.06	81	52-128	7 50	
Surrogate:					ug/L	-	81	12-137		
Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]					ug/L		69	12-137		
Surrogate: Tetrachloro-m-xylene					ug/L		87	35-121		
Surrogate: Tetrachloro-m-xylene					ug/L		67	35-121		
•	anula hu E		L . d 0000							
Polychlorinated Biphe	BILAIS DA E	PA MIGU	100 8082							
Blank Analyzed: 10/18	3/09 (Lab	Number	:9J16100-l	BLK1, Batch:	9J16100)					
Aroclor 1016			16	3.2	ug/kg wet	ND				QSU
Aroclor 1016 (2C)			16	3.2	ug/kg wel	ND				QSU
Aroclor 1221			16	3.2	ug/kg wet	ND				QSU
Arocior 1221 [2C]			16	3.2	ug/kg wet	ND				QSU
Arodor 1232			16	3.2	ug/kg wet	ND				QSU
Aroclor 1232 [2C]			16	3.2	ug/kg wel	ND				QSU
Aroclor 1242			16	3.6	ug/kg wet	ND				QSU
Aroclor 1242 [2C]			16	3.6	ug/kg wet	ND				QSU
Aroclor 1248			16	3.2	ug/kg wel	ND				QSU
Aroclor 1248 [2C]			16	3.2	ug/kg wet	ND				QSU
Aroclor 1254			16	3.5	ug/kg wet	ND				QSU
Aroclor 1254 [2C]			16	3.5	ug/kg wet	ND				QSU
Aroclor 1260			16	3.5	ug/kg wet	ND				QSU
Arodor 1260 [2C]			16	3.5	ug/kg wet	ND				QSU
Arodor 1262			16	3.5	ug/kg wel	ND				QSU
Aroclor 1262 [2C]			16	3.5	ug/kg wel	ND				QSU
Aroclor 1268			16	3.5	ug/kg wet	ND				QSU
Aroclor 1268 [2C]			16	3.5	ug/kg wet	ND				QSU
Surrogate:					ug/kg wei		110	34-148		QSU
Decachiorobiphenyl Surrogale:					ug/kg wet		95	34-148		QSU
Decachlorobiphenyl [2C] Surrogate: Tetrachloro-m-xylene					ug/kg wet		96	35-134		QSU
Tetrachioro-m-xylene Surrogate: Tetrachioro-m-xylene					ug/kg wet		76	35-134		QSU

TestAmerica Buffalo

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericalnc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

				_
- 1	ARORA	TODY	\sim	DATA
		I L JPK T	Late	1 / 44 1 44

			_ ·-								
	Source	Spike					%	% REC	%	RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD	Limit (Qualifiers
Polychlorinated Biphe	nyls by E	PA Me	thod 8082								
LCS Analyzed: 10/18/0	9 (Lab N	nmper	:9J16100-BS	31, Betch: 9J	116100}						
Aroclor 1016		164	16	3.2	ug/kg wel	132	81	59-154			QSU
Aroclor 1016 [2C]		164	16	3.2	ug/kg wel	112	68	59-154			QSU
Arodor 1260		164	16	3.5	ug/kg wet	159	97	51-179			QSU
Arodor 1260 [2C]		164	16	3.5	ug/kg wet	130	79	51-179			QSU
Surrogate:					ug/kg wet		101	34-148			QSU
Decachlorobiphenyl Surrogate: Decachlorobiphenyl (2C)					ug/kg wet		81	34-148			QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		84	35-134			QSU
Surrogale: Tetrachloro-m-xylene					ug/kg wet		65	35-134			QSU
LCS Dup Analyzed: 10)/18/09 (L	ab Nui	mber:9J1610	0-BSD1, Ba	tch: 9J16100)						
Aroclor 1016		165	17	3.2	ug/kg wet	140	85	59-154	6	50	QSU
Aroclor 1016 [2C]		165	17	3.2	ug/kg wet	118	71	59-154	5	50	Q\$U
Aroclor 1260		165	17	3,5	ug/kg wel	173	105	51-179	8	50	QSU
Aroclor 1260 [2C]		165	17	3.5	ug/kg wet	141	85	51-179	8	50	QSU
Surrogale:					ug/kg wet	-	106	34-148			QSU
Decachlorobiphenyl Surrogate: Decachlorobiphenyl [2C]					ug/kg wet		88	34-148			QSU
Surrogate: Tetrachioro-m-xylene					ug/kg wel		89	35-134			QSU
Surrogate: Tetrachloro-m-xylene					ug/kg wet		71	35-134			QSU

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site 48001559-2

			Project f	Number: 4800	1559-2				
			LAE	BORATORY	QC DATA				
	Source	Spike					%	% REC	% RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits R	PD Limit Qualifiers
Total Metals by SW &	46 Series	<u>Methods</u>							
Blank Analyzed: 10/13	3/09 (Lab	Number:	9J12069-E	BLK1. Batch: 9	9J12069)				
Aluminum			0.200	0.040	mg/L	ND			
Antimony			0,0200	0.0068	mg/L	ND			
Arsenic			0.0100	0.0056	mg/L	ND			
Barium			0.0020	0.0003	mg/L	ND			
Beryllium			0.0020	0.0002	mg/L	ND			
Cadmium			0.0010	0.0003	mg/L	ND			
Calcium			0.5	0.1	mg/L	ND			
Chromium			0.0040	0.0009	mg/L	ND			
Cobalt			0.0040	0.0006	mg/L	ND			
Copper			0.0100	0.0013	mg/L	ND			
Imn			0.050	0.019	mg/L	ND			
Lead			0.0050	0.0030	mg/L	ND			
Magnesium			0.200	0.043	mg/L	ND			
Manganese			0.0030	0.0002	mg/L	ND			
Nickel			0.0100	0.0013	mg/L	ND			
Polassium			0.500	0.050	mg/L	ND			
Selenium			0.0150	0.0087	mg/L	ND			
Silver			0.0030	0.0012	mg/L	ND			
Sodium			1.0	0.3	mg/L	ND			
Thallium			0.0200	0.0102	mg/L	ND			
Vanadium			0.0050	0.0011	mg/L	ND			
Zinc			0,0100	0.0015	mg/L	ND			
1004 1 14040	100 // A NI		140000 D		_				
LCS Analyzed: 10/13/	U9 (Lab N				-	0.00	400	90 120	
Aluminum		10.0	0.200	0.040	mg/L	9.98	100	80-120	
Antimony		0.200	0.0200	0.0068	mg/L	0,199	100	80-120	
Arsenic		0.200	0.0100	0.0058	mg/L	0,206	103	80-120	
Barium		0.200	0.0020	0.0003	mg/L	0.206	103	80-120	
Beryllium		0.200	0.0020	0.0002	mg/L	0.202	101	80-120	
Cadmium		0.200	0.0010	0.0003	mg/L	0.201	100	80-120	
Calcium		10.0	0.5	0.1	mg/L	10.2	102	80-120	
Chromium		0.200	0.0040	0.0009	mg/L	0.204	102	80-120	
Coball		0.200	0.0040	0.0006	mg/L	0.204	102	80-120	
Copper		0.200	0.0100	0.0013	mg/L	0.210	105	80-120	
Iron		10.0	0.050	0.019	mg/L	9.95	100	80-120	
Lead		0.200	0.0050	0.0030	mg/L	0.205	102	80-120	
Magnesium		10.0	0.200	0.043	mg/L	10.2	102	80-120	

TestAmerica Buffalo

Manganese

0.200

0.0030

0.0002

mg/L

0.202 101

80-120

¹⁰ Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			Project N	lumber: 480	01559-2		_			
			LAE	ORATOR	QC DATA					
	Source	Spike					%	% REC	% RPD	Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits	RPD Limit	Qualifiers
Total Metals by SW B4	46 Series	Methods	•							
LCS Analyzed: 10/13/	09 (Lab N	lumber:9	J12069-BS	1. Batch: 9J	12069)					
Nickel	(=05)	0.200	0.0100	0.0013	mg/L	0.201	101	80-120		
Potassium		10.0	0.500	0.050	mg/L	10.4	104	80-120		
Selenium		0.200	0.0150	0.0087	mg/L	0.204	102	80-120		
Silver		0.0500	0.0030	0.0012	mg/L	0.0512	102	80-120		
Sodium		10.0	1.0	0.3	mg/L	10,2	102	80-120		
Thallium		0.200	0.0200	0.0102	mg/L	0.200	100	80-120		
Vanadium		0.200	0.0050	0.0011	mg/L	0.204	102	80-120		
Zinc		0,200	0.0100	0.0015	mg/L	0.205	103	80-120		
Total Metals by SW 8	46 Series	Methods								
Blank Analyzed: 10/20	0/09 (Lab	Number	:9J1 5 055 - E	BLK1, Batch:	9J15055)					
Aluminum			10.0	1.3	mg/kg wet	ND				
Anlimony			15.0	0.5	rng/kg wel	ND				
Arsenic			2.0	0.2	mg/kg wet	0.3				B,J
Barium			0.500	0.026	mg/kg wet	ND				
Beryllium			0.200	0.010	mg/kg wet	0.013				B,J
Cadmium			0.200	0.040	mg/kg wel	ND				
Calcium			50.0	10.0	mg/kg wet	ND				
Chromium			0.500	0.090	mg/kg wet	ND				
Coball			0.500	0,050	mg/kg wet	ND				
Copper			1.0	0.1	mg/kg wet	ND				
Iron			10.0	3.0	mg/kg wet	ND				
Lead			1.0	0.1	mg/kg wel	ND				
Magnesium			20.0	0.9	mg/kg wel	1.5				8,J
Manganese			0.2	0.03	mg/kg wel	0,5				В
Nickel			5.00	0.080	mg/kg wel	ND				
Potassium			30.0	4.9	mg/kg wet	ND				
Selenium			4.0	0.6	mg/kg wet	ND				
Silver			0.500	0.070	mg/kg wet	ND				
Sodium			140	31.0	mg/kg wet	ND				
Thalllum			6.0	0.3	mg/kg wel	ND				
Vanadium			0.500	0.040	mg/kg wel	ND				
Zinc			2.0	0.2	mg/kg wet	0.2				B,J
Reference Analyzed:	10/20/09	(Lab Nui	nber:9J15	055-SRM1, B	atch: 9J15055	5)				
Aluminum		11000	10.0	1.3	mg/kg wet	8880	81	55.7-143 6	ł.	
Antimony		81.7	15.0	0.5	mg/kg wet	44.6	55	0-203.7		

TestAmerica Buffalo

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991 www.testamericainc.com

Work Order: RSJ0643

Received: 10/09/09 Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

			LAB	ORATORY	QC DATA				
Analyte	Source Result	Spike Level	RL	MDL	Units	Result	% REC	% REC Limits	% RPD Date RPD Limit Qualifiers
Total Metals by SW 84	16 Series	Methods							
Reference Analyzed: 'Arsenic	10/20/09 ((Lab Nun 158	nber:9J150 2.0	55-SRM1, Ba 0.2	itch: 9J15055) mg/kg wel	142	90	81.6-118.	8
Barium		349	0.501	0.026	mg/kg wet	311	89	4 80.7-119. 3	
Beryllium		106	0.200	0.010	mg/kg wet	97.1	91	81.6-118. 9	В
Cadmlum		187	0.200	0.040	mg/kg wel	178	95	82.4-117. 6	
Calcium		9670	50.1	10.0	mg/kg wet	9270	96	80.8-119. 2	
Chromium		89.7	0.501	0.090	mg/kg wet	87.5	98	78.8-120. 7	
Cobalt		278	0.501	0.050	mg/kg wel	271	98	80.9-119. 1	
Copper		129	1.0	0.1	mg/kg wet	124	96	83.7-117. 1	
Iron		18600	10.0	3.0	mg/kg wel	14500	78	50.4-148. 9	
Lead		172	1.0	0.1	mg/kg wet	152	88	79.1-120. 3	
Magnesium		5040	20.0	0.9	mg/kg wel	4590	91	78.7-121. 3	В
Manganese		634	0.2	0.03	mg/kg wet	604	95	81.8-118	B1,B
Nickel		99.2	5.01	0.080	mg/kg wet	96.9	98	81.2-119. 2	
Potassium		4020	30.1	4.9	mg/kg wel	3680	92	73.6-126. 4	
Selenium		148	4.0	0.6	mg/kg wet	143	97	78.4-120. 9	
Silver		66.1	0.501	0.070	mg/kg wet	59.0	89	66.2-133. 6	
Sodium		885	140	31.1	mg/kg wet	784	89	73.7-125. 7	
Thallium		269	6.0	0.3	mg/kg wel	254	94	77.6-122. 4	
Vanadium		194	0.501	0.040	mg/kg wel	180	93	79.4-120. 1	
Zinc		395	2.0	0.2	mg/kg wel	363	92	80,5-119. 3	В
Total Metals by SW 8	46 Series	Methods	ì						
Blank Analyzed: 10/1	7/09 (lah	Number	:9_117027_E	RIK1 Retch:	9,117027\				
Mercury	1200		0.0002	0.0001	mg/L	ND			

0.00613 92

mg/L

80-120

TeslAmerica Buffalo

Mercury

10 Hazelwood Drive Amherst, NY 14228 tel 716-691-2600 fax 716-691-7991

0.00667 0.0002

0.0001

LCS Analyzed: 10/17/09 (Lab Number:9J17027-BS1, Batch: 9J17027)

www.testamericainc.com

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DATA

Source Splke Result Level Analyte

MDL

Units

Result REC

% REC % RPD Data

Limits RPD Limit Qualifiers

Total Metals by SW 846 Series Methods

Blank Analyzed: 10/20/09 (Lab Number:9J19064-BLK1, Batch: 9J19064)

Mercury

0.0192

RL

0.0078

mg/kg wel

ND

Matrix Spike Analyzed: 10/20/09 (Lab Number:9J19064-MS1, Batch: 9J19064)

QC Source Sample: RSJ0643-01

Mercury

0.0101

0.389 0.0233 0.0094

mg/kg dry

0.419

105 75-125

Matrix Spike Dup Analyzed: 10/20/09 (Lab Number:9J19064-MSD1, Batch: 9J19064)

QC Source Sample: RSJ0643-01

Mercury

0.0101

0.0219 0.364

0.0088

mg/kg dry

0.395

106 75-125 6 20

Reference Analyzed: 10/20/09 (Lab Number:9J19064-SRM1, Batch: 9J19064)

Mercury

0.391 6.80

0.158

mg/kg wet

5.99

71.8-128. 88

Cyanide

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Site Project Number: 48001559-2

LABORATORY QC DAT	IA	
-------------------	----	--

	Source	Spike					%	% REC % RPD Data
Analyte	Result	Level	RL	MDL	Units	Result	REC	Limits RPD Limit Qualifiers
General Chemistry Pe	arameters							
Blank Analyzed: 10/10	6/09 (Lab	Number	:9J14035-B	LK1, Batch:	9J14035)			
Cyanide			1.0	0,5	mg/kg wet	ND		
LCS Analyzed: 10/16/	09 (Lab N	lumber:9	J14035-BS	1, Balch: 9J	14035)			
Cyanide		60.6	1.8	9,0	mg/kg wet	53.2	88	40-160
Duplicate Analyzed: 1 QC Source Sample: RSJ0		Lab Num	ber:9J140	35-DUP1, Ba	tch: 9J14035)			
Cyanide	ND		1.0	0.5	mg/kg dry	ND		15
Matrix Spike Analyze QC Source Semple: RSJ0		9 (Lab N	umber:9J1	4035-MS1, E	atch: 9J1403!	5)		
Cyanide	ND	10.6	1.1	0.5	mg/kg dry	10.6	100	85-115
General Chemistry Pa	arameters							
Blank Analyzed: 10/1	6/09 (Lab	Number	:9J14038-E	BLK1, Batch:	9J14038)			
Cyanide			0.0100	0.0050	mg/L	ND		
LCS Analyzed: 10/16/	'09 (Lab N	lumber:9	J14038-BS	61, Batch: 9J	14038)			

0.0050

0.0100

0.400

0.277

mg/L

69

90-110

SDG Narrative

Work Order: R\$J0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

Sample Summary

Sample Identification	Lab Number	Client Matrix	Date/Time Sampled	Date/Time Received	Sample Qualiflers
S1	RSJ0643-01	Solid	10/06/09 10:00	10/09/09 09:20	
S2	RSJ0643-02	Solid	10/06/09 10:15	10/09/09 09:20	
S3	RSJ0643-03	Solid	10/06/09 11:00	10/09/09 09:20	
S4	RSJ0643-04	Solid	10/06/09 11:15	10/09/09 09:20	
S5	RSJ0643-05	Solid	10/06/09 12:15	10/09/09 09:20	
S6	RSJ0643-06	Solid	10/06/09 12:30	10/09/09 09:20	
S7	RSJ0643-07	Solid	10/06/09 11:15	10/09/09 09:20	
SB	RSJ0643-08	Solid	10/06/09 15:45	10/09/09 09:20	
S9	RSJ0643-09	Solid	10/06/09	10/09/09 09:20	
S10	RSJ0643-10	Solid	10/06/09	10/09/09 09:20	
W1	RSJ0643-11	Ground Water	10/07/09 11:40	10/09/09 09:20	
W2	RSJ0643-12	Ground Water	10/07/09 14:19	10/09/09 09:20	
W3	RSJ0643-13	Ground Water	10/07/09 17:21	10/09/09 09:20	
W4	RSJ0643-14	Ground Waler	10/08/09 10:35	10/09/09 09:20	
W5	RSJ0643-15	Ground Water	10/07/09 15:41	10/09/09 09:20	
W6	RSJ0643-16	Ground Water	10/07/09 18:30	10/09/09 09:20	
W7	RSJ0643-17	Ground Water	10/08/09 08:45	10/09/09 09:20	
W8	RSJ0643-18	Ground Water	10/07/09 18:30	10/09/09 09:20	
TRIP BLANK	RSJ0643-19	Water	10/08/09	10/09/09 09:20	

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Ciabattoni Brownfield Site Project Number: 48001559-2

CASE NARRATIVE

According to 40CFR Part 136.3, pH, Chlorine Residual, Dissolved Oxygen, Sulfite, and Temperature analyses are to be performed immediately after aqueous sample collection. When these parameters are not indicated as field (e.g. field-pH), they were not analyzed immediately, but as soon as possible after laboratory receipt.

N-Nitrosodiphenylamine recovery was elevated in Laboratory Control Samples (LCS) 9J12044-BS1 and 9J12044-BS2 indicating a possible high bias. This compound was not detected in the associated samples.

Atrazine recovery was below QC limits for Laboratory Control Sample (LCS) 9J13065-BS1 and it's duplicate 9J13065-BSD1. The RPD for Benzaldehyde was elevated for the LCS/LCSD pair, though the individual recoveries were within QC limits for this analyte. Individual analyte exceedances for multicomponent analyses are allowed without qualifacation of the data per NELAC standard.

For the Pesticide dual column analysis, a Form 1 will be provided for both columns for the Quality Control samples (Blanks, Laboratory Control Samples, Matrix Spikes and Duplicates). The primary column for this analysis is the B column.

For the PCB dual column analysis, a Form 1 will be provided for both columns for the Quality Control samples (Blanks, Laboratory Control Samples, Matrix Spikes and Duplicates). The primary column for this analysis is the A column.

Mercury Continuing Calibration Blank RJ91938-CCB4 indicates that the found result is at or above the reporting limit; however, the reporting limit is 0.20 mg/l. The reporting limit listed on the form is taking into account the volumes used for the preparation of the samples. The initial volume is 30 ml and final volume is 50 ml resulting in the reporting limit of 0.12 mg/l presented on the form.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed within the body of this report. Release of the data contained in this sample data package and in the electronic data deliverables has been authorized by the Laboratory Manager or his/her designee, as verified by the following signature.

Tony Bogolin

Project Manager

Tuesday, November 3, 2009

There are pertinent documents appended to this report, 4 pages, are included and are an integral part of this report. Reproduction of this analytical report is permitted only in its entirety. This report shall not be reproduced except in full without the written approval of the laboratory.

TestAmerica Laboratories, Inc. certifies that the analytical results contained herein apply only to the samples tested as received by our Laboratory.

Doc. Login/ARRF TestAmerica Buffalo September 28, 2009 Storage # Work Order YES / NO Strict Internal COC: Shipment ID YES / NO Radiation Check < 0.02 mR/hr: Residual Chlorine Check: Pre-log-RS # OF SAMPLES CD ATTACH SHIPPING TAGS SHIPPED BY RECEIVED DATE / TIME: (<6 ° C) NO SEAL# Cooler Custody Seal intact?, NONE (PM Name) If NO to cooler temp or seal, PM notified? YES_ _Analysis_ WORKSHARE/SUB YES/NO NONE (MT) COMMENTS: SAMPLE TIME Sample received outside hold time-Condition (Issues) Yes/NO ARRF_ Resolved at login_ Tests added from All Analyses list

NO ._

NA_

ARE SAMPLE DATES AND TIMES CORRECT?

PRESERVATION CHECKED

WERE ALL THE APPROPRIATE TESTS ASSIGNED?

Initials_____

Initials

Initials

Temp.Cert.Loss: TKN by Method 351.2 for New York, Illinois, New Jersey, Kansas, Maine, California, Florida, Louisiana, Texas and Pennsylvania.

YES

Work Order: RSJ0643

Received: 10/09/09

Reported: 11/03/09 12:07

Project: Clabattoni Brownfield Sile Project Number: 48001559-2

DATA QUALIFIERS AND DEFINITIONS

В	Analyte was detected in the associated Method Blank.
B1	Analyte was detected in the associated method blank. Analyte concentration in the sample is greater than 10x the concentration found in the method blank.
С	Calibration Verification recovery was above the method control limit for this analyte. Analyte not detected, data not
•	impacted.
C4	Calibration Verification recovery was below the method control limit for this analyte.
D08	Dilution required due to high concentration of target analyte(s)
D10	Dilution required due to sample color
J	Analyte detected at a level less than the Reporting Limit (RL) and greater than or equal to the Method Detection
	Limit (MDL). Concentrations within this range are estimated.
L	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above the acceptance limits.
	Analyte not detected, data not impacted.
L1	Laboratory Control Sample and/or Laboratory Control Sample Duplicate recovery was above acceptance limits.
L5	Analyte recovery outside of specified criteria. Individual analyte criteria exceedences allowed for multi-component analyses without disqualification of data per NELAC Standard, DOD QSM and/or AFCEE QAPP.
QFL	Florisil clean-up (EPA 3620) performed on extract.
QSU	Sulfur (EPA 3660) clean-up performed on extract.
R2	The RPD exceeded the acceptance Ilmit.
T11	This compound is a calibrated analyte and therefore is qualitatively and quantitatively reported compared to a known standard that is in control.
T7	Tentatively identified compound. Concentration is estimated based on the closest internal standard.
NR	Any inclusion of NR indicates that the project specific requirements do not require reporting estimated values below the laboratory reporting limit.

TIC Analyzed by MS T.I.C. (Tentatively Identified Compound)

ADDITIONAL COMMENTS

Results are reported on a wet weight basis unless otherwise noted.

Chain Of Custody Documentation

Custody Record Chain of

Temperature on Receipt

THE LEADER IN ENVIRONMENTAL TESTING Drinking Water? Yes □ No□

TestAmerica

10520 Ime 3 Special Instructions/ Conditions of Receipt Chain of Gustody Number 159493 (A lee may be assessed if samples are retained Months farger than 1 month) Š 15/01 Date Page 280 Date 51#+2W Analysis (Attach list if more space is needed) 5, #a/1 00 メメダ 2 AUV אינטא אינטא אינטא OC Requirements (Specify) و D Containers & Preservatives HOTH Riaconrod By Clenis 2. Received By 3. Received By אכו m) W. 3 **FONT HOSZH** SAICH) 0 ی و ☐ Unknown ☐ Return To Client ALC TRI/TCL +30 DISTRIBUTION: With The Sample, PINK - Field Copy 1508 Sample Dispose Jame 1 Carrier Wayout Number Metnx pos 0 Project Manager Site Contact Omer | 19/20 Z)y 5111 233 04/1 1545 (035 1015 1100 Time 0001 511 11.15 512 72 ☐ 21 Deys 5,40 33592 🗌 Paisan B 6/9/01 5/L/01 6/8/0) Date ☐ 14 Days Proposit Name and Location (Seate)
1.1.6 0.4 Haw (Section A-1: E/d
Contract Purchase Order Country (No. 1) (Containers for each semple may be combined on one line) Skin Imtant 10220 HARMEN K Sample I.D. No. and Description CE+ 771, ☐ 7.0ays CHEMI TECHNO 1091ES RS-10269 ☐ Flemmeble how to 5 ASA 46 Hours W 4 Possible Hazard Identification CIADA HOUS Tum Around Time Required Refinquished By ☐ Non-Hazard 24 Hours 1 Rathaus Ba 3 S 3 55 25 57

Chain of Custody Record

Temperatura on Receipt —

Drinking Water? Yes□ No□

TestAmerica

IAL-4124 (1007)						101 - 100 see 4 see 1	
CHOOL TECHNOLOGIES	Market	Project Manager			Cara	159496	
	Telep	Telephone Number (Area Code)/Fax Number	le)/Fax Number	ś	i.ab Number	Page 2 01 2	-)
City Zip Code		Sile Contact	Lab Contact		Analysis (Attach list if more space is needed)		
Proper Name and Jesus (Susas) BROWN & E 1851 K		Camer/Waybul Numbar		אכע כיון		Special Instructions/	S
chase OrdenOuote		Mainx	Containers & Preservatives	8 S S S S S S S S S S S S S S S S S S S	\$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$/ \$	Conditions of Receipt	jdi
Sample I.D. No. and Description on the line of the sach sample may be combined on one time.	Date Time	pas pas moray	HORN FORM CONH	1539 154 154 150 150 150 150 150 150 150 150 150 150	(12) (12) (12)		,
_	1451 1901 16/01	\leftarrow) 1 1 9	×	XXX		
	7 (830		_ _ _				
101	5380 60/80/01		1 1				
	5681 Polro/02	-1	1 9	17 7			
	\vdash	×	C C C C C C C C C C C C C C C C C C C	XX			
	-	×					
							1
							1
Possible Hazard Mentification Non-Hazard Flammabe Stin Intan! Pe	□ Paisan B □ Unknown	Semple Disposel Mn	DO Disposed By Lab	Archiva For	Months kayper than 1 mon	(A few may be assessed if samples are retained kaper than 1 month)	
Required 4	27.00ks (X.C.)	Dromer 15	OC Requiements (Specify)	N		,	
VBV		18/9 150S	/ Indiagaired By	/		10 15 15 05 S	.≾
2. (Refroushed By	Data		2. Received By			Date Time	72/25
3. Relinquished By	Deris	Тыты	3. Raceived By			Date Time	92
Comments					V		
					20.00		
DISTRIBUTION: WHITE - Returned to Chart with Report; CANARY - Stays with the Sumple; PINK - Freid Copy	MARY - Stays with the Su	umple; PINK - FABO COD					

Sample Data Package

175/2592

TestAmerica Buffalo

SDG:

CLASS: VOA

METHOD: 8260B

Form Rev: 10/20/09 Printed: 11/02/2009

ANALYSES DATA PACKAGE COVER PAGE 8260B

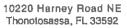
Laboratory: TestAmerica Buffalo	SDG:
Client: A2L Technologies	Project: Ciabattoni Brownfield Site
Client Sample Id:	Lub Sample Id:
\$1	RSJ0643-01
S2	RS10643-02
\$3	RSJ0643-03
S4	RSJ0643-04
SS	RSJ0643-05
\$6	R\$J0643-06
\$7	RS10643-07
SB	RS10643-08
S9	RS10643-09
S10	RS10643-10
Wı	RS/0643-11
W2	RSJ0643-12
W3	RSJ0643-13
W4	RSJ0643-14
W5	RSJ0643-15
W6	RSJ0643-16
₩7	RSJ0643-17
W8	RSJ0643-1B
TRUP BLANK	RSJ0643-19

APPENDIX 9
Phase II ESA

PHASE II ENVIRONMENTAL SITE ASSESSMENT

For:

CIABATTONI PROPERTY 149 & 153 South Liberty Drive Stony Point, Rockland County. New York


Prepared For:

THE SEMBLER COMPANY 5858 Central Avenue St. Petersburg, Florida 33707

Prepared By:

A2L TECHNOLOGIES, INC. 10220 Harney Road NE Thonotosassa, Florida 33592 (813) 248-8558 www.A2Ltechnologies.com

> April 27, 2006 Project #: 050409

PH (813) 248-8558 FAX (813) 248-8656

April 27, 2006 Project # 050409

Mr. Robert J. Fargo The Sembler Company 5858 Central Avenue St. Petersburg, Florida 33707

RE: CIABATTONI PROPERTY

149 & 153 South Liberty

Stony Point, Rockland County, New York

Dear Mr. Fargo:

A2L Technologies, Inc. is pleased to present you with this **Phase II Environmental Site Assessment**. We would like to take this opportunity to thank you for selecting A2L Technologies,
Inc. to assist you with this matter. This report has been prepared for the sole and exclusive use of
The Sembler Company and its clients.

As always, should you have any further questions please feel free to contact us at your convenience.

Sincerely,

A2L Technologies, Inc.

Kent R. Ward ASP, CFEA, REPA

Hand Kill

Vice President

Director of Environmental Services

TABLE OF CONTENTS

SECT	PAGE	Ξ
1.0	Introduction	1
2.0	Site Contamination History	1
3.0	Site Assessment Scope of Services	2
4.0	Description of Assessment Activities	5
5.0	Findings and Results	7
6.0	Conclusions & Recommendations	4
7.0	Signature of Environmental Professional(s)	7
	LIST OF APPENDICES	
	HRP Associates Inc. Report Appendix A	Δ

1.0 INTRODUCTION

A2L Technologies, Inc. was authorized to proceed with a *Phase II Environmental Site*Assessment for the CIABATTONI PROPERTY located at 149 & 153 South Liberty Drive North in the Town of Stony Point, Rockland County, New York. This Phase II Assessment was performed in accordance with ASTM E1903-97, *Guide for Environmental Site Assessments: Phase II Environmental Site Assessment Process.* The areas of concern were identified by A2L Technologies, Inc. in a *Phase I Environmental Site Assessment* (dated January 12, 2006) which identified the following historical recognized environmental conditions: 1.) historic presence of a gas station/garage with gasoline and waste oil underground storage tanks (USTs) and hydraulic lifts, 2.) unauthorized dumping behind gas station building.

2.0 SITE CONTAMINATION HISTORY

The subject site has historically served as a gas station and garage since the 1950's. Documentation obtained from the EDR database report and Rockland County Department of Health indicates that the original tanks (installed in the 1950's) were removed in 1980 by Ira D. Conklin & Sons, Inc. (IDC) and replaced with three (3) 10,000 gallon gasoline UST's and two dispensers. In August 2003, IDC removed the three (3) 10,000 gallon gasoline UST's and one (1) 550 gallon waste oil UST. During the excavation process, it was established that the soil was contaminated and a New York State Department of Environmental Conservation (NYDEC) Spill Report Form was submitted on August 20, 2003. Approximately 600 tons of soil was removed from the tank excavation area and 150 tons of soil removed from the waste oil UST excavation. Laboratory results for the soil extracted upon excavation indicated contaminants above the NYSDEC TAGM

#4046 Recommended Soil Cleanup Objective level at the east wall (under South Liberty Drive) and bottom of the excavation. Upon inspection of the site, the Rockland County Department of Health representative requested the removal of the hydraulic lifts and dispensers on the site.

On November 1, 2004, the removal of three (3) in-ground hydraulic lifts and the dispenser island commenced. Approximately 1,780 tons of petroleum contaminated soil were removed from both excavations. Soil sample results indicated levels above the NYSDEC TAGM #4046 Recommended Soil Cleanup Objectives along the east wall of the excavation only. The remaining laboratory results were below the applicable levels. Although groundwater was encountered during the excavation, no groundwater sampling was performed at the subject site. A letter from IDC to Majac Enterprises (UST Owners) on December 28, 2004 indicated the presence of contaminated soil along the south wall of the hydraulic lift excavation. All of the Spill Incidents recorded for the subject site were closed by the NYSDEC. Residual contamination reportedly remains along the east property boundary. The presence of groundwater contamination was not established during tank closure activities.

3.0 SCOPE OF SERVICES

The purpose of the investigation was to determine the presence or absence of contamination caused by past activities on the subject property as presented in the *Phase I*Environmental Site Assessment (dated January 12, 2006) prepared by A2L Technologies, Inc.

In order to address these specific concerns, the Scope of Services for this investigation included:

- Site inspection and field-determination of sample locations.
- Field screening of soil samples at 2' intervals using an Organic Vapor Analyzer
 (OVA) equipped with a Photo-Ionization Detector (PID).
- Installation of soil borings at a total of three (3) field-determined locations around the former UST tank pit, dispenser island and product lines, representative of potential on-site contamination (Refer to Appendix A for details and locations).
- Installation of three (3) temporary monitoring wells at the soil boring locations around the former UST tank pit, dispenser island and product lines. (Refer to Appendix A for details and locations).
- Collection of one (1) soil sample from the former UST tank pit and dispenser area (location of the highest OVA response), with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA and VOH) and EPA Method 6010 for RCRA Metals.
- Collection of three (3) ground water samples from each of the temporary wells in the area of the former UST's with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA and VOH) and EPA Method 6010 for 8 RCRA Metals (filtered and unfiltered).
- Installation of soil borings at one (1) field-determined location around the former inground hydraulic lifts located within the garage of the gas station building. (Refer to Appendix A for details and locations).
- Installation of one (1) temporary monitoring wells at the center of the former inground hydraulic lifts area within the garage of the gas station building. (Refer to

Appendix A for details and locations).

- Collection of one (1) soil sample from the former hydraulic lift area, with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA), EPA Method 8270C for Semi-Volatile Organic Compounds (STARS SVOC), EPA Method 6010 for 8 RCRA Metals (filtered and unfiltered), and EPA Method 8081 for PCB's.
- Collection of one (1) ground water sample from the temporary well in the area of the former hydraulic lift area with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA and VOH) and EPA Method 6010 for 8 RCRA Metals.
- Installation of soil borings at a total of three (3) field-determined locations at the south side (rear) of the former gas station building in the area of the recorded dumping of automotive fluids. The three (3) soil borings were installed along the rear wall of the gas station to approximately five (5) feet.
- Collection of one (1) soil sample from the rear of the building (location of the highest OVA response), with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA), EPA Method 8270C for Semi-Volatile Organic Compounds (STARS SVOC), and EPA Method 6010 for 8 RCRA Metals.
- Installation of soil borings at a total of two (2) field-determined locations at the west side of the former gas station building in the area of the former waste oil underground storage tank to approximately ten (10) feet below land surface.
- Collection of one (1) soil sample from the area of the waste oil tank (location of the highest OVA response), with analysis using EPA Method 8021B for Volatile Organic Compounds (STARS VOA and VOH), EPA Method 8270C for Semi-Volatile Organic

Compounds (STARS SVOC), and EPA Method 6010 for 8 RCRA Metals.

Preparation of report of activities and findings.

4.0 DESCRIPTION OF ASSESSMENT ACTIVITIES

On April 12, 2006, the site activities were performed by HRP Associates, Inc. (HRP) and Aztech Environmental Services, Inc. (Aztech). The soil and groundwater testing was being performed for the client in order to establish the presence of on-site contamination prior to future development. A description of the on-site activities and sampling follows (Refer to Appendix A for specific site details and information):

4.1 Soil Sampling

Soil borings were installed at a total of nine (9) field determined locations by Aztech using a truck-mounted combination direct push and hollow stem auger drill rig. The soil borings were advanced to depths ranging from 1 to 30 feet below land surface (bls). The soil samples were collected continuously in four foot intervals by HRP using a 1½-inch inner diameter stainless steel Macrocore sampler. Due to access restrictions, soil borings were installed at the rear of the gas station building with a stainless steel hand auger and shovel. Soil boring logs describing the geologic descriptions and comments were maintained in the field during the boring activities.

The soil from each 2' increment was screened with an Organic Vapor Analyzer (OVA) equipped with a Photo-Ionization Detector (PID). Physical evidence of contamination (i.e. staining, odors, elevated PID measurements) was observed at five soil boring locations. Soil samples were extracted by HRP from the boring at each location indicating the highest

response. After collection, each soil sample was placed into laboratory-provided glass sampling containers. The sample containers were labeled and placed into a cooler, preserved on wet ice at 4° C, and delivered with a properly completed Chain-of-Custody to *Hudson Environmental Services, Inc.* for analysis using the specific methods previously listed. Laboratory results and Soil Boring logs listing the lithology, sampling interval, and specific analysis performed for each sample location are present in Appendix A.

4.2 Groundwater Sampling

Temporary monitoring wells were installed by Aztech at four (4) field determined soil boring locations using a truck-mounted combination direct push and hollow stem auger drill rig. The temporary wells were installed in the area of the former UST excavation and dispensers, as well as the former in-ground hydraulic lifts. The wells were installed to a depth of 20' - 29' bls, with groundwater encountered at the site between approximately 17' - 25' bls. The wells were constructed of 1" diameter PVC with 0.01" slotted screen in the lower ten (10) feet of the well. The annular space around the slotted screen, and two feet above was packed with 20/30 silica sand, followed by a fine sand (30/65) pack of 1' thick.

The temporary wells were purged by HRP prior to sample collection to ensure the acquisition of a sample representative of the local aquifer. The groundwater sample was collected at the end of the well volume purged and stabilization parameters were measured. A sample was then retrieved with a pre-cleaned dedicated Teflon bailer and transferred to laboratory supplied containers (samples for volatiles analysis were collected first) in accordance with the U.S. Environmental Protection Agency 40 CFR 136, Table II. The containers were labeled and placed into a cooler, preserved at 4° C, and delivered with a

properly completed Chain-of-Custody to *Hudson Environmental Services, Inc.* for analysis (Refer to Appendix A for site specific information).

5.0 FINDINGS AND RESULTS

5.1 Soil Sample Analysis

The laboratory analysis yielded results below detectable limits, except as follows:

Location/ Constituent	Result	Units	NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives
SB-02: Former Waste Oil Tank Location	on (Sampled 4' - 6')		
Total Xylenes	0.089 B	mg/kg	1.2
1,3,5 - Trimethylbenzene	0.240 B	mg/kg	NE
1,2,4 - Trimethylbenzene	0.072	mg/kg	NE
p-Isopropyltoluene	0.057	mg/kg	NE
Total VOC's	0.458	mg/kg	10
Barium	37	mg/kg	300
Chromium	25	mg/kg	10
Lead	43	mg/kg	SB
Silver	2.2	mg/kg	SB
SB-04: Former Dispenser Island Area	(Sampled 17' - 19')	-	
MTBE	0.016	mg/kg	NE
Benzene	0.63	mg/kg	0.060
Toluene	3.8 B	mg/kg	1.5
Ethylbenzene	1.9	mg/kg	5.5

Location/ Constituent	Result	Units	NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives
Total Xylenes	5.9	mg/kg	1.2
Isopropylbenzene	0.51	mg/kg	NE
n-Propylbenzene	0.93	mg/kg	NE
1,3,5 - Trimethylbenzene	1.6	mg/kg	NE
1,2,4 - Trimethylbenzene	2.8 B	mg/kg	NE
Sec-Butylbenzene	0.027	mg/kg	NE
p-Isopropyltoluene	0.160	mg/kg	NE
Napthalene	0.41	mg/kg	NE.
Total VOC's	18.68	mg/kg	10
Barium	55	mg/kg	300
Chromium	34	mg/kg	10
Lead	6.6	mg/kg	SB
Silver	1.1	mg/kg	SB
SB-06: Former In-Ground Hydraulic	Lift Area (Sampled 6'	- 8')	
n-Propylbenzene	0.027 B	mg/kg	NE
1,3,5 - Trimethylbenzene	0.022 B	mg/kg	NE
1,2,4 - Trimethylbenzene	0.051 B	mg/kg	NE
p-Isopropyltoluene	0.019	mg/kg	NE
Total VOC's	0.119	mg/kg	10
Barium	64	mg/kg	300
Chromium	38	mg/kg	10
Lead	7.9	mg/kg	SB
Silver	0.54	mg/kg	SB

Location/ Constituent	Result	Units	NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives	
SB-08: Rear of Former Gas Station Bu	ilding (Sampled 0'	- 2')		
Barlum	68	mg/kg	300	
Chromium	54	mg/kg	10	
Lead	290	mg/kg	SB	
Silver	<0.58	mg/kg	SB	

^{*} Soil samples that exceed NYSDEC TAGM values are bolded NYSDEC = New York State Department of Environmental Conservation TAGM = Technical and Administrative Guidance Memorandum # 4046 NE = Not Established

SB = Site Background

B = indicates estimated concentration

Benzene, Toluene, Total Xylene, and Total VOC's were found to be above the applicable regulatory limits in the area of the former dispensers. The chromium concentrations exceeded applicable standards at all of the sampled locations. No other analytes were detected in the samples collected. (Refer to Appendix A for Analytical Results).

Ground Water Assessment 5.2

The laboratory analysis yielded results below detectable limits, except as follows:

Location/ Constituent	Result Units		TOGS Value	
SB-03: Former Underground Storage	Tank Area			
Benzene	1.4	μg/L	0.7 5	
Toluene	0.94 B	µg/L		
Ethylbenzene	10	µg/L	5	
Xylenes - Total	20 B	μg/L	5	

Location/ Constituent	Result	Units	TOGS Value
Isopropylbenzene	4.9	µg/L	5
n-Propylbenzene	6.4	µg/L	5
1,3,5-Trimethylbenzene	11	μg/L	5
1,2,4-Trimethylbenzene	23 B	µg/L	5
sec-Butylbenzene	1	µg/L	5
p-Isopropyltoluene	0.7	μg/L	5
Napthalene	0.6 B	μg/L	10
Total VOC's	79.94	µg/L	NE
Barium (Total)	26,000	µg/L	1000
Barium (dissolved)	140	µg/L	1000
Chromium (Total)	3,800	μg/L	50
Chromium (dissolved)	18	µg/L	50
Lead (Total)	650	µg/L	50
Lead (dissolved)	<42	μg/L	50
Selenium (Total)	<57	µg/L	10
Selenium (dissolved)	<57	րց/Լ	10
Silver (Total)	90	µg/Ľ	50
Silver (dissolved)	<10	µg/L	50
SB-04: Former Dispenser Island Are	ea		
Benzene	2,800	µg/L	0.7
Toluene	2,600 B	µg/L	5
Ethylbenzene	2,300	μg/L	5
Xylenes - Total	5,700 B	µg/L	5
Isopropylbenzene	150	µg/L	5
n-Propylbenzene	260	µg/L	5

Location/ Constituent	Result	Units	TOGS Value
1,3,5-Trimethylbenzene	400	μg/L	5
Tert-Butylbenzene	<25	μg/L	5
1,2,4-Trimethylbenzene	1,100 B	µg/L	5
sec-Butylbenzene	<25	μg/L	5
p-Isopropylloluene	<25	µg/L	5
n-Butylbenzene	<25	μg/L	5
Napthalene	280 B	µg/L	10
MTBE*	910	μg/L	10
Total VOC's	16,500	μg/L	NE
Barium (Total)	16,000	µg/L	1000
Barium (dissolved)	200	μg/L	1000
Chromium (Total)	3,200	μg/L	50
Chromium (dissolved)	10	μg/L	50
Lead (Total)	600	µg/L	50
Lead (dissolved)	<42	µg/L	50
Selenium (Total)	<57	μg/L	10
Selenium (dissolved)	<57	μg/L	10
Silver (Total)	60	µg/L	50
Silver (dissolved)	<10	µg/L	50
3-05: Northwest of Former UST's a	and Dispensers		
Benzene	3.1	μg/L	0.7
Toluene	16 B	μg/L	5
Ethylbenzene	63	µg/L	5
Xylenes - Total	56	μg/L	5
Isopropylbenzene	32	µg/L	5

Location/ Constituent	Result	Units	TOGS Value
n-Propylbenzene	76	µg/L	5
1,3,5-Trimethylbenzene	27	µg/L	5
1,2,4-Trimethylbenzene	120 B	µg/L	5
sec-Butylbenzene	11	µg/L	5
p-Isopropyltoluene	1.6	µg/L	5
Napthalene	48 B	μg/L	10
MTBE*	1.6	μg/L	10
Total VOC's	453.7	μg/L	NE
Barium (Total)	13,000	μg/L	1000
Barium (dissolved)	100	µg/L	1000
Chromium (Total)	3,700	µg/L	50
Chromium (dissolved)	10	μg/L	50
Lead (Total)	840	μg/L	50
Lead (dissolved)	<42	µg/L	50
Selenium (Total)	<57	µg/L	10
Selenium (dissolved)	<57	µg/L	10 50
Silver (Total)	60	μg/L	
Silver (dissolved)	<10	µg/L	50
· · · · · · · · · · · · · · · · · · ·		•	<u> </u>
SB-06: Former In-Ground Hydraulic	Lift Area		
Benzene	1.2	μg/L	0.7
Toluene	0.91 B	µg/L	5
Ethylbenzene	1.0	µg/L	5
Xylenes - Total	2.3	μg/L	5
n-Propyibenzene	1.0	µg/L	5
1,3,5-Trimethylbenzene	1.3	μg/L	5

Location/ Constituent	Result	Units	TOGS Value
1,2,4-Trimethylbenzene	3.7 B	µg/L	5
Napthalene	2.1 B	µg/L	10
Total VOC's	13.51	μg/L	NE
Barium (Total)	6,400	µg/L	1,000
Barium (dissolved)	80	µg/L	1,000
Chromium (Total)	3,400	μg/L	50
Chromium (dissolved)	<7	µg/L	50
Lead (Total)	340	μg/L	50
Lead (dissolved)	<42	µg/L	50
Selenium (Total)	150	μg/L	10
Selenium (dissolved)	<57	µg/L	10
Silver (Total)	70	μg/L	50
Silver (dissolved)	<10	μg/L	50

TOGS = NYSDEC Technical and Operational Guidance Series (1.1.1) Ground water samples that exceed NYSDEC GWQS are bolded B indicates estimated concentration NE indicates no standards established

Elevated levels of petroleum constituents were found to be present in all of the ground water samples extracted, which exceed the applicable NYSDEC groundwater quality standards. The sample results indicated that the area of the former dispenser has experienced the greatest impact. (Refer to Appendix A for site specific documentation).

6.0 CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Field assessment activities were performed for this Phase II Environmental Site Assessment (ESA) on April 12, 2006 by HRP Associates, Inc. and Aztech Environmental Services, Inc. (driller). The Phase II ESA was performed of the Ciabattoni Property due to the potential presence of contamination from the historic gas station (UST's, dispensers, waste oil tank, and in-ground hydraulic lifts). Investigative techniques utilized during the assessment are summarized below:

- Visual examination of soil brought to the surface during borehole installation to determine the subsurface lithology.
- Analysis with an Organic Vapor Analyzer (OVA) equipped with a Photo lonization Detector (PID) to determine the quality of the unsaturated soils at the boring locations.
- Soil and groundwater sampling in the former UST and dispenser areas at the north side of the gas station building.
- Soil and groundwater sampling in the area of the former in-ground hydraulic lifts within the gas station building.
- Soil sampling in the area of the former waste oil UST at the west side of the building.
- Soil sampling at the rear of the gas station building in the area of the alleged illegal dumping.

A summary of the assessment findings is a follows:

The water table was encountered at approximately 17' - 25' bls. The groundwater level is consistent with that documented during the removal of the tanks.

- Natural geologic units encountered at the site below the gravelly back fill material consisted of reddish brown and grayish brown silly sand and gravel underlain by a well sorted medium sand. Bedrock was not encountered during the investigation.
- Physical evidence of contamination (i.e. staining, odors, PID measurements) was observed from the soil samples extracted from the waste oil UST area, UST and Dispenser area, and in-ground hydraulic lift.
- No significant levels of VOC's were established within the sampled soil in the area of the former waste oil UST.
- No significant levels of VOC's were established within the sampled soil in the area of the alleged dumping at the rear of the gas station building.
- No significant levels of VOC's were established within the sampled soil in the area of the former in-ground hydraulic lifts. Additionally, Benzene was detected slightly above TOGS value in the groundwater sample, with Selenium being the only dissolved metal exceeding the regulatory limit.
- Based on the results of sampling, groundwater at the former dispenser island and UST area have been impacted by numerous petroleum constituents above NYSDEC groundwater quality standards. The extent of the impact has not been delineated, and the potential exists that the groundwater impact may extend off-site.
- Metals concentrations exceeding the regulatory limits were established within the soil samples (chromium) and groundwater samples (totals barium, chromium, lead, selenium, silver and dissolved selenium). The source of the elevated metals is unknown.

6.2 Recommendations

A soil and groundwater assessment has been performed at the Ciabattoni Property located at 149 & 153 South Liberty Drive in the Town of Stony Point, Rockland County New York. The sampling was performed due to the historic operation of a gas station and garage at this location. Based upon the findings of the assessment activities, the following recommendations are provided:

- Evidence of a petroleum release was identified during the performance of the assessment activities. It is recommended that the NYSDEC contacted to report the contamination and obtain a new spill number for the facility. The Rockland County Department of Health has closed all of the previously filed Spill numbers for the subject site. Additional assessment and remedial actions may be required by NYSDEC upon notification.
- Further investigation (soil borings and permanent wells) is recommended in the
 area of the former UST excavation and dispenser island to determine the degree
 and extent of soil and groundwater contamination and the presence of non-aqueous
 phase liquid (NAPL). Additionally, the properly installed and developed permanent
 monitoring wells can be sampled for metals to establish if the elevated
 concentrations are representative of the on-site groundwater conditions.
- An exposure assessment should be conducted in order to identify potential sensitive receptors in the area of the subject site.
- During site development for the new structures, there may be a potential for VOC's
 exposure identified in the soil and groundwater requiring special engineering
 controls (ie: soil vapor remedial system). Petroleum impacted soil that is disturbed
 during site development activities would require proper removal and disposal.

Based upon the results of this assessment, the subject site has been adversely impacted by the historic property usage as a gas station and garage. Further assessment and potential remediation is recommended for the subject property.

6.0 SIGNATURES OF ENVIRONMENTAL PROFESSIONAL(S)

Prepared by:

Kent R. Ward, ASP, CFEA, REPA

Vice President

Director of Environmental Services

Registered Environmental Property Assessor (NREP)
Certified Florida Environmental Assessor (FEAA)

Reviewed by:

Larry G. Schmaltz, P.E.

President

Registered Environmental Property Assessor (NREP)
Certified Florida Environmental Assessor (FEAA)
Certified Remediation Specialist (EAA)

APPENDIX A

HRP Associates, Inc. Report

HRP associates, Inc.

Creating the Right Solutions Together

April 26, 2006

Mr. Larry Schmaltz, P.E. President/C.E.O. A2L Technologies, Inc. 10220 Harney Road NE Thonotosassa, Florida 33592

RE: PHASE II ENVIRONMENTAL SITE ASSESSMENT AT THE CIABATTNONI PROPERTY, STONY POINT, NEW YORK

Dear Mr. Schmaltz:

In April 2006, HRP Associates, Inc. (HRP) was retained to complete a Phase II Environmental Site Assessment (Phase II ESA) at the Ciabattoni Property at 153 South Liberty Drive in the City of Stony Point, New York (the site). The Phase II ESA included the installation of nine (9) soil borings and the collection and analysis of select soil and groundwater samples. The remainder of this letter discusses the project background, field activities, findings/conclusions, as well as HRP's recommendations.

BACKGROUND

In January 2006, A2L Technologies completed a Phase I ESA of the Ciabattoni property in Stony Point, New York. A2L reported that the site was historically used as a gasoline filling station, utilizing several underground storage tanks (USTs) and as an automobile service facility. According to the Phase I ESA, petroleum contaminated soil was encountered at the property during removal of USTs and pumping equipment. Approximately 1,780 tons of soil was removed from the site in the former pump island and UST area. The excavation extended to approximately 18 feet below grade. Groundwater samples were not collected as part of previous investigations or remedial activities.

In addition, two former in-ground hydraulic lifts were reportedly removed from the service bays of the site building. To evaluate environmental concerns related to historical on-site operations, A2L prepared a Phase II ESA proposal bid request.

HRP completed this Phase II ESA to evaluate potential impacts to the site soils and groundwater from historical activities.

FIELD ACTIVITIES/FINDINGS

Prior to any conducting intrusive subsurface activities, HRP requested that the Underground Facilities Protection Organization complete a utility mark out of the site. Prior to the initiation of activities involving subsurface explorations at this site, HRP prepared a project specific health and safety plan, in accordance with 29 CFR 1910.120.

CONNECTICUT

197 Soott Sworma Road Farmington, CT 06032 800-246-9021 860-674-9570 FAX 860-674-9624

NEW YORK

100 Saratoga Village Blvd. Suite 27 Maita, NY 12020 688-623-6427 516-899-3011 FAX 518-899-8129

PENNSYLVANIA

4811 Janeslown Road Suite 235 Harrisburg, PA 17109 866-232-9824 717-920-1350 FAX717-920-1353

SOUTH CAROLINA 7001 Pelham Road SulleJ Greenville, SC 29615 800-752-3922 864-289-0311

FAX 864-281-9846

www.hrpassociales.com

- Due Diligence
- Site investigations
- Brownfelds Redevelopment
- Remedial/Carrective Action
- CMI Engineering
- Land Surveying
- Site Pianning
- Environmental Permitting
- Hazardous Waste Management
- . Air Quality & Poliution Control
- Water & Wastewater Management
- Health & Safety
- Environmental Management System

Mr. Larry Schmaltz, P.E. Page 2 April 26, 2006

Subsurface Investigation

To evaluate the condition of site soils and groundwater, HRP and Aztech Environmental Services mobilized to the site on April 12, 2006 to install a total of nine (9) soil borings (referred to as SB-01 through SB-09), and collect representative soil and groundwater samples using a truck-mounted combination direct push and hollow stem auger drill rig. Soil borings were located based on the historical waste oil tank, USTs, pump-island, and in-ground lift locations, and alleged dumping area. The soil boring locations are shown on Figure 2 and are summarized below.

Soil Boring	Location
SB-01	Former waste oil tank location
SB-02	Former waste oil tank location
SB-03	Former UST area
SB-04	Former pump-island area
SB-05	Northwest of former UST and pump-island area
SB-06	Former in-ground lift area
SB-07	Rear of site building (alleged dumping area)
SB-08	Rear of site building (alleged dumping area)
SB-09	Rear of site building (alleged dumping area)

Soil Characterization

During the subsurface investigation, soil borings (SB-01 through SB-06) were advanced to depths ranging from 0 to 30 feet below ground surface (bgs). Soil samples were collected continuously in four-foot intervals using a 1 ¾-inch inner diameter (l.D.) stainless steel, four-foot long Macrocore sampler. Each four-foot soil sample was collected in a new, acetate liner to ensure the sample's integrity, and then split into two (2), two-foot segments.

Soll boring locations SB-07 through SB-09 were installed using a hand shovel due to site constraints. The shovel was decontaminated between locations.

Soll boring logs describing the geologic descriptions and comments were maintained in the field by an HRP geologist, and are included in Attachment #1. The collected soll samples were reviewed in the field for physical evidence of contamination (i.e. odor, staining, elevated meter readings), placed in a labeled jar, and stored in a cooler for preservation. Each boring was backfilled with bentonite chips upon completion of soll and groundwater sampling.

Mr. Larry Schmaltz, P.E. Page 3 April 26, 2006

Based upon HRP's field review of the collected soil samples, HRP selected the following four (4) soll samples for laboratory analysis:

Soil Boring ID	Sample Depth	Analyses
5B-02	4-6'	STARS VOCs (USEPA Method 8021B), STARS SVOCs (USEPA Method 8270C, 8 RCRA Metals (mass analysis)
SB-04	17-19'	STARS VOCs (USEPA Method 8021B), 8 RCRA Metals (mass analysis)
SB-06	6-8'	STARS VOCs (USEPA Method 8021B), 8 RCRA Metals (mass analysis), STARS SVOCs (USEPA Method 8270C, PCBs (USEPA Method 8082)
SB-08	0-2'	STARS VOCs (USEPA Method 8021B), STARS SVOCs (USEPA Method 8270C, 8 RCRA Metais (mass analysis)

STARS: New York State Department of Environmental Conservation Spill Technology and

Remediation Series

VOC: Volatile Organic Compounds

SVOC: Semi Volatile Organic Compounds

USEPA: United States Environmental Protection Agency

8 RCRA Metals (arsenic, barlum, cadmium, chromium, lead, mercury, selenium, and silver)

Groundwater Characterization

To screen groundwater quality beneath the subject site, HRP installed temporary wells in four (4) soil borings (SB-03, SB-04, SB-05, and SB-06) using PVC well screens and risers and collected grab groundwater samples using clean polyethylene ballers. Groundwater was encountered at the site between approximately seventeen and twenty-five feet bgs. Samples were collected into appropriate containers and stored on ice in a cooler.

The four (4) groundwater samples were submitted for analysis of complete VOCs via EPA Method 8021B; and total and dissolved metals. The samples collected for dissolved metals were filtered in the field with 0.45 micron inline filters. NYSDEC guidance dictates that groundwater samples analyzed for metals contain less than 50 nephelometric turbidity units (NTU). For the purpose of this investigation using temporary monitoring well points, turbidity values of less than 50 NTUs were not attainable. For this reason HRP collected samples for both total and dissolved metals for comparison.

Soil and groundwater samples were selected for submission based on the probable depth of the former USTs, hydraulic lifts, and physical evidence of contamination. Samples were selected to evaluate soils in the vicinity of and presumably downgradient from the areas of concern (former waste oil tank, alleged dumping area, former UST area, and former pump island area). In addition, groundwater samples were submitted from different borings to maximize the data coverage.

Subsurface Investigation Findings

Lithology

During the subsurface investigation, HRP noted that below the gravelly backfill material, (up to 17 feet) site's geology generally consisted of reddish brown and grayish brown silty sand and gravel underlain by a well sorted medium sand. Bedrock was not encountered during the investigation.

Mr. Larry Schmaltz, P.E. Page 4 April 26, 2006

Groundwater was encountered at depths ranging from approximately 17 feet to 25 feet below ground surface (bgs) at the site. The direction of groundwater flow at the site was not evaluated as part of this investigation. However, based on local topography, shallow groundwater flow at the site is expected to flow in a generally easterly direction towards the Hudson River approximately % mile east of the site.

Observations

As shown in the soil borings logs, during the field activities, physical evidence of contamination (i.e. staining, odors, elevated PID measurements) were noted associated with soil samples from borings SB-02, SB-03, SB-04, SB-05, and SB-06. No obvious physical evidence of contamination was observed on soil samples from borings SB-01, SB-07, SB-08, or SB-09.

Petroleum odors were observed on groundwater at borings SB-03, SB-04, and SB-05. No physical evidence of contamination was observed on groundwater at boring SB-06. Groundwater was not encountered at borings SB-01, SB-02, SB-7, SB-08, or SB-09.

Analytical results

As previously stated, a total of four (4) soil samples (SB-02, 4-6'; SB-04, 17-19'; SB-06, 6-8'; and SB-8, 0-2') were submitted to a state-certified laboratory for analysis. HRP compared the soil sample results to the NYSDEC's Technical and Administrative Guidance Memorandum (TAGM) #4046-Determination of Recommended Soil Cleanup Objectives (RSCOs). The analytical results for the four soil samples are summarized in Table 1 and discussed below. The laboratory report forms can be reviewed in Attachment #2.

HRP submitted four (4) groundwater samples (SB-03, SB-04, SB-05, and SB-06) for analysis of VOCs via EPA Method 8021B; and total and dissolved metals via mass analysis. HRP compared the groundwater sample results to the NYSDEC's Technical and Operational Guidance Series (TOGS) 1.1.1. The analytical results for the four groundwater samples are summarized in Table 2 and discussed below. The laboratory report forms can be reviewed in Attachment #2.

A summary of soil and groundwater analytical results by area of concern is provided below:

Former Waste Oil Tanks Area

One soll sample (SB-02, 4-6') was submitted for analysis from the former waste oil tank area. No STARS SVOCs were detected in this sample. Low levels of several STARS VOCs and metals were detected in this soll sample. Chromium (25 mg/kg) was detected above the RSCO value of 10 mg/kg but within Eastern USA background concentrations of 15 to 40 mg/kg. Groundwater samples were not analyzed from this area.

Former In-ground Lift Area

One soil sample (SB-06, 6-8') was submitted for analysis from the former in-ground lift area. No STARS SVOCs, STARS VOCs or PCBs were detected in this sample. Low levels of metals were detected in this sample. Chromium (25 mg/kg) was detected above the RSCO value of 10 mg/kg but within Eastern USA background concentrations of 15 to 40 mg/kg.

Mr. Larry Schmaltz, P.E. Page 5 April 26, 2006

One groundwater sample (SB-06) was analyzed from the former in-ground lift area area. Low levels of STARS VOCs were detected, however, only benzene (1.2 ug/i) was detected above TOGS value of 0.7 ug/l. Elevated total metals (barium (6,400ug/l), chromium (3,400), selenium (150 ug/l), and silver (70 ug/l)) were also detected in groundwater sample SB-06. All levels of dissolved metals, except silver were below TOGS values or non-detectable.

Area of Alleged Dumping

One soil sample (SB-08, 0-2') was submitted for analysis from the area of alleged dumping. No STARS SVOCs or STARS VOCs were detected in this sample. Low levels of metals were detected in this sample. Chromium (54 mg/kg) was detected above the RSCO value of 10 mg/kg and Eastern USA background concentrations of 15 to 40 mg/kg. Groundwater samples were not analyzed from this area.

Former UST and Pump Island Area

One soil sample (SB-04, 17-19') was submitted for analysis from the former UST and pump island area. No STARS SVOCs were detected in this sample. STARS VOCs (benzene 0.63 mg/kg, toluene 3.8 mg/kg (estimated), total xylenes 5.9 mg/kg, and total VOCs 18.68 mg/kg) were detected above RSCOs within this soil sample. Low levels of metals were detected in this sample. Chromium (35 mg/kg) was detected above the RSCO value of 10 mg/kg but within Eastern USA background concentrations of 15 to 40 mg/kg.

Three groundwater samples (SB-03, SB-04, and SB-05) were analyzed from the former UST and pump island area. STARS VOCs (Total BTEX-32.34 ug/l; Total VOCs- 79.94 ug/l) were detected above TOGS values in groundwater sample SB-03. STARS VOCs (Total BTEX-13,400 ug/l; Total VOCs- 16,500 ug/l) were detected above TOGS values in groundwater sample SB-04. STARS VOCs (Total BTEX-138.1 ug/l; Total VOCs- 453.7 ug/l) were detected above TOGS values in groundwater sample SB-05. In addition, due to the elevated STARS VOCs concentrations detected in groundwater sample SB-04, the laboratory detection limits were above TOGS values for the remaining compounds that were not detected.

Total metals were also detected in groundwater samples SB-03 SB-04, and SB-05. Elevated total metals (barium, chromium, selenium, and silver) were also detected in groundwater samples SB-03, SB-04, and SB-05. The highest levels were noted in sample SB-04 (barium (26,000 ug/l), chromium (3,800 ug/l), lead (650 ug/l), and silver (90 ug/l)). All levels of dissolved metals, except silver were below TOGS values or non-detectable.

CONCLUSIONS

Based upon the data collected to date, HRP has the following conclusions:

 In April 2008, HRP completed a Phase II ESA at the Ciabattoni Property located at 153 South Liberty Drive in Stony Point, New York to evaluate the site's former uses and to investigate the status of underlying soil and groundwater quality in the noted areas were contamination was historically documented. The Phase II ESA included the Installation of nine (9) soil borings, and the collection and analysis of select soil samples and groundwater samples.

Mr. Larry Schmeltz, P.E. Page 6 April 26, 2006

- During the field activities, physical evidence of contamination (i.e. staining, odors, elevated PID measurements) was observed on soil samples from borings SB-02, SB-03, SB-04, SB-05, and SB-06. No physical evidence of contamination was observed on soil samples from borings SB-01, SB-08, or SB-09.
- No significant levels of STARS VOCs or semi-VOCs were detected in soil sample SB-02, 4-6', collected from the former waste oil tank area. As such, potential impacts related to the former waste oil tanks are not expected to be significant.
- No STARS SVOCs, PCBs, and only low levels of STARS VOCs were detected in soil sample SB-06, 6-8', collected from the former in-ground lift area. In addition, benzene was detected marginally above TOGS values in groundwater sample SB-06. No dissolved metals except silver were detected above TOGS values in groundwater sample SB-06. As such, potential impacts related to the former in-ground lifts are not expected to be significant.
- Based on HRP's review of the laboratory results, no detectable STARS VOCs or semi-VOCs and low levels of chromlum were noted within soll samples SB-08, 0-2', collected from the area of alleged dumping. As such, potential impacts from alleged dumping are not expected to be significant.
- Based on our findings, groundwater (SB-03, SB-04, and SB-05) at the former pump Island and former UST area of the site has been impacted by BTEX (presumably from historical fueling operations) above NYSDEC groundwater quality standards. Petroleum odors were observed on groundwater at borings SB-03, SB-04, and SB-05. The extent of impact has not been delineated, and the potential exists that the groundwater impact may extend off-site based on the data from groundwater sample collected from location SB-04. In addition, elevated total and dissolved metals were detected in groundwater samples collected during the investigation.
- The source of the elevated metals concentrations is currently unknown.

RECOMMENDATIONS

Based on our findings to date, HRP offers the following recommendations:

- Evidence of a petroleum release(s) was identified as a result of our investigation. HRP
 recommends that the NYSDEC be contacted to report a new spill number. A historic spill file
 associated with the on-site release has reportedly been closed. However, due to the acquisition of
 groundwater sample data, it is HRPs opinion that the site should be further investigated and
 remediated.
- Further investigation (soil borings/permanent monitoring wells) is warranted in the vicinity of the former USTs and pump island to evaluate the degree and extent of soil and groundwater contamination and the potential presence of non-aqueous phase liquid (NAPL).
- The collection and analysis of additional groundwater samples from permanent monitoring wells that have been properly installed and developed is warranted to evaluate if elevated metals concentrations are representative of on-site groundwater conditions.

HRP associates, Inc.

Mr. Larry Schmaitz, P.E. Page 7 April 26, 2006

- An exposure assessment should be conducted in order to identify potential receptors, such as private/residential drinking water wells.
- If the on-site buildings or new buildings are to be used, a soil gas survey is warranted to assess potential exposure to the VOCs identified in the soil and groundwater. If the site is to be redeveloped and soil vapor is determined to be an issue, the landowner may wish to consider building designs that incorporates passive and/or active soil vapor remedial systems. Any site activities that involve disturbing site soils should consider that potential impacted petroleum contaminated soils and/or groundwater may be encountered and may require removal and off-site disposal.

It should be noted that additional remedial actions may be required by the NYSDEC (eg. In-situ treatment such as ORC® injection or dual phase positive displacement groundwater recovery).

We appreciate the opportunity to provide environmental consulting services for A2L Technologies. If you have any questions about this letter-report, please do not hesitate to contact HRP Associates, inc. at (518) 899-3011.

Sincerely,

HRP ASSOCIATES, INC.

Eric Lovenduski

Senior Project Geologist

Jeffrey R. Sotek, PE, CSP, CIH

Senior Project Manager

TABLE 1 - Summary of Soil Sample Results Clabattoni Property 153 South Liberty Drive Stony Point, New York April 2006

		April 200			
		Soil Samp	ole I.D.		
Parameter	SB-02, 4-6'		SB-04, SB-06, 6-8'		NYSDEC TAGM 4046 Recommended Soil Cleanup Objectives
MTBE	<0.014	0.016	<0.014	<0.015	NE
Benzene	< 0.014	0.63	<0.014	<0.015	0.060
Toluene	<0.014 B	3.8 B	<0.014 B	<0.015	1.5
Ethylbenzene	<0.014	1.9	<0.014	<0.015	5.5
Total Xylenes	0.089 B	5.9	<0.014 B	<0.015	1.2
Isopropylbenzene	<0.014	0.51	<0.014	<0.015	NE
n-Propylbenzene	< 0.014	0.93	0.027B	<0.015	NE
1,3,5-Trimethylbenzene	0.240 B	1.6	0.022 B	<0.015	NE
1,2,4-Trimethylbenzene	0.072	2.8 B	0.051 B	<0.015	NE
Sec-Butylbenzene	<0.014	0.027	<0.014	<0.015	NE
n-Butylbenzene	< 0.014	<0.014	<0.014	<0.015	NE
p-Isopropyltoluene	0.057	0.160	0.019	<0.015	NE
Napthalene	<0.014B	0.41	<0.014	<0.015 B	NE
Total VOCs	0.458	18.68	0.119	<0.015	10
Barium	37	55	64	68	300
Chromium	25	34	38	54	10
Lead	43	6.6	7.9	290	SB
Silver	2.2	1.1	0.54	<0.58	SB

All values reported as ppm (mg/kg)

Soil samples that exceeded NYSDEC TAGM values are bolded and shaded

No STARS semi volatile organics, or PCBs were detected.

NE=None Established

SB=Site Background

B Indicates estimated concentration

TABLE 2 Summary of Groundwater Sample Results

Ciabattoni Property 153 South Liberty Drive Stony Point, New York April 2006

		prii 2006 oundwate	r Sample	(D)	TOGS
Parameter	SB-03	SB-04	SB-05	SB-06	Values
Benzene	1.4	2,800	3.1	1.2	0.7
Toluene	0.94B	2,800B	16B	0.91B	5
Ethylbenzene	10	2,300	63	1.0	5
Xylenes-total	20B	5,700B	- 56	2.3	5
Isopropylbenzene	4.9	150	32	<0.5	5
n-Propylbenzene	6,4	260	76	1.0	5
1,3,5-Trimethylbenzene	11	400	27	1.3	5
Tert-Butylbenzene	<0.5	<25	<0.5	<0.5	5
1,2,4-Trimethylbenzene	23B	1,100B	120B	3.7B	5
sec-Butylbenzene	1.0	<25	11	<0.5	5
p-Isopropyltoluene	0.70	<25	1.6	<0.5	5
n-Butylbenzene	<0.5	<25	<0.5	<0.5	5
Napthalene	0.6B	280B	48B	2.1B	10
MTBE*	<0.5	910	1.6	<0.5	10
Total VOCs	79.94	16,500	453.7	13.51	NE
Barium (total)	26,000	18,000	13,000	6,400	1,000
Barium (dissolved)	140	200	100	80	1,000
Chromium (total)	3,800	3,200	3,700	3,400	50
Chromium (dissolved)	18	10	10	<7	50
Lead (total)	650	800	840	340	50
Lead (dissolved)	<42	<42	<42	<42	50
Seienium (total)	<57	<57	<57	150	10
Selenium (dissolved)	<57	<57	<57	<57	10
Silver (total)	90	60	60	70	50
Silver (dissolved)	<10	<10	<10	<10	50

Notes:

TOGS=NYSDEC Technical and Operational Guidance Series (1.1.1)

All results in µg/l.

Ground water samples that exceeded NYSDEC GWQS are bolded and shaded.

B Indicates estimated concentration

NE indicates no standards established

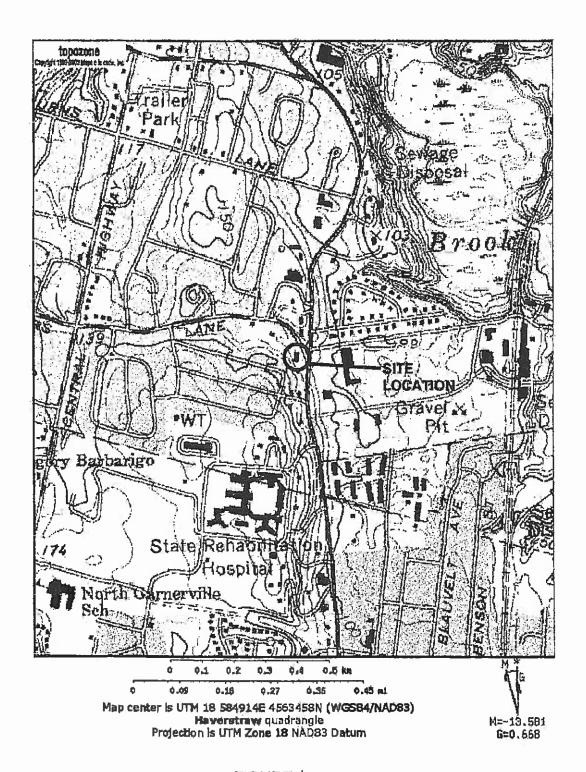


FIGURE 1 SITE LOCATION 149 SOUTH LIBERTY DRIVE STONY POINT, NEW YORK HRP # ATW0001.P2

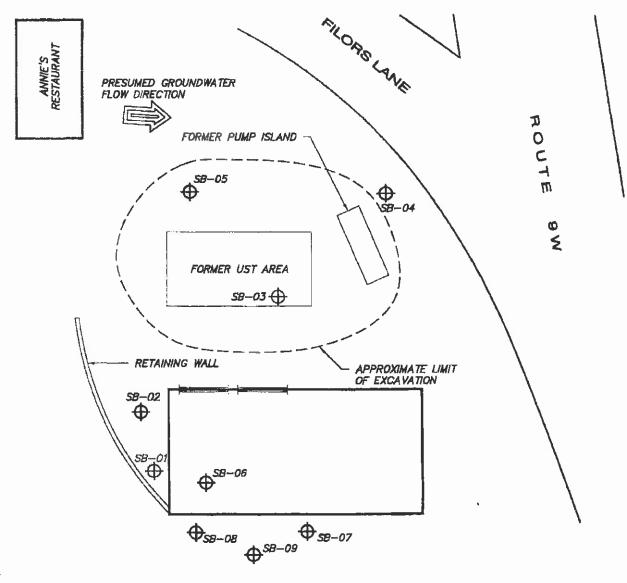


FIGURE 2 SITE PLAN 149 SOUTH LIBERTY DRIVE STONY POINT, NEW YORK HRP # ATWOOO1.P2 NOT TO SCALE ATTACHMENT #1
SOIL BORING LOGS

HRP Job #: Contractor: Type:				HRP ASSOCIA ENGINEERING & DRILLING Hammer (wvFail):	LOG	•		
Location:	Former Wa	ste oli Tank	(Агва	Rig Type:	Mobile Drill Combination	Driller: HRP Rep:	Chris Lovenduski	
Depth (6" intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, etating, odor, PID)	PID HS (ppm)	
1					0-11	Dark Brown coarse SAND, trace gravel.	0	
2		0-4'	2	Loose, dry		Brown SAND AND GRAVEL,		
3					1-4'	ittle sit.	0	
5		4-5'	0	NA NA	NA	No Recovery, sampler refusal at 5'.	NA	
		5- 9 '	2.3'				0	
8				Dense, dry	5-12'	Greenish grey SAND AND GRAVEL, trace sit.	0	
10		9-13'	1.7'				0	
12				Med. Dense, wet	12-13'	Reddieh brown SILTY SAND, trace fine gravel.	0	
14						Bottom of boring at 13'.		
<u>16</u>						11	SS-Soil Sample	
18							HS-Head Space	
19								
20	OUNDWATER	COSCINATION	Thue	GAI	APLE PENETRATIO	DN REGISTANCE		
Depth	Date .	Casing/ Screen	Stability Time		b. Wt. Falling 90° or		Proportions	
		Avia CRA)		0 - 4 very loose 5 - 9 toose 10 - 29 med, dense 30 - 49 dense 50+ very dense		0 - 2 very soft 3 - 4 soft 5 - 8 m/etifi 9 - 18 etifi 18 - 30 v/soff 31+ hard	trace 0-10% Entle 10-20% some 20-35% and 30-50%	

.

HRP Job #: Contractor:				HRP ASSOCIA ENGINEERING 8 DRILLING	GEOLOGY	Hole # Well # Sheet No. Start:	: 4/12/2006 : '4/12/2008	
1.D.:	1.75° Former Wa	ste oll Tank	(Amea)	Hammer (##Fall): Rig Type:	Mobile Drill Combination	Driller:		
Depth (6" intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Chainge	Remarks (color, structure, grain size, stating, odor, PID)	PID HS (ppm)	
. 1		0-4'	2.1'	Loose, dry	0-4"	Grev fine rounded GRAVEL.	D	
3		5	2.1	Loose, dry	0-4	GIBY INC IVOIMED GIBY EL	0	
5		4-8'	.5'				2	
7				Loose, moist	4-10'	Greyish green SAND AND GRAVEL, little slit.	NA	
9		8-12'	2.6*				0	
11		0-12	2.0	Dense, moist	10-121	Brown SILTY SAND, trace fine rounded gravel.	0	
13 14 15						Bottom of boring at 12'.	,	
17							SS-Soli Sample HS-Head Space	
19 20								
	OUNDWATER	OBSERVATION	DNS	SAMPLE PENETRATION RESISTANCE 140 lb. Wt. Falling 30° on 2° O.D. Sampler			Proportions	
Depth	Deto	Casing/ Screen	Stability Time	Cohesionless Density 0 - 4 very losse 5 - 9 losse 10 - 29 med. dense 30 - 49 dense 50+ very dense		Cohesive Consistence 0 - 2 very soft 3 - 4 soft 5 - 8 m/stiff 9 - 15 stiff 16 - 30 v/stiff	trace 0-10% little 10-20% some 20-35% end 30-50%	

Project: Stony Point HRP Job #: ATW00001.P2 Contractor: Aztech Type: Macrocore LD.: 1.76' Location: Former UST Area				HRP ASSOCIATES, INC. ENGINEERING & GEOLOGY DRILLING LOG Harriner (w/Fe/l): Hig Type: Mobile Drill Combination		Hole # SB-03 Well # Sheet No. 1 Start: 4/12/2006 Finish: 4/12/2006 Driller: Chris HRP Rep: Lovenduski	
Depth (6" intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Profile		Remarks (color, structure, grain size, stating, odor, PID)	PID HS (ppm)
1 2		0.41	4 51	lane de	0-4'	Grey SAND AND GRAVEL,	0
3		0-4'	1.5'	Loose, dry	0-4	little sill, trace brick fragments.	, D
5		4-8'	1.8'		4-8'	Greylsh brown SILTY SAND,	0
7		4-0	1.5	- -	4~0	trace gravel.	0
9		8-12'	2'	Loose, moist	8-12'	Brown SILTY SAND.	0
11		6-12	2			BIAMI SIET F SARD.	0
13		12-15'	.9'		12-15'	Brownish grey SILTY SAND, trace fine rounded grevel.	0
15				Loose, wet	15-16'	Greyish brown medulm SAND, ODOR.	2.0
17		15-19'	2.1'	Dense, dry	16-19' Brown		3.6
19		19-21'	0.5'		19-21'	Reddish brown SAND AND GRAVEL, little slit.	0
20 GR		L OBSERVATIO	ONS		JPLE PENETRATION 15. Wt. Falling 90° o	ON RESISTANCE	
Depth	Date	Casing/ Screen	Stability Time	Cohasionissa Density 0 - 4 very locas		Coheelve Consistance 0 - 2 very soft	Proportions trace 0-10%
				5 - 9 locas 10 - 29 med. dense 30 - 49 dense 50+ very dense		9 - 4 soft 5 - 8 m/shift 9 - 15 still 16 - 80 v/shift 31+ hard	litite 10-20% some 20-35% and 30-50%

Project: Stony Point HRP Job #: ATW00001.P2 Contractor: Aziech Type: Macrocore I.D.: 1.75° Location: Former UST Area			HRP ASSOCIATES, INC. ENGINEERING & GEOLOGY DRILLING LOG Hammer (wvf=ii): Rig Type: Mobile Drill Combination		Hole # SB-03 Well # Sheet No. 2 Start: 4/12/2006 Finish: 4/12/2006 Driller: Chris HRP Rep: Lovenduski		
Depth (6* Intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Profile Consistency/ Change		Remarks (color, structure, grain size, stating, odor, PID)	PID (ppm)
21		-		(ege 1		
22		21-25'	1.4'	Dense, moist	19-25'	Reddish brown SAND AND	o
24 25		21-20	17	Delise, Moist	18-25	GRAVEL, little slit.	0
26 27		25-29'	4'	Loose, wet	25-29'	Greyish green medium SAND.	0
28 29							0
30						Bottom of boring at 29'. Set temporary 1" PVC well to collect groundwater sample.	
							SS-Soil Sample HS-Head Space
GR	GROUNDWATER OBSERVATIONS			MPLE PENETRATIO		Proportions	
Dapth	Date	Cashrg/ Screen	Stability Time	Coheelontess Density 0 - 4 very loces 5 - 9 loces 10 - 29 med, danse 30 - 48 dense 50+ very dense		Cohesive Consistence 0 - 2 very soft 3 - 4 soft 5 - 8 m/stiff 8 - 15 stiff 16 - 90 v/stiff 31+ hard	trace 0-10% fittle 10-20% some 20-35% and 80-50%

Project: Stony Point HRP Job #: ATW00001.P2 Contractor: Aztech Type: Macrocore LD.: 1.75" Location: Former Dispenser Area			HRP ASSOCIATES, INC. ENGINEERING & GEOLOGY DRILLING LOG Hammer (wt/Fail): Rig Type: Mobile Drill Combination		Hole # SB-04 We(I # Sheet No. 1 Start: 4/12/2008 Finlah: 4/12/2006 Driller: Chris HRP Rep; Lovenduski			
Depth (6" intervals)	Macro- core Samples	core Sample Recovery		Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, stating, odor, PID)	PID HC	
1		0-4'	0.8	Loose, dry	0-4'	Grey SAND AND GRAVEL,	. 0	
3						HING ONL	0	
5		4-8'	1.2'				0	
				Loose, molst	4-18'		0	
10		8-12'	1.4'				0	
11						Brownish grey SAND AND GRAVEL, some wood fragments.	0	
13		12-15'	0.8				2.2 Sligh odor	
15 16 17							6.8 Odo	
18		15-19'	1.9'			Reddish brown SILTY SAND,	17.2 Strong odor	
20		19-21'	1.4	Dense, dry	18-22'	trace gravel.	1.2	
	DUNDWATER	OBSERVATIO	ONS		MPLE PENETRATION b. Wt. Falling 80" on			
Depth	Cate	Cestng/ Screen	Stability Time	Cohesionless Density		Cohesive Consistence	Proportions	
				0 - 4 very loans 5 - 9 loose 10 - 29 med, danss 30 - 49 danse 50+ very danse		0 - 2 very soft 3 - 4 soft 5 - 8 m/stiff 8 - 16 stiff 18 - 30 v/st/ff 31 + hard	trace 0-10% (httle 10-20% some 20-35% and 30-50%	

Project: Stony Point HRP Job #: ATW00001.P2 Contractor: Aztech Type: Macrocore				HRP ASSOCIA ENGINEERING 8 DRILLING	LOG	Hole # SB-04 Well # Sheet No. 2 Start: 4/12/2006	
I.D.: 1.75' Location: Former Dispenser Area			Hammer (w//Fell): Rig Type:	Mobile Orlii Combination	Driller:	4/12/2006 Chris Lovendusid	
Depth (6" intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, stating, odor, PID)	PID (ppm)
21				C	continued from p	page 1	
22		21-23'	0.5	Loose, wet	21-23'	Grev medium SAND.	17.5
23							
24 25						Augered to 25' to set 1" PVC well to collect groundwater	
26						sampie.	
27							
28							
29]		
30							
							SS-Soil Sample
							HS-Head Space
GROUNDWATER OBSERVATIONS		ONS	SAN 140	APLE PENETRATIO b, Wil Falling 90° or	IN RESISTANCE 12° O.D. Sampler	Proportions	
Depth	Date	Cesing/ Screen	Stability Time	Cohesionless Density		Cohesive Consistence	Lichwinia
				0 - 4 very loose 5 - 9 loose 10 - 29 med, dense 30 - 49 dense		0 - 2 very soft 3 - 4 soft 5 - B m/silfi 9 - 15 stiff	trace 0-10% little 10-20% some 20-35% and 30-60%
				50+ very dense		16 - 80 v/stift 31+ hard	

HRP Job #: Contractor:	Project: Stony Point HRP Job #: ATW00001,P2 Contractor: Aztech Type: Macrocore			HRP ASSOCIA ENGINEERING & DRILLING	GEOLOGY	Well	Hole # SB-05 Well # Sheet No. 1	
l.D.;	I.D.; 1.75" Location: Northwest Edge of Excavation.			Hammer (wt/Fall): Flig Type: Mobile Drill Combination		Finish Oriller	Start: 4/12/2008 Finish: 4/12/2006 Driller: Chris HRP Rep: Lovenduski	
Depth (6" Intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, stating, odor, PID)		
1		0-4	1.6'				0	
3			1,0		0-5'	Grevish brown SAND AND GRAVEL, little silt.	0	
5							- 0	
7		4-8'	1.7'	Loose, dry		1.2 Slight		
9		8-12 ¹	1.8'		5-14'	Grevish brown SILTY SAND, trace gravel.	3,4 Slight odor	
11							2.2 Slight odor	
13		12-15'	1.2'				1.3 Slight odor	
15 16				Dense, molst	14-17'	Reddish brown SILTY SAND, trace gravel.		
17		15-19'	2.5'				0	
19			Unered to 20	Loosa, wet	17-19'	Grevish brown medium SAND.	0	
20	UNDWATER							
Depth	Date	Casing/ Screen		SAMPLE PENETRATION RESISTANCE 140 lb. Wt. Falling 90' on 2" O.D. Sampler Cohesionises Daneity Cohesionos			Proportions	
				0 - 4 very locae 5 - 9 locas 10 - 29 med, dense 30 - 49 dense 50+ very dense		0 - 2 very soft 3 - 4 soft 5 - 8 m/stifi 9 - 15 stiff 16 - 30 w/stiff 31+ hard	trace 0-10% little 10-20% some 20-35% and 30-50%	

Project: Stony Point HRP Job #: ATW00001.P2 Contractor: Aztech Type: Macrocore I.D.: 1.75° Location: Former in Ground Lift Area			HRP ASSOCIATES, INC. ENGINEERING & GEOLOGY DRILLING LOG Hemmer (w/Fall): Rig Type: Mobile Drill Combination		Hole # SB-06 Well # Sheet No. 1 Start: 4/12/2006 Finish: 4/12/2006 Driller: Chris HRP Rep: Lovenduski				
Depth (6" Intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, stating, odor, P(D)	PID HS (ppm)		
1 2		6.41	4.01	Loose, dry	0-2'	Grey SAND AND GRAVEL. trace slit,	0		
3		0-4'	1.8'			Greenish grey SILTY SAND,	0		
5				Dense, moist	2-6'	trace gravel.	1.5		
		4-8'	3,	Loose, moist	6-6.5	Greenish brown medium SAND	<u> </u>		
7 8					2.7 odor Greenish brown SILTY SAND.				
9		8-9.5'	0.2*	Delice, Hole	0.0-5.0	trace gravel.	0		
10		Augered to	10'						
11		10-12'	1.5	Dense, molst	10-12	Reddish brown SILTY SAND, trace fine gravel.	o		
12		12-14'	0	I)	NO RECOVERY				
14									
15		Augered to	15'						
16		15-17*	0.6'	Loose, wet	15-17'	Brown to light brown SILTY SAND, some fine angular gravel.	0		
18									
19									
20			Augered to 20	, set 1" temporary PV	C well to collect	groundwater sample.			
GR	OUNDWATER	OBSERVATION	ONS		WPLE PENETRATIC				
Depth	Dale	Casing/ Screen	Stability Time	Cohesionless Density	an ith I tallig ou of	Cohesive Consistence	Proportions		
				0 - 4 very loose 5 - 9 loose 10 - 29 mad, dense 30 - 49 dense 50+ very dense		0 - 2 very soft 3 - 4 soft 5 - 8 m/stiff 9 - 15 로테 16 - 30 v/로테 31+ hard	trace 0-10% little 10-20% some 20-35% and 30-50%		

.

- -----

EngineEriNG & GEOLOGY Sheet No. 1 Start. 4/12/2005 Sheet No. 1 Sheet No. 1 Start. 4/12/2005 Sheet No. 1 Sheet No. 1 Sheet No. 1 Start. 4/12/2005 Sheet No. 1	Project: Stony Point HRP Job #: ATW00001.P2			HRP ASSOCIATES, INC.		Hole # SB-07 Well #		
1.00	-				ľ			
Depth (6** Macro-core Intervets) Sample Sample Sample Intervets	1				DRILLING LOG		Start: 4/12/2006	
Part Correct Sample Sample Interval Part Par					Hammer (wt/Fell):		Finish:	4/12/2006
Depth (6*) Macro-Gore Intervals Recovery (R) Density or Consistency Profile (color, structure, garle state, gotor, PID)			lding (Alleg	ed Dumping	Rig Type:			
Leptin Core Intervals Samples Intervals Inte	Area)				Hand Dig	HRP Rep:	Lovenduski	
O-2' 2 Loose, dry O-2 cobbles, trace metal places D		core			Consistency/		(color, structure, grain size,	
Bottom of boring at 2 feet			0-2'	2	Loose, dry	0-2	cobbles, trace metal pleces	0
SS-Soil Semple							Bottom of boring at 2 feet	
SS-Soil Sample SS-S								
SS-Soil Sample SS-Soil Sample HS-Head Space SAMPLE PENETRATION RESISTANCE Proportions Proportions Proportions Depth Date Caseing/ Screen Stability Time Cohesionises Density Cohesionises								
10								
11					·		,	
13								
14	12							
SS-Soll Sample 18 19 20 GROUNDWATER OBSERVATIONS SAMPLE PENETRATION RESISTANCE 140 lb. Wit. Falling 80° on 2° O.D. Sampler Proportions Proportions Proportions O - 4 very loose 0 - 2 very soit 10 - 29 med. dense 10 - 29 med. dense 5 - 8 m/stiff some 20 - 35% 30 - 48 dense 6 - 15 stiff end 30-50%								
SS-Soll Sample HS-Head Space 18 19 20 GROUNDWATER OBSERVATIONS SAMPLE PENETRATION RESISTANCE 140 lb. Wil. Falling \$0° on 2° O.D. Sampler Proportions Depth Date Casting/Surean Stability Time Cohestonises Density Cohest-va Consistence 0 - 4 very loose 0 - 2 very soft trace 0-10% 5 - 9 topse 3 - 4 soft little 10-20% 10 - 29 med. dense 5 - 8 m/stiff some 20-35% 30 - 49 dense 9 - 15 stiff end 30-50%								
18 19 20 GROUNDWATER OBSERVATIONS SAMPLE PENETRATION RESISTANCE 140 lb, Wt. Falling 30° on 2° O.D. Sampler Proportions Proportions O - 4 very loose 0 - 2 very soft 5 - 9 toose 3 - 4 soft 10 - 29 med. dense 30 - 48 dense 9 - 15 stiff end 30-50%								
GROUNDWATER OBSERVATIONS SAMPLE PENETRATION RESISTANCE 140 lb, Wt. Falling 30° on 2° O.D. Sampler Proportions Caning/ Screen Stability Time Cohestonisse Density Cohesiva Consistence 0 - 4 very loose 0 - 2 very soft trace 0-10% little 10-20% 5 - 9 topse 10 - 29 med. dense 30 - 48 dense 9 - 15 stiff end 30-50%								
GROUNDWATER OBSERVATIONS SAMPLE PENETRATION RESISTANCE 140 lb, Wt. Falling 30° on 2° O.D. Sampler Proportions Depth Date Casing/ Screen Stability Time Cohestonises Density Cohesiva Consistence 0 ~ 4 very loose 0 - 2 very soft trace 0-10% little 10-20% some 20-35% and 30 - 48 dense 9 - 15 stiff end 30-50%	19							
Depth Date Caning/ Stability Time Cohestonises Density Cohestva Consistence	20							
Depth Date Caming/ Stability Time Cohestonises Density Cohestva Consistence	GROUNDWATER OBSERVATIONS .							
5 - 9 topse 3 - 4 soft little 10-20% 10 - 29 med. dense 5 - 8 m/etiff some 20-35% 30 - 49 dense 9 - 15 stiff end 30-50% 50+ very dense 18 - 30 v/etiff	Depth	Date		Stability Time	Cohestonises Density		Cohesiva Consistence	
10 - 29 med, dence 5 - 8 m/stiff come 20-35% 30 - 49 dense 9 - 15 stiff end 30-50% 50+ very dense 18 - 30 v/stiff					-		•	
50+ very dense 16 - 30 v/stiff								
								and 30-50%
, j j Dittiend					50+ very dense		16 - 30 v/stiff 31+ hard	

HRP Job #: Contractor:	Aztech Macrocore			HRP ASSOCIATES, INC. ENGINEERING & GEOLOGY DRILLING LOG		Hois # SB-08 Well # Sheet No. 1 Start: 4/12/2006 Finish: 4/12/2006	
Location:	Location: Rear of Building (Alleged Dumping Area)			Hammer (w//Fall): Rig Type:		Driller:	
Depth (6" intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remarks (color, structure, grain size, stating, odor, PID)	PID HS (ppm)
1 2		0-2'	2 ·	Loose, dry	0-2	Brown SILTY SAND, some cobbles, trace metal pieces (wires, brake linas, sprokets).	0
3						Bottom of boring at 2 feet	
4 							
6 7							
8							
9							
11 12							
13					į		
15							
· 16							SS-Soil Samp
18							HS-Head Spac
20			210	SA	MPLE PENETRATIO	ON RESISTANCE	<u> </u>
Depth	Date	OBSERVATK Casing/ Screen	Stability Time		140 lb, Wt. Failing 30° on 2° O.D. Sampler Cohesionless Density Cohesive Consistence		Proportions
				0 - 4 very loase 5 - 9 loase 10 - 29 med, danse 30 - 49 dense		0 - 2 very eaft 3 - 4 eaft 5 - 8 m/stiff 9 - 15 stiff	trane 0-10% little 10-20% some 20-35% and 30-50%

HRP Job #: Contractor:	Project: Stony Point IRP Job #: ATW00001.P2 contractor: Azisch Type: Macrocore			HRP ASSOCIA ENGINEERING & DRILLING	GEOLOGY	Hole # Well # Sheet No.	
I.D.: 1.75" Location: Rear of Building (Alleged Dumping Area)			Hammer (wt/Fell): Rig Type:	Hand Dig	Finish: Driller:	4/12/2006	
Depth (6" Intervals)	Macro- core Samples	Sample Interval	Recovery (ft)	Density or Consistency/ Moisture	Profile Change	Remerks (color, structure, grain size, stating, odor, PiD)	PID HŞ (ppm)
1 2		0-2'	2	Loose, dry	0-2	Brown SILTY SAND, some cobbles, trace metal pieces (wires, brake lines, sprokets).	0
3				-	·	Bottom of boring at 2 feet	
5		,					
6					·		
8							
10					,	·	
11							
13 14						·	
15 16							
17					<u> </u>		SS-Soll Sample HS-Haad Space
18							
20 GR		OBSERVATION	ONS		MPLE PENETRATION. Wt. Falling 30° o		Proportions
Depth	* Date	Casing/ Screen	Stability Time	Cohestoniess Density 0 - 4 very looss 5 - 9 loose		Cohesive Consistence 0 - 2 very soft 3 - 4 soft	trace 0-10%
			·	5 - 9 loose 10 - 29 med, dense 30 - 49 dense 50+ very dense		3 - 4 son 6 - 6 m/stiff 9 - 15 stiff 16 - 30 wistiff 31+ hard	eome 20-35% and 30-50%

ATTACHMENT #2 LABORATORY REPORT FORMS

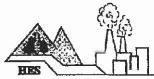
HUDSON ENVIRONMENTAL SERVICES, INC.

Mail: 22 Hudson Palls Rd., So. Gless Palls, NY 12803 Delivery: 211 Ferry Blyd., So. Gless Palls, NY 12803 Phone: 518/747-1060 Fax: 518/747-1062

ANALYTICAL TEST RESULTS N.Y.S.D.O.H. Lab ID#11140

11.15.4. VOD414F01			SAMPLER:	E.Lovenduski/HRP
PARAMETER NTBE	<u>METHOD</u> EW846-8260B	RESULT <14	UNITS Ug/kg	TEST DATE 04/18/06
Benzene	EW846-8260B	<14	ug/kg	04/18/06
Toluene	5W846-8260B	<14 B	ug/ Ja g	04/18/06
Ethylbenzene	SW846-8260B	<14	ug/kg	04/18/06
Total Tylenes	5W846-826DB	89 B	ug/kg	04/18/06
Isopropylbenzene	BW846-826DB	<14	ug/kg	04/18/06
n-Propylbenzene	5W846-826DB	<14	ug/kg	04/18/06
1,3,5-Trimethylbenzene	SW846-8260B	240 B	ug/kg	04/18/06
tert, Butylbenzene	EN846-8260B	<14	ug/kg	04/18/06
1,2,4-Trimethylbensene	SW846-8260B	72 B	ug/kg	04/18/06
sec-Butylbenzene	BW846-8260B	<14	u g/k g	04/18/06
p-Isopropyltoluene	SW846-8260B	57	ug/kg	04/18/06
n-Butylbenzene	SW846-8260B	<14	ug/kg	04/18/06
Naphthalene Non-Target Peaks	SW846-8260B	<14 B Negative	ug/kg	04/18/06
Acenaphthene	SW846-8270C	<270	ug/kg	D4/25/06
Fluorene	BW846-B270C	<270	ug/kg	04/25/06
Phenanthrene	SW846-8270C	<270	ug/kg	04/25/06
Anthracens	SW846-8270C	<270	ug/kg	04/25/06
Fluoranthene	SW846-8270C	<270	ug/kg	04/25/06
Pyrene	89846-8270C	<270	ug/kg	04/25/06
Benzo (a) anthracene	8W846-8270C	<270	ug/kg	04/25/06
Chrysene	6W846-8270C	<270	ug/kg	04/25/06
Benzo (b) fluoranthene	6W846-8270C	<270	ug/kg	04/25/06
Benzo (k) fluoranthene	SW846-8270C	<270	ug/kg	04/25/06
Benzo (a) pyrene	SW846-8270C	<270	ug/kg	04/25/06
Indeno (1,2,3-CD) pyrene	EW846-8270C	<270	ug/kg	04/25/06
Dibenz (a,h) anthracene	6W846-8270C	<270	ug/kg	04/25/06
Benzo (g,h,i) perylene	6W846-8270C	<270	ug/kg	04/25/06
Non-Target Peaks Total Solids	EPR 160.3	Negative 92	*	04/18/06

Home


Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordeble Alternative for Creating PDFs - www.roboodf.com

Buy RoboPDF

HUDSON ENVIRONMENTAL SERVICES, INC.

Mail: 22 Hadron Palls Rd., So. Glem Palls, NY 12803 Delivery: 211 Ferry Blvd., So. Gloss Palls, NY 12803 Phone: 518/747-1060 Fac: 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SE-02 (4 - 6')

H.B.S. #: 060414F01 (Continued)

PARAMETER	METHOD	RESULT	Unite	TEST DATE
Arsenic	5W846-6010B	<0.86	mg/kg	04/25/06
Barium	5W846-6010B	37	mg/kg	04/25/06
Cadmium	5W846-6010B	<0.16	mg/kg	04/25/06
Chromium	SW846-6010B	25	mg/kg	04/25/06
Lead	EN946-6010B	43	mg/kg	04/25/06
Mexcury	6W946-7471A	<0.06	mg/kg	04/25/06
Selenium	8W846-6010B	<3.0	ng/kg	04/25/06
Silver	SW846-7760A	2.2	mg/kg	04/25/06

Home Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Mail: 22 Hudson Falls Rd., So. Gless Falls, NY 12803 Daivery: 211 Forry Blvd., So. Gless Falls, NY 12803 Phone: 518/747-1060 Fax: 518/747-1062

CLIENT: HRP Associates, Inc.

BAMPLE DESCRIPTION: BB-04 (17 - 19')

MATRIX: Boil

LOCATION: Stony Point, NY

H.E.B.#: 060414F02

DATE SAMPLED: 04/12/06

TIME SAMPLED: 13:24 pm

DATE SAMPLE RECD: 04/14/06

TYPE BAMPLE: Composite

BAMPLER: E.Lovenduski/HRP

PARAMETER MTBE	METHOD EW846-8260B	RESULT 16	ug/kg	TEST DATE 04/18/06
Benzene	SW846-8260B	630	ug/kg	04/18/06
Toluene	SW846-8260B	3,800 B	ug/kg	04/18/06
Ethylbenzene	SW846-8260B	1,900	ug/k g	04/18/06
Total Xylenes	SW846-8260B	5,900 B	ug/kg	04/18/06
Isopropylbenzene	SW846-8260B	510	ug/kg	04/18/06
n-Propylbenzene	SW846-9260B	930	ug/kg	04/18/06
1,3,5-Trimethylbenzene	SW846-8260B	1,600	ug/kg	04/18/06
tert, Butylbenzene	SW846-8260B	<14	ug/kg	04/18/06
1,2,4-Trimethylbenzene	EW946-8260B	2,800 B	ug/kg	04/16/06
sec-Butylbenzene	BW846-8260B	27	ug/kg	04/18/06
p-Isopropyltoluene	SW846-8260B	160	ug/kg	04/18/06
n-Butylbenzene	8W846-B260B	<14	ug/kg	04/18/06
Naphthalene Non-Target Peaks	5W946-9260B	410 B Negative	ug/kg	04/18/06
Total Bolids	EPA 160.3	89	*	04/18/06

Homa Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdf.com

Mati: 22 Hudson Falls Rd., Sp. Glens Falls, NY 12803 Delivery: 211 Ferry Blvd., So. Glens Falls, NY 12803 Phone: 518/747-1060 Parc 518/747-1062

CLIENT: HRF Associates, Inc.

SAMPLE DESCRIPTION: SB-04 (17 - 19')

H.E.9. #: 060414F02 (Continued)

PARAMETER	METHOD	RESULT	<u>units</u>	TEST DATE
Arsenic	SW845-6010B	<0.89	mg/kg	04/25/06
Barium	5W846-6010B	55	mg/kg	04/25/06
Cadmium	SW846-6010B	<0.16	mg/kg	04/25/06
Chronium	SW846-6010B	34	mg/kg	04/25/06
Lead	SW846-6010B	6.6	mg/kg	04/25/06
Mercury	EW846-7471A	<0.07	mg/kg	04/25/06
Selenium	SW846-6010B	<3.2	ag/kg	04/25/06
Silver	BW846-7760A	1.1	ng/kg	04/25/06


Home /

Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdf.com

Mail: 22 Herison Falls Rd., So. Gless Falls, NY 12803 Delivery: 211 Ferry Blvd., So. Gless Falls, NY 12803 Phone: 518/747-1060 Pax: 518/747-1062

CLIENT: HRP ABSOCIATES, Inc. SAMPLE DESCRIPTION: SB-06 (6 - 8')

MATRIX: Soil

LOCATION: Story Point, NY H.E.S.#: 060414F03

DATE SAMPLED: 04/12/06
TIME SAMPLED: 15:39 pm
DATE SAMPLE RECD: 04/14/06
TYPE SAMPLE: Composite
EAMPLER: E.Lovenduski/HRF

H.E.S.#: 060414F03			BAMPLER:	E.Lovenduski/HRF
PARAMETER MTRE	<u>METHOD</u> 5W846-8260B	RESULT <14	UNITS ug/kg	TEST DATE 04/18/06
Benzene	9W846-8260B	<14	ug/kg	04/18/06
Toluene	BW846-8260B	<14 B	ug/kg	04/18/06
Ethylbenzene	SW846-8260B	<14	ug/kg	04/18/06
Total Xylenes	6W846-8260B	14 B	ug/kg	04/18/06
Isopropylbenzene	SW846-8260B	<14	ug/kg	04/18/06
n-Propylbenzene	SW846-8260B	27	ug/kg	04/18/06
1,3,5-Trimethylbenzene	SW846-8260B	22	ug/kg	04/18/06
tert, Butylbanzene	SW846-8260B	<14	ug/kg	04/18/06
1,2,4-Trimethylbenzene	SW846-8260B	51 B	ug/kg	04/18/06
sec-Butylbenzene	SW846-8260B	<14	ug/kg	04/18/06
p-Isopropyltoluene	6W846-B260B	19	ug/kg	04/18/06
n-Butylbenzene	SW846-8260B	<14	uġ/kg	04/18/06
Naphthalene Non-Target Peaks	SW846-8260B	<14 B Negative	ug/kg	04/18/06
Acenaphthene	SW846-8270C	<280	ug/kg	04/25/06
Fluorene	SW846-8270C	<280	ug/kg	04/25/06
Phenanthrene	SW846-8270C	<280	ug/kg	04/25/06
Anthracene	5W846-8270C	<290	ug/kg	04/25/06
Fluoranthene	SW846~8270C	<280	ug/kg	04/25/06
Pyrene	5W846-8270C	<260	ug/kg	04/25/06
Benzo (a) anthracene	BW846-8270C	<280	na ∖joa	04/25/06
Chrysene	9W846-8270C	<280	ug/kg	04/25/06
Benzo (b) fluoranthene	BW846-8270C	<280	ug/kg	04/25/06
Benzo (k) fluorantheme	SW846-8270C	<280	ug/kg	D4/25/06
Велго (а) ругаре	6W846-8270C	<280	ug/kg	04/25/06
Indeno (1,2,3-CD) pyrene	5W846-8270C	<280	ug/kg	04/25/06
Dibenz (a,h) anthracene	SW846-0270C	<280	ug/kg	04/25/06
Benzo (g,h,i) perylene	SW846-8270C	<280	ug/kg	04/25/06
Non-Target Peaks		Negative		
Total Solids	EPA 160.3	92	¥	04/18/06

Home

Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.roboodf.com

Mail: 22 Hudson Fells Rd., So. Gless Falls, NY 12803 Delivery: 211 Ferry Blvd., So. Gless Falls, NY 12803 Phone: 518/747-1060 Fee: 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SB-06 (6 - 8')

H.R.S. #: 060414F03 (Continued)

PARAMENTAR	METHOD	RESULT	UNITS	TEST DATE
Arsenic	SW846-6010B	<0.86	mg/kg	04/25/06
Barium	SW846-6010B	64	mg/kg	04/25/06
Cadmium	SW846-6010B	<0.16	mg/Xg	04/25/06
Chrondum	SW846-6010B	36	mg/kg	04/25/06
Lead	SW846-6010B	7.9	mg/kg	04/25/06
Mercury	EW846-7471A	<0.07	ng/kg	04/25/06
Belenium	GW846-6010B	<3,1	mg/kg	04/25/06
Silver	6W846-7760A	<0.54	mg/kg	04/25/06
Total PCB's	SW846-8082	<0.02	mg/kg	04/24/05

Home

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdf.com

Maii: 22 Hudson Falls Ed., So. Glens Falls, NY 12803 Delivery: 211 Ferry Hlvd., So. Glens Falls, NY 12803 Phone: 518/747-1060 Fax: 518/747-1062

CLIENT: HRP Associates SAMPLE DESCRIPTION: SE-08 (0 - 2')
MATRIX: SOIL
LOCATION: Story Point, NY
H.E.S.#: 060414F04

DATE SAMPLED: 04/12/06
TIME SAMPLED: 17:10 pm
DATE SAMPLE RECD: 04/14/06
TYPE SAMPLE: Composite **EAMPLER:** E.Lovenduski/HRP

PARAMETER MTBE	METHOD GW846-8260B	RESULT <15	UNITS ug/kg	TEST DATE 04/18/06
Benzene	EW846~8260B	<15	ug/kg	04/18/06
Toluene	SW846-8260B	<15	ug/kg	04/18/06
Ethylbenzene	BW846-9260B	<15	ug/kg	04/18/06
Total Xylenes	6W846-826DB	<15	ug/kg	04/18/06
Isopropylbenzene	SW846-8260B	<15	ug/kg	04/18/06
n-Propylbenzene	SW846-8260B	<15	ug/kg	04/18/06
1,3,5-Trimethylbenzene	5W846-8260B	<15	ug/kg	04/18/06
tert, Butylbenzene	SW846-8260B	<15	ug/kg	04/18/06
1,2,4-Trimethylbenzene	SW846-8260B	<15	ug/kg	04/18/06
sec-Butylbenzene	6W846-8260B	<15	ug/kg	04/18/06
p-Isopropyltoluene	EW846-8260B	<15	ug/kg	04/18/06
n-Butylbenzene	EW845-8260B	<15	ug/kg	04/18/06
Naphthalene Non-Target Peaks	SW846-8260B	<15 B Negative	ug/kg	04/18/06
Acenaphthene	SW846-8270C	<330	ug/kg	04/25/06
Fluorene	SW846-8270C	<330	ug/kg	04/25/06
Phenanthrens	9W845-8270C	<330	ug/kg	04/25/06
Anthracene	SW846-8270C	<330	ug/kg	04/25/06
Fluoranthene	8W846-8270C	<330	ug/k g	04/25/06
Pyrene	EW846-8270C	<330	ug/kg	04/25/06
Benzo (a) anthracene	SW846-8270C	<330	ug/kg	04/25/06
Chrysens	BW846-8270C	<330	ug/kg	04/25/06
Benzo (b) fluoranthene	SW846-8270C	<330	ug/kg	04/25/06
Benzo (k) fluoranthene	SW846-8270C	<330	ug/kg	04/25/06
Benzo (a) pyrene	6W846-8270C	<330	ug/kg	04/25/06
Indeno (1,2,3-CD) pyrene	SW846-8270C	<330	ug/kg	04/25/06
Dibenz (a,h) anthracene	SW046-0270C	<330	ug/kg	04/25/06
Benzo (g,h,i) perylene	6W846-8270C	<330	ug/kg	04/25/06
Non-Target Peaks Total Solids	EPA 160.3	Negative 85	*	04/18/06


Home

Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdl.com

Mail: 22 Hudson Falls Rd., So. Gless Falls, NY 12803
 Delivery: 211 Ferry Blvd., So. Gless Falls, NY 12803
 Phone: 518/747-1060 Fact: 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SB-08 (0 - 2')

H.E.S. #: 060414F04 (Continued)

PARAMETER	METHOD	RESULT	UNITE	TEST DATE
Arsenic	SN846-6010B	<0.94	mg/kg	04/25/06
Barium	SW846-6010B	68	mg/kg	04/25/06
Cadmium	SW846-6010B	<0.17	mg/kg	04/25/06
Chronium	5W046-6010B	54	කපු/දිගු	04/25/06
Lead	BW846-60109	290	mg/kg	04/25/06
Mercury	BW846-7471A	<0.07	mg/kg	04/25/06
Selenium	EW846-6010B	<3.3	mg/kg	04/25/06
Silver	5W846-7760A	<0.50	mg/kg	04/25/06

All results on a dry weight, except Total Solids.

B = The above test results meet all the requirements of NELAC with the following exception: For method 8260B, method blank contamination was found.

Approval By:

ming Mogund Dusain

Technical Director Dr. Mirze M. Hussain


Date: April 25, 2006

Hudson Environmental Services, Inc. certifies that the services provided were performed in accordance with the New York State Department of Health, Environmental Laboratory Approval Program certification manual. This report shall not be reproduced without written consent from HES, Inc. In the event of an error, HES's sole responsibility will be to perform remailysis at its own expense. HES, Inc. assumes no other liability for damages incurred

Home

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robopdf.com

Mail: 22 Hudson Falls Rd., So. Giam Falls, NY 12803 Delivery: 211 Penry Hlvd., So. Glam Falls, NY 12803 Phone: 518/747-1060 Fas: 518/747-1062

ANALYTICAL TEST RESULTS N.Y.S.D.O.H. LAB ID#11140

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SB-03

MATRIX: Groundwater

LOCATION: Stony Point, NY

H.E.S.#: 060414G01

DATE SAMPLED: 04/12/06

TIME SAMPLED: 11:00 am

DATE BANPLE RECD: 04/14/06

TYPE SAMPLE: Grab

SAMPLER: E.Lovendusky/HRP

<u>parameter</u> mtee	METHOD SW846-8260B	RESULT <0.5	MRL 0.5	UNITS Ug/l	TEST DATE 04/18/06
Benzene	SW846-8260B	1.4	0.5	ug/l	04/18/06
Toluene	SW846-8260B	D.94 B	0.5	ug/l	04/18/06
Ethylbenzene	SW846-8260B	10	0.5	ug/1	04/18/06
Total Xylenss	SW646-8260B	20 B	0.5	ug/l	04/18/06
Isopropylbenzene	SW846-8260B	4.9	0.5	ug/l	04/18/06
n-Propylbensene	EW846-8260B	6.4	0.5	ug/l	04/18/06
1,3,5-Trimethylbenzene	8W846-8260B	11	0.5	ug/1	04/18/06
tert, Butylbenzene	EW846-8260B	<0.5	0.5	ug/l	04/18/06
1,2,4-Trimethylbenzene	EWB46-8260B	23 B	0.5	ug/l	04/18/06
sec-Butylbenzene	SW846-8260B	1.0	0.5	ug/l	04/18/06
p-leopropyltoluene	EW846-8260B	0.70	0.5	ug/l	04/18/06
n-Butylbenzens	SW846-8260B	<0.5	0.5	ug/1	04/18/06
Naphthalene	SW846-8260B	0.6 %	0.5	ug/l	04/18/06

Non-Target Peaks

Negative

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robondf.com

Mail: 22 Hadron Falls Rd., Sp. Gleas Palls, NY 12803 Delivery; 213 Ferry Blwd., Sp. Gleas Palls, NY 12803 Phone: 518/747-1060 Fux: 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SB-03

H.E.S. #: 060414G01 (Continued)

PARAMETER	METEOD	RESULT	MRL	TRITE	TEST DATE
Arsenic	SW846-6010B	<0.016	0.06	mg/l	04/20/06
Barium	SW846-6010B	26	0.003	mg/1	04/20/06
Cadmium	SW846-6010B	<0.003	0.003	mg/l	04/20/06
Chromium	5W846-6010B	3.8	0.007	mg/1	04/20/06
Lead	SW846-6010B	0.65	0.042	mg/1	04/20/06
Kercury	SW846-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	SW846-6010B	<0.057	0.057	mg/1	04/20/06
Silver	SW846-7760A	0.09	0.01	mg/l	04/21/06

DISSOLVED METALS

PARAMETER	METHOD	RESULT	MRL	DNITE	TEST DATE
Armenic	5W846-6010B	<0.016	0.06	mg/l	04/20/06
Barium	SW846-6010B	0.14	0.003	mg/1	04/20/06
Cadmium	5W846-6010B	<0.003	0.003	mg/1	04/20/06
Chromium	5W846-6010B	0.018	0.007	mg/l	04/20/06
Lead	SW846-6010B	<0.042	0.042	mg/l	04/20/06
Mercury	5W846-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	SW846-6010B	<0.057	0.057	mg /1	04/20/06
Silver	SW646-7760A	<0.01	0.01	mg/l	04/21/06

Home

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robondf.com

Mail: 22 Hadson Falls Rd., So. Gless Falls, NY 12803 Delivery: 211 Ferry Blvd., So. Gless Falls, NY 12803 Phone: 518/747-1060 Fee: 518/747-1062

CLIENT: HRP Associates, Inc. SAMPLE DESCRIPTION: 5B-04 MATRIX: Groundwater LOCATION: Stony Point, NY H.E.S.#: 060414G02 DATE SAMPLED: 04/12/06
TIME SAMPLED: 2:00 pm

DATE SAMPLE RECD: 04/14/06
TYPE SAMPLE: Grab
SAMPLER: E.Lovendusky/ERP

PARAMETER MTBE	METHOD BW846-8260B	RESULT 910	MRL 25	usits ug/1	TEST DATE 04/18/06
Benzens	8W846-8260B	2,800	25	ug/l	04/18/06
Toluene	SW846-8260B	2,600 B	25	ug/l	04/18/06
Ethylbenzene	SW846-8260B	2,300	25	ug/1	04/18/06
Total Tylenes	SW846-8260B	5,700 B	25	ug/l	04/18/06
Isopropylbenzene	BW846-8260B	150	25	ug/l	04/18/06
n-Propylbenzens	BW846-8260B	260	25	ug/l	04/18/06
1,3,5-Trimethylbenzene	SWB46-8260B	400	25	ug/l	04/18/06
text, Butylbenzene	SW846-8260B	<25	25	ug/l	04/18/06
1,2,4-Trimethylbenzene	SW846-8260B	1,100 B	25	ug/l	04/18/06
sec-Butylbenzene	9W845-B26DB	<25	25	ug/l	04/18/06
p-Isopropyltoluene	SW845-8260B	<25	25	ug/l	04/18/06
n-Butylbenzene	SW846-8260B	<25	25	ug/l	04/18/06
Naphthalena	9W846-8260B	280 B	25	ug/l	04/18/06

Non-Target Peaks

Negative

Horne Edition This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Mail: 22 Rudson Falls Rd., So. Chees Falls, NY 12803 Delivery: 213 Perry Blod., So. Glens Falls, NY 12803 Phone: 518/747-1060 Proc. 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: SE-04

H.B.S. #: 060414G02 (Continued)

PARAMETER	NETHOD	RESULT	MRL	QNIT8	TEST DATE
Arsenic	5W846-6010D	<0.016	0.06	mg/l	04/20/06
Barium	SW846-6010B	16	0.003	mg/l	04/20/06
Cadmium	9W946-6010B	<0.003	D.003	mg/l	04/20/06
Chromium	SW846-6010R	3.2	0.007	mg/l	04/20/06
Lead	8W846-6010B	0.60	0.042	mg/l	04/20/06
Mercury	SW846-7471A	<0.001	0.001	ng /1	04/24/96
Selenium	SW846-6010B	<0.057	0.057	mg/1	04/20/06
Silver	SW845-7760A	0.06	0.01	mg/l	04/21/06

DISSOLVED METALS

PARAMETER	METEOD	RESULT	MRL	UNITS	TEST DATE
Armenic	9W846-5010B	<0.016	0.06	wg/l	04/20/06
Barium	SW846-6010B	0.20	0.003	mg/l	04/20/06
· Cadmium	SW846-6010B	<0.003	0.003	mg/l	04/20/06
Chromium	5W846-6010B	0.01	0.007	mg/l	04/20/06
Lead	5W846~6010B	<0.042	0,042	mg/l	04/20/06
Mercury	SW846-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	SW846~6010B	<0.057	0.057	mg/l	04/20/06
Silver	BW846-7760A	<0.01	0.01	mg/l	04/21/06

Home

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Mail: 22 Hudson Falls Rd., So. Gless Palls, NY 12803 Delivery: 211 Perry Blvd., So. Glenz Falls, NY 12803 Phone: 518/747-1050 Fau: 518/747-1062

CLIENT: HRP Associates, Inc.

SAMPLE DESCRIPTION: 53-05

MATRIX: Groundwater

LOCATION: Stony Point, NY

H.B.S.#: 060414G03

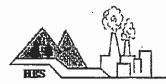
DATE SAMPLED: 04/12/06

TIME SAMPLED: 3:00 pm

DATE SAMPLE RECD: 04/14/06

TYPE SAMPLE: Grab

SAMPLER: E.Lovendusky/HRP


PARAMETER MIDE	METROD SW846-8260B	RBSULT 1.6	MRL 0.5	UNITS Ug/l	TEST DATE 04/18/06
Benzene	EW846-8260B	3.1	0.5	ug/l	04/18/06
Toluene	EW846-8260B	16 B	0.5	ug/1	04/18/06
Ethylbensene	8W846-8260B	63	0.5	ug/l	04/18/06
Total Kylenes	EW846-8260B	56	0.5	ug/1	D4/1B/06
Isopropylbenzene	EW846-8260B	32	0.5	ug/1	04/18/06
n-Propylbenzene	SN846-8260B	76	0.5	ug/1	04/18/06
1,3,5-Trimathylbenzene	EW846-8260B	27	0.5	ug/1	04/18/06
tert, Butylbenzene	SW846-8260B	<0.5	0.5	ug/l	04/18/06
1,2,4-Trimethylbenzene	SW846-8260B	120 B	0.5	ug/l	04/18/06
sec-Butylbenzene	9WB46-8260B	11	0.5	ug/1	04/18/06
p-Isopropyltoluene	SW846-8260B	1.6	0.5	ug/1	04/18/06
n-Butylbenzene	EW846-8260B	<0.5	0.5	ug/l	04/18/06
Naphthalene Non-Target Peaks	SW846-8260B	48 B Pomitive	0.5	ug/l	04/18/06

Home

Edilion

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Mail: 22 Findam Falls Rd., So. Chess Falls, NY 12803 Delivery: 211 Perry Bivel., Sc. Chess Falls, NY 12803 Fhone: 518/747-1060 Fax: 518/747-1062

CLIENT: HRP Associates, Inc.

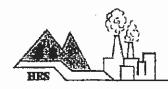
SAMPLE DESCRIPTION: 58-05

H.E.S. #: 060414G03 (Continued)

PARAMETER	METROD	RESULT	MRL	UNITS	TEST DATE
Arsenic	5WB46-6010B	<c.016< td=""><td>0.06</td><td>क्छ/1</td><td>04/20/06</td></c.016<>	0.06	क्छ/1	04/20/06
Barium	5W846~6010B	13	0.003	mg/l	04/20/06
Cadmium	SW846-6010B	<0.003	0.003	mg/l	04/20/06
Chronium	SW846-6010B	3.7	0.007	mg/l	04/20/06
Lead	SW846-6010B	0.84	D.D42	mg/l	04/20/06
Hereury	SW846-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	BW846-6010B	<0.057	0.057	mg/l	04/20/06
Silver	SWB46-7760A	0.06	0.01	mg/1	04/21/06

DISSOLVED METALS

PARAMETER	METEOD	RESULT	MRL	UNITS	TEST DATE
Armenic	SW846-6010B	<0.016	0.06	wg/1	04/20/06
Barium	SW846-6010B	0.10	0.003	mg/l	04/20/06
Cadmium	8W846-6010B	<0.003	0.003	mg/l	04/20/06
Chromium	SW846-6010B	0.01	0.007	ng/l	04/20/06
Lead	SW846-6010B	<0.042	0.042	mg/l	04/20/06
Mercury	SNE46-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	EW846-6010B	<0.057	0.057	mg/l	04/20/06
Silver	SW846-7760A	<0.01	0.01	mg/1.	04/21/06


Home

Edition

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creeting PDFs - www.robopdf.com

Mail; 22 Hodana Palis Rd., So. Gleon Palis, NY 12803 Delivery; 211 Ferry Blvd., So. Gleon Palis, NY 12803 Phone: 518/747-1060 Para: 518/747-1062

CLIENT: HRP Associates, Inc.

BAMPLE DESCRIPTION: 58-06

MATRIX: Groundwater

LOCATION: Stony Point, NY

H.B.S.#: 060414G04

Non-Target Peaks

DATE SAMPLED: 04/12/06

TIME SAMPLED: 3:00 pm

DATE SAMPLE RECD: 04/14/06

TYPE SAMPLE: Grab

BAMPLER: E. Lovendusky/HRP

<u>Parameter</u> MTBE	METHOD SW845-8260B	RESULT <0.5	MRL.	UNITS ug/l	TEST DATE 04/18/06
Benzene	5W846-8260B	1.2	0.5	ug/l	04/18/06
Toluene	5W846-8260B	0.91 B	0.5	ug/l	04/18/06
Ethylbenzene	SWB46-8260B	1.0	0.5	ug/l	04/18/06
Total Xylenes	8W846-8260B	2.3 B	0.5	ug/1	04/18/06
Isopropylbenzene	5W846-8260B	<0.5	0.5	ug/l	04/18/06
n-Propylbenzene	SW846-8260B	1.0	0.5	ng/l	04/18/06
1,3,5-Trimethylbengene	SW846-8260B	1.3	0.5	ng/1	04/18/06
tert, Butylbanzene	6W846-8260B	<0.5	0.5	ug/1	04/18/06
1,2,4-Trimethylbenzene	8W846-8260D	3.7 B	0.5	ug/l	04/18/06
gec-Butylbenzene	SW846-8260B	<0.5	0.5	ug/l	04/18/06
p-Isopropyltoluene	EW846-8260B	<0.5	0.5	ug/l	04/18/06
n-Butylbenzene	BW846-8260B	<0.5	0.5	ug/l	04/18/06
Naphthalene	SW846-8260D	2.1 B	0.5	ng/l	04/18/06

Negative

Home

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

Get RoboPDF: An Easy, Affordable Alternative for Creating PDFs - www.robondf.com

Mail: 22 Harison Falls Rd., Sc. Gless Falls, NY 12803 Delivery: 213 Perry Blvd., So. Gless Falls, NY 12802 Phone: 518/747-1060 Par: 518/747-1062

CLIENT: HRP Associates, Inc. SAMPLE DESCRIPTION: SB-06 H.E.S. #: D60414G04 (Continued)

PARAMETER Americ	METROD SWB46-6010B	RESULT <0.016	MRT. 0.06	mg/l	TEST DATE 04/20/06
Barium	5W846~6010B	6.4	0.003	mg/l	04/20/06
Cadainn	SW846-6010B	<0.003	0.003	mg/l	04/20/06
Chronium	SW846-6010B	3.4	0.007	mg/l	04/20/06
Lead	EW845-5010B	0.34	0.042	mg /1	04/20/06
Mercury	6W846-7471A	<0.001	0.001	ng /1	04/24/06
Balenium	5W845-6010B	0.15	0.057	mg/l	04/20/06
Silver	SW846-7760A	0.07	0.01	mg/l	04/21/06

DISSOLVED METALS

PARAMETER	MISMEOUR	RESULT	MRL	UNITS	TEST DATE
Arsenic	SW846-6010B	<0.016	0.06	mg/l	04/20/06
Berium	GW846-6010B	0.08	0.003	mg/l	04/20/06
Cadmium	BW846-6010B	<0.003	0.003	mg/l	04/20/06
Chronium	SW846-6010B	<0.007	0.007	mg/1	04/20/06
Lead	5W846-6010B	<0.042	0.042	mg/l	04/20/06
Mexcury	SW846-7471A	<0.001	0.001	mg/l	04/24/06
Selenium	SW846-6010B	<0.057	0.057	mg/l	04/20/06
Silver	SW846-7760A	<0.01	0.01	mg/l	04/21/06

NOTE: MRL = Minimum Reporting Limit

B - The above test results meet all the requirements of NELAC with the following exception: For method 8260B, method blank contamination was found.

Approval By:

Technical Director Dr. Mirza M. Hussain

Date: April 25, 2006

Hudson Environmental Services, Inc. certifies that the services provided were performed in accordance with the New York State Department of Health, Environmental Laboratory Approval Program certification manual. This report shall not be reproduced without written consent from HES, Inc. In the event of an error, HES's sole responsibility will be to perform reanalysis at its own expense. HES, Inc. assumes no other liability for damages incurred

This PDF created with the FREE RoboPDF Home Edition (not legal for business or government use)

APPENDIX 10

Post-Excavation Soil Sample Laboratory Results - November 2007

Friday, January 04, 2008

Attn: Mr Joe Shearn Environmental Products & Services Of Vermont 40 Hamilton Lane Glenmont, NY 12077

RECEIVED JAN 0.7 200

Client ID:

Sample ID#s: AJ86663

This laboratory is in compliance with the QA/QC procedures outlined in EPA 600/4-79-019, Handbook for Analytical Quality in Water and Waste Water, March 1979, SW846 QA/QC and NELAC requirements of procedures used.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory.

If you have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext. 200.

Sincerely yours,

Phyllis Shiller

Laboratory Director

CT Lab Registration #PH-0618
MA Lab Registration #MA-CT-007
NY Lab Registration #11301
RI Lab Registration #63
NH Lab Registration #213693-A,B
ME Lab Registration #CT-007
NJ Lab Registration #CT-003
PA Lab Registration #68-03630

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchester, CT 08040 Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

January 04, 2008

FOR:

Attn: Mr Joe Shearn

Environmental Products &

Services Of Vermont 40 Hamilton Lane

Glenmout, NY 12077

Sample Information

Custody Information

Date

Time

Matrix

SOIL

Collected by:

12/28/07

0:00

Location Code: EP&S-VT

Received by: LB

12/31/07

10:00

Rush Request:

Analyzed by:

see "By" below

P.O.#:

W2025

Laboratory Data

SDG I.D.: GAJ86663

Phoenix I.D.: AJ86663

Client ID: RT. 9W STONY PT.

Parameter	Result	\mathbf{RL}	Units	Date	Time	By	Reference	_			
Percent Solid	90		%	12/31/07		X/EG	E160.3	_			
TPH by GC - EPA 8015 Modified											
Aviation Fuel/ Kerosene	ND	10.0	mg/kg	01/02/08		JRB	EPA 8015MOD	1			
Fuel Oil #2/ Diesel	ND	10.0	mg/kg	01/02/08		JRB	EPA 8015MOD	1			
Gasoline	ND	10.0	mg/kg	01/02/08		JRB	EPA 8015MOD	1			
Unidentified	ND	10.0	mg/kg	01/02/08		JRB	EPA 8015MOD	1			

I = This parameter is not certified by NY NELAC for this matrix. NY NELAC does not offer certification for all parameters.

Comments:

If there are any questions regarding this data, please call Phoenix Client Services at extension 200. ND=Not detected BDL=Below Detection Limit RL=Reporting Limit

Phyllis Shiller, Laboratory Director

January 04, 2008

Environmental Laboratories, Inc. 587 East Middle Turnpike, P.O.Box 370, Manchestar, CT 06040 Tel. (860) 648-1102 Fax (860) 645-0828

NY Temperature Narration

January 04, 2008

SDG I.D.: GAJ86663

The samples in this delivery group were received at 6C. (Note acceptance criteria is above freezing up to 6C)

		Comments, Special Requirements or Regulations:	House	Railinguished by: Ancested by:					3 5-01 5		Matrix Godin: DW-drinking weter WW-westewater S-solveolid O=Oli GW-groundwater St-scholge A-air X-Oliter	Sempler's Sample - Information, Identification Sempler's Signature	a de	CURRENT SERIES THE CONTRACT THE CONTRACT OF TH	Environmental Laboratories, Inc.	PHOENLX SE		
	* Surcharge Applies	Standard	0 (3.5) (0.00) (2.0a)**	Data: Time: Turi					the definer of	Date Time Sampled	The second secon	Analysis Request	moios to: EPS S. VI Jac	Report to: Tout Sur Sur	Client Services (860) 645-8728	597 East Middle Tumpike, P.O. Box 370, Merchester, CT 06040 Email: eervice@phoenbisbs.com Fax (860) 645-0823	CHAIN OF CUSTODY RECORD	
	Ind. Vol.		g -	CT/RI Requ						1 3 3 3 3 3 3 3 4 3 4 5 4 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5		AL GRANIST CORP.	Fm#: 845 398861.6			Pex #:	Data Delivery (check one):	