

October 26, 2012

James E. Candiloro, P.E. Remedial Bureau C Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7014

VIA ELECTRONIC MAIL: jxcandil@gw.dec.state.ny.us

Re: August 2012 Supplemental Groundwater Sampling Event Report

Walgreen Company Store 02077

10 East Chester Street Kingston, New York BCP Site No. C356032

Dear Mr. Candiloro:

URS Corporation-New York (URS), on behalf of the Walgreen Company (Walgreens), is pleased to present this report to the New York State Department of Environmental Conservation (NYSDEC) summarizing the results of the *August 2012 Supplemental Groundwater Sampling Event* at the Walgreens Store at 10 East Chester Street in Kingston, New York (BCP Site No. C356032). Pursuant to our telephone and email communications on August 3, 2012, URS collected a supplemental round of samples from the three wells at the 10 East Chester Street Site in Kingston using low flow sampling techniques to verify recent data trends, in light of the high turbidities observed in the February 2012 samples, and to gather additional data to evaluate groundwater geochemistry.

The detected contaminant of concern (COC) concentrations from the August 2012 low flow sampling event were generally lower than previous sampling events since 2010. The detected tetrachloroethene (PCE) concentration in well MW-3 was dramatically lower at only 200 $\mu g/L$; previously detected PCE concentrations in this well since 2010 have ranged from 840-2200 $\mu g/L$. Well MW-3 exhibited anaerobic conditions (i.e., low dissolved oxygen and negative oxidation-reduction potential field parameter readings) conducive to the reductive dechlorination of PCE. The presence of PCE daughter products in wells MW-3 (trichlorethene [TCE]) and MW-2 (TCE, cis-1,2-dichloroethene [DCE], and trans-1,2-DCE) and elevated chloride concentrations at MW-3 (as compared to MW-1 and MW-2) also point to naturally occurring reductive dechlorination of PCE and its daughter products. A comparison of the historical analytical data from 2010-2012 appears to indicate downward concentration trends for most COCs at the site. The report recommends continued annual sampling events performed using a low turbidity sampling methodology to obtain more representative and comparable data for documenting the natural attenuation of remaining groundwater contaminants at the site.

URS Corporation 77 Goodell Street Buffalo, NY 14203 Tel: 716.856.5636 Fax: 716.856.2545

We do not believe that a Corrective Measures Work Plan, as requested in your June 29, 2012 Comment Letter on the March 2012 Periodic Review Report for the site, is necessary at this time. We await your review and comment on this August 2012 Supplemental Sampling Report and are hoping that you will reconsider your disapproval of the March 2012 Periodic Review Report and the associated Institutional Control and Engineering Control (IC/EC) Certification for the site. We look forward to discussing the future course of action for this site with you. If you have any questions or require additional information, please do not hesitate to contact me (716-923-1112) or Bruce Przybyl (716-923-1102), the URS Buffalo Office Project Manager.

Additional electronic copies of the report have been forwarded as indicated below.

Sincerely,

URS CORPORATION-NEW YORK

Steven M. Moeller Project Geologist

cc: Galina Georgiew, URS-Chicago

Bruce Przybyl, URS-Buffalo Jennifer Gillies, URS-Clifton Park Bryan Everett, Walgreen Company

WALGREEN COMPANY RESPONSES TO NYSDEC (JAMES E. CANDILORO, P.E.) COMMENTS RECEIVED JUNE 29, 2012 ON THE

ANNUAL GROUNDWATER SAMPLING, SITE MANAGEMENT PLAN REVIEW, AND INSTITUTIONAL CONTROL AND ENGINEERING CONTROL (IC/EC) CERTIFICATION WALGREEN COMPANY STORE 02077, 10 EAST CHESTER STREET KINGSTON, NEW YORK (BCP SITE NO. C356032) DATED MARCH 2012

COMMENTS

The Department has reviewed your Periodic Review Report (PRR), dated March 2012, and IC/EC Certification for following period: March 31, 2011 to March 31, 2012.

Based on the groundwater sampling data for MW-3, the Department hereby disapproves the PRR and associated Certification for the following reason(s):

• A trend analysis of tetrachloroethene (PCE) in MW-3 indicates that degradation of PCE is not occurring at an acceptable rate (see attached figures).

In accordance with Section 6- Groundwater and Monitoring of the Site Management Plan (SMP), the Department requests that you submit a Corrective Measures Work Plan (CMWP) to address recalcitrant levels of tetrachloroethene (PCE) in MW-3. The CMWP must include a schedule for completion of the planned work.

RESPONSE

URS Corporation-New York (URS), on behalf of the Walgreen Company, contacted Mr. Candiloro (NYSDEC) by telephone and email (8-3-12) regarding these comments. URS proposed collecting a supplemental round of samples from the three wells at the 10 East Chester Street Site in Kingston to verify recent data trends, in light of the high turbidities observed in the February 2012 samples, and to gather additional data to evaluate groundwater geochemistry. The supplemental sampling event was performed on August 8, 2012 using low flow sampling techniques to obtain representative low turbidity samples which were analyzed for VOCs, manganese, total iron, ferrous iron, sulfate, nitratenitrite, chloride. Field parameter (pH, temperature, ORP, DO, specific conductivity, and turbidity) data was also collected during purging/sampling with a flow-through cell.

The results of this sampling event are presented in the attached August 2012 Supplemental Groundwater Sampling Event report. The detected COC concentrations from the August 2012 low flow sampling event were generally lower than previous sampling events since 2010. The detected PCE concentration in well MW-3 was dramatically lower at only 200 µg/L; previously detected PCE concentrations in this well since 2010 have ranged from 840-2200 μg/L. Well MW-3 exhibited anaerobic conditions (i.e., low DO and negative ORP field parameter readings) conducive to the reductive dechlorination of PCE. The presence of PCE daughter products in wells MW-3 (TCE) and MW-2 (TCE, cis-1.2-DCE, and trans-1.2-DCE) and elevated (as compared to MW-1 and MW-2) chloride concentrations at MW-3 also point to naturally occurring reductive dechlorination of PCE and its daughter products. A comparison of the historical analytical data from 2010-2012 appears to indicate downward concentration trends for most COCs at the site. The report recommends continued annual sampling events performed using a low turbidity sampling methodology to obtain more representative and comparable data for documenting the natural attenuation of remaining groundwater contaminants at the site.

We do not believe that a Corrective Measures Work Plan is necessary at this time and we will be contacting NYSDEC to discuss the future course of action for the site.

WALGREEN COMPANY

106 Wilmot Road MS#1620 Deerfield, Illinois 60015

AUGUST 2012 SUPPLEMENTAL GROUNDWATER SAMPLING EVENT

WALGREEN COMPANY STORE NO. 02077 10 EAST CHESTER STREET KINGSTON, ULSTER COUNTY, NEW YORK

BCP Site No. C356032

October 2012

Prepared By:

URS Corporation – New York 77 Goodell Street Buffalo, New York 14203

TABLE OF CONTENTS

1.0 INTRO	CODUCTION	1
2.0 SITE 1	HISTORY	1
	TE HISTORY	
3.1 S 3.2 C	SAMPLE COLLECTION	2
3.2	OROUND WATER ANALT HEAL RESULTS	
4.0 CONC	CLUSIONS & RECOMMENDATIONS	4
5.0 REFE	ERENCES	6
TABLES		
Table 1	Complete Groundwater Analytical Results	
Table 2		
Table 3 Table 4	·	
Table 4	Comparison of Historical Analytical Data	
FIGURES		
Figure 1	Site Location Map	
Figure 2	Monitoring Well Locations	
APPENDIC	CES	
Appendix A	A Groundwater Purging/Sampling Logs	
Appendix B	· · ·	
Appendix C		2010
	1 9 1	, 2010)
	Appendix C-2 - Annual Groundwater Sampling Report 2011 (URS, 2011) Appendix C-3 - Annual Groundwater Sampling Report 2012 (URS, 2012)	
	Appendix C-5 * Annual Orbanawaler Sampling Report 2012 (ORS, 2012)	

1.0 INTRODUCTION

On behalf of the Walgreen Company (Walgreens), URS Corporation-New York (URS) is pleased to present this report summarizing the results of the August 2012 supplemental groundwater sampling event for Walgreens Store No. 02077 at 10 East Chester Street (a.k.a. 306-318 Broadway) in Kingston, Ulster County, New York. This sampling event was performed using low flow groundwater sampling techniques to verify recent chemical data trends, in light of the high turbidities and consequent elevated contaminant of concern (COC) concentrations observed during the February 2012 Annual Sampling Event, and to provide additional data to evaluate groundwater geochemistry.

2.0 SITE HISTORY

The subject property (site) is located at 10 East Chester Street in Kingston, New York (Figure 1). The site consists of approximately 1.0 acre of land and is currently Walgreens Store No. 02077 (Figure 2). The construction of the store was completed in 2010. The site is commercially zoned with surrounding properties that include a mix of commercial businesses and residential lots.

According to available information, portions of the site have historically been occupied by a dry cleaning facility, a vehicle fueling/service station, and a trolley barn that became a school bus maintenance garage. Based on the results of the *Brownfield Cleanup Program Remedial Investigation Report/Remedial Action Plan* (S&W Redevelopment of North America, LLC [S&W], 2005), the constituents of potential concern at the site include volatile organic compounds (VOCs) associated with solvents (i.e., trichloroethene and tetrachloroethene) and petroleum products. The previous owner of the site, 10 East Chester Street LLC, entered into the New York State Brownfield Cleanup Program (BCP Site Number C356032) and completed remediation in accordance with the requirements of the BCP.

The site remedial activities included the removal of seven underground storage tanks (USTs) that contained petroleum products, the excavation of impacted soil, and performing in-situ chemical oxidation using potassium permanganate to remediate groundwater. The remedial activities were conducted in accordance with the New York State Department of Environmental Conservation (NYSDEC) approved *Remedial Action Plan* (S&W, 2005) and the *Remedial Design In-Situ Chemical Oxidation* (Stearns and Wheler, LLC, 2005).

A *Final Engineering Report* was submitted to the NYSDEC in October 2006 (S&W, 2006a). A Certificate of Completion was issued by the NYSDEC on December 14, 2006. This certificate stated "...that the remediation requirements set forth in ECL Article 27, Title 14, have been or will be achieved in accordance with the time frames, if any established in the remedial work plan." The certificate also noted that the site is restricted to a "commercial" use and that the site remediation is also predicated on the use of institutional or engineering controls. The use of groundwater underlying the site is prohibited without prior approval from the NYSDEC. A *Site Management Plan* (SMP) was prepared on behalf of 10 East Chester Street LLC in December 2006 (S&W, 2006b).

The SMP requires that all buildings constructed on site have a NYSDEC and New York State Department of Health (NYSDOH) approved active sub-slab depressurization system, maintenance of six-inches of concrete or asphalt pavement across the site, and groundwater monitoring. Any future excavation of soils at the site must be done in accordance with the SMP. The SMP also requires an annual certification that the engineering and institutional controls employed at the site are unchanged from the previous

certification and that nothing has occurred that would impair the ability of such control to protect the public health and environment.

During redevelopment activities in May and June 2008, monitoring wells MW-1S, MW-2S, and MW-3S were abandoned with approval from the NYSDEC BCP. Replacement monitoring wells MW-1, MW-2 and MW-3 were installed by Bureau Veritas in February 2010 and groundwater samples were collected from the new wells in March and May 2010 (Figure 2). The monitoring well installation and groundwater sampling results for 2010 are summarized in the *Annual Groundwater Sampling Report* (Bureau Veritas North America, Inc. [Bureau Veritas], 2010) (field parameter and analytical data table excerpts from this report are included as Appendix C-1).

URS performed annual field sampling and inspection activities in 2011 and 2012 and submitted *Annual Groundwater Sampling, Site Management Plan Review, and Institutional Control and Engineering Control (IC/EC) Certification* reports for the site to the NYSDEC in April 2011 and April 2012, respectively (URS, 2011 and 2012) (field parameter and analytical data table excerpts from these reports are included as Appendices C-2 and C-3, respectively).

3.0 AUGUST 2012 GROUNDWATER SAMPLING EVENT

A project-specific Health and Safety Plan (HASP) was prepared prior to the commencement of the groundwater sampling activities at the site. The HASP was prepared in accordance with all applicable state and federal requirements. URS personnel that conducted work at the site met the appropriate training requirements as identified in 29 CFR 1910.120. The fieldwork was performed in Level D personal protective equipment.

3.1 SAMPLE COLLECTION

URS collected groundwater samples from the three existing monitoring wells (MW-1, MW-2, and MW-3) on August 8, 2012. Prior to collecting the groundwater samples, each monitoring well was opened and a MiniRAE 3000 photoionization detector (PID) with a 10.6 eV lamp was used to monitor for the presence of VOCs at the top of the well riser; no PID readings above background levels were noted at the wellheads. The depth to water and the bottom of the well were measured and recorded with an electronic water level indicator.

Each monitoring well was purged prior to the collection of groundwater samples in accordance with *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Ground Water Samples from Monitoring Wells, Revision 3* (United States Environmental Protection Agency Region 1 [USEPA], 1996). Low flow purging was performed using a Geopump 2TM low flow peristaltic pump and dedicated silicone (rotor head) and polyethylene (down well) tubing for each well. The polyethylene tubing intake was set at the midpoint of the saturated portion of the well screen in each monitoring well. Depth to water measurements were collected, and flow rates adjusted, until the water level drawdown stabilized. Once the water level stabilized, field parameters (temperature, pH, specific conductivity, dissolved oxygen [DO], oxidation-reduction potential [ORP], and turbidity) were recorded during purging at 3-5 minute intervals using a Horiba Model U-52 multi-parameter meter with flow-through cell and a Hach 2100P turbidimeter. Purging continued until at least one static well volume was purged and the variation in each parameter was within designated ranges (USEPA, 1996) over three consecutive readings, at which point the tubing was removed from the flow-through cell and the sample bottles were filled. The field parameters, along with other observations recorded during this sampling event, are presented on the

groundwater purging/ sampling logs included in Appendix A. The groundwater sample field parameter data is also presented in Tables 1 and 3.

Groundwater sample aliquots were collected from each well and analyzed in the field for ferrous iron using a Hach DR/870 colorimeter and Hach AccuVac ferrous iron reagent ampules. Groundwater samples collected for offsite laboratory analyses were containerized in laboratory-supplied pre-preserved bottles. The groundwater samples were immediately chilled on ice and hand delivered by URS to TestAmerica Buffalo laboratories in Amherst, New York following proper chain-of-custody (COC) procedures. Each groundwater sample was analyzed for VOCs by United States Environmental Protection Agency (USEPA) Method 8260B, iron and manganese by Method 6010B, sulfate and chloride by Method 300.0_28D, and nitrate-nitrite by Method 353.2; URS collected one field duplicate from well MW-3 for all these analyses. In addition, one trip blank was submitted for VOC analysis. The laboratory analytical report is provided in Appendix B.

Since the groundwater removed during purging displayed no PID readings over background levels and no discoloration (all purge water was clear), sheens, or signs of non-aqueous phase liquids (NAPLs), the containerized purge water was discharged following sample collection to the grassy surface areas in the vicinity of each individual well and allowed to infiltrate.

3.2 GROUNDWATER ANALYTICAL RESULTS

The complete groundwater analytical results are presented in Table 1. Field quality control sample results (Trip Blank) are reported in Table 2; no VOCs were detected in the Trip Blank sample. A summary of the detected groundwater sample analytical results is presented in Table 3. The groundwater sample analytical results were compared to the NYSDEC Groundwater (GW) Standards published in Technical and Operational Guidance Series (TOGS) 1.1.1. Five VOCs (ethylbenzene, isopropylbenzene, tetrachloroethene, trichloroethene, and total xylenes) were detected at concentrations above their respective NYSDEC GW standards in at least one of the groundwater samples (see Tables 1 and 3).

Petroleum-related Volatile Organic Compounds

Three petroleum-related VOCs (ethylbenzene, isopropylbenzene, and total xylenes) were detected at concentrations above their respective NYSDEC GW standards in the two more northerly monitoring well (i.e., MW-1 and MW-2) groundwater samples; none of these compounds were detected in the sample from MW-3. The NYSDEC GW standards for these compounds are all 5.0 μ g/L. The detected concentrations of ethylbenzene ranged from 1.9 micrograms per liter (μ g/L) in MW-2 to 9.0 μ g/L in MW-1. The detected concentrations of isopropylbenzene ranged from 6.1 μ g/L in MW-2 to 13 μ g/L in MW-1. The detected concentrations of total xylenes ranged from 2.8 μ g/L in MW-1 to 5.5 μ g/L in MW-2.

The concentrations of ethylbenzene, isopropylbenzene, and total xylenes detected in the low flow groundwater samples collected from MW-1 and MW-2 in August 2012 are generally lower than the concentrations detected during the March 2011 and February 2012 sampling events (Table 4). Ethylbenzene, m&p-xylenes, and isopropylbenzene were also not detected in the groundwater samples collected from MW-3 in March 2011 or February 2012.

Chlorinated Volatile Organic Compounds

Two chlorinated VOCs (tetrachloroethene [PCE] and reductive dechlorination daughter product trichloroethene [TCE]) were detected at concentrations above their respective NYSDEC GW standards in monitoring well MW-3; the NYSDEC GW standards for both of these compounds are $5.0~\mu g/L$. PCE was detected only in the groundwater sample collected from MW-3 at a concentration of $200~\mu g/L$. MW-3 is located downgradient of the former dry cleaning facility at the site. The detected concentrations of TCE ranged from $0.47J~\mu g/L$ in the groundwater sample collected from MW-2 to $9.5~\mu g/L$ in the groundwater sample collected from MW-1.

The concentrations of PCE and TCE detected in the low flow groundwater samples collected from MW-2 and MW-3 in August 2012 are lower than the concentrations detected during March 2011 and February 2012 sampling events, with a dramatic reduction in the PCE concentration in MW-3 (Table 4). Cis-1,2-dichloroethene (cis-1,2-DCE), a daughter product of the reductive dechlorination of TCE, was detected at a concentration above its 5.0 µg/L NYSDEC GW standard in the March 2011 sample from well MW-2 (see Appendix C-2), but was not detected above the NYSDEC GW standard in either groundwater sample collected in 2012 (Table 4).

4.0 CONCLUSIONS & RECOMMENDATIONS

The detected COC concentrations from the August 2012 low flow sampling event were generally lower than previous sampling events since 2010 (Table 4). The detected PCE concentration in well MW-3 was only 200 µg/L; previously detected PCE concentrations in this well since 2010 have ranged from 840-2200 µg/L. Sample turbidities were also lower during the August 2012 sampling event, with the highest sample turbidity being 8 Nephelometric Turbidity Units (NTU). While the SMP does not specify the methodology to be employed for the collection of annual groundwater samples at the site, the sampling methods utilized to collect the March and May 2010 (submersible pump purge and bailer sample collection), March 2011 (bailer for both purging and sampling), and February 2012 (bailer for both purging and sampling) groundwater samples utilized bailers, which tend to elevate sample turbidities and consequently COC concentrations due to contaminants adsorbed on entrained soil particulates. Sample turbidities from the March 2011 and February 2012 sampling events ranged from 206 to >800 Nephelometric Turbidity Units (NTU) (see Appendices C-2 and C-3), indicating significant soil particulate entrainment. Purge water turbidities from the March and May 2010 sampling events reportedly ranged from -10 to 374 NTU, although much of the reported field parameter data implies operator, instrument, and/or reporting errors(see Appendix C-1, Table 1); bailer collected sample turbidities for the 2010 events were likely even higher than the reported purge water turbidities. It is recommended that a less disruptive, low turbidity sampling methodology (i.e., low flow or possibly passive diffusion bags) be employed in the future at the site to gather data that is more representative of actual dissolved COC concentrations in groundwater.

Petroleum-related COC concentrations in wells MW-1 and MW-2 are nearing NYSDEC GW standards. Although field parameter data indicate generally anaerobic conditions (i.e., low DO and negative ORP field parameter readings) within the shallow aquifer, elevated manganese concentrations in well MW-2 and reduced sulfate and nitrate concentrations in wells MW-1 and MW-2 (as compared to MW-3) indicate possible use of alternate electron acceptors (nitrate, manganese, and sulfate reduction) by indigenous bacteria to anaerobically break down petroleum-related COCs (Table 3) (Lovley, 2001; Villatoro-Monzon et al., 2003). Well MW-3 also exhibited anaerobic conditions conducive to the reductive dechlorination of PCE. The presence of PCE daughter products in wells MW-3 (TCE) and

MW-2 (TCE, cis-1,2-DCE, and trans-1,2-DCE) and elevated (as compared to MW-1 and MW-2) chloride concentrations at MW-3 also point to naturally occurring reductive dechlorination of PCE and its daughter products. Vinyl chloride has not been detected in any of the site groundwater samples since 2010, possibly due to the influence of the sub-slab depressurization system. A comparison of the historical analytical data from 2010-2012 appears to indicate downward concentration trends for most COCs (Table 4); however, the data may be biased due to the varying sampling methodologies employed to collect groundwater samples at the site. Continued annual sampling events should be performed using a low turbidity sampling methodology to obtain more representative and comparable data for documenting the natural attenuation of remaining groundwater contaminants at the site.

5.0 REFERENCES

- Bureau Veritas North America, Inc. (Bureau Veritas), 2010. *Annual Groundwater Sampling Report Walgreen Store No. 02077 10 East Chester Street (a.k.a. 306-318 Broadway, Kingston, New York, BCP Site No. C356032*. September 29.
- Lovley, D. R., 2001. Bioremediation Anaerobes to the rescue. Science 293 (5534), 1444-1446.
- S&W Redevelopment of North America, LLC (S&W), 2005. Brownfield Cleanup Program Remedial Investigation Report/Remedial Action Plan, BCP Site No. C356032. August.
- S&W, 2006a. Final Engineering Report BCP Site No. C356032. October.
- S&W, 2006b. Site Management Plan, 10 East Chester Street, Kingston, New York, BCP Site No. C356032. November (Revised December 2006).
- Stearns and Wheler, LLC, 2005. Remedial Design In-Situ Chemical Oxidation BCP Site No. C356032. October.
- United States Environmental Protection Agency Region 1 (USEPA), 1996. Low Stress (low flow)

 Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring
 Wells, Revision 3. July 30 (Revised January 19, 2010).
- URS Corporation (URS), 2011. Annual Groundwater Sampling, Site Management Plan Review, and Institutional Control and Engineering Control (IC/EC) Certification. March.
- URS, 2012. Annual Groundwater Sampling, Site Management Plan Review, and Institutional Control and Engineering Control (IC/EC) Certification. March.
- Villatoro-Monzon, W.R., Mesta-Howard, A.M., and Razo-Flores, E., 2003. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors. *Water Science and Technology*, 48 (6), 125-131.

TABLES

TABLE 1 COMPLETE GROUNDWATER ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			MW-1	MW-2	MW-3	MW-3	
Sample ID			MW-1	MW-2	MW-3	MW-3 DUP Groundwater -	
Matrix			Groundwater	Groundwater	Groundwater		
Depth Interval (f	t)		-	-	-		
Date Sampled			08/08/12	08/08/12	08/08/12	08/08/12	
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
1,1,1-Trichloroethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,1,2-Trichloroethane	UG/L	1	1.0 U	1.0 U	4.0 U	4.0 U	
1,1-Dichloroethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,1-Dichloroethene	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,2,4-Trichlorobenzene	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 U	1.0 U	4.0 U	4.0 U	
1,2-Dibromoethane (Ethylene dibromide)	UG/L	0.006	1.0 U	1.0 U	4.0 U	4.0 U	
1,2-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	4.0 U	4.0 U	
1,2-Dichloroethane	UG/L	0.6	1.0 U	1.0 U	4.0 U	4.0 U	
1,2-Dichloroethene (cis)	UG/L	5	1.0 U	3.1	4.0 U	4.0 U	
1,2-Dichloroethene (trans)	UG/L	5	1.0 U	1.3	4.0 U	4.0 U	
1,2-Dichloropropane	UG/L	1	1.0 U	1.0 U	4.0 U	4.0 U	
1,3-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	4.0 U	4.0 U	
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U	1.0 U	4.0 U	4.0 U	
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U	1.0 U	4.0 U	4.0 U	
1,4-Dichlorobenzene	UG/L	3	1.0 U	1.0 U	4.0 U	4.0 U	
2-Hexanone	UG/L	50	5.0 U	5.0 U	20 U	20 U	
4-Methyl-2-pentanone	UG/L	-	5.0 U	5.0 U	20 U	20 U	
Acetone	UG/L	50	3.1 J	10 U	40 U	40 U	
Benzene	UG/L	1	1.0 U	1.0 U	4.0 U	4.0 U	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 1 COMPLETE GROUNDWATER ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			MW-1	MW-2	MW-3	MW-3	
Sample ID			MW-1	MW-2	MW-3	MW-3 DUP Groundwater	
Matrix			Groundwater	Groundwater	Groundwater		
Depth Interval (ft)			-	-	-	-	
Date Sampled			08/08/12	08/08/12	08/08/12	08/08/12	
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
Bromodichloromethane	UG/L	50	1.0 U	1.0 U	4.0 U	4.0 U	
Bromoform	UG/L	50	1.0 U	1.0 U	4.0 U	4.0 U	
Bromomethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Carbon disulfide	UG/L	60	1.0 U	1.0 U	4.0 U	4.0 U	
Carbon tetrachloride	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Chlorobenzene	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Chloroethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Chloroform	UG/L	7	1.0 U	1.0 U	4.0 U	4.0 U	
Chloromethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Cyclohexane	UG/L	-	1.0 U	84	4.0 U	4.0 U	
Dibromochloromethane	UG/L	50	1.0 U	1.0 U	4.0 U	4.0 U	
Dichlorodifluoromethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Ethylbenzene	UG/L	5	9.0	1.9	4.0 U	4.0 U	
Isopropylbenzene (Cumene)	UG/L	5	$\begin{array}{ c c }\hline & 13 \\ \hline & \end{array}$	6.1	4.0 U	4.0 U	
Methyl acetate	UG/L	=	1.0 U	1.0 U	4.0 U	4.0 U	
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U	10 U	40 U	40 U	
Methyl tert-butyl ether	UG/L	10	1.0 U	1.0 U	4.0 U	4.0 U	
Methylcyclohexane	UG/L	-	4.3	40	4.0 U	4.0 U	
Methylene chloride	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Styrene	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Tetrachloroethene	UG/L	5	1.0 U	1.0 U	200	200	
Toluene	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

Concentration Exceeds Criteria

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 1 COMPLETE GROUNDWATER ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			MW-1	MW-2	MW-3	MW-3	
Sample ID			MW-1	MW-2	MW-3	MW-3 DUP	
Matrix			Groundwater	Groundwater	Groundwater	Groundwater	
Depth Interval (Depth Interval (ft)			-	-	-	
Date Sampled	Date Sampled				08/08/12	08/08/12	
Parameter	Units	Criteria*				Field Duplicate (1-1)	
Volatile Organic Compounds							
Trichloroethene	UG/L	5	1.0 U	0.47 J	8.9	9.5	
Trichlorofluoromethane	UG/L	5	1.0 U	1.0 U	4.0 U	4.0 U	
Vinyl chloride	UG/L	2	1.0 U	1.0 U	4.0 U	4.0 U	
Xylene (total)	UG/L	5	2.8	5.5	8.0 U	8.0 U	
Metals							
Iron	UG/L	300	180	98	50 U	19 J	
Manganese	UG/L	300	280	1,500	200	200	
Miscellaneous Parameters							
Chloride	MG/L	2.50E+05	33.0	16.6	186	187	
Ferrous Iron	MG/L	-	0.00 U	0.05	0.00 U	NA	
Nitrate-Nitrogen	MG/L	10000	0.38	0.46	2.1	2.1	
Nitrite-Nitrogen	MG/L	1000	0.050 U	0.050 U	0.050 U	0.050 U	
рН	PH UNITS	6.5-8.5	6.96	6.60	6.86	NA	
Sulfate (as SO4)	MG/L	2.50E+05	10.5	7.7	86.6	87.1	
Temperature	DEG C	-	23.59	24.16	22.58	NA	
Specific Conductance	MS/CM	-	0.364	0.197	1.11	NA	
Turbidity	NTU	-	8	1.1	1.0	NA	
Dissolved Oxygen	MG/L	-	1.29	0.27	0.00 U	NA	
Oxidation Reduction Potential	mV	-	-87	-128	-9	NA	

Flags assigned during chemistry validation are shown.

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 2 FIELD QC ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			FIELDQC
Sample ID			TB-080812
Matrix	Water Quality		
Depth Interval (f	t)		-
Date Sampled			08/08/12
Parameter	Units	Criteria*	Trip Blank (1-1)
Volatile Organic Compounds			
1,1,1-Trichloroethane	UG/L	5	1.0 U
1,1,2,2-Tetrachloroethane	UG/L	5	1.0 U
1,1,2-Trichloro-1,2,2-trifluoroethane	UG/L	5	1.0 U
1,1,2-Trichloroethane	UG/L	1	1.0 U
1,1-Dichloroethane	UG/L	5	1.0 U
1,1-Dichloroethene	UG/L	5	1.0 U
1,2,4-Trichlorobenzene	UG/L	5	1.0 U
1,2-Dibromo-3-chloropropane	UG/L	0.04	1.0 U
1,2-Dibromoethane (Ethylene dibromide)	UG/L	0.006	1.0 U
1,2-Dichlorobenzene	UG/L	3	1.0 U
1,2-Dichloroethane	UG/L	0.6	1.0 U
1,2-Dichloroethene (cis)	UG/L	5	1.0 U
1,2-Dichloroethene (trans)	UG/L	5	1.0 U
1,2-Dichloropropane	UG/L	1	1.0 U
1,3-Dichlorobenzene	UG/L	3	1.0 U
1,3-Dichloropropene (cis)	UG/L	0.4	1.0 U
1,3-Dichloropropene (trans)	UG/L	0.4	1.0 U
1,4-Dichlorobenzene	UG/L	3	1.0 U
2-Hexanone	UG/L	50	5.0 U
4-Methyl-2-pentanone	UG/L	-	5.0 U
Acetone	UG/L	50	10 U
Benzene	UG/L	1	1.0 U
Bromodichloromethane	UG/L	50	1.0 U
Bromoform	UG/L	50	1.0 U

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 2 FIELD QC ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			FIELDQC					
Sample ID	Sample ID							
Matrix	Water Quality							
Depth Interval (i	ft)		-					
Date Sampled			08/08/12					
Parameter	Units	Criteria*	Trip Blank (1-1)					
Volatile Organic Compounds								
Bromomethane	UG/L	5	1.0 U					
Carbon disulfide	UG/L	60	1.0 U					
Carbon tetrachloride	UG/L	5	1.0 U					
Chlorobenzene	UG/L	5	1.0 U					
Chloroethane	UG/L	5	1.0 U					
Chloroform	UG/L	7	1.0 U					
Chloromethane	UG/L	5	1.0 U					
Cyclohexane	UG/L	-	1.0 U					
Dibromochloromethane	UG/L	50	1.0 U					
Dichlorodifluoromethane	UG/L	5	1.0 U					
Ethylbenzene	UG/L	5	1.0 U					
Isopropylbenzene (Cumene)	UG/L	5	1.0 U					
Methyl acetate	UG/L	-	1.0 U					
Methyl ethyl ketone (2-Butanone)	UG/L	50	10 U					
Methyl tert-butyl ether	UG/L	10	1.0 U					
Methylcyclohexane	UG/L	-	1.0 U					
Methylene chloride	UG/L	5	1.0 U					
Styrene	UG/L	5	1.0 U					
Tetrachloroethene	UG/L	5	1.0 U					
Toluene	UG/L	5	1.0 U					
Trichloroethene	UG/L	5	1.0 U					
Trichlorofluoromethane	UG/L	5	1.0 U					
Vinyl chloride	UG/L	2	1.0 U					
Xylene (total)	UG/L	5	2.0 U					

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 3 SUMMARY OF DETECTED GROUNDWATER ANALYTICAL RESULTS WALGREENS, KINGSTON, NEW YORK

Location ID			MW-1	MW-2 MW-2	MW-3	MW-3 MW-3 DUP	
Sample ID			Groundwater	Groundwater	Groundwater	Groundwater	
Matrix	Depth Interval (ft)				- Groundwater	- Groundwater	
Depth Interval (i	ι)		- 08/08/12	- 08/08/12	08/08/12	08/08/12	
Parameter			00/00/12	00/00/12	00/00/12	Field Duplicate (1-1)	
raiailletei	Units	Criteria*				· · · · · · · · · · · · · · · · · · ·	
Volatile Organic Compounds							
1,2-Dichloroethene (cis)	UG/L	5	1.0 U	3.1	4.0 U	4.0 U	
1,2-Dichloroethene (trans)	UG/L	5	1.0 U	1.3	4.0 U	4.0 U	
Acetone	UG/L	50	3.1 J	10 U	40 U	40 U	
Cyclohexane	UG/L	-	1.0 U	84	4.0 U	4.0 U	
Ethylbenzene	UG/L	5	9.0	1.9	4.0 U	4.0 U	
Isopropylbenzene (Cumene)	UG/L	5	13	6.1	4.0 U	4.0 U	
Methylcyclohexane	UG/L	-	4.3	40	4.0 U	4.0 U	
Tetrachloroethene	UG/L	5	1.0 U	1.0 U	200	200	
Trichloroethene	UG/L	5	1.0 U	0.47 J	8.9	9.5	
Xylene (total)	UG/L	5	2.8	5.5	8.0 U	8.0 U	
Metals							
Iron	UG/L	300	180	98	50 U	19 J	
Manganese	UG/L	300	280	1,500	200	200	
Miscellaneous Parameters							
Chloride	MG/L	2.50E+05	33.0	16.6	186	187	
Ferrous Iron	MG/L	-	0.00 U	0.05	0.00 U	NA	
Nitrate-Nitrogen	MG/L	10000	0.38	0.46	2.1	2.1	
рН	PH UNITS	6.5-8.5	6.96	6.60	6.86	NA	
Sulfate (as SO4)	MG/L	2.50E+05	10.5	7.7	86.6	87.1	
Temperature	DEG C	-	23.59	24.16	22.58	NA	
Specific Conductance	MS/CM	-	0.364	0.197	1.11	NA	
Turbidity	NTU	-	8	1.1	1.0	NA	
Dissolved Oxygen	MG/L	-	1.29	0.27	0.00 U	NA	
Oxidation Reduction Potential	mV	-	-87	-128	-9	NA	

^{*}Criteria- NYSDEC TOGS (1.1.1), Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998, including January 1999 Errata Sheet, April 2000 and June 2004 Addenda. Class GA.

Flags assigned during chemistry validation are shown.

U - Not detected above the reported quantitation limit.

J - The reported concentration is an estimated value.

TABLE 4
Comparison of Historical Analytical Data

Walgreens, Kingston, New York

Well		Volatile Organi	ic Compound Co	oncentration (μg/L)*		Sample
(Sample Date)	Ethylbenzene	Isopropylbenzene	Total Xylenes	Tetrachloroethene	Trichloroethene	Turbidity (NTU)
MW-1 (3/13/10)	ND	ND	53.5	ND	ND	4.9**
(5/4/10)	130	20	126.4	ND	ND	374**
(3/9/11)	43	8.4	18.4	ND	ND	206
(2/16/12)	10.5	12.2	ND	ND	ND	>800
(8/8/12)	9.0	13	2.8	ND	ND	8
MW-2 (3/13/10)	0.97	86	63.5	5.3	16	2.93**
(5/4/10)	1.1	45	29.5	10	17	-10**
(3/9/11)	4	19	11.6	0.6	14	800
(2/16/12)	10.3	27.6	38.5	0.34	1.0	>800
(8/8/12)	1.9	6.1	5.5	ND	0.47	1.1
MW-3 (3/13/10)	ND	ND	ND	1000	7.7	7.41**
(5/4/10)	ND	ND	ND	2200	5	10**
(3/9/11)	ND	ND	ND	840	11	>800
(2/16/12)	ND	ND	ND	1040	11.2	>800
(8/8/12)	ND	ND	ND	200	9.5	1.0

^{*}The maximum of the reported values (i.e., normal sample, duplicates, and dilutions) is listed.

ND = not detected

At least 3 well volumes purged with a submersible pump, sample collected with a bailer. 3 well volumes purged with a bailer and sample collected with a bailer. Low-flow purging and sampling.

^{**}Turbidity value recorded during submersible pump purging; the sample was subsequently collected with a bailer.

FIGURES

MAP REFERENCE:

PORTION OF U.S.G.S. QUADRANGLE MAP 7 ½ MINUTE SERIES (TOPOGRAPHIC)

QUADRANGLE LOCATION

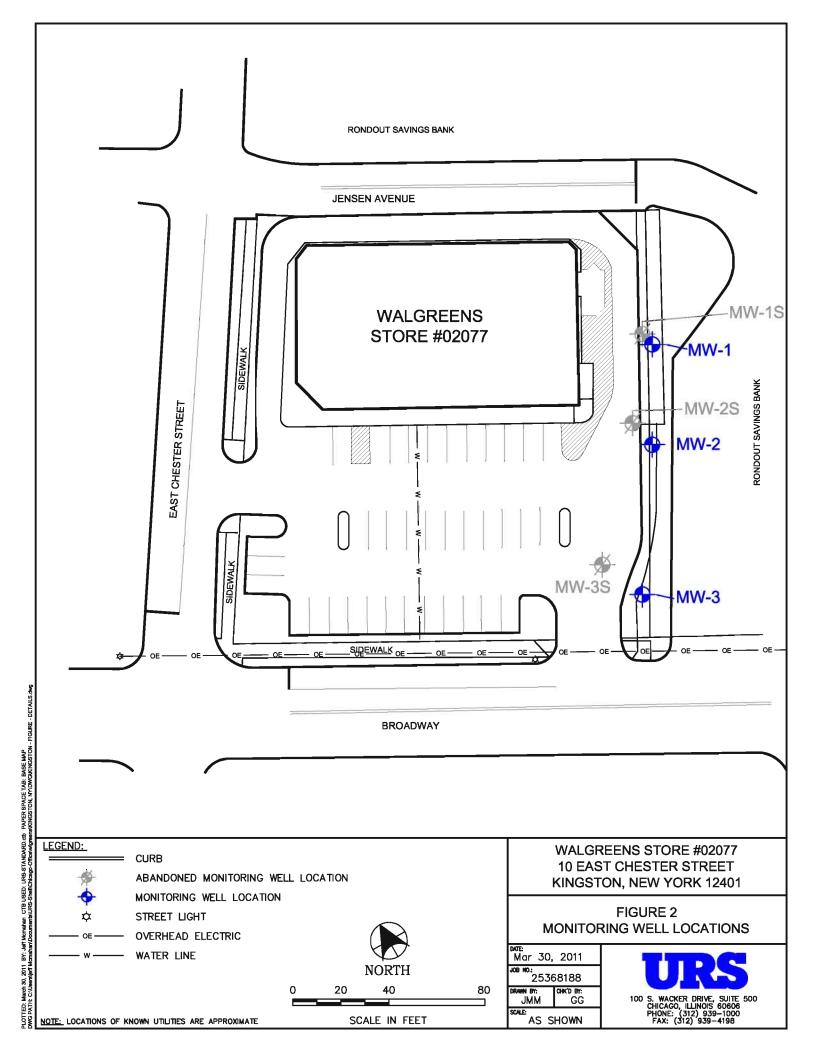

KINGSTON, NEW YORK 12401

FIGURE 1 SITE LOCATION MAP

Mar	30,	2011
JOB NO.:		
2	5368	3188
DRAWN E	Y:	CHK'D BY:
JMN	1	GG
SCALE:		
AS	S SH	IOWN

PAPER SPACE TAB Figure 1 - Site Location Map io-Office/wigneens/KINGSTON, NY/DWG/FIGURE 1 - SITE LOCATION MAP.dwg BY: Jeff Mcmahan PLOTTED March 30, 2011 DWG PATH: C:\Users\leff

APPENDIX A GROUNDWATER PURGING/SAMPLING LOGS

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Site:	10 East Cho		, Kingston, ite # C356032)	Project:		s, Kingston, NY 368188.00002	Well #:	MW-1	
Sampling	Personnel:	,	Moeller	Date:		st 8, 2012	Company:	URS Co	rporation
Purging/ Sampling Device:	Low Flow Pe	eristaltic Pump	(GeoPump 2)	Tubing Type:	HDPE :	and Silicone	Tubing Inlet:	Portion of	f Saturated of Screen o' btor)
Measuring Point:	Below Top of Riser (btor)	Initial Depth to Water:	9.26'	Depth to Well Bottom:	14.54' (hard)	Well Diameter:	2"	Screen Length:	10' (set 5.5'- 15.5' bgs)
Casing Type:	PV	C		Volume in 1 Well Casing (liters)*:	3.26	_	Estimated Purge Volume (liters):	~23	_
Sample ID:	MW-1			Sample	e Time:	16:00	QA/QC:	no	ne
Sampl	e Parameters:	Off-site labora	tory: VOCs (82	60B); Iron & M	anganese (6010B); Sulfate	& Chloride (30	00.0_28D); a	nd Nitrate (353.2)
	<u>_l</u>	Field Ferrous I	Iron (Hach Cold	orimeter and Fe	errous Iron	AccuVac Ampul	es) = 0.00 mg	g/L	
	_					packground). Pl			were 0.0 ppm.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
15:12	9.38	22.22	0.388	4.55	15	-120	470	9.72
15:17	7.99	22.82	0.345	3.34	9.0	-106	420	10.08
15:22	7.60	22.84	0.360	2.37	110	-107	380	10.25
15:27	7.39	22.86	0.379	1.61	86	-119	350	10.40
15:32	7.28	23.17	0.379	1.29	59	-117	320	10.49
15:37	7.16	23.39	0.378	1.24	43	-107	300	10.51
15:42	7.11	23.54	0.377	1.27	31	-99	280	10.52
15:47	7.04	23.57	0.373	1.33	19	-92	280	10.51
15:52	6.96	23.50	0.366	1.38	14	-87	290	10.52
15:55	6.96	23.44	0.366	1.32	11	-87	290	10.52
15:58	6.96	23.59	0.364	1.29	8.0	-87	290	10.52
Tolerance:	0.1		3%	10%	10%	+ or - 10		

*WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Site:		ester Stree	<i>,</i>	Project:		Kingston, NY	_ vveii #:	IVIVV-Z	
Sampling	Personnel:	Ilster Co., NY (NYSDEC Site # C356032) ersonnel: Steven Moeller		Date:	Job #25368188.00002 August 8, 2012		Company:	URS Corporation	
Purging/ Sampling Device:	Low Flow P	eristaltic Pump	o (GeoPump 2)	_Tubing Type:_	HDPE a	nd Silicone	_ Tubing Inlet:	Portion o	f Saturated of Screen S' btor)
Measuring Point:	Below Top of Riser (btor)	Initial Depth to Water:	9.17'	Depth to Well Bottom:	14.07' (hard)	Well Diameter:	2"	Screen Length:	10' (set 4.5'- 14.5' bgs)
Casing Type:	P\	/C		Volume in 1 Well Casing (liters)*:	3.02	_	Estimated Purge Volume (liters):	~15	_
Sample ID:	MW-2			Sample	e Time:	17:15	_ QA/QC:	no	ne
Sampl			tory: VOCs (82 Iron (Hach Cold	-					nd Nitrate (353.
		PID readings	oadbox was fille at well head (to ad a decaying o	p of riser) were	0.0 ppm (ba	ackground). P	ID readings on	purge water	opening well. were 0.0 ppm.

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
IIIVIL	рп	12 (3)	((9,.)	()	OKF (IIIV)	(,	(5.5.7
16:35	7.06	27.91	0.433	4.80	19	-106	270	9.20
16:40	6.77	24.70	0.231	1.48	6.0	-90	280	9.29
16:45	6.71	24.53	0.207	1.06	3.4	-115 290		9.30
16:50	6.74	24.38	0.202	0.87	0.2	-121	270	9.30
16:55	6.73	24.31	0.195	0.64	1.1	-125	270	9.30
17:00	6.64	24.30	0.193	0.44	1.0	-123	270	9.30
17:05	6.65	24.30	0.195	0.33	1.1	-129	270	9.30
17:08	6.62	24.24	0.196	0.29	0.6	-127	270	9.30
17:11	6.60	24.16	0.197	0.27	1.1	-128	270	9.30
								_
Tolerance:	0.1		3%	10%	10%	+ or - 10		

*WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

LOW FLOW GROUNDWATER PURGING/SAMPLING LOG

Site:	10 East Ch	East Chester Street, Kingston,		Project:	Project: Walgreens, Kingston, NY		_ vveii #:	10100-3		
	Ulster Co., N	IY (NYSDEC Si	ite # C356032)		Job #2536	68188.00002	_			
Sampling	Personnel:	Steven	Moeller	Date:	August 8, 2012		Company:	URS Corporation		
Purging/ Sampling Device:	Low Flow P	eristaltic Pump	(GeoPump 2)	Tubing Type:	HDPE a	nd Silicone	_ Tubing Inlet:	Portion o	f Saturated of Screen 5' btor)	
Measuring Point:	Below Top of Riser (btor)	Initial Depth to Water:	9.11'	Depth to Well Bottom:	16.99' (hard)	Well _ Diameter:	2"	Screen Length:	10' (set 8.5'- 18.5' bgs)	
Casing Type:	P\	/C		Volume in 1 Well Casing (liters)*:	4.86	_	Estimated Purge Volume (liters):	~8	_	
Sample ID:	MW-3 (and M	IW-3 dup.)		Sample	e Time:	18:15	_ QA/QC:	field du	uplicate	
Samp	le Parameters:	Off-site labora	tory: VOCs (82	60B); Iron & M	anganese (6	6010B); Sulfate	& Chloride (3	00.0_28D); a	and Nitrate (353.2	
		Field Ferrous I	ron (Hach Cold	orimeter and Fe	errous Iron A	ccuVac Ampu	les) = 0.00 mg	/L		
	Notes:	PID readings a	,	,			· ·	ı purge water	were 0.0 ppm.	
		ruige water na	au no odor and	no sneen (als	o no signs oi	LINAPLOIDIN	MFL).			

PURGE PARAMETERS

TIME	рН	TEMP (°C)	COND. (mS/cm)	DISS. O ₂ (mg/l)	TURB. (NTU)	ORP (mV)	FLOW RATE (ml/min.)	DEPTH TO WATER (btor)
17:45	6.60	27.31	1.18	4.67	6.5	-25	270	9.25
17:50	6.83	23.80	1.19	1.73	2.2	-19	270	9.25
17:55	6.81	23.08	1.17	0.48	2.0	-12	270	9.25
18:00	6.83	22.94	1.15	0.26	1.5	-13	270	9.25
18:05	6.86	22.69	1.14	0.03	1.3	-12	270	9.25
18:10	6.86	22.61	1.12	0.00	1.0	-10	270	9.25
18:13	6.86	22.58	1.11	0.00	1.0	-9.0	270	9.25
Tolerance:	0.1		3%	10%	10%	+ or - 10		

*WATER VOLUMES--0.75 inch diameter well = 87 ml/ft; 1 inch diameter well = 154 ml/ft; 2 inch diameter well = 617 ml/ft; 4 inch diameter well = 2470 ml/ft (vol $_{\text{cyl}} = \pi r^2 h$)

APPENDIX B LABORATORY ANALYTICAL REPORT

2

3

5

8

10

13

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

TestAmerica Job ID: 480-23701-1

Client Project/Site: Walgreens Aite (Kingston, NY)

Revision: 1

For:

URS Corporation 77 Goodell Street Buffalo, New York 14203

Attn: Mr. Peter R Fairbanks

Melisso Deyo

Authorized for release by: 8/27/2012 8:53:15 AM

Melissa Deyo Project Manager I

melissa.deyo@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	22
Lab Chronicle	24
Certification Summary	26
Method Summary	27
Sample Summary	28
Chain of Custody	29
Receipt Checklists	30

Definitions/Glossary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 480-23701-1

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier	Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CNF	Contains no Free Liquid
DL, RA, RE, IN	Indicates a Dilution, Reanalysis, Re-extraction, or additional Initial metals/anion analysis of the sample
EDL	Estimated Detection Limit
EPA	United States Environmental Protection Agency
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
ND	Not detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RL	Reporting Limit
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Buffalo 8/27/2012

Case Narrative

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Job ID: 480-23701-1

Laboratory: TestAmerica Buffalo

Narrative

Job Narrative 480-23701-1

Comments

No additional comments.

Receipt

The samples were received on 8/9/2012 3:40 PM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 4.6° C.

GC/MS VOA

Method(s) 8260B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for batch 76827 were outside control limits. The associated laboratory control sample (LCS) recovery met acceptance criteria.

Method(s) 8260B: The following sample(s) was diluted to bring the concentration of target analytes within the calibration range: MW-3 (480-23701-4), MW-3 DUP (480-23701-5). Elevated reporting limits (RLs) are provided.

Method(s) 8260B: The continuing calibration verification (CCV) for bromomethane associated with batch 77040 recovered above the upper control limit. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No other analytical or quality issues were noted.

IC

Method(s) 300.0: In batch 76351, the following sample was diluted to bring the concentration of target analytes within the calibration range: MW-3 (480-23701-4), MW-3 DUP (480-23701-5). Elevated reporting limits (RLs) are provided.

No other analytical or quality issues were noted.

Metals

No analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted.

6

8

3

12

14

11

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Client Sample ID: TB-080812

Lab Sample ID: 480-23701-1

No Detections

Client Sample ID: MW-1 Lab Sample ID: 480-23701-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	3.1	J	10	3.0	ug/L		_	8260B	Total/NA
Ethylbenzene	9.0		1.0	0.74	ug/L	1		8260B	Total/NA
Isopropylbenzene	13		1.0	0.79	ug/L	1		8260B	Total/NA
Methylcyclohexane	4.3		1.0	0.16	ug/L	1		8260B	Total/NA
Xylenes, Total	2.8		2.0	0.66	ug/L	1		8260B	Total/NA
Iron	0.18		0.050	0.019	mg/L	1		6010B	Total/NA
Manganese	0.28		0.0030	0.00040	mg/L	1		6010B	Total/NA
Chloride	33.0		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	10.5		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate	0.38		0.050	0.011	mg/L	1		353.2	Total/NA

Client Sample ID: MW-2

Lab Sample ID: 480-23701-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	3.1		1.0	0.81	ug/L	1	_	8260B	Total/NA
Cyclohexane	84		1.0	0.18	ug/L	1		8260B	Total/NA
Ethylbenzene	1.9		1.0	0.74	ug/L	1		8260B	Total/NA
Isopropylbenzene	6.1		1.0	0.79	ug/L	1		8260B	Total/NA
Methylcyclohexane	40		1.0	0.16	ug/L	1		8260B	Total/NA
trans-1,2-Dichloroethene	1.3		1.0	0.90	ug/L	1		8260B	Total/NA
Trichloroethene	0.47	J	1.0	0.46	ug/L	1		8260B	Total/NA
Xylenes, Total	5.5		2.0	0.66	ug/L	1		8260B	Total/NA
Iron	0.098		0.050	0.019	mg/L	1		6010B	Total/NA
Manganese	1.5		0.0030	0.00040	mg/L	1		6010B	Total/NA
Chloride	16.6		0.50	0.28	mg/L	1		300.0	Total/NA
Sulfate	7.7		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate	0.46		0.050	0.011	mg/L	1		353.2	Total/NA

Client Sample ID: MW-3

Lab Sample ID: 480-23701-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	200		4.0	1.4	ug/L	4	_	8260B	Total/NA
Trichloroethene	8.9		4.0	1.8	ug/L	4		8260B	Total/NA
Manganese	0.20		0.0030	0.00040	mg/L	1		6010B	Total/NA
Chloride	186		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	86.6		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate	2.1		0.050	0.011	mg/L	1		353.2	Total/NA

Client Sample ID: MW-3 DUP

Lab Sample ID: 480-23701-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Tetrachloroethene	200		4.0	1.4	ug/L	4	_	8260B	Total/NA
Trichloroethene	9.5		4.0	1.8	ug/L	4		8260B	Total/NA
Iron	0.019	J	0.050	0.019	mg/L	1		6010B	Total/NA
Manganese	0.20		0.0030	0.00040	mg/L	1		6010B	Total/NA
Chloride	187		2.5	1.4	mg/L	5		300.0	Total/NA
Sulfate	87.1		2.0	0.35	mg/L	1		300.0	Total/NA
Nitrate	2.1		0.050	0.011	mg/L	1		353.2	Total/NA

Client Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Client Sample ID: TB-080812

Date Collected: 08/08/12 00:00 Date Received: 08/09/12 15:40 Lab Sample ID: 480-23701-1

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND ND	1.0	0.82	ug/L			08/16/12 15:56	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/16/12 15:56	1
1,1,2-Trichloroethane	ND	1.0		ug/L			08/16/12 15:56	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/16/12 15:56	1
1,1-Dichloroethane	ND	1.0		ug/L			08/16/12 15:56	1
1,1-Dichloroethene	ND	1.0		ug/L			08/16/12 15:56	1
1,2,4-Trichlorobenzene	ND	1.0		ug/L			08/16/12 15:56	1
1,2-Dibromo-3-Chloropropane	ND	1.0		ug/L			08/16/12 15:56	1
1,2-Dibromoethane	ND	1.0		ug/L			08/16/12 15:56	1
1,2-Dichlorobenzene	ND	1.0		ug/L			08/16/12 15:56	
1,2-Dichloroethane	ND	1.0		ug/L			08/16/12 15:56	1
1,2-Dichloropropane	ND	1.0		ug/L			08/16/12 15:56	1
1,3-Dichlorobenzene	ND	1.0		ug/L			08/16/12 15:56	
1,4-Dichlorobenzene	ND	1.0		ug/L			08/16/12 15:56	1
	ND			_				
2-Hexanone		5.0		ug/L			08/16/12 15:56	1
2-Butanone (MEK)	ND ND	10		ug/L			08/16/12 15:56 08/16/12 15:56	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L				1
Acetone	ND	10		ug/L			08/16/12 15:56	1
Benzene	ND	1.0		ug/L			08/16/12 15:56	1
Bromodichloromethane	ND	1.0		ug/L			08/16/12 15:56	1
Bromoform	ND	1.0		ug/L			08/16/12 15:56	1
Bromomethane	ND	1.0		ug/L			08/16/12 15:56	1
Carbon disulfide	ND	1.0	0.19	ug/L			08/16/12 15:56	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			08/16/12 15:56	1
Chlorobenzene	ND	1.0		ug/L			08/16/12 15:56	1
Dibromochloromethane	ND	1.0	0.32	ug/L			08/16/12 15:56	1
Chloroethane	ND	1.0	0.32	ug/L			08/16/12 15:56	1
Chloroform	ND	1.0	0.34	ug/L			08/16/12 15:56	1
Chloromethane	ND	1.0	0.35	ug/L			08/16/12 15:56	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			08/16/12 15:56	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			08/16/12 15:56	1
Cyclohexane	ND	1.0	0.18	ug/L			08/16/12 15:56	1
Dichlorodifluoromethane	ND	1.0	0.68	ug/L			08/16/12 15:56	1
Ethylbenzene	ND	1.0	0.74	ug/L			08/16/12 15:56	1
Isopropylbenzene	ND	1.0	0.79	ug/L			08/16/12 15:56	1
Methyl acetate	ND	1.0	0.50	ug/L			08/16/12 15:56	1
Methyl tert-butyl ether	ND	1.0	0.16	ug/L			08/16/12 15:56	1
Methylcyclohexane	ND	1.0		ug/L			08/16/12 15:56	1
Methylene Chloride	ND	1.0		ug/L			08/16/12 15:56	1
Styrene	ND	1.0		ug/L			08/16/12 15:56	1
Tetrachloroethene	ND	1.0		ug/L			08/16/12 15:56	1
Toluene	ND	1.0		ug/L			08/16/12 15:56	1
trans-1,2-Dichloroethene	ND	1.0		ug/L			08/16/12 15:56	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			08/16/12 15:56	1
Trichloroethene	ND ND	1.0		ug/L ug/L			08/16/12 15:56	1
Trichlorofluoromethane								
	ND ND	1.0		ug/L			08/16/12 15:56	1
Vinyl chloride	ND	1.0		ug/L			08/16/12 15:56	1
Xylenes, Total	ND	2.0	0.66	ug/L			08/16/12 15:56	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		66 - 137			-	i i cpai eu	08/16/12 15:56	

Client Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: 480-23701-1

TestAmerica Job ID: 480-23701-1

Matrix: Water

Client Sample ID: TB-080812

Date Collected: 08/08/12 00:00 Date Received: 08/09/12 15:40

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Surrogate	%Recovery	y Qualifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	7:	71 - 126		08/16/12 15:56	1
4-Bromofluorobenzene (Surr) 11	11 73 - 120		08/16/12 15:56	1

Client Sample ID: MW-1 Lab Sample ID: 480-23701-2

Date Collected: 08/08/12 16:00 Matrix: Water

Date Received: 08/09/12 15:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/17/12 13:32	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/17/12 13:32	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/17/12 13:32	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/17/12 13:32	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/17/12 13:32	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/17/12 13:32	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/17/12 13:32	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/17/12 13:32	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/17/12 13:32	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/17/12 13:32	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/17/12 13:32	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/17/12 13:32	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/17/12 13:32	1
1,4-Dichlorobenzene	ND	1.0	0.84				08/17/12 13:32	1
2-Hexanone	ND	5.0	1.2	ug/L			08/17/12 13:32	1
2-Butanone (MEK)	ND	10	1.3	ug/L			08/17/12 13:32	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			08/17/12 13:32	1
Acetone	3.1 J	10	3.0	ug/L			08/17/12 13:32	1
Benzene	ND	1.0	0.41	ug/L			08/17/12 13:32	1
Bromodichloromethane	ND	1.0	0.39	ug/L			08/17/12 13:32	1
Bromoform	ND	1.0	0.26	-			08/17/12 13:32	1
Bromomethane	ND	1.0	0.69	ug/L			08/17/12 13:32	1
Carbon disulfide	ND	1.0	0.19	ug/L			08/17/12 13:32	1
Carbon tetrachloride	ND	1.0	0.27	ug/L			08/17/12 13:32	1
Chlorobenzene	ND	1.0	0.75	ug/L			08/17/12 13:32	1
Dibromochloromethane	ND	1.0	0.32	ug/L			08/17/12 13:32	1
Chloroethane	ND	1.0	0.32	ug/L			08/17/12 13:32	1
Chloroform	ND	1.0	0.34	ug/L			08/17/12 13:32	1
Chloromethane	ND	1.0	0.35	ug/L			08/17/12 13:32	1
cis-1,2-Dichloroethene	ND	1.0	0.81	ug/L			08/17/12 13:32	1
cis-1,3-Dichloropropene	ND	1.0	0.36	ug/L			08/17/12 13:32	1
Cyclohexane	ND	1.0	0.18	ug/L			08/17/12 13:32	1
Dichlorodifluoromethane	ND	1.0	0.68				08/17/12 13:32	1
Ethylbenzene	9.0	1.0		ug/L			08/17/12 13:32	1
Isopropylbenzene	13	1.0	0.79	ug/L			08/17/12 13:32	1
Methyl acetate	ND	1.0	0.50	ug/L			08/17/12 13:32	1
Methyl tert-butyl ether	ND	1.0		ug/L			08/17/12 13:32	1
Methylcyclohexane	4.3	1.0		ug/L			08/17/12 13:32	1
Methylene Chloride	ND	1.0		ug/L			08/17/12 13:32	1
Styrene	ND	1.0	0.73				08/17/12 13:32	1
Tetrachloroethene	ND	1.0	0.36				08/17/12 13:32	1
Toluene	ND	1.0		ug/L			08/17/12 13:32	1

TestAmerica Buffalo 8/27/2012

Page 7 of 30

Client Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: 480-23701-2

TestAmerica Job ID: 480-23701-1

Matrix: Water

Client Sample ID: MW-1

Date Collected: 08/08/12 16:00 Date Received: 08/09/12 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/17/12 13:32	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/17/12 13:32	1
Trichloroethene	ND		1.0	0.46	ug/L			08/17/12 13:32	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/17/12 13:32	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/17/12 13:32	1
Xylenes, Total	2.8		2.0	0.66	ug/L			08/17/12 13:32	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	125		66 - 137					08/17/12 13:32	1
Toluene-d8 (Surr)	92		71 - 126					08/17/12 13:32	1
4-Bromofluorobenzene (Surr)	81		73 - 120					08/17/12 13:32	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.18		0.050	0.019	mg/L		08/10/12 07:40	08/10/12 18:11	1
Manganese	0.28		0.0030	0.00040	mg/L		08/10/12 07:40	08/10/12 18:11	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	33.0		0.50	0.28	mg/L			08/10/12 19:20	
Sulfate	10.5		2.0	0.35	mg/L			08/10/12 19:20	
Nitrate	0.38		0.050	0.011	mg/L			08/09/12 20:43	
Nitrite as N	ND		0.050	0.020	mg/L			08/09/12 20:43	

Client Sample ID: MW-2 Lab Sample ID: 480-23701-3 Date Collected: 08/08/12 17:15 Matrix: Water

Date Received: 08/09/12 15:40

Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/20/12 02:47	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/20/12 02:47	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/20/12 02:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/20/12 02:47	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/20/12 02:47	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/20/12 02:47	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/20/12 02:47	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/20/12 02:47	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/20/12 02:47	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/20/12 02:47	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/20/12 02:47	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/20/12 02:47	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/20/12 02:47	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			08/20/12 02:47	1
2-Hexanone	ND	5.0	1.2	ug/L			08/20/12 02:47	1
2-Butanone (MEK)	ND	10	1.3	ug/L			08/20/12 02:47	1
4-Methyl-2-pentanone (MIBK)	ND	5.0	2.1	ug/L			08/20/12 02:47	1
Acetone	ND	10	3.0	ug/L			08/20/12 02:47	1
Benzene	ND	1.0	0.41	ug/L			08/20/12 02:47	1
Bromodichloromethane	ND	1.0	0.39	ug/L			08/20/12 02:47	1
Bromoform	ND	1.0	0.26	ug/L			08/20/12 02:47	1
Bromomethane	ND	1.0	0.69	ug/L			08/20/12 02:47	1

TestAmerica Buffalo 8/27/2012

Page 8 of 30

Lab Cample ID: 400 22704 2

Client Sample ID: MW-2

Date Collected: 08/08/12 17:15

Date Received: 08/09/12 15:40

Lab Sample ID: 480-23701-3

TestAmerica Job ID: 480-23701-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Carbon disulfide	ND		1.0	0.19	ug/L			08/20/12 02:47	-
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/20/12 02:47	
Chlorobenzene	ND		1.0	0.75	ug/L			08/20/12 02:47	
Dibromochloromethane	ND		1.0	0.32	ug/L			08/20/12 02:47	
Chloroethane	ND		1.0	0.32	ug/L			08/20/12 02:47	
Chloroform	ND		1.0	0.34	ug/L			08/20/12 02:47	
Chloromethane	ND		1.0	0.35	ug/L			08/20/12 02:47	1
cis-1,2-Dichloroethene	3.1		1.0	0.81	ug/L			08/20/12 02:47	•
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/20/12 02:47	· · · · · · · · ·
Cyclohexane	84		1.0	0.18	ug/L			08/20/12 02:47	•
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/20/12 02:47	1
Ethylbenzene	1.9		1.0	0.74	ug/L			08/20/12 02:47	1
Isopropylbenzene	6.1		1.0	0.79	ug/L			08/20/12 02:47	1
Methyl acetate	ND		1.0	0.50	ug/L			08/20/12 02:47	
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/20/12 02:47	1
Methylcyclohexane	40		1.0	0.16	ug/L			08/20/12 02:47	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/20/12 02:47	1
Styrene	ND		1.0	0.73	ug/L			08/20/12 02:47	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/20/12 02:47	1
Toluene	ND		1.0	0.51	ug/L			08/20/12 02:47	1
trans-1,2-Dichloroethene	1.3		1.0	0.90	ug/L			08/20/12 02:47	1
trans-1,3-Dichloropropene	ND		1.0		ug/L			08/20/12 02:47	1
Trichloroethene	0.47	J	1.0	0.46	ug/L			08/20/12 02:47	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/20/12 02:47	1
Vinyl chloride	ND		1.0	0.90				08/20/12 02:47	1
Xylenes, Total	5.5		2.0	0.66	ug/L			08/20/12 02:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		66 - 137					08/20/12 02:47	
Toluene-d8 (Surr)	114		71 - 126					08/20/12 02:47	1
4-Bromofluorobenzene (Surr)	109		73 - 120					08/20/12 02:47	1
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.098		0.050	0.019	mg/L		08/10/12 07:40	08/10/12 18:14	1
Manganese	1.5		0.0030	0.00040	mg/L		08/10/12 07:40	08/10/12 18:14	•
General Chemistry									
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.6		0.50	0.28	mg/L			08/10/12 20:31	,

Client Sample ID: MW-3 Lab Sample ID: 480-23701-4

2.0

0.050

0.050

7.7

0.46

ND

0.35 mg/L

0.011 mg/L

0.020 mg/L

Date Collected: 08/08/12 18:15 Date Received: 08/09/12 15:40

Sulfate

Nitrate

Nitrite as N

Method: 8260B - Volatile Organic Compounds (GC/MS) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 1,1,1-Trichloroethane ND 4.0 3.3 ug/L 08/17/12 14:28 1,1,2,2-Tetrachloroethane ND 4.0 0.84 ug/L 08/17/12 14:28

Matrix: Water

08/10/12 20:31

08/09/12 20:48

08/09/12 20:48

Client Sample Results

Client: URS Corporation

Toluene-d8 (Surr)

4-Bromofluorobenzene (Surr)

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: 480-23701-4

TestAmerica Job ID: 480-23701-1

Matrix: Water

Client Sample ID: MW-3

Date Collected: 08/08/12 18:15 Date Received: 08/09/12 15:40

Analyte	Result Qu	alifier RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,2-Trichloroethane	ND	4.0	0.92	ug/L			08/17/12 14:28	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	4.0	1.2	ug/L			08/17/12 14:28	
1,1-Dichloroethane	ND	4.0	1.5	ug/L			08/17/12 14:28	4
1,1-Dichloroethene	ND	4.0	1.2	ug/L			08/17/12 14:28	4
1,2,4-Trichlorobenzene	ND	4.0	1.6	ug/L			08/17/12 14:28	
1,2-Dibromo-3-Chloropropane	ND	4.0	1.6	ug/L			08/17/12 14:28	4
1,2-Dibromoethane	ND	4.0	2.9	ug/L			08/17/12 14:28	4
1,2-Dichlorobenzene	ND	4.0	3.2	ug/L			08/17/12 14:28	
1,2-Dichloroethane	ND	4.0	0.84	ug/L			08/17/12 14:28	4
1,2-Dichloropropane	ND	4.0	2.9	ug/L			08/17/12 14:28	4
1,3-Dichlorobenzene	ND	4.0	3.1	ug/L			08/17/12 14:28	
1,4-Dichlorobenzene	ND	4.0	3.4	ug/L			08/17/12 14:28	4
2-Hexanone	ND	20	5.0	ug/L			08/17/12 14:28	4
2-Butanone (MEK)	ND	40		ug/L			08/17/12 14:28	
4-Methyl-2-pentanone (MIBK)	ND	20		ug/L			08/17/12 14:28	2
Acetone	ND	40		ug/L			08/17/12 14:28	4
Benzene	ND	4.0		ug/L			08/17/12 14:28	
Bromodichloromethane	ND	4.0		ug/L			08/17/12 14:28	4
Bromoform	ND	4.0		ug/L			08/17/12 14:28	2
Bromomethane	ND	4.0		ug/L			08/17/12 14:28	
Carbon disulfide	ND	4.0		ug/L			08/17/12 14:28	4
Carbon tetrachloride	ND	4.0		ug/L			08/17/12 14:28	_
Chlorobenzene	ND	4.0		ug/L			08/17/12 14:28	
Dibromochloromethane	ND	4.0		ug/L			08/17/12 14:28	
Chloroethane	ND ND	4.0		ug/L ug/L			08/17/12 14:28	4
Chloroform								
	ND ND	4.0		ug/L			08/17/12 14:28 08/17/12 14:28	4
Chloromethane		4.0		ug/L				
cis-1,2-Dichloroethene	ND	4.0		ug/L			08/17/12 14:28	
cis-1,3-Dichloropropene	ND	4.0		ug/L			08/17/12 14:28	4
Cyclohexane	ND	4.0		ug/L			08/17/12 14:28	4
Dichlorodifluoromethane	ND	4.0		ug/L			08/17/12 14:28	
Ethylbenzene 	ND	4.0		ug/L			08/17/12 14:28	2
Isopropylbenzene	ND	4.0		ug/L			08/17/12 14:28	2
Methyl acetate	ND	4.0		ug/L			08/17/12 14:28	
Methyl tert-butyl ether	ND	4.0		ug/L			08/17/12 14:28	2
Methylcyclohexane	ND	4.0	0.64				08/17/12 14:28	4
Methylene Chloride	ND	4.0		ug/L			08/17/12 14:28	
Styrene	ND	4.0	2.9	ug/L			08/17/12 14:28	4
Tetrachloroethene	200	4.0	1.4	ug/L			08/17/12 14:28	4
Toluene	ND	4.0	2.0	ug/L			08/17/12 14:28	4
trans-1,2-Dichloroethene	ND	4.0	3.6	ug/L			08/17/12 14:28	4
trans-1,3-Dichloropropene	ND	4.0	1.5	ug/L			08/17/12 14:28	4
Trichloroethene	8.9	4.0	1.8	ug/L			08/17/12 14:28	4
Trichlorofluoromethane	ND	4.0	3.5	ug/L			08/17/12 14:28	
Vinyl chloride	ND	4.0	3.6	ug/L			08/17/12 14:28	4
Xylenes, Total	ND	8.0	2.6	ug/L			08/17/12 14:28	4
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)		66 - 137			_		08/17/12 14:28	

08/17/12 14:28

08/17/12 14:28

71 - 126

73 - 120

95

Client Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Client Sample ID: MW-3 Lab Sample ID: 480-23701-4

Date Received: 08/09/12 15:40

Date Collected: 08/08/12 18:15 Matrix: Water

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	ND		0.050	0.019	mg/L		08/10/12 07:40	08/10/12 18:16	1
Manganese	0.20		0.0030	0.00040	mg/L		08/10/12 07:40	08/10/12 18:16	1

General Chemistry								
Analyte F	esult Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	186	2.5	1.4	mg/L			08/14/12 03:59	5
Sulfate	86.6	2.0	0.35	mg/L			08/10/12 20:41	1
Nitrate	2.1	0.050	0.011	mg/L			08/09/12 20:49	1
Nitrite as N	ND	0.050	0.020	mg/L			08/09/12 20:49	1

Client Sample ID: MW-3 DUP Lab Sample ID: 480-23701-5

Date Collected: 08/08/12 18:15 Matrix: Water

Date Received: 08/09/12 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		4.0	3.3	ug/L			08/17/12 14:56	
1,1,2,2-Tetrachloroethane	ND		4.0	0.84	ug/L			08/17/12 14:56	4
1,1,2-Trichloroethane	ND		4.0	0.92	ug/L			08/17/12 14:56	4
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		4.0	1.2	ug/L			08/17/12 14:56	
1,1-Dichloroethane	ND		4.0	1.5	ug/L			08/17/12 14:56	4
1,1-Dichloroethene	ND		4.0	1.2	ug/L			08/17/12 14:56	4
1,2,4-Trichlorobenzene	ND		4.0	1.6	ug/L			08/17/12 14:56	
1,2-Dibromo-3-Chloropropane	ND		4.0	1.6	ug/L			08/17/12 14:56	4
1,2-Dibromoethane	ND		4.0	2.9	ug/L			08/17/12 14:56	4
1,2-Dichlorobenzene	ND		4.0	3.2	ug/L			08/17/12 14:56	4
1,2-Dichloroethane	ND		4.0	0.84	ug/L			08/17/12 14:56	4
1,2-Dichloropropane	ND		4.0	2.9	ug/L			08/17/12 14:56	4
1,3-Dichlorobenzene	ND		4.0	3.1	ug/L			08/17/12 14:56	4
1,4-Dichlorobenzene	ND		4.0	3.4	ug/L			08/17/12 14:56	4
2-Hexanone	ND		20	5.0	ug/L			08/17/12 14:56	4
2-Butanone (MEK)	ND		40	5.3	ug/L			08/17/12 14:56	4
4-Methyl-2-pentanone (MIBK)	ND		20	8.4	ug/L			08/17/12 14:56	4
Acetone	ND		40	12	ug/L			08/17/12 14:56	4
Benzene	ND		4.0	1.6	ug/L			08/17/12 14:56	4
Bromodichloromethane	ND		4.0	1.6	ug/L			08/17/12 14:56	4
Bromoform	ND		4.0	1.0	ug/L			08/17/12 14:56	4
Bromomethane	ND		4.0	2.8	ug/L			08/17/12 14:56	4
Carbon disulfide	ND		4.0	0.76	ug/L			08/17/12 14:56	4
Carbon tetrachloride	ND		4.0	1.1	ug/L			08/17/12 14:56	4
Chlorobenzene	ND		4.0	3.0	ug/L			08/17/12 14:56	4
Dibromochloromethane	ND		4.0	1.3	ug/L			08/17/12 14:56	4
Chloroethane	ND		4.0	1.3	ug/L			08/17/12 14:56	4
Chloroform	ND		4.0	1.4	ug/L			08/17/12 14:56	4
Chloromethane	ND		4.0	1.4	ug/L			08/17/12 14:56	4
cis-1,2-Dichloroethene	ND		4.0	3.2	ug/L			08/17/12 14:56	4
cis-1,3-Dichloropropene	ND		4.0	1.4	ug/L			08/17/12 14:56	
Cyclohexane	ND		4.0	0.72	ug/L			08/17/12 14:56	4
Dichlorodifluoromethane	ND		4.0	2.7	ug/L			08/17/12 14:56	4
Ethylbenzene	ND		4.0	3.0	ug/L			08/17/12 14:56	4
Isopropylbenzene	ND		4.0	3.2	ug/L			08/17/12 14:56	4

TestAmerica Job ID: 480-23701-1

Client Sample Results

Client: URS Corporation

Chloride

Sulfate

Nitrate

Nitrite as N

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: 480-23701-5

08/14/12 04:09

08/10/12 20:51

08/09/12 20:50

08/09/12 20:50

5

1

TestAmerica Job ID: 480-23701-1

Matrix: Water

Client Sample ID: MW-3 DUP

Date Collected: 08/08/12 18:15 Date Received: 08/09/12 15:40

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl acetate	ND		4.0	2.0	ug/L			08/17/12 14:56	4
Methyl tert-butyl ether	ND		4.0	0.64	ug/L			08/17/12 14:56	4
Methylcyclohexane	ND		4.0	0.64	ug/L			08/17/12 14:56	4
Methylene Chloride	ND		4.0	1.8	ug/L			08/17/12 14:56	4
Styrene	ND		4.0	2.9	ug/L			08/17/12 14:56	4
Tetrachloroethene	200		4.0	1.4	ug/L			08/17/12 14:56	4
Toluene	ND		4.0	2.0	ug/L			08/17/12 14:56	4
trans-1,2-Dichloroethene	ND		4.0	3.6	ug/L			08/17/12 14:56	4
trans-1,3-Dichloropropene	ND		4.0	1.5	ug/L			08/17/12 14:56	4
Trichloroethene	9.5		4.0	1.8	ug/L			08/17/12 14:56	4
Trichlorofluoromethane	ND		4.0	3.5	ug/L			08/17/12 14:56	4
Vinyl chloride	ND		4.0	3.6	ug/L			08/17/12 14:56	4
Xylenes, Total	ND		8.0	2.6	ug/L			08/17/12 14:56	4
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	116		66 - 137					08/17/12 14:56	4
Toluene-d8 (Surr)	96		71 - 126					08/17/12 14:56	4
4-Bromofluorobenzene (Surr)	76		73 - 120					08/17/12 14:56	4
Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Iron	0.019	J	0.050	0.019	mg/L		08/10/12 07:40	08/10/12 18:19	1
Manganese	0.20		0.0030	0.00040	mg/L		08/10/12 07:40	08/10/12 18:19	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

2.5

2.0

0.050

0.050

187

87.1

2.1 ND 1.4 mg/L

0.35 mg/L

0.011 mg/L

0.020 mg/L

TestAmerica Buffalo 8/27/2012

Surrogate Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

				Percent Sur
		12DCE	TOL	BFB
Lab Sample ID	Client Sample ID	(66-137)	(71-126)	(73-120)
480-23701-1	TB-080812	70	79	111
480-23701-2	MW-1	125	92	81
480-23701-3	MW-2	119	114	109
480-23701-4	MW-3	116	95	75
480-23701-5	MW-3 DUP	116	96	76
LCS 480-76827/5	Lab Control Sample	70	81	112
LCS 480-77040/3	Lab Control Sample	116	96	84
LCS 480-77210/5	Lab Control Sample	108	113	112
MB 480-76827/6	Method Blank	69	80	109
MB 480-77040/5	Method Blank	119	97	76
MB 480-77210/6	Method Blank	109	114	106

Surrogate Legend

12DCE = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

TestAmerica Buffalo 8/27/2012

QC Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-76827/6

Matrix: Water

Xylenes, Total

Analysis Batch: 76827

Client Sample ID: Method Blank Prep Type: Total/NA

p Type: Total/NA

	MB MB							
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND	1.0	0.82	ug/L			08/16/12 13:13	1
1,1,2,2-Tetrachloroethane	ND	1.0	0.21	ug/L			08/16/12 13:13	1
1,1,2-Trichloroethane	ND	1.0	0.23	ug/L			08/16/12 13:13	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	1.0	0.31	ug/L			08/16/12 13:13	1
1,1-Dichloroethane	ND	1.0	0.38	ug/L			08/16/12 13:13	1
1,1-Dichloroethene	ND	1.0	0.29	ug/L			08/16/12 13:13	1
1,2,4-Trichlorobenzene	ND	1.0	0.41	ug/L			08/16/12 13:13	1
1,2-Dibromo-3-Chloropropane	ND	1.0	0.39	ug/L			08/16/12 13:13	1
1,2-Dibromoethane	ND	1.0	0.73	ug/L			08/16/12 13:13	1
1,2-Dichlorobenzene	ND	1.0	0.79	ug/L			08/16/12 13:13	1
1,2-Dichloroethane	ND	1.0	0.21	ug/L			08/16/12 13:13	1
1,2-Dichloropropane	ND	1.0	0.72	ug/L			08/16/12 13:13	1
1,3-Dichlorobenzene	ND	1.0	0.78	ug/L			08/16/12 13:13	1
1,4-Dichlorobenzene	ND	1.0	0.84	ug/L			08/16/12 13:13	1
2-Hexanone	ND	5.0	1.2	ug/L			08/16/12 13:13	1
2-Butanone (MEK)	ND	10		ug/L			08/16/12 13:13	1
4-Methyl-2-pentanone (MIBK)	ND	5.0		ug/L			08/16/12 13:13	1
Acetone	ND	10		ug/L			08/16/12 13:13	1
Benzene	ND	1.0		ug/L			08/16/12 13:13	1
Bromodichloromethane	ND	1.0	0.39	-			08/16/12 13:13	1
Bromoform	ND	1.0	0.26	-			08/16/12 13:13	1
Bromomethane	ND	1.0		ug/L			08/16/12 13:13	1
Carbon disulfide	ND	1.0		ug/L			08/16/12 13:13	1
Carbon tetrachloride	ND	1.0		ug/L			08/16/12 13:13	1
Chlorobenzene	ND	1.0		ug/L			08/16/12 13:13	1
Dibromochloromethane	ND	1.0	0.32				08/16/12 13:13	. 1
Chloroethane	ND	1.0	0.32	-			08/16/12 13:13	. 1
Chloroform	ND	1.0		ug/L			08/16/12 13:13	
Chloromethane	ND	1.0	0.35	-			08/16/12 13:13	1
cis-1,2-Dichloroethene	ND	1.0	0.81	-			08/16/12 13:13	1
cis-1,3-Dichloropropene	ND	1.0		ug/L			08/16/12 13:13	
Cyclohexane	ND	1.0		-			08/16/12 13:13	1
Dichlorodifluoromethane	ND ND	1.0		ug/L			08/16/12 13:13	1
Ethylbenzene	ND	1.0		ug/L ug/L			08/16/12 13:13	' 1
•	ND ND	1.0		-			08/16/12 13:13	1
Isopropylbenzene				ug/L				1
Methyl acetate	ND	1.0	0.50				08/16/12 13:13	· · · · · · · · ·
Methyl tert-butyl ether	ND	1.0	0.16				08/16/12 13:13	1
Methylcyclohexane	ND	1.0		ug/L			08/16/12 13:13	1
Methylene Chloride	ND	1.0		ug/L			08/16/12 13:13	1
Styrene	ND	1.0		ug/L			08/16/12 13:13	1
Tetrachloroethene	ND	1.0		ug/L			08/16/12 13:13	1
Toluene	ND	1.0	0.51				08/16/12 13:13	
trans-1,2-Dichloroethene	ND	1.0		ug/L			08/16/12 13:13	1
trans-1,3-Dichloropropene	ND	1.0		ug/L			08/16/12 13:13	1
Trichloroethene	ND	1.0		ug/L			08/16/12 13:13	1
Trichlorofluoromethane	ND	1.0		ug/L			08/16/12 13:13	1
Vinyl chloride	ND	1.0	0.90	ug/L			08/16/12 13:13	1
V	ND	0.0						

TestAmerica Buffalo 8/27/2012

08/16/12 13:13

2.0

0.66 ug/L

ND

Limits

66 - 137

71 - 126

73 - 120

Dil Fac

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB %Recovery Qualifier

69

80

109

Lab Sample ID: MB 480-76827/6

Matrix: Water

Surrogate

Analysis Batch: 76827

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

Analyzed

•	•	
	08/16/12 13:13	1
	08/16/12 13:13	1
	08/16/12 13:13	1

Prepared

Lab Sample ID: LCS 480-76827/5

Matrix: Water

Toluene-d8 (Surr)

Analysis Batch: 76827

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	28.0		ug/L		112	71 - 129	
1,1-Dichloroethene	25.0	26.1		ug/L		104	65 - 138	
1,2-Dichlorobenzene	25.0	24.4		ug/L		98	77 _ 120	
1,2-Dichloroethane	25.0	27.7		ug/L		111	75 - 127	
Benzene	25.0	28.5		ug/L		114	71 - 124	
Chlorobenzene	25.0	27.6		ug/L		110	72 - 120	
cis-1,2-Dichloroethene	25.0	28.7		ug/L		115	74 - 124	
Ethylbenzene	25.0	27.3		ug/L		109	77 ₋ 123	
Methyl tert-butyl ether	25.0	27.5		ug/L		110	64 - 127	
Tetrachloroethene	25.0	26.3		ug/L		105	74 ₋ 122	
Toluene	25.0	26.3		ug/L		105	70 - 122	
trans-1,2-Dichloroethene	25.0	30.3		ug/L		121	73 _ 127	
Trichloroethene	25.0	26.7		ug/L		107	74 - 123	

LCS LCS

Surrogate	%Recovery (Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	70		66 - 137
Toluene-d8 (Surr)	81		71 - 126
4-Bromofluorobenzene (Surr)	112		73 - 120

Lab Sample ID: MB 480-77040/5

Matrix: Water

Analysis Batch: 77040

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Baton, 11040									
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0	0.82	ug/L			08/17/12 11:39	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/17/12 11:39	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/17/12 11:39	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/17/12 11:39	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/17/12 11:39	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/17/12 11:39	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/17/12 11:39	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/17/12 11:39	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/17/12 11:39	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/17/12 11:39	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/17/12 11:39	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/17/12 11:39	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/17/12 11:39	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/17/12 11:39	1
2-Hexanone	ND		5.0	1.2	ug/L			08/17/12 11:39	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/17/12 11:39	1

TestAmerica Job ID: 480-23701-1

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

мв мв

Lab Sample ID: MB 480-77040/5

Matrix: Water

Analysis Batch: 77040

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	MID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/17/12 11:39	1
Acetone	ND		10	3.0	ug/L			08/17/12 11:39	1
Benzene	ND		1.0	0.41	ug/L			08/17/12 11:39	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/17/12 11:39	1
Bromoform	ND		1.0	0.26	ug/L			08/17/12 11:39	1
Bromomethane	ND		1.0	0.69	ug/L			08/17/12 11:39	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/17/12 11:39	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/17/12 11:39	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/17/12 11:39	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/17/12 11:39	1
Chloroethane	ND		1.0	0.32	ug/L			08/17/12 11:39	1
Chloroform	ND		1.0	0.34	ug/L			08/17/12 11:39	1
Chloromethane	ND		1.0	0.35	ug/L			08/17/12 11:39	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/17/12 11:39	1
cis-1,3-Dichloropropene	ND		1.0	0.36	ug/L			08/17/12 11:39	1
Cyclohexane	ND		1.0	0.18	ug/L			08/17/12 11:39	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/17/12 11:39	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/17/12 11:39	1
Isopropylbenzene	ND		1.0	0.79	ug/L			08/17/12 11:39	1
Methyl acetate	ND		1.0	0.50	ug/L			08/17/12 11:39	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/17/12 11:39	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/17/12 11:39	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/17/12 11:39	1
Styrene	ND		1.0	0.73	ug/L			08/17/12 11:39	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/17/12 11:39	1
Toluene	ND		1.0	0.51	ug/L			08/17/12 11:39	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/17/12 11:39	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/17/12 11:39	1
Trichloroethene	ND		1.0	0.46	ug/L			08/17/12 11:39	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/17/12 11:39	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/17/12 11:39	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/17/12 11:39	1

MB	MB
11110	IIID

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	119		66 - 137		08/17/12 11:39	1
Toluene-d8 (Surr)	97		71 - 126		08/17/12 11:39	1
4-Bromofluorobenzene (Surr)	76		73 - 120		08/17/12 11:39	1

Lab Sample ID: LCS 480-77040/3

Matrix: Water

Analysis Batch: 77040

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

•	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethane	25.0	28.0		ug/L		112	71 - 129	
1,1-Dichloroethene	25.0	21.4		ug/L		86	65 _ 138	
1,2-Dichlorobenzene	25.0	26.4		ug/L		105	77 - 120	
1,2-Dichloroethane	25.0	29.9		ug/L		120	75 - 127	
Benzene	25.0	28.0		ug/L		112	71 - 124	
Chlorobenzene	25.0	24.7		ug/L		99	72 - 120	

TestAmerica Buffalo 8/27/2012

QC Sample Results

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-77040/3

Matrix: Water

Analysis Batch: 77040

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
cis-1,2-Dichloroethene	25.0	25.3		ug/L		101	74 - 124	
Ethylbenzene	25.0	25.1		ug/L		100	77 ₋ 123	
Methyl tert-butyl ether	25.0	26.2		ug/L		105	64 _ 127	
Tetrachloroethene	25.0	21.4		ug/L		85	74 - 122	
Toluene	25.0	25.5		ug/L		102	70 - 122	
trans-1,2-Dichloroethene	25.0	25.9		ug/L		104	73 - 127	
Trichloroethene	25.0	27.3		ug/L		109	74 - 123	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	116		66 - 137
Toluene-d8 (Surr)	96		71 - 126
4-Bromofluorobenzene (Surr)	84		73 - 120

Lab Sample ID: MB 480-77210/6

Matrix: Water

Analysis Batch: 77210

cis-1,3-Dichloropropene

Client Sample ID: Method Blank

Prep Type: Total/NA

14

15

Analysis Batch: 77210									
		MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		1.0		ug/L			08/20/12 01:52	1
1,1,2,2-Tetrachloroethane	ND		1.0	0.21	ug/L			08/20/12 01:52	1
1,1,2-Trichloroethane	ND		1.0	0.23	ug/L			08/20/12 01:52	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.0	0.31	ug/L			08/20/12 01:52	1
1,1-Dichloroethane	ND		1.0	0.38	ug/L			08/20/12 01:52	1
1,1-Dichloroethene	ND		1.0	0.29	ug/L			08/20/12 01:52	1
1,2,4-Trichlorobenzene	ND		1.0	0.41	ug/L			08/20/12 01:52	1
1,2-Dibromo-3-Chloropropane	ND		1.0	0.39	ug/L			08/20/12 01:52	1
1,2-Dibromoethane	ND		1.0	0.73	ug/L			08/20/12 01:52	1
1,2-Dichlorobenzene	ND		1.0	0.79	ug/L			08/20/12 01:52	1
1,2-Dichloroethane	ND		1.0	0.21	ug/L			08/20/12 01:52	1
1,2-Dichloropropane	ND		1.0	0.72	ug/L			08/20/12 01:52	1
1,3-Dichlorobenzene	ND		1.0	0.78	ug/L			08/20/12 01:52	1
1,4-Dichlorobenzene	ND		1.0	0.84	ug/L			08/20/12 01:52	1
2-Hexanone	ND		5.0	1.2	ug/L			08/20/12 01:52	1
2-Butanone (MEK)	ND		10	1.3	ug/L			08/20/12 01:52	1
4-Methyl-2-pentanone (MIBK)	ND		5.0	2.1	ug/L			08/20/12 01:52	1
Acetone	ND		10	3.0	ug/L			08/20/12 01:52	1
Benzene	ND		1.0	0.41	ug/L			08/20/12 01:52	1
Bromodichloromethane	ND		1.0	0.39	ug/L			08/20/12 01:52	1
Bromoform	ND		1.0	0.26	ug/L			08/20/12 01:52	1
Bromomethane	ND		1.0	0.69	ug/L			08/20/12 01:52	1
Carbon disulfide	ND		1.0	0.19	ug/L			08/20/12 01:52	1
Carbon tetrachloride	ND		1.0	0.27	ug/L			08/20/12 01:52	1
Chlorobenzene	ND		1.0	0.75	ug/L			08/20/12 01:52	1
Dibromochloromethane	ND		1.0	0.32	ug/L			08/20/12 01:52	1
Chloroethane	ND		1.0	0.32	ug/L			08/20/12 01:52	1
Chloroform	ND		1.0	0.34	ug/L			08/20/12 01:52	1
Chloromethane	ND		1.0	0.35	ug/L			08/20/12 01:52	1
cis-1,2-Dichloroethene	ND		1.0	0.81	ug/L			08/20/12 01:52	1

08/20/12 01:52

1.0

0.36 ug/L

ND

TestAmerica Job ID: 480-23701-1

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 480-77210/6

Matrix: Water

Analysis Batch: 77210

Client Sample ID: Method Blank **Prep Type: Total/NA**

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Cyclohexane	ND		1.0	0.18	ug/L			08/20/12 01:52	1
Dichlorodifluoromethane	ND		1.0	0.68	ug/L			08/20/12 01:52	1
Ethylbenzene	ND		1.0	0.74	ug/L			08/20/12 01:52	1
Isopropylbenzene	ND		1.0	0.79	ug/L			08/20/12 01:52	1
Methyl acetate	ND		1.0	0.50	ug/L			08/20/12 01:52	1
Methyl tert-butyl ether	ND		1.0	0.16	ug/L			08/20/12 01:52	1
Methylcyclohexane	ND		1.0	0.16	ug/L			08/20/12 01:52	1
Methylene Chloride	ND		1.0	0.44	ug/L			08/20/12 01:52	1
Styrene	ND		1.0	0.73	ug/L			08/20/12 01:52	1
Tetrachloroethene	ND		1.0	0.36	ug/L			08/20/12 01:52	1
Toluene	ND		1.0	0.51	ug/L			08/20/12 01:52	1
trans-1,2-Dichloroethene	ND		1.0	0.90	ug/L			08/20/12 01:52	1
trans-1,3-Dichloropropene	ND		1.0	0.37	ug/L			08/20/12 01:52	1
Trichloroethene	ND		1.0	0.46	ug/L			08/20/12 01:52	1
Trichlorofluoromethane	ND		1.0	0.88	ug/L			08/20/12 01:52	1
Vinyl chloride	ND		1.0	0.90	ug/L			08/20/12 01:52	1
Xylenes, Total	ND		2.0	0.66	ug/L			08/20/12 01:52	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		66 - 137		08/20/12 01:52	1
Toluene-d8 (Surr)	114		71 - 126		08/20/12 01:52	1
4-Bromofluorobenzene (Surr)	106		73 - 120		08/20/12 01:52	1

Lab Sample ID: LCS 480-77210/5

Matrix: Water

Analysis Batch: 77210

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Daton. 11210							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1-Dichloroethane	25.0	28.1		ug/L		112	71 - 129
1,1-Dichloroethene	25.0	29.0		ug/L		116	65 - 138
1,2-Dichlorobenzene	25.0	27.0		ug/L		108	77 - 120
1,2-Dichloroethane	25.0	26.7		ug/L		107	75 ₋ 127
Benzene	25.0	27.0		ug/L		108	71 - 124
Chlorobenzene	25.0	26.7		ug/L		107	72 _ 120
cis-1,2-Dichloroethene	25.0	26.8		ug/L		107	74 - 124
Ethylbenzene	25.0	27.9		ug/L		111	77 - 123
Methyl tert-butyl ether	25.0	26.2		ug/L		105	64 - 127
Tetrachloroethene	25.0	27.2		ug/L		109	74 - 122
Toluene	25.0	26.5		ug/L		106	70 - 122
trans-1,2-Dichloroethene	25.0	27.4		ug/L		110	73 - 127
Trichloroethene	25.0	27.5		ug/L		110	74 - 123
THEIROGENETIC	20.0	21.0		ug/L		110	74-120

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	108		66 - 137
Toluene-d8 (Surr)	113		71 - 126
4-Bromofluorobenzene (Surr)	112		73 - 120

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 480-76004/1-A

Matrix: Water

Analysis Batch: 76261

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 76004

TestAmerica Job ID: 480-23701-1

Client Sample ID: Method Blank

Prep Type: Total/NA

Client Sample ID: MW-1

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

мв мв Result Qualifier RLMDL Unit D Dil Fac Analyte Prepared Analyzed Iron ND 0.050 0.019 mg/L 08/10/12 07:40 08/10/12 17:10 0.0030 ND 0.00040 mg/L 08/10/12 07:40 08/10/12 17:10 Manganese

Lab Sample ID: LCS 480-76004/2-A Client Sample ID: Lab Control Sample

Matrix: Water Prep Type: Total/NA Analysis Batch: 76261 Prep Batch: 76004

Spike LCS LCS %Rec. Analyte Added Result Qualifier Unit %Rec Limits 10.0 9.85 98 80 - 120 Iron mg/L Manganese 0.200 0.205 mg/L 103 80 - 120

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 480-76130/4

Matrix: Water

Analysis Batch: 76130

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 0.50 Chloride ND 0.28 mg/L 08/10/12 16:17 ND 08/10/12 16:17 Sulfate 2.0 0.35 mg/L

Lab Sample ID: LCS 480-76130/3 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76130

Spike LCS LCS %Rec. Added Analyte Result Qualifier %Rec I imits Unit D Chloride 20.0 21.43 mg/L 107 90 - 110 20.0 Sulfate 21.37 mg/L 107 90 - 110

Lab Sample ID: 480-23701-2 MS

Matrix: Water

Analysis Batch: 76130

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Chloride 33.0 25.0 58.91 104 80 - 120 ma/L

Lab Sample ID: 480-23701-2 MSD

Matrix: Water

Analysis Batch: 76130

Sulfate 10.5 25.0 36.02 mg/L 102 80 - 120 Client Sample ID: MW-1

MSD MSD RPD Spike %Rec. Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 25.0 105 Chloride 33.0 59.21 mg/L 80 - 120 20 Sulfate 10.5 25.0 36.63 105 80 - 120 20 mg/L

Lab Sample ID: MB 480-76132/28

Matrix: Water

Analysis Batch: 76132

MB MB

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 0.28 mg/L 08/10/12 20:20

Prep Type: Total/NA

Client: URS Corporation

Matrix: Water

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: MB 480-76132/28

Method: 300.0 - Anions, Ion Chromatography (Continued)

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

MB MB

Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Sulfate ND 2.0 0.35 mg/L 08/10/12 20:20

Lab Sample ID: LCS 480-76132/27 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 76132

Analysis Batch: 76132

Spike LCS LCS %Rec. Added Analyte Result Qualifier Unit %Rec Limits D Chloride 20.0 21.54 mg/L 108 90 - 110 20.0 20.88 Sulfate mg/L 104 90 - 110

Lab Sample ID: MB 480-76351/76 Client Sample ID: Method Blank **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 76351

мв мв

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride ND 0.50 mg/L 08/14/12 03:49 0.28 08/14/12 03:49 Sulfate ND 2.0 0.35 mg/L

Lab Sample ID: LCS 480-76351/75 Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Water

Analysis Batch: 76351

	Spike	LCS	LCS			%Rec.	
Analyte	Added	l Result	Qualifier L	Unit D	%Rec	Limits	
Chloride	 20.0	21.66	n	mg/L	108	90 - 110	
Sulfate	20.0	21.03	n	mg/L	105	90 - 110	

Method: 353.2 - Nitrogen, Nitrite

Client Sample ID: Method Blank Lab Sample ID: MB 480-75974/27 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 75974

Analyte	Result Qu	tualifier R	. MDL	Unit	D	Prepared	Analyzed	Dil Fac
Nitrite as N	ND	0.05	0.020	mg/L			08/09/12 20:46	1

Lab Sample ID: MB 480-75974/3 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Water

Analysis Batch: 75974

мв мв Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Nitrite as N 0.050 0.020 mg/L 08/09/12 20:19 ND

Lab Sample ID: LCS 480-75974/28 Client Sample ID: Lab Control Sample **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 75974

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Nitrite as N 1.50 1.60 mg/L 107 90 - 110

QC Sample Results

Client: URS Corporation TestAmer

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Method: 353.2 - Nitrogen, Nitrite (Continued)

Lab Sample ID: LCS 480-75974/4

Client Sample ID: Lab Control Sample
Matrix: Water

Prep Type: Total/NA

Analysis Batch: 75974

Spike LCS LCS %Rec. Added Result Qualifier Limits Analyte Unit D %Rec Nitrite as N 1.50 107 90 - 110 1.60 mg/L

Lab Sample ID: 480-23701-5 MS Client Sample ID: MW-3 DUP

Matrix: Water Prep Type: Total/NA

Analysis Batch: 75974

Sample Sample Spike MS MS %Rec. Result Qualifier Analyte Added Result Qualifier Limits Unit D %Rec Nitrite as N ND 1.00 1.09 mg/L 109 61 - 147

Lab Sample ID: 480-23701-5 DU

Matrix: Water

Client Sample ID: MW-3 DUP

Prep Type: Total/NA

Analysis Batch: 75974

 Sample
 Sample
 DU
 DU
 RPD

 Analyte
 Result
 Qualifier
 Result
 Qualifier
 Unit
 D
 RPD
 Limit

Nitrite as N ND ND mg/L NC 20

QC Association Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

GC/MS VOA

Analysis Batch: 76827

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-1	TB-080812	Total/NA	Water	8260B	
LCS 480-76827/5	Lab Control Sample	Total/NA	Water	8260B	
MB 480-76827/6	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 77040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
480-23701-2	MW-1	Total/NA	Water	8260B	
480-23701-4	MW-3	Total/NA	Water	8260B	
480-23701-5	MW-3 DUP	Total/NA	Water	8260B	
LCS 480-77040/3	Lab Control Sample	Total/NA	Water	8260B	
MB 480-77040/5	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 77210

480-23701-3 MW-2 Total/NA Water 8260B LCS 480-77210/5 Lab Control Sample Total/NA Water 8260B	Prep Batch	Method	Matrix	Prep Type	Client Sample ID	Lab Sample ID
·		8260B	Water	Total/NA	MW-2	480-23701-3
		8260B	Water	Total/NA	Lab Control Sample	LCS 480-77210/5
MB 480-77210/6 Method Blank lotal/NA Water 8260B		8260B	Water	Total/NA	Method Blank	MB 480-77210/6

Metals

Prep Batch: 76004

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
480-23701-2	MW-1	Total/NA	Water	3005A	
480-23701-3	MW-2	Total/NA	Water	3005A	
480-23701-4	MW-3	Total/NA	Water	3005A	
480-23701-5	MW-3 DUP	Total/NA	Water	3005A	
LCS 480-76004/2-A	Lab Control Sample	Total/NA	Water	3005A	
MB 480-76004/1-A	Method Blank	Total/NA	Water	3005A	

Analysis Batch: 76261

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-2	MW-1	Total/NA	Water	6010B	76004
480-23701-3	MW-2	Total/NA	Water	6010B	76004
480-23701-4	MW-3	Total/NA	Water	6010B	76004
480-23701-5	MW-3 DUP	Total/NA	Water	6010B	76004
LCS 480-76004/2-A	Lab Control Sample	Total/NA	Water	6010B	76004
MB 480-76004/1-A	Method Blank	Total/NA	Water	6010B	76004

General Chemistry

Analysis Batch: 75974

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-2 MW-1		Total/NA	Water	353.2	<u> </u>
480-23701-3	MW-2	Total/NA	Water	353.2	
480-23701-4	MW-3	Total/NA	Water	353.2	
480-23701-5	MW-3 DUP	Total/NA	Water	353.2	
480-23701-5 DU	MW-3 DUP	Total/NA	Water	353.2	
480-23701-5 MS	MW-3 DUP	Total/NA	Water	353.2	
LCS 480-75974/28	Lab Control Sample	Total/NA	Water	353.2	
LCS 480-75974/4	Lab Control Sample	Total/NA	Water	353.2	
MB 480-75974/27	Method Blank	Total/NA	Water	353.2	
MB 480-75974/3	Method Blank	Total/NA	Water	353.2	

9

TestAmerica Buffalo 8/27/2012

QC Association Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

General Chemistry (Continued)

Analysis Batch: 75975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
480-23701-2	MW-1	Total/NA	Water	353.2
480-23701-3	MW-2	Total/NA	Water	353.2
480-23701-4	MW-3	Total/NA	Water	353.2
480-23701-5	MW-3 DUP	Total/NA	Water	353.2

Analysis Batch: 76130

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-2	MW-1	Total/NA	Water	300.0	
480-23701-2 MS	MW-1	Total/NA	Water	300.0	
480-23701-2 MSD	MW-1	Total/NA	Water	300.0	
LCS 480-76130/3	Lab Control Sample	Total/NA	Water	300.0	
MB 480-76130/4	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 76132

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-3	MW-2	Total/NA	Water	300.0	
480-23701-4	MW-3	Total/NA	Water	300.0	
480-23701-5	MW-3 DUP	Total/NA	Water	300.0	
LCS 480-76132/27	Lab Control Sample	Total/NA	Water	300.0	
MB 480-76132/28	Method Blank	Total/NA	Water	300.0	

Analysis Batch: 76351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-23701-4	MW-3	Total/NA	Water	300.0	
480-23701-5	MW-3 DUP	Total/NA	Water	300.0	
LCS 480-76351/75	Lab Control Sample	Total/NA	Water	300.0	
MB 480-76351/76	Method Blank	Total/NA	Water	300.0	

3

4

7

Ö

9

10

12

13

14

TestAmerica Job ID: 480-23701-1

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Client Sample ID: TB-080812

Date Collected: 08/08/12 00:00 Date Received: 08/09/12 15:40 Lab Sample ID: 480-23701-1 Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	76827	08/16/12 15:56	CDC	TAL BUF

Lab Sample ID: 480-23701-2 Client Sample ID: MW-1 Matrix: Water

Date Collected: 08/08/12 16:00

Date Received: 08/09/12 15:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			77040	08/17/12 13:32	JMB	TAL BUF
Total/NA	Prep	3005A			76004	08/10/12 07:40	JM	TAL BUF
Total/NA	Analysis	6010B		1	76261	08/10/12 18:11	MM	TAL BUF
Total/NA	Analysis	353.2		1	75974	08/09/12 20:43	KS	TAL BUF
Total/NA	Analysis	353.2		1	75975	08/09/12 20:43	KS	TAL BUF
Total/NA	Analysis	300.0		1	76130	08/10/12 19:20	KAC	TAL BUF

Client Sample ID: MW-2 Lab Sample ID: 480-23701-3

Date Collected: 08/08/12 17:15

Date Received: 08/09/12 15:40

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			77210	08/20/12 02:47	RL	TAL BUF
Total/NA	Prep	3005A			76004	08/10/12 07:40	JM	TAL BUF
Total/NA	Analysis	6010B		1	76261	08/10/12 18:14	MM	TAL BUF
Total/NA	Analysis	353.2		1	75974	08/09/12 20:48	KS	TAL BUF
Total/NA	Analysis	353.2		1	75975	08/09/12 20:48	KS	TAL BUF
Total/NA	Analysis	300.0		1	76132	08/10/12 20:31	KAC	TAL BUF

Client Sample ID: MW-3 Lab Sample ID: 480-23701-4

Date Collected: 08/08/12 18:15 Date Received: 08/09/12 15:40

-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		4	77040	08/17/12 14:28	JMB	TAL BUF
Total/NA	Prep	3005A			76004	08/10/12 07:40	JM	TAL BUF
Total/NA	Analysis	6010B		1	76261	08/10/12 18:16	MM	TAL BUF
Total/NA	Analysis	353.2		1	75974	08/09/12 20:49	KS	TAL BUF
Total/NA	Analysis	353.2		1	75975	08/09/12 20:49	KS	TAL BUF
Total/NA	Analysis	300.0		1	76132	08/10/12 20:41	KAC	TAL BUF
Total/NA	Analysis	300.0		5	76351	08/14/12 03:59	KC	TAL BUF

TestAmerica Buffalo 8/27/2012

Lab Chronicle

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

Lab Sample ID: 480-23701-5

TestAmerica Job ID: 480-23701-1

Client Sample ID: MW-3 DUP

Date Collected: 08/08/12 18:15 Matrix: Water Date Received: 08/09/12 15:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		4	77040	08/17/12 14:56	JMB	TAL BUF
Total/NA	Prep	3005A			76004	08/10/12 07:40	JM	TAL BUF
Total/NA	Analysis	6010B		1	76261	08/10/12 18:19	MM	TAL BUF
Total/NA	Analysis	353.2		1	75974	08/09/12 20:50	KS	TAL BUF
Total/NA	Analysis	353.2		1	75975	08/09/12 20:50	KS	TAL BUF
Total/NA	Analysis	300.0		1	76132	08/10/12 20:51	KAC	TAL BUF
Total/NA	Analysis	300.0		5	76351	08/14/12 04:09	KC	TAL BUF

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Certification Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Laboratory: TestAmerica Buffalo

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Arkansas DEQ	State Program	6	88-0686	07-06-13
California	NELAC	9	1169CA	09-30-12
Connecticut	State Program	1	PH-0568	09-30-12
Florida	NELAC	4	E87672	06-30-13
Georgia	State Program	4	N/A	03-31-13
Georgia	State Program	4	956	03-31-12
Illinois	NELAC	5	200003	09-30-12
lowa	State Program	7	374	03-01-13
Kansas	NELAC	7	E-10187	01-31-13
Kentucky	State Program	4	90029	12-31-12
Kentucky (UST)	State Program	4	30	04-01-13
Louisiana	NELAC	6	02031	06-30-13
Maine	State Program	1	NY00044	12-04-12
Maryland	State Program	3	294	03-31-13
Massachusetts	State Program	1	M-NY044	06-30-13
Michigan	State Program	5	9937	04-01-13
Minnesota	NELAC	5	036-999-337	12-31-12
New Hampshire	NELAC	1	2973	09-11-12
New Hampshire	NELAC	1	2337	11-17-12
New Jersey	NELAC	2	NY455	06-30-13
New York	NELAC	2	10026	03-31-13
North Dakota	State Program	8	R-176	03-31-13
Oklahoma	State Program	6	9421	08-31-12
Oregon	NELAC	10	NY200003	06-09-13
Pennsylvania	NELAC	3	68-00281	07-31-13
Tennessee	State Program	4	TN02970	04-01-13
Texas	NELAC	6	T104704412-11-2	07-31-13
JSDA	Federal		P330-11-00386	11-22-14
√irginia	NELAC	3	460185	09-14-12
Washington	State Program	10	C784	02-10-13
West Virginia DEP	State Program	3	252	09-30-12
Wisconsin	State Program	5	998310390	08-31-12

3

4

5

9

10

10

13

14

Method Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL BUF
6010B	Metals (ICP)	SW846	TAL BUF
300.0	Anions, Ion Chromatography	MCAWW	TAL BUF
353.2	Nitrogen, Nitrite	MCAWW	TAL BUF
353.2	Nitrate	EPA	TAL BUF

Protocol References:

EPA = US Environmental Protection Agency

MCAWW = "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, March 1983 And Subsequent Revisions. SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL BUF = TestAmerica Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

3

4

5

7

8

9

10

46

13

14

Sample Summary

Client: URS Corporation

Project/Site: Walgreens Aite (Kingston, NY)

TestAmerica Job ID: 480-23701-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
480-23701-1	TB-080812	Water	08/08/12 00:00	08/09/12 15:40
480-23701-2	MW-1	Water	08/08/12 16:00	08/09/12 15:40
480-23701-3	MW-2	Water	08/08/12 17:15	08/09/12 15:40
480-23701-4	MW-3	Water	08/08/12 18:15	08/09/12 15:40
480-23701-5	MW-3 DUP	Water	08/08/12 18:15	08/09/12 15:40

2

10

11

13

14

Login Sample Receipt Checklist

Client: URS Corporation Job Number: 480-23701-1

Login Number: 23701 List Source: TestAmerica Buffalo

List Number: 1

Creator: Kinecki, Kenneth

oromon, nomen		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	URS
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	N/A	
Chlorine Residual checked.	N/A	

2

4

6

8

10

12

13

APPENDIX C EXCERPTS FROM PREVIOUS SAMPLING REPORTS

APPENDIX C-1

Annual Groundwater Sampling Report 2010 (Bureau Veritas, 2010)

Walgreen Store No. 02077 10 East Chester Street (a.k.a. 306-318 Broadway) Kingston, New York BCP Site No. C356032

September 29, 2010 Bureau Veritas Project No.: 07010-008205.10

> Prepared for: Walgreen Company 106 Wilmot Road, MS # 1620 Deerfield, IL 60015

Bureau Veritas North America, Inc. Raritan Center 160 Fieldcrest Avenue Edison, New Jersey 08837 732.225.6040 www.us.bureauveritas.com

Table 1 Walgreens Co. Store # 02077 Kingston, New York

Groundwater Sample Field Data Summary March 3, 2010 and May 4, 2010 Bureau Veritas Project No. 07010-008905.07

Well Number	Sample Date	Vol. Purged (gal)	рН	Conductivity (ms)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)
N 41 A 4	2/40/2040	7.00	1.01	50	0.00	0.04	24.0
MW-1	3/10/2010	7.39	1.64	-50	9.39	9.94	24.9
MW-1	3/10/2010	7.34	1.71	-5	5.01	10	25.1
MW-1	3/10/2010	7.24	1.68	-5	4.9	10.27	25.1
MW-2	3/10/2010	7.37	1.22	454	5.64	9.03	22.6
MW-2	3/10/2010	7.70	0.553	545	3.22	8.35	19.7
MW-2	3/10/2010	7.38	0.858	979	2.93	8.51	18.6
MW-3	3/10/2010	5.68	1.95	579	8.48	9.47	36.3
MW-3	3/10/2010	6.20	1.9	-50	5.08	8.97	35.3
MW-3	3/10/2010	6.41	1.85	675	7.41	9.04	34.7
MW-1	5/5/2010	0.95	6.86	1.55	177	1.9	12.1
MW-1	5/5/2010	1.90	6.88	1.74	-10	2.47	11.6
MW-1	5/5/2010	2.85	6.88	1.88	374	2.45	11.9
MW-2	5/5/2010	0.82	7.46	1.29	0.999	4.53	11.5
MW-2	5/5/2010	1.64	7.36	0.434	-10	2.47	11.2
MW-2	5/5/2010	2.46	7.46	0.528	-10	1.81	11.3
MW-3	5/5/2010	1.47	6.55	1.2	10	0.93	11.3
MW-3	5/5/2010	2.94	6.92	1.22	10	1.42	10.8
MW-3	5/5/2010	4.41	6.83	1.19	10	1.6	10.9

Table 2 Walgreens Co. Store # Kingston, New York

Groundwater Analytical Results Summary March 10, 2010 and May 4, 2010 Bureau Veritas Project No. 07010-008205.10

Sample ID		Groundwater	MW-1	MW-1	MW-2	MW-2DL	MW-2	MW-2DL	MW-3	MW-3DL	MW-3	MW-3DL
Lab Sample Number		Standard	B1569-01	B2175-01	B1569-02	B1569-02DL	B2175-02	B2175-02DL	B1569-03	B1569-03DL	B2175-03	B2175-03DL
Sampling Date			3/10/10	5/4/10	3/10/10	3/10/10	5/4/10	5/4/10	3/10/10	3/10/10	5/4/10	5/4/10
Matrix			WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor			1	1	1	10	1	10	1	20	1	20
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	040 #											
COMPOUND	CAS #	0.0	0.0	•	4.11	40.11	0.40.11	40.11	4.11	00.11	0.40.11	04.11
1,2-Dichloroethane	107-06-2	0.6		3	1 U	10 U	0.48 U	4.8 U	1 U	20 U		
4-Methyl-2-Pentanone	108-10-1	NL	2.8 J	2.1 U	5 U	50 U	2.1 U	21 U	5 U	100 U	2.1 U	100 U
Benzene	71-43-2	1	1 U	1.7	1 U	10 U	0.32 U	3.2 U	1 U	20 U	0.32 U	16 U
cis-1,2-Dichloroethene	156-59-2	5	0.79 J	0.35 U	3.5	10 U	2.8	3.5 U	1	20 U	0.35 U	18 U
Cyclohexane	110-82-7	NL	9.1	12	160 E	330 D	150	210 D	1 U	20 U	0.55 U	28 U
Ethyl Benzene	100-41-4	5	1 U	130	0.97 J	10 U	1.1	5.3 U	1 U	20 U	0.53 U	26 U
Isopropylbenzene	98-82-8	5	1 U	20	60	86 D	35	45 D	1 U	20 U	0.45 U	22 U
m/p-Xylenes	179601-23	5	3.5	120	45	58 D	26	27 D	2 U	40 U	0.95 U	48 U
Methylcyclohexane	108-87-2	NL	4.9	18	250 E	490 D	200 E	350 D	1 U	20 U	0.68 U	34 U
o-Xylene	95-47-6	5	50	6.4	5	5.5 JD	2.5	4.3 U	1 U	20 U	0.43 U	22 U
Tetrachloroethene	127-18-4	5	1 U	0.27 U	3.3	5.3 JD	4.8	10 JD	810 E	1000 D	2200 E	1600 D
Toluene	108-88-3	5	1 U	1.7	1 U	10 U	0.37 U	3.7 U	1 U	20 U	0.37 U	3.7 U
Trichloroethene	79-01-6	5	1 U	0.28 U	16	16 D	17	15 D	7.7	20 U	5	14 U
Total TICs			176.77	251.46	4260.2	0	8467	0	5.65	0	0	0
Total VOCs			251.46	564.26	4803.97	990.8	8906.2	657	824.35	1000	2205	1600

Qualifiers

- U The compound was not detected at the indicated concentration.
- J Data indicates the presence of a compound that meets the identification criteria. The result is less than the quantitation limit but greater than MDL. The concentration given is an approximate value.

E (Organics) - Indicates the analyte 's concentration exceeds the calibrated range of the instrument for that specific analysis.

D - The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

NL - Not Listed.

Shaded resutls in Bold type exceed the NYSDEC Groundwater Standard ECL Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Limitations.

Table 2 Walgreens Co. Store # Kingston, New York

Groundwater Analytical Results Summary March 10, 2010 and May 4, 2010 Bureau Veritas Project No. 07010-008205.10

Sample ID		Groundwater	DUP	DUPDL	DUP	DUPDL	FIELDBLANK	TRIPBI ANK	FIELDBLANK	TRIPBLANK
Lab Sample Number		Standard	B1569-04	B1569-04DL	B2175-04	B2175-04DL	B1569-05	B1569-06	B2175-05	B2175-06
Sampling Date			3/10/10	3/10/10	5/4/2010	5/4/2010	3/10/10	3/8/10	5/4/2010	5/4/2010
Matrix			WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Dilution Factor			1	20	1	50	1	1	1	1
Units		ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L
COMPOUND	040 #									
COMPOUND	CAS #	0.0	4.11	00.11	0.40.11	04.11	4.11	4.11	0.40.11	0.40.11
1,2-Dichloroethane	107-06-2	0.6		20 U	0.48 U	24 U	1 U	1 U		0.48 U
4-Methyl-2-Pentanone	108-10-1	NL	5 U	100 U	2.1 U	100 U	5 U	5 U		2.1 U
Benzene	71-43-2	1	1 U	20 U	0.32 U	16 U	1 U	1 U		0.32 U
cis-1,2-Dichloroethene	156-59-2	5	1.2	20 U	0.35 U	18 U	1 U	1 U	0.35 U	0.35 U
Cyclohexane	110-82-7	NL	1 U	20 U	0.55 U	28 U	1 U	1 U	0.55 U	0.55 U
Ethyl Benzene	100-41-4	5	1 U	20 U	0.53 U	26 U	1 U	1 U	0.53 U	0.53 U
Isopropylbenzene	98-82-8	5	1 U	20 U	0.45 U	22 U	1 U	1 U	0.45 U	0.45 U
m/p-Xylenes	179601-23	5	2 U	40 U	0.95 U	48 U	2 U	2 U	0.95 U	0.95 U
Methylcyclohexane	108-87-2	NL	1 U	20 U	0.68 U	34 U	1 U	1 U	0.68 U	0.68 U
o-Xylene	95-47-6	5		20 U	0.43 U	22 U	1 U	1 U	0.43 U	0.43 U
Tetrachloroethene	127-18-4	5		1000 D	2200 E	1200 D	1 U	1 U	0.27 U	0.27 U
Toluene	108-88-3	5	1 U	20 U	0.37 U	18 U	1 U	1 U	0.37 U	0.37 U
Trichloroethene	79-01-6	5	7.7	20 U	4.4	14 U	1 U	1 U	0.28 U	0.28 U
Total TICs			2.81	0	1	1000	0	0	0	0
Total VOCs			871.71	1000	2204.4	1200	0	0	0	0

Qualifiers

- U The compound was not detected at the indica
- J Data indicates the presence of a compound to The concentration given is an approximate variation.

E (Organics) - Indicates the analyte 's concentration

D - The reported value is from a secondary analy

NL - Not Listed.

Shaded resutls in Bold type exceed the NYSDEC Gr

APPENDIX C-2

Annual Groundwater Sampling Report 2011 (URS, 2011)

WALGREEN COMPANY

106 Wilmot Road MS#1620 Deerfield, Illinois 60015

ANNUAL GROUNDWATER SAMPLING, SITE MANAGEMENT PLAN REVIEW, AND INSTITUTIONAL CONTROL AND ENGINEERING CONTROL (IC/EC) CERTIFICATION

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON, New York

BCP Site No. C356032

MARCH 2011

Prepared By:

URS Corporation – New York 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

TABLE 1

SUMMARY OF PURGE DATA

MARCH 2011

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON, NEW YORK

Well Number	Volume Purged (Gallons)	Depth to Water (ft bgs)	рН	Specific Conductivity (mS/cm)	Temperature (°C)	DO (mg/L)	Turbidity (NTU)	Oxidation Reduction Potential (mV)	Notes
	0.00	8.14	-	-	-	-	-	-	
	0.50	-	5.73	1.71	9.41	11.01	94.3	260	Headspace = 0.0 ppm
	1.00	-	6.92	3.05	9.92	10.51	93.1	223	Total Depth = 14.61 ft bgs
MW-1	1.50	-	6.83	0.864	10.01	10.62	90.3	201	
	2.00	-	7.05	0.860	11.21	10.22	152	159	
	2.50	-	7.44	1.14	9.97	7.34	102	141	
	3.00	-	7.16	2.03	10.21	8.11	206	213	
	0.00	8.18	-	-	-	-	-	-	
	0.50	-	7.10	2.91	9.89	11.71	364	-96	Headspace = 3.7 ppm
MW-2	1.00	-	7.07	2.98	10.61	6.22	590	-123	Total Depth = 14.11 ft bgs
IVI VV -2	1.50	-	7.26	3.51	9.66	6.31	800	-133	
	2.00	-	7.24	3.11	9.07	8.05	798	-128	
	2.50	-	7.21	3.26	9.33	7.39	800	-131	
	0.00	8.37	-	-	-	-	-	-	
•	0.50	-	7.82	3.41	9.66	14.00	585	136	Headspace = 0.0 ppm
	1.00	-	7.11	4.52	9.71	6.72	755	113	Total Depth = 17.01 ft bgs
	1.50	-	7.38	4.76	9.80	7.75	>800	105	
MW-3	2.00	-	7.10	5.09	10.16	4.50	>800	103	
1	2.50	-	7.41	4.66	10.11	3.92	>800	107	
ļ	3.00	-	7.12	5.11	9.92	4.19	>800	105	
	3.50	-	7.19	4.84	9.86	4.23	>800	101	
	4.00	-	7.21	4.77	9.96	4.61	>800	103	

Notes:

Monitoring wells were purged on March 9, 2011.

ft bgs: feet below ground surface mS/cm: millisiemens per centimeter

mg/L: milligrams per liter

NTU: Nephelometric Turbidity Units

mV: millivolts

ppm: parts per million

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

WALGREEN COMPANY STORE 02077

10 EAST CHESTER STREET KINGSTON, NEW YORK

COMPOUND (ug/L)	CAS#	NYS GW Standard* (ug/L)	MW-1 3/9/2011	MW-2 3/9/2011	MW-4 (MW-2 Duplicate) 3/9/2011	MW-3 3/9/2011
Volatile Organic Compounds-EP	A 8260					
1,1,1-Trichloroethane	71-55-6	5	<0.4	<0.4	<0.4	<0.4
1,1,2,2-Tetrachloroethane	79-34-5	5	< 0.31	< 0.31	<0.31	< 0.31
1,1,2-Trichloroethane	79-00-5	1	< 0.38	<0.38	<0.38	< 0.38
1,1,2-Trichlorotrifluoroethane	76-13-1	5	< 0.45	< 0.45	< 0.45	< 0.45
1,1-Dichloroethane	75-34-3	5	< 0.36	<0.36	<0.36	< 0.36
1,1-Dichloroethene	75-35-4	5	<0.47	<0.47	<0.47	<0.47
1,2,4-Trichlorobenzene	120-82-1	5	<0.2	<0.2	<0.2	<0.2
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	<0.46	<0.46	<0.46	<0.46
1,2-Dibromoethane	106-93-4	0.0006	<0.41	<0.41	<0.41	<0.41
1,2-Dichlorobenzene	95-50-1 107-06-2	0.6	<0.45	<0.45 <0.48	<0.45 <0.48	<0.45
· · · · · · · · · · · · · · · · · · ·						
1,2-Dichloropropane	78-87-5	1	<0.46	<0.46	<0.46	<0.46
1,3-Dichlorobenzene	541-73-1	3	<0.43	<0.43	<0.43	<0.43
1,4-Dichlorobenzene	106-46-7	3	<0.32	<0.32	<0.32	< 0.32
2-Butanone	78-93-3	[50]	14	<1.3	<1.3	<1.3
2-Hexanone	591-78-6	[50]	<1.9	<1.9	<1.9	<1.9
4-Methyl-2-Pentanone	108-10-1	NA	<2.1	<2.1	<2.1	<2.1
Acetone	67-64-1	[50]	<0.5	<0.5	<0.5	< 0.5
Benzene	71-43-2	1	0.59J	< 0.32	< 0.32	<0.32
Bromodichloromethane	75-27-4	[50]	<0.36	< 0.36	<0.36	< 0.36
Bromoform	75-25-2	[50]	< 0.47	< 0.47	<0.47	< 0.47
Bromomethane	74-83-9	5	<0.2	<0.2	<0.2	< 0.2
Carbon Disulfide	75-15-0	[60]	<0.2	1.3	1.4	<0.2
Carbon Tetrachloride	56-23-5	5	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	108-90-7	5	<0.49	< 0.49	<0.49	< 0.49
Chloroethane	75-00-3	5	<0.2	1.1	1.9	<0.2
Chloroform	67-66-3	7	< 0.34	<0.34	<0.34	< 0.34
Chloromethane	74-87-3	5	<0.2	<0.2	<0.2	< 0.2
cis-1,2-Dichloroethene	156-59-2	5	<0.35	6.4	5.3	1.5
cis-1,3-Dichloropropene	10061-01-5	0.4	<0.31	< 0.31	<0.31	< 0.31
Cyclohexane	110-82-7	NA	11	78	<0.2	<0.2
Dibromochloromethane	124-48-1	[50]	< 0.2	<0.2	<0.2	<0.2
Dichlorodifluoromethane	75-71-8	5	< 0.2	<0.2	<0.2	< 0.2
Ethyl Benzene	100-41-4	5	43	4	3.8	< 0.2
Isopropylbenzene	98-82-8	5	8.4	19	17	< 0.45
m/p-Xylenes	179601-23-1	5	14	9.8	9.3	< 0.95
Methyl Acetate	79-20-9	NA	< 0.2	<0.2	<0.2	<0.2
Methyl tert-butyl Ether	1634-04-4	[10]	< 0.35	< 0.35	<0.35	< 0.35

TABLE 2

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

WALGREEN COMPANY STORE 02077

10 EAST CHESTER STREET KINGSTON, NEW YORK

COMPOUND (ug/L)	CAS#	NYS GW Standard* (ug/L)	MW-1 3/9/2011	MW-2 3/9/2011	MW-4 (MW-2 Duplicate) 3/9/2011	MW-3 3/9/2011
Methylcyclohexane	108-87-2	NA	23	160D	210D	< 0.2
Methylene Chloride	75-09-2	5	<0.41	<0.41	<0.41	< 0.41
o-Xylene	95-47-6	5	4.4	1.8	1.6	< 0.43
Styrene	100-42-5	5	< 0.36	< 0.36	<0.36	< 0.36
t-1,3-Dichloropropene	10061-02-6	0.4	< 0.29	<0.29	<0.29	< 0.29
Tetrachloroethene	127-18-4	5	< 0.27	0.6J	0.52J	840D
Toluene	108-88-3	5	0.64J	< 0.37	<0.37	< 0.37
trans-1,2-Dichloroethene	156-60-5	5	< 0.41	3.6	3.6	0.81J
Trichloroethene	79-01-6	5	<0.28	14	13	11
Trichlorofluoromethane	75-69-4	5	< 0.35	< 0.35	<0.35	< 0.35
Vinyl Chloride	75-01-4	2	< 0.34	<0.34	<0.34	< 0.34

Notes:

Groundwater samples analyzed by Chem Tech in Mountainside, New Jersey.

<: The compound was not detected at the indicated concentration.

Bold values indicate concentrations detected above the reporting limit.

Bold and shaded values indicate concentrations detected above comparison standard.

ug/L: micrograms per liter

- []: Indicates a Guidance Value.
- J: Indicates an estimated value that is less than the quantitation limit but greater than the method detection limit.
- D: The reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

^{*:} New York State Department of Environmental Conservation (NYSDEC) Groundwater (GW) Standard Technical and Operational Guidance Series (TOGS) 1.1.1, 2004

APPENDIX C-3

Annual Groundwater Sampling Report 2011 (URS, 2012)

WALGREEN COMPANY

106 Wilmot Road MS#1620 Deerfield, Illinois 60015

ANNUAL GROUNDWATER SAMPLING, SITE MANAGEMENT PLAN REVIEW, AND INSTITUTIONAL CONTROL AND ENGINEERING CONTROL (IC/EC) CERTIFICATION

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON, New York

BCP Site No. C356032

March 2012

Prepared By:

URS Corporation – New York 3 Corporate Drive, Suite 203 Clifton Park, New York 12065

TABLE 1 SUMMARY OF PURGE DATA

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON , NEW YORK

Well Number	Volume Purged (Gallons)	DTW (ft bgs)	рН	Specific Conductivity (mS/cm)	Temperature (°C)	DO (mg/L)	Turbidity (NTU)	Oxidation Reduction Potential (mV)	Notes
	0.00	9.74	-	-	-	-	-	-	
MW-1	0.50	-	8.13	0.545	10.49	13.08	>800	-63	Headspace = 0.0 ppm
	1.00	-	8.07	0.518	10.85	2.64	>800	-66	Total Depth = 14.81 ft bgs
	1.50	-	8.06	0.515	10.88	2.11	0.0	-54	
	2.00	-	8.03	0.527	10.66	9.77	705	-34	
	2.50	-	7.74	0.532	10.96	13.23	>800	-32	
	0.00	9.64	-	-	-	-	-	-	
MW-2	0.50	-	9.84	0.981	10.37	1.38	340	-148	Headspace = 0.0 ppm
	1.00	-	9.49	0.919	10.53	14.01	641	-144	Total Depth= 14.31 ft bgs
	1.50	-	9.20	0.923	10.59	12.88	653	-130	
	2.00	-	9.03	0.928	10.73	2.40	720	-135	
	2.50	-	8.60	0.932	10.61	2.07	>800	-128	
	0.00	9.56	-	-	-	-	-	-	
	0.50	-	7.81	0.535	10.78	13.35	540	-35	Headspace = 0.0 ppm
	1.00	-	7.81	2.01	11.64	1.24	>800	68	Total Depth = 17.28 ft bgs
	1.50	-	7.24	2.02	12.03	12.84	>800	73	
MW-3	2.00	-	7.26	1.97	12.07	12.28	>800	79	
	2.50		7.25	1.96	12.17	4.49	>800	81	
	3.00	-	7.26	1.96	12.08	1.05	>800	83	
	3.50	-	7.25	1.95	12.14	1.96	>800	87	
	4.00	-	7.24	1.76	11.90	13.15	>800	90	

Notes:
Monitoring wells were purged on February 16, 2012
ft bgs: feet below ground surface
mS/cm: millisiemens per centimeter
mg/L: milligrams per liter
NTU: Nephelometric Turbidity Units

mV: millivolts ppm: parts per million

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON, NEW YORK

		NYS GW			MW-4		
		Standard*	MW-1	MW-2	(MW-2 Dup.)	MW-3	
COMPOUND (μg/L)	CAS#	(µg/L)	2/16/2012	2/16/2012	2/16/2012	2/16/2012	
Volatile Organic Compounds-EPA 8260							
1,1,1-Trichloroethane	71-55-6	5	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)	
1,1,2,2-Tetrachloroethane	79-34-5	5	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	
1,1,2-Trichloroethane	79-00-5	1	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	
1,1-Dichloroethane	75-34-3	5	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	
1,1-Dichloroethene	75-35-4	5	ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	
1,2,3-Trichlorobenzene	87-61-6	NS	ND (0.69)	ND (0.69)	ND (0.69)	ND (0.69)	
1,2,4-Trichlorobenzene	120-82-1	5	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)	
1,2-Dibromo-3-Chloropropane	96-12-8	0.04	ND (1.3)	ND (1.3)	ND (1.3)	ND (1.3)	
1,2-Dibromoethane	106-93-4	0.0006	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	
1,2-Dichlorobenzene	95-50-1	3	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	
1,2-Dichloroethane	107-06-2	0.6	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	
1,2-Dichloropropane	78-87-5	1	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	
1,3-Dichlorobenzene	541-73-1	3	ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)	
1,4-Dichlorobenzene	106-46-7	3	ND (0.26)	ND (0.26)	ND (0.26)	ND (0.26)	
1,4-Dioxane	123-91-1	NS	ND (72)	ND (72)	ND (72)	ND (72)	
2-Butanone	78-93-3	[50]	3.7 J	ND (2.9)	ND (2.9)	ND (2.9)	
2-Hexanone	591-78-6	[50]	ND (3.0)	ND (3.0)	ND (3.0)	ND (3.0)	
4-Methyl-2-Pentanone	108-10-1	NS	ND (1.2)	ND (1.2)	ND (1.2)	ND (1.2)	
Acetone	67-64-1	[50]	ND (7.6)	ND (7.6)	ND (7.6)	ND (7.6)	
Benzene	71-43-2	1	0.23 J	0.28 J	0.31 J	ND (0.22)	
Bromochloromethane	74-91-5	NS	ND (0.40)	ND (0.40)	ND (0.40)	ND (0.40)	
Bromodichloromethane	75-27-4	[50]	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	
Bromoform	75-25-2	[50]	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)	
Bromomethane	74-83-9	5	ND (0.31)	ND (0.31)	ND (0.31)	ND (0.31)	
Carbon Disulfide	75-15-0	[60]	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	
Carbon Tetrachloride	56-23-5	5	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)	
Chlorobenzene	108-90-7	5	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	
Chloroethane	75-00-3	5	ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)	
Chloroform	67-66-3	7	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	
Chloromethane	74-87-3	5	0.67 J	0.33 J	ND (0.22)	ND (0.22)	
cis-1,2-Dichloroethene	156-59-2	5	ND (0.22)	3.6	3.7	2.6	
cis-1,3-Dichloropropene	10061-01-5	0.4	ND (0.22)	ND (0.22)	ND (0.22)	ND (0.22)	
Cyclohexane	110-82-7	NS	0.85 J	75.9	93.8	ND (0.29)	
Dibromochloromethane	124-48-1	[50]	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	
Dichlorodifluoromethane	75-71-8	5	ND (0.31)	ND (0.31)	ND (0.31)	ND (0.31)	
Ethyl Benzene	100-41-4	5	10.5	9.4	10.3	ND (0.21)	
Freon 113	76-13-1	5	ND (0.49)	ND (0.49)	ND (0.49)	ND (0.49)	
Isopropylbenzene	98-82-8	5	12.2	27.0	27.6	ND (0.19)	

TABLE 2 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

WALGREEN COMPANY STORE 02077 10 EAST CHESTER STREET KINGSTON, NEW YORK

COMPOUND (μg/L)	CAS#	NYS GW Standard* (µg/L)	MW-1 2/16/2012	MW-2 2/16/2012	MW-4 (MW-2 Dup.) 2/16/2012	MW-3 2/16/2012
m/p-Xylenes	179601-23-1	5	ND (0.32)	31.6	35.5	ND (0.32)
Methyl Acetate	79-20-9	NS	ND (2.9)	ND (2.9)	ND (2.9)	ND (2.9)
Methyl tert-butyl Ether	1634-04-4	[10]	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)
Methylcyclohexane	108-87-2	NS	2.6 J	131	159	ND (0.18)
Methylene Chloride	75-09-2	5	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)
o-Xylene	95-47-6	5	ND (0.17)	2.8	3.0	ND (0.17)
Styrene	100-42-5	5	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)
Tetrachloroethene	127-18-4	5	ND (0.32)	0.34 J	ND (0.32)	1,040
Toluene	108-88-3	5	ND (0.15)	ND (0.15)	ND (0.15)	ND (0.15)
trans-1,2-Dichloroethene	156-60-5	5	ND (0.31)	ND (0.31)	ND (0.31)	3.3
trans-1,3-Dichloropropene	10061-02-6	NS	ND (0.19)	ND (0.19)	ND (0.19)	ND (0.19)
Trichloroethene	79-01-6	5	ND (0.21)	1.0	1.2	11.2
Trichlorofluoromethane	75-69-4	5	ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)
Vinyl Chloride	75-01-4	2	ND (0.27)	ND (0.27)	ND (0.27)	ND (0.27)

Notes:

Groundwater samples analyzed by Accutest Laboratories in Dayton, New Jersey.

ND (): The compound was not detected at the indicated concentration.

NS: No Standard

Bold values indicate concentrations detected above the reporting limit.

Bold and shaded values indicate concentrations abe the comparison standard.

 $\mu g/L$: micrograms per liter

- []: Indicates a Guidance Value.
- J: Indicates an estimated value that is less than the quantitation limit but greater than the method detection limit.

^{*:} New York State Department of Environmental Conservation (NYSDEC) Groundwater (GW) Standard Technical and Operational Guidance Series (TOGS) 1.1.1, 2004

January 15, 2013

James E. Candiloro, P.E. Remedial Bureau C Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway Albany, New York 12233-7014

VIA ELECTRONIC MAIL: jxcandil@gw.dec.state.ny.us

Re: Revised Institutional Controls/Engineering Controls (IC/EC) Certification

Walgreen Company Store 02077

10 East Chester Street Kingston, New York BCP Site No. C356032

Dear Mr. Candiloro:

Pursuant to your email communication on November 28, 2012, URS Corporation-New York (URS), on behalf of the Walgreen Company (Walgreens), is submitting a revised Institutional Controls/Engineering Controls (IC/EC) Certification form (updated to reflect a certification period of March 31, 2011 to October 26, 2012) for the Walgreens Store at 10 East Chester Street in Kingston, New York (BCP Site No. C356032).

If you have any questions or require additional information, please do not hesitate to contact me (716-923-1112) or Bruce Przybyl (716-923-1102), the URS Buffalo Office Project Manager. Additional electronic copies of the report have been forwarded as indicated below.

Sincerely,

URS CORPORATION-NEW YORK

Steven M. Moeller Project Geologist

cc: Galina Georgiew, URS-Chicago

Bruce Przybyl, URS-Buffalo Jennifer Gillies, URS-Clifton Park Bryan Everett, Walgreen Company

URS Corporation 77 Goodell Street Buffalo, NY 14203 Tel: 716.856.5636 Fax: 716.856.2545

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (OEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Box 1 Site No. C356032 Site Name 10 East Chester Street Site Address: 306-318 Broadway Zip Code: 12401 City/Town: Kingston County: Ulster Site Acreage: 1.0 Reporting Period: March 31, 2011 to October 26, 2012 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Commercial and Industrial 7. Are all ICs/ECs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. Signature of Owner, Remedial Party or Designated Representative Date

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

YES NO

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years) If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.

Richard N. Steiner, Walgreens Co.

SITE NO. C356032 Box 3

Description of Institutional Controls

Institutional Control Parcel 56.26-11-14

Ground Water Use Restriction

Landuse Restriction Site Management Plan Soil Management Plan

56.26-11-15 Richard N. Steiner, Walgreens Co.

Ground Water Use Restriction

Landuse Restriction Site Management Plan Soil Management Plan

56.26-11-43 Richard N. Steiner, Walgreens Co.

Ground Water Use Restriction

Landuse Restriction Site Management Plan Soil Management Plan

Box 4

Description of Engineering Controls

Parcel **Engineering Control**

56.26-11-14

Cover System

56.26-11-15

Vapor Mitigation

56.26-11-43

Cover System Vapor Mitigation

Cover System Vapor Mitigation

Engineering Control Details for Site No. C356032

Parcel: 56.26-11-14

The Controlled Property may be used for restricted commercial or industrial use as long as the following long-term engineering controls are employed:

- 1. A barrier layer must be maintained on the Controlled Property of either one foot of clean fill or an alternative barrier layer approved by the NYSDEC, such as concrete, asphalt, or structure;
- 2. Any proposed soil excavation on the Controlled Property below the barrier layer requires prior notification and approval by NYSDEC in accordance with the Site Management Plan. The excavated soil must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives;
- 3. Any area of soil excavation below the barrier layer that is to be returned to vegetated soil (i.e.: not concrete, asphalt or structures) must be backfilled with a minimum one (1) foot layer of clean fill underlain by a demarcation layer:
- 4. Any future structures shall be constructed with a sub-slab depressurization system approved by the NYSDEC; and
- 5. The use of groundwater underlying the Controlled Property is prohibited without prior approval from NYSDEC for treatment rendering it safe for use for drinking or industrial purposes.

Parcel: 56.26-11-15

The Controlled Property may be used for restricted commercial or industrial use as long as the following long-term engineering controls are employed:

- 1. A barrier layer must be maintained on the Controlled Property of either one foot of clean fill or an alternative barrier layer approved by the NYSDEC, such as concrete, asphalt, or structure;
- 2. Any proposed soil excavation on the Controlled Property below the barrier layer requires prior notification and approval by NYSDEC in accordance with the Site Management Plan. The excavated soil must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives;
- 3. Any area of soil excavation below the barrier layer that is to be returned to vegetated soil (i.e.: not concrete, asphalt or structures) must be backfilled with a minimum one (1) foot layer of clean fill underlain by a demarcation layer;
- 4. Any future structures shall be constructed with a sub-slab depressurization system approved by the NYSDEC; and
- 5. The use of groundwater underlying the Controlled Property is prohibited without prior approval from NYSDEC for treatment rendering it safe for use for drinking or industrial purposes.

Parcel: 56.26-11-43

The Controlled Property may be used for restricted commercial or industrial use as long as the following long-term engineering controls are employed:

- 1. A barrier layer must be maintained on the Controlled Property of either one foot of clean fill or an alternative barrier layer approved by the NYSDEC, such as concrete, asphalt, or structure:
- 2. Any proposed soil excavation on the Controlled Property below the barrier layer requires prior notification and approval by NYSDEC in accordance with the Site Management Plan. The excavated soil must be managed, characterized, and properly disposed of in accordance with NYSDEC regulations and directives;
- 3. Any area of soil excavation below the barrier layer that is to be returned to vegetated soil (i.e.: not concrete, asphalt or structures) must be backfilled with a minimum one (1) foot layer of clean fill underlain by a demarcation layer;
- 4. Any future structures shall be constructed with a sub-slab depressurization system approved by the NYSDEC; and
- 5. The use of groundwater underlying the Controlled Property is prohibited without prior approval from NYSDEC for treatment rendering it safe for use for drinking or industrial purposes.

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	 a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the certification; 	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted	
	engineering practices; and the information presented is accurate and compete. YES NO	
2.	If this site has an IC/EC Plan (or equivalent as required in the Decision Document), for each Institutional or Engineering control listed in Boxes 3 and/or 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) the Institutional Control and/or Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Platfor this Control; and	an
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Circulate of Course December 19 and 1	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C356032

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law

Bryan Everett at 106 Wilmot Rd, MS #1620 Deerfield, IL 60015
print name print business address

am certifying as Walgreen Company (Owner or Remedial Party)

for the Site named in the Site Details Section of this form.

Byan Everett at 106 Wilmot Rd, MS #1620 Deerfield, IL 60015

(Owner or Remedial Party)

Signature of Dwner, Remedial Party, or Designated Representative Date

IC/EC CERTIFICATIONS