

Final Remedial Investigation Report
Flamingo Cleaners
149 North Avenue
New Rochelle, New York
Site Number C360078
BCP Index Number W3-1058-05-03

June 2010

Prepared for Submittal to
The New York State Department of Environmental Conservation

on Behalf of:

JAMM North Avenue LLC & 149-155 North Corp P.O. Box 3 Wykagyl Station New Rochelle, NY 10804

Prepared by:

CA RICH CONSULTANTS, INC. 17 Dupont Street Plainview, New York 11803

June 22, 2010

NYSDEC Region 3 Division of Environmental Remediation 625 Broadway, 11th Floor Albany, NY 12233-7014

Attention: Kiera Becker

Re: Final Remedial Investigation Report

Flamingo Cleaners

149 North Avenue, New Rochelle, New York

Site Number C360078

BCP Index Number W3-1058-05-03

Dear Ms. Becker:

Attached are two copies (one unbound) of our Final Remedial Investigation Report (RIR) for the above referenced site. The RIR has been developed by CA Rich Consultants, Inc. (CA RICH) on behalf of JAMM North Avenue LLC and 149-155 North Corp. (collectively referred to as the Volunteer) in response to the informational requirements of the New York State Brownfield Cleanup Program (BCP).

In accordance with the Brownfield Cleanup Agreement, copies have been forwarded to Rosalie K. Rusinko, Esq. of NYSDEC (CD only) and Mr. Anthony Paretta of NYSDOH (CD only). In addition, an electronic version in PDF format is attached on the enclosed CD.

If there are any questions regarding this Report, please do not hesitate to call our office.

Sincerely,

CA RICH CONSULTANTS, INC.

Richard J. Izzo, CPG Associate

Mary Ozy

cc: (Electronic copy only)

Kevin Ryan, Esq. Jo-Anne Latino Susan Kettner, Esq. Rosalie Rusinko, Esq. Tony Paretta, NYSDOH

Attachments

NT Server\Files\Projects/ Flamingo/ Final RI Report

TABLE OF CONTENTS

Section	<u>1</u>	<u>Page</u>
1.0	INTRODUCTION & PURPOSE	1
2.0	SITE HISTORY & DESCRIPTION	2
3.0	SUMMARY OF INVESTIGATION	5
4.0	RESULTS	11
5.0	QUALITATIVE EXPOSURE ASSESSMENT	14
6.0	CONCLUSIONS & RECOMMENDATIONS	19
	REFERENCES	21

FIGURES

- 1. SITE LOCATION MAP
- 2. BORING LOCATIONS
- 3. MONITORING WELL LOCATIONS
- 4. WATER TABLE CONTOUR MAP
- 5. IAQ AND SUB SLAB VAPOR SAMPLING LOCATIONS

TABLES

- 1. ANALYTICAL RESULTS FOR VOCs IN SOIL SAMPLES
- 2. ANALYTICAL RESULTS FOR SVOCs IN SOIL SAMPLES
- 3. ANALYTICAL RESULTS FOR VOCs IN GROUNDWATER (GEOPROBE) SAMPLES
- 4. ANALYTICAL RESULTS FOR VOCs IN GROUNDWATER (WELL) SAMPLES
- 5. ANALYTICAL DETECTIONS FOR SUB SLAB SOIL VAPOR SAMPLES
- 6. ANALYTICAL DETECTIONS FOR INDOOR AND OUTDOOR AIR SAMPLES
- 7. INVENTORY OF STORED CHEMICALS

APPENDICES

- A. DATA USIBILITY SUMMARY REPORT (DUSR)
- B. BORING LOGS AND WELL CONSTRUCTION DETAILS
- C. OFF-SITE INVESTIGATION INFORMATION
- D. LABORATORY DATA SHEETS

Final Remedial Investigation Report Flamingo Cleaners 149 North Avenue, New Rochelle, New York Site Number C360078

1.0 INTRODUCTION & PURPOSE

This Remedial Investigation Report (RIR) has been prepared by CA Rich Consultants, Inc. (CA RICH) on behalf of JAMM North Avenue LLC and 149-155 North Corp. (collectively referred to as the Volunteer) in response to the informational requirements of the New York State Brownfield Cleanup Program (BCP) as administered by the New York State Department of Environmental Conservation (NYSDEC). The Volunteer has entered into a BCP Agreement with NYSDEC (effective date April 25, 2005) to perform testing and remedial activities at the above-captioned Property (the Site). This RIR has been prepared in accordance with the guidelines set forth in Section 3 of NYSDEC's Draft Brownfield Cleanup Program Guide dated May 2004. The Remedial Investigation was conducted in accordance with our approved Remedial Investigation Work Plan (RIWP) dated December 8, 2005.

A series of previous investigations were performed at this site. The previous investigations are listed below and were included in the RIWP.

<u>Investigation</u>	<u>Date</u>
Phase I Environmental Site Assessment, HRP Associates, Inc.	October 2003
Phase II Environmental Site Assessment, CA RICH	March 2004
Indoor Air Quality Testing CA RICH	June 2004

The purpose of this RIR is to summarize the Remedial Investigation of soil, groundwater and air quality impacts identified in the previous investigations and present recommendations to support the development of an acceptable Remedial Work Plan.

2.0 SITE HISTORY & DESCRIPTION

2.1 Site History/Description

Flamingo Cleaners is located at the southern end of a single-story (with basements) rectangular multi-tenant commercial building. The footprint of the building along with the front sidewalk comprises the entire property that is approximately 6,000 square feet in area. The building is located at 149-155 North Avenue on the southeast corner of North Avenue and Clinton Place in New Rochelle, Westchester County, NY. A Site Location Map (USGS Topographic Quadrangle) is included as Figure 1.

According to information gathered in the Phase I ESA, the existing building was constructed in 1941 with occupancy listed as "stores". The earliest on-site listing for Flamingo Cleaners is 1958 (City Directory). The Property is currently owned by the Volunteer who collectively acquired it in September 2004. As of the date of this Report, Flamingo Cleaners has ceased on-site operations and has removed the dry-cleaning machine and all associated cleaning chemicals and wastes from the premises.

Flamingo Cleaners historically occupied approximately 25% of the building on the southern end of the Property. Additional occupants (from south to north) include a former travel agency (now vacant) Unisex Hairdressing Salon and a tavern on the northern end of the building. Each tenant space has its own separate basement area.

The former dry cleaning facility consisted of a ground floor, which housed the dry cleaning machine and waste storage areas within the confines of a vapor barrier room. There is also a basement area that was used to house the boiler, air compressor, vacuum unit and clothing storage. An abandoned 275-gallon PCE tank is also located in the basement of the dry cleaner along with a sump that collects overflow from the boiler expansion tank and pumps it into the sewer system. No information is available to document the proper closure of the 275-gallon tank.

The dry cleaning facility was inspected by CA RICH in January 2004. During that visit, we observed a facility that appeared to be operating in accordance with industry standards. The operator was using a fourth generation dry cleaning machine with a spill pan and the machine was situated within a vapor barrier room. Bulk PCE was stored within the machine. Separator water and distillation bottoms were stored in dedicated, labeled containers within the vapor barrier room.

The Property has always been serviced by public water and public sewers. Currently, Flamingo Cleaners is heated with steam from their boiler which is fired by two vaulted above-ground storage tanks. The remainder of the Property is heated by gas-fired, roof-mounted, forced air heaters.

2.2 Surrounding Land Use

Flamingo Cleaners is located within a strip-style, commercial shopping center. Adjoining properties include an apartment building to the south, a and medical center (across Clinton Place) to the north, a ground-floor parking structure and office building to the east, and retail stores (across North Avenue) to the west.

2.3 Physical/ Hydrogeologic Setting

According to the USGS Mount Vernon Topographic Quadrangle Map, the Property is located at an elevation of 90 feet above mean sea level. Local topography slopes gradually toward Long Island Sound located approximately ½ mile to the southeast of the Property.

The Property is underlain by glacial till characterized as a poorly sorted mixture of clay, silt sand, gravel, cobbles and boulders of Pleistocene age. This thin veneer of till is expected to be less than 30 feet in thickness and rests unconformably on Ordovician age crystalline bedrock of the Hartland Formation which includes basal amphibolite and pelitic schist.

Site specific work conducted to date indicates that the uppermost groundwater surface under unconfined conditions (i.e. the water table) is encountered at a depth of approximately ten feet below land surface within the unconsolidated glacial sediments. Regional groundwater flow information indicates groundwater flow under normal conditions to the south - southeast with eventual discharge into Long Island Sound and/or the tidal areas adjacent to New Rochelle Harbor, northwest of Davenport Neck. However, site specific water level information generated during this investigation indicates a shift in the gradient between the onsite wells to the northwest especially during and immediately following significant rainfall events (see Figure 4). This is not uncommon on a local scale and is likely attributable to the direct recharge to the exterior wells with no direct recharge to the interior wells causing a mounding effect along the property boundary. Based upon the Property's proximity to Long Island Sound, it is anticipated that the Property is located in an area of groundwater discharge as opposed to a deep recharge area. Underlying groundwater is not used for potable supply purposes anywhere in New Rochelle, as such, no potable resources are threatened by local groundwater contamination.

2.4 Evaluation of Previous Soil & Groundwater Sample Analyses

As outlined in Section 1.0, a series of previous investigations were performed at this site. Copies of these reports were appended to the RIWP. The scope and findings of the previous investigations are outlined below:

1. Phase II ESA (CA RICH; March 2004)

Scope:

Installation of 11 shallow soil borings through the basement floor (including one through the sump) with collection and chemical analysis of soil samples for CVOCs. Soil from the boring adjacent to the two 275-gallon fuel oil ASTs was also analyzed for BNOCs. In addition, a manually-driven well point was installed through the basement floor in the area of highest PCE soil detection. Groundwater samples were collected from the well and from the sump and analyzed for CVOCs.

Findings:

Soils from 0-1 foot below the basement floor in the area directly below the dry-cleaning machine (B-1) contain PCE at a concentration of 1,300,000 ppb. Concentrations decrease dramatically to the west (toward North Ave) and to the north (toward Clinton Place). Concentrations decrease slightly to the east, but generally remain above 1,000 ppb. Soil within the sump contained PCE at a concentration of 360,000 ppb. Soil from a depth of 3 feet below the basement floor in the area of the highest PCE detection (B-7) exhibits a dramatic decrease in concentration with PCE levels of 1,000 ppb.

Groundwater is encountered at a depth of 1 foot below the basement floor. The sump was observed to have a soft bottom and groundwater was observed recharging the sump when the water level is pumped down below a depth of 1 foot below the basement floor.

Groundwater from the well point contains PCE at a concentration of 250,000 ppb. Groundwater entering the sump contains PCE at a concentration of 11,000 ppb.

2. Indoor Air Quality (IAQ) Investigation (CA RICH June 04)

Scope:

The IAQ study included the collection and chemical analysis of air samples from the three tenant basement spaces adjacent to the Flamingo Cleaners basement. Samples were collected using properly calibrated Suma canisters. In addition, one sample of ambient air was collected from the building exterior behind the hair salon.

Findings:

The air sample from the vacant tenant space immediately adjacent to Flamingo Cleaners contained PCE at a concentration of 150 ppb. The concentration in the next space (hair salon) was measured at 130 ppb, and the air within the Tavern's basement was observed to contain 90 ppb of PCE. The exterior air sample exhibited a PCE concentration of 1.4 ppb.

3.0 SUMMARY OF INVESTIGATION

3.1 Engineering Inspection

During our Phase II Investigation, we observed poured concrete columns placed in the basement to support the dry cleaning machine on the ground floor, above. The most elevated levels of soil contamination were observed within this area. As such, an inspection was conducted by Steve Osmundsen, P.E. to evaluate whether subsurface soils in this area may be excavated to the water table (a depth of approximately 1 foot below the basement slab), and/or what additional engineering controls will be necessary to allow excavation in this area during the remediation phase of the BCP. Mr. Osmundsen determined that the support posts and footings installed to support the dry-cleaning machine could not be disturbed and that any excavation in the vicinity of the posts and the basement wall would require excavation slopes of no greater than 45 degrees. However, subsequent to Mr. Osmundsen's determination, Flamingo Cleaners has closed and the dry-cleaning machine has been removed.

3.2 Interior Soil Borings

A total of 11 soil borings were installed through the floor of the basement as part of our Phase II Investigation. As such, the areal extent of PCE soil contamination was relatively well defined. However, two (2) additional interior borings (designated B-12 and B-13) were drilled in the basement to determine the extent of PCE soil contamination to the northeast of the suspected source area (i.e. area of B-1) in excess of NYSDEC TAGM 4046 and Part 375 Soil Cleanup Objectives (SCOS). One additional boring (B-14) was drilled as an upgradient control point for soil and groundwater, and two borings (B-15 and B-16) were also installed as cross-gradient soil quality control points (and to further investigate the sump), and one boring (B-17) was installed directly adjacent to the former PCE tank to further investigate the tank as a possible contaminant source. The borings were installed using an electric bosch hammer to penetrate the concrete floor with collection of soil samples directly above the water table (approximately 3 to 6 inches below the basement slab) using a properly decontaminated stainless steel hand auger. The locations of the interior borings are illustrated on Figure 2.

3.3 Exterior Soil Boring/ Soil & Groundwater Sampling

Three soil borings were advanced in the exterior portions of the Property. The exterior borings (B-18, 19 & 20) were installed in the grassy berm area directly downgradient (south) of the building. The three exterior soil borings were installed using a Geoprobe, direct push drilling system. Macro core samples were collected continuously from land surface to the depth at which bedrock is encountered (approximately 16 to 18 feet below land surface). The geologic composition of these soil samples were identified and logged as the borings were advanced. Soil boring logs are attached as Appendix B. All soils were screened with the PID and samples exhibiting the highest PID readings or other signs of contamination were selected for laboratory analysis. If no elevated PID readings were observed, the deepest dry sample above the water table was analyzed for halogenated VOC analysis. The locations of the exterior borings are illustrated on Figure 2.

The soil samples were delivered to an ELAP-approved ChemTech Laboratories in Mountainside, NJ and analyzed for halogenated VOCs using U.S.EPA method 8021 and NYSDEC ASP category B deliverables. The soil samples collected from B-16, in the area of the fuel oil storage tanks was also analyzed for base-neutral organic compounds using U.S.EPA method 8270.

During the soil sampling, the following samples were collected for QA/QC purposes in accordance with the approved Quality Assurance Project Plan (QAPP Appendix B of the approved RIWP): 1 trip blank, 3 field blanks, 1 duplicate sample, 1 matrix spike and 1 matrix spike duplicate. The soil laboratory data was reviewed by subcontracted Premier Environmental Services and a Data Usability Summary Report (DUSR) was prepared (Appendix A).

In addition to soil sample collection, six (6) groundwater samples were collected from B-18, 19 and 20 with the Geoprobe at the soil bedrock interface and at 4-foot intervals from the bedrock surface up to the water table to determine the vertical extent of groundwater contamination downgradient of the suspected source area. The groundwater samples were analyzed for halogenated VOCs using U.S.EPA method 8021 and NYSDEC ASP category B deliverables. During this sampling the following samples were collected for QA/QC purposes in accordance with the approved QAPP: 1 trip blank, 1 field blank, 1 duplicate sample, 1 matrix spike and 1 matrix spike duplicate. The groundwater laboratory data was reviewed by subcontracted Premier Environmental Services and a Data Usability Summary Report (DUSR) was prepared (Appendix A).

3.4 Installation, Sampling and Analysis for Permanent Groundwater Monitoring Wells

One manually driven 1"-diameter water table microwell designated MW-2 was installed in the location of boring B-14. The purpose of this well is to provide one upgradient groundwater quality and elevation control point.

Three additional deeper microwells (MW-3, 4 & 5) were installed in the location of B-18, 19 and just above the soil/bedrock interface (16-18 feet below land surface) to provide permanent sampling points for repeatable monitoring of the vertical extent of CVOC groundwater impacts directly downgradient of the building.

These one-inch diameter PVC wells were installed using 0.020-inch slotted (20 slot) pipe and No. 1 sand as provided by the Jesse Morie Company. Hand driven interior basement microwell well (MW-2) was installed with a 3-foot long screen set 2 to 3 feet into the encountered water table. The deeper wells (MW-3, 4 & 5) have 10 foot screens set as close to the bedrock interface as was possible. Each well was constructed to industry standards and fitted with a bolt-down curb box. The locations of the microwells are included on Figure 3. Geologic boring logs and well construction details are included in Appendix B.

Following installation, each of the wells was developed using a peristaltic pump. In addition, the elevations of the top of the well casings were surveyed by NYS-Licensed County Line and Grade, Inc. to the nearest 0.01 of a foot (relative datum). Depth to water readings were taken and a water table elevation contour map was prepared depicting water level gradient (Figure 4).

One week after the installation of the wells was completed, CA RICH returned to sample the wells. A volume of three to five times the volume of the well was removed from each well using a low flow rate peristaltic pump with dedicated polyethylene tubing. A sample of the groundwater from each well was then collected directly from the pump discharge using laboratory-issued 40 mil vials. Water samples from each well were submitted to ChemTech Labs and analyzed for halogenated VOCs using U.S.EPA method 8021 and NYSDEC ASP category B deliverables. During this sampling the following samples were collected for QA/AC purposes in accordance with the attached Quality Assurance Project Plan (QAPP): 1 trip blank, 1 field blank, 1 duplicate sample, 1 matrix spike and 1 matrix spike duplicate. The groundwater laboratory data was reviewed by a qualified data validator and a Data Usability Summary Report (DUSR) was prepared (Appendix A).

3..5 Vapor Intrusion Sampling

Vapor intrusion sampling was conducted in and below the building in accordance with The New York State Department of Health "Guidance for Evaluating Soil Vapor Intrusion in the State of New York" (public comment draft dated February 2005). Sub-slab samples (designated SS-1 through SS-4) were collected in each of the four basements along with indoor air samples (IA-1 through IA-4) in the basements and indoor air samples IA-5 through IA-8 in each of the tenant spaces above. In addition, one concurrent background exterior air sample (EA-1) was also collected. Sampling locations are illustrated on Figure 5. Prior to sampling, product inventories were completed for each of the tenant spaces tested (Table 7). In addition, investigation of existing floor drains and subsurface structures was conducted. No active floor drains or other subsurface structures (aside from the sump) were observed.

The dry cleaning facility was active during the sampling event. Potential sources of air quality impacts were observed within the dry cleaning facility (ground floor) and basement including the use of PCE in a spray bottle for spot removal. In addition, the vacuum system used by the cleaners for the clothing press was located in the basement and vented steam into the basement. Strong PCE odors were experienced in both the basement and the ground floor of the cleaning facility during the sampling event.

Sub-slab samples were collected in the following manner: The borings for installation of permanent sub-slab vapor wells were installed using an electric Bosch hammer to penetrate the concrete floor. A stainless steel screened well point was advanced to a depth of two inches below the slab and capped with a sampling fitting to allow for collection of soil gas. The annular space around the screen was packed with coarse sand to a depth of 1 inch above the bottom of the slab. The remainder of the space around the well point was then sealed with bentonite to ensure the integrity of the soil gas sample. The installation was then fitted with a bolt-down curb box. Soil vapor well construction details are included in Appendix B.

Prior to sampling, one to three volumes of soil gas was purged from the column using Teflon tubing and a calibrated air sampling pump. A temporary air-tight enclosure was installed around the base of each well during purging and sampling. The sampling train was passed through the enclosure and a tracer gas (helium) was introduced into the enclosure. A helium meter was then used to screen the soil gas prior to sample collection to ensure no atmospheric air was entering the sample train. No helium was detected in the sample train from any of the samples. During purging and sampling, flow rates were maintained at 0.2 liters per minute with the subslab samples collected over a two hour period and the indoor air samples collected over an eight-hour period. The soil gas was field screened with a PID and collected in a SUMMA canister. The canisters were submitted to NYSDOH certified laboratory for analysis of VOCs (Halogenated) via TO14 (of TO15) methodology. Interior air samples and the exterior background sample were also collected using laboratory-issued SUMMA canisters. The locations of sub-slab and air quality samples are illustrated on Figure 5.

3.6 Off-site Investigation

3.6.1 General

Based upon the findings of the Draft RI Report, it was determined by NYSDEC that additional offsite testing was necessary to determine the nature and extent of groundwater and soil vapor impacts. As such, NYSDEC performed an off-site groundwater and soil vapor investigation which commenced in the summer of 2009. As of the date of this report, the groundwater portion of the investigation has been completed and the soil vapor portion is still underway. A summary of the off-site groundwater quality investigation is presented in the following sections. A summary of the off-site soil vapor investigation will be included in the subsequent Remedial Work Plan and Alternatives Analysis Report ("RWP/AAR").

3.6.2 Off-site Well Installation and Sampling

A total of seven off-site groundwater monitoring wells were installed by NYSDEC in the late summer of 2009. The six wells include three 4-inch diameter overburden wells identified by NYSDEC as MW-2, MW-3, MW-4 and MW-5. In addition, three bedrock wells were also installed and identified by NYSDEC as MW-1B, MW-3B and MW-5B. For the purposes of this report and to avoid confusion with the on-site wells installed by CA RICH, we will refer to the off-site wells with the prefix 'OS' as opposed to 'MW'. As such, off-site wells MW-2, 3, 4 & 5 will be referred to as OS-2, 3, 4 & 5 and MW-1B, 3B & 5B will be referred to as OS-1B, 3B & 5B. Construction information and a location map for the six off-site wells along with qualified laboratory data tables are included in Appendix C..

During well drilling activities on August 5th through 18th 2009, soil samples were collected at the locations of OS-2, 3B, 5 & 5B and designated as SB-2, 3B, 5 & 5B. Soil samples were collected from the soil borings at the following depths below land surface:

Soil Boring	Sample Depths (feet)
SB-2	8 – 10
SB-3B	8 – 10
SB-5	2 - 4 & 8 - 10
SB-5B	2-4 & 8-10

_ .. _ .

The soil samples were submitted to an ELAP-approved laboratory for VOC analysis along with the appropriate QA/QC samples.

On September 16, 2009 the seven off-site monitoring wells were sampled in accordance with industry standards and groundwater samples were submitted to an ELAP-approved laboratory for analysis along with the appropriate QA/QC samples. Analysis for OS-5 included TAL metals, cyanide, pesticides & PCBs, and VOCs/SVOCs. Analysis for all of the other wells was limited to VOCs and SVOCs. A second round of off-site groundwater sampling was performed on March 11, 2010.

4.0 RESULTS

4.1 Soil Sampling & Analysis

Of the nine soil samples analyzed, four exhibited the presence of a targeted VOC at or above NYSDEC Part 375 soil cleanup objective (SCO) for unrestricted site usage. Specifically, the samples from B-14, B-15, B-19 and B-20 exhibited the presence of the common laboratory contaminant methylene chloride at concentrations ranging from 85 micrograms per kilogram (ug/Kg) to 110 ug/Kg. The NYSDEC Part 375 SCO for this compound is 50 ug/Kg. Detections of perchloroethylene (PCE) were observed in some of the samples below cleanup guidelines. This includes detections in samples B-13, B-15 and B-17 of 440, 910 and 390 ug/Kg, respectively. The Part 375 SCO for PCE is 1,300 ug/Kg. Analytical results for VOCs in soils are summarized on Table 1.

The soil sample from B-16 collected adjacent to the existing aboveground fuel oil tanks did not exhibit any base-neutral organic compounds (BNOCs) in excess of laboratory detection limits. Analytical results for BNOCs in sample B-16 are summarized on Table 2.

4.2 Groundwater Sampling and Analysis

4.2.1 Geoprobe Groundwater Samples

Each of the six groundwater samples collected from beneath the grassy area adjacent to the building exhibited the presence of PCE at levels in excess of NYSDEC water quality standards. The most elevated PCE concentration measured was 60,000 micrograms per liter (ug/L) in sample B-18 from 13 to 17 feet below land surface. The sample at that location (B-18) from 9-13 feet below land surface (water table) exhibited PCE at 13,000 ug/L. Concentrations in the remaining samples ranged from 1,000 ug/L to 19,000 ug/L. Degradation by-products including TCE and 1,2 DCE were also observed, but at much lower concentrations. Analytical results for geoprobe groundwater samples are summarized on Table 3.

4.2.2 Monitoring Well Samples

Each of the five monitoring well samples exhibited the presence of PCE in excess of NYSDEC groundwater quality standards. The most elevated detections were 55,000 ug/L in well MW-1 and 30,000 ug/L in well MW-3. This is not surprising as these two wells are in and immediately adjacent to the contaminant source area. PCE concentrations in wells MW-2, MW-4 and MW-5 were measured at 520 ug/L, 27 ug/L and 1,700 ug/L respectively. Estimated TCE concentrations of 45 ug/L and 49 ug/L were observed in MW-2 and duplicate sample MW-2D. However, no other VOCs were detected in any of the groundwater samples. Analytical results for monitoring well groundwater samples are summarized on Table 4.

4.3 Vapor Intrusion Sampling

4.3.1 Subslab Soil Vapor Sampling

Each of the four subslab soil vapor samples exhibited elevated levels of PCE ranging from 15,700 micrograms per cubic meter (ug/m³) beneath the Tavern basement up to 572,000 ug/m³ beneath the Flamingo Cleaners basement. Additional CVOCs detected include TCE, cis-1,2 DCE and TCA. Concentrations of detected contaminants in sub-slab soil vapor appear to decrease with increased distance from the source area beneath the Flamingo Cleaners basement. Analytical results for sub slab soil vapor samples are summarized on Table 5.

4.3.2 Indoor and Outdoor Ambient Air Samples

Five of the eight indoor air samples collected exhibited concentrations of PCE in excess of NYSDOH ambient air guidance values currently set at 100 ug/m³. The most elevated detection was observed in the indoor air sample from the basement of Flamingo Cleaners at 1,040 ug/m³. This level was slightly higher than the 732 ug/m³ concentration observed within the dry cleaning shop (ground floor). The indoor air concentrations of PCE within the other basements ranged from 136 ug/m³ to 86.8 ug/m³. Only the ground-floor air within the vacant tenant space immediately adjacent to Flamingo was observed in excess of NYSDOH ambient air guidance values. The remaining tenant spaces were all below the 100 ug/m³ DOH value. PCE in the exterior ambient air was also measured below the DOH guidance value. Analytical results for indoor and outside ambient air samples are summarized on Table 6.

4.3.3 Off-site Testing

4.3.3.1 Soils

Of the six off-site soil samples collected and analyzed for VOCs, only one sample exhibited the presence of any of the targeted compounds at or above Part 375 Soil Cleanup Objectives for unrestricted usage. Specifically, a second-run laboratory dilution of sample SB-5 (8'-10') exhibited a xylene concentration of 260 ug/Kg. The part 375 SCO for unrestricted usage is 260 ug/Kg. Results of the off-site soil testing are included in Appendix C.

4.3.3.2 Groundwater

The first round (9-16-09) of off-site groundwater sampling and analysis from both overburden and bedrock wells resulted in seven detections of chemical compounds/constituents in two wells (OS-5 & OS-1B) in excess of NYSDEC TOGS groundwater standards. Detected compounds/constituents include the VOCs 1,2,4-trimethylbenzene, methylene chloride and naphthalene; the SVOC phenol; the metals manganese and sodium; and the pesticide delta-BHC. The second round of off-site groundwater sampling and analysis (3-11-10) detected the presence of 17 compounds/constituents in excess of NYSDEC TOGS groundwater standards. Detected compounds/constituents include the VOCs 1,2,4-trimethylbenzene and naphthalene; the metals iron, manganese selenium, sodium and thalium; the pesticides 4,4'-DDE, 4,4'-DDT, alpha-BHC, beta-BHC, delta-BHC, dieldren gamma BHC, heptachlor, and heptachlor epoxide; and PCB arochlor 1254. None of the TOGS exceedences in either sampling round appear to be related to the Flamingo Cleaners Site or the presence of PCE or its derivatives. The results of off-site groundwater testing are included in Appendix C.

5.0 QUALITATIVE HUMAN HEALTH AND ENVIRONMENTAL EXPOSURE ASSESSMENT

5.1 Contaminants of Concern

Based upon the information generated during this investigation, the principal contaminant of concern is tetrachloroethene (PCE) along with its degradation products (including trichloroethene, and dichloroethene). PCE is a manufactured chemical that is widely used for the dry cleaning of fabrics and for metal-degreasing. It is also used to make other chemicals and is used in some consumer products. PCE is a nonflammable liquid at room temperature. PCE and its degradation products are described as "sweet" or "aromatic" smelling and are narcotic in high concentrations. Acute exposure to significant concentrations of these chemicals can cause irritation of the skin, eyes and mucus membrane, headache, dizziness, nausea, and in high enough concentrations, loss of consciousness and death (Sax, 1984). The Department of Health and Human Services (DHHS) has determined that PCE may reasonably be anticipated to be a carcinogen as it has been shown to cause liver tumors in mice and kidney tumors in male rats.

5.2 Regulatory Criteria

The concentrations of the contaminants of concern found at the Site were compared to the following standards or guidance values: 1) NYSDEC TAGM 4046 (soil only); 2) NYSDEC Draft 6 NYCRR Part 375 Track 1 (soil only) (Ref. 6); 3) Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, NYSDEC (groundwater only); and 4) NYSDOH Air Guidance Values for Indoor Air and Background Indoor Air Levels of VOCs in Homes Sampled by NYSDOH, 1989-1996.

5.3 Impacted Media

As discussed in the previous sections, on-site media impacted by PCE includes soils, groundwater, soil gas and indoor air. Levels of PCE and associated degradation products were observed in all of these media in excess of NYSDEC and NYSDOH cleanup criteria and limitation guidelines/standards.

5.4 Potential Sensitive Receptors

5.4.1 On-Site Human Health Receptors

Potential on-site sensitive receptors include adult building occupants who operate commercial/retail businesses and their associated customers/patrons. Miscellaneous delivery persons would have significantly less exposure than building occupants, and therefore, were excluded from further consideration.

5.4.2 On-Site Environmental Receptors

Flamingo Cleaners is located in a retail/commercial section of New Rochelle. The on-site building covers nearly 100 percent of the subject property. As such, no on-site environmental receptors (such as fish or wildlife) are identified.

5.4.3 Off-Site Human Health Receptors

Potential off-site human health receptors within a 0.25-mile radius of the Site include adult and child residents, and commercial workers based on the following:

- 1. Commercial Businesses (up to 0.25 mile) existing and future
- 2. Residential Buildings (up to 0.25 mile) existing and future
- 3. Building Construction/Renovation (up to 0.25 mile) existing and future
- 4. Pedestrians, Cyclists (up to .25 mile) existing and future

Visitors, pedestrians, cyclists, and miscellaneous delivery persons would have significantly less exposure than building occupants; and therefore, were excluded from further consideration.

Groundwater in New Rochelle is not used for drinking water. Private or municipal water wells do not exist within one-mile of the Site. Both drinking water (via reservoirs) and sewer systems are supplied by municipal sources. Therefore, the risk of the site contaminating public or private water supply does not exist.

5.4.4 Off-Site Environmental Receptors

As discussed, Flamingo Cleaners is located in a retail/commercial section of New Rochelle. The area is dominated by buildings, sidewalks and roadways with very little areas of open space or vegetation. Based upon the highly developed nature of the area, no adjacent or nearby plant or fish & wildlife resources are identified that could potentially be threatened by the identified contamination. The closest environmental receptor would be the Long Island Sound located ½-mile to the southeast. Based upon an average regional shallow groundwater gradient of approximately 0.5 ft. per day, it would take approximately 14 years for groundwater from Flamingo Cleaners to reach Long Island Sound. Based upon the time and distance for contamination to move to this potential receptor, current or future impacts are unlikely.

5.5 Exposure Route

An exposure route is the mechanism by which a receptor comes into contact with a chemical. Three potential primary routes exist by which chemicals can enter the body:

- · Ingestion of water, fill or soil;
- Inhalation of vapors and particulates; and
- Dermal contact with water, fill, soil or building materials.

5.6 Exposure Pathways

Based on the current and projected future use of this Site as well as the Preferred Exposure Pathway Models identified in the SGM, the following pathways will be evaluated in this Exposure Assessment:

- 1. Subsurface Soil Concentrations Protective of Ambient Air (Outdoor) Vapor Inhalation;
- 2. Groundwater Concentrations Protective of Ambient Air (Outdoor) Vapor Inhalation;
- 3. Subsurface Soil Concentrations Protective of Enclosed Space Air (Indoor) Vapor Inhalation;
- 4. Groundwater Concentrations Protective of Enclosed Space Air (Indoor) Vapor Inhalation.

5.7 Identification and Evaluation of Exposure Pathways (Contaminant source, Contaminant release and transport mechanism, Point of exposure, Route of exposure, Receptor population)

5.7.1 General

Since the BCP Applicant entered into an agreement with the NYSDEC as a "Volunteer", only on-Site concentrations were evaluated as part of this Qualitative Exposure Assessment. According to the findings of this Remedial Investigation, elevated levels of PCE occur on-Site. Based on the concentrations of PCE in the soil and groundwater at the Property boundary, it is possible that the contaminants of concern may have migrated onto the adjoining properties. Therefore, it is necessary to examine all of the above-listed exposure pathways for building occupants.

5.7.2 On-Site

The existing building occupies nearly the entire property footprint. In addition, the depth to groundwater beneath the basement floor is less than 1 foot. The building is used for retail/commercial purposes and, as such, no on-site digging or soil handling will occur. As such, direct exposure to impacted on-site soils is not considered an exposure pathway for existing or future site occupants/patrons. Should future property usage include demolition or renovation of the building, direct exposure to impacted on-site soils may be a potential short-term exposure pathway for future on-site construction workers.

Groundwater is not used on-site (or in the area) for any purpose. As such, direct exposure to impacted groundwater is not considered an exposure pathway for existing or future site occupants. Should future property usage include demolition or renovation of the building, direct exposure to impacted on-site groundwater may be a potential short-term exposure pathway for future on-site construction workers.

The most prevalent on-site exposure pathway would be from soil gas emanating from volatile organic compounds (VOCs), including PCE and fuel-related compounds, within the subsurface groundwater and soils entering into the building as a result of any sub-basement floor or lower wall openings/cracks. The potential receptors from such a pathway into the building would be to on-site commercial workers, and adult customers/patrons. The primary route of exposure would be inhalation.

5.7.3 Off-Site

There is an exposure pathway from soil gas emanating from volatile organic compounds (VOCs), including PCE within the groundwater to enter into the adjoining buildings as a result of any sub-basement floor or lower wall openings/cracks. The indoor air quality at the adjoining properties is susceptible to contamination from subsurface vapor intrusion attributable to VOCs emitted from the shallow contaminated groundwater beneath the Site. The potential receptors from such a migration pathway into the building would be to off-Site commercial workers, and adult and child residents. The primary route of exposure would be inhalation.

Because groundwater is shallow (less than 20 feet below land surface) there is a potential off-site exposure pathway for direct contact with impacted groundwater during off-site construction activities. The potential receptors for such a pathway would be construction workers.

6.0 Conclusions and Recommendations

6.1 Soils

The latest round of soil sampling and analysis completed in this Remedial Investigation confirms that impacted soils are generally limited to the "source area" directly underlying the former dry cleaning machine (area of B-1 and MW-1). In addition, testing of the soils in proximity to the fuel oil storage tanks did not result in detections of fuel-related compounds. As such, it is recommended that soils in the vicinity of MW-1 be excavated to remove as much of the contamination source as possible. Although excavation will be limited in this location due to the proximity of the building wall, the removal of the dry-cleaning machine will allow for a more thorough source removal.

6.2 Groundwater

Sampling and analysis of groundwater from temporary geoprobe borings and permanent microwells confirms the presence of on-site groundwater impacts by CVOCs (primarily PCE) at levels in excess of NYSDEC limitation standards. Based upon the distribution of observed contamination, it appears that the greatest impact occurs in the vicinity of MW-1 and MW-3 which are located within and directly adjacent (respectively) to the source area.

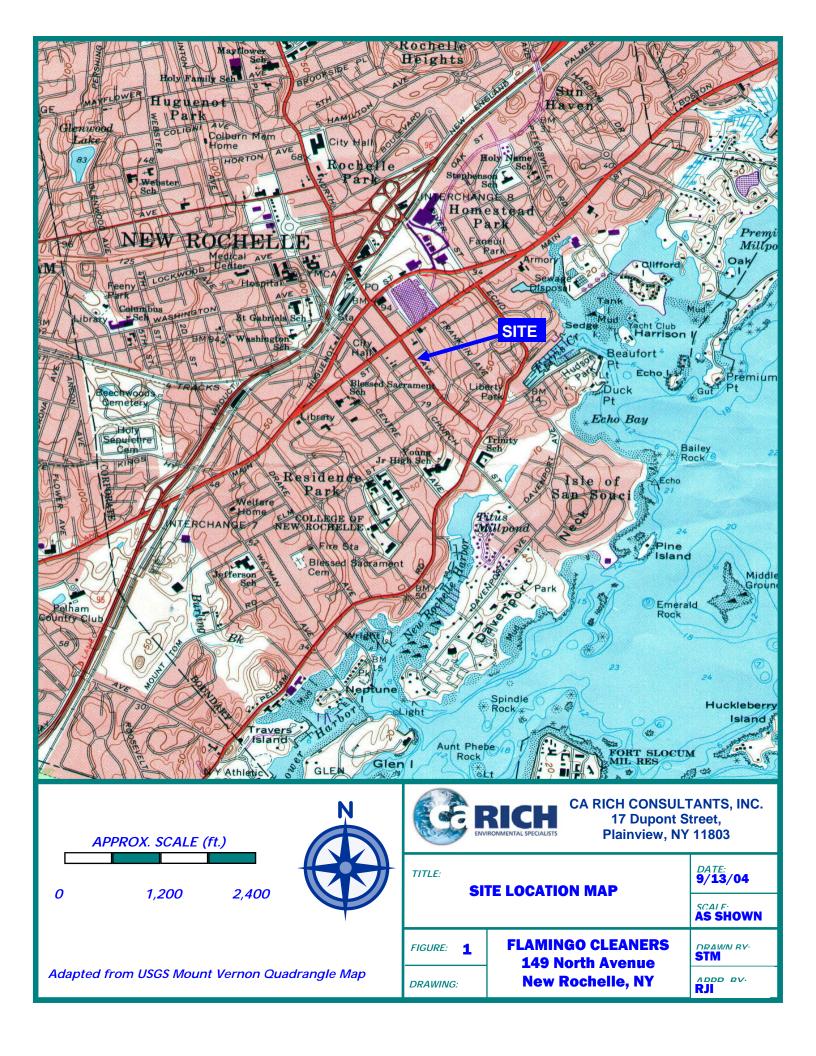
While published topographic maps and regional groundwater flow information indicates groundwater flow under normal conditions to the south - southeast, site specific water level information generated during this investigation indicates a shift in the gradient between the onsite wells to the northwest especially during and immediately following significant rainfall events, (see Figure 3). This is not uncommon on a local scale and is likely attributable to the direct recharge to the exterior wells with no direct recharge to the interior wells causing a mounding effect along the property boundary.

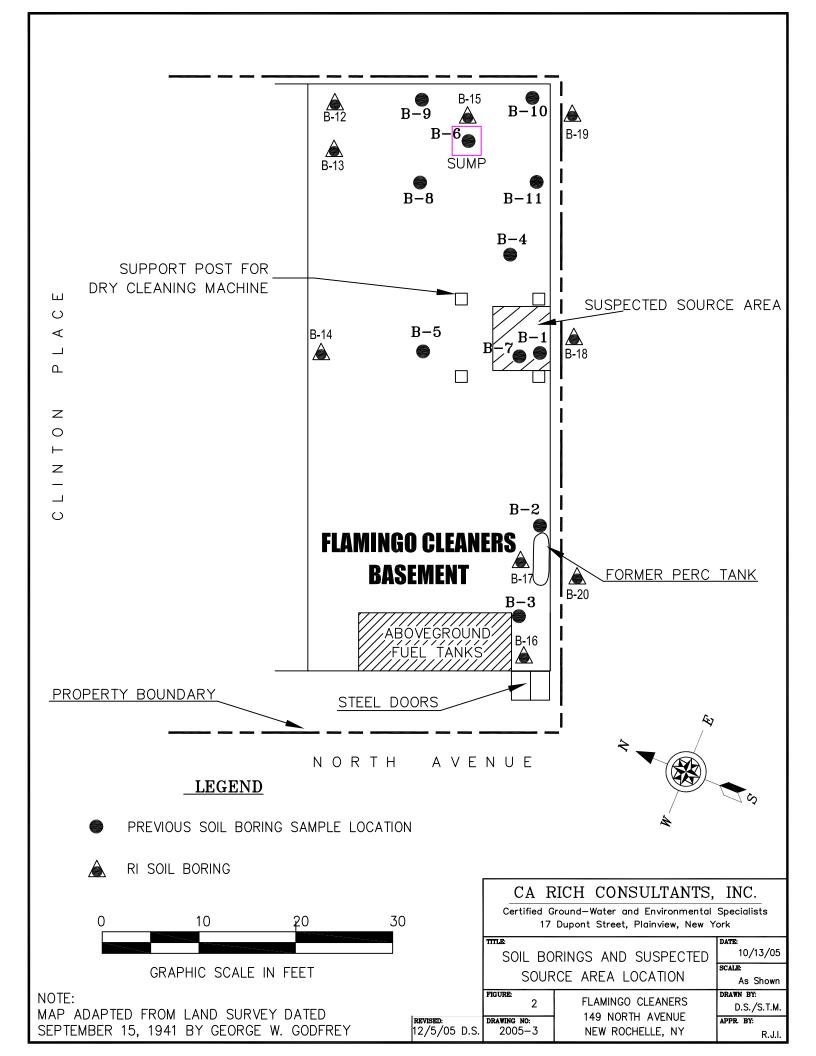
Based upon the results of this remedial investigation and the previous testing, remedial action with respect to groundwater is recommended. Such action would likely include the installation and operation of an in-situ treatment system utilizing either air sparging or chemical oxidation. A chemical oxidation system would include pumping groundwater during injection activities to avoid merely displacing the contaminants. Groundwater treatment would be implemented following source removal activities for optimal effectiveness.

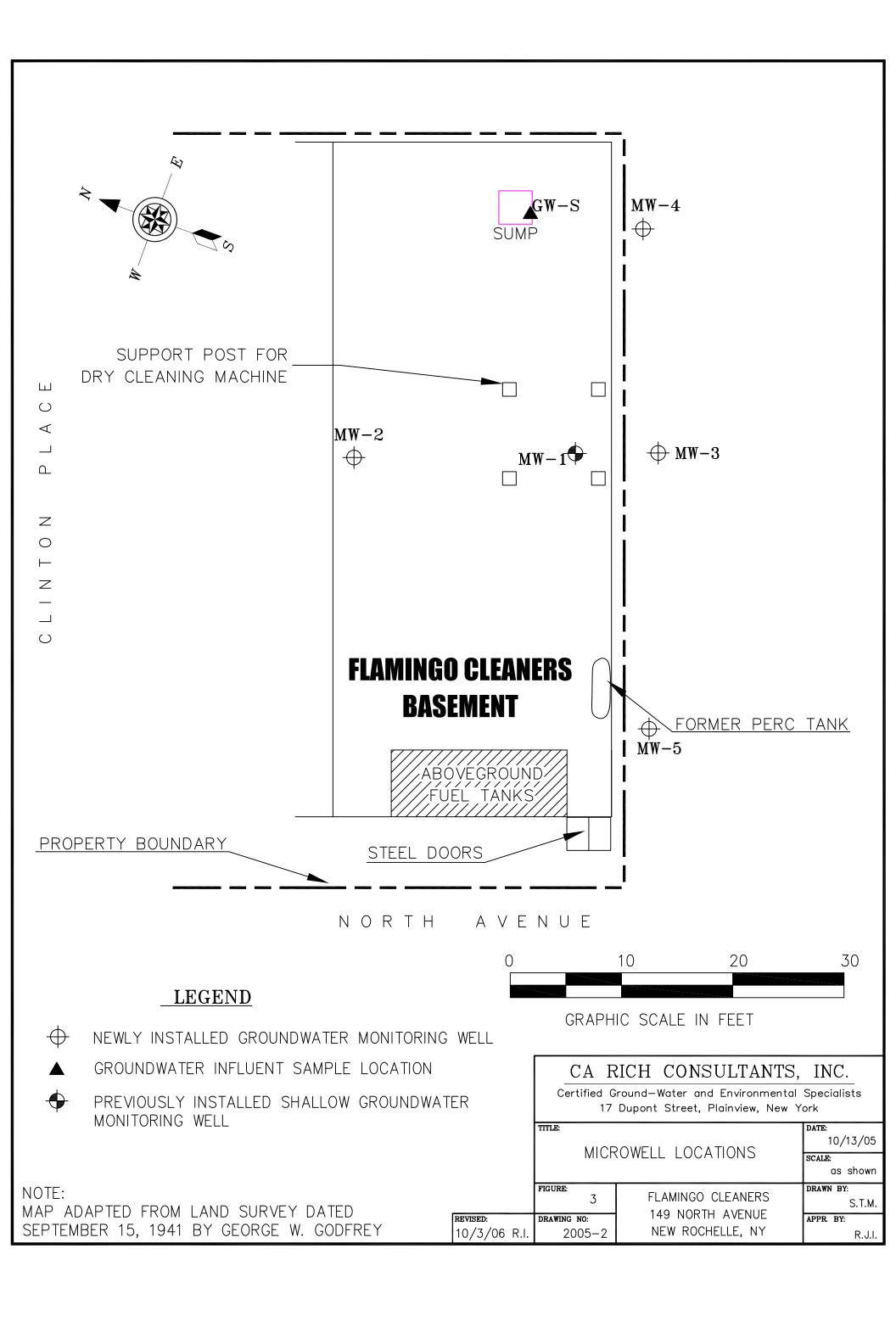
The results of off-site groundwater sampling and analysis including testing within the deeper fractured bedrock, indicate no off-site or deeper fractured bedrock impacts attributable to the Site. As such, no off-site remediation or treatment within the deeper fractured bedrock is necessary. In addition, on-site plume stabilization or control is not a strict requirement for remedial action as it pertains to groundwater. However, on-site groundwater treatment as described above will treat groundwater at or near the Site Boundary and thus provide plume stabilization.

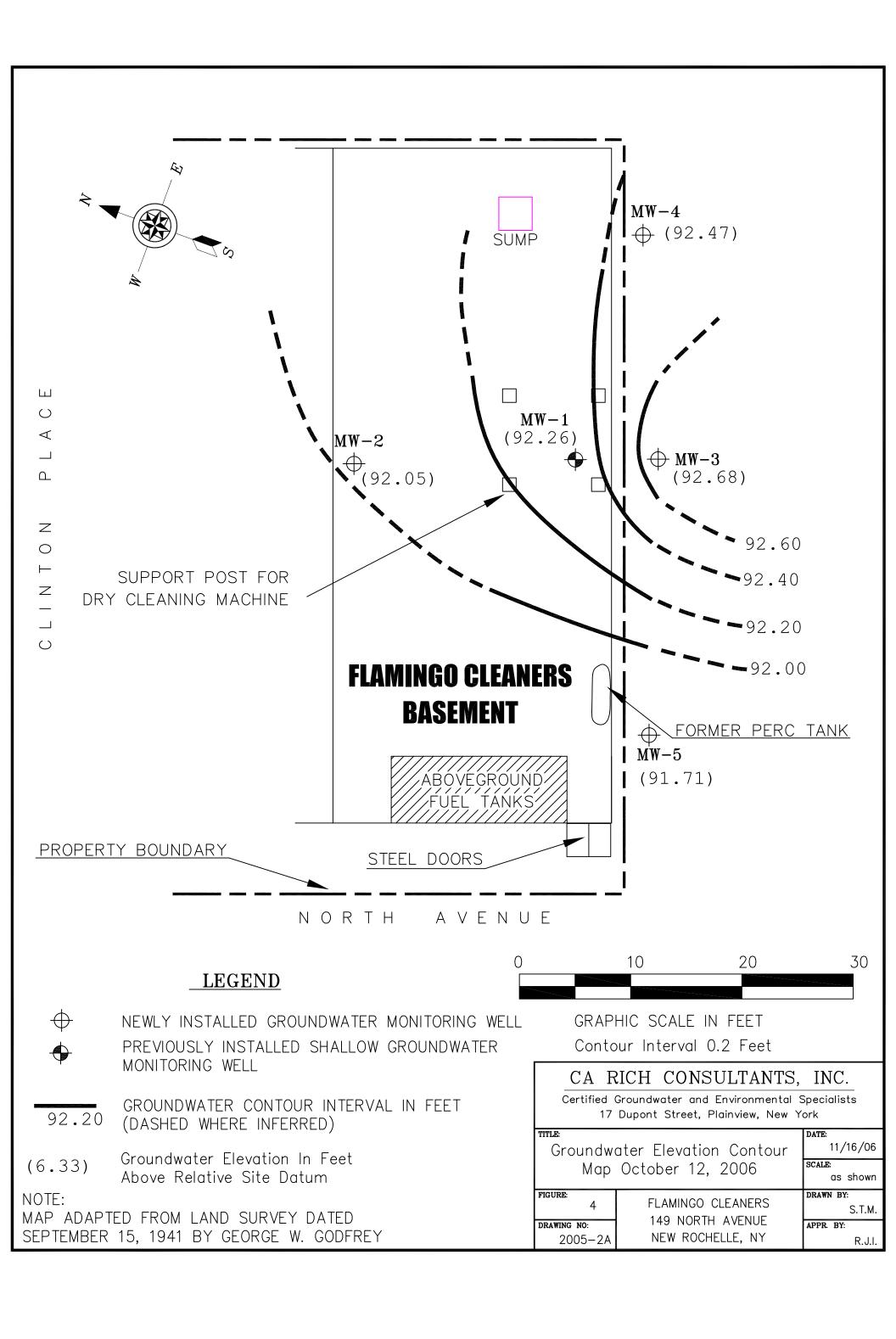
6.3 Air Quality

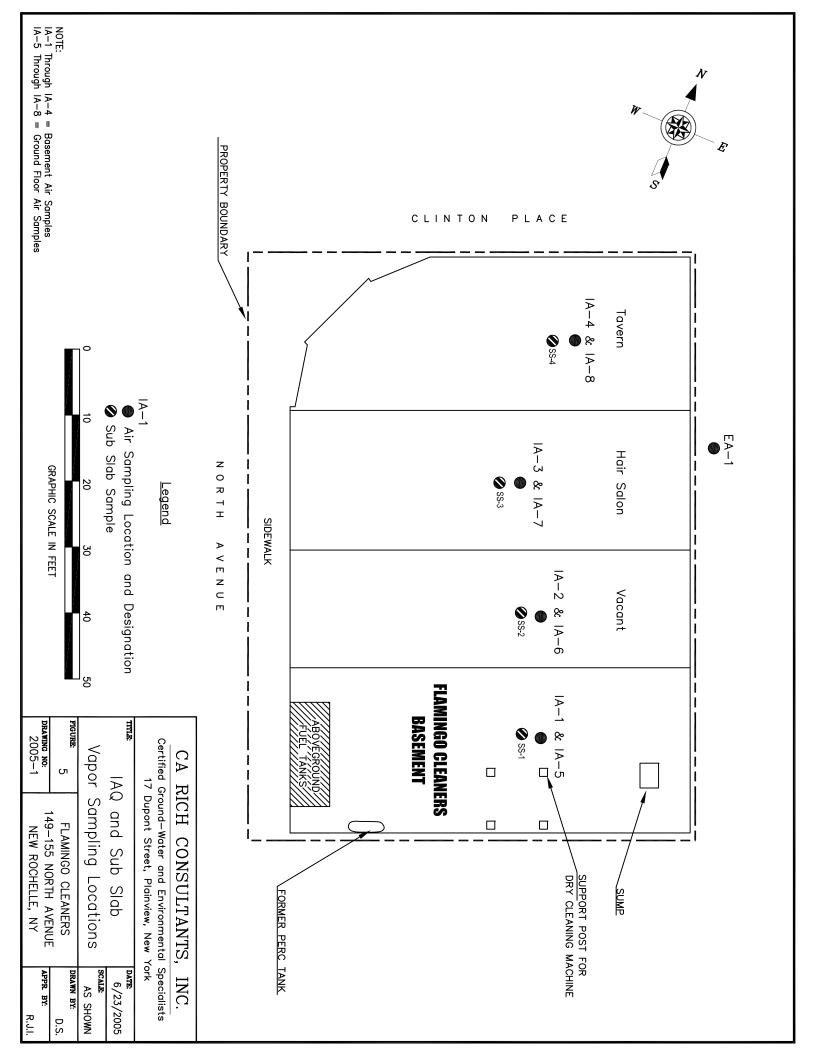
Results of vapor intrusion testing indicate the presence of CVOCs (particularly PCE) in the subslab soil vapor as well as the indoor air within the basements and ground-floor areas of Flamingo Cleaners and the neighboring vacant space at levels in excess of NYSDOH action levels. These vapors are most likely attributable to the presence of the groundwater contamination directly beneath the basement slab. Air Quality and soil vapor impacts appear most elevated within and below the Flamingo Cleaners location and decrease with increased distance away from this source. The on-site treatment and remediation of groundwater should effectively remove the source of on-site vapor and prevent the migration of vapor off-site.


As of the date of this report, an Interim remedial Measures (IRM) Work Plan has been prepared, approved and implemented to address the air quality issues. IRM activities were conducted in 2008/2009 and include installation of a sub-slab depressurization system beneath the Flamingo Cleaners basement and the adjacent basement for the vacant former travel agent. In addition, the sump has been sealed using a Dranjer trap to prevent vapor intrusion into the basement through the sump. Post IRM air quality testing shows acceptable air quality within all tenant spaces. IRM activities are summarized in the NYSDEC-approved IRM Report dated July 13, 2009.


000


REFERENCES


- 1. E.S. Asselstine & I.G. Grossman, (1955), The Groundwater Resources of Westchester County, USGS Bulletin GW-35.
- 2. CA Rich Consultants, Inc., (March 5, 2004) Phase II Environmental Investigation, Flamingo Cleaners, 149 North Avenue New Rochelle, New York.
- 3. CA Rich Consultants, Inc., (June 15, 2004) Indoor Air Quality Testing, 149-155 North Avenue, New Rochelle, New York.
- 4. CA Rich Consultants, Inc., (July 13, 2009) Revised Interim Remedial Measures Report, 149-155 North Avenue, New Rochelle, New York.
- 5. HRP Associates, Inc., (October 2003), Environmental Site Assessment, Commercial Building, 149-155 North Avenue, New Rochelle, New York.
- 6. NYSDEC, (January 24, 1994), Department's Technical And Guidance Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels.
- 7. NYSDEC, (October 22, 1993), Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values.
- 8. NYSDEC Division of Environmental Remediation, (May 2004), Draft Brownfield Cleanup Program Guide.
- 9. NYSDEC Division of Environmental Remediation, (December 2002), Draft DER-10, Technical Guidance for Site Investigation and Remediation.
- 10. New York State Department of Health (February 2005) Guidance for Evaluating Soil Vapor Intrusion in the State of New York (Public Comment Draft).
- 11. United States Geological Survey (1979) Mount Vernon, NY, Topographic Quadrangle Map.
- 12. Sax, N.I; "Dangerous Properties of Industrial Materials"; © 1984
- 13. NYSDEC. <u>6 NYCRR Part 375 Environmental Remediation Programs, Environmental Remediation Programs, Subparts 375-1 to 375- 4 & 375-6</u>. New York: Author, December 2006.


FIGURES

TABLES

Table 1 Analytical Results for Volatile Organic Compounds in Soil Samples Flamingo Cleaners 149 North Avenue, New Rochelle, NY

Sample ID Sample Depth (in feet)	B-12 0-6	B-12 RE 0-6	B-13 0-6	B-14 6-12	B-15 0-1	B-15 RE 0-1	B-16 6-12	B-17 6-12	B-18 8-10	B-19 8-10	B-20 9-10	B-20 (X)	FBS 6-1-06	FBS 5-31-06	FBS 5-30-06	Tripblank	NYSDEC	NYSDEC Part 375*	NYSDEC Part 375*
Matrix	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	TAGM	Unrestricted	Restricted Commercial
Date Sampled	5/30/2006	5/30/2006	5/31/2006	5/31/2006	5/31/2006	5/31/2006	5/31/2006	5/31/2006	5/31/2006	5/31/2006	6/1/2006	6/1/2006	6/1/2006	5/31/2006	5/30/2006		#4046	SCOs	SCOs
Volatile Organic Compounds																			
Method 8021																			
Units	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg	ug/Kg
<u>Parameters</u>			ND	ND	ND			ND	ND	ND	ND	ND	ND			NB	11017	111/0	10.00
Dichlorodifluoromethane Chloromethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV NGV	NVG NVG	NVG NVG
Vinyl Chloride Bromomethane	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	200 NGV	20 NVG	13,000
Chloroethane	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	1,900	NVG	NVG NVG
		ND																	
Trichlorofluoromethane 1.1-Dichloroethene	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV 400	NVG 330	NVG 500,000
Methylene Chloride	ND ND	ND ND	ND ND		110	ND ND		ND ND		88	85	ND 45	ND ND	ND ND	ND ND	ND ND	100	50	
trans-1.2 -Dichloroethene	ND ND			91	ND		ND		35			45 ND	ND ND	ND ND			300	50 190	500,000
1.1-Dichloroethane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	200	270	500,000
	ND ND						ND					ND ND						270 760	240,000
Carbon Tetrachloride Chloroform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	600 300	760 370	22,000
							ND					ND ND						680	350,000
1,1,1-Trichloroethane 1,2-Dichloroethane	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND		ND	ND	ND	ND	800 100	20	500,000
Trichloroethene	ND ND	ND ND	ND 32	ND 16 J	ND 33	ND	ND ND	ND 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	700	470	30,000
			ND		ND	14 J					ND ND	ND ND	ND ND			ND ND	700 NGV	NVG	200,000 NVG
1,2-Dichloropropane Dibromomethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
Bromodichloromethane			ND ND		ND ND	ND ND		ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		NGV	NVG	NVG NVG
t-1,3-Dichloropropene	ND ND	ND		ND			ND		ND							ND	NGV	NVG	NVG NVG
cis-1,3-dichloropropene	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
1.1.2-Trichloroethane					ND	ND	ND		ND				ND ND				NGV	NVG	NVG NVG
1,1,2-1 richioroethane 1,3-Dichloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	300	NVG NVG	NVG NVG
1,3-Dichloropropane 2-Chloroethyl vinyl ether	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
Dibromochloromethane	ND		ND	ND	ND	ND	ND		ND	ND	ND	ND	ND ND	ND	ND	ND	NGV	NVG	NVG
1.2-Dibromoethane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
Tetrachloroethene	10 J	5.3 J	440	60	910	400	ND	390	ND	ND	ND	ND	0.55 J	ND	ND	ND	1.400	1.300	150.000
1.1.1.2-Tetrachloroethane	ND	5.3 J ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	0.55 J ND	ND ND	ND ND	ND ND	NGV	1,300 NVG	150,000 NVG
1,1,1,2-Tetrachioroethane Bromoform	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
1,1,2,2-Tetrachloroethane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG NVG
1,2,3-Trichloropropane	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NGV	NVG	NVG
1.2-Dibromo-3-Chloropropane	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NGV	NVG	NVG
1,2-Dibrollio-3-Chloropropane	IND	ND	ND	ND	IND	ND	IND	ND	ND	IND	IND	IND	ND	שאו	ND	ND	NGV	INVG	NVG

Notes:

ND - Compound analyzed for but not detected

NGV - No given value

J - Estimated value of analyte detected below quantitation limits

All concentrations are reported in microgrmas per kilogram (ug/Kg) or parts per billion

Boxed Concentrations Indicate A Value Above NYSDEC Cleanup Levels

Bold Concentration Indicated A Value Above NYSDEC Part 375 Unrestricted SCOs

*NYSDEC Technical and Administrative Guidance Memorandum: Determination of Soil Cleanup objectives and Cleanup Levels; January 24, 1994

*6 NYSCRR Part 375: Environmental Remediation Programs: Subparts 375-1 to 375-4 & 375-6; December 14, 2006.

Projects/Flamingocleaners/Remedial Investigation 2006/tables/ soils

Table 2
Analytical Results for Base-Neutral Organic Compounds in Soil Samples
Flamingo Cleaners
149 North Avenue, New Rochelle, NY

Sample ID	B16	NYSDEC	NYSDEC	NYSDEC
Sample Depth in Feet	6-12		Part 375*	Part 375*
Matrix	Soil	TAGM	Unrestricted	Resricted Commercial
Date Sampled	5/31/2006	#4046	SCOs	SCOs
Base-Neutral Organic Compounds				
Method 8270				
Units	<u>ug/Kg</u>	<u>ug/Kg</u>	<u>ug/Kg</u>	<u>ug/Kg</u>
<u>Parameters</u>				
Napthalene	ND	13,000	1,200	500,000
Acenaphthene	ND	50,000	20,000	500,000
luorene	ND	50,000	30,000	500,000
Phenanthrene	ND	50,000	100,000	500,000
Anthracene	ND	50,000	100,000	500,000
Fluoranthene	ND	50,000	100,000	500,000
Pyrene	ND	50,000	100,000	500,000
Benzo(a) anthracene	ND	224	1,000	5,600
Chrysene	ND	400	1,000	56,000
Benzo(b) fluoranthene	ND	1,100	1,000	5,600
Benzo(k) fluoranthene	ND	1,100	800	56,000
Benzo(a) pyrene	ND	61	1,000	1,000
deno (1, 2, 3 -cd) pyrene	ND	3,200	500	5,600
Dibenzo (a, h) anthracene	ND	14	330	560
Benzo (g, h, i) perylene	ND	50,000	100,000	500,000

TABLE 3

Analytical Results for Halogenated Volatile Organic Compounds In Geoprobe Groundwater Samples

Flamingo Cleaners

149 North Avenue, New Rochelle, NY

Sample ID	B-18	B-18	B-18 DL	B-19	B-19 DL	B-19	B-19 DL	GWB-20	GWB-20	GWB-20 RE	GWB-20 (X)	Trip Blank	FB 6-1-06	BW 5-31-200	BW 5-30-200	NYSDEC
Sample Interval	17-13	13-9	13-9	18-14	18-14	14-10	14-10	14-18	10-14	10-14						
Date Sampled	5/31/2006	5/31/2006	5/31/2006	5/30/2006	5/30/2006	5/30/2006	5/30/2006	6/1/2006	6/1/2006	6/1/2006	6/1/2006	6/1/2006	6/1/2006	5/31/2006	5/30/2006	TOG*
Halogenated VOCs																
Method 8260																
Units	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L	ug/L						
Dichlorodifluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Chloromethane	ND	3.5 J	ND	2.3 J	180 J	2.1 J	ND	ND	1.7 J	ND	ND	ND	ND	ND	ND	NGV
Vinyl Chloride	ND	ND	0.48 J	ND	ND	ND	ND	ND	ND	2						
Bromomethane	ND	ND	3,600 J	3.5 J	760 J	3.5 J	710 J	ND	3.4 J	200 J	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Trichlorofluoromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
1,1-Dichloroethene	ND	ND	ND	4.8 J	ND	7.8	ND	ND	0.95 J	ND	ND	ND	ND	ND	ND	5
Methylene Chloride	ND	ND	ND	1.5 J	ND	2.3 J	ND	ND	1.5 J	ND	ND	ND	ND	ND	ND	5
trans-1,2 -Dichloroethene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Chloroform	ND	ND	0.52 J	ND	ND	ND	ND	ND	ND	7						
1,1,1-Trichloroethane	ND	42	ND	39	ND	77	ND	ND	8.1	ND	ND	ND	ND	ND	ND	5
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6						
Trichloroethene	ND	100	ND	29	ND	49	ND	ND	92	ND	ND	ND	ND	ND	ND	5
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	1						
Dibromomethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Bromodichloromethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	50						
t-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4**						
cis-1,3-dichloropropene	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.4						
1,1,2-Trichloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	1						
1,3-Dichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND	ND	ND	ND	NGV						
Dibromochloromethane	ND	ND	ND	ND	ND	3,700 E	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
1,2-Dibromoethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Tetrachloroethene	60,000	13,000 E	19,000	3,400 E	1,000	2,800 E	870 J	13,000	ND	1,400	10,000	ND	ND	ND	ND	5
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
Bromoform	ND	ND	ND	ND	ND	ND	ND	ND	ND	50						
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
1,2,3-Trichloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04						
Bromobenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	5						
1,2-Dibromo-3-Chloropropane	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04						

Notes:

NGV - No Given Value ND - Analyzed for but not detected.

J - Estimated value

E - Value exceeds calibration range

All concentrations are reported in micrograms per liter or parts per billion.

* NYSDEC Technical and Operational Guidance Series (1.1.1) Ambient Water Quality Standards and Guidance Values; October 1993.

** - The guidance value is equal to the sum of the cis- and trans- values.

Projects/Flamingocleaners/Remedial Investigation 2006/tables/ groundwater

TABLE 4

Analytical Results for Halogenated Volatile Organic Compounds In Microwell Groundwater Samples
Flamingo Cleaners
149 North Avenue, New Rochelle, NY

Sa	mple ID	MW-1	MW-2	MW-2D	MW-3	MW-4	MW-5	Trip Blank	Field Blank	NYSDEC
Date S	6/13/2006	6/13/2006	6/13/2006	6/13/2006	6/13/2006	6/13/2006	6/13/2006	6/13/2006	TOG*	
Halogenate	ed VOCs									
Metho	od 8021									
	Units	ug/L	ug/L	ug/L						
Dichlorodifluoromethane		ND	ND	5						
Chloromethane		ND	ND	NGV						
Vinyl Chloride		ND	ND	2						
Bromomethane		ND	ND	5						
Chloroethane		ND	ND	5						
Trichlorofluoromethane		ND	ND	5						
1,1-Dichloroethene		ND	ND	5						
Methylene Chloride		ND	ND	5						
trans-1,2 -Dichloroethene		ND	ND	5						
1,1-Dichloroethane		ND	ND	5						
Carbon Tetrachloride		ND	ND	5						
Chloroform		ND	ND	7						
1,1,1-Trichloroethane		ND	ND	5						
1,2-Dichloroethane		ND	ND	0.6						
Trichloroethene		ND	45 J	49 J	ND	ND	ND	ND	ND	5
1,2-Dichloropropane		ND	ND	1						
Dibromomethane		ND	ND	5						
Bromodichloromethane		ND	ND	50						
t-1,3-Dichloropropene		ND	ND	0.4**						
cis-1,3-dichloropropene		ND	ND	0.4						
1,1,2-Trichloroethane		ND	ND	1						
1,3-Dichloropropane		ND	ND	5						
2-Chloroethyl vinyl ether		ND	ND	NGV						
Dibromochloromethane		ND	ND	50						
1,2-Dibromoethane		ND	ND	5						
Tetrachloroethene	[55,000	520	460	30,000	27 J	1,700	ND	ND	5
1,1,1,2-Tetrachloroethane		ND	ND	5						
Bromoform		ND	ND	50						
1,1,2,2-Tetrachloroethane		ND	ND	5						
1,2,3-Trichloropropane		ND	ND	0.04						
Bromobenzene		ND	ND	5						
1,2-Dibromo-3-Chloropropan	е	ND	ND	0.04						

Notes:

NGV - No Given Value

ND - Analyzed for but not detected.

J - Estimated value

All concentrations are reported in micrograms per liter or parts per billion.

* NYSDEC Technical and Operational Guidance

Series (1.1.1) Ambient Water Quality Standards

and Guidance Values; October 1993.

** - The guidance value is equal to the sum of the cis- and trans- values.

Projects/Flamingocleaners/Remedial Investigation 2006/tables/ groundwater

TABLE 5

Summary of Analytical Detections for Sub Slab Soil Vapor Samples Flamingo Cleaners 149-155 North Avenue New Rochelle, NY

Sample ID	SS-1	SS-2	SS-3	SS-4
Matrix Date Sampled Location	Flamingo Sub	Soil Vapor 3/21/2006 Vacant Sub Slab	Soil Vapor 3/21/2006 Hair Salon Sub Slab	Soil Vapor 3/21/2006 Tavern Sub Slab
Method EPA TO-15				
<u>Parameters</u>	ug/m³	ug/m³	ug/m³	ug/m³
Acetone Carbon Disulfide Chloroethane Chloroform cis-1,2-Dichloroethylene trans - 1,2 - Dichloroethylene Isopropyl Alcohol Methyl ethyl ketone Methyl Tertiary Butyl Ether (MTBE) 1,1,1-Trichloroethane 2,2,4-Trimethylpentane Tetrachloroethylene Tetrahydrofuran Toluene Trichloroethylene	ND ND 662 ND 37,200 273 ND ND 1,510 ND 572,000 ND ND ND 21,900	295 ND ND ND 5,230 ND ND 167 69.8 J ND 453,000 ND ND 6,930	ND ND ND 476 ND 140 ND 149 ND ND 34,000 ND ND 586	651 31.00 ND 59.10 448 ND 173 107 1,070 115.0 74.3 15,700 40 64.8 580

Notes

All concentrations are reported in micrograms per cubic meter (ug/m³)

J = Indicates an estimated value

a = Results if from run #2

ND = Compound was analyzed for but was not detected

* = Mitigate regardless of indoor air concentration

Projects/Flamingo/Table 2 Subslab Soil Vapor testing

TABLE 6

Summary of Analytical Detections for Indoor and Outside Ambient Air Samples Flamingo Cleaners 149-155 North Avenue New Rochelle, NY

Sample ID	IA-1	IA-2	IA-3	IA-4	IA-5	IA-6	IA-7	IA-8	EA-1 Outside	NYSDOH	NYSDOH
Matrix	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Indoor Air	Ambient Air	Ambient	Indoor
Date Sampled	3/21/2006	3/21/2006	3/21/2006	3/21/2006	3/21/2006	3/21/2006	3/21/2006	3/21/2006	3/21/2006	Air	Background
	Flamingo 1st	Vacant 1st	Hair Salon 1st	Tavern 1st	Flamingo	Vacant	Hair Salon	Tavern	Exterior NE	Guidance	3
Location	Floor	Floor	Floor	Floor	Basement	Basement	Basement	Basement	Corner	Value*	Levels**
Method											
EPA TO-15											
<u>Parameters</u>	ug/m³	ug/m³	ug/m ³	ug/m ³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³	ug/m³
Acetone	19	20	120 a	2.2	15	12	32.3	16	6.7	NGV	NGV
Benzene	0.93	0.73	0.73	ND	1.6	0.83	0.96	0.96	0.99	NGV	<3.2 - 5
Chloroform	ND	ND	0.63 J	ND	0.63 J	ND	0.41 J	ND	ND	NGV	<1.0 - 4.3
Chloromethane	1.3	1.0	1.1	0.29 J	0.81	0.85	0.91	0.87	1.4	NGV	<1.0
Carbon Tetrachloride	0.61 J	ND	ND	ND	0.52 J	0.52 J	0.50 J	ND	0.58 J	NGV	<3.1
Cyclohexane	ND	ND	ND	ND	2.9	0.72	0.72	0.48 J	ND	NGV	NGV
Dichlorodifluoromethane	3.3	2.4	2.9	0.41 J	2.8	2.6	2.9	2.7	3.1	NGV	NGV
cis-1,2-Dichloroethylene	ND	ND	ND	ND	0.71 J	ND	ND	ND	ND	NGV	<1.0
o-Dichlorobenzene	4.4	ND	ND	ND	10	ND	1.6	ND	ND	NGV	NGV
Ethanol	108 a	241E	117 a	119 E	107 a	96.0	178 E	303 E	9.8	NGV	NGV
Ethylbenzene	0.48 J	ND	ND	ND	1.8	0.43 J	0.56 J	0.41 J	ND	NGV	<3.4 - 4.8
Ethyl Acetate	1.5	ND	2.0	ND	ND	ND	ND	ND	0.61 J	NGV	NGV
4-Ethyltoluene	1.1	ND	ND	ND	4.4	0.46 J	0.49 J	ND	ND	NGV	NGV
Freon 113	ND	ND	ND	ND	0.84 J	1.8	0.68 J	0.67 J	0.92 J	NGV	NGV
Heptane	1.3	0.49 J	0.82	ND	5.3	0.90	1.0	0.70 J	ND	NGV	NGV
Hexachlorobutadiene	ND	ND	ND	ND	ND	ND	2.7	ND	ND	NGV	NGV
Hexane	1.6	0.81	1.4	ND	6.0	2.3	2.7	1.3	0.56 J	NGV	NGV
Isopropyl Alcohol	3.9	2.7	5.2	1.5	4.2	ND	ND	ND	1.2	NGV	NGV
Methylene Chloride	1.4	0.59 J	0.66 J	ND	3.8	1.6	0.76	0.63 J	0.66 J	60	<3.0 - 5.6
Methyl ethyl ketone	ND	ND	1.7	ND	ND	ND	ND	ND	ND	NGV	NGV
Methyl Tertiary Butyl Ether (MTBE)	ND	ND	ND	ND	0.65 J	ND	ND	ND	ND	NGV	NGV
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	1.4	ND	ND	NGV	<1.5
1,2,4-Trimethylbenzene	3.9	0.88 J	0.84 J	ND	15	1.4	1.8	1.1	0.45 J	NGV	<4.4-7.0
1,3,5-Trimethylbenzene	1.2	ND	ND	ND	4.8	0.59 J	0.64 J	ND	ND	NGV	<5.0
2,2,4-Trimethylpentane	ND	0.41 J	1.0	ND	1.5	1.8	2.5	0.79 J	ND	NGV	NGV
Tetrachloroethylene	732 a	119	92.9	7.5	1,040 a	115	136	86.8	0.95 J	100	<3.7
Toluene	2.8	1.8	2.6	0.33 J	5.3	2.4	3.5	2.1	2.0	NGV	6.5 - 25
Trichloroethylene	8.1	0.86 J	ND	ND	2.7	0.59 J	1.1	0.49 J	ND	5	<2.7
Trichlorofluoromethane	2.2	1.6	1.6	ND	1.5	1.4	1.5	1.6	1.7	NGV	NGV
m,p-Xylene	2.1	0.96	1.0	ND	7.8	1.4	1.7	1.3	1.0	NGV	<4.4 - 9.5
o-Xylene	1.6	0.43 J	0.52 J	ND	6.5	0.83 J	0.91	0.61 J	ND	NGV	<3.8 - 5.0
Xylenes (total)	3.6	1.4	1.5	ND	14	2.2	2.6	1.9	1.0	NGV	<3.8 - 9.5

Notes:

All concentrations are reported in micrograms per cubic meter (ug/m 3)

J = Indicates an estimated value

E = Indicates value exceeds calibration range

a = Results if from run #2

ND = Compound was analyzed for but was not detected

Boxed value indicates that compound was above NYSDOH Guidance Value

NA = Not applicable

Projects/Flamingo/Table 2 IAQ and Soil Vapor testing

NGV = No given value

Prepared By CA RICH CONSULTANTS, INC. 6/22/2010

^{*} NYSDOH Air Guidance Values for Indoor Air

^{** =} Background indoor/outdoor air levels of VOCs in Homes Sampled by NYSDOH, 1989-1996.

Table 7 Inventory of Stored Chemicals Flamingo Cleaners 3/21/06

Location	Stored Chemical	Quantity
Flamingo Cleaners Ground Floor	PCE	approx. 1 pint (in sprayer)
Ground Floor	Surfactant/soap BPR (stain remover)	used for spot removal 55-gal. 5 gal.
Flamingo Cleaners		
Basement	Motor oil Lube oil	1 qt. 1 qt.
Vacant Space		
Ground Floor	none	
Vacant Space Basement	Acetone	1 qt.
	Turpentine Latex Paint	1 qt. 2 gal.
Hair Salon		
Ground Floor	Shampoos Conditioners	mias sautainava
Hair Salon	Perm solution	misc. containers
Basement	Antifreeze Mineral spirits	1 gal. 1 qt.
	Freon	cylinder
Tavern		
Ground Floor	none	
Tavern Basement	CO ² Joint compound & Paint Tile Mastic	cylinder 10 gal. 5 gal.

APPENDIX A

Data Usability Summary Report

Premier Environmental Services

DATA USABILTY SUMMARY REPORT (DUSR) OF THE FLAMINGO RI

ORGANIC ANALYSES
IN AQUEOUS AND
NON-AQUEOUS SAMPLES

CHEMTECH CONSULTING GROUP MOUNTAINSIDE, NEW JERSEY

PROJECT NO.: X3074

September, 2006

Prepared for C.A. Rich Consultants, Inc. Plainview, New York

Prepared by
Premier Environmental Services
2815 Covered Bridge Road
Merrick, New York 11566
(516)223-9761

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR: Volatile Organic Analyses, Stars Semivolatile Organic Analyses

SITE: Flamingo RI

CONTRACT LAB: Chemtech Consulting Group

Mountainside, New Jersey

PROJECT NO.: X3074

REVIEWER: Renee Cohen

DATE REVIEW COMPLETED: September, 2006

MATRIX: Aqueous, Non-Aqueous

The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition the data was been reviewed using the protocol specified in the NYS Analytical Services Protocol ('95).

All data are considered valid and acceptable except those analytes which have been rejected "R" (unreliable/unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

This data assessment is for twelve (12) non-aqueous samples, three (3) Field Blank samples and one (1) Trip Blank sample. The samples were collected on May 30, 2006, May 31, 2006 and June 1, 2006. The samples in this data set were shipped to Chemtech Consulting Group located in Mountainside, New Jersey. The samples were received at the laboratory on June 2, 2006. The samples were analyzed for Volatile and Semivolatile Organic Analytes as specified on the Chain of Custody (COC) documentation that accompanied the samples to the laboratory.

A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. A list of definitions that may be used in this report is located in Appendix A. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C. Appendix D of this report contains copies of the data summary forms associated with this data set as submitted by the laboratory. Data qualifiers have not been added to these forms.

1. OVERVIEW:

The ten (10) non-aqueous samples, three (3) Field Blank samples and one (1) Trip Blank sample were submitted to the laboratory for the analyses requested on the Chain of Custody (COC) documentation. The samples were analyzed for the organic analytes using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260B and 8270C. Proper custody transfer of the samples was documented in the laboratory report. The laboratory provided a deliverables package in accordance with the guidelines in the NYSDEC ASP, Rev '95, Category B.

Ten (10) soil samples, three (3) Field Blank samples and one (1) Trip Blank sample were analyzed for Volatile Organic Analytes using EPA Method 8260 B.

One (1) soil sample was analyzed for the Stars list of Semivolatile Organic Analytes using EPA Method 8270C.

2. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous and non-aqueous samples is 14 days from collection. Base Neutral Semivolatile Organic and Polychlorinated Biphenyl samples are to be prepared/extracted within five (5) days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly samples is to prepare the aqueous samples within 7 days of collection and the soil samples within fourteen days of collection.

Volatile Organic Analyses – All of the soil samples and all of the aqueous samples with the exception of Field Blank FBS-5-31-06 and Field Blank FBS-5-30-06 were analyzed within the ten (10) days of VTSR. These field blank samples were analyzed outside the NYSDEC and technical holding time. The target analyte results in samples FBS-5-31-06 and FBS-5-30-06 has been qualified "UJ/J" estimated.

Qualified data result pages are located in Appendix B of this report.

Semivolatile Organic Analyses – One (1) sample in this data set was analyzed for the STARS List of SVOA analytes. This sample was extracted and analyzed on June 7, 2006. This sample and the associated QC was prepared and analyzed within the NYS DEC Holding Time.

3. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples.

Volatile Organic Analyses – Each sample in this data set was spiked with the surrogate compounds 1,2-Dichloroethane-d4, 4-Bromofluorobenzene, Toluene-d8 and Dibromofluoromethane. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field samples associated with this data set with the exception of Dibromofluoromethane in sample B-12 (0-6). The sample was reanalyzed and comparable data was obtained. The low recovery of this surrogate compound confirms the presence of matrix interference. Soil sample B-12 (0-6) and B-12 (0-6)RE have been qualified "UJ/J" estimated.

Surrogate compound 1,2-Dichloroethane-d4 and Dibromofluoromethane exceeded QC limits in sample B-15 (0-1). The sample was reanalyzed and the recovery of 1,2-Dichloroethane-d4 was acceptable, however, the recovery of Dibromofluoromethane was still outside QC limits. Target analytes in sample B-15(0-1) and B-15 (0-1)RE have been qualified "UJ/J" estimated.

The surrogate recovery of Dibromofluoromethane exceeded QC limits in the Trip Blank sample associated with this data set. The recovery was slightly below QC limits. The sample was not reanalyzed by the laboratory. All target analytes have been qualified "UJ/J" estimatated in this sample.

Qualified data result pages are located in Appendix B of this report.

Base Neutral Semivolatile Organic Analyses – Soil sample B-16 (6-12) was spiked with the base neutral surrogate compounds Nitrobenzene-d5, 2-Fluorobiphenyl and Terphenyl-d14. All surrogate recoveries met QC criteria in this sample.

4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data. The laboratory used the in-house generated recovery criteria and RPD (precision) data for reporting purposes.

Volatile Organic Analyses – Sample B-20 (9-10) was utilized for the MS/MSD analyses. All percent recoveries with the exception of Methylene Chloride in both the MS and MSD sample met QC criteria. All Relative Percent Differences (RPD's) with the exception of Methylene Chloride met QC criteria in the MS/MSD sample set. No action is taken based on the MS/MSD alone.

Base Neutral Semivolatile Organic Analyses – Batch QC was utilized for the MS/MSD analysis. A full component spike was analyzed, however only target compounds were reported in accordance with the method. All in-house matrix spike recovery limits and RPD limits met QC criteria in this Batch QC sample.

5. BLANK SPIKE ANALYSIS:

The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to insure that the analytical system is in control. The laboratory applied in-house recovery limits for each analyte.

Volatile Organic Analytes – The laboratory performed one blank spike analysis with each sample batch. Blank spike data was included in the report. The blank spike sample was spiked with all reported analytes. All spike recoveries in the blank spike sample were reported. Data was not qualified based on the recovery of the analyte in the blank spike sample.

Base Neutral Semivolatile Organic Analytes – The laboratory performed one blank spike analysis with this data set. The sample was spiked with all reported analytes. All spike recoveries with the exception of Indeno(1,2,3-cd)pyrene met QC criteria. The recovery of Indeno(1,2,3-cd)pyrene was above QC limits. This target analyte was not detected in the field sample, therefore no action was taken.

6. BLANK CONTAMINATION:

Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected.

A) Method Blank contamination

Volatile Organic Analyses – Five (5) method blank analyses are associated with this data set. Each method blank was free from contamination of target analytes.

Base Neutral Semivolatile Organic Analyses – One (1) aqueous method blank analyses are associated with this data set. It was free from contamination of all target analytes.

B) Field Blank contamination

Volatile Organic Analyses – Three (3) Field Blank samples are associated with this data set. Each field blank sample was free from contamination of target analytes with the exception of Tetrachloroethene which was detected in FBS-6-1-06 at a concentration of 0.55 ug/l. This field blank sample is associated with samples B-20(9-10) and B-20(X). Tetrachloroethene was not detected in either of these field samples therefore, no action was taken.

Base Neutral Semivolatile Organic Analyses - The Field Blank samples in this data set were not analyzed for the Base Neutral Semivolatile Organic analytes.

C) Trip Blank contamination

Volatile Organic Analyses - The Trip Blank sample was free from contamination. The Trip Blank associated with this data set was free from contamination.

7. GC/MS CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. USEPA data validation criteria is the same for all analytes in both GC/MS Volatile and GC/MS Semivolatile Organic analyses, therefore, all text discussion is for VOA and SVOA samples analyses.

A) RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. USEPA data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). USEPA data validation criteria states that if the minimum RRF criteria is not met in an initial calibration the positive results are qualified "J". Non detect results in the initial calibration with a RRF <0.05 are qualified "R", unusable. If RRF criteria is not met in the continuing calibration curve analysis, effected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria is set for these analytes. If the minimum criteria is not met, analyses must stop and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the USEPA criteria.

Volatile Organic Analyses - One (1) aqueous calibration curve is associated with this data set. The laboratory performed an aqueous initial five (5) point multi level calibration using the standards 5 ppb through 200 ppb on May 30, 2006 (Inst. H). The RRF for all target compounds met QC criteria.

Two (2) continuing calibration standards are associated with the aqueous samples in this data set. All RRF criteria were met in each of the continuing calibration standard analyses.

Two (2) non-aqueous calibration curves are associated with the soil samples in this data set. The laboratory performed the non-aqueous initial five (5) point multi level calibrations on June 6, 2006 (Inst. K) and June 12, 2006 (inst. K). The RRF for all target compounds met QC criteria.

Three (3) continuing calibration standards are associated with the non-aqueous samples in this data set. All RRF criteria were met in each of the continuing calibration standard analyses.

Base Neutral Semivolatile Organic Analyses - One (1) non-aqueous calibration curve is associated with this data set. The laboratory performed an initial six (6) point multi level calibration using the standards 10 ppb through 80 ppb on May 22, 2006 (Inst. F). The RRF for all target compounds met QC criteria.

Two (2) continuing calibration standards are associated with the non-aqueous samples in this data set. All RRF criteria were met in each of the continuing calibration standard analyses.

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 30%. The %D must be <25% in the continuing calibration standard. This criteria has been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgement. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unuseable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines.

Volatile Organic Analyses – One (1) aqueous calibration curve is associated with this data set. The initial calibration curve was analyzed on May 30, 2006 (Inst. H). All RSD% met QC criteria in this calibration curve analysis with the exception of 1,2-Dibromomethane (30.2%). The laboratory utilized linear fit for calibraton purposes. This target analyte has been qualified "UJ/J" estimated in all of the aqueous samples in this data set.

Two (2) continuing calibration standards are associated with the samples in this data set. The %Difference met QC criteria for all analytes with the exception of that listed below:

Date of Analysis	File ID	Analyte	%Difference
6/10/06	VH007308	Chloroemethane Bromoethane Chloroethane Trichlorofluoromethane Carbon Tetrachloride 1,2-Dichloroethane Dibromomethane Bromodichloromethane trans 1,3-Dichloropropene 1,2-Dibromomethane Tetrachloroethene 1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane	50.0 33.3
6/15/06	VH007465	1,2-Dibromo-3- chloropropene Dichlorodifluoromethane Chloroemethane Chloroethane Trichlorofluoromethane Dibromomethane trans 1,3-Dichloropropene cis 1,3-Dichloropropene 2-CEVE 1,2-Dibromomethane Tetrachloroethene 1,1,1,2-Tetrachloroethane	34.0 69.9 61.1 35.9

7. GC/MS CALIBRATION (cont'd):

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D) (Cont'd)

Two (2) non-aqueous calibration curve analyses are associated with this data set. The initial calibration curves were analyzed on June 6, 2006 (Inst. K) and June 12, 2006 (Inst. K). All RSD% met QC criteria in these calibration curve analyses.

Three (3) continuing calibration standards are associated with the samples in this data set. The %Difference met QC criteria for all analytes with the exception of that listed below:

Date of Analysis	File ID	Analyte	%Difference
6/8/06	VK006874	Methylene Chloride	53.9

All samples associated with this continuing calibration curve analysis have been qualified "UJ/J" estimated for the target analytes that did not meet %Difference QC criteria in these standards.

Qualified data result pages are located in Appendix B of this report.

Base Neutral Semivolatile Organic Analyses - One (1) non-aqueous calibration curve is associated with this data set. The laboratory performed an initial six (6) point multi level calibration using the standards 10 ppb through 80 ppb on May 22, 2006 (Inst. F). The Relative Standard Deviation (%RSD) for all target compounds met QC criteria.

Two (2) continuing calibration standards are associated with the samples in this data set. The %Difference met QC criteria for all analytes with the exception of that listed below:

File ID	Analyte	%Difference
BF004017	Indeno(1,2,3-cd)pyrene	69.0
	Benzo(b)fluoranthene	42.6
	Benzo(k)fluoranthene	47.9
	Dibenz(a,h)anthracene	32.5
	Benzo(g,h,i)perylene	30.8
BF004044	Benzo(b)fluoranthene	50.8
	Benzo(k)fluoranthene	36.0
	BF004017	BF004017 Indeno(1,2,3-cd)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Benzo(g,h,i)perylene BF004044 Benzo(b)fluoranthene

Sample B-16 (6-12) has been qualified "UJ/J" estimated for the target analytes that did not meet %Difference QC criteria in these standards.

Qualified data result pages are located in Appendix B of this report.

All samples have been qualified "UJ/J" estimated for the target analytes that did not meet %Difference QC criteria in these standards.

Qualified data result pages are located in Appendix B of this report.

8. GC/MS MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB). The tuning compound for semivolatile organic analyses is decafluorotriphenylphosphine (DFTPP). If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R".

Volatile Organic Analyses – All instrument Tuning criteria was met for these sample analyses.

Base Neutral Semivolatile Organic Analyses - All instrument Tuning criteria was met for these sample analyses.

9. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50%to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard evaluation criteria is applied to all field and QC samples.

Volatile Organic Analyses – All samples were fortified with the internal standards Pentafluorobenzene, 1,4-Difluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4. All internal standard criteria were met for these analyses.

Base Neutral Semivolatile Organic Analyses – The validated samples were fortified with the internal standards 1,4-Dichlorobenzene-d4, Naphthalene-d8, Acenaphthene-d10, Phenanthrene-d10, Chrysene-d12 and Perylene-d12. All Internal Standard QC criteria were met for the validated sample in this data set.

10. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound. Target compounds are identified on the GC by using the analytes retention time. Concentration is quantitated from the initial calibration curve.

Volatile Organic Analyses – All samples reported the VOA 8260 analytes specified on the COC documents. Each of the aqueous and non-aqueous samples in this data set were analyzed without dilution. All target analytes were reported within the calibrated range of the GC/MS. The laboratory reported the target analytes to the determined method detection limit.

10. COMPOUND IDENTIFICATION (cont'd):

Base Neutral Semivolatile Organic Analyses – One (1) non-aqueous sample in this data set was analyzed for the Stars List of Semivolatile Compounds. Sample B-16 (6-12) was reported without dilution. Target analytes were not detected in this sample analysis. Chemtech Consulting Group reported all results to the laboratory Method Detection Limit.

11. FIELD DUPLICATE ANALYSES:

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Analytes reported above the reporting limit are listed. Data was not qualified based on the RPD of field duplicate sample analyses. CA Rich Consultants collected sample B-20 (9-10) duplicate.

Sample ID: B-20 (9-10)/B-20 (X)

Analyte	Concentration (ug/kg)	Concentration (ug/kg)	RPD (%)
Methylene Chloride	85	45	30.8

Base Neutral Semivolatile Organic Analytes – A sample was not collected in duplicate for this set of analyses.

12 OVERALL ASSESSMENT:

Analytical QC criteria was met for these analyses. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

The data provided for this data set is acceptable for use, with the noted data qualifiers. All data qualifiers are detailed/defined in the above report.

Qualified data result pages are locate din Appendix B of this report.

Premier Environmental Services

DATA USABILTY SUMMARY REPORT (DUSR) OF THE FLAMINGO RI

ORGANIC ANALYSES IN AQUEOUS SAMPLES

CHEMTECH CONSULTING GROUP MOUNTAINSIDE, NEW JERSEY

PROJECT NO.: X3075

September, 2006

Prepared for C.A. Rich Consultants, Inc. Plainview, New York

Prepared by
Premier Environmental Services
2815 Covered Bridge Road
Merrick, New York 11566
(516)223-9761

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR:

Volatile Organic Analyses

SITE:

Flamingo RI

CONTRACT LAB:

Chemtech Consulting Group Mountainside, New Jersey

PROJECT NO .:

X3075

REVIEWER:

Renee Cohen

DATE REVIEW COMPLETED:

July, 2006

MATRIX:

Aqueous

The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition the data was been reviewed using the protocol specified in the NYS Analytical Services Protocol ('95).

All data are considered valid and acceptable except those analytes which have been rejected "R" (unreliable/unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

This data assessment is for ten (10) aqueous samples, one (1) Field Blank sample and two (2) Trip Blank samples. The samples were collected on May 30, 2006, May 31, 2006 and June 1, 2006. The samples in this data set were shipped to Chemtech Consulting Group located in Mountainside, New Jersey. The samples were received at the laboratory on June 2, 2006. The samples were analyzed for Volatile Organic Analytes (EPA Method 8260B) as specified on the Chain of Custody (COC) documentation that accompanied the samples to the laboratory.

A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. A list of definitions that may be used in this report is located in Appendix A. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C. Appendix D of this report contains a summary package of QC forms and data result pages. These have not been qualified and are copies of the pages found in the original data report.

1. OVERVIEW:

The seven (7) aqueous samples, three (3) Field Blanks and one (1) Trip Blank sample were submitted to the laboratory for the analyses requested on the Chain of Custody (COC) documentation. The samples were analyzed for the organic analytes using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260B. Proper custody transfer of the samples was documented in the laboratory report. The laboratory provided a deliverables package in accordance with the guidelines in the NYSDEC ASP, Rev '95, Category B.

2. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous and non-aqueous samples is 14 days from collection.

Volatile Organic Analyses – All of the field samples and QC samples associated with this data set were analyzed within the ten (10) days of VTSR with the exception of samples B-18 (17-13) and FBW-5/31/06. Each of these samples was analyzed one (1) day beyond the fourteen (14) day technical holding time. The target analytes in each of these samples has been qualified "UJ/J" estimated.

Qualified data result pages are located in Appendix B of this report.

3. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples.

Volatile Organic Analyses – Each sample was spiked with the surrogate compounds 1,2-Dichloroethane-d4, 4-Bromofluorobenzene, Toluene-d8 and Dibromofluoromethane. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field and QC samples associated with this data set with the exception of that listed below:

Surrogate	Recovery (%)
Dibromofluoromethane	126
1,2-Dichloroethane	67
Toluene-d8	124
Dibromofluoromethane	82
Toluene-d8	124
1,2-Dichloroethane-d4	66
Dibromofluoromethane	145
Toluene-d8	162
4-Bromofluorobenzene	131
1,2-Dichloroethane-d4	57
Dibromofluoromethane	146
Toluene-d8	163
4-Bromofluorobenzene	134
1,2-Dichloroethane-d4	62
Toluene-d8	123
	Dibromofluoromethane 1,2-Dichloroethane Toluene-d8 Dibromofluoromethane Toluene-d8 1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene 1,2-Dichloroethane-d4

Sample B-18 (13-9) was reanalyzed with a dilution due to the concentration of target analytes detected in the initial sample analysis. All surrogate recoveries met QC criteria in the dilution analysis of sample B-18 (13-9). Target analytes that were detected in the initial analysis of sample B-18 (13-9) have been qualified "J" estimated based on the recovery of Dibromofluoromethane (126%). Non-detect results are acceptable without data qualification.

Sample B-19 (18-14) was reanalyzed with a dilution due to the concentration of target analytes detected in the initial sample analysis. Comparable data was obtained in the dilution analysis of sample. Target analytes in both the initial and dilution analysis of sample B-19 (18-14) have been qualified "UJ/J" estimated.

Sample GWB-20 (10-14) was reanalyzed and acceptable surrogate recoveries were achieved in the re-analysis. The laboratory included data from both analyses in the report. Target analyte data from the initial analysis has been qualified "UJ/J" estimated. The target analyte data from the reanalysis was acceptable for use without data qualifiers.

All surrogate recoveries in un-spiked sample GWB-20 (14-18) met QC criteria. MS/MSD was not qualified based on these surrogate outliers.

Qualified data result pages are located in Appendix B of this report.

4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data. The laboratory used the in-house generated recovery criteria and RPD (precision) data for reporting purposes.

Volatile Organic Analyses – Sample GWB-20 (14-18) was utilized for the MS/MSD analyses. Fourteen (14) target analytes out of thirty two (32) exceeded QC limits in the MS analysis. Eighteen (18) target analytes out of thirty two (32) exceeded QC limits in the MSD analysis. Two RPD's exceeded QC limits in the MS/MSD analysis. Data is not qualified based on the percent recoveries in the MS/MSD sample analysis.

5. BLANK SPIKE ANALYSIS:

The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to insure that the analytical system is in control. The laboratory applied in-house recovery limits for each analyte.

Volatile Organic Analytes – The laboratory performed one blank spike analysis with each sample batch associated with this data set. Five (5) blank spike samples are associated with this data set. The field sample was spiked with all reported analytes. A number of reported analytes did not meet QC criteria in the blank spike samples. Blank spike samples should recovery all target analytes, sample, matrix is not an issue. The target analytes that did not meet laboratory QC criteria have been qualified "UJ/J" estimated in the effected field samples.

Qualified data result pages are located in Appendix B of this report.

6. BLANK CONTAMINATION:

Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected.

A) Method Blank contamination

Volatile Organic Analyses – Four (4) method blank analyses are associated with this data set. Each method blank was free from contamination of target analytes.

B) Field Blank contamination

Volatile Organic Analyses – Three (3) Field Blank samples are associated with this data set. Each Field Blank sample was free from contamination of all target analytes.

C) Trip Blank contamination

Volatile Organic Analyses - The Trip Blank sample associated with this data set was free from contamination of all target analytes.

7. GC/MS CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance.

A) RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. USEPA data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). USEPA data validation criteria states that if the minimum RRF criteria is not met in an initial calibration the positive results are qualified "J". Non detect results in the initial calibration with a RRF <0.05 are qualified "R", unusable. If RRF criteria is not met in the continuing calibration curve analysis, effected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria is set for these analytes. If the minimum criteria is not met, analyses must stop and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the USEPA criteria.

Volatile Organic Analyses - One (1) aqueous calibration curve is associated with this data set. The laboratory performed an initial five (5) point multi level calibration using the standards 1 ppb through 150 ppb on May 30, 2006 (Inst. H). The RRF for all target compounds met QC criteria.

Four (4) continuing calibration standards are associated with the aqueous samples in this data set. All RRF criteria were met in each of the continuing calibration standard analyses.

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 30%. The %D must be <25% in the continuing calibration standard. This criteria has been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgement. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unuseable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines.

Volatile Organic Analyses – One (1) aqueous initial calibration curve is associated with this data set. The initial calibration curve was analyzed on May 30, 2006 (Inst. H). All RSD% with the exception of 1,2-Dibromomethane met QC criteria in this calibration curve analysis. 1,2-Dibromomethane has been qualified "J/UJ" estimated in all samples associated with this data set.

Qualified data result pages are located in Appendix B of this report.

7. GC/MS CALIBRATION (cont'd):

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Four (4) continuing calibration standards are associated with the samples in this data set. The %Difference met QC criteria for all analytes with the exception of that listed below:

Date of Analysis	File ID	Analyte	%Difference
6/8/06	VH007232	Chloroemethane	76.7
		Chloroethane	45.0
		Trichlorofluoromethane	44.6
		Methylene Chloride	28.8
		Carbon Tetrachloride	49.3
		1,1,1-Trichloroethane	36.7
		1,2-Dichloroethane	44.7
		Dibromomethane	60.8
		Bromodichloromethane	47.3
		trans 1,3-Dichloropropene	40.0
		cis 1,2-Dichloropropene	29.3
		1,2-Dibromomethane	46.8
		Tetrachloroethene	37.0
		1,1,1,2-Tetrachloroethane	31.4
		1,2,3-Trichloropropane	91.5
		1,2-Dibromo-3-Chloropropane	34.9
6/10/06	VH007308	Chloroemethane	34.2
		Bromomethane	39.8
		Chloroethane	40.6
		Trichlorofluoromethane	37.7
		Carbon Tetrachloride	39.9
		1,2-Dichloroethane	30.6
		Dibromomethane	49.3
		Bromodichloromethane	31.2
		trans 1,3-Dichloropropene	43.7
		1,2-Dibromomethane	50.0
		Tetrachloroethene	33.3
		1,1,1,2-Tetrachloroethane	26.4
		1,2,3-Trichloropropane	92.4
		1,2-Dibromo-3-Chloropropane	32.0

7. GC/MS CALIBRATION (cont'd):

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

6/12/06	VH007361	Dichlorodifluoromethane	30.5
		Chloroemethane	49.5
		Bromomethane	29.9
		Chloroethane	69.4
		Trichlorofluoromethane	30.4
		Methylene Chloride	35.2
		Carbon Tetrachloride	28.3
		Dibromomethane	44.0
		trans 1,3-Dichloropropene	59.3
		cis 1,3-Dichloropropene	49.3
		Dibromochloromethane	35.3
		1,2-Dibromomethane	65.1
		Tetrachloroethene	28.4
		1,1,1,2-Tetrachloroethane	40.5
		1,2,3-Trichloropropane	91.8
6/15/06	VH007465	Dichlorodifluoromethane	36.1
		Chloroemethane	49.9
		Chloroethane	80.0
		Trichlorofluoromethane	32.4
		Dibromomethane	36.8
		trans 1,3-Dichloropropene	52.0
		cis 1,3-Dichloropropene	34.0
		2-Chloroethylvinyl ether	69.9
		Dibromochloromethane	28.2
		Tetrachloroethene	35.9
		1,1,1,2-Tetrachloroethane	40.9

All target analytes in the associated field samples have been qualified "UJ/J" estimated for the analytes that did not meet %Difference QC criteria.

Qualified data result pages are located in Appendix B of this report.

8. GC/MS MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB). If the mass calibration is in error, or missing, all associated data will be classified as unusable, "R".

Volatile Organic Analyses – All BFB Instrument Tuning criteria were met for these sample analyses.

9. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50%to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard evaluation criteria is applied to all field and QC samples.

Volatile Organic Analyses – All samples were fortified with the internal standards Pentafluorobenzene, 1,4-Difluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4. All internal standard criteria were met for these analyses.

10. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound. Target compounds are identified on the GC by using the analytes retention time. Concentration is quantitated from the initial calibration curve.

Volatile Organic Analyses – All samples reported the VOA 8260 analytes specified on the COC documents. All samples were initially analyzed without dilution, however, due to the concentration of target analytes some samples required additional dilution, based on the concentrations detected. Both the initial and dilution analyses were reported in the data package for review. All sample data was reported within the calibration range of the instrument.

Sample B-18(17-13) was analyzed using a 1:1000 dilution due to the concentration of Tetrachlorethene (60000 ug/l) detected in the sample.

Sample B-18(13-9) was initially analyzed without dilution, however, it was reanalyzed at a dilution of 1:1000 due to the concentration of Tetrachlorethene (19000 ug/l) detected at this sample point.

Sample B-19(18-14) was initially analyzed without dilution, however, it was reanalyzed at a dilution of 1:200 due to the concentration of Tetrachlorethene (1000 ug/l) detected at this sample point.

Sample B-19(14-10) was initially analyzed without dilution, however, it was reanalyzed at a dilution of 1:200 due to the concentration of Tetrachlorethene (870 ug/l) detected at this sample point.

Sample GWB-20 (14-18) was analyzed using a 1:1000 dilution due to the concentration of Tetrachlorethene (13000 ug/l) detected in the sample.

10. COMPOUND IDENTIFICATION (cont'd):

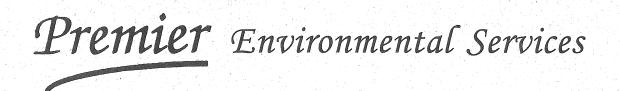
Sample GWB-20 (10-14) was initially analyzed without dilution. The surrogate recovery of 1,2-Dichloroethane-d4 exceeded QC criteria. The sample was reanalyzed using a 1:50 time dilution. All surrogates met QC criteria in this dilution analysis.

Sample GWB-20 (X) was analyzed using a 1:1000 time dilution due to the concentration of Tetrachlorethene (10000 ug/l) detected in the sample.

11. FIELD DUPLICATE ANALYSES:

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Analytes reported above the reporting limit are listed. Data was not qualified based on the RPD of field duplicate sample analyses. CA Rich Consultants collected sample GWB-20 (14-18) in duplicate.

Sample ID: GWB-20 (14-18)/GWB-20 (X)


Analyte	Concentration (ug/L)	Concentration (ug/L)	RPD (%)
Tetrachloroethane	13000	10000	26.1

12 OVERALL ASSESSMENT:

Analytical QC criteria was met for these analyses. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package. Sample dilutions and sample re-analyses were performed when necessary, all data was reported herein. Details of QC outliers are outlined in the above report.

The data provided for this data set is acceptable for use, with the noted data qualifiers.

Qualified data result pages are locate din Appendix B of this report.

DATA USABILTY SUMMARY REPORT (DUSR) OF THE FLAMINGO RI

ORGANIC ANALYSES IN AQUEOUS SAMPLES

CHEMTECH CONSULTING GROUP MOUNTAINSIDE, NEW JERSEY

PROJECT NO.: X3312

September, 2006

Prepared for C.A. Rich Consultants, Inc. Plainview, New York

Prepared by
Premier Environmental Services
2815 Covered Bridge Road
Merrick, New York 11566
(516)223-9761

NYS DEC Data Usability Summary Report

DATA VALIDATION FOR:

Volatile Organic Analyses

SITE:

Flamingo RI

CONTRACT LAB:

Chemtech Consulting Group Mountainside, New Jersey

REVIEWER:

Renee Cohen

DATE REVIEW COMPLETED:

July, 2006

MATRIX:

Aqueous

The data validation was performed according to the guidelines in the described in the New York State Department of Environmental Conservation, Division of Environmental Remediation, Guidance for the Development of Data Usability Summary Reports (DUSR). In addition the data was been reviewed using the protocol specified in the NYS Analytical Services Protocol ('95).

All data are considered valid and acceptable except those analytes which have been rejected "R" (unreliable/unusable). Due to various QC problems some analytes may have been qualified with a "J" (estimated), "N" (presumptive evidence for the presence of the material, "U" (non-detect), or "JN" (presumptive evidence for the presence of the material at an estimated value) flag. All actions are detailed on the attached sheets.

Several factors should be noted for all persons using this data. Persons using this data should be aware that no result is guaranteed to be accurate even if it has passed all QC tests. The main purpose of this review is to appropriately qualify outliers and to determine whether the results presented meet the specific site/project criteria for data quality and data use.

This data assessment is for six (6) aqueous samples, one (1) Field Blank and one (1) Trip Blank sample. The samples in this data set were collected on June 13, 2006. The samples were shipped to Chemtech Consulting Group located in Mountainside, New Jersey. The samples were received at the laboratory on June 16, 2006. The samples were analyzed for a subset of Volatile Organic Analytes (EPA Method 8260B) that were specified on the Chain of Custody (COC) documentation that accompanied the samples to the laboratory.

A cross-reference between Field Sample ID and Laboratory Sample ID is located in Table 1 of this report. A list of definitions that may be used in this report is located in Appendix A. Copies of qualified data result pages are located in Appendix B of this report and a copy of Chain of Custody (COC) documentation associated with sampling event is located in Appendix C. Appendix D of this report contains a summary package of QC forms and data result pages. These have not been qualified and are copies of the pages found in the original data report.

1. OVERVIEW:

The six (6) aqueous samples, one (1) Field Blank and one (1) Trip Blank sample were submitted to the laboratory for the analyses requested on the Chain of Custody (COC) documentation. The samples were analyzed for a subset of Volatile Organic Analytes using EPA Test Methods for the Evaluation of Solid Waste (SW 846), Method 8260B. The samples collected on June 13, 2006, they were received on June 16, 2006. Proper custody transfer of the samples was documented in the laboratory report. The laboratory provided a deliverables package in accordance with the guidelines in the NYSDEC ASP, Rev '95, Category B.

2. HOLDING TIME:

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the specified holding time is exceeded, the data may not be valid. Preserved volatile organic analyses are required to be analyzed within 10 days of validated time of sample receipt (VTSR) in accordance with the NYSDEC ASP, Rev '95. The technical holding time for properly preserved aqueous and non-aqueous samples is 14 days from collection.

Volatile Organic Analyses – All of the field samples and QC samples associated with this data set were analyzed by June 23, 2006. All were analyzed within ten (10) days of VTSR.

3. SURROGATES:

All samples are spiked with surrogate compounds prior to sample preparation to evaluate the overall laboratory performance and the efficiency of the analytical technique. If the measured surrogate concentrations are outside the QC limits, qualifiers were applied to the effected samples.

Volatile Organic Analyses – Each sample was spiked with the surrogate compounds 1,2-Dichloroethane-d4, 4-Bromofluorobenzene, Toluene-d8 and Dibromofluoromethane. In-house surrogate recovery limits were utilized by the laboratory. The percent recovery of each surrogate met QC criteria in all field and QC samples associated with this data set.

4. MATRIX SPIKE/SPIKE DUPLICATE, MS/MSD:

The MS/MSD data are generated to determine the long term precision and accuracy of the analytical method in various matrices. The MS/MSD may be used in conjunction with other QC criteria for additional qualification of data. The laboratory used the in-house generated recovery criteria and RPD (precision) data for reporting purposes.

Volatile Organic Analyses – Sample MW-2 was utilized for the MS/MSD analyses. All percent recoveries with the exception of Chloromethane (MS/MSD), Bromomethane (MS), Chloroethane (MS), Trichlorofluoromethane (MS/MSD), 1,2-Dichloropropane (MS/MSD), Dibromomethane (MS/MSD), Bromodichloromethane (MS/MSD), trans 1,3-Dichloropropene (MS/MSD), cis 1,3-Dichloropropene (MS/MSD), 1,1,2-Trichloroethane (MS/MSD), 2-Chloroethyl vinyl ether (MS/MSD), 1,2-Dibromoethane (MS/MSD) and 1,1,1,2-Tetrachloroethane (MS/MSD) met QC limits. Data is not qualified based on the recovery of the spiked analyte in the MS/MSD sample set. No action was taken based on these QC outliers.

5. BLANK SPIKE ANALYSIS:

BSH0623-02

The NY ASP protocol requires that a blank spike analysis be performed with each sample batch. The blank spike analysis is used to insure that the analytical system is in control. The laboratory applied in-house recovery limits (70-130%) for each analyte.

Volatile Organic Analytes – The laboratory prepared and analyzed two (2) blank spike analyses with this data set. The sample was spiked with all target analytes. The recovery of all analytes met QC criteria with the exception of that listed:

LCS ID Analyte

BSH0623-01 Dichlorodifluoromethane

Chloroethane Chloroethane

Trichlorofluoromethane Carbon Tetrachloride Dibromomethane

trans 1,3-Dichloropropene cis 1,3-Dichloropropene Tetrachlorethane

1,1,1,2-Tetrachloroethane Dichlorodifluoromethane

Chloroethane

Trichlorofluoromethane Carbon Tetrachloride Dibromomethane

trans 1,3-Dichloropropene cis 1,3-Dichloropropene 1,1,1,2-Tetrachloroethane

These target analytes have been qualified "UJ" estimated in associated field samples. The percent recovery of Carbon Tetrachloride and cis 1,3-Dichloropropene in the Blank Spike samples was greater than QC limits. These target analytes were not detected in the associated samples, therefore, these target analytes are reported without qualification.

Qualified data result pages are located in Appendix B of this report.

6. BLANK CONTAMINATION:

Quality assurance (QA) blanks, such as the method, trip, field, or rinse blanks are prepared to identify any contamination that may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Samples are then qualified based on blank contamination when detected.

A) Method Blank contamination

Volatile Organic Analyses – One (1) method blank sample is associated with this data set. The method blank was free from contamination of all target analytes with the exception of Chloromethane (1.2 J ug/l) and Bromomethane (3.8 J ug/l). These analytes were not detected in the monitoring well samples-they were detected in the Field Blank sample and have been negated and qualified "U".

Qualified data result pages are located in Appendix B of this report.

B) Field Blank contamination

Volatile Organic Analyses - The F.B. sample was free from contamination of all target analytes with the exception of Chloromethane (0.94 J ug/l) and Bromomethane (3.6 J ug/l).

C) Trip Blank contamination

Volatile Organic Analyses - The T.B. sample was free from contamination of all target analytes.

7. GC/MS CALIBRATION:

Satisfactory instrument calibration is established to ensure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. USEPA data validation criteria is the same for all analytes in both GC/MS Volatile and GC/MS Semivolatile Organic analyses, therefore, all text discussion is for VOA and SVOA samples analyses.

A) RESPONSE FACTOR

The response factor measures the instrument's response to specific chemical compounds. USEPA data review requires that the response factor of all analytes be greater than or equal to 0.05 in both initial and continuing calibration analyses. A value less than 0.05 indicates a serious detection and quantitation problem (poor sensitivity). USEPA data validation criteria states that if the minimum RRF criteria is not met in an initial calibration the positive results are qualified "J". Non detect results in the initial calibration with a RRF <0.05 are qualified "R", unusable. If RRF criteria is not met in the continuing calibration curve analysis, effected positive analytes will be qualified "J" estimated. Those analytes not detected are not qualified. The SW-846 Methods cite specific analytes known as System Performance Check Compounds (SPCC). Minimum response criteria is set for these analytes. If the minimum criteria is not met, analyses must stop and the source of problems must be found and corrected. Data associated with this set has been reviewed for the criteria in the cited in the EPA Method and the USEPA criteria.

Volatile Organic Analyses - One (1) aqueous calibration curve is associated with this data set. The laboratory performed an initial multi level calibration on May 30, 2006 (Inst. H). The RRF for all compounds met QC criteria in this calibration curve analysis.

One (1) continuing calibration standard is associated with the aqueous sample analyses. All RRF criteria in this continuing calibration standard analysis met QC criteria.

7. GC/MS CALIBRATION (cont'd)

B) PERCENT RELATIVE STANDARD DEVIATION (RSD) AND PERCENT DIFFERENCE (%D):

Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentration. Percent D compares the response factor of the compounds in the continuing calibration standard to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Region II data validation criteria states that the percent RSD of the initial calibration curve must be less than or equal to 30%. The %D must be <25% in the continuing calibration standard. This criteria has been applied to all target analytes. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects may be flagged "UJ", based on professional judgement. If %RSD and %D grossly exceed QC criteria (>90%), non-detects data may be qualified "R", unuseable. Data associated with this set has been reviewed for the criteria in the cited in the USEPA Data Validation Guidelines.

Volatile Organic Analyses – One (1) aqueous calibration curve is associated with this data set. The initial calibration curve was analyzed on May 30, 2006 (Inst. H). All RSD% with the exception of 1,2-Dibromomethane met QC criteria in this initial calibration curve analysis. 1,2-Dibromomethane has been qualified "UJ/J" estimated in the samples associated with this data set.

Qualified data result pages are located in Appendix B of this report.

One (1) continuing calibration standards are associated with the aqueous samples in this data set. The %Difference met QC criteria for all target analytes with the exception of that listed below:

Date of Analysis	File ID	Analyte	%Difference
6/23/06	VH007749.D	Dichlorofluoromethane	27.4
		Chloromethane	63.3
		Trichlorofluoromethane	25.3
		Dibromomethane	45.0
		Trans 1,3-Dichloropropene	53.9
		1,2-Dibromomethane	50.8
		Tetrachloroethene	37.5
		1,1,1,2-Tetrachloroethane	54.1

All samples have been qualified "UJ/J" estimated for the analytes that did not meet %Difference QC criteria.

Oualified data result pages are located in Appendix B of this report.

8. GC/MS MASS SPECTROMETER TUNING:

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds, and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The tuning standard for volatile organics is Bromofluorobenzene (BFB).

Volatile Organic Analyses - All instrument BFB Tuning criteria were met for these sample analyses.

9. GC/MS INTERNAL STANDARDS PERFORMANCE:

Internal standard (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every run. The method recommends that the internal standard area count must not vary by more than a factor of 2 (-50%to +100%) from the associated continuing calibration standard. The method recommends that the retention time of the internal standard must not vary more than ±30 seconds from the associated continuing calibration standard. The EPA CLP validation guidelines state that if the area count is outside the (-50% to +100%) range of the associated standard, all of the positive results for compounds quantitated using that IS are qualified estimated, "J", and all non-detects below 50% are qualified "UJ", non detects above 100% should not be qualified or "R" if there is a severe loss of sensitivity. The internal standard evaluation criteria is applied to all field and QC samples.

Volatile Organic Analyses – All samples were fortified with the internal standards Pentafluorobenzene, 1,4-Difluorobenzene, Chlorobenzene-d5 and 1,4-Dichlorobenzene-d4. All internal standard criteria were met for these analyses.

10. COMPOUND IDENTIFICATION:

Target compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within \pm 0.06 RRT units of the standard compound, and have an ion spectra which has a ratio of the primary and secondary ion intensities with 20% of that in the standard compound. Target compounds are identified on the GC by using the analytes retention time. Concentration is quantitated from the initial calibration curve.

Volatile Organic Analyses – All of the aqueous samples in this data set were analyzed via EPA Method 8260B. All of the samples in this data set were analyzed without dilution except where noted below:

Sample MW-1 was analyzed and reported from a 1:1000 time dilution due to the concentration of Tetrachloroethene (55000 ug/l) detected in the sample.

Sample MW-2 was analyzed and reported from a 1:10 time dilution due to the concentration of Tetrachloroethene (520 ug/l) detected in the sample. Trichloroethene (45 J ug/l) was also detected at this sample point.

Sample MW-2D was analyzed and reported from a 1:10 time dilution due to the concentration of Tetrachloroethene (460 ug/l) detected in the sample. Trichloroethene (49 J ug/l) was also detected at this sample point.

Sample MW-3 was analyzed and reported from a 1:1000 time dilution due to the concentration of Tetrachloroethene (30000 ug/l) detected in the sample.

Sample MW-4 was analyzed and reported from a 1:10 time dilution due to the concentration of Tetrachloroethene (27 J ug/l) detected in the sample.

Sample MW-5 was analyzed and reported from a 1:50 time dilution due to the concentration of Tetrachloroethene (1700 ug/l) detected in the sample.

11. FIELD DUPLICATE ANALYSES:

Field duplicate samples are collected and analyzed as an indication of overall precision. These results are expected to have more variability than laboratory duplicate samples. Analytes reported above the reporting limit are listed. Data was not qualified based on the RPD of field duplicate sample analyses. CA Rich Consultants collected sample MW-2 in duplicate.

Sample ID: MW-2(X3312-02)MW-2D(X3312-03)

Analyte	Concentration (ug/L)	Concentration (ug/L)	RPD (%)
Trichloroethene	45 J	49 J	8.5
Tetrachloroethene	520	460	12.2

The precision between these sample duplicates was acceptable. The RPD of the detected analytes was less than 20.

12 OVERALL ASSESSMENT:

Analytical QC criteria were met for these analyses. The data reported agrees with the raw data provided in the final report. The laboratory provided a complete data package and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package. The samples in this data set were analyzed with dilution due to the concentration of target analytes detected. Details regarding sample concentration are noted in the above report.

The data provided for this data set is acceptable for use, with the noted data qualifiers.

Qualified data result pages are located in Appendix B of this report.

APPENDIX B

Boring Logs and Well Construction Details

CA RICH CONSULTANTS, INC. Certified Groundwater and Environmental Specialists 17 Dupont Street, Plainview, New York 11803

BORING LOG

						1				
Project Name		n			Project Number	Date: May 31, 2006				
Flamingo Cl										
149 North A	venue, Ne	w Rochelle, N	lew York							
Drilling Com					Foreman	Sampler(s)	Sample	er Hammer Drop		
Hydrotech	l .									
Drilling Equi	•				Method	Elevation & Datum Completion Depth				
Tractor Ge	oprobe				Direct Push		6 Inches			
Bit Size(s)					Core Barrel(s)	Geologist(s) Location:				
	1				5' MacroCore	Jason Cooper	B-12			
Sample	Depth	Recovery	PID	Sampling	SAMPLE I	DESCRIPTION		COMMENTS		
Interval	1	,								
(inches)			(ppm)	Time						
0-6	0-6 Top 4 inches - Concrete			slab		Water table at approximately 5"				
0 0				_			Trades are are approximately o			
					4 - 6 inches - Gravelly g	ray sanu				

Page	1		Signature:	Jason Cooper	Date:	8/31/2006	

Project Name & Location Flamingo Cleaners 149 North Avenue, New Rochelle, New York Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe Bit Size(s)	Project Number Foreman Method Direct Push Core Barrel(s) 5' MacroCore	Elevation & Datum Completion 6 Inches	npler Hammer Drop Depth
149 North Avenue, New Rochelle, New York Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe	Method Direct Push Core Barrel(s)	Elevation & Datum Completion 6 Inches	
Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe	Method Direct Push Core Barrel(s)	Elevation & Datum Completion 6 Inches	
Hydrotech Drilling Equipment Tractor Geoprobe	Method Direct Push Core Barrel(s)	Elevation & Datum Completion 6 Inches	
Drilling Equipment Tractor Geoprobe	Direct Push Core Barrel(s)	6 Inches)epth
Drilling Equipment Tractor Geoprobe	Direct Push Core Barrel(s)	6 Inches	Depth
	Core Barrel(s)		•
	Core Barrel(s)		
DIL OLEC(3)			cation:
		Jason Cooper B-	3
Interval		DESCRIPTION	COMMENTS
(inches) (ppm)	Time		
0.5	Top 4 inches - Concrete 4 - 6 inches - Gravelly gr		Water table at approximately 5"

Page	1		Signature:	Jason Cooper	Dat	te:	8/31/2006	
						-		

Project Number							1		
Tarker Sample S	Project Name	& Location	ı			Project Number	Date: May 31, 2006		
Foreman Sampler(s) Sampler Hammer Drop	Flamingo Cl	eaners							
Hydrotech Drilling Equipment Tractor Geoprobe Direct Push Bit Size(s) Core Barrel(s) Sample Interval (inches) Geology Time SAMPLE DESCRIPTION Top 4 inches - Concrete slab Method Elevation & Datum Completion Depth 12 Inches Location: B-14 COMMENTS COMMENTS COMMENTS Water table at approximately 6"	149 North Av	venue, Nev	w Rochelle, N	ew York					
Method Elevation & Datum Completion Depth Tractor George Direct Push Dir	Drilling Comp	pany				Foreman	Sampler(s)	Sample	r Hammer Drop
Tractor Geyrobe Bit Size(s) Core Barrel(s) Sample Interval (inches) Geologist(s) SAMPLE DESCRIPTION Time COMMENTS COMMENTS COMMENTS Water table at approximately 6"	Hydrotech								
Tractor Geyrobe Bit Size(s) Core Barrel(s) Sample Interval (inches) Geologist(s) SAMPLE DESCRIPTION Time COMMENTS COMMENTS COMMENTS Water table at approximately 6"						Method	Elevation & Datum	Completion Dept	h
Bit Size(s) Core Barrel(s) Geologist(s) Location: 5' MacroCore Jason Cooper B-14 Sample Interval (inches) PID Sampling SAMPLE DESCRIPTION COMMENTS Comm						Direct Push			
Sample Interval (inches) Sample Depth Recovery PID Sampling SAMPLE DESCRIPTION COMMENTS Time Top 4 inches - Concrete slab Water table at approximately 6"							Geologist(s)		n:
Sample Interval (inches) Depth Recovery PID Sampling SAMPLE DESCRIPTION COMMENTS (ppm) Time Top 4 inches - Concrete slab Water table at approximately 6"								B-14	
6-12 1.0 Top 4 inches - Concrete slab Water table at approximately 6"	Interval	Depth	Recovery			SAMPLE I			COMMENTS
	(inches)			(ppm)	Time				
	6-12			1.0					Water table at approximately 6"

Page	1		Signature <u>:</u>	Jason Cooper	Date:	8/31/2006	

Project Name	& Location	ı			Project Number	Date: May 31, 2006		
Flamingo Cl	eaners							
149 North Av	enue, Nev	w Rochelle, No	ew York					
Drilling Comp					Foreman	Sampler(s)	Sample	r Hammer Drop
Hydrotech								
Drilling Equip					Method	Elevation & Datum	Completion Dept	h
Tractor Ge	oprobe				Direct Push		12 Inches	
Bit Size(s)					Core Barrel(s)	Geologist(s)	Locatio	n:
					5' MacroCore	Jason Cooper	B-15	
Sample Interval	Depth	Recovery	PID	Sampling	SAMPLE D	DESCRIPTION		COMMENTS
(inches)			(ppm)	Time				
0-12			0.0		Top 4 inches - Concrete	alab		Water table at approximately 5"
0-12			0.0					water table at approximately 5
					4 - 12 inches - Very grave	elly gray sand		
				L				
	Page	1	-		Signature:	Jason Cooper	Date:	8/31/2006

Flamingo Cleaners 149 North Avenue, New Rochelle, New York Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling	Project Number Date: May S Foreman Sampler(s) Method Elevation &	(s) Sampler Hammer Drop
149 North Avenue, New Rochelle, New York Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling		· · · · · · · · · · · · · · · · · · ·
Drilling Company Hydrotech Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling		· · · · · · · · · · · · · · · · · · ·
Hydrotech Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling		· · · · · · · · · · · · · · · · · · ·
Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling	Method Elevation &	A.D. C. Lii D.d.
Drilling Equipment Tractor Geoprobe Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling	Method Elevation &	
Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling		n & Datum Completion Depth
Bit Size(s) 5' Ma Sample Depth Recovery PID Sampling	Direct Push	12 Inches
Sample Depth Recovery PID Sampling Interval	Core Barrel(s) Geologist(s	
Sample Depth Recovery PID Sampling Interval	acroCore Jason Coop	
	SAMPLE DESCRIPTION	
(inches) (ppm) Time		
I I I I I I I I I	4 inches - Concrete slab 2 inches - Very gravelly gray sar	sand Water table at approximately 6"

Page	1		Signature:	Jason Cooper	Dat	te:	8/31/2006	
						-		

Project Number Project Number Project Number Project Number Project Number Professional Professiona							1		
149 North Avenue, New Rochelle, New York	Project Name	& Location	ı			Project Number	Date: May 31, 2006		
Foreman Sampler(s) Sampler Hammer Drop	Flamingo Cle	eaners							
Hydrotech Drilling Equipment Tractor Geoprobe Direct Push Core Barrel(s) Sample Interval (inches) Page 1.5 For 4 inches - Concrete slab Method Elevation & Datum Completion Depth 12 Inches Location: Bed 3.1 COMMENTS COMMENTS COMMENTS Water table at approximately 6"	149 North Av	enue, Nev	w Rochelle, N	ew York					
Method Elevation & Datum Completion Depth Tractor Geoprobe Direct Push 12 Inches Inches Inches Inches	Drilling Comp	pany				Foreman	Sampler(s)	Sample	r Hammer Drop
Method Elevation & Datum Completion Depth Tractor Geoprobe Direct Push 12 Inches Inches Inches Inches	Hydrotech								
Bit Size(s) Core Barrel(s) Geologist(s) Location: 5' MacroCore Jason Cooper B-17 Sample Interval (inches) (ppm) Time Sample Interval (inches) 1.5 Top 4 inches - Concrete slab Water table at approximately 6"						Method	Elevation & Datum	Completion Depti	1
Bit Size(s) Core Barrel(s) Geologist(s) Location: 5' MacroCore Jason Cooper B-17 Sample Interval (inches) (ppm) Time Sample Interval (inches) 1.5 Top 4 inches - Concrete slab Water table at approximately 6"	Tractor Ge	oprobe				Direct Push		12 Inches	
Sample Interval (inches) Sample Interval (inches) Depth Recovery PID Sampling SAMPLE DESCRIPTION COMMENTS Sample Interval (inches) Time Time Top 4 inches - Concrete slab Water table at approximately 6"		•					Geologist(s)		n:
Sample Interval (inches) Depth Recovery PID Sampling SAMPLE DESCRIPTION COMMENTS (ppm) Time Top 4 inches - Concrete slab Water table at approximately 6"	.,,							B-17	
6-12 1.5 Top 4 inches - Concrete slab Water table at approximately 6"	Interval	Depth	Recovery		Sampling				COMMENTS
	(inches)			(ppm)	Time				
	6-12			1.5					Water table at approximately 6"

Page	1		Signature:	Jason Cooper	Date	: _	8/31/2006	

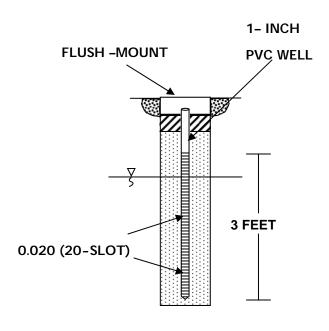
Project Name Flamingo Cle		ı			Project Number	Date: May 31, 2006		
149 North Av	venue, Nev	w Rochelle, Ne	ew York					
Drilling Comp	pany			·	Foreman	Sampler(s)	Sample	r Hammer Drop
Hydrotech								
Drilling Equip	oment				Method	Elevation & Datum	Completion Dept	h
Tractor Ge	oprobe				Direct Push		17 Feet	
Bit Size(s)					Core Barrel(s)	Geologist(s)	Locatio	n:
					5' MacroCore	Jason Cooper	B-18	
Sample Interval	Depth	Recovery	PID	Sampling	SAMPLE I	DESCRIPTION		COMMENTS
(feet)	(feet)	(inches)	(ppm)	Time				
	0-4	20	0.0		Brown silty sand			
	4-8	46	0.0		Top 8 inches - Brown sil Bottom 36 inches - Gray	-		
8-10	8-12	46	0.0		Top 15 inches - Grayish Bottom 31 inches - Medi	brown silty sand ium/fine grained brown a	and tan sand	
	12-16	46	0.1		Grayish brown silt/clay			
	16-17	20	0.0		Grayish brown silt/clay	, weathered bedrock		

Page	1	Signature:	Iason Cooper	Date:	8/31/2006	

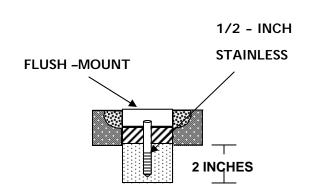
CA RICH CONSULTANTS, INC.

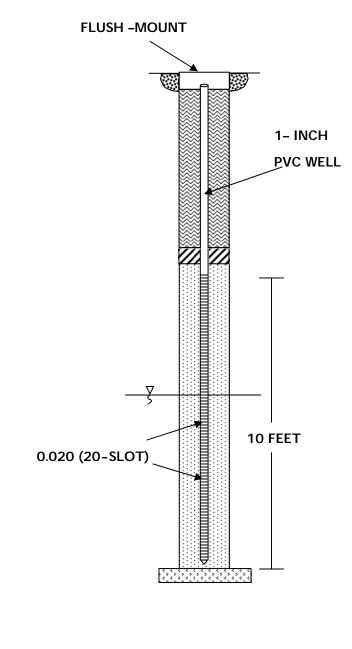
Certified Groundwater and Environmental Specialists 17 Dupont Street, Plainview, New York 11803

Project Name	e & Location	1			Project Number	Date: May 31, 2006		
Flamingo C	leaners							
149 North A	venue, Nev	v Rochelle, Ne	w York					
Drilling Com	npany				Foreman	Sampler(s)	Sample	er Hammer Drop
Hydrotech	1							
Orilling Equi	ipment				Method	Elevation & Datum	Completion Dept	h
Tractor Ge	eoprobe				Direct Push		18 Feet	
Bit Size(s)					Core Barrel(s)	Geologist(s)	Locatio	n:
	1	1	1	1	5' MacroCore	Jason Cooper	B-19	
Sample Interval	Depth	Recovery	PID	Sampling	SAMPLE I	DESCRIPTION		COMMENTS
(feet)	(feet)	(inches)	(ppm)	Time				
	\ /	` '	<u> </u>					
	0-4	46.0	0.0		Top 12 inches - Gray silt	tv sand		
					Bottom 36 inches - Tan s			
					bottom 50 menes - Tan s	sity said		
	4.0	46.0	0.0		T. 0: 1 . C. :1.	C 1 . 2d. 12d 2fc		
	4-8	46.0	0.0		*	an fine sand with little silt		
					Bottom 38 inches - Light	t brown/tan silty sand		
8-10	8-12	46.0	0.0		Top 6 inches - Grayish t	tan silty sand		
					Bottom 40 inches - Oran	gish brown medium grained	d sand with	
					traces of silty sand.			
	12-16	46.0	0.0		Brown and tan silty san	d		
					*	es of white rock fragments		
					11 Inches from top piece	or write rock magnicitis		
	16-18	28.0	0.0		Ton 6 in aboa Darly breez	um condu cilt		
	16-18	28.0	0.0		Top 6 inches - Dark brow	•		
					Next 12 inches - Tan me	dium grained sand		
					Bottom 10 inches - Dark	brown silty sand, weathered	d bedrock @18'	
	Page	1			Signature:	Jason Cooper	Date:	8/31/2006


CA RICH CONSULTANTS, INC.

Certified Groundwater and Environmental Specialists 17 Dupont Street, Plainview, New York 11803


Project Name	& Location	n			Project Number	Date: June 1, 2006		
Flamingo Cl	leaners							
149 North A	venue, Nev	w Rochelle, No	ew York					
Drilling Com	ipany				Foreman	Sampler(s)	Sample	er Hammer Drop
Hydrotech	ı							
Drilling Equi	pment				Method	Elevation & Datum	Completion Dept	h
Tractor Ge	eoprobe				Direct Push		18 Feet	
Bit Size(s)					Core Barrel(s)	Geologist(s)	Locatio	on:
					5' MacroCore	Jason Cooper	B-20	
Sample Interval	Depth	Recovery	PID	Sampling	SAMPLE D	DESCRIPTION		COMMENTS
(feet)	(feet)	(inches)	(ppm)	Time				
	0-4	36.0	4.5		Top 18 inches - brown si Bottom 18 inches - Light	ilty sand with organic material brown silty sand		
	4-8	38.0	0.0		Light brown silty mediu	um to fine sand		
9-10	8-12	48.0	0.0		Light brown silty mediu	um to fine sand		Groundwater at approximately 11 feet.
	12-16	48.0	0.0		Brown medium to coars	e grain sand		
	16-18	24.0	0.0		Brown medium to coars Bedrock encountered at			
	Page	1			Signature:	Jason Cooper	Date:	8/31/2006


TYPICAL HAND-DRIVEN

TYPICAL GEOPROBE-DRIVEN

TYPICAL SUB-SLAB

LEGEND

CEMENT

BEDROCK

BENTONITE

FLOOR / SLAB

NO. 2 MORIE SAND

CEMENT/BENTONITE GROUT

CA RICH CONSULTANTS, INC. 17 Dupont Street, Plainview, NY 11803

TITLE:

WELL CONSTRUCTION DETAILS

DATE: **6/23/05**

SCALE: AS SHOWN

FIGURE:

DRAWING:

FLAMINGO CLEANERS 149 North Avenue New Rochelle, NY

DRAWN RV.

ADDD RV.

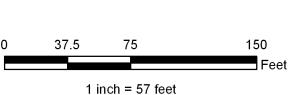
APPENDIX C

Off-site Investigation Information

Legend

----- Roads

—— Buildings


Monitoring Wells

NOTE:

SITE PLAN DEVELOPED THROUGH AERIAL PHOTO INTERPRETATION OF NEW YORK STATE 2007 ORTHOPHOTO, ACCESSED FROM NEW YORK STATE GEOGRAPHIC INFORMATION SYSTEM (GIS) CLEARINGHOUSE.

SOIL BORING AND GROUNDWATER MONITORING WELL LOCATIONS SURVEYED WITH TRIMBLE PROXH (SUB-FOOT ACCURACY) GPS UNIT.
PASSIVE SOIL GAS SAMPLE LOCATIONS PLACED ON SITE PLAN THROUGH AERIAL PHOTO INTERPREATION. SOIL VAPOR SAMPLE LOCATIONS PLACED ON MAP THROUGH INTERPRETATION OF SCHEMATIC BUILDING DRAWINGS AND AERIAL PHOTO INTERPRETATION.

FIGURE 5
MONITORING WELLS
FLAMINGO CLEANERS
149 NORTH AVENUE
NEW ROCHELLE, NEW YORK
HRP # NEW9601.P2
SCALE 1"=57'

HRP associates, Inc.

dBA HRP Engineering, P.C.

Creating the Right Solutions Together
Connecticut, New York, South Carolina, Florida, Indiana
1 Fairchild Square, Suite 110
Clifton Park, New York 12065
(518) 877-7101 FAX: (518) 877-8561

www.hrpassociates.com

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101 GROUNDWATER OBSERVATIONS

MONITOR WELL CONSTRUCTION LOG

PROJECT: Flamingo Cleaners RI/FS WA #: D006130-02

LOCATION: 149 North Avenue New Rochelle, NY

DRILLING CO.: GeoLogic NY, Inc.

DRILLED BY: INSPECTED BY: BORING NO. $\underline{MW-1}$

PAGE 1 OF __ 1___

DATE STARTED: Aug. 3 2009 DATE FINISHED: Aug. 5 2009

SURFACE ELEVATION: N/A

BOTTOM OF BORING ELEVATION: GROUNDWATER REFERENCE ELEVATION:

CASING SAMDI ED

	GROUNDV	VATER	OBSER	RVATIONS			CASING	SAMPLER
	DEPTH		Post-Dev	velopment			TYPE: Steel	MF
							SIZE I.D.: 4"	
DEPTH (FT.)	SAMPLING DEPTH (FT.) FROM - TO	ID	SAMPLE RECOV. INCHES	DATA BLOWS PER 6 INCHES	WELL DATA	STRATA CHANGE (FT.)	LITHOLOGY (DESCRIPTION OF MATERIALS)	FIELD TEST DATA PID - 10.2 eV (ppm)
5'							Brown, sandy loam soil, trace albite schist granules and pebbles, no stains or odors.	0.0
10'							Semi-competent, highly weathered bedrock, disintegrated quartz and mica schist.	-
							Roller bit drilled through rock; no available data.	-
15'							Variable resistance, semi-competent to competent rock;	
20'							Competent, albite schist.	-
25'							Core Run # 1 (19.7'-24.7'); Competent, white to gray to black, albite mica schist, hard, unweathered crystalline rock; a few fractures; RQD = 95%.	-
30'							Core Run # 2 (24.7'-29.7'); Competent, salt and pepper colored, albite mica schist, trace quartz veins, unweathered crystalline rock; one fracture at 27.8'; greenish stain at 29'; RQD = 96.7%.	-
Well bottom s Borehole dian Well Screen In Well Screen S Sand Filter Pa Sand Size	STRUCTION DATA Set at 29.7 bgs neter 4.25 to Slot Size nck Interval to Quantity	' ba	iral bgs ags, lbs, ga	Diameter allons)	"		KEY: Filter Sand Bentonite Grout Strata Soil Bedrock	Indication of where groundwater begins Roadbox Well Casing
Well Riser Di Bentonite Sea	teraval' to _ ameterMater al Above Fitler Pack valto	rialt						Open Borehole
Bentonite Top Finishing/Wel Surface Finish	rial	ounted	- Standpip	be (length of standpi		_	KEY TO BLOWS PER 6-INCHES: Granular Soils Cohesive Soils	PROPORTIONS OF SOIL: And = 35 to 50% Some = 20 to 35% Little = 10 to 20% Trace = 0 to 10%
2) SAA = San	llons of water was put ne as Above / NA = N w Ground Surface	Not Avai	ilable	ng installation on	2009 with by geo	probe	10-30 M. Dense	

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101

MONITOR WELL CONSTRUCTION LOG

PROJECT: Flamingo Cleaners RI/FS WA #: D006130-02

LOCATION: 149 North Avenue New Rochelle, NY

DRILLING CO.: GeoLogic NY, Inc.

DRILLED BY: INSPECTED BY: BORING NO. MW-2

PAGE 1 OF __1___

DATE STARTED: Aug. 5 2009 DATE FINISHED: Aug. 5 2009

SURFACE ELEVATION: N/A

BOTTOM OF BORING ELEVATION: **GROUNDWATER REFERENCE ELEVATION:**

GROUNDWATER OBSERVATIONS

DEPTH	Post-Development

CASING TYPE: PVC

SAMPLER MF

groundwater begins

 $Little=10 \ to \ 20\%$ $Trace=0 \ to \ 10\%$

SIZE I.D.: 2"

DEPTH	SAMPLING DEPTH		RECOV.	DATA BLOWS PER	WELL	STRATA CHANGE	LITHOLOGY	FIELD TEST DATA
(FT.)	(FT.) FROM - TO	ID	INCHES	6 INCHES	DATA	(FT.)	(DESCRIPTION OF MATERIALS)	PID - 10.2 eV (ppm)
_							Asphalt chunks at surface; fine sand to silty loam, brown color, no stains or odors.	0.0
							Brown fine sandy loam soil, trace tree roots, no stains or odors.	0.0
5'							Argillaceous silty soil, gray to orangish color, no stains or odors.	0.0
							Argillaceous silty soil, gray to orangish color, trace micas, no stains or odors.	0.0
10'							Clay rich silt, gray to orange, trace micas (8'-9'). Sandy grussified schist, light brown, no stains or odors.	0.0
							Dark brown sandy weathered (grussified) schist, trace pebbles, no stains or odors.	0.0
							Brown clay soil, grussified schist granules and pebbles, no stains or odors.	0.0
15'							Brown clay soil, grussified schist granules and pebbles, no stains or odors.	0.0
							Augered, no data.	-
20'								
F							-	
-							-	
_							_	
25'								
-							-	
					-			
30'							_	
							Γ	
ļ-								
ŀ		1	1					
-								
35'		1	1					

WEEL CONSTRUCTION DATA.
Well bottom set at17.0' bgs
Borehole diameter_4.25"
Well Screen Interval 7 'to 17 'bgs (10 screen legth)
Well Screen Slot Size Mateiral Diameter _2_"
Sand Filter Pack Interval 5 to 17 bgs
Sand SizeQuantity(bags, lbs, gallons)
Well Riser Interaval <u>0</u> 'to <u>7</u> 'bgs (<u>7</u> riser length)
Well Riser Diameter 2" Material PVC
Bentonite Seal Above Fitler Pack 3 to 5 'bgs
Backfill Intervalto' bgs
Backfill Material
Bentonite Top/Ground Surface Sealto' bgs
Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe)
Surface Finishing notes:
Groundwater Reference Point Description: (Top of Riser, Standpipe, other)

Strata Gro		П П	Roadbox Well Riser
			Well Screen
KEY TO BLOW	S PER 6-INCHES:		PROPORTIONS OF SOIL:
Granular Soils	Cohesive Soils		
(Gravel & Sand)	(Silt & Clay)		And = $35 \text{ to } 50\%$
Blows/ft Density	Rlows/ft Density		Some = 20 to 35%

(Gravel &	Sand)	(Silt & Clay)			
Blows/ft	Density	Blows/ft	Density		
0-4	V. Loose	<2	V. Soft		
4-10	Loose	2-4	Soft		
10-30	M. Dense	4-8	M. Stiff		
30-50	Dense	8-15	Stiff		
>50	V. Dense	15-30	V. Stiff		
		>50	Hard		

Filter Sand

GENERAL REMARKS:

gallons of water was purged from following installation on __
 SAA = Same as Above / NA = Not Available
 bgs = Below Ground Surface

with by geoprobe 4)Soil Boring was logged & sampled at this location on ___

MONITOR WELL CONSTRUCTION LOG HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 PROJECT: Flamingo Cleaners RI/FS BORING NO. MW-3 (518) 877-7101 WA #: D006130-02 **PAGE 1 OF** __ 1 LOCATION: 149 North Avenue DATE STARTED: Aug. 12 2009 New Rochelle, NY DATE FINISHED: Aug. 12 2009 SURFACE ELEVATION: N/ADRILLING CO.: GeoLogic NY, Inc. DRILLED BY: **BOTTOM OF BORING ELEVATION:** INSPECTED BY: **GROUNDWATER REFERENCE ELEVATION:** SAMPLER **GROUNDWATER OBSERVATIONS** CASING TYPE: PVC MF DEPTH Post-Development **SIZE I.D.:** 2" SAMPLING FIELD TEST SAMPLE STRATA DATA DEPTH DEPTH RECOV. WELL CHANGE LITHOLOGY DATA ID (DESCRIPTION OF MATERIALS) PID - 10.2 eV (FT.) INCHES 6 INCHES DATA FROM - TO (ppm) 5' Augered to 17' below grade, no data. 10' 15' 20' 25' 30' WELL CONSTRUCTION DATA: Well bottom set at __17.0__' bgs KEY: Indication of where Borehole diameter_4.25_" Filter Sand groundwater begins Well Screen Interval 7 'to 17 bgs (10 screen legth) Well Bentonite Well Screen Slot Size _____ Mateiral_ Sand Filter Pack Interval ___ 5 __ to __ 17 __ bgs _____ Mateiral_____Diameter _2_" Grout Roadbox Soil Strata Sand Size Quantity (bags, lbs, gallons)

Well Riser Interaval 0 'to 7 'bgs (7 riser length)

Well Riser Diameter 2" Material PVC

Bentonite Seal Above Fitler Pack 3 to 5 'bgs

Backfill Interval to 'bgs Well Riser Bedrock Well Screen PROPORTIONS OF SOIL: Backfill Material_ KEY TO BLOWS PER 6-INCHES: Bentonite Top/Ground Surface Seal _____to __ ___' bgs Granular Soils Cohesive Soils Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe ____ (Gravel & Sand) (Silt & Clay) And = 35 to 50% Blows/ft Density Density Some = 20 to 35% Blows/ft V. Loose V. Soft $Little=10 \ to \ 20\%$ 4-10 Loose Groundwater Reference Point Description: (Top of Riser, Standpipe, other) 2-4 Soft $Trace=0 \ to \ 10\%$ 10-30 M. Dense 4-8 M. Stiff GENERAL REMARKS: Stiff 30-50 Dense 8-15 V. Stiff gallons of water was purged from following installation on _ >50 V. Dense 15-30 2) SAA = Same as Above / NA = Not Available >50 Hard 3) bgs = Below Ground Surface _was logged & sampled at this location on _ with by geoprobe 4)Soil Boring_

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101

MONITOR WELL CONSTRUCTION LOG

PROJECT: Flamingo Cleaners RI/FS WA #: D006130-02

LOCATION: 149 North Avenue New Rochelle, NY

DRILLING CO.: GeoLogic NY, Inc.

DRILLED BY: INSPECTED BY:

BORING NO. $\underline{\text{MW-3B}}$

PAGE 1 OF __1

DATE STARTED: Aug. 10 2009
DATE FINISHED: Aug. 12 2009

SURFACE ELEVATION: N/A

BOTTOM OF BORING ELEVATION: GROUNDWATER REFERENCE ELEVATION:

GROUNDWATER OBSERVATIONS

DEPTH Post-Development

CASING
TYPE: PVC

SAMPLER MF

SIZE I.D.: 2"

DEPTH	SAMPLING DEPTH		RECOV.	BLOWS PER	WELL	STRATA CHANGE	LITHOLOGY	FIELD TEST DATA	
(FT.)	(FT.) FROM - TO	ID	INCHES	6 INCHES	DATA	(FT.)	(DESCRIPTION OF MATERIALS)	PID - 10.2 eV (ppm)	
							Pulverized concrete.	-	
							Brown silty-clay soil, no stains or odors.	0.0	
5'							Brown silty-clay soil, no stains or odors.	0.0	
							Silty-clay soil, trace schist granules and pebbles, trace grussified schist sand size grains, no stains or odors.	0.0	
10'							Brown silty-clay soil, some grussified schist sand grains and pebbles, dense, no stains or odors.	0.0	
							Brown silty-clay soil and sand grains (grussified schist), no stains or odors.	0.0	
							Very wet, light brown grussified schist sand grains, possible sanitary sewer stains (?), no odor.	0.0	
15'							Brown, rusty colored medium sand, well sorted (grussified schist), trace micas, no stains or odors.	0.0	
							Wet, brown rusty colored fine to medium grussified schist sand grains, dense silty-clay below, no stains or odors.	0.0	
20'							Wet, brown rusty colored fine to medium grussified schist sand grains, dense silty-clay below, no stains or odors.	0.0	
							Brown, rusty colored medium to coarse, well sorted, sand, some fines, very wet, no stains or odors.	0.0	
25'									
-							Semi-competent schist bedrock.	-	
30'									
							Competent schist bedrock.		
35'									

WELL CONSTRUCTION DATA: Well bottom set at46' bgs Borehole diameter4.25 " Well Screen Interval36' to46' bgs (10screen legth) Well Screen Slot Size Mateiral Diameter2_ " Sand Filter Pack Interval to bgs Sand Size Quantity (bags, lbs, gallons) Well Riser Interaval 0 to36' bgs (36riser length) Well Riser Diameter2 Material PVC Bentonite Seal Above Fitler Pack to' bgs Backfill Interval to' bgs Backfill Material Bentonite Top/Ground Surface Seal to' bgs Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe) Surface Finishing notes: Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	35'						
Well bottom set at46_ ' bgs Borehole diameter4.25_ " Well Screen Interval36_ ' to46_ ' bgs (10screen legth) Well Screen Slot Size		STRUCTION DATA	4.	1	1		
Well Screen Interval 36 'to 46 'bgs (_10_screen legth) Well Screen Slot Size							
Well Screen Slot Size	Borehole diar	neter 4.25 "					
Sand Filter Pack Interval	Well Screen I	nterval 36 'to	46 't	ogs (10_	_screen legth)		
Sand SizeQuantity	Well Screen S	lot Size	_ Mate	eiral	Diameter _2	"	
Well Riser InteravalO' to36' bgs (36riser length) Well Riser Diameter2	Sand Filter Pa	ck Intervalto		_ bgs			
Well Riser Diameter 2 Material PVC Bentonite Seal Above Fitler Pack	Sand Size	Quantity	(t	ags, lbs, ga	allons)		
Bentonite Seal Above Fitler Pack	Well Riser In	eraval <u>0</u> ' to	36' bg	gs (<u>36</u>	riser length)		
Backfill Intervalto'bgs Backfill Material Bentonite Top/Ground Surface Sealto'bgs Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe) Surface Finishing notes: Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	Well Riser D	ameter 2 Mater	ial <u>P</u>	VC			
Backfill Material Bentonite Top/Ground Surface Sealto' bgs Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe) Surface Finishing notes: Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	Bentonite Sea	l Above Fitler Pack		to'	bgs		
Bentonite Top/Ground Surface Seal	Backfill Inter	'alto	' bgs				
Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe) Surface Finishing notes: Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	Backfill Mate	rial					
Surface Finishing notes: Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	Bentonite To	/Ground Surface Sea	al	to	_' bgs		
Groundwater Reference Point Description: (Top of Riser, Standpipe, other)	Finishing/We	l Protector: Flush-M	ounted	- Standpip	pe (length of sta	ndpipe	_)
	Surface Finis	ing notes:					
	Groundwater	Reference Point Des	cription	: (Top of F	Riser, Standpipe	, other)	

Well Filter Sand Bentonite Grout Strata Soil Bedrock	Indication of where groundwater begins Roadbox Well Casing/Riser
	Well Screen
KEY TO BLOWS PER 6-INCHES:	PROPORTIONS OF SOIL:

KEY TO BLOWS PER 6-INCHES: ılar Soils Cohesive Soils el & Sand) (Silt & Clay) ft Density Blows/ft Density V. Loose <2 V. Soft 2-4 0 Loose Soft 4-8 M. Stiff -30 M. Dense Stiff V. Stiff 8-15 0-50 Dense >50 V. Dense 15-30 >50 Hard

And = 35 to 50% Some = 20 to 35% Little = 10 to 20% Trace = 0 to 10%

with by geoprobe

_____ gallons of water was purged from following installation on ___
 SAA = Same as Above / NA = Not Available
 bys = Below Ground Surface

was logged & sampled at this location on _

4)Soil Boring

MONITOR WELL CONSTRUCTION LOG HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 PROJECT: Flamingo Cleaners RI/FS BORING NO. MW-3B (518) 877-7101 WA #: D006130-02 **PAGE 1 OF** __ 1 DATE STARTED: Aug. 10 2009 LOCATION: 149 North Avenue New Rochelle, NY DATE FINISHED: Aug. 12 2009 DRILLING CO.: GeoLogic NY, Inc. SURFACE ELEVATION: N/A DRILLED BY: **BOTTOM OF BORING ELEVATION: INSPECTED BY: GROUNDWATER REFERENCE ELEVATION: GROUNDWATER OBSERVATIONS** CASING SAMPLER TYPE: PVC MF DEPTH Post-Development **SIZE I.D.:** 2" SAMPLING STRATA FIELD TEST SAMPLE DATA BLOWS PER DEPTH DEPTH RECOV. WELL CHANGE LITHOLOGY DATA ID (DESCRIPTION OF MATERIALS) PID - 10.2 eV (FT.) (FT.) INCHES 6 INCHES DATA (FT.) FROM - TO (ppm) Competent schist bedrock. Core Run # 1 (36.0'-41.0'); Highly weathered, disintegrated (grussified) albite mica schist, salt and pepper colored, friable; RQD = 37.5%. 40' Core Run # 2 (41.0'-46.0'); Highly weathered, disintegrated (grussified) albite mica schist to banded, foliated gniess, salt and pepper color, several fractures, small scale folds visible; RQD = 65.8%. 45' Installed a 2" PVC well inside boring, due to disintegrated nature of 50' 55' 60' 65' WELL CONSTRUCTION DATA: Well bottom set at __46__' bgs KEY: Indication of where Borehole diameter 4.25 " Filter Sand groundwater begins Well Screen Interval 36 'to 46 'bgs (10 screen legth) Well Bentonite Well Screen Slot Size _____ Mateiral ___ Diameter _2_ " Grout Roadbox Sand Filter Pack Interval _____to _____bgs Soil Strata
 Sand Size
 Quantity
 (bags, lbs, gallons)

 Well Riser Interaval
 0 ' to 36 ' bgs (36 riser length)

 Well Riser Diameter
 2 Material
 PVC
 Well Casing/Riser Bedrock Bentonite Seal Above Fitler Pack to Backfill Interval to 'bgs Well Screen PROPORTIONS OF SOIL: Backfill Material_ KEY TO BLOWS PER 6-INCHES: Bentonite Top/Ground Surface Seal _____to ____' bgs Granular Soils Cohesive Soils Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe ____ (Gravel & Sand) (Silt & Clay) And = 35 to 50% Blows/ft Density Density Some = 20 to 35% Blows/ft V. Loose <2 V. Soft Little = 10 to 20% 4-10 Loose Groundwater Reference Point Description: (Top of Riser, Standpipe, other) 2-4 Soft $Trace=0 \ to \ 10\%$ 10-30 M. Dense 4-8 M. Stiff GENERAL REMARKS: 30-50 Dense 8-15 Stiff V. Stiff gallons of water was purged from following installation on _ >50 V. Dense 15-30 2) SAA = Same as Above / NA = Not Available >50 Hard 3) bgs = Below Ground Surface

with by geoprobe

_was logged & sampled at this location on __

4)Soil Boring_

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101

MONITOR WELL CONSTRUCTION LOG

PROJECT: Flamingo Cleaners RI/FS WA #: D006130-02

LOCATION: 149 North Avenue New Rochelle, NY

DRILLING CO.: GeoLogic NY, Inc.

DRILLED BY: INSPECTED BY: BORING NO. MW-4

PAGE 1 OF __1___

DATE STARTED: Aug. 18 2009 DATE FINISHED: Aug. 18 2009

SURFACE ELEVATION: N/A

BOTTOM OF BORING ELEVATION:

GROUNDWATER REFERENCE ELEVATION:

GROUNDWATER OBSERVATIONS

DEPTH	Post-Development

CASING TYPE: PVC

SAMPLER NG

SIZE I.D.: 2"

DEPTH (FT.)	SAMPLING DEPTH (FT.) FROM - TO	ID	RECOV. INCHES	BLOWS PER 6 INCHES	WELL DATA	STRATA CHANGE (FT.)	LITHOLOGY (DESCRIPTION OF MATERIALS)	FIELD TEST DATA PID - 10.2 eV (ppm)
-							Concrete (6"). Brown to black fine to coarse sand, trace silt and gravel, no stains or odors.	0.0
								0.0
5'							Brown fine sand and silt with dark brown includions of silt and	0.0
							medium to coarse sand, trace gravel, no stains or odors.	0.0
10'								0.0
-							Brown fine sand and silt, trace mica flakes, no stains or odors.	0.0
							Wet, brown fine sand and silt, trace medium to coarse sand and gravel, no stains or odors.	0.0
15'							Augered, no data.	-
20'								
-								
25'					- -			
-					-			
30'								
-					-			
35'	TRUCTION DATA				-			

Borchoic diameter 4.23
Well Screen Interval 8.3 'to 18.3 'bgs (10 screen legth)
Well Screen Slot Size MateiralDiameter _2_"
Sand Filter Pack Interval 6 to 18.3 bgs
Sand SizeQuantity(bags, lbs, gallons)
Well Riser Interaval0' to8.3' bgs (8.3riser length)
Well Riser Diameter 2 Material PVC
Bentonite Seal Above Fitler Pack 4_to 6_' bgs
Backfill Intervalto' bgs
Backfill Material

Bentonite Top/Ground Surface Seal __to _____' bgs Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe _____

Groundwater Reference Point Description: (Top of Riser, Standpipe, other)

GENERAL REMARKS:

4)Soil Boring_

1) ~_____ gallons of water was purged from following installation on _____ 2) SAA = Same as Above / NA = Not Available 3) bgs = Below Ground Surface _was logged & sampled at this location on ___

Strata Bedrock

Well

groundwater begins Roadbox Well Riser

Well Screen

KEY TO BLOWS PER 6-INCHES: Granular Soils Cohesive Soils (Silt & Clay) (Gravel & Sand)

Bentonite Grout

Soil

ows/ft	Density	Blows/ft	Density
0-4	V. Loose	<2	V. Soft
4-10	Loose	2-4	Soft
10-30	M. Dense	4-8	M. Stiff
30-50	Dense	8-15	Stiff
>50	V. Dense	15-30	V. Stiff
		>50	Hard

PROPORTIONS OF SOIL: And = 35 to 50%

Some = 20 to 35% $Little=10 \ to \ 20\%$ $Trace=0 \ to \ 10\%$

with by geoprobe

HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 (518) 877-7101

MONITOR WELL CONSTRUCTION LOG

PROJECT: Flamingo Cleaners RI/FS WA #: D006130-02

LOCATION: 149 North Avenue New Rochelle, NY

DRILLING CO.: GeoLogic NY, Inc.

DRILLED BY: INSPECTED BY:

BORING NO. <u>MW-5</u>
PAGE 1 OF __1

DATE STARTED: Aug 13. 2009
DATE FINISHED: Aug 13. 2009

SURFACE ELEVATION: N/A

BOTTOM OF BORING ELEVATION: GROUNDWATER REFERENCE ELEVATION:

GROUNDWATER OBSERVATIONS

DEPTH Post-Development

CASING
TYPE: PVC

SAMPLER MF

SIZE I.D.: 2"

Wet, gray stained, densley packed silty to fine to medium sand, strong chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	FIELD TEST DATA PID - 10.2 eV (ppm)
chemical odor, trace wood fragments. Gray stained, fine sandy soil at top 1'; below a brown fine sandy soil, oxidized, strong chemical odor. Wet, gray stained, brown fine to medium sand, strong chemical odor, highly oxidized. Gray stained, silty-sand soil, strong chemical odor (i.e. fuel oil), moist and densley packed, trace sand lenses. Wet, gray stained, densley packed silty to fine to medium sand, strong chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown to tan, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet	0.0
oxidized, strong chemical odor. Wet, gray stained, prown fine to medium sand, strong chemical odor, highly oxidized. Gray stained, silty-sand soil, strong chemical odor (i.e. fuel oil), moist and densley packed, trace sand lenses. Wet, gray stained, densley packed silty to fine to medium sand, strong chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	33.8
highly oxidized. Gray stained, slity-sand soil, strong chemical odor (i.e. fuel oil), moist and densley packed, trace sand lenses. Wet, gray stained, densley packed silty to fine to medium sand, strong chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	58.6
and densley packed, trace sand lenses. Wet, gray stained, densley packed silty to fine to medium sand, strong chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	108.0
chemical odor. Brown to gray silt and medium sand, densley packed, strong chemical odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	168.0
odor, trace rock fragments. Brown, medium grained sand, densley packed, some fines, no stains or odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	61.2
odors. Brown to tan, medium to coarse sand, some qtz granules and pebbles, no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	0.5
no stains or odors. Rusty colored medium to coarse sand, trace granules + pebbles, no stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	0.0
stains, possible odor (?). Wet, brown to gray, densley packed medium to coarse sand, some pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	0.0
pebbles, no stains, subtle odor. Cobble stuck in sampler, zero recovery. Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	16.3
Wet, densley packed, rusty medium to coarse sand and granules of schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	0.0
Schist, trace micas, no stains or odors. Backfilled borehole with clearn coarse grained quartz sand to 17 feet bgs.	-
bgs.	0.0
30'	
35'	
VELL CONSTRUCTION DATA:	n of where

WELL CONSTRUCTION DATA:
Well bottom set at17.0' bgs
Borehole diameter 4.25 "
Well Screen Interval' to17' bgs (10screen legth)
Well Screen Slot Size Mateiral Diameter _2_"
Sand Filter Pack Interval5to22 bgs
Sand SizeQuantity(bags, lbs, gallons)
Well Riser Interaval <u>0</u> 'to <u>7</u> 'bgs (<u>7</u> riser length)
Well Riser Diameter 2" Material PVC
Bentonite Seal Above Fitler Pack 3 to 5 'bgs
Backfill Intervalto' bgs
Backfill Material
Bentonite Top/Ground Surface Sealto' bgs
Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe)
Surface Finishing notes:
Groundwater Reference Point Description: (Top of Riser, Standpipe, other)
GENERAL REMARKS:
1) ~ gallons of water was purged from following installation on2009

was logged & sampled at this location on _

2) SAA = Same as Above / NA = Not Available
3) bgs = Below Ground Surface

4)Soil Boring

Granular Soils Cohesive Soils (Gravel & Sand) (Silt & Clay) Blows/ft Density Blows/ft Density V. Loose <2 V. Soft 4-10 Loose 2-4 Soft M. Stiff 10-30 M. Dense 4-8 Stiff V. Stiff 8-15 30-50 Dense V. Dense >50 15-30 >50 Hard

And = 35 to 50%

Some = 20 to 35% Little = 10 to 20% Trace = 0 to 10%

with by geoprobe

MONITOR WELL CONSTRUCTION LOG HRP Engineering, P.C. 1 Fairchild Square, Suite 110 Clifton Park, NY 12065 PROJECT: Flamingo Cleaners RI/FS BORING NO. MW-5B (518) 877-7101 WA #: D006130-02 PAGE 1 OF __ 1 LOCATION: 149 North Avenue DATE STARTED: Aug. 17 2009 New Rochelle, NY DATE FINISHED: Aug. 18 2009 DRILLING CO.: GeoLogic NY, Inc. SURFACE ELEVATION: N/A DRILLED BY: **BOTTOM OF BORING ELEVATION: INSPECTED BY: GROUNDWATER REFERENCE ELEVATION: GROUNDWATER OBSERVATIONS** CASING SAMPLER TYPE: Steel MF DEPTH Post-Development **SIZE I.D.:** 4" SAMPLING FIELD TEST SAMPLE STRATA DATA DEPTH DEPTH RECOV. WELL CHANGE LITHOLOGY DATA ID (DESCRIPTION OF MATERIALS) PID - 10.2 eV (FT.) INCHES 6 INCHES DATA FROM - TO (ppm) 5' 10' Augered, no data. 15' 20' Competent rock. 25' Core Run # 1 (24.0'-29.0'); Salt and pepper color, competent, gneiss, banded foliation and micro folding evident, garnet inclusions from 28 to 29 feet, fractures at 24'8", 25'8", 26'3", 27'2"; RQD = 95%. 30' Core Run # 2 (29.0'-34.0'); Salt and pepper color, competent, gneiss with garnet inclusions, banded foliation and micro folding evident, fracture at 32'8": ROD = 95%. WELL CONSTRUCTION DATA: Well bottom set at __34.0__' bgs KEY: Indication of where Borehole diameter_4.25_" Filter Sand groundwater begins Well Screen Interval _____' to _____' bgs (____screen legth) Well Bentonite Well Screen Slot Size ______ Mateiral_____Diameter __ Grout Roadbox Sand Filter Pack Interval _____to ____ bgs Soil Strata Well Casing Sand Size_____Quantity____(bags, lbs, gallons) Bedrock Well Riser Interaval ______'to _____'bgs (_____riser length)
Well Riser Diameter _____Material ____ Bentonite Seal Above Fitler Pack ______to _____' bgs
Backfill Interval ______to _____' bgs Open Borehole PROPORTIONS OF SOIL: Backfill Material__ KEY TO BLOWS PER 6-INCHES: Bentonite Top/Ground Surface Seal _____to ____' bgs Granular Soils Cohesive Soils Finishing/Well Protector: Flush-Mounted - Standpipe (length of standpipe ____ (Gravel & Sand) (Silt & Clay) And = 35 to 50% Blows/ft Density Density Some = 20 to 35% Blows/ft V. Loose <2 V. Soft Little = 10 to 20% 4-10 Loose Groundwater Reference Point Description: (Top of Riser, Standpipe, other) 2-4 Soft $Trace=0 \ to \ 10\%$ 10-30 M. Dense 4-8 M. Stiff GENERAL REMARKS: Stiff 30-50 Dense 8-15 V. Stiff __ gallons of water was purged from following installation on ___ >50 V. Dense 15-30 2) SAA = Same as Above / NA = Not Available >50 Hard 3) bgs = Below Ground Surface 4)Soil Boring_ with by geoprobe _was logged & sampled at this location on __

			Lab Report No.:	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	H1811 H1811-	J0425 J0425-	J0425 J0425-	J0425 J0425-	J0425 J0425-	J0425 J0425-	J0425 J0425-	J0425 J0425-	J0425 J0425-
			Lab Sample No.:	01ASITE	02ASITE	03ASITE	04ASITE	05ASITE	06ASITE	07ASITE	08ASITE	09ASITE	03ASITE	01ASITE	04ASITE	08ASITE	02ASITE	06ASITE	07ASITE	05ASIT
Water-8260B ug/l	CAS#	Unit	GA Criteria	MW-1B	MW-2	MW-3	MW-3B	MW-4	MW-4DUP	MW-5	MW-5B	ТВ	DUP-3B	MW-1B	MW-2	MW-3	MW-3B	MW-4	MW-5	MW-5
mple Depth (ft.)																				
te Collected				9/16/2009 12:00 PM	9/16/2009 11:44 AM	9/16/2009 10:06 AM	9/16/2009 11:00 AM	9/16/2009 1:38 PM	9/16/2009 1:38 PM	9/16/2009 10:15 AM	9/16/2009 11:15 AM	9/23/2009 8:26:00 PM	3/10/2010 1:35 PM	3/10/2010 12:04 PM	3/10/2010 2:12 PM	3/11/2010 10:52 AM	3/10/2010 1:15 PM	3/11/2010 8:00 AM	3/11/2010 9:35 AM	3/10/20 5:10 F
1.1.2-Tetrachloroethane	630-20-6	ug/l	5	12:00 PW	11:44 AM	10:06 AW	<5	1:36 FWI	1:36 FW <5	<5	<5	<5	<5	<5	2:12 FWI	<5	1:15 PW	<5	9:35 AM	<5
1.1-Trichloroethane	71-55-6	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2,2-Tetrachloroethane	79-34-5	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
1,2-Trichloroethane	79-00-5	ug/l	1	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
1-Dichloroethane	75-34-3 75-35-4	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5
1-Dichloroethylene 1-Dichloropropylene	/5-35-4 563-58-6	ug/l ug/l	5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
2 3-Trichlorobenzene	87-61-6	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2,3-Trichloropropane	96-18-4	ug/l	0.04	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
,2,4-Trichlorobenzene	120-82-1	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
2,4-Trimethylbenzene	95-63-6	ug/l	5	<5	<5	<5	<5	<5	<5	10	<5	<5	<5	<5	<5	<5	<5	<5	17	<5
2-Dibromo-3-chloropropane	96-12-8	ug/l	0.04	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
2-Dibromoethane (EDB) 2-Dichlorobenzene	106-93-4 95-50-1	ug/l ug/l	NS 3	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)	<5 (<5)
2-Dichloroethane	107-06-2	ug/l	5	(<5) <5	(<5) <5	(<5)	(<5) <5	(<5)	(<5) <5	(<5) <5	(<5) <5	(<5)	(<5)	(<5) <5	(<5)	(<5) <5	(<5)	(<5) <5	(<5)	(<5)
2-Dichloropropane	78-87-5	ug/l	1	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
3,5-Trimethylbenzene	108-67-8	ug/l	5	<5	<5	<5	<5	<5	<5	1.4 J	<5	<5	<5	<5	<5	<5	<5	<5	3.2 J	<5
,3-Dichlorobenzene	541-73-1	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
3-Dichloropropane	142-28-9	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
,3-Dichloropropene (cis) ,3-Dichloropropene (trans)	10061-01-5 10061-02-6	ug/l ug/l	NS NS	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
4-Dichloropeneene (trans)	106-46-7	ug/l	- NS - 5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5	<5	<5
2-Dichloropropane	594-20-7	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
-Butanone (MEK)	78-93-3	ug/l	50	<5	<5	<5	<5	<5	<5	<5	<5	R	R	R	R	R	R	R	R	R
-Chlorotoluene	95-49-8	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Hexanone (Methyl butyl ketone/MBK)	591-78-6	ug/l	50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
-Chlorotoluene	106-43-4 99-87-6	ug/l	5	<5	<5	<5	<5	<5	<5	<5 <5	<5 <5	<5	<5	<5	<5 <5	<5	<5	<5	<5	<5 <5
-Isopropyltoluene / p-Isopropyltoluene cetone	67-64-1	ug/l ug/l	50	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 R	<5 R	<5 5.6 J	R	<5 R	<5 R	<5 R	<5 R	R R
enzene	71-43-2	ug/l	1	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
romobenzene	108-86-1	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
romochloromethane	74-97-5	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
romodichloromethane	75-27-4	ug/l	50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
romoform romomethane	75-25-2 74-83-9	ug/l	50 5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
arbon disulfide	75-15-0	ug/l ug/l	60	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
arbon tetrachloride	56-23-5	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chlorobenzene	108-90-7	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroethane	75-00-3	ug/l	50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
Chloroform	67-66-3 74-87-3	ug/l	7	1.3	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
hloromethane is-1.2-Dichloroethylene	74-87-3 156-59-2	ug/l ug/l	NS 5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5
is-1,2-Dichloroethylene	124-48-1	ug/l	50	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5 <5	<5	<5 <5	<5	<5	<5	<5	<5
libromomethane	74-95-3	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
ichlorodifluoromethane	75-71-8	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
thylbenzene	100-41-4	ug/l	5	<5	<5	<5	<5	<5	<5	1.3 J	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
lexachlorobutadiene	87-68-3 74-88-4	ug/l	0.5	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
domethane	74-88-4 98-82-8	ug/l ug/l	NS 5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5 <5	<5 <5	<5 <5
opropylbenzene Ipo-Xvlene	1330-20-7	ug/l	5	<5 <5	<5	<5	<5 <5	<5 <5	<5 <5	2.9 J	<5 <5	<5	<5 <5	<5	<5 <5	<5 <5	<5	<5 <5	1.3	<5
/p-Xylenes	179601-23-1	ug/l	NS	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
lethyl isobutyl ketone (MIBK)	108-10-1	ug/l	NS	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
lethylene chloride	75-09-2	ug/l	5	6.1	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
lethyltertbutyl ether	1634-04-4 91-20-3	ug/l	10	<5	<5	<5	<5 -E	<5	<5 -E	<5	<5 -F	<5	<5 -E	<5	<5 -E	<5 -F	<5	<5	<5	<5
aphthalene Butvlbenzene	104-51-8	ug/l ug/l	10 5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	12 1.2 J	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	120 2.4 J	<5 <5
-Propylbenzene	103-65-1	ug/l	5	<5	<5	<5	<5 <5	<5	<5 <5	<5	<5	<5	<5 <5	<5	<5 <5	<5	<5	<5	<5	<5
Xylene	95-47-6	ug/l	5	<5	<5	<5	<5	<5	<5	2.9	<5	<5	<5	<5	<5	<5	<5	<5	1.3 J	<5
ec-Butylbenzene	135-98-8	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
tyrene	100-42-5	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
rt-Butylbenzene	98-06-6 127-18-4	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
etrachloroethylene oluene	127-18-4	ug/l ug/l	5	<5 <5	<5 <5	1.2 J <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	1.4 J <5	<5 <5	<5 <5	<5 <5	<5 <5
ans-1.2-Dichloroethylene	156-60-5	ug/l	5	<5 <5	<5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5 <5	<5	<5
ichloroethylene	79-01-6	ug/l	5	<5 <5	<5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5	<5 <5	<5 <5	<5 <5	<5	<5	<5
richlorofluoromethane	75-69-4	ug/l	5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
inyl acetate	108-05-4	ug/l	NS	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5	<5
inyl chloride	75-01-4	ug/l	2	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)	(<5)
ylene-Total	ļ	ug/l	NS	<10	<10	<10	<10	<10	<10 (<10)	2.9 J (<10)	<10 (<10)	<10 (<10)	(<10) (<10)	(<10) (<10)	(<10)	(<10)	(<10)	(<10)	1.3 J	(<10
3-Dichloropropene (Total)	II .	ug/l	0.4	(<10)	(<10)	(<10)	(<10)	(<10)							(<10)	(<10)	(<10)	(<10)	(<10)	(<10

,	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NY
MW-1	Mointoring Well-Reference Number
ug/l	micrograms per liter
R	Sample Results Rejected, See DUSR Report
The Lab Sample I	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample ate exceedances of one or more of the listed standards. o. is the merging of the Lab Sample ID and the Lab Sample Type.
Notes: Shaded Cells indi The Lab Sample I * Chromium DEC Data Qualifiers ar TCL: Target Com, TCL VOCs: Targ TCL SVOCs: Targ TCL SVOCs: Targ Pesticides: Sampl PCBs: Polychlorir TAL Metals: Targ TAL indicates Tar	value is the approximate concentration of the analyte in the sample atte exceedances of one or more of the listed standards. o. is the merging of the Lab Sample ID and the Lab Sample Type. tandards as shown are for Total Chomium. not presented in these tables, however can be found the labratory data and DUSR Report
Notes: Shaded Cells indi The Lab Sample I chromium DEC Data Qualifiers an TCL: Target Com, TCL VOCs: Targ Pesticides: Sampl PCBs: Polychlorir TAL Metals: Targ TAL indicates Tar TOC: Total Organ NYSDEC: New Y.	value is the approximate concentration of the analyte in the sample atte exceedances of one or more of the listed standards. o. is the merging of the Lab Sample ID and the Lab Sample Type. Isolated as shown are for Total Chromium. not presented in these tables, however can be found the labratory data and DUSR Report und List ICompound List Voltaile Organic Compounds, Samples Analyzed via United States Environmental Protection Agency Method 8260B. It Compound List Semi Voltaile Organic Compounds, Samples Analyzed via United States Environmental Protection Agency (USEPA) Method 8081 Is chaptured by the Semi Voltaile Organic Compounds, Samples Analyzed via United States Environmental Protection Agency (USEPA) Method 8081 Is chaptured by the Semi Voltaile Organic Compounds, Samples Analyzed via United States Environmental Protection Agency (USEPA) Method 8081 It can be a supplied of the Semi Voltaile Organic Compounds (Samples Analyzed via United States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile Organic Compounds (Samples Analyzed via United States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Environmental Protection Agency (USEPA) Method 8082 It can be a supplied or the Semi Voltaile States Enviro

TABLE 5 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES SEMI-VOLATILE ORGANIC COMPOUNDS ANALYSIS RESULTS

			Lab Danier No.	114044	114044	111011	111011	111044	111011	114044	114044	10.405	10.405	10.405	10.405	10.405	10.405	10.405	10.405
			Lab Report No.:	H1811	H1811	J0425													
			Lab Sample No.:	H1811- 01BSITE	H1811- 02BSITE	H1811- 03BSITE	H1811- 04BSITE	H1811- 05BSITE	H1811- 06BSITE	H1811 - 07BSITE	H1811- 08BSITE	J0425- 03BSITE	J0425- 01BSITE	J0425- 04BSITE	J0425- 08BSITE	J0425- 02BSITE	J0425- 06BSITE	J0425- 07BSITE	J0425- 05BSITE
Water-8270C	CAS#	Unit	NYSDEC Class	MW - 1B	MW - 2	MW - 3	MW - 3B	MW - 4	MW - 4 DUP	MW - 5	MW - 5B	DUP-3B	MW-1B	MW-2	MW-3	MW-3B	MW-4	MW-5	MW-5B
Sample Depth (ft.)	l l	l	GA Criteria																
,				9/16/2009	9/16/2009	9/16/2009	9/16/2009	9/16/2009	9/16/2009	9/16/2009	9/16/2009	3/10/2010	3/10/2010	3/10/2010	3/11/2010	3/10/2010	3/11/2010	3/11/2010	3/10/2010
Date Collected				12:00 PM	11:44 AM	10:06 AM	11:00 AM	1:38 PM	1:38 PM	10:15 AM	11:15 AM	1:35 PM	12:04 PM	2:12 PM	10:52 AM	1:15 PM	8:00 AM	9:35 AM	5:10 PM
1,2,4-Trichlorobenzene	120-82-1	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
1,2-Dichlorobenzene	95-50-1 541-73-1	ug/l ug/l	3 5	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10)	(<10)	(<10) (<10)	1.1 (<10)	(<10) (<10)
1,3-Dichlorobenzene 1,4-Dichlorobenzene	106-46-7	ug/l	5	(<10)	(<10)	(<10)	(<10) (<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10) (<10)	(<10) (<10)	(<10)	(<10)	(<10)
2,4,5-Trichlorophenol	95-95-4	ug/l	NS	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
2,4,6-Trichlorophenol	88-06-2	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2,4-Dichlorophenol	120-83-2	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
2,4-Dimethylphenol 2,4-Dinitrophenol	105-67-9 51-28-5	ug/l ug/l	50 10	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)	<10 (<20)						
2,4-Dinitrotoluene	121-14-2	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
2,6-Dinitrotoluene	606-20-2	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
2-Chloronaphthalene	91-58-7	ug/l	10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-Chlorophenol	95-57-8 534-52-1	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
2-Methyl-4,6-dinitrophenol 2-Methylnaphthalene	91-57-6	ug/l ug/l	NS NS	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10						
2-Nitroaniline	88-74-4	ug/l	5	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)
2-Nitrophenol	88-75-5	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
3,3-Dichlorobenzidine	91-94-1	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	R (88)	(<10)	(<10)
3-Nitroaniline 4-Bromophenylphenyl ether	99-09-2 101-55-3	ug/l ug/l	5 NS	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10	(<20) <10						
4-Chloro-3-methylphenol	59-50-7	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
4-Chloroaniline	106-47-8	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
4-Chlorophenyl phenylether	7005-72-3	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
4-Nitroaniline 4-Nitrophenol	100-01-6 100-02-7	ug/l ug/l	5 NS	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20	(<20) <20						
Acenaphthene	83-32-9	ug/l	20	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Acenaphthylene	208-96-8	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Anthracene	120-12-7	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(a)anthracene	56-55-3	ug/l	0.002	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Benzo(a)pyrene Benzo(b)fluoranthene	50-32-8 205-99-2	ug/l ug/l	ND (<5) 0.002	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)						
Benzo(ghi)perylene	191-24-2	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Benzo(k)fluoranthene	207-08-9	ug/l	0.002	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Bis(2-chloroethoxy)methane Bis(2-Chloroethyl)Ether	111-91-1 111-44-4	ug/l ug/l	5	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)						
Bis(2-ethylhexyl)phthalate	117-81-7	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Bis-Chloroisopropyl Ether	108-60-1	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Butylbenzyl phthalate	85-68-7	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Carbazole	86-74-8 218-01-9	ug/l ug/l	NS 0.002	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)						
Chrysene Dibenzo(a,H)anthracene	53-70-3	ug/l	0.002 NS	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10	(<10) <10						
Dibenzofuran	132-64-9	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Diethyl phthalate	84-66-2	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Dimethyl phthalate	131-11-3	ug/l	50 NC	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Di-n-butyl phthalate Di-n-octyl phthalate	84-74-2 117-84-0	ug/l ug/l	NS 50	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10						
Fluoranthene	206-44-0	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Fluorene	86-73-7	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	1	<10
Hexachlorobenzene	118-74-1 87-68-3	ug/l	0.04	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Hexachlorobutadiene Hexachlorocyclopentadiene	77-47-4	ug/l ug/l	0.5 5	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)	(<10) (<10)						
Hexachloroethane	67-72-1	ug/l	5	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Indeno(1,2,3-cd)pyrene	193-39-5	ug/l	0.002	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Isophorone Naphthalane	78-59-1 91-20-3	ug/l	50 10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Naphthalene Nitrobenzene	98-95-3	ug/l	0.4	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	<10 (<10)	9.6	<10 (<10)						
N-Nitrosodi-n-propylamine	621-64-7	ug/l	NS	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
N-Nitrosodiphenylamine	86-30-6	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
o-cresol p-Cresol	95-48-7 106-44-5	ug/l ug/l	NS NS	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10	<10 <10						
Pentachlorophenol	87-86-5	ug/l	1	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	(<20)	<10 (<20)	(<20)
Phenanthrene	85-01-8	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
Phenol	108-95-2	ug/l	1	2.5 J	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)	(<10)
Pyrene	129-00-0	ug/l	50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10

Key	
1	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3.
MW-	1 Mointoring Well-Reference Number
ug/l	micrograms per liter
R	Sample Results Rejected, See DUSR Report
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

TABLE 6 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES TOTAL METALS ANALYSIS RESULTS

			Lab Report No.:	H1811	J0425
					J0425-
			Lab Sample No:	H1811-07CSITE	07CSITE
Water-Metals	CAS#	Unit	NYSDEC Class GA Criteria	MW-5	MW-5
Sample Depth (ft.)					
Date Collected				9/16/2009 10:15 AM	3/11/2010 9:35 AM
Aluminum, Total	7429-90-5	ug/l	100	83.2	83 J
Antimony	7440-36-0	ug/l	3	(<0.02)	(<0.02)
Arsenic	7440-38-2	ug/l	25	<0.02	<0.02
Barium	7440-39-3	ug/l	1000	102 J	133 J
Beryllium	7440-41-7	ug/l	3	0.04	0.041
Cadmium	7440-43-9	ug/l	5	<0.005	<0.005
Calcium	7440-70-2	ug/l	NS	50300	63100
Chromium, Total	7440-47-3	ug/l	50	<0.02	0.96 J
Cobalt	7440-48-4	ug/l	NS	27.6 J	17.8 J
Copper	7440-50-8	ug/l	200	< 0.03	< 0.03
Iron	7439-89-6	ug/l	300	206	16400
Lead	7439-92-1	ug/l	25	<0.01	3.6 J
Magnesium	7439-95-4	ug/l	35000	16100	14700
Manganese	7439-96-5	ug/l	300	8530	8420
Mercury	7439-97-6	ug/l	0.7	<0.0002	<0.0002
Nickel	7440-02-0	ug/l	100	43.4 J	18.9
Potassium, Total	7440-09-7	ug/l	NS	7090	5430
Selenium	7782-49-2	ug/l	10	(<0.03)	17.5
Silver	7440-22-4	ug/l	50	< 0.03	<0.03
Sodium, Total	7440-23-5	ug/l	20,000	120000	239000
Thallium	7440-28-0	ug/l	0.5	(<0.02)	22.6
Vanadium	7440-62-2	ug/l	NS	<0.05	0.63 J
Zinc	7440-66-6	ug/l	2000	15.3 J	16 J

Key	
1	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3.
MW-1	Mointoring Well-Reference Number
ug/l	micrograms per liter

TABLE 7 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES DISSOLVED METALS ANALYSIS RESULTS

			Lab Report No.:	J0425 J0425-
			Lab Sample No:	07DSITE
Water-Metals	CAS#	Unit	NYSDEC Class GA Criteria	MW-5
Sample Depth (ft.)				
Date Collected				3/11/2010 9:35 AM
Aluminum, Total	7429-90-5	ug/l	100	30.4 J
Antimony	7440-36-0	ug/l	3	(<0.02)
Arsenic	7440-38-2	ug/l	25	<0.02
Barium	7440-39-3	ug/l	1000	127 J
Beryllium	7440-41-7	ug/l	3	(<0.005)
Cadmium	7440-43-9	ug/l	5	< 0.005
Calcium	7440-70-2	ug/l	NS	61500
Chromium, Total	7440-47-3	ug/l	50	1.1 J
Cobalt	7440-48-4	ug/l	NS	17.3 J
Copper	7440-50-8	ug/l	200	< 0.03
Iron	7439-89-6	ug/l	300	14900
Lead	7439-92-1	ug/l	25	2.2 J
Magnesium	7439-95-4	ug/l	35000	14200
Manganese	7439-96-5	ug/l	300	8300
Mercury	7439-97-6	ug/l	0.7	<0.0002
Nickel	7440-02-0	ug/l	100	17.8 J
Potassium, Total	7440-09-7	ug/l	NS	5240
Selenium	7782-49-2	ug/l	10	11.8 J
Silver	7440-22-4	ug/l	50	<0.03
Sodium, Total	7440-23-5	ug/l	20,000	238000
Thallium	7440-28-0	ug/l	0.5	22.4
Vanadium	7440-62-2	ug/l	NS	<0.05
Zinc	7440-66-6	ug/l	2000	20.2 J

Key	
1	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3
MW-1	Mointoring Well-Reference Number
ug/l	micrograms per liter
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

TABLE 8 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES PESTICIDES ANALYSIS RESULTS

	Lab Report No.:			H1811	J0425
				H1811-	J0425-
	b Sample No.:	07BSITE	07BSITE		
Water-Pest-8081A	CAS#	Unit	NYSDEC Class GA Criteria	MW-5	MW-5
Sample Depth (ft.)					
Date Collected				9/16/2009 10:15 AM	3/11/2010 9:35 AM
4,4'-DDD	72-54-8	ug/l	0.3	<0.1	0.2 J
4,4'-DDE	72-55-9	ug/l	0.2	<0.1	0.24 J
4,4'-DDT	50-29-3	ug/l	0.2	<0.1	0.56 J
Aldrin	309-00-2	ug/l	ND(<0.05)	< 0.05	< 0.05
alpha-BHC	319-84-6	ug/l	ND(<0.05)	< 0.05	0.054 J
Alpha-chlordane	5103-71-9	ug/l	NS	< 0.05	0.085 J
beta-BHC	319-85-7	ug/l	ND(<0.05)	< 0.05	0.069 J
delta-BHC	319-86-8	ug/l	ND(<0.05)	0.19	0.076 J
Dieldrin	60-57-1	ug/l	0.001	(<0.1)	0.12 J
Endosulfan I	959-98-8	ug/l	NS	<0.05	< 0.05
Endosulfan II	33213-65-9	ug/l	NS	<0.1	<0.1
Endosulfan Sulfate	1031-07-8	ug/l	NS	<0.1	<0.1
Endrin	72-20-8	ug/l	ND(<0.1)	<0.1	<0.1
Endrin Aldehyde	7421-93-4	ug/l	5	<0.1	<0.1
Endrin ketone	53494-70-5	ug/l	5	<0.1	<0.1
gamma-BHC (Lindane)	58-89-9	ug/l	0.05	< 0.05	0.072 J
Heptachlor	76-44-8	ug/l	0.04	(<0.05)	0.058 J
Heptachlor Epoxide	1024-57-3	ug/l	0.03	(<0.05)	0.19 J
Methoxychlor	72-43-5	ug/l	35	<0.5	<0.5
Toxaphene	8001-35-2	ug/l	0.06	(<5)	(<5)
trans-Chlordane	5103-74-2	ug/l	NS	<0.05	0.16

Key	
1	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3
MW-1	Mointoring Well-Reference Number
ug/l	micrograms per liter
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

TABLE 9 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES PCB ANALYSIS RESULTS

Lab Report No.:					J0425 J0425- 07BSITE
Water-Misc	CAS#	Unit	NYSDEC Class GA Criteria	MW-5	MW-5
Sample Depth (ft.)				9/16/2009	
Date Collected					3/11/2010 9:35 AM
PCB-1016	12674-11-2	ug/l	0.09**	<1	<1
PCB-1221	11104-28-2	ug/l	0.09**	<1	<1
PCB-1232	11141-16-5	ug/l	0.09**	<1	<1
PCB-1242	53469-21-9	ug/l	0.09**	<1	<1
PCB-1248	12672-29-6	ug/l	0.09**	<1	<1
PCB-1254	11097-69-1	ug/l	0.09**	<1	7.8
PCB-1260	11096-82-5	ug/l	0.09**	<1	<1
PCBs-Total		ug/l	0.09	(<7)	7.8

Key		
	1	Parameter Detected Below Standards
	1	Parameter Exceeds ANY standards
	NA	Parameter Not Analyzed
	NS	No TOGS Standard or guidance value
	ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3
	MW-1	Mointoring Well-Reference Number
	ug/l	micrograms per liter
	0.09**	0.09 ug/l TOGS standard for PBCs applies to the sum of all the PCBs listed.
	J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

TABLE 10 FLAMINGO CLEANERS, 149 NORTH AVENUE NEW ROCHELLE, NY (DEC SITE #C360078) REMEDIAL INVESTIGATION/FEASABILITY STUDY AQUEOUS SAMPLES TOTAL CYANIDE

			ab Report No.: b Sample No.:	H1811 H1811- 07DSITE	J0425 J0425- 07ESITE
Water-Misc	CAS#	Unit	NYSDEC Class GA Criteria	MW-5	MW-5
Sample Depth (ft.)					
Date Collected					3/11/2010 9:35 AM
Cyanide, Total	57-12-5	ug/l	200	3 J	<20

Key	
1	Parameter Detected Below Standards
1	Parameter Detected Below Standards
1	Parameter Exceeds ANY standards
NA	Parameter Not Analyzed
NS	No TOGS Standard or guidance value
ND	As defined in NYSDEC TOGS1.1.1, means a non-detectable concentration by the approved analytical methods in 6 NYCRR 700.3
MW-1	Mointoring Well-Reference Number
ug/l	micrograms per liter
J	The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample

APPENDIX D

Laboratory Data Sheets

ANALYTICAL RESULTS SUMMARY

PROJECT NAME: Flamingo RI

CA RICH CONSULTANTS, INC. 17 DUPONT STREET PLAINVIEW, NY 11803 5165768844

CHEMTECH PROJECT NO. ATTENTION:

X3074 Rich Izzo

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-18(8-10)	SDG No.:	X3074
Lab Sample ID:	X3074-01	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	10
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006882.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS					····	
75-71-8	Dichlorodifluoromethane	4.8	U	28	4.8	ug/Kg
74-87 - 3	Chloromethane	4.7	U	28	4.7	ug/Kg
75-01-4	Vinyl chloride	4.6	U	28	4.6	ug/Kg
74-83-9	Bromomethane	11	U	28	11	ug/Kg
75-00-3	Chloroethane	12	υ	28	12	ug/Kg
75-69-4	Trichlorofluoromethane	6.9	U	28	6.9	ug/Kg
75-35-4	1,1-Dichloroethene	3.2	U	28	3.2	ug/Kg
75-09-2	Methylene Chloride	35		28	10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.6	U	28	3.6	ug/Kg
75-34-3	1,1-Dichloroethane	1.5	U	28	1.5	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	28	2.5	ug/Kg
67-66-3	Chloroform	1.9	U	28	1.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.3	U	28	2.3	ug/Kg
107-06-2	1,2-Dichloroethane	1.7	U	28	1.7	ug/Kg
79-01-6	Trichloroethene	1.7	U	28	1.7	ug/Kg
78-87-5	1,2-Dichloropropane	2.2	U	28	2.2	ug/Kg
74-95-3	Dibromomethane	1.5	U	28	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	28	1.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.0	U	28	2.0	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.8	U	28	1.8	ug/K.g
79-00-5	1,1,2-Trichloroethane	1.6	U	28	1.6	ug/Kg
142-28-9	1,3-Dichloropropane	2.1	U	28	2.1	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.4	U	140	8.4	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	28	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.2	U	28	2.2	ug/Kg
127-18-4	Tetrachloroethene	4.1	U	28	4.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.3	U	28	2.3	ug/Kg
75-25-2	Bromoform	1.7	Ŭ	28	1.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.7	U	28	1.7	ug/K.g
96-18-4	1,2,3-Trichloropropane	1.9	U	28	1.9	ug/Kg
108-86-1	Bromobenzene	2.3	U	28	2.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.2	U	28	5.2	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-18(8-10)	SDG No.:	X3074
Lab Sample ID:	X3074-01	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	10
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	иL
Soil Aliquot Vol:	$\mathbf{u}\mathbf{L}$		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006882.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	57.98	116 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	52.63	105 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	49.6	99 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	48.79	98 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	195908	3.52		
540-36-3	1,4-Difluorobenzene	296634	3.93		
3114-55-4	Chlorobenzene-d5	281828	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	181811	8.97		

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

CETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-19(8-10)	SDG No.:	X3074
Lab Sample ID:	X3074-02	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	9
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006883.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS					- -	
75-71-8	Dichlorodifluoromethane	4.8	U	28	4.8	ug/Kg
74-87-3	Chloromethane	4.8	U	28	4.8	ug/Kg
75-01-4	Vinyl chloride	4.7	U	28	4.7	ug/Kg
74-83-9	Bromomethane	11	U	28	11	ug/Kg
75-00-3	Chloroethane	12	U	28	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.1	U	28	7.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.2	U	28	3.2	ug/Kg
75-09-2	Methylene Chloride	88		28	10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.6	U	28	3.6	ug/Kg
75-34-3	1,1-Dichloroethane	1.5	U	28	1.5	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	28	2.5	ug/Kg
67-66-3	Chloroform	2.0	U	28	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	U	28	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.7	U	28	1.7	ug/Kg
79-01-6	Trichloroethene	1.7	U	28	1.7	ug/Kg
78-87-5	1,2-Dichloropropane	2.2	U	28	2.2	ug/Kg
74-95-3	Dibromomethane	1.5	U	28	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	28	1.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.1	Ŭ	28	2.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.9	U	28	1.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.7	U	28	1.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.1	U	28	2.1	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.6	U	140	8.6	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	28	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	U	28	2.3	ug/Kg
127-18-4	Tetrachloroethene	4.1	U	28	4.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.3	U	28	2.3	ug/Kg
75-25-2	Bromoform	1.8	U	28	1.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.8	Ü	28	1.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.9	U	28	1.9	ug/Kg
108-86-1	Bromobenzene	2.3	U	28	2.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.3	U	28	5.3	ug/Kg

U = Not Detected

RL = Reporting Limit MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

Date Collected: 5/31/2006 CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI X3074 SDG No.: Client Sample ID: B-19(8-10) Matrix: SOIL Lab Sample ID: X3074-02 % Moisture: Analytical Method: 8260 uL Soil Extract Vol: Units: g Sample Wt/Wol: 1.0 Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006883.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	57.94	116 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	52.91	106 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	48.34	97 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	47.83	96 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	191454	3.51		
540-36-3	1.4-Difluorobenzene	291063	3.92		
3114-55-4	Chlorobenzene-d5	277699	6.70		
3855-82-1	1,4-Dichlorobenzene-d4	179630	8.97		

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

CHARGE 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	CA Rich Consultants, INC.	Date Collected:	5/30/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-12(0-6)	SDG No.:	X3074
Lab Sample ID:	X3074-03	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	7
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006884.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS				 -	-	
75-71-8	Dichlorodifluoromethane	4.6	\mathbf{U}	27	4.6	ug/Kg
74-87-3	Chloromethane	4.5	U	27	4.5	ug/Kg
75-01-4	Vinyl chloride	4.4	U	27	4.4	ug/Kg
74-83-9	Bromomethane	11	U	27	11	ug/Kg
75-00-3	Chloroethane	11	U	27	11	ug/Kg
75-69-4	Trichlorofluoromethane	6.6	U	27	6.6	ug/Kg
75-35-4	1,1-Dichloroethene	3.1	U	27	3.1	ug/Kg
75-09-2	Methylene Chloride	9.7	U	27	9.7	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.4	U	27	3.4	ug/Kg
75-34-3	1,1-Dichloroethane	1.4	U	27	1.4	ug/Kg
56-23-5	Carbon Tetrachloride	2.4	U	27	2.4	ug/Kg
67-66-3	Chloroform	1.9	U	27	1.9	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.2	U	27	2.2	ug/Kg
107-06-2	1,2-Dichloroethane	1.6	U	27	1.6	ug/Kg
79-01-6	Trichloroethene	1.6	U	27	1.6	ug/Kg
78-87-5	1,2-Dichloropropane	2.1	U	27	2.1	ug/Kg
74-95-3	Dibromomethane	1.4	U	27	1.4	ug/Kg
75-27-4	Bromodichloromethane	1.8	U	27	1.8	ug/K.g
10061-02-6	t-1,3-Dichloropropene	1.9	U	27	1.9	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.8	U	27	1.8	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.6	U	27	1.6	ug/Kg
142-28-9	1,3-Dichloropropane	2.0	U	27	2.0	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.1	U	130	8.1	ug/Kg
124-48-1	Dibromochloromethane	1,2	U	27	1.2	ug/Kg
106-93-4	1,2-Dibromoethane	2.1	U	27	2.1	ug/Kg
127-18-4	Tetrachloroethene	10	J	27	3.9	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.2	U	27	2.2	ug/Kg
75-25-2	Bromoform	1.7	U	27	1.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.7	U	27	1.7	ug/Kg
96-18-4	1,2,3-Trichloropropane	1,8	U	27	1.8	ug/Kg
108-86-1	Bromobenzene	2.2	U	27	2.2	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	27	5.0	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/30/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-12(0-6)	SDG No.:	X3074
Lab Sample ID:	X3074-03	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	7
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VK006884.D	Dilution: 1	Date Analyzed 6/9/2006	Analytical Batch ID VK060606	
CAS Number	Parameter	Conc.	Qualifier RL MDL	Units
SURROGATES				

CAS Number	Parameter	Conc.	Qualitier	KL	WIDL Units
SURROGATE	S				
17060-07-0	1,2-Dichloroethane-d4	58.1	116 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	0	0 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	49,24	98 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	47.02	94 %	75 - 125	SPK: 50
INTERNAL S	FANDARDS				
363-72-4	Pentafluorobenzene	197142	3.51		
540-36-3	1,4-Difluorobenzene	295318	3.92		
3114-55-4	Chlorobenzene-d5	276180	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	175792	8.97		

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/30/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-12(0-6)RE	SDG No.:	X3074
Lab Sample ID:	X3074-03RE	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	7
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006984.D	1	6/13/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.5	U	26	4.5	ug/Kg
74-87-3	Chloromethane	4.5	U	26	4.5	ug/Kg
75-01-4	Vinyl chloride	4.3	U	26	4.3	ug/Kg
74-83-9	Bromomethane	11	U	26	11	ug/Kg
75-00-3	Chloroethane	11	U	26	11	ug/Kg
75-69-4	Trichlorofluoromethane	6.6	U	26	6.6	ug/Kg
75-35-4	1,1-Dichloroethene	3.0	U	26	3.0	ug/Kg
75-09-2	Methylene Chloride	9.6	U	26	9.6	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.4	U	26	3.4	ug/Kg
75-34-3	1,1-Dichloroethane	1.4	U	26	1.4	ug/Kg
56-23-5	Carbon Tetrachloride	2.3	U	26	2.3	ug/Kg
67-66-3	Chloroform	1.8	U	26	1.8	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.2	U	26	2.2	ug/Kg
107-06-2	1,2-Dichloroethane	1.6	U	26	1.6	ug/Kg
79-01-6	Trichloroethene	1.6	U	26	1.6	ug/Kg
78-87-5	1,2-Dichloropropane	2.1	U	26	2.1	ug/Kg
74-95-3	Dibromomethane	1.4	U	26	1.4	ug/Kg
75-27-4	Bromodichleromethane	1.8	U	26	1.8	ug/Kg
10061-02-6	t-1,3-Dichloropropene	1.9	U	26	1.9	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.7	U	26	1.7	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.5	U	26	1.5	ug/Kg
142-28-9	1,3-Dichloropropane	2.0	U	26	2.0	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.0	ប	130	8.0	ug/Kg
124-48-1	Dibromochloromethane	1.2	U	26	1.2	ug/Kg
106-93-4	1,2-Dibromoethane	2.1	U	26	2.1	ug/Kg
127-18-4	Tetrachloroethene	5.3	J	26	3.8	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.2	U	26	2.2	ug/Kg
75-25-2	Bromoform	1.6	U	26	1.6	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.6	Ü	26	1.6	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.8	U	26		ug/Kg
108-86-1	Bromobenzene	2.2	U	26		ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.0	U	26	5.0	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/30/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-12(0-6)RE	SDG No.:	X3074
Lab Sample ID:	X3074-03RE	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	7
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VK006984.E	Dilution:	Date Analyzed 6/13/2006		Batch ID	
CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	40.76	82 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	2.52	5 %	75 - 125	SPK: 50
1000 55 7		46.70	04.0/	75 105	SDK SU

1868-53-7 2037-26-5 460-00-4	Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	2.52 46.78 45.53	5 % 94 % 91 %	75 - 125 75 - 125 75 - 125	
INTERNAL S	TANDARDS				
363-72-4	Pentafluorobenzene	240325	3.51		
540-36-3	1,4-Difluorobenzene	346914	3.92		
3114-55-4	Chlorobenzene-d5	316296	6.70		
3855-82-1	1.4-Dichlorobenzene-d4	206662	8.96		

SPK: 50

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-13(0-6)	SDG No.:	X3074
Lab Sample ID:	X3074-04	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	15
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007021.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.9	U	29	4.9	ug/Kg
74-87-3	Chloromethane	4.9	U	29	4.9	ug/Kg
75-01-4	Vinyl chloride	4.7	U	29	4.7	ug/Kg
74-83-9	Bromomethane	12	U	29	12	ug/Kg
75-00-3	Chloroethane	12	U	29	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.2	U	29	7.2	ug/Kg
75-35-4	1,1-Dichloroethene	3.3	U	29	3.3	ug/Kg
75-09-2	Methylene Chloride	11	U	29	11	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.7	U	29	3.7	ug/Kg
75-34-3	1,1-Dichloroethane	1.6	U	29	1.6	ug/Kg
56-23-5	Carbon Tetrachloride	2.6	U	29	2.6	ug/Kg
67-66-3	Chloroform	2.0	U	29	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	Ü	29	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.8	U	29	1.8	ug/Kg
79-01-6	Trichloroethene	32		29	1.8	ug/Kg
78-87-5	1,2-Dichloropropane	2.3	U	29	2.3	ug/Kg
74-95-3	Dibromomethane	1.5	U	29	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	29	1.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.1	U	29	2.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.9	U	29	1.9	ug/K.g
79-00-5	1,1,2-Trichloroethane	1.7	U	29	1.7	ug/K.g
142-28-9	1,3-Dichloropropane	2.2	Ü	29	2.2	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.7	U	140	8.7	ug/Kg
124-48-1	Dibromochloromethane	1.3	Ŭ	29	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	ប	29	2.3	ug/Kg
127-18-4	Tetrachloroethene	440		29	4.2	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2,4	U	29	2.4	ug/Kg
75-25-2	Bromoform	1.8	U	29	1.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.8	U	29	1.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.9	U	29	1.9	ug/Kg
108-86-1	Bromobenzene	2.4	Ŭ	29	2.4	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.4	U	29	5.4	ug/Kg

U = Not Detected

RL = Reporting Limit
MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-13(0-6)	SDG No.:	X3074
Lab Sample ID:	X3074-04	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	15
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007021.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	5				
17060-07-0	1,2-Dichloroethane-d4	49.85	100 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	53.07	106 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	58.03	116 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	39.29	79 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	250859	3.51		
540-36-3	1,4-Difluorobenzene	340889	3.92		
3114-55-4	Chlorobenzene-d5	294330	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	172753	8.96		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-14(6-12)	SDG No.:	X3074
Lab Sample ID:	X3074-05	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	14
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	$\mathbf{u}\mathbf{L}$		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006886.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.9	U	28	4.9	ug/Kg
74-87-3	Chloromethane	4.9	U	28	4.9	ug/Kg
75-01-4	Vinyl chloride	4.7	U	28	4.7	ug/Kg
74-83-9	Bromomethane	12	Ŭ	28	12	ug/Kg
75-00-3	Chloroethane	12	Ū	28	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.1	Ū	28	7.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.3	U	28	3.3	ug/Kg
75-09-2	Methylene Chloride	91	•	28	10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.6	U	28	3.6	ug/Kg
75-34-3	1,1-Dichloroethane	1.5	U	28	1.5	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	28	2.5	ug/Kg
67-66-3	Chloroform	2.0	U	28	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	U	28	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.7	U	28	1.7	ug/Kg
79-01-6	Trichloroethene	16	J	28	1.8	ug/Kg
78-87-5	1,2-Dichloropropane	2.3	U	28	2.3	ug/Kg
74-95-3	Dibromomethane	1.5	U	28	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	28	1.9	ug/K·g
10061-02-6	t-1,3-Dichloropropene	2.1	Ū	28	2.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.9	U	28	1.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.7	U	28	1.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.1	U	28	2.1	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.6	Ü	140	8.6	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	28	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	U	28	2.3	ug/Kg
127-18-4	Tetrachloroethene	60		28	4.2	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.4	U	28	2.4	ug/Kg
75-25-2	Bromoform	1.8	U	28	1.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.8	U	28	1.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.9	Ŭ	28	1.9	ug/Kg
108-86-1	Bromobenzene	2.3	Ū	28	2.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.4	U	28	5.4	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit
E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client;	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-14(6-12)	SDG No.:	X3074
Lab Sample ID:	X3074-05	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	14
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uĽ		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006886.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	59.3	119 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	53.98	108 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	49.23	98 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	48.83	98 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	189221	3.52		
540-36-3	1,4-Difluorobenzene	285543	3.93		
3114-55-4	Chlorobenzene-d5	268045	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	172770	8.97		

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-15(0-1)	SDG No.:	X3074
Lab Sample ID:	X3074-06	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	19
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	${ m uL}$
Soil Aliquot Vol:	$\mathfrak{u}\mathbf{L}$		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006887.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5.3	U	31	5.3	ug/Kg
74-87-3	Chloromethane	5.3	U	31	5.3	ug/Kg
75-01-4	Vinyl chloride	5.1	U	31	5.1	ug/Kg
74-83-9	Bromomethane	13	U	31	13	ug/Kg
75-00 - 3	Chloroethane	13	U	31	13	ug/Kg
75-69 - 4	Trichlorofluoromethane	7.7	U	31	7.7	ug/Kg
75-35-4	1,1-Dichloroethene	3.5	U	31	3.5	ug/Kg
75-09-2	Methylene Chloride	110		31	11	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.9	U	31	3.9	ug/K.g
75-34-3	1,1-Dichloroethane	1.7	U	31	1.7	ug/Kg
56-23-5	Carbon Tetrachloride	2.7	U	31	2.7	ug/Kg
67-66-3	Chloroform	2.1	U	31	2.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.6	U	31	2.6	ug/Kg
107-06-2	1,2-Dichloroethane	1.9	U	31	1.9	ug/Kg
79-01-6	Trichloroethene	33		31	1.9	ug/Kg
78-87-5	1,2-Dichloropropane	2.5	U	31	2.5	ug/Kg
74-95-3	Dibromomethane	1.6	. П	31	1.6	ug/Kg
75-27-4	Bromodichloromethane	2.1	U	31	2.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.2	U	31	2.2	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.0	Ū	31	2.0	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.8	U	31	1.8	ug/Kg
142-28-9	1,3-Dichloropropane	2.3	U	31	2.3	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	9.4	U	150	9.4	ug/Kg
124-48-1	Dibromochloromethane	1.4	U	31	1.4	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	31	2.5	ug/Kg
127-18-4	Tetrachloroethene	910		31	4.5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.6	U	31	2.6	ug/Kg
75-25-2	Bromoform	1.9	U	31	1.9	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.9	U	31	1.9	ug/Kg
96-18-4	1,2,3-Trichloropropane	2.1	U	31	2.1	ug/Kg
108-86-1	Bromobenzene	2.5	U	31	2.5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.8	U	31	5.8	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-15(0-1)	SDG No.:	X3074
Lab Sample ID:	X3074-06	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	19
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID: VK006887.I	Dilution:	Date Analyzed 6/9/2006	Analytical VK060606		
CAS Number	Parameter	Conc.	Qualifier RL	MDL	Units

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	3				
17060-07-0	1,2-Dichloroethane-d4	63.56	127 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	2.11	4 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	48.64	97 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	41.53	83 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	175498	3.51		
540-36-3	1,4-Difluorobenzene	276072	3.92		
3114-55-4	Chlorobenzene-d5	250158	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	133596	8.97		

 $[\]mathbf{B} = \mathbf{A}$ nalyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHEMITECH

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

5/31/2006 Date Collected: CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI X3074 SDG No.: Client Sample ID: B-15(0-1)RE Matrix: SOIL Lab Sample ID: X3074-06RE % Moisture: 19 Analytical Method: 8260 $\mathfrak{u}\mathbf{L}$ Soil Extract Vol: Sample Wt/Wol: 1.0 Units: g Soil Aliquot Vol: uL

			1
File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007022.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71 - 8	Dichlorodifluoromethane	5.3	U	31	5.3	ug/Kg
74-87-3	Chloromethane	5.3	U	31	5.3	ug/Kg
75-01-4	Vinyl chloride	5.1	U	31	5.1	ug/Kg
74-83-9	Bromomethane	13	U	31	13	ug/Kg
75-00-3	Chloroethane	13	U	31	13	ug/Kg
75-69-4	Trichlorofluoromethane	7.7	U	31	7.7	ug/Kg
75-35-4	1,1-Dichloroethene	3.5	U	31	3.5	ug/Kg
75-09-2	Methylene Chloride	11	U	31	11	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.9	U	31	3.9	ug/Kg
75-34-3	1,1-Dichloroethane	1.7	U	31	1.7	ug/Kg
56-23-5	Carbon Tetrachloride	2.7	U	31	2.7	ug/Kg
67-66-3	Chloroform	2.1	U	31	2.1	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.6	U	31	2.6	ug/Kg
107-06-2	1,2-Dichloroethane	1.9	U	31	1.9	ug/Kg
79-01-6	Trichloroethene	14	J	31	1.9	ug/Kg
78-87 - 5	1,2-Dichloropropane	2.5	U	31	2.5	ug/Kg
74-95-3	Dibromomethane	1.6	Ū	31	1.6	ug/Kg
75-27-4	Bromodichloromethane	2.1	U	31	2.1	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.2	U	31	2.2	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	2.0	U	31	2.0	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.8	U	31	1.8	ug/Kg
142-28-9	1,3-Dichloropropane	2.3	U	31	2.3	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	9.4	U	150	9.4	ug/Kg
124-48-1	Dibromochloromethane	1.4	U	31	1.4	ug/Kg
106-93-4	1,2-Dibromoethane	2.5	U	31	2,5	ug/Kg
127-18-4	Tetrachloroethene	400		31	4.5	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.6	U	31	2.6	ug/Kg
75-25-2	Bromoform	1.9	U	31	1.9	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.9	U	31	1.9	ug/Kg
96 - 18-4	1,2,3-Trichloropropane	2.1	U	31	2.1	ug/Kg
108-86-1	Bromobenzene	2.5	U	31	2.5	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.8	Ŭ	31	5.8	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-15(0-1)RE	SDG No.:	X3074
Lab Sample ID:	X3074-06RE	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	19
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	цL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007022.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	3				
17060-07-0	1,2-Dichloroethane-d4	48.03	96 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	34.5	69 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	57.64	115 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	41.99	84 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	250171	3.51		
540-36-3	1,4-Difluorobenzene	346350	3.92		
3114-55-4	Chlorobenzene-d5	313140	6.70		
3855-82-1	1,4-Dichlorobenzene-d4	208278	8.96		

Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-16(6-12)	SDG No.:	X3074
Lab Sample ID:	X3074-07	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	19
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Ba	atch ID	
VK006888.D	1	6/9/2006	VK060606		

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units .
TARGETS						
1634-04-4	Methyl tert-butyl Ether	2.2	U	30	2.2	ug/K.g
71-43-2	Benzene	2.4	U	30	2.4	ug/Kg
108-88-3	Toluene	2.4	U	30	2.4	ug/Kg
100-41-4	Ethyl Benzene	2.1	U	30	2.1	ug/Kg
126777-61-2	m/p-Xylenes	5.2	U	30	5.2	ug/Kg
95-47-6	o-Xylene	2.3	U	30	2.3	ug/Kg
98-82-8	Isopropylbenzene	2,5	\mathbf{U}	30	2.5	ug/Kg
103-65-1	N-propylbenzene	3.2	U	30	3.2	ug/Kg
108-67-8	1,3,5-Trimethylbenzene	3.0	U	30	3.0	ug/Kg
98-06-6	tert-Butylbenzene	4.3	U	30	4.3	ug/Kg
95-63-6	1,2,4-Trimethylbenzene	2.3	U	30	2.3	ug/K.g
135-98-8	Sec-butylbenzene	2.5	U	30	2.5	ug/Kg
99-87-6	p-Isopropyltoluene	2.5	U	30	2.5	ug/Kg
104-51-8	n-Butylbenzene	2.0	U	30	2.0	ug/Kg
91-20-3	Naphthalene	3.5	U	30	3.5	ug/Kg
SURROGATES	3					
17060-07-0	1,2-Dichloroethane-d4	59.57	119 %	75 - 125		SPK: 50
1868-53-7	Dibromofluoromethane	50.37	101 %	75 - 125		SPK: 50
2037-26-5	Toluene-d8	49.22	98 %	75 - 125		SPK: 50
460-00-4	4-Bromofluorobenzene	45.41	91 %	75 - 125		SPK: 50
INTERNAL ST	ANDARDS					
363-72-4	Pentafluorobenzene	185258	3.52			
540-36-3	1,4-Difluorobenzene	283823	3.93			
3114-55-4	Chlorobenzene-d5	264749	6.69			
3855-82-1	1,4-Dichlorobenzene-d4	160879	8.97			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

- Client:	CA Rich Consultants, INC.	Date Collected:	5/31/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-17(6-12)	SDG No.:	X3074
Lab Sample ID:	X3074-08	Matrix:	SOIL
Analytical Method:	8260	% Moisture:	15
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	uL
Soil Aliquot Vol:	uŁ		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007023.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	5.0	U	29	5.0	ug/Kg
74-87-3	Chloromethane	5.0	U	29	5.0	ug/Kg
75-01-4	Vinyl chloride	4.8	U	29	4.8	ug/Kg
74-83-9	Bromomethane	12	U	29	12	ug/Kg
75-00-3	Chloroethane	12	U	29	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.3	U	29	7.3	ug/Kg
75-35-4	1,1-Dichloroethene	3.3	U	29	3.3	ug/Kg
75-09-2	Methylene Chloride	11	U	29	11	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.7	U	29	3.7	ug/Kg
75-34-3	1,1-Dichloroethane	1.6	U	29	1.6	ug/Kg
56-23-5	Carbon Tetrachloride	2.6	U	29	2.6	ug/Kg
67-66-3	Chloroform	2.0	U	29	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	U	29	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.8	U	29	1.8	ug/Kg
79-01-6	Trichloroethene	27	J	29	1.8	ug/Kg
78-87-5	1,2-Dichloropropane	2.3	\mathbf{U}	29	2.3	ug/Kg
74-95-3	Dibromomethane	1.5	U	29	1.5	ug/Kg
75-27-4	Bromodichloromethane	2.0	U	29	2.0	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.1	U	29	2.1	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.9	U	29	1.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.7	U	29	1.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.2	U	29	2.2	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.8	U	150	8.8	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	29	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	U	29	2.3	ug/Kg
127-18-4	Tetrachloroethene	390		29	4.3	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.4	U	29	2.4	ug/Kg
75-25-2	Bromoform	1.8	U	29	1.8	ug/Kg
79 - 34-5	1,1,2,2-Tetrachloroethane	1.8	U	29	1.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.9	U	29	1.9	ug/Kg
108-86-1	Bromobenzene	2.4	Ŭ.	29	2.4	ug/Kg
96-12 - 8	1,2-Dibromo-3-Chloropropane	5.5	U	29	5.5	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected: Date Received:	5/31/2006 6/2/2006
Client Sample ID: Lab Sample ID:	B-17(6-12) X3074-08	SDG No.: Matrix:	X3074 SOIL
Analytical Method: Sample Wt/Wol:	8260 1.0 Units: g	% Moisture: Soil Extract Vol:	15 uL
Soil Aliquot Vol:	uL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK007023.D	1	6/14/2006	VK061206

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	48.25	97 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	55.93	112 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	58.16	116 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	41.78	84 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	244790	3.50		
540-36-3	1,4-Difluorobenzene	332407	3.91		
3114-55-4	Chlorobenzene-d5	296439	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	193962	8.97		

Client:	CA Rich Consultants, INC.	Date Collected:	6/1/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	B-20(9-10)	SDG No.:	X3074
Lab Sample ID:	X3074-09	Matrix:	som
Analytical Method:	8260	% Moisture:	13
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	υL		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006890.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.9	U	28	4.9	ug/Kg
74-87-3	Chloromethane	4.9	U	28	4.9	ug/Kg
75-01-4	Vinyl chloride	4.7	U	28	4.7	ug/Kg
74-83-9	Bromomethane	12	U	28	12	ug/Kg
75-00-3	Chloroethane	12	U	28	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.1	U	28	7.1	ug/Kg
75-35-4	1,1-Dichloroethene	3.3	U	28	3.3	ug/Kg
75-09-2	Methylene Chloride	85		28	10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.6	U	28	3.6	ug/Kg
75-34-3	1,1-Dichloroethane	1.5	U	28	1.5	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	28	2.5	ug/Kg
67-66-3	Chloroform	2.0	U	28	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	U	28	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.7	U	28	1.7	ug/Kg
79-01-6	Trichloroethene	1.8	U	28	1.8	ug/Kg
78-87-5	1,2-Dichloropropane	2.3	U	28	2.3	ug/Kg
74-95-3	Dibromomethane	1.5	U	28	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	28	1.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.1	U	28	2.1	ug/Kg
10061-02-0	cis-1,3-Dichloropropene	1.9	U	28	1.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.7	U	28	1.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.1	U	28	2.1	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.6	U	140	8.6	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	28	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	U	28	2.3	ug/Kg
127-18-4	Tetrachloroethene	4.2	U	28	4.2	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.4	U	28	2.4	ug/Kg
75-25-2	Bromoform	1.8	U	28	1.8	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.8	U	28	1.8	ug/Kg
96 - 18-4	1,2,3-Trichloropropane	1.9	U	28	1.9	ug/Kg
108-86-1	Bromobenzene	2.3	Ū	28	2.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.4	U	28	5.4	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI X3074 SDG No.: B-20(9-10) Client Sample ID: Matrix: solX3074-09 Lab Sample ID: % Moisture: 13 Analytical Method: 8260 Soil Extract Vol: uLSample Wt/Wol: 1.0 Units: g иL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006890.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	59.79	120 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	53.47	107 %	75 - 125	SPK: 50
2037-26-5	Toluene-d8	48.64	97 %	75 - 125	SPK: 50
460-00-4	4-Bromofluorobenzene	47.77	96 %	75 - 125	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	186693	3.51		
540-36-3	1,4-Diffuorobenzene	291060	3.92		
3114-55-4	Chlorobenzene-d5	276867	6.70		
3855-82-1	1,4-Dichlorobenzene-d4	178163	8.96		

N = Presumptive Evidence of a Compound

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Flamingo RI Project: X3074 SDG No.: B-20(X) Client Sample ID: SOIL Matrix: Lab Sample ID: X3074-12 % Moisture: 14 Analytical Method: 8260 Soil Extract Vol: uL Sample Wt/Wol: 1.0 Units: g Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006891.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	4.8	U	28	4.8	ug/Kg
74-87-3	Chloromethane	4.8	U	28	4.8	ug/Kg
75-01-4	Vinyl chloride	4.6	U	28	4.6	ug/Kg
74-83-9	Bromomethane	11	U	28	11	ug/Kg
75-00-3	Chloroethane	12	U	28	12	ug/Kg
75-69-4	Trichlorofluoromethane	7.0	U	28	7.0	ug/Kg
75-35-4	1,1-Dichloroethene	3.2	U	28	3.2	ug/Kg
75-09-2	Methylene Chloride	45		28	10	ug/Kg
156-60-5	trans-1,2-Dichloroethene	3.6	U	28	3.6	ug/Kg
75-34-3	1,1-Dichloroethane	1.5	U	28	1.5	ug/Kg
56-23-5	Carbon Tetrachloride	2.5	U	28	2.5	ug/Kg
67-66-3	Chloroform	2.0	U	28	2.0	ug/Kg
71-55-6	1,1,1-Trichloroethane	2.4	U	28	2.4	ug/Kg
107-06-2	1,2-Dichloroethane	1.7	U	28	1.7	ug/Kg
79-01-6	Trichloroethene	1.7	U	28	1.7	ug/Kg
78-87-5	1,2-Dichloropropane	2.2	U	28	2.2	ug/Kg
74-95-3	Dibromomethane	1.5	U	28	1.5	ug/Kg
75-27-4	Bromodichloromethane	1.9	U	28	1.9	ug/Kg
10061-02-6	t-1,3-Dichloropropene	2.0	U	28	2.0	ug/Kg
10061-01-5	cis-1,3-Dichloropropene	1.9	Ŭ	28	1.9	ug/Kg
79-00-5	1,1,2-Trichloroethane	1.7	Ŭ	28	1.7	ug/Kg
142-28-9	1,3-Dichloropropane	2.1	U	28	2.1	ug/Kg
110-75-8	2-Chloroethyl vinyl ether	8.6	U	140	8.6	ug/Kg
124-48-1	Dibromochloromethane	1.3	U	28	1.3	ug/Kg
106-93-4	1,2-Dibromoethane	2.3	U .	28	2,3	ug/Kg
127-18-4	Tetrachloroethene	4.1	U	28	4.1	ug/Kg
630-20-6	1,1,1,2-Tetrachloroethane	2.3	U	28	2.3	ug/Kg
75-25-2	Bromoform	1.7	U	28	1.7	ug/Kg
79-34-5	1,1,2,2-Tetrachloroethane	1.8	U	28	1.8	ug/Kg
96-18-4	1,2,3-Trichloropropane	1.9	U	28	1.9	ug/Kg
108-86-1	Bromobenzene	2.3	U	28	2.3	ug/Kg
96-12-8	1,2-Dibromo-3-Chloropropane	5.3	U	28	5.3	ug/Kg

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CHETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Client:	CA Rich Consultants, INC.	Date Collected:	6/1/2006	
Project:	Flamingo RI	Date Received:	6/2/2006	
Client Sample ID:	B-20(X)	SDG No.:	X3074	
Lab Sample ID:	X3074-12	Matrix:	SOIL	
Analytical Method:	8260	% Moisture:	14	
Sample Wt/Wol:	1.0 Units: g	Soil Extract Vol:		uL
Soil Aliquot Vol:	uL			

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VK006891.D	1	6/9/2006	VK060606

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	S				
17060-07-0	1,2-Dichloroethane-d4	60.16	120 %	75 - 125	SPK: 50
1868-53-7	Dibromofluoromethane	53.21	106 %	75 - 125	SPK: 50
	Toluene-d8	49.05	98 %	75 - 125	SPK: 50
2037-26-5 460-00-4	4-Bromofluorobenzene	48.41	97 %	75 - 125	SPK: 50
INTERNAL ST	TANDARDS				
363-72-4	Pentafluorobenzene	183348	3.52		
540-36-3	1,4-Difluorobenzene	287850	3.93		
3114-55-4	Chlorobenzene-d5	275233	6.69		
3855-82-1	1,4-Dichlorobenzene-d4	179231	8.97		

B = Analyte Found in Associated Method Blank N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Client:

Date Collected:

6/1/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

FBS-6-1-06

SDG No.:

X3074

Lab Sample ID:

X3074-13

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL

Soil Extract Vol:

uL

Soil Aliquot Vol:

 $\mathfrak{u} \mathbb{L}$

File ID:

Dilution:

Date Analyzed

Analytical Batch ID

VH007319.D

1

6/10/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						-
75-71 - 8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	Ŭ	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83 - 9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00 - 3	Chloroethane	0.83	Ŭ	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
56-60 - 5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
66-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
57-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
1-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
07-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
4-95-3	Dibromomethane	0.43	U	5,0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
10-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
27-18-4	Tetrachloroethene	0.55	J	5.0	0.48	ug/L
30-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34 - 5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86 - 1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Aliquot Vol:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Date Collected: 6/1/2006 CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3074 Client Sample ID: FBS-6-1-06 Matrix: WATER Lab Sample ID: X3074-13 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uL 5.0 Units: mL Sample Wt/Wol:

иL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH007319.D 1 6/10/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	40.66	81 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	43,48	87 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	56.36	113 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	49.09	98 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	546847	4.98		
540-36-3	1.4-Difluorobenzene	881565	5.58		
3114-55-4	Chlorobenzene-d5	1102486	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	543846	11.76		

Soil Aliquot Vol:

Report of Analysis

5/31/2006 CA Rich Consultants, INC. Date Collected: Client: 6/2/2006 Date Received: Flamingo RI Project: SDG No.: X3074 FBS-5-31-06 Client Sample ID: Matrix: WATER Lab Sample ID: X3074-14 100 % Moisture: Analytical Method: 8260 uL Soil Extract Vol: 5.0 Units: mL Sample Wt/Wol:

иL

Analytical Batch ID Date Analyzed Dilution: File ID: VH053006 6/15/2006 1 VH007476.D

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	Ū	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	Ŭ	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	Ū	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CETTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:

CA Rich Consultants, INC.

Date Collected:

5/31/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

FBS-5-31-06

SDG No.:

X3074

Lab Sample ID:

X3074-14

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0

Soil Extract Vol:

иL

Soil Aliquot Vol:

иL

Units: mL

File ID:

VH007476.D

Dilution:

1

Date Analyzed

Analytical Batch ID

6/15/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES 17060-07-0 1868-53-7 2037-26-5 460-00-4	1,2-Dichloroethane-d4 Dibromofluoromethane Toluene-d8 4-Bromofluorobenzene	44.03 47.98 53.73 45.96	88 % 96 % 107 % 92 %	72 - 119 85 - 115 81 - 120 76 - 119	SPK: 50 SPK: 50 SPK: 50 SPK: 50
INTERNAL ST	ANDARDS				
363-72-4 540-36-3 3114-55-4 3855-82-1	Pentafluorobenzene 1,4-Difluorobenzene Chlorobenzene-d5 1,4-Dichlorobenzene-d4	522517 857948 999203 490340	4.96 5.57 9.27 11.75		

5/30/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Flamingo RI Project: X3074 SDG No.: FBS-5-30-06 Client Sample ID: Matrix: WATER Lab Sample ID: X3074-15 % Moisture: 100 Analytical Method: 8260 uL Soil Extract Vol: 5.0 Units: mL Sample Wt/Wol: иL Soil Aliquot Vol:

Analytical Batch ID Date Analyzed Dilution: File ID: VH053006 6/15/2006 1 VH007477.D

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS			_			_
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83 - 9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69 - 4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60 - 5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0,33	· U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	Ü	5.0	0.32	ug/L
10061-02-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00 - 5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3,4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79 - 23-2 79 - 34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18 - 4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CETTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:

CA Rich Consultants, INC.

Date Collected:

5/30/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

FBS-5-30-06

SDG No.:

X3074

Lab Sample ID:

X3074-15

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

Units: mL 5.0

Soil Extract Vol:

υL

Soil Aliquot Vol:

File ID:

uL

Dilution:

Date Analyzed

Analytical Batch ID

VH007477.D

1

6/15/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATE	S				
17060-07-0	1,2-Dichloroethane-d4	46.56	93 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	50.8	102 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54.15	108 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	47.74	95 %	76 - 119	SPK: 50
INTERNAL S	TANDARDS				
363-72-4	Pentafluorobenzene	519490	4.96		
540-36-3	1.4-Difluorobenzene	840016	5.57		
3114-55-4	Chlorobenzene-d5	998847	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	502463	11.75		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

5/31/2006 CA Rich Consultants, INC. Date Collected: Client: 6/2/2006 Date Received: Project: Flamingo RI X3074 SDG No.: Client Sample ID: TRIPBLANK WATER Matrix: Lab Sample ID: X3074-16 % Moisture: 100 8260 Analytical Method: uL Soil Extract Vol: Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007314.D	1	6/10/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	ប	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71 - 55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	บ	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	Ū	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	ប	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Client:

Flamingo RI

Date Collected: Date Received:

5/31/2006

Project:

6/2/2006

Client Sample ID:

TRIPBLANK

SDG No.:

X3074

Lab Sample ID:

X3074-16

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL

Soil Extract Vol:

иL

Soil Aliquot Vol:

uL

File ID:

Dilution:

Date Analyzed

Analytical Batch ID

VH007314.D

1

6/10/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	40.04	80 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	40.81	82 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	56.51	113 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.55	91 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	532901	4.98		
540-36-3	1,4-Difluorobenzene	892447	5.59		
3114-55-4	Chlorobenzene-d5	1072392	9.29		
3855-82-1	1,4-Dichlorobenzene-d4	524333	11.76		

Client: Project:	CA Rich Consultants, INC. Flamingo RI	Date Collected: Date Received:	5/31/2006 6/2/2006
Client Sample	B-16(6-12)	SDG No.:	X3074
ID: Lab Sample ID:	X3074-07	Matrix:	SOIL
Analytical Method:	8270	% Moisture:	19
Sample Wt/Wol:	30.1 g	Extract Vol:	1000 uL

File ID	Dilution	Date Extracted	Date Analyze		alytical Ba	ntch ID	
BF004026.D	1	6/7/2006	6/7/2006	BF	052206		
CAS Number	Parameter	•	Conc.	Qualifier	RL	MDL	Units
TARGETS							
91-20-3	Naphthalen	ne	70	U	410	70	ug/Kg
83-32-9	Acenaphth	ene	72	U	410	72	ug/Kg
86-73-7	Fluorene		69	U	410	69	ug/Kg
85-01-8	Phenanthre	ene	65	U	410	65	ug/Kg
120-12-7	Anthracene	e	61	U	410	61	ug/Kg
206-44-0	Fluoranthe	ne	61	U	410	61	ug/Kg
129-00-0	Pyrene		72	U	410	72	ug/Kg
56-55-3	Benzo(a)ar	nthracene	57	U	410	57	ug/Kg
218-01-9	Chrysene		73	U	410	73	ug/Kg
205-99-2	Benzo(b)fl	uoranthene	45	U	410	45	ug/Kg
207-08-9	Benzo(k)fl		90	U	410	90	ug/Kg
50-32-8	Benzo(a)py		65	U	410	65	ug/Kg
193-39-5		,3-cd)pyrene	52	U	410	52	ug/Kg
53-70-3	•)anthracene	51	U	410	51	ug/Kg
191-24-2	Benzo(g,h,	•	67	U	410	67	ug/Kg
SURROGATES	(0)	•					
4165-60-0	Nitrobenze	ne-d5	98.51	99 %	23 - 120		SPK: 10
321-60-8	2-Fluorobi		108.49	108 %	30 - 116		SPK: 10
1718-51-0	Terphenyl-	- ,	115.75	116 %	18 - 137		SPK: 10
INTERNAL STANI							
3855-82-1		robenzene-d4	152894	3.69			
1146-65-2	Naphthalei		580990	5.07			
15067-26-2	Acenaphth		304913	7.12			
1517-22-2	Phenanthre		445799	8.89			
1719-03-5	Chrysene-		344667	12.06			
1520-96-3	Perylene-d		302441	13.66			

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

B = Analyte Found In Associated Method Blank

N = Presumptive Evidence of a Compound

Summary Sheet SW-846

SDG No.:

X3074

Order ID:

x3074

rich

Client:

CA Rich Consultants, INC.

Project ID:

Client:	CA Rich Consulta	nts, INC.	120	J000 100 1100				
Sample ID Client ID:	Client ID B-12(0-6)	Matrix	Parameter	Concentration	С	RDL	MDL	Units
X3074-03	B-12(0-6)	SOIL	Tetrachloroethene	10	J	27	3.9	ug/Kg
			Total VOC's:	10.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	10.00				
Client ID:	B-12(0-6)RE				*	0.0	2.0	
X3074-03RE	B-12(0-6)RE	SOIL	Tetrachloroethene	5.3	J	26	3.8	ug/Kg
			Total VOC's:	5.30				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	5.30				
Client ID:	B-13(0-6)			20		29	1.8	ug/Kg
X3074-04	B-13(0-6)	SOIL	Trichloroethene	32		29 29	4.2	ug/Kg ug/Kg
X3074-04	B-13(0-6)	SOIL	Tetrachloroethene	440		29	4.2	ug/Kg
			Total VOC's:	472.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	472.00				
Client ID:	B-14(6-12)			0.1		20	10	valV a
X3074-05	B-14(6-12)	SOIL	Methylene Chloride	91		28	10	ug/Kg
X3074-05	B-14(6-12)	SOIL	Trichloroethene	16	J	28	1.8	ug/Kg
X3074-05	B-14(6-12)	SOIL	Tetrachloroethene	60		28	4.2	ug/Kg
			Total VOC's:	167.00				
			Total TIC's:	0.00 167.00				
			Total VOC's and TIC's:	167.00				
Client ID:	B-15(0-1)			110		31	11	ug/Kg
X3074-06	B-15(0-1)	SOIL	Methylene Chloride	110		31	1.9	ug/Kg ug/Kg
X3074-06	B-15(0-1)	SOIL	Trichloroethene	33			4.5	ug/Kg ug/Kg
X3074-06	B-15(0-1)	SOIL	Tetrachloroethene	910		31	4.3	ug/rxg
			Total VOC's:	1053.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1053.00				
Client ID:	B-15(0-1)RE				•	21	1.0	110-l17 -
X3074-06RE	B-15(0-1)RE	SOIL	Trichloroethene	14	J	31	1.9	ug/Kg
X3074-06RE	B-15(0-1)RE	SOIL	Tetrachloroethene	400		31	4.5	ug/Kg
			Total VOC's:	414.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	414.00				

Summary Sheet SW-846

SDG No.:

Client:

X3074

CA Rich Consultants, INC.

Order ID:

X3074

Project ID:

rich

Sample ID	Client ID	Matrix	Parameter	Concentration	C	RDL	MDL	Units
Client ID: X3074-08	B-17(6-12) B-17(6-12)	SOIL	Trichloroethene	27	J	29	1.8	ug/Kg
X3074-08	B-17(6-12)	SOIL	Tetrachloroethene	390		29	4.3	ug/Kg
22000	2 1/(6 12)	20,2	Total VOC's: Total TIC's: Total VOC's and TIC's:	417.00 0.00 417.00				
Client ID:	B-18(8-10)							
X3074-01	B-18(8-10)	SOIL	Methylene Chloride	35		28	10	ug/Kg
·			Total VOC's: Total TIC's: Total VOC's and TIC's:	35.00 0.00 35.00				
Client ID:	B-19(8-10)							
X3074-02	B-19(8-10)	SOIL	Methylene Chloride	88		28	10	ug/Kg
			Total VOC's: Total TIC's: Total VOC's and TIC's:	88.00 0.00 88.00				
Client ID:	B-20(9-10)							
X3074-09	B-20(9-10)	SOIL	Methylene Chloride	85		28	10	ug/Kg
			Total VOC's:	85.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	85.00				
Client ID:	B-20(X)							
X3074-12	B-20(X)	SOIL	Methylene Chloride	45		28	10	ug/Kg
			Total VOC's:	45.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	45.00				
Client ID:	FBS-6-1-06							
X3074-13	FBS-6-1-06	WATE	R Tetrachloroethene	0.55	J	5.0	0.48	ug/L
			Total VOC's:	0.55				,
			Total TIC's:	0.00				
			Total VOC's and TIC's:	0.55				

ANALYTICAL RESULTS SUMMARY

PROJECT NAME: Flamingo RI

CA RICH CONSULTANTS, INC. 17 DUPONT STREET PLAINVIEW, NY 11803 5165768844

CHEMTECH PROJECT NO. ATTENTION:

X3075 Rich Izzo

CHETTLECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

5/31/2006 CA Rich Consultants, INC. Date Collected: Client: 6/2/2006 Project: Date Received: Flamingo RI SDG No.: X3075 Client Sample ID: B-18(17-13) Matrix: Lab Sample ID: X3075-01 WATER

% Moisture: Analytical Method: 8260 100

Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: иL

Dilution: Date Analyzed **Analytical Batch ID** File ID: VH053006 VH007473.D 1000 6/15/2006

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	. Units
TARGETS						
75-71-8	Dichlorodifluoromethane	170	U	5000	170	ug/L
74-87-3	Chloromethane	340	U	5000	340	ug/L
75-01-4	Vinyl chloride	330	U	5000	330	ug/L
74-83-9	Bromomethane	410	U	5000	410	ug/L
75-00-3	Chloroethane	830	U	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	U	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	U	5000	420	ug/L
75-09-2	Methylene Chloride	430	U	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	U	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	U	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	U	5000	1100	ug/L
67-66-3	Chloroform	330	U	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	U	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	U	5000	340	ug/L
79-01-6	Trichloroethene	460	U	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	U	5000	400	ug/L
74-95-3	Dibromomethane	430	U	5000	430	ug/L
75-27-4	Bromodichloromethane	330	U	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	U	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	U	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	U	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	U	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	U	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	U	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	U	5000	320	ug/L
127-18-4	Tetrachloroethene	60000		5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	U	5000	300	ug/L
75-25-2	Bromoform	320	U	5000	320	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	300	U	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	U	5000	580	ug/L
108-86-1	Bromobenzene	400	U	5000	400	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	380	U	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Date Collected: 5/31/2006 Client: Date Received: 6/2/2006 Project: Flamingo RI SDG No.: X3075 Client Sample ID: B-18(17-13) Matrix: WATER Lab Sample ID: X3075-01 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007473.D	1000	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	42.38	85 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	46.59	93 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54,76	110 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.64	91 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	512848	4.96		
540-36-3	1,4-Difluorobenzene	833731	5.57		
3114-55-4	Chlorobenzene-d5	993926	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	491188	11.75		

Soil Aliquot Vol:

Report of Analysis

Date Collected: 5/31/2006 CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI SDG No.: X3075 Client Sample ID: B-18(13-9) Matrix: WATER Lab Sample ID: X3075-02 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: иL Sample Wt/Wol: 5.0 Units: mL

uL

Analytical Batch ID Dilution: Date Analyzed File ID: VH053006 6/8/2006 VH007246.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	3.5	J	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	Ū	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	42		5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	Ū	5.0	0.34	ug/L
79-01-6	Trichloroethene	100		5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	Ŭ	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U ·	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	13000	E	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	Ŭ	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:

CA Rich Consultants, INC.

Date Collected:

5/31/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

B-18(13-9)

SDG No.:

X3075

Lab Sample ID:

X3075-02

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL Soil Extract Vol:

иL

Soil Aliquot Vol:

 $\mathfrak{u}\mathbf{L}$

File ID:	Dilution:	Date Analyzed
VH007246.D	1	6/8/2006

Analytical Batch ID X71105200C

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	1				
17060-07-0	1.2-Dichloroethane-d4	45.25	91 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	62.88	126 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	51.33	103 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.22	90 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	656769	4,97		
540-36-3	1,4-Difluorobenzene	914798	5.59		
3114-55-4	Chlorobenzene-d5	1043890	9.31		
3855-82-1	1,4-Dichlorobenzene-d4	611241	11.76		

Client:

CA Rich Consultants, INC.

Date Collected:

5/31/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

B-18(13-9)DL

SDG No.:

X3075

Lab Sample ID:

X3075-02DL

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

Units: mL 5.0

Soil Extract Vol:

uL

Soil Aliquot Vol:

uL

File ID: VH007371.D Dilution:

Date Analyzed

Analytical Batch ID

6/12/2006 1000

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71 - 8	Dichlorodifluoromethane	170	UD	5000	170	ug/L
74-87 - 3	Chloromethane	340	UD	5000	340	ug/L
75-01-4	Vinyl chloride	330	UD	5000	330	ug/L
74-83-9	Bromomethane	3600	JD	5000	410	ug/L
75-00-3	Chloroethane	830	UD	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	UD	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	UD	5000	420	ug/L
75-09-2	Methylene Chloride	430	UD	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	UD	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	UD	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	UD	5000	1100	ug/L
67-66-3	Chloroform	330	UD	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	UD	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	UD	5000	340	ug/L
79-01-6	Trichloroethene	460	UD	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	UD	5000	400	ug/L
74-95-3	Dibromomethane	430	UD	5000	430	ug/L
75-27-4	Bromodichloromethane	330	UD	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	UD	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	UD	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	UD	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	UD	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	UD	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	UD	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	UD	5000	320	ug/L
127-18-4	Tetrachloroethene	19000	D	5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	UD	5000	300	ug/L
75-25 - 2	Bromoform	320	UD	5000	320	ug/L
79-34 - 5	1,1,2,2-Tetrachloroethane	300	UD	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	UD	5000	580	ug/L
108-86-1	Bromobenzene	400	UD	5000	400	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	380	UD	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

5/31/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 B-18(13-9)DL Client Sample ID: Matrix: WATER Lab Sample ID: X3075-02DL % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: иL Sample Wt/Wol: 5.0 Units: mL шL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007371.D	1000	6/12/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	44.81	90 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	49.22	98 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	57.17	114 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	47.47	95 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	529774	4.97		
540-36-3	1,4-Difluorobenzene	860010	5.57		
3114-55-4	Chlorobenzene-d5	1043839	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	525834	11.75		

5/30/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 Client Sample ID: B-19(18-14) Matrix: WATER Lab Sample ID: X3075-03 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uL Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: шL

File I	D: Diluti	on: Date Ana	lyzed Analytica	al Batch ID
VH00	7247.D 1	6/8/2006	VH05300	06

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	2.3	J	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	3.5	J	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	4.8	J	5.0	0.42	ug/L
75-09-2	Methylene Chloride	1.5	J	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3.	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	υ	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	39		5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	29		5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75 - 27-4	Bromodichloromethane	0,33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	3400	E	5.0	0.48	u g /L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CETTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

5/30/2006 Date Collected: CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI X3075 SDG No.: Client Sample ID: B-19(18-14) Matrix: WATER Lab Sample ID: X3075-03 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uL Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007247.D	1	6/8/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES				•	•
17060-07-0	1,2-Dichloroethane-d4	33.38	67 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	48.14	96 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	62.05	124 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	48.91	98 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	796609	4.97		
540-36-3	1.4-Difluorobenzene	1084098	5.58		
3114-55-4	Chlorobenzene-d5	1435319	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	714701	11.76		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Aliquot Vol:

Report of Analysis

Date Collected: 5/30/2006 CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI X3075 SDG No.: Client Sample ID: B-19(18-14)DL Matrix: WATER Lab Sample ID: X3075-03DL % Moisture: 100 Analytical Method: 8260 uLSample Wt/Wol: 5.0 Units: mL Soil Extract Vol:

υL

Analytical Batch ID Dilution: **Date Analyzed** File ID: VH053006 6/12/2006 VH007370.D 200

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	34	UD	1000	34	ug/L
74-87-3	Chloromethane	180	JD	1000	69	ug/L
75-01-4	Vinyl chloride	66	UD	1000	66	ug/L
74-83-9	Bromomethane	760	JD	1000	82	ug/L
75-00-3	Chloroethane	170	UD	1000	170	ug/L
75-69-4	Trichlorofluoromethane	44	UD	1000	44	ug/L
75-35-4	1,1-Dichloroethene	83	UD	1000	83	ug/L
75-09 - 2	Methylene Chloride	85	UD	1000	85	ug/L
156-60-5	trans-1,2-Dichloroethene	80	UD	1000	80	ug/L
75-34-3	1,1-Dichloroethane	76	UD	1000	76	ug/L
56-23-5	Carbon Tetrachloride	230	· UD	1000	230	ug/L
67-66-3	Chloroform	67	UD	1000	67	ug/L
71-55-6	1,1,1-Trichloroethane	65	UD	1000	65	ug/L
107-06-2	1,2-Dichloroethane	68	UD	1000	68	ug/L
79-01-6	Trichloroethene	92	UD	1000	92	ug/L
78-87-5	1,2-Dichloropropane	81	UD	1000	81	ug/L
74-95-3	Dibromomethane	85	UD	1000	85	ug/L
75-27-4	Bromodichloromethane	67	UD	1000	67	ug/L
10061-02-6	t-1,3-Dichloropropene	63	UD	1000	63	ug/L
10061-01-5	cis-1,3-Dichloropropene	72	UD	1000	72	ug/L
79-00-5	1,1,2-Trichloroethane	81	UD	1000	81	ug/L
142-28-9	1,3-Dichloropropane	63	UD	1000	63	ug/L
110-75-8	2-Chloroethyl vinyl ether	670	UD	5000	670	ug/L
124-48-1	Dibromochloromethane	53	UD	1000	53	ug/L
106-93-4	1,2-Dibromoethane	65	UD	1000	65	ug/L
127-18-4	Tetrachloroethene	1000	D	1000	96	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	61	UD	1000	61	ug/L
75-25-2	Bromoform	63	UD	1000	63	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	60	UD	1000	60	ug/L
96-18-4	1,2,3-Trichloropropane	120	UD	1000	120	ug/L
108-86-1	Bromobenzene	80	UD	1000	80	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	75	UD	1000	75	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 5/30/2006 CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI X3075 B-19(18-14)DL SDG No.: Client Sample ID: Matrix: Lab Sample ID: X3075-03DL WATER % Moisture: 100 Analytical Method: 8260 uĽ Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007370.D	200	6/12/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	37.71	75 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	41.01	82 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54.49	109 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	44.95	90 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	564358	4.96		
540-36-3	1,4-Difluorobenzene	946381	5.57		
3114-55-4	Chlorobenzene-d5	1138463	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	543921	11.75		

5/30/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 Client Sample ID: B-19(14-10) Matrix: WATER Lab Sample ID: X3075-04 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uL Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007248.D	1	6/8/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	2.1	J	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	3.5	J	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	7.8		5.0	0.42	ug/L
75-09-2	Methylene Chloride	2.3	J	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75- 34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	ប	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	77		5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	49		5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	3700	E	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	2800	E	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	ับ	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 5/30/2006 CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI X3075 SDG No.: Client Sample ID: B-19(14-10) Matrix: X3075-04 WATER Lab Sample ID: % Moisture: 100 Analytical Method: 8260 иL Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007248.D	1	6/8/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	38.56	77 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	47.34	95 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	57.23	114 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	46.77	94 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	770219	4.97		
540-36-3	1,4-Difluorobenzene	1172499	5.58		
3114-55-4	Chlorobenzene-d5	1455419	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	714928	11.76		

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

иL

Report of Analysis

5/30/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 Client Sample ID: B-19(14-10)DL Matrix: WATER Lab Sample ID: X3075-04DL

% Moisture: Analytical Method: 8260 100

Soil Aliquot Vol: uL

5.0

Units: mL

Dilution: **Date Analyzed Analytical Batch ID** File ID: VH053006 VH007372.D 200 6/12/2006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	34	UD	1000	34	ug/L
74-87-3	Chloromethane	69	UD	1000	69	ug/L
75-01-4	Vinyl chloride	66	UD	1000	66	ug/L
74-83-9	Bromomethane	710	m JD	1000	82	ug/L
75-00-3	Chloroethane	170	UD	1000	170	ug/L
75-69-4	Trichlorofluoromethane	44	UD	1000	44	ug/L
75-35-4	1,1-Dichloroethene	83	UD	1000	83	ug/L
75-09-2	Methylene Chloride	85	UD	1000	85	ug/L
156-60-5	trans-1,2-Dichloroethene	80	UD	1000	80	ug/L
75-34-3	1,1-Dichloroethane	76	UD	1000	76	ug/L
56-23-5	Carbon Tetrachloride	230	UD	1000	230	ug/L
67-66-3	Chloroform	67	UD	1000	67	ug/L
71-55-6	1,1,1-Trichloroethane	65	UD	1000	65	ug/L
107-06-2	1,2-Dichloroethane	68	UD	1000	68	ug/L
79-01-6	Trichloroethene	92	UD	1000	92	ug/L
78-87-5	1,2-Dichloropropane	81	UD	1000	81	ug/L
74-95-3	Dibromomethane	85	UD	1000	85	ug/L
75-27-4	Bromodichloromethane	67	UD	1000	67	ug/L
10061-02-6	t-1,3-Dichloropropene	63	UD	1000	63	ug/L
10061-01-5	cis-1,3-Dichloropropene	72	UD	1000	72	ug/L
79-00-5	1,1,2-Trichloroethane	81	UD	1000	81	ug/L
142-28-9	1,3-Dichloropropane	63	UD	1000	63	ug/L
110-75-8	2-Chloroethyl vinyl ether	670	UD	5000	670	ug/L
124-48-1	Dibromochloromethane	53	UD	1000	53	ug/L
106-93-4	1,2-Dibromoethane	65	UD	1000	65	ug/L
127-18-4	Tetrachloroethene	870	JD	1000	96	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	61	UD	1000	61	ug/L
75-25-2	Bromoform	63	UD	1000	63	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	60	UD	1000	60	ug/L
96-18-4	1,2,3-Trichloropropane	120	UD	1000	120	ug/L
108-86-1	Bromobenzene	80	UD	1000	80	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	75	UD	1000	75	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:

CA Rich Consultants, INC.

Date Collected:

5/30/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

X3075

Lab Sample ID:

B-19(14-10)DL X3075-04DL

SDG No.: Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL Soil Extract Vol:

uL

Soil Aliquot Vol:

uL

Dilution:

Date Analyzed

Analytical Batch ID

VH007372.D

200

6/12/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	39.44	79 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	44.14	88 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	56.34	113 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	49.57	99 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	542041	4.97		
540-36-3	1,4-Difluorobenzene	859177	5.57		
3114-55-4	Chlorobenzene-d5	1099294	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	543309	11.74		

uL

Report of Analysis

5/31/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 FBW-5-31-06 Client Sample ID: Matrix: WATER-Lab Sample ID: X3075-05

% Moisture: 100 Analytical Method: 8260

Soil Extract Vol: Units: mL Sample Wt/Wol: 5.0 uL Soil Aliquot Vol:

Analytical Batch ID Date Analyzed Dilution: File ID: VH053006 6/15/2006 VH007472.D 1

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	ប	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75 - 25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0		ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

Soil Extract Vol:

иL

Report of Analysis

Date Collected: 5/31/2006 Client: CA Rich Consultants, INC. Date Received: 6/2/2006 Project: Flamingo RI FBW-5-31-06 SDG No.: X3075 Client Sample ID: Matrix: Lab Sample ID: X3075-05 WATER

Analytical Method: 8260 % Moisture: 100

Soil Aliquot Vol: uL

Units: mL

5.0

File ID: Dilution: Date Analyzed Analytical Batch ID

VH007472.D 1 6/15/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	42.79	86 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	50.06	100 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	55.18	110 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	47.35	95 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	548752	4.96		
540-36-3	1,4-Difluorobenzene	864424	5.57		
3114-55-4	Chlorobenzene-d5	1017644	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	506276	11.75		

Date Collected: 5/30/2006 CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI SDG No.: X3075 Client Sample ID: FBW-5-30-06 Matrix: WATER Lab Sample ID: X3075-06 % Moisture: 100 Analytical Method: 8260 Units: mL Sample Wt/WoI: Soil Extract Vol: uL 5.0 Soil Aliquot Vol: $\mathfrak{u}\mathbf{L}$

1	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	\bigcap
	VH007318.D	1	6/10/2006	VH053006	

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	ប	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75 - 27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:

CA Rich Consultants, INC.

Date Collected:

5/30/2006

Project:

Flamingo RI

Date Received:

6/2/2006

SDG No.:

X3075

Client Sample ID:

FBW-5-30-06

X3075-06

Matrix:

WATER

Lab Sample ID: Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL

Soil Extract Vol:

иL

Soil Aliquot Vol:

uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007318.D	1	6/10/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	41.89	84 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	42,35	85 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54.41	109 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	46.25	93 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	551758	4.98		
540-36-3	1,4-Difluorobenzene	928981	5.58		
3114-55-4	Chlorobenzene-d5	1119936	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	531964	11.76		

6/1/2006 CA Rich Consultants, INC. Date Collected: Client: Date Received: 6/2/2006 Project: Flamingo RI X3075 SDG No.: GWB-20(14-18) Client Sample ID: Matrix: WATER Lab Sample ID: X3075-07 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uLSample Wt/Wol: 5.0 Units: mL uL Soil Aliquot Vol:

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007474.D	1000	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	170	U	5000	170	ug/L
74-87-3	Chloromethane	340	U	5000	340	ug/L
75-01-4	Vinyl chloride	330	Ŭ	5000	330	ug/L
74-83-9	Bromomethane	410	U	5000	410	ug/L
75-00-3	Chloroethane	830	U	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	U	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	U	5000	420	ug/L
75-09-2	Methylene Chloride	430	U	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	U	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	U	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	U	5000	1100	ug/L
67-66-3	Chloroform	330	U	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	U	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	U	5000	340	ug/L
79-01-6	Trichloroethene	460	U	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	U	5000	400	ug/L
74-95-3	Dibromomethane	430	U	5000	430	ug/L
75-27-4	Bromodichloromethane	330	U	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	U	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	Ū	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	U	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	U	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	U	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	U	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	U	5000	320	ug/L
127-18-4	Tetrachloroethene	13000		5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	U	5000	300	ug/L
75-25-2	Bromoform	320	U	5000	320	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	300	U	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	U	5000	580	ug/L
108-86-1	Bromobenzene	400	U	5000	400	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	380	U	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI X3075 SDG No.: GWB-20(14-18) Client Sample ID: Matrix: WATER Lab Sample ID: X3075-07 % Moisture: 100 Analytical Method: 8260 иL Soil Extract Vol: Sample Wt/Wol: 5.0 Units: mL uL Soil Aliquot Vol:

Analytical Batch ID Dilution: Date Analyzed File ID: VH053006 6/15/2006 VH007474.D 1000

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	44.18	88 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	50.74	101 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	55.66	111 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	48.7	97 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	526357	4.96		
540-36-3	1,4-Difluorobenzene	821361	5.57		
3114-55-4	Chlorobenzene-d5	989598	9.27		
3855-82-1	1.4-Dichlorobenzene-d4	492267	11.75		

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI X3075 SDG No.: Client Sample ID: GWB-20(10-14) Matrix: WATER Lab Sample ID: X3075-10 % Moisture: 100 Analytical Method: 8260 uL Soil Extract Vol: Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: uL

			
File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007252.D	1	6/8/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	1.7	J	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.48	J	5.0	0.33	ug/L
74-83-9	Bromomethane	3.4	J	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.95	J	5.0	0.42	ug/L
75-09-2	Methylene Chloride	1.5	J	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.52	J	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	8.1		5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	\mathbf{U}	5.0	0.34	ug/L
79-01-6	Trichloroethene	92		5.0	0.46	ug/L
78-87 - 5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95 - 3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	6/1/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	GWB-20(10-14)	SDG No.:	X3075
Lab Sample ID:	X3075-10	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	$\mathfrak{u}\mathbf{L}$
Soil Aliquot Vol:	$\mathfrak{u}\mathbf{L}$		

File ID: VH007252.D	Dilution:	Dilution: Date Analyzed 1 6/8/2006		Analytical B VH053006	Batch ID
CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	1.2 Dishlamashama dd	21 10	62 %	72 - 119	SPK: 50

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	3				
17060-07-0	1,2-Dichloroethane-d4	31.19	62 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	48.9	98 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	61.67	123 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	48.7	97 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	782964	4.97		
540-36-3	1,4-Difluorobenzene	1052519	5.58		
3114-55-4	Chlorobenzene-d5	1364077	9.28		
3855-82-1	1,4-Dichlorobenzene-d4	677986	11.76		

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Date Collected: 6/1/2006 CA Rich Consultants, INC. Client: 6/2/2006 Project: Date Received: Flamingo RI SDG No.: X3075 Client Sample ID: GWB-20(10-14)RE Matrix: Lab Sample ID: X3075-10RE WATER % Moisture: Analytical Method: 8260 100 Units: mL Sample Wt/Wol: 5.0 Soil Extract Vol: иL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID	\neg
VH007369.D	50	6/12/2006	VH053006	

CAS Number	Parameter	Conc.	Qualifier	RL	MD	L Units
TARGETS						
75-71-8	Dichlorodifluoromethane	8.5	U	250	8.5	ug/L
74-87-3	Chloromethane	17	U	250	17	ug/L
75-01-4	Vinyl chloride	16	U	250	16	ug/L
74-83-9	Bromomethane	200	J	250	21	ug/L
75-00-3	Chloroethane	41	U	250	41	ug/L
75-69-4	Trichlorofluoromethane	11	U ·	250	11	ug/L
75-35-4	1,1-Dichloroethene	21	U	250	21	ug/L
75-09-2	Methylene Chloride	21	U	250	21	ug/L
156-60-5	trans-1,2-Dichloroethene	20	U	250	20	ug/L
75-34-3	1,1-Dichloroethane	19	U	250	19	ug/L
56-23-5	Carbon Tetrachloride	57	U	250	57	ug/L
67-66-3	Chloroform	17	U	250	17	ug/L
71-55-6	1,1,1-Trichloroethane	16	U	250	16	ug/L
107-06-2	1,2-Dichloroethane	17	U	250	17	ug/L
79-01-6	Trichloroethene	23	U	250	23	ug/L
78-87-5	1,2-Dichloropropane	20	U	250	20	ug/L
74-95-3	Dibromomethane	21	U	250	21	ug/L
75-27-4	Bromodichloromethane	17	U	250	17	ug/L
10061-02-6	t-1,3-Dichloropropene	16	U	250	16	ug/L
10061-01-5	cis-1,3-Dichloropropene	18	U	250	18	ug/L
79-00-5	1,1,2-Trichloroethane	20	U	250	20	ug/L
142-28-9	1,3-Dichloropropane	16	U	250	16	ug/L
110-75-8	2-Chloroethyl vinyl ether	170	U	1200	170	ug/L
124-48-1	Dibromochloromethane	13	U	250	13	ug/L
106-93-4	1,2-Dibromoethane	16	U	250	16	ug/L
127-18-4	Tetrachloroethene	1400		250	24	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	15	U	250	15	ug/L
75-25-2	Bromoform	16	U	250	16	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	15	U	250	15	ug/L
96-18-4	1,2,3-Trichloropropane	29	U	250	29	ug/L
108-86-1	Bromobenzene	20	Ü	250	20	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	19	Ü	250	19	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Client: Project: Flamingo RI

Date Collected: Date Received:

6/1/2006

6/2/2006

Client Sample ID:

GWB-20(10-14)RE

SDG No.: Matrix:

X3075 WATER

Lab Sample ID:

X3075-10RE

% Moisture:

Analytical Method:

8260

100

Sample Wt/Wol: Soil Aliquot Vol: 5.0 Units: mL

Soil Extract Vol:

иL

File ID:

Dilution:

uL

Date Analyzed

Analytical Batch ID

VH007369.D

50

6/12/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	38,58	77 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	46.02	92 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54	108 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	47.07	94 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	632882	4.97		
540-36-3	1.4-Difluorobenzene	999723	5.57		
3114-55-4	Chlorobenzene-d5	1215563	9.29		
3855-82-1	1,4-Dichlorobenzene-d4	577425	11.76		

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 Client Sample ID: GWB-20(X) Matrix: WATER Lab Sample ID: X3075-11 % Moisture: 100 Analytical Method: 8260 иL Soil Extract Vol: Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007475.D	1000	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS						
75-71 - 8	Dichlorodifluoromethane	170	U	5000	170	ug/L
74-87-3	Chloromethane	340	Ū	5000	340	ug/L
75-01-4	Vinyl chloride	330	U	5000	330	ug/L
74-83-9	Bromomethane	410	U	5000	410	ug/L
75-00-3	Chloroethane	830	U	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	U	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	U	5000	420	ug/L
75-09-2	Methylene Chloride	430	U	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	U	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	U	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	U	5000	1100	ug/L
67-66-3	Chloroform	330	U	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	U	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	U	5000	340	ug/L
79-01 - 6	Trichloroethene	460	U	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	U	5000	400	ug/L
74-95-3	Dibromomethane	430	U	5000	430	ug/L
75-27-4	Bromodichloromethane	330	U	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	U	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	U	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	U	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	U	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	Ŭ	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	U	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	U	5000	320	ug/L
127-18-4	Tetrachloroethene	10000		5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	U	5000	300	ug/L
75-25-2	Bromoform	320	U	5000	320	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	300	U	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	U	5000	580	ug/L
108-86-1	Bromobenzene	400	U	5000	400	ug/L
96-12 - 8	1,2-Dibromo-3-Chloropropane	380	Ŭ	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

6/1/2006 CA Rich Consultants, INC. Date Collected: Client: Date Received: 6/2/2006 Project: Flamingo RI X3075 SDG No.: Client Sample ID: GWB-20(X) Matrix: WATER Lab Sample ID: X3075-11 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: uL Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: иL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007475.D	1000	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES				 	
17060-07-0	1,2-Dichloroethane-d4	45.57	91 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	48.61	97 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54.06	108 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.13	90 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	512142	4.96		
540-36-3	1,4-Difluorobenzene	845524	5.57		
3114-55-4	Chlorobenzene-d5	987939	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	478584	11.75		

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: 6/2/2006 Date Received: Project: Flamingo RI SDG No.: X3075 Client Sample ID: FB6-1-06 Matrix: WATER Lab Sample ID: X3075-12 % Moisture: 100 Analytical Method: 8260 Soil Extract Vol: иL Sample Wt/Wol: 5.0 Units: mL Soil Aliquot Vol: αL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007471.D	1	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87 - 3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	. 0.83	U	5.0	0.83	ug/L
75 - 69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	. 0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	Ŭ	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	Ŭ	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:	CA Rich Consultants, INC.	Date Collected:	6/1/2006
Project:	Flamingo RI	Date Received:	6/2/2006
Client Sample ID:	FB6-1-06	SDG No.:	X3075
Lab Sample ID:	X3075-12	Matrix:	WATER
Analytical Method:	8260	% Moisture:	100
Sample Wt/Wol:	5.0 Units: mL	Soil Extract Vol:	цL
Soil Aliquot Vol:	$u\mathbf{L}$		

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007471.D	1	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	41.66	83 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	48.28	97 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.58	105 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	44.95	90 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	553593	4.97		
540-36-3	1,4-Difluorobenzene	884061	5.56		
3114-55-4	Chlorobenzene-d5	1020150	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	504822	11.74		

6/1/2006 Date Collected: CA Rich Consultants, INC. Client: Date Received: 6/2/2006 Project: Flamingo RI SDG No.: X3075 Client Sample ID: TRIPBLANK Matrix: WATER Lab Sample ID: X3075-13 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: αL

1	File ID:	Dilution:	Date Analyzed	Analytical Batch ID	\bigcap
	VH007470.D	1	6/15/2006	VH053006	J

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS			··· · · · · · · · · · · · · · · · · ·			
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	U	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00 - 5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3,4	\mathbf{U}	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Client:

Date Collected:

6/1/2006

Project:

Flamingo RI

Date Received:

6/2/2006

Client Sample ID:

TRIPBLANK

SDG No.: Matrix:

X3075

Lab Sample ID:

X3075-13

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

Units: mL 5.0

Soil Extract Vol:

иL

Soil Aliquot Vol:

uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007470.D	1	6/15/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	41.95	84 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	50.19	100 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	53.54	107 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	46.27	93 %	76 - 119	SPK: 50
INTERNAL STA	ANDARDS				
363-72-4	Pentafluorobenzene	537490	4.96		
540-36-3	1,4-Difluorobenzene	857661	5.57		
3114-55-4	Chlorobenzene-d5	1021679	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	504209	11.75		

Summary Sheet SW-846

SDG No.:

X3075

Order ID:

x3075

Client:	CA Rich Consultants	, INC.		Project ID: rich				
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID: X3075-02	B-18(13-9) B-18(13-9)	WATER	Chloromethane	3.5	J	5.0	0.34	ug/L
	B-18(13-9)	WATER	1,1,1-Trichloroethane	42	·	5.0	0.32	ug/L
X3075-02		WATER	Trichloroethene	100		5.0	0.46	ug/L
X3075-02	B-18(13-9)		Tetrachloroethene	13000	Е	5.0	0.48	ug/L
X3075-02	B-18(13-9)	WATER	Tetracinoroetheric		L	5.0	0.10	ug/ L
			Total VOC's:	13145.50				
			Total TIC's: Total VOC's and TIC's:	0.00 13145.50				
			Total voc's and lie s.	13143.30				
Client ID:	B-18(13-9)DL							
X3075-02DL	B-18(13-9)DL	WATER	Tetrachloroethene	19000	D	5000	480	ug/L
			Total VOC's:	19000.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	19000.00				
Client ID:	B-18(17-13)							
X3075-01	B-18(17-13)	WATER	Tetrachloroethene	60000		5000	480	ug/L
			Total VOC's:	60000.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	60000.00				
Client ID:	B-19(14-10)							
X3075-04	B-19(14-10)	WATER	Chloromethane	2.1	J	5.0	0.34	ug/L
X3075-04	B-19(14-10)	WATER	Bromomethane	3.5	J	5.0	0.41	ug/L
X3075-04	B-19(14-10)	WATER	1,1-Dichloroethene	7.8		5.0	0.42	ug/L
X3075-04	B-19(14-10)	WATER	Methylene Chloride	2.3	J	5.0	0.43	ug/L
X3075-04	B-19(14-10)	WATER	1,1,1-Trichloroethane	77		5.0	0.32	ug/L
X3075-04	B-19(14-10)	WATER	Trichloroethene	49		5.0	0.46	ug/L
X3075-04	B-19(14-10)	WATER	Tetrachloroethene	2800	E	5.0	0.48	ug/L
			Total VOC's:	2941.70				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	2941.70				
Client ID:	B-19(14-10)DL							
X3075-04DL	B-19(14-10)DL	WATER	Bromomethane	710	JD	1000	82	ug/L
X3075-04DL	B-19(14-10)DL	WATER	Tetrachloroethene	870	JD	1000	96	ug/L
			Total VOC's:	1580.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1580.00				

Summary Sheet SW-846

SDG No.:

X3075

Order ID:

X3075

Client: CA Rich Consultants, INC.

Project ID:

rich

Cuent:	CA Rich Consultants,	INC.	P	roject ib: Fich				
Sample ID	Client ID	Matrix	Parameter	Concentration	C	RDL	MDL	Units
Client ID: X3075-03	B-19(18-14) B-19(18-14)	WATER	Chloromethane	2.3	J	5.0	0,34	ug/L
X3075-03	B-19(18-14)	WATER	Bromomethane	3.5	J	5.0	0.41	ug/L
X3075-03 X3075-03	B-19(18-14)	WATER	1,1-Dichloroethene	4.8	J	5.0	0.42	ug/L
X3075-03	B-19(18-14)	WATER	Methylene Chloride	1.5	J	5.0	0.43	ug/L
X3075-03	B-19(18-14)	WATER	1,1,1-Trichloroethane	39	3	5.0	0.32	ug/L
X3075-03	B-19(18-14)	WATER	Trichloroethene	29		5.0	0.46	ug/L
X3075-03	B-19(18-14)	WATER	Tetrachloroethene	3400	Е	5.0	0.48	ug/L
A3075-03	D-17(10-14)				L	5.0	0.10	ug/ D
			Total VOC's:	3480.10				
			Total TIC's: Total VOC's and TIC's:	0.00 3480.10				
			10011 700 5 4110 110 5.	2450,10				
Client ID:	B-19(18-14)DL							
X3075-03DL	B-19(18-14)DL	WATER	Chloromethane	180	JD	1000	69	ug/L
X3075-03DL	B-19(18-14)DL	WATER	Bromomethane	760	Ъ	1000	82	ug/L
X3075-03DL	B-19(18-14)DL	WATER	Tetrachloroethene	1000	D	1000	96	ug/L
		:	Total VOC's:	1940.00				
		i	Total TIC's:	0.00				
		i	Total VOC's and TIC's:	1940.00				
Client ID:	GWB-20(10-14)							
X3075-10	GWB-20(10-14)	WATER	Chloromethane	1.7	J	5.0	0.34	ug/L
X3075-10	GWB-20(10-14)	WATER	Vinyl chloride	0.48	J	5.0	0.33	ug/L
X3075-10	GWB-20(10-14)	WATER	Bromomethane	3.4	J	5.0	0.41	ug/L
X3075-10	GWB-20(10-14)	WATER	1,1-Dichloroethene	0.95	J	5.0	0.42	ug/L
X3075-10	GWB-20(10-14)	WATER	Methylene Chloride	1.5	J	5.0	0.43	ug/L
X3075-10	GWB-20(10-14)	WATER	Chloroform	0.52	J	5.0	0.33	ug/L
X3075-10	GWB-20(10-14)	WATER	1,1,1-Trichloroethane	8.1		5.0	0.32	ug/L
X3075-10	GWB-20(10-14)	WATER	Trichloroethene	92		5.0	0.46	ug/L
			Total VOC's:	108.65				
			Total TIC's:	0.00				
		ı	Total VOC's and TIC's:	108.65				
Client ID:	GWB-20(10-14)RE							
X3075-10RE	GWB-20(10-14)RE	WATER	Bromomethane	200	J	250	21	ug/L
X3075-10RE	GWB-20(10-14)RE	WATER	Tetrachloroethene	1400		250	24	ug/L
		•	Total VOC's:	1600.00				
			Total TIC's:	0.00				
			Total VOC's and TIC's:	1600.00				

Summary Sheet SW-846

SDG No.:

X3075

Order ID:

X3075

Client:

CA Rich Consultants, INC.

Project ID:

rich

Cheati	CA Rich Consultants	, IIC.		rioject ib.				
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	GWB-20(14-18)							
X3075-07	GWB-20(14-18)	WATER	Tetrachloroethene	13000		5000	480	ug/L
		7	otal VOC's:	13000.00				
		ī	otal TIC's:	0.00				
		T	otal VOC's and TIC's:	13000.00				
Client ID:	GWB-20(X)							
X3075-11	GWB-20(X)	WATER	Tetrachloroethene	10000		5000	480	ug/L
		r	otal VOC's:	10000.00				
		r	otal TIC's:	0.00				
		Ţ	otal VOC's and TIC's:	10000.00				

ANALYTICAL RESULTS SUMMARY

PROJECT NAME: Flamingo RI

CA RICH CONSULTANTS, INC. 17 DUPONT STREET PLAINVIEW, NY 11803 5165768844

CHEMTECH PROJECT NO. ATTENTION:

X3312 Rich Izzo

Client:

CA Rich Consultants, INC.

Date Collected:

6/13/2006

Project:

Flamingo RI

Date Received:

6/16/2006

Client Sample ID:

MW-1

SDG No.:

X3312

Lab Sample ID:

X3312-01

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL Soil Extract Vol:

 $\mathfrak{u} \mathbf{L}$

Soil Aliquot Vol:

uL

File ID: VH007756.D Dilution:

Date Analyzed

Analytical Batch ID

1000 6/23/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	170	U	5000	170	ug/L
74-87-3	Chloromethane	340	U	5000	340	ug/L
75-01-4	Vinyl chloride	330	U	5000	330	·ug/L
74-83-9	Bromomethane	410	U	5000	410	ug/L
75-00-3	Chloroethane	830	U	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	U	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	U	5000	420	ug/L
75-09-2	Methylene Chloride	430	U	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	\mathbf{U}	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	U	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	U-	5000	1100	ug/L
67-66-3	Chloroform	330	U	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	U	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	U	5000	340	ug/L
79-01-6	Trichloroethene	460	U	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	U	5000	400	ug/L
74-95-3	Dibromomethane	430	U	5000	430	ug/L
75-27-4	Bromodichloromethane	330	U	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	U	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	U	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	\mathbf{U}	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	\mathbf{U}	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	U	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	U	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	U	5000	320	ug/L
127-18-4	Tetrachloroethene	55000		5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	U	5000	300	ug/L
75-25-2	Bromoform	320	U	5000	320	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	300	U	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	U	5000	580	ug/L
108-86-1	Bromobenzene	400	U	5000	400	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	380	U	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

Client:

CA Rich Consultants, INC.

uL

Date Collected:

6/13/2006

Project:

Flamingo RI

Date Received:

6/16/2006

Client Sample ID:

MW-1

SDG No.:

X3312

Lab Sample ID:

X3312-01

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol: Soil Aliquot Vol: 5.0 Units: mL Soil Extract Vol:

иL

File ID:

Dilution:

Date Analyzed

Analytical Batch ID

VH007756.D

1000

6/23/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	}				
17060-07-0	1,2-Dichloroethane-d4	48.97	98 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	54.57	109 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	53.32	107 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	44.6	89 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	501933	4.96		
540-36-3	1,4-Difluorobenzene	746034	5.56		
3114-55-4	Chlorobenzene-d5	774965	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	381433	11.74		

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. Date Collected: 6/13/2006 Client: Project: Flamingo RI Date Received: 6/16/2006 Client Sample ID: MW-2 SDG No.: X3312 Matrix: WATER Lab Sample ID: X3312-02 % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: иL Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID
VH007769.D 10 6/23/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDI	Units
TARGETS	1000					
75-71-8	Dichlorodifluoromethane	1.7	U	50	1.7	ug/L
74-87-3	Chloromethane	3.4	U	50	3.4	ug/L
75-01-4	Vinyl chloride	3.3	U	50	3.3	ug/L
74-83-9	Bromomethane	4.1	U	50	4.1	ug/L
75-00-3	Chloroethane	8.3	U	50	8.3	ug/L
75-69-4	Trichlorofluoromethane	2.2	U	50	2.2	ug/L
75-35-4	1,1-Dichloroethene	4.2	U	50	4.2	ug/L
75-09-2	Methylene Chloride	4.3	U	50	4.3	ug/L
156-60-5	trans-1,2-Dichloroethene	4.0	U	50	4.0	ug/L
75-34-3	1,1-Dichloroethane	3.8	U	50	3.8	ug/L
56-23-5	Carbon Tetrachloride	11	${f U}$	50	11	ug/L
67-66-3	Chloroform	3.3	U	50	3.3	ug/L
71-55-6	1,1,1-Trichloroethane	3.2	U	50	3.2	ug/L
107-06-2	1,2-Dichloroethane	3.4	U	50	3.4	ug/L
79-01-6	Trichloroethene	45	J	50	4.6	ug/L
78-87-5	1,2-Dichloropropane	4.0	U	50	4.0	ug/L
74-95-3	Dibromomethane	4.3	U	50	4.3	ug/L
75-27-4	Bromodichloromethane	3.3	\mathbf{U}	50	3.3	ug/L
10061-02-6	t-1,3-Dichloropropene	3.2	U	50	3.2	ug/L
10061-01-5	cis-1,3-Dichloropropene	3.6	U	50	3.6	ug/L
79-00-5	1,1,2-Trichloroethane	4.1	U	50	4.1	ug/L
142-28-9	1,3-Dichloropropane	3.2	U	50	3.2	ug/L
110-75-8	2-Chloroethyl vinyl ether	34	U	250	34	ug/L
124-48-1	Dibromochloromethane	2.6	U	50	2.6	ug/L
106-93-4	1,2-Dibromoethane	3.2	U	50	3.2	ug/L
127-18-4	Tetrachloroethene	520		50	4.8	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
75-25-2	Bromoform	3.2	U	50	3.2	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
96-18-4	1,2,3-Trichloropropane	5.8	U	50	5.8	ug/L
108-86-1	Bromobenzene	4.0	U	50	4.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	3.8	U	50	3.8	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Report of Analysis

6/13/2006 CA Rich Consultants, INC. Date Collected: Client: 6/16/2006 Project: Date Received: Flamingo RI SDG No.: X3312 Client Sample ID: MW-2Matrix: WATER Lab Sample ID: X3312-02 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: uL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH007769.D 10 6/23/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	50.09	100 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	57	114 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	51.96	104 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	46.65	93 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	482100	4.96		
540-36-3	1,4-Difluorobenzene	706426	5.56		
3114-55-4	Chlorobenzene-d5	762332	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	366631	11.74		

N = Presumptive Evidence of a Compound

Sample Wt/Wol:

CETTLE 1 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Matrix:

Soil Extract Vol:

WATER

иL

Report of Analysis

Date Collected: 6/13/2006 CA Rich Consultants, INC. Client: 6/16/2006 Project: Date Received: Flamingo RI

SDG No.: X3312 Client Sample ID: MW-2D

Lab Sample ID: X3312-03 % Moisture:

100 Analytical Method: 8260

 $\mathfrak{u}\mathbf{L}$ Soil Aliquot Vol:

5.0

Units: mL

Analytical Batch ID Dilution: Date Analyzed File ID: VH053006 6/23/2006 VH007762.D 10

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS			o on 1			
75-71-8	Dichlorodifluoromethane	1.7	U	50	1.7	ug/L
74-87-3	Chloromethane	3.4	U	50	3.4	ug/L
75-01-4	Vinyl chloride	3.3	\mathbf{U}	50	3.3	ug/L
74-83-9	Bromomethane	4.1	\mathbf{U}	50	4.1	ug/L
75-00-3	Chloroethane	8.3	U	50	8.3	ug/L
75-69-4	Trichlorofluoromethane	2.2	U	50	2.2	ug/L
75-35-4	1,1-Dichloroethene	4.2	U	50	4.2	ug/L
75-09-2	Methylene Chloride	4.3	U	50	4.3	ug/L
156-60-5	trans-1,2-Dichloroethene	4.0	U	50	4.0	ug/L
75-34-3	1,1-Dichloroethane	3.8	U	50	3.8	ug/L
56-23-5	Carbon Tetrachloride	11	U	50	11	ug/L
67-66-3	Chloroform	3.3	U	50	3.3	ug/L
71-55-6	1,1,1-Trichloroethane	3.2	U	50	3.2	ug/L
107-06-2	1,2-Dichloroethane	3.4	U	50	3.4	ug/L
79-01-6	Trichloroethene	49	J	50	4.6	ug/L
78-87-5	1,2-Dichloropropane	4.0	U.	50	4.0	ug/L
74-95-3	Dibromomethane	4.3	U	50	4.3	ug/L
75-27-4	Bromodichloromethane	3.3	U	50	3.3	ug/L
10061-02-6	t-1,3-Dichloropropene	3.2	U	50	3.2	ug/L
10061-01-5	cis-1,3-Dichloropropene	3.6	U	50	3.6	ug/L
79-00-5	1,1,2-Trichloroethane	4.1	U	50	4.1	ug/L
142-28-9	1,3-Dichloropropane	3.2	U	50	3.2	ug/L
110-75-8	2-Chloroethyl vinyl ether	34	U	250	34	ug/L
124-48-1	Dibromochloromethane	2.6	U	50	2.6	ug/L
106-93-4	1,2-Dibromoethane	3.2	U	50	3.2	ug/L
127-18-4	Tetrachloroethene	460		50	4.8	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
75-25-2	Bromoform	3.2	U	50	3.2	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
96-18-4	1,2,3-Trichloropropane	5.8	U	50	5.8	ug/L
108-86-1	Bromobenzene	4.0	U	50	4.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	3.8	U	50	3.8	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 6/13/2006 CA Rich Consultants, INC. Client: Date Received: 6/16/2006 Project: Flamingo RI SDG No.: X3312 Client Sample ID: MW-2D-Matrix: WATER Lab Sample ID: X3312-03 % Moisture: 100 Analytical Method: 8260 uLSoil Extract Vol: Sample Wt/Wol: 5.0 Units: mL uL Soil Aliquot Vol:

		and the second s	
File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007762.D	10	6/23/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	51.47	103 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	55.28	111 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.2	104 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	46.46	93 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	478112	4.96		
540-36-3	1,4-Difluorobenzene	715028	5.56		
3114-55-4	Chlorobenzene-d5	769260	9.27		
3855-82-1	1,4-Dichlorobenzene-d4	369324	11.74		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

6/13/2006 CA Rich Consultants, INC. Date Collected: Client: Date Received: 6/16/2006 Project: Flamingo RI SDG No.: X3312 Client Sample ID: **MW-3** Matrix: WATER Lab Sample ID: X3312-04 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLuL Soil Aliquot Vol:

File ID: Dilution: Date Analyzed Analytical Batch ID
VH007759.D 1000 6/23/2006 VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS		, . <u></u>	•			•
75-71-8	Dichlorodifluoromethane	170	U	5000	170	ug/L
74-87-3	Chloromethane	340	U	5000	340	ug/L
75-01-4	Vinyl chloride	330	\mathbf{U}	5000	330	ug/L
74-83-9	Bromomethane	410	U	5000	410	ug/L
75-00-3	Chloroethane	830	U	5000	830	ug/L
75-69-4	Trichlorofluoromethane	220	U	5000	220	ug/L
75-35-4	1,1-Dichloroethene	420	\mathbf{U}	5000	420	ug/L
75-09-2	Methylene Chloride	430	\mathbf{U}	5000	430	ug/L
156-60-5	trans-1,2-Dichloroethene	400	U	5000	400	ug/L
75-34-3	1,1-Dichloroethane	380	U	5000	380	ug/L
56-23-5	Carbon Tetrachloride	1100	${f U}$	5000	1100	ug/L
67-66-3	Chloroform	330	U	5000	330	ug/L
71-55-6	1,1,1-Trichloroethane	320	U	5000	320	ug/L
107-06-2	1,2-Dichloroethane	340	U	5000	340	ug/L
79-01-6	Trichloroethene	460	U	5000	460	ug/L
78-87-5	1,2-Dichloropropane	400	U	5000	400	ug/L
74-95-3	Dibromomethane	430	U	5000	430	ug/L
75-27-4	Bromodichloromethane	330	U	5000	330	ug/L
10061-02-6	t-1,3-Dichloropropene	320	U	5000	320	ug/L
10061-01-5	cis-1,3-Dichloropropene	360	U	5000	360	ug/L
79-00-5	1,1,2-Trichloroethane	410	U	5000	410	ug/L
142-28-9	1,3-Dichloropropane	320	Ü	5000	320	ug/L
110-75-8	2-Chloroethyl vinyl ether	3400	U	25000	3400	ug/L
124-48-1	Dibromochloromethane	260	U	5000	260	ug/L
106-93-4	1,2-Dibromoethane	320	U	5000	320	ug/L
127-18-4	Tetrachloroethene	30000		5000	480	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	300	U	5000	300	ug/L
75-25-2	Bromoform	320	U	5000	320	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	300	U	5000	300	ug/L
96-18-4	1,2,3-Trichloropropane	580	U	5000	580	ug/L
108-86-1	Bromobenzene	400	U	5000	400	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	380	U	5000	380	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

6/13/2006 CA Rich Consultants, INC. Date Collected: Client: Date Received: 6/16/2006 Project: Flamingo RI SDG No.: X3312 Client Sample ID: **MW-3** Matrix: WATER Lab Sample ID: X3312-04 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Soil Extract Vol: uLUnits: mL Soil Aliquot Vol: uL

			The second secon
File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007759.D	1000	6/23/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	50.36	101 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	56.81	114 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.49	105 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.36	91 %	76 - 119	SPK: 50
INTERNAL ST.	ANDARDS				
363-72-4	Pentafluorobenzene	493394	4.96		
540-36-3	1,4-Difluorobenzene	722443	5.56		
3114-55-4	Chlorobenzene-d5	761218	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	366522	11.74		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Date Collected: 6/13/2006 CA Rich Consultants, INC. Client: Date Received: 6/16/2006 Project: Flamingo RI SDG No.: X3312 Client Sample ID: MW-4 Matrix: WATER Lab Sample ID: X3312-05 % Moisture: 100 Analytical Method: 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007763.D	10	6/23/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL	Units
TARGETS						
75-71-8	Dichlorodifluoromethane	1.7	U	50	1.7	ug/L
74-87-3	Chloromethane	3.4	U	50	3.4	ug/L
75-01-4	Vinyl chloride	3.3	\mathbf{U}	50	3.3	ug/L
74-83-9	Bromomethane	4.1	U	50	4.1	ug/L
75-00-3	Chloroethane	8.3	U	50	8.3	ug/L
75-69-4	Trichlorofluoromethane	2,2	\mathbf{U}	50	2.2	ug/L
75-35-4	1,1-Dichloroethene	4.2	U	50	4.2	ug/L
75-09-2	Methylene Chloride	4.3	\mathbf{U}	50	4.3	ug/L
156-60-5	trans-1,2-Dichloroethene	4.0	U	50	4.0	ug/L
75-34-3	1,1-Dichloroethane	3.8	U	50	3.8	ug/L
56-23-5	Carbon Tetrachloride	11	U	50	11	ug/L
67-66-3	Chloroform	3.3	U	50	3.3	ug/L
71-55-6	1,1,1-Trichloroethane	3.2	U	50	3.2	ug/L
107-06-2	1,2-Dichloroethane	3.4	U	50	3.4	ug/L
79-01-6	Trichloroethene	4.6	U	50	4.6	ug/L
78-87-5	1,2-Dichloropropane	4.0	U	50 ⁻	4.0	ug/L
74-95-3	Dibromomethane	4,3	\mathbf{U}	50	4.3	ug/L
75-27-4	Bromodichloromethane	3.3	U-	50	3.3	ug/L
10061-02-6	t-1,3-Dichloropropene	3.2	IJ	50	3,2	ug/L
10061-01-5	cis-1,3-Dichloropropene	3.6	U	50	3.6	ug/L
79-00-5	1,1,2-Trichloroethane	4.1	U	50	4.1	ug/L
142-28-9	1,3-Dichloropropane	3.2-	U	50	3.2	ug/L
110-75-8	2-Chloroethyl vinyl ether	34	U	250	34	ug/L
124-48-1	Dibromochloromethane	2.6	U	50	2.6	ug/L
106-93-4	1,2-Dibromoethane	3.2	U	50	3.2	ug/L
127-18-4	Tetrachloroethene	27	J	50	4.8	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
75-25-2	Bromoform	3.2	U	50	3.2	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	3.0	U	50	3.0	ug/L
96-18-4	1,2,3-Trichloropropane	5.8	U	50	5.8	ug/L
108-86-1	Bromobenzene	4.0	U	50	4.0	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	3.8	U	50	3.8	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client:

CA Rich Consultants, INC.

Date Collected:

6/13/2006

Project:

Flamingo RI

Date Received:

6/16/2006

MW-4

SDG No.:

X3312

Client Sample ID: Lab Sample ID:

X3312-05

Matrix:

WATER

Analytical Method:

8260

% Moisture:

100

Sample Wt/Wol:

5.0 Units: mL Soil Extract Vol:

uL

Soil Aliquot Vol:

uL

Dilution: File ID: VH007763.D 10

Date Analyzed-

Analytical Batch ID

6/23/2006

VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	51.43	103 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	57.72	115 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	54.25	109 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	47.16	94 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	484528	4.96		
540-36-3	1,4-Difluorobenzene	689558	5.57		
3114-55-4	Chlorobenzene-d5	747508	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	369849	11.74		

Lab Sample ID:

284 Sheffield Street, Mountainside, NJ 07092 Phone: 908-789-8900 Fax: 908-789-8922

Soil Extract Vol:

иL

Report of Analysis

Client: CA Rich Consultants, INC. Date Collected: 6/13/2006 6/16/2006 Project: Date Received: Flamingo RI

SDG No.: X3312 Client Sample ID: **MW-5** Matrix: WATER

% Moisture: 100

Analytical Method: 8260 Sample Wt/Wol: Units: mL

Soil Aliquot Vol: uL

X3312-06

5.0

Dilution: **Analytical Batch ID** File ID: **Date Analyzed** VH053006 50 6/23/2006 VH007768.D

CAS Number	Parameter	Conc.	Qualifier	RL	MDl	_ Units
TARGETS		••				
75-71-8	Dichlorodifluoromethane	8.5	U	250	8.5	ug/L
74-87-3	Chloromethane	17	U	250	17	ug/L
75-01-4	Vinyl chloride	16	U	250	16	ug/L
74-83-9	Bromomethane	21	U	250	21	ug/L
75-00-3	Chloroethane	41	U	250	41	ug/L
75-69-4	Trichlorofluoromethane	11	U	250	11	ug/L
75-35-4	1,1-Dichloroethene	21	U	250	21	ug/L
75-09-2	Methylene Chloride	21	U	250	21	ug/L
156-60-5	trans-1,2-Dichloroethene	20	U	250	20	ug/L
75-34-3	1,1-Dichloroethane	19	U	250	19	ug/L
56-23-5	Carbon Tetrachloride	57	U	250	57	ug/L
67-66-3	Chloroform	17	U	250.	17	ug/L
71-55-6	1,1,1-Trichloroethane	16	\mathbf{U}	250	16	ug/L
107-06-2	1,2-Dichloroethane	17	U	250	17	ug/L
79-01-6	Trichloroethene	23	U	250	23	ug/L
78-87-5	1,2-Dichloropropane	20	U	250	20	ug/L
74-95-3	Dibromomethane	21	U	250	21	ug/L
75-27-4	Bromodichloromethane	17	U	250	17	ug/L
10061-02-6	t-1,3-Dichloropropene	16	U	250	16	ug/L
10061-01-5	cis-1,3-Dichloropropene	18	U	250	18	ug/L
79-00-5	1,1,2-Trichloroethane	20	U	250	20	ug/L
142-28-9	1,3-Dichloropropane	16	U	250	16	ug/L
110-75-8	2-Chloroethyl vinyl ether	170	U	1200	170	ug/L
124-48-1	Dibromochloromethane	13	U	250	13	ug/L
106-93-4	1,2-Dibromoethane	16	U	250	16	ug/L
127-18-4	Tetrachloroethene	1700		250	24	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	15	U	250	15	ug/L
75-25-2	Bromoform	16	U	250	16	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	15	U	250	15	ug/L
96-18-4	1,2,3-Trichloropropane	29	U	250	29	ug/L
108-86-1	Bromobenzene	20	U	250	20	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	19	U	250	19	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Client: CA Rich Consultants, INC. Date Collected: 6/13/2006 Project: Flamingo RI Date Received: 6/16/2006 Client Sample ID: MW-5 SDG No.: X3312 Matrix: Lab Sample ID: X3312-06 WATER % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Soil Aliquot Vol: иL

File ID: Dilution: Date Analyzed Analytical Batch ID VH007768.D **50** 6/23/2006 VH053006

CAS Number Parameter		Conc.	Qualifier	RL	MDL Units
SURROGATES				-	
17060-07-0	1,2-Dichloroethane-d4	49.96	100 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	54.24	108 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.2	104 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	45.77	92 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	477038	4.95		
540-36-3	1,4-Difluorobenzene	707687	5.56		
3114-55-4	Chlorobenzene-d5	765453	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	359137	11.74		

6/13/2006 Client: CA Rich Consultants, INC. Date Collected: Project: Date Received: 6/16/2006 Flamingo RI Client Sample ID: T.B. SDG No.: X3312 Lab Sample ID: Matrix: X3312-09 WATER Analytical Method: % Moisture: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uLSoil Aliquot Vol: иL

Dilution: Analytical Batch ID File ID: Date Analyzed 1 6/23/2006 VH053006 VH007754.D

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
TARGETS					
75-71 - 8	Dichlorodifluoromethane	0.17	U	5.0	0.17 ug/L
74-87-3	Chloromethane	0.34	U	5.0	0.34 ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33 ug/L
74-83-9	Bromomethane	0.41	U	5.0	0.41 ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83 ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22 ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42 ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43 ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	U	5.0	0.40 ug/L
75-34-3	1,1-Dichloroethane	0.38	\mathbf{U}	5.0	0.38 ug/L
56-23-5	Carbon Tetrachloride	1.1	\mathbf{U}	5.0	1.1 ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33 ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32 ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34 ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46 ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40 ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43 ug/L
75-27-4	Bromodichloromethane	0.33	\mathbf{U}	5.0	0.33 ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32 ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36 ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41 ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32 ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4 ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26 ug/L
106-93-4	1,2-Dibromoethane	0.32	\mathbf{U}	5.0	0.32 ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48 ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30 ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32 ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30 ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58 ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40 ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38 ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Soil Aliquot Vol:

Report of Analysis

Client: CA Rich Consultants, INC. Date Collected: 6/13/2006 Project: Flamingo RI Date Received: 6/16/2006 Client Sample ID: SDG No.: X3312 T.B. Matrix: Lab Sample ID: WATER X3312-09 % Moisture: Analytical Method: 100 8260 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL

Dilution: File ID: **Analytical Batch ID** Date Analyzed VH053006 VH007754.D 1 6/23/2006

uL

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES	3				
17060-07-0	1,2-Dichloroethane-d4	46.58	93 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	55.35	111 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.58	105 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	44.97	90 %	76 - 119	SPK: 50
INTERNAL ST	ANDARDS				
363-72-4	Pentafluorobenzene	511440	4,95		
540-36-3	1,4-Difluorobenzene	770518	5.56		
3114-55-4	Chlorobenzene-d5	809265	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	401249	11.74		

CA Rich Consultants, INC. Date Collected: 6/13/2006 Client: Project: Flamingo RI Date Received: 6/16/2006 Client Sample ID: F.B. SDG No.: X3312 Matrix: Lab Sample ID: X3312-10 WATER Analytical Method: 8260 % Moisture: 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: $\mathfrak{u}\mathbf{L}$ Soil Aliquot Vol: иL

File ID: Dilution: Date Analyzed Analytical Batch ID

VH007755.D 1. 6/23/2006 VH053006

CAS Number	lumber Parameter Conc. Qualifier RI		RL	MDL	Units	
TARGETS	100 minutes 11 11 11 11 11 11 11 11 11 11 11 11 11					
75-71-8	Dichlorodifluoromethane	0.17	U	5.0	0.17	ug/L
74-87-3	Chloromethane	0.94	JВ	5.0	0.34	ug/L
75-01-4	Vinyl chloride	0.33	U	5.0	0.33	ug/L
74-83-9	Bromomethane	3.6	JB	5.0	0.41	ug/L
75-00-3	Chloroethane	0.83	U	5.0	0.83	ug/L
75-69-4	Trichlorofluoromethane	0.22	U	5.0	0.22	ug/L
75-35-4	1,1-Dichloroethene	0.42	U	5.0	0.42	ug/L
75-09-2	Methylene Chloride	0.43	U	5.0	0.43	ug/L
156-60-5	trans-1,2-Dichloroethene	0.40	\mathbf{U}	5.0	0.40	ug/L
75-34-3	1,1-Dichloroethane	0.38	U	5.0	0.38	ug/L
56-23-5	Carbon Tetrachloride	1.1	U	5.0	1.1	ug/L
67-66-3	Chloroform	0.33	U	5.0	0.33	ug/L
71-55-6	1,1,1-Trichloroethane	0.32	U	5.0	0.32	ug/L
107-06-2	1,2-Dichloroethane	0.34	U	5.0	0.34	ug/L
79-01-6	Trichloroethene	0.46	U	5.0	0.46	ug/L
78-87-5	1,2-Dichloropropane	0.40	U	5.0	0.40	ug/L
74-95-3	Dibromomethane	0.43	U	5.0	0.43	ug/L
75-27-4	Bromodichloromethane	0.33	Ū	5.0	0.33	ug/L
10061-02-6	t-1,3-Dichloropropene	0.32	U	5.0	0.32	ug/L
10061-01-5	cis-1,3-Dichloropropene	0.36	U	5.0	0.36	ug/L
79-00-5	1,1,2-Trichloroethane	0.41	U	5.0	0.41	ug/L
142-28-9	1,3-Dichloropropane	0.32	U	5.0	0.32	ug/L
110-75-8	2-Chloroethyl vinyl ether	3.4	U	25	3.4	ug/L
124-48-1	Dibromochloromethane	0.26	U	5.0	0.26	ug/L
106-93-4	1,2-Dibromoethane	0.32	U	5.0	0.32	ug/L
127-18-4	Tetrachloroethene	0.48	U	5.0	0.48	ug/L
630-20-6	1,1,1,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
75-25-2	Bromoform	0.32	U	5.0	0.32	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	0.30	U	5.0	0.30	ug/L
96-18-4	1,2,3-Trichloropropane	0.58	U	5.0	0.58	ug/L
108-86-1	Bromobenzene	0.40	U	5.0	0.40	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	0.38	U	5.0	0.38	ug/L

U = Not Detected

RL = Reporting Limit

MDL = Method Detection Limit

E = Value Exceeds Calibration Range

J = Estimated Value

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

CA Rich Consultants, INC. **Date Collected:** 6/13/2006 Client: Project: Flamingo RI Date Received: 6/16/2006 Client Sample ID: F.B. SDG No.: X3312 Matrix: Lab Sample ID: X3312-10 WATER % Moisture: Analytical Method: 8260 100 Sample Wt/Wol: 5.0 Units: mL Soil Extract Vol: uL Soil Aliquot Vol: uL

File ID:	Dilution:	Date Analyzed	Analytical Batch ID
VH007755.D	1	6/23/2006	VH053006

CAS Number	Parameter	Conc.	Qualifier	RL	MDL Units
SURROGATES					
17060-07-0	1,2-Dichloroethane-d4	45.06	90 %	72 - 119	SPK: 50
1868-53-7	Dibromofluoromethane	53.65	107 %	85 - 115	SPK: 50
2037-26-5	Toluene-d8	52.29	105 %	81 - 120	SPK: 50
460-00-4	4-Bromofluorobenzene	43.93	88 %	76 - 119	SPK: 50
INTERNAL STA	ANDARDS				
363-72-4	Pentafluorobenzene	504500	4.95		
540-36-3	1,4-Difluorobenzene	745876	5.56		
3114-55-4	Chlorobenzene-d5	802994	9.26		
3855-82-1	1,4-Dichlorobenzene-d4	378351	11.74		

B = Analyte Found in Associated Method Blank

N = Presumptive Evidence of a Compound

Summary Sheet SW-846

SDG No.:

X3312

Order ID:

X3312

rich

Client:

CA Rich Consultants, INC.

Project ID:

Chent.	CA KICH COHSUI	nams, inc.	FIC	Ject ID: Fich				
Sample ID	Client ID	Matrix	Parameter	Concentration	С	RDL	MDL	Units
Client ID:	F.B.							
X3312-10	F.B.	WATER	Chloromethane	0.94	JВ	5.0	0.34	ug/L
X3312-10	F.B.	WATER	Bromomethane	3.6	$^{ m JB}$	5.0	0.41	ug/L
		,	Total VOC's:	4.54				
		į	Total TIC's:	0.00				
		7	Total VOC's and TIC's:	4.54				
Client ID:	MW-1							
X3312-01	MW-I	WATER	Tetrachloroethene	55000		5000	480	ug/L
						3000	100	ugb
			Fotal VOC's: Fotal TIC's:	55000.00 0.00				
			Fotal VOC's and TIC's:	55000.00				
Client ID:	MW-2							
X3312-02	MW-2	WATER	Trichloroethene	45	J	50	4.6	ug/L
X3312-02	MW-2	WATER	Tetrachloroethene	520		50	4.8	ug/L
		9	Fotal VOC's:	565.00				
		ני	Fotal TIC's:	0.00				
		ם	Fotal VOC's and TIC's:	565.00				
Client ID:	MW-2D							
X3312-03	MW-2D	WATER	Trichloroethene	49	J	50	4.6	ug/L
X3312-03	MW-2D	WATER	Tetrachloroethene	460	J	50	4.8	ug/L
	21211 222					50	7.0	ug/L
			otal VOC's: otal TIC's:	509.00 0.00				
			otal VOC's and TIC's:	509.00				
Client ID:	MW-3							
X3312-04	MW-3	WATER	Tetrachloroethene	30000		5000	480	ug/L
		T	otal VOC's:	30000.00				
			otal TIC's:	0.00				
		T	otal VOC's and TIC's:	30000.00				
Client ID:	MW-4							
X3312-05	MW-4	WATER	Tetrachloroethene	27	J	50	4.8	ug/L
	112 (1				3	30	7.0	ug 13
			otal VOC's: otal TIC's:	27.00 0.00				
			otal VOC's and TIC's:	27.00				
				27100				
Client ID:	MW-5							
X3312-06	MW-5	WATER	Tetrachloroethene	1700		250	24	ug/L
		T	otal VOC's:	1700.00				
		T	otal TIC's:	0.00				
		T	otal VOC's and TIC's:	1700.00				

Note: The asterisk "*" flag next to a parameter signifies a TIC parameter.

04/17/06

Technical Report for

C. A. Rich Consultants

Flamingo, 149 North Avenue, New Rochelle, NY

Accutest Job Number: J25683

Sampling Date: 03/21/06

Report to:

C. A. Rich Consultants 17 Dupont Street Plainview, NY 11803

ATTN: Eric Weinstock

Total number of pages in report: 994

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Vincent J. Pugliese President

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories.

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	6
3.1: J25683-1: IA-1 FLAMINGO 1ST FLOOR	7
3.2: J25683-2: IA-2 VACANT 1ST FLOOR	10
3.3: J25683-3: IA-3 HAIR SALON 1ST FLOOR	12
3.4: J25683-4: IA-4 TAVERN 1ST FLOOR	15
3.5: J25683-5: IA-5 FLAMINGO BASEMENT	17
3.6: J25683-6: IA-6 VACANT BASEMENT	20
3.7: J25683-7: IA-7 HAIR SALON BASEMENT	22
3.8: J25683-8: IA-8 TAVERN BASEMENT	24
3.9; J25683-9: EA-1 EXTERIOR (NE CORNER)	26
3.10: J25683-10: SS-1 FLAMINGO SUB SLAB	28
3.11: J25683-11: SS-2 VACANT SUB SLAB	31
3.12: J25683-12: SS-3 HAIR SALON SUB SLAB	34
3.13: J25683-13: SS-4 TAVERN SUB SLAB	36
Section 4: Misc. Forms	38
4.1: Chain of Custody	39
4.2: Summa Canister and Flow Controller Log	41
4.3: Sample Tracking Chronicle	42
4.4: Internal Chain of Custody	44
4.5: 2006 MDL Study - Method: TO-15 Matrix: AIR	46
Section 5: GC/MS Volatiles - QC Data Summaries	48
5.1: Method Blank Summary	49
5.2: Blank Spike/Blank Spike Duplicate Summary	81
5.3: Duplicate Summary	107
5.4: Summa Cleaning Certification	119
5.5: Instrument Performance Checks (BFB)	132
5.6: Internal Standard Area Summaries	154
5.7: Initial Calibration RT/ISTD Area Summaries	
5.8: Surrogate Recovery Summaries	260
5.9: Initial and Continuing Calibration Summaries	262
Section 6: GC/MS Volatiles - Raw Data	296
6.1: Samples	
6.2: Method Blanks	
6.3: Blank Spike/Blank Spike Duplicates	486
6.4: Duplicates	586
6.5: Summa Cleaning Certifications	
6.6: Instrument Performance Checks (BFB)	
6.7: Initial and Continuing Calibarations	688
6.8: Instrument Run Logs	973

Sample Summary

C. A. Rich Consultants

Flamingo, 149 North Avenue, New Rochelle, NY

Job No:

J25683

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
J25683-1	03/21/06	15:52 RI	03/23/06	AIR	Air	IA-1 FLAMINGO 1ST FLOOR
J25683-2	03/21/06	15:47 RI	03/23/06	AIR	Air	IA-2 VACANT 1ST FLOOR
J25683-3	03/21/06	16:12 RI	03/23/06	AIR	Air	IA-3 HAIR SALON 1ST FLOOR
J25683-4	03/21/06	15:56 RI	03/23/06	AIR	Air	IA-4 TAVERN 1ST FLOOR
J25683-5	03/21/06	11:53 RI	03/23/06	AIR	Air	IA-5 FLAMINGO BASEMENT
J25683-6	03/21/06	11:55 RI	03/23/06	AIR	Air	IA-6 VACANT BASEMENT
J25683-7	03/21/06	11:57 RI	03/23/06	AIR	Air	IA-7 HAIR SALON BASEMENT
J25683-8	03/21/06	11:47 RI	03/23/06	AIR	Air	IA-8 TAVERN BASEMENT
J25683-9	03/21/06	11:40 RI	03/23/06	AIR	Air	EA-1 EXTERIOR (NE CORNER)
J25683-10	03/21/06	11:11 RI	03/23/06	AIR	Air	SS-1 FLAMINGO SUB SLAB
J25683-11	03/21/06	11:07 RI	03/23/06	AIR	Air -	SS-2 VACANT SUB SLAB
J25683-12	03/21/06	11:21 RI	03/23/06	AIR	Air	SS-3 HAIR SALON SUB SLAB
J25683-13	03/21/06	10:59 RI	03/23/06	AIR	Air	SS-4 TAVERN SUB SLAB

CASE NARRATIVE / CONFORMANCE SUMMARY

Client:

C. A. Rich Consultants

Job No

J25683

Site:

Flamingo, 149 North Avenue, New Rochelle, NY

Report Date

4/17/2006 10:55:08 AM

13 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 03/21/2006 and were received at Accutest on 03/23/2006 properly preserved and intact. These Samples received an Accutest job number of J25683. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method TO-15

Matrix AIR

Batch ID: V2W322

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J26911-1DUP were used as the QC samples indicated.
- RPD(s) for Duplicate for Trichlorofluoromethane are outside control limits for sample J26911-1DUP.

Matrix AIR

Batch ID: V2W323

- All samples were analyzed within the recommended method holding time.
- Sample(s) J25683-5DUP were used as the QC samples indicated.
- All method blanks for this batch meet method specific criteria.
- RPD(s) for Duplicate for Tetrachloroethylene are outside control limits for sample J25683-5DUP.

Matrix AIR

Batch ID: V2W324

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J25683-10DUP were used as the QC samples indicated.
- Sample(s) J25683-6, J25683-7, J25683-8 have compounds reported with "E" qualifiers indicating estimated value exceeding calibration range.

Matrix AIR

Batch ID: VW360

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J26397-1DUP were used as the QC samples indicated.
- Sample(s) J25683-2 have compounds reported with "E" qualifiers indicating estimated value exceeding calibration range.
- Blank Spike Recovery(s) for 1,2,4-Trichlorobenzene are outside control limits.
- VW360-BS for 1,2,4-Trichlorobenzene: High percent recoveries and no associated positive found in the QC batch.

Matrix AIR

Batch ID: VW361

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) ,125683-3DUP were used as the QC samples indicated.
- Sample(s) J25683-4 have compounds reported with "E" qualifiers indicating estimated value exceeding calibration range.
- RPD(s) for Duplicate for Hexane, Isopropyl Alcohol are outside control limits for sample J25683-3DUP.

Matrix AIR

Batch ID: VW364

Page 1 of 2

Volatiles by GCMS By Method TO-15

Matrix AIR

Batch ID: VW364

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) J27065-2DUP were used as the QC samples indicated.

The Accutest Laboratories of New Jersey certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NJ, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(.25683).

Sample	Results		
Report o	f Analysis		

Report of Analysis

By

WG

WG

Result

ND

ND

ND

ND

ND

ND

ND

0.64

ND

ND

ND

ND

ND

ND

ND

ND

ND.

0.67

ND

ND

ND

ND

ND

0.73

ND.

ND

0.097

Page 1 of 3

Client Sample ID: IA-1 FLAMINGO 1ST FLOOR

Lab Sample ID:

J25683-1

DF

1

10

Compound

AIR - Air

Summa ID: A462

Date Sampled:

03/21/06

Prep Date

n/a

n/a

RL

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

ppbv

ppbv

ppbv

ppby

ppby

ppby

ppbv

ppbv

ppbv

ppbv

ppbv

ppby

ppbv

ppbv

ppby

ppbv

ppby

ppbv

ppbv

ppby

ppby

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

J

Date Received: 03/23/06

Percent Solids: n/a

Units Q Result

19

ND

0.93

ND

ND

ND

ND

ND

ND

ND

ND

ND.

1.3

ND.

ND

0.61

ND

ND

ND

ND

ND

ND.

ND

3.3

ND

ND

ND

ND

ND.

4.4

ND

ND

Method: Project:

Run #1

Run #2

Run #2

CAS No.

67-66-3

Matrix:

TO-15

Flamingo, 149 North Avenue, New Rochelle, NY

Analyzed

04/06/06

04/06/06

Prep Batch Analytical Batch VW360 n/a

RL

0.48

0.44

0.64

1.3

2.1

0.78

0.87

1.0

0.62

0.92

0.53

0.98

0.41

0.63

1.0

1.3

0.69

0.81

0.79

1.5

0.81

0.92

0.72

0.99

1.7

0.79

0.79

0.91

1.2

1.2

1.2

0.91

Units

ug/m3

VW361 n/a

Initial Volume

Run #1 400 ml

400 ml

MW

File ID

W08354.D

W08366.D

0.20 ppby 7.8 67-64-1 58.08 Acetone ND 0.20ppbv 106-99-0 54.09 1.3-Butadiene 0.20 ppbv 0.2978.11 Benzene 71-43-2 0.20 ppbv ND 163.8 Bromodichloromethane 75-27-4 0.20ppbv Bromoform ND.

252.8 75-25-2 94.94 **Bromomethane** 74-83-9 Bromoethene 593-60-2 106.9 126

Benzyl Chloride 100-44-7 76.14 Carbon disulfide 75-15-0 Chlorobenzene 108-90-7 112.6 75-00-3 64.52 Chloroethane

119.4

Chloromethane 50.49 74-87-3 3-Chloropropene 107-05-1 76.53 2-Chlorotoluene 95-49-8 126.6 153.8 Carbon tetrachloride 56-23-5 Cyclohexane 84.16 110-82-7

Chloroform

1,1-Dichloroethane 98.96 75-34-3 1,1-Dichloroethylene 96.94 75-35-4 1,2-Dibromoethane 106-93-4 187.9 1,2-Dichloroethane 107-06-2 98.96

1,2-Dichloropropane 78-87-5 113 1.4-Dioxane 123-91-1 88 Dichlorodifluoromethane 120.9 75-71-8

208.3 Dibromochloromethane 124-48-1 trans-1,2-Dichloroethylene 96.94 156-60-5 96.94 cis-1,2-Dichloroethylene 156-59-2 111 cis-1,3-Dichloropropene

10061-01-5 147 m-Dichlorobenzene 541-73-1 o-Dichlorobenzene 147 95-50-1 p-Dichlorobenzene 106-46-7 147 trans-1,3-Dichloropropene 10061-02-6 111

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

I = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: IA-1 FLAMINGO 1ST FLOOR

Lab Sample ID:

Matrix:

J25683-1 AIR - Air

Summa ID: A462

Date Sampled: 03/21/06

Date Received: 03/23/06

Percent Solids: n/a

TO-15 Method: Flamingo, 149 North Avenue, New Rochelle, NY Project:

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
P4 17 5	40	- Ethanol	57.2 a	5.0	ppbv	108 a	9.4	ug/m3
64-17-5	46 106.2	Ethylbenzene	0.11	0.20	ppbv J	0.48	0.87	ug/m3
100-41-4		•	0.43	0.20	ppbv	1.5	0.72	ug/m3
141-78-6	88	Ethyl Acetate	0.43	0.20	ppbv	1.1	0.98	ug/m3
622-96-8	120.2	4-Ethyltoluene Freon 113	ND	0.20	ppbv	ND	1.5	ug/m3
76-13-1	187.4 170.9	Freon 114	ND	0.20	ppbv	ND	1.4	ug/m3
76-14-2	100.2	Heptane	0.31	0.20	ppbv	1.3	0.82	ug/m3
142-82-5	260.8	Hexachlorobutadiene	ND	0.20	ppbv	ND	2.1	ug/m3
87-68-3	200.6 86.17	Hexane	0.45	0.20	ppbv	1.6	0.70	ug/m3
110-54-3			ND	0.20	ppbv	ND	0.82	ug/m3
591-78-6	100	2-Hexanone	1.6	0.20	ppbv	3.9	0.49	ug/m3
67-63-0	60	Isopropyl Alcohol Methylene chloride	0.41	0.20	ppbv	1.4	0.69	ug/m3
75-09-2	84.94		ND	0.20	ppbv	ND	0.59	ug/m3
78-93-3	72.11	Methyl ethyl ketone Methyl Isobutyl Ketone	ND	0.20	ppbv	ND	0.82	ug/m3
108-10-1	100.2	Methyl Tert Butyl Ether	ND	0.20	ppbv	ND	0.72	ug/m3
1634-04-4	88.15 42		ND	0.50	ppbv	ND	0.86	ug/m3
115-07-1		Propylene	ND	0.30	ppbv	ND	0.85	ug/m3
100-42-5	104.1 133.4	Styrene 1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1,1	ug/m3
71-55-6	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3
79-34-5		1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3
79-00-5	133.4 181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv	ND	1.5	ug/m3
120-82-1	120.2	1,2,4-Trimethylbenzene	0.80	0.20	ppbv	3.9	0.98	ug/m3
95-63-6	120.2	1,3,5-Trimethylbenzene	0.25	0.20	ppbv	1.2	0.98	ug/m3
108-67-8	114.2	2,2,4-Trimethylpentane	ND	0.20	ppbv	ND	0.93	ug/m3
540-84-1	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv	ND	0.61	ug/m3
75-65-0	165.8	Tetrachloroethylene	108 a	2.0	ppbv	732 a	14	ug/m3
127-18-4		Tetrahydrofuran	ND	0.20	ppbv	ND	0.59	ug/m3
109-99-9	72 92.14	Toluene	0.74	0.20	ppbv	2.8	0.75	ug/m3
108-88-3	131.4	Trichloroethylene	1,5	0.20	ppbv	8.1	1.1	ug/m3
79-01-6	137.4	Trichlorofluoromethane	0.39	0.20	ppbv	2.2	1.1	ug/m3
75-69-4	62.5	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3
75-01-4		Vinyl Acetate	ND	0.20	ppbv	ND	0.70	ug/m3
108-05-4	86 106.2		0.48	0.20	ppbv	2.1	0.87	ug/m3
05 48 C	106.2	m,p-Xylene	0.36	0.20	ppbv	1.6	0.87	ug/m3
95-47-6		o-Xylene	0.30	0.20	ppbv	3.6	0.87	ug/m3
1330-20-7	106.2	Xylenes (total)		. " "		0.0 (), (),	0.01	46,1110
CAS No.	Surro	gate Recoveries Run#	1 Run#	2 Li	mits			
460-00-4	4-Bro	mofluorobenzene 115%	103%	78	-124%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: IA-1 FLAMINGO 1ST FLOOR

Lab Sample ID:

Matrix:

Method:

Project:

J25683-1

AIR - Air TO-15

Summa ID: A462

Date Sampled:

03/21/06 03/23/06

Date Received:

Percent Solids: n/a

Flamingo, 149 North Avenue, New Rochelle, NY

Compound MW CAS No.

Result

RL

Units Q Result

RL

Units

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 1 of 2

Client Sample ID: IA-2 VACANT 1ST FLOOR

Lab Sample ID: Matrix:

J25683-2

AIR - Air

Summa ID: A285

Date Sampled: 03/21/06

Date Received: 03/23/06

Percent Solids: n/a

Method: Project:

TO-15 Flamingo, 149 North Avenue, New Rochelle, NY

L								·····
	Run #1	File ID W08355.D	DF 1	Analyzed 04/06/06	By WG	Prep Date n/a	Prep Batch n/a	Analytical Batch VW360

Run #2

Run #1 Run #2	Initial Volume 400 ml					
CAS No.	MW Compound	Result	RL	Units Q Result	RL	Units

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	8.6	0.20	ppbv	20	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv	ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.23	0.20	ppbv	0.73	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv	ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv	ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv	ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv	ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv	ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv	ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv	ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	ppbv	ND	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.50	0.20	ppbv	1.0	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv	ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv	ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	ppbv	ND	1.3	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	ppbv	ND	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv	ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv	ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv	ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.48	0.20	ppbv	2.4	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv	ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv	ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	ppbv	ND	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID:	IA-2 VACANT 1ST FLOOR

TO-15

Lab Sample ID: Matrix:

J25683-2 AIR - Air

Summa ID: A285

Date Sampled: 03/21/06 Date Received: 03/23/06

Percent Solids: n/a

Method: Flamingo, 149 North Avenue, New Rochelle, NY Project:

CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
64-17-5	46	Ethanol	128	0.50	ppbv	E	241	0.94	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	ppbv		ND	0.87	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	ppbv		ND	0.72	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.20	ppbv		ND	0.98	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	ppbv		ND	1.5	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	ppbv		ND	1.4	ug/m3
142-82-5	100.2	Heptane	0.12	0.20	ppbv	J	0.49	0.82	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	ppbv		ND	2.1	ug/m3
110-54-3	86.17	Hexane	0.23	0.20	ppbv		0.81	0.70	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	ppbv		ND	0.82	ug/m3
67-63-0	60	Isopropyl Alcohol	1.1	0.20	ppbv		2.7	0.49	ug/m3
75-09-2	84.94	Methylene chloride	0.17	0.20	ppbv	J	0.59	0.69	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	ppbv		ND	0.59	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv		ND	0.82	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv		ND	0.72	ug/m3
115-07-1	42	Propylene	ND	0.50	ppbv		ND	0.86	ug/m3
100-42-5	104.1	Styrene	ND	0.20	ppbv		ND	0.85	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv		ND	1.4	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv		ND	1.5	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	0.18	0.20	ppbv	J	0.88	0.98	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.20	ppbv		ND	0.98	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.087	0.20	ppbv	J	0.41	0.93	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv		ND	0.61	ug/m3
127-18-4	165.8	Tetrachloroethylene	17.6	0.20	ppbv		119	1.4	ug/m3
109-99-9	72	Tetrahydrofuran	ND	0.20	ppbv		ND	0.59	ug/m3
108-88-3	92.14	Toluene	0.49	0.20	ppbv		1.8	0.75	ug/m3
79-01-6	131.4	Trichloroethylene	0.16	0.20	ppbv	J	0.86	1.1	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.29	0.20	ppbv		1.6	1.1	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv		ND	0.51	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	ppbv		ND	0.70	ug/m3
	106.2	m,p-Xylene	0.22	0.20	ppbv		0.96	0.87	ug/m3
95-47-6	106.2	o-Xylene	0.10	0.20	ppbv	J	0.43	0.87	ug/m3
1330-20-7	106.2	Xylenes (total)	0.33	0.20	ppbv		1.4	0.87	ug/m3

111%

ND = Not detected

460-00-4

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

78-124%

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: IA-3 HAIR SALON 1ST FLOOR

Lab Sample ID: Matrix:

Method:

J25683-3

AIR - Air TO-15

Initial Volume

Summa ID: A171

Date Sampled: 03/21/06

Date Received: 03/23/06

Percent Solids: n/a

Flamingo, 149 North Avenue, New Rochelle, NY Project:

Run #1 Run #2	File ID W08356.D W08364.D	DF 1 4	Analyzed 04/06/06 04/06/06	By WG WG	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch VW360 VW361
------------------	---------------------------------	--------------	----------------------------------	----------------	-------------------------	--------------------------	------------------------------------

	olume							
400 ml								
MW	Compound	Result	RL	Units	Q	Result	RL	Units
58.08	Acetone	50.7 a	0.80	ppbv		120 a	1.9	ug/m3
	1.3-Butadiene	ND	0.20	ppbv				ug/m3
	Benzene	0.23	0.20	ppbv		3 (3) (3) (4) (4) (4) (4)		ug/m3
	Bromodichloromethane	ND	0.20	ppbv				ug/m3
	Bromoform	ND	0.20	ppbv				ug/m3
	Bromomethane	ND	0.20	ppbv		and the second of the second o		ug/m3
		ND	0.20	ppbv				ug/m3
		ND	0.20	ppbv				ug/m3
	Carbon disulfide	ND	0.20	ppbv				ug/m3
	Chlorobenzene	ND	0.20	ppbv				ug/m3
	Chloroethane	ND	0.20	ppbv		ND		ug/m3
	Chloroform	0.13	0.20	ppbv	J	0.63		ug/m3
	Chloromethane	0.53	0.20	ppbv				ug/m3
		ND	0.20	ppbv				ug/m3
		ND	0.20	ppbv				ug/m3
	Carbon tetrachloride	ND	0.20	ppbv				ug/m3
	Cyclohexane	ND	0.20	ppbv		Annah a a file a		ug/m3
		ND	0.20	ppbv			0.81	ug/m3
		ND	0.20	ppbv				ug/m3
		ND	0.20	ppbv				ug/m3
		ND	0.20	ppbv		and the second of the second of		ug/m3
	1,2-Dichloropropane	ND	0.20	ppbv				ug/m3
	1,4-Dioxane	ND	0.20	ppbv		the second of th		ug/m3
	Dichlorodifluoromethane	0.58	0.20	ppbv				ug/m3
	Dibromochloromethane	ND	0.20	ppbv		the state of the state of		ug/m3
	trans-1,2-Dichloroethylene	ND	0.20	ppbv		ND		ug/m3
	cis-1,2-Dichloroethylene	ND	0.20	ppbv				ug/m3
	cis-1,3-Dichloropropene	ND	0.20	ppbv		ND		ug/m3
147	m-Dichlorobenzene	ND	0.20	ppbv				ug/m3
147	o-Dichlorobenzene	ND	0.20	ppbv				ug/m3
147	p-Dichlorobenzene	ND	0.20	ppbv				ug/m3
111	trans-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
	58.08 54.09 78.11 163.8 252.8 94.94 106.9 126 76.14 112.6 64.52 119.4 50.49 76.53 126.6 153.8 84.16 98.96 96.94 187.9 98.96 113 88 120.9 208.3 96.94 96.94 111 147 147 147	MW Compound 58.08 Acetone 54.09 1,3-Butadiene 78.11 Benzene 163.8 Bromodichloromethane 252.8 Bromoform 94.94 Bromomethane 106.9 Bromoethene 126 Benzyl Chloride 76.14 Carbon disulfide 112.6 Chlorobenzene 64.52 Chloroethane 119.4 Chloroform 50.49 Chloromethane 76.53 3-Chloropropene 126.6 2-Chlorotoluene 153.8 Carbon tetrachloride 84.16 Cyclohexane 98.96 1,1-Dichloroethane 96.94 1,1-Dichloroethylene 187.9 1,2-Dibromoethane 98.96 1,2-Dichloropropane 113 1,2-Dichloropropane 120.9 Dichlorodifluoromethane 109.94 trans-1,2-Dichloroethylene 208.3 Dibromochloromethane 96.94 cis-1,2-Dichloroethylene 111 cis-1,3-Dichloropropene 147 m-Dichlorobenzene 147 o-Dichlorobenzene 147 p-Dichlorobenzene	MW Compound Result 58.08 Acetone 50.7 a 54.09 1,3-Butadiene ND 78.11 Benzene 0.23 163.8 Bromodichloromethane ND 252.8 Bromodichloromethane ND 94.94 Bromoethene ND 106.9 Bromoethene ND 126 Benzyl Chloride ND 76.14 Carbon disulfide ND 112.6 Chlorobenzene ND 64.52 Chlorobenzene ND 64.52 Chlorobenzene ND 119.4 Chloroform 0.13 50.49 Chloroothane ND 126.6 2-Chlorothane ND 126.6 2-Chlorotoluene ND 153.8 Carbon tetrachloride ND 84.16 Cyclohexane ND 98.96 1,1-Dichloroethylene ND 187.9 1,2-Dichloroethylene ND 187.9 1,2-Dichloropropene	MW Compound Result RL 58.08 Acetone 50.7 a 0.80 54.09 1,3-Butadiene ND 0.20 78.11 Benzene 0.23 0.20 163.8 Bromodichloromethane ND 0.20 252.8 Bromoform ND 0.20 94.94 Bromoethane ND 0.20 106.9 Bromoethene ND 0.20 106.9 Bromoethane ND 0.20 106.9 Bromoethane ND 0.20 106.9 Bromoethane ND 0.20 106.9 Bromoethane ND 0.20 126 Benzyl Chloride ND 0.20 126 Benzyl Chloride ND 0.20 126 Chlorobenzene ND 0.20 14,52 Chlorobenzene ND 0.20 119.4 Chloroform 0.13 0.20 119.4 Chloroform 0.13 0.20	MW Compound Result RL Units	MW Compound Result RL Units Q	MW Compound Result RL Units Q Result	MW Compound Result RL Units Q Result RL

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sam	ple ID:	IA-3 HAIR SALON 1ST F	LOOR					
Lab Sampl	-	J25683-3		Date Sampled: 03/21/06				
Matrix:		AIR - Air Summa ID:	R - Air Summa ID: A171		Received:	03/23/06		
Method:		TO-15		Perc	Percent Solids: n/a			
Project:		Flamingo, 149 North Aven	ue, New Rochel	lle, NY				
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	62.4 a	2.0	ppbv	117 a	3.8	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	ppbv	ND	0.87	ug/m3
141-78-6	88	Ethyl Acetate	0.56	0.20	ppbv	2.0	0.72	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.20	ppbv	ND	0.98	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	ppbv	ND	1.5	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	ppbv	ND	1.4	ug/m3
142-82-5	100.2	Heptane	0.20	0.20	ppbv	0.82	0.82	ug/m3
07 00 0	200.0	TT-wooklonohutodiono	NID	0.20	nnhw	ND	2.1	11cr/m3

100-41-4	100.2	Etnytoenzene	ND	0.20	իիու	110	0.01	ug/IIIO	
141-78-6	88	Ethyl Acetate	0.56	0.20	ppbv	2.0	0.72	ug/m3	
622-96-8	120.2	4-Ethyltoluene	ND	0.20	ppbv	ND	0.98	ug/m3	
76-13-1	187.4	Freon 113	ND	0.20	ppbv	ND	1.5	ug/m3	
76-14-2	170.9	Freon 114	ND	0.20	ppbv	ND	1.4	ug/m3	
142-82-5	100.2	Heptane	0.20	0.20	ppbv	0.82	0.82	ug/m3	
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	ppbv	ND	2.1	ug/m3	
110-54-3	86.17	Hexane	0.40	0.20	ppbv	1.4	0.70	ug/m3	
591-78-6	100	2-Hexanone	ND	0.20	ppbv	ND	0.82	ug/m3	
67-63-0	60	Isopropyl Alcohol	2.1	0.20	ppbv	5.2	0.49	ug/m3	
75-09-2	84.94	Methylene chloride	0.19	0.20	ppbv J	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.69	ug/m3	
78-93-3	72.11	Methyl ethyl ketone	0.59	0.20	ppbv	1.7	0.59	ug/m3	
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv	ND	0.82	ug/m3	
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv	ND	0.72	ug/m3	
115-07-1	42	Propylene	ND	0.50	ppbv	ND	0.86	ug/m3	
100-42-5	104.1	Styrene	ND	0.20	ppbv	ND	0.85	ug/m3	
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3	
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv	ND	1.4	ug/m3	
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv	ND	1.1	ug/m3	
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv	ND	1.5	ug/m3	
95-63-6	120.2	1,2,4-Trimethylbenzene	0.17	0.20	ppbv J		0.98	ug/m3	
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.20	ppbv	ND	0.98	ug/m3	
540-84-1	114.2	2,2,4-Trimethylpentane	0.22	0.20	ppbv	1.0	0.93	ug/m3	
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv	ND	0.61	ug/m3	
127-18-4	165.8	Tetrachloroethylene	13.7	0.20	ppbv	92.9	1.4	ug/m3	
109-99-9	72	Tetrahydrofuran	ND	0.20	ppbv	ND	0.59	ug/m3	
108-88-3	92.14	Toluene	0.68	0.20	ppbv	2.6	0.75	ug/m3	
79-01-6	131.4	Trichloroethylene	ND	0.20	ppbv	ND	1.1	ug/m3	
75-69-4	137.4	Trichlorofluoromethane	0.29	0.20	ppbv	1.6	1.1	ug/m3	
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv	ND	0.51	ug/m3	
108-05-4	86	Vinyl Acetate	ND	0.20	ppbv	ND	0.70	ug/m3	
	106.2	m,p-Xylene	0.23	0.20	ppbv	1.0	0.87	ug/m3	
95-47-6	106.2	o-Xylene	0.12	0.20	ppbv	the contract of the contract o	0.87	ug/m3	
1330-20-7	106.2	Xylenes (total)	0.35	0.20	ppbv	1.5	0.87	ug/m3	
		• •							

CAS No. Surrogate Recoveries

Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene

111% 99% 78-124%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: IA-3 HAIR SALON 1ST FLOOR

Compound

Lab Sample ID:

J25683-3

Date Sampled: 03/21/06

Matrix:

AIR - Air TO-15

Date Received: 03/23/06 Percent Solids: n/a

Method: Project:

CAS No.

Summa ID: A171 Flamingo, 149 North Avenue, New Rochelle, NY

Result

RL

Units Q Result

RL

Units

(a) Result is from Run# 2

MW

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report	of	Anal	lysis
--------	----	------	-------

Client Sample ID: IA-4 TAVERN 1ST FLOOR

Lab Sample ID:

J25683-4

Date Sampled: 03/21/06

Matrix:

AIR - Air

Date Received: 03/23/06

Method:

TO-15

Initial Volume

400 ml

Percent Solids: n/a

Project:

Run #1

Flamingo, 149 North Avenue, New Rochelle, NY

Summa ID: A266

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 W08367.D 1 04/06/06 WG n/a n/a VW361		 					
	Run #1 Run #2	DF 1	•	-	,	, -	•

Run #2	100 1112								
CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
67-64-1	58.08	Acetone	0.93	0.20	ppbv		2.2	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv		ND	0.44	ug/m3
71-43-2	78.11	Benzene	ND	0.20	ppby		ND	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv		ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv		ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv		ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv		ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv		ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv		ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv		ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv		ND	0.53	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	ppbv		ND	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.14	0.20	ppbv	J	0.29	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv		ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv		ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	ppbv		ND	1.3	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	ppbv		ND	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv		ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv		ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv		ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.083	0.20	ppbv	J	0.41	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv		ND	1.7	ug/m3
- 156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
10061-02-6		trans-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
		= •							

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

i e	
Client Sample ID:	IA-4 TAVERN 1ST FLOOR

Lab Sample ID: J25683-4

Matrix: AIR - Air Method: TO-15

Summa ID: A266

Date Sampled: 03/21/06 Date Received: 03/23/06

Percent Solids: n/a

Project:	Flamingo,	149	North	Avenue.	New	Rochelle.	. NY

CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
64-17-5	46	Ethanol	63.2	0.50	ppbv	E	119	0.94	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	ppbv		ND	0.87	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	ppbv		ND	0.72	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	0.20	ppbv		ND	0.98	ug/m3
76-13-1	187.4	Freon 113	ND	0.20	ppbv		ND	1.5	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	ppbv		ND	1.4	ug/m3
142-82-5	100.2	Heptane	ND	0.20	ppbv		ND	0.82	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	ppbv		ND	2.1	ug/m3
110-54-3	86.17	Hexane	ND	0.20	ppbv		ND	0.70	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	ppbv		ND	0.82	ug/m3
67-63-0	60	Isopropyl Alcohol	0.60	0.20	ppbv		1.5	0.49	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.20	ppbv		ND	0.69	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	ppbv		ND	0.59	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv		ND	0.82	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv		ND	0.72	ug/m3
115-07-1	42	Propylene	ND	0.50	ppbv		ND	0.86	ug/m3
100-42-5	104.1	Styrene	ND	0.20	ppbv		ND	0.85	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv		ND	1.4	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv		ND	1.5	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	0.20	ppbv		ND	0.98	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	0.20	ppbv		ND	0.98	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	ppbv		ND	0.93	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv		ND	0.61	ug/m3
127-18-4	165.8	Tetrachloroethylene	1.1	0.20	ppbv		7.5	1.4	ug/m3
109-99-9	72	Tetrahydrofuran	ND	0.20	ppbv		ND	0.59	ug/m3
108-88-3	92.14	Toluene	0.087	0.20	ppbv	J	0.33	0.75	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.20	ppbv		ND	1.1	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.20	ppbv		ND	1.1	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv		ND	0.51	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	ppbv		ND	0.70	ug/m3
	106.2	m,p-Xylene	ND	0.20	ppbv		ND	0.87	ug/m3
95-47-6	- 106.2	o-Xylene	ND	0.20	ppby		ND	0.87	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	0.20	ppbv		ND	0.87	ug/m3
CAS No.	Surrog	gate Recoveries Run#	1 Run#	2 Lit	nits				

102%

Report of Analysis

ND = Not detected

460-00-4

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

78-124%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: IA-5 FLAMINGO BASEMENT

Lab Sample ID:

Project:

J25683-5

AIR - Air

Initial Volume

Summa ID: A280

Date Sampled: 03/21/06

Date Received: 03/23/06

Matrix: TO-15 Method:

Percent Solids: n/a

Flamingo, 149 North Avenue, New Rochelle, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2W7400.D	1	04/06/06	WG	n/a	n/a	V2W322
Run #2	2W7412.D	10	04/07/06	WG	n/a	n/a	V2W323

Run #1	400 ml								
Run #2	400 ml								
CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
67-64-1	58.08	Acetone	6.2	0.20	ppbv		15	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv		ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.51	0.20	ppbv		1.6	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv		ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv		ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv		ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv		ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv		ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv		ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv		ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv		ND	0.53	ug/m3
67-66-3	119.4	Chloroform	0.13	0.20	ppbv	J	0.63	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.39	0.20	ppbv		0.81	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv		ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv		ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.083	0.20	ppbv	J	0.52	1.3	ug/m3
110-82-7	84.16	Cyclohexane	0.85	0.20	ppbv		2.9	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv		ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv		ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv		ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.56	0.20	ppbv		2.8	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv		ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	0.18	0.20	ppbv	J	0.71	0.79	ug/m3
10061-01-5		cis-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	1.7	0.20	ppbv		10	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
10061-02-6		trans-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:

Lab Sample ID:

Report of Analysis

Date Sampled:

03/21/06

IA-5 FLAMINGO BASEMENT

1,3,5-Trimethylbenzene

2,2,4-Trimethylpentane

Tertiary Butyl Alcohol

Trichlorofluoromethane

Tetrachloroethylene

Tetrahydrofuran

Trichloroethylene

Vinyl chloride

Vinyl Acetate

Xylenes (total)

m,p-Xylene

o-Xylene

Toluene

J25683-5

Page 2 of 3

ug/m3

0.98

0.93

0.61

0.59

0.75

1.1

1.1

0.51

0.70

0.87

0.87

0.87

14

03/23/06 AIR - Air Summa ID: A280 Date Received: Matrix: Percent Solids: n/a TO-15 Method: Flamingo, 149 North Avenue, New Rochelle, NY Project: RL Units Result RL Units Q Result MW Compound CAS No. 107 a 9.4 ug/m3 57.1 a 5.0 ppby 46 Ethanol 64-17-5 ug/m3 106.2 0.42 0.20 ppby 1.8 0.87 Ethylbenzene 100-41-4 ug/m3 ND. 0.20 ppby ND 0.72Ethyl Acetate 141-78-6 88 ppbv 0.98 ug/m3 0.20 4.4 0.89120.2 4-Ethyltoluene 622-96-8 ug/m3 ppby J 0.841.5 0.11 0.20187.4 Freon 113 76-13-1 ug/m3 0.20pppy ND 1.4 ND 170.9 Freon 114 76-14-2 ug/m3 0.20 ppby 5.3 0.82 1.3 100.2 Heptane 142-82-5 ug/m3 ND 2.1 0.20ppbv 260.8 Hexachlorobutadiene ND 87-68-3 ug/m3 0.70 1.7 0.20 ppbv 6.0 110-54-3 Hexane 86.17 ND 0.82 ug/m3 ND 0.20ppbv 2-Hexanone 591-78-6 100 4.2 0.49ug/m3 0.20ppby Isopropyl Alcohol 1.7 67-63-0 60 3.8 0.69ug/m3 1.1 0.20ppby Methylene chloride 84.94 75-09-2 ug/m3 ppbv ND 0.59ND 0.20Methyl ethyl ketone 78-93-3 72.11 0.20 ND 0.82 ug/m3 ND ppby Methyl Isobutyl Ketone 100.2 108-10-1 J 0.65 0.72 ug/m3 0.20 ppby Methyl Tert Butyl Ether 0.1888.15 1634-04-4 0.86ug/m3 0.50ppby ND Propylene ND 115-07-1 42 ND 0.85ug/m3 0.20 ppby ND 100-42-5 104.1 Styrene ND 1.1 ug/m3 0.20 ppby 1.1.1-Trichloroethane ND 71-55-6 133.4 1.4 ug/m3 ND. ND 0.20ppbv 1,1,2,2-Tetrachloroethane 79-34-5 167.9 ug/m3 ND 1.1 ND 0.20ppby 1,1,2-Trichloroethane 79-00-5 133.4 ug/m3 0.20 ppby ND 1.5 ND 120-82-1 181.5 1,2,4-Trichlorobenzene ug/m3 0.98 15 ppbv 1,2,4-Trimethylbenzene 3.0 0.2095-63-6 120.2

0.97

0.33

ND

ND

1.4

0.51

0.26

ND

ND

1.8

1.5

3.2

153 a

CAS No. Surrogate Recoveries

120.2

114.2

74.12

165.8

92.14

131.4

137.4

62.5

106.2

106.2

106.2

86

72

Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene

108% 93% 78-124%

0.20

0.20

0.20

2.0

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

ppby

ppby

ppbv

ppby

ppbv

ppby

ppbv

ppbv

ppbv

ppbv

ppby

ppbv

ppbv

ND = Not detected

108-67-8

540-84-1

75-65-0

127-18-4

109-99-9

108-88-3

79-01-6

75-69-4

75-01-4

108-05-4

95-47-6

1330-20-7

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

4.8

1.5

ND

ND

5.3

2.7

1.5

ND

ND

7.8

6.5

14

1040 a

Ċ

Client Sample ID: IA-5 FLAMINGO BASEMENT

Lab Sample ID:

J25683-5

Date Sampled: 03/21/06

Matrix: Method: AIR - Air TO-15

Summa ID: A280

Date Received: 03/23/06 Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

CAS No. MWCompound Result

RL

Units Q Result

RL

Units

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 2

Client Sample ID: IA-6 VACANT BASEMENT

Lab Sample ID:

J25683-6 AIR - Air

DF

1

Summa ID: A229

Date Sampled: 03/21/06 Date Received: 03/23/06

Matrix: Method:

TO-15

Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

Analyzed

Prep Batch

Analytical Batch

Run #1 Run #2 2W7438.D

File ID

WG 04/10/06

By

Prep Date n/a

n/a

V2W324

Initial Volume

Run #1 400 ml

Run #2

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	5.1	0.20	ppbv	12	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv	ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.26	0.20	ppbv	0.83	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv	ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv	ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv	ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv	ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv	ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv	ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv	ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	ppbv	ND	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.41	0.20	ppbv	0.85	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv	ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv	ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.083	0.20	ppbv J	0.52	1.3	ug/m3
110-82-7	84.16	Cyclohexane	0.21	0.20	ppbv	0.72	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv	ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv	ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv	ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.52	0.20	ppbv	2.6	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv	ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	_0.20	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv	ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	ppbv	ND.	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 2

Client Sample ID: IA-6 VACANT BASEMENT

J25683-6 Lab Sample ID:

Date Sampled: 03/21/06 Date Received: 03/23/06 Summa ID: A229 Matrix: AIR - Air Percent Solids: n/a

Method: TO-15 Flamingo, 149 North Avenue, New Rochelle, NY Project:

CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
64-17-5	46	Ethanol	51.0	0.50	ppbv	E	96.0	0.94	ug/m3
100-41-4	106.2	Ethylbenzene	0.099	0.20	ppbv	J	0.43	0.87	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	ppbv		ND	0.72	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.094	0.20	ppbv	J	0.46	0.98	ug/m3
76-13-1	187.4	Freon 113	0.24	0.20	ppbv		1.8	1.5	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	ppbv		ND	1.4	ug/m3
142-82-5	100.2	Heptane	0.22	0.20	ppbv		0.90	0.82	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	ppbv		ND	2.1	ug/m3
110-54-3	86.17	Hexane	0.64	0.20	ppbv		2.3	0.70	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	ppbv		ND	0.82	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	0.20	ppbv		ND	0.49	ug/m3
75-09-2	84.94	Methylene chloride	0.47	0.20	ppbv		1.6	0.69	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	ppbv		ND	0.59	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv		ND	0.82	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv		ND	0.72	ug/m3
115-07-1	42	Propylene	ND	0.50	ppbv		ND	0.86	ug/m3
100-42-5	104.1	Styrene	ND	0.20	ppbv		ND	0.85	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv		ND	1.4	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv		ND	1.5	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	0.29	0.20	ppbv		1.4	0.98	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	0.12	0.20	ppbv	J	0.59	0.98	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.39	0.20	ppbv		1.8	0.93	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv		ND	0.61	ug/m3
127-18-4	165.8	Tetrachloroethylene	16.9	0.20	ppbv		115	1.4	ug/m3
109-99-9	72	Tetrahydrofuran	ND	0.20	ppbv		ND	0.59	ug/m3
108-88-3	92.14	Toluene	0.65	0.20	ppbv		2.4	0.75	ug/m3
79-01-6	131.4	Trichloroethylene	0.11	0.20	ppbv	J	0.59	1.1	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.25	0.20	ppbv		1.4	1.1	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv		ND	0.51	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	ppbv		ND	0.70	ug/m3
	106.2	m,p-Xylene	0.32	0.20	ppbv		1.4	0.87	ug/m3
95-47-6	106.2	o-Xylene	0.19	0.20	ppbv	J	0.83	0.87	ug/m3
1330-20-7	106.2	Xylenes (total)	0.50	0.20	ppbv		2.2	0.87	ug/m3
CAS No.	Surro	gate Recoveries Run#	1 Run#	2 Li	mits				
460-00-4	4-Bro	mofluorobenzene 100%	A SAME	78	-124%				

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 1 of 2

Client Sample ID: IA-7 HAIR SALON BASEMENT

Lab Sample ID: J25683-7

AIR - Air Summa ID: A286 Date Received: 03/23/06

Date Sampled: 03/21/06

Matrix: Method:

TO-15

Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

Prep Batch Analytical Batch DF Analyzed Ву Prep Date File ID WG n/a V2W324 2W7439.D 04/10/06 n/a Run #1 1 Run #2

	Initial Volume
Run #1	400 ml

Run #2

CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
67-64-1	58.08	Acetone	13.6	0.20	ppbv		32.3	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv		ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.30	0.20	ppbv		0.96	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv		ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv		ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv		ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv		ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv		ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv		ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv		ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv		ND	0.53	ug/m3
67-66-3	119.4	Chloroform	0.084	0.20	ppbv	J	0.41	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.44	0.20	ppbv		0.91	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv		ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv		ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.080	0.20	ppbv	J	0.50	1.3	ug/m3
110-82-7	84.16	Cyclohexane	0.21	0.20	ppbv		0.72	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv		ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv		ND -	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv		ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv		ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.58	0.20	ppbv		2.9	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv		ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	0.26	0.20	ppbv		1.6	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Page 2 of 2

Client Sample ID: IA-7 HAIR SALON BASEMENT Lab Sample ID:

Matrix: Method: J25683-7 AIR - Air

TO-15

Summa ID: A286

Date Sampled: 03/21/06 Date Received: 03/23/06

Percent Solids: n/a

Flamingo, 149 North Avenue, New Rochelle, NY Project:

CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
64-17-5	46	Ethanol	94.4	0.50	ppbv	E	178	0.94	ug/m3
100-41-4	106.2	Ethylbenzene	0.13	0.20	ppbv	J	0.56	0.87	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	ppbv		ND	0.72	ug/m3
622-96-8	120.2	4-Ethyltoluene	0.10	0.20	ppbv	J	0.49	0.98	ug/m3
76-13-1	187.4	Freon 113	0.089	0.20	ppbv	J	0.68	1.5	ug/m3
76-14-2	170.9	Freon 114	ND	0.20	ppbv		ND	1.4	ug/m3
142-82-5	100.2	Heptane	0.25	0.20	ppbv		1.0	0.82	ug/m3
87-68-3	260.8	Hexachlorobutadiene	0.25	0.20	ppbv		2.7	2.1	ug/m3
110-54-3	86.17	Hexane	0.77	0.20	ppbv		2.7	0.70	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	ppbv		ND	0.82	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	0.20	ppbv		ND	0.49	ug/m3
75-09-2	84.94	Methylene chloride	0.22	0.20	ppbv		0.76	0.69	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	ppbv		ND	0.59	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv		ND	0.82	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv		ND	0.72	ug/m3
115-07-1	42	Propylene	ND	0.50	ppbv		ND	0.86	ug/m3
100-42-5	104.1	Styrene	ND	0.20	ppbv		ND	0.85	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	0.20	0.20	ppbv		1.4	1.4	ug/m3
79-00-5	133.4	1.1.2-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv		ND	1.5	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	0.37	0.20	ppbv		1.8	0.98	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	0.13	0.20	ppbv	J	0.64	0.98	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.53	0.20	ppbv		2.5	0.93	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	ppbv		ND	0.61	ug/m3
127-18-4	165.8	Tetrachloroethylene	20.0	0.20	ppbv		136	1.4	ug/m3
109-99-9	72	Tetrahydrofuran	ND	0.20	ppbv		ND	0.59	ug/m3
108-88-3	92.14	Toluene	0.92	0.20	ppbv		3.5	0.75	ug/m3
79-01-6	131.4	Trichloroethylene	0.20	0.20	ppbv		1.1	1.1	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.26	0.20	ppbv		1.5	1.1	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.20	ppbv		ND	0.51	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	ppbv		ND	0.70	ug/m3
100 00 1	106.2	m,p-Xylene	0.39	0.20	ppbv		1.7	0.87	ug/m3
95-47-6	106.2	o-Xylene	0.21	0.20	ppbv		0.91	0.87	ug/m3
1330-20-7	106.2	Xylenes (total)	0.60	0.20	ppbv		2.6	0.87	ug/m3
CAS No.	Surro	gate Recoveries Run	#1 Run	#2 Li	mits				

101%

ND = Not detected

460-00-4

RL = Reporting Limit

E = Indicates value exceeds calibration range

4-Bromofluorobenzene

J = Indicates an estimated value

78-124%

B = Indicates analyte found in associated method blank

ŴĞ

Client Sample ID: IA-8 TAVERN BASEMENT

Lab Sample ID: Matrix:

J25683-8

AIR - Air

DF

1

Summa ID: A179

Date Sampled:

03/21/06 03/23/06

Percent Solids: n/a

Date Received:

Method: Project:

TO-15

Flamingo, 149 North Avenue, New Rochelle, NY Analyzed

04/10/06

Prep Date Ву

n/a

Prep Batch n/a

Analytical Batch V2W324

Run #1 Run #2

	Initial Volume
Run #1	400 ml

File ID

2W7440.D

#9

Run #2									
CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units
67-64-1	58.08	Acetone	6.6	0.20	ppbv		16	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv		ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.30	0.20	ppbv		0.96	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv		ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv		ND	2.1	ug/m3
74-83-9	94,94	Bromomethane	ND	0.20	ppbv		ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv		ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv		ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv		ND	0.62	ug/m3
108-90-7	112,6	Chlorobenzene	ND	0.20	ppbv		ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv		ND	0.53	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	ppbv		ND	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.42	0.20	ppbv		0.87	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv		ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv		ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.20	ppbv		ND	1.3	ug/m3
110-82-7	84.16	Cyclohexane	0.14	0.20	ppbv	J	0.48	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv		ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv		ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv		ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv		ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.54	0.20	ppbv		2.7	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv		ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv		ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv		ND	1.2	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	ppbv		ND	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID:

IA-8 TAVERN BASEMENT

Report of Analysis

Page 2 of 2

Date Sampled: 03/21/06 Lab Sample ID: J25683-8 03/23/06 Date Received: AIR - Air Summa ID: A179 Matrix: Percent Solids: n/a TO-15 Method: Flamingo, 149 North Avenue, New Rochelle, NY Project: RL Units Units Q Result Result RLMW Compound CAS No. 0.94 ug/m3 E 303 161 0.50 ppbv 46 Ethanol 64-17-5 ug/m3 J 0.41 0.87 0.0950.20ppbv 106.2 Ethylbenzene 100-41-4 ug/m3 ppbv 0.72 ND 0.20 ND Ethyl Acetate 141-78-6 88 ppbv 0.98 ug/m3 0.20 ND 4-Ethyltoluene ND 120.2 622-96-8 ug/m3 1.5 0.20ppbv J 0.67 0.088187.4 Freon 113 76-13-1 ug/m3 ND 0.20 ppby ND 1.4 170.9 Freon 114 76-14-2 ug/m3 0.20ppbv J 0.700.820.17100.2 Heptane 142-82-5 ug/m3 0.20 ppbv ND 2.1 ND. 260.8 Hexachlorobutadiene 87-68-3 0.70 ug/m3 1.3 0.370.20ppbv Hexane 110-54-3 86.17 ug/m3 ND 0.82 ND 0.20ppby 2-Hexanone 591-78-6 100 ND. 0.49ug/m3 ND 0.20ppbv Isopropyl Alcohol 67-63-0 60 ug/m3 ppbv J 0.630.69 0.18 0.2084.94 Methylene chloride 75-09-2 0.20 ppbv ND 0.59ug/m3 ND Methyl ethyl ketone 72.11 78-93-3 ND 0.20 ppbv ND 0.82ug/m3 Methyl Isobutyl Ketone 100.2 108-10-1 ND 0.72 ug/m3 0.20 ppbv Methyl Tert Butyl Ether ND 88.15 1634-04-4 ND 0.86 ug/m3 ND 0.50ppbv Propylene 115-07-1 42 ND 0.85 ug/m3 ND 0.20 ppby Styrene 100-42-5 104.1 ppbv ND 1.1 ug/m3 0.20 1.1.1-Trichloroethane ND 71-55-6 133.4 ND 1.4 ug/m3 0.20 ND ppbv 1,1,2,2-Tetrachloroethane 79-34-5 167.9 1.1 ug/m3 0.20 ppby ND ND 1.1.2-Trichloroethane 79-00-5 133.4 ND 1.5 ug/m3 0.20 ppby ND 120-82-1 181.5 1,2,4-Trichlorobenzene 1.1 0.98 ug/m3 ppbv 0.20 1,2,4-Trimethylbenzene 0.22 95-63-6 120.2 0.98ug/m3 ND ND 0.20 ppbv 1,3,5-Trimethylbenzene 108-67-8 120.2 ug/m3 0.79 0.930.20 ppbv J 0.17 540-84-1 114.2 2,2,4-Trimethylpentane 0.61 ug/m3 ppbv ND 0.20 Tertiary Butyl Alcohol ND 75-65-0 74.12 ug/m3 86.8 1.4 Tetrachloroethylene 12.8 0.20ppbv 127-18-4 165.8 0.59ug/m3 ND Tetrahydrofuran ND. 0.20ppbv 109-99-9 72

CAS No. Surrogate Recoveries

92.14

131.4

137.4

62.5

106.2

106.2

106.2

86

Toluene

Trichloroethylene

Vinyl chloride

Vinyl Acetate

Xylenes (total)

m,p-Xylene

o-Xylene

Trichlorofluoromethane

Run# 1 Run# 2 Limits

0.57

0.092

0.28

ND

ND

0.30

0.14

0.44

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

460-00-4 4-Bromofluorobenzene

100%

78-124%

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

J

J

2.1

0.49

1.6

ND

ND

1.3

0.61

1.9

ND = Not detected

108-88-3

79-01-6

75-69-4

75-01-4

108-05-4

95-47-6

1330-20-7

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

0.75

1.1

1.1

0.51

0.70

0.87

0.87

0.87

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

Report of Analysis

Page 1 of 2

Client Sample ID: EA-1 EXTERIOR (NE CORNER)

DF

1

Lab Sample ID:

J25683-9

AIR - Air Summa ID: A252 Date Sampled: 03/21/06

Prep Batch

Matrix: Method:

TO-15

Percent Solids: n/a

Prep Date

n/a

Date Received: 03/23/06

n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

Analyzed

04/11/06

Analytical Batch VW364

Run #1 Run #2

2					
		_			 -
			-	 -	

W08437.D

File ID

Run #1 Run #2	Initial Volume 400 ml				
CAS No.	MW Compound	Result RL	Units Q	Result RL	Units
		18 6 3 10 10 10 10 10 10 10 10 10 10 10 10 10	۳.	0.7	

By

WG

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	2.8	0.20	ppbv	6.7	0.48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	ppbv	ND	0.44	ug/m3
71-43-2	78.11	Benzene	0.31	0.20	ppbv	0.99	0.64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.20	ppbv	ND	1.3	ug/m3
75-25-2	252.8	Bromoform	ND	0.20	ppbv	ND	2.1	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	ppbv	ND	0.78	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	ppbv	ND	0.87	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	ppbv	ND	1.0	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	ppbv	ND	0.62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	ppbv	ND	0.92	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	ppbv	ND	0.53	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	ppbv	ND	0.98	ug/m3
74-87-3	50.49	Chloromethane	0.68	0.20	ppbv	1.4	0.41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	ppbv	ND	0.63	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	ppbv	ND	1.0	ug/m3
56-23-5	153.8	Carbon tetrachloride	0.092	0.20	ppbv J	0.58	1.3	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	ppbv	ND	0.69	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	0.20	ppbv	ND	1.5	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	ppbv	ND	0.81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	ppbv	ND	0.92	ug/m3
123-91-1	88	1,4-Dioxane	ND	0.20	ppbv	ND	0.72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.63	0.20	ppbv	3.1	0.99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.20	ppbv	ND	1.7	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.20	ppbv	ND	0.79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	ppbv	ND	0.91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.20	ppbv	ND	1.2	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	ppbv	ND	0.91	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: EA-1 EXTERIOR (NE CORNER)

Œ,
Andrew St

Lab Sample ID: Matrix: Method: Project:		D: J25683-9 AIR - Air Summa ID: A252 TO-15 Flamingo, 149 North Avenue, New Rochelle			Sampled Received ent Solids	: (03/21/06 03/23/06 n/a			
CAS No.	MW	Compound	Result	RL	Units	Q	Result	RL	Units	
64-17-5	46	Ethanol	5.2	0.50	ppbv		9.8	0.94	ug/m3	
100-41-4	106.2	Ethylbenzene	ND	0.20	ppbv		ND	0.87	ug/m3	
141-78-6	88	Ethyl Acetate	0.17	0.20	ppbv	-	0.61	0.72	ug/m3	
622-96-8	120.2	4-Ethyltoluene	ND	0.20	ppbv		ND	0.98	ug/m3	
76-13-1	187.4	Freon 113	0.12	0.20	ppbv ,		0.92	1.5	ug/m3	
76-14-2	170.9	Freon 114	ND	0.20	ppbv		ND	1.4	ug/m3	
142-82-5	100.2	Heptane	ND	0.20	ppbv		ND	0.82	ug/m3	
87-68-3	260.8	Hexachlorobutadiene	ND	0.20	ppbv		ND	2.1	ug/m3	
110-54-3	86.17	Hexane	0.16	0.20	ppbv ,	J	0.56	0.70	ug/m3	
591-78-6	100	2-Hexanone	ND	0.20	ppbv		ND	0.82	ug/m3	
67-63-0	60	Isopropyl Alcohol	0.47	0.20	ppbv		1.2	0.49	ug/m3	
75-09-2	84.94	Methylene chloride	0.19	0.20	ppbv	J	0.66	0.69	ug/m3	
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	ppbv		ND	0.59	ug/m3	
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	ppbv		ND	0.82	ug/m3	
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	ppbv		ND	0.72	ug/m3	
115-07-1	42	Propylene	ND	0.50	ppbv		ND	0.86	ug/m3	
100-42-5	104.1	Styrene	ND	0.20	ppbv		ND	0.85	ug/m3	
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3	
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	0.20	ppbv		ND	1.4	ug/m3	
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.20	ppbv		ND	1.1	ug/m3	
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.20	ppbv		ND	1.5	ug/m3	
95-63-6	120.2	1,2,4-Trimethylbenzene	0.092	0.20		J	0.45	0.98	ug/m3	
	~	-,,,,						0.00	Ŭ/ A	

ND

ND

ND

0.14

ND.

0.53

ND.

0.31

ND

ND

0.23

ND.

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppby

ppbv

ppbv

ppbv

J

1330-20-7	106.2 Xy	lenes (total)	0.2	3 0.2	0 ppbv
CAS No.	Surrogate	Recoveries	Run# 1	Run# 2	Limits
460-00-4	4-Bromofle	torobenzene	95%		78-124%

1,3,5-Trimethylbenzene

2,2,4-Trimethylpentane

Tertiary Butyl Alcohol

Trichlorofluoromethane

Tetrachloroethylene

Tetrahydrofuran

Trichloroethylene

Vinyl chloride

Vinyl Acetate

m,p-Xylene

o-Xylene

Toluene

ND = Not detected

108-67-8

540-84-1

75-65-0

127-18-4

109-99-9

108-88-3

79-01-6

75-69-4

75-01-4

108-05-4

95-47-6

120.2

114.2

74.12

165.8

92.14

131.4

137.4

106.2

106.2

62.5

86

72

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ND

ND

ND

0.95

ND

2.0

ND

1.7

ND

ND

1.0

ND

1.0

0.98

0.93

0.61

1.4

0.59

0.75

1.1

1.1

0.51

0.70

0.87

0.87

0.87

ug/m3

Report of Analysis

Page 1 of 3

Client Sample ID: SS-1 FLAMINGO SUB SLAB

Lab Sample ID:

J25683-10

Date Sampled: 03/21/06

Matrix: Method: AIR - Air TO-15

Summa ID: A471, A530, A587 Date Received: 03/23/06

Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	2W7442.D	460	04/10/06	WG	n/a	n/a	V2W324
Run #2	W08444.D	4600	04/11/06	WG	n/a	n/a	VW364

Run #1 Run #2	Initial V 400 ml 400 ml	/olume						
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	ND	92	ppbv	ND	220	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	92	ppbv	ND	200	ug/m3
71-43-2	78.11	Benzene	ND	92	ppbv	ND	290	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	92	ppbv	ND	620	ug/m3
75-25-2	252.8	Bromoform	ND	92	ppbv	ND	950	ug/m3
74-83-9	94.94	Bromomethane	ND	92	ppbv	ND	360	ug/m3
593-60-2	106.9	Bromoethene	ND	92	ppbv	ND	400	ug/m3
100-44-7	126	Benzyl Chloride	ND	92	ppbv	ND	470	ug/m3
75-15-0	76.14	Carbon disulfide	ND	92	ppbv	ND	290	ug/m3
108-90-7	112.6	Chlorobenzene	ND	92	ppbv	ND	420	ug/m3
75-00-3	64.52	Chloroethane	251	92	ppbv	662	240	ug/m3
67-66-3	119.4	Chloroform	ND	92	ppbv	ND	450	ug/m3
74-87-3	50.49	Chloromethane	ND	92	ppbv	ND	190	ug/m3
107-05-1	76.53	3-Chloropropene	ND	92	ppbv	ND	290	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	92	ppbv	ND	480	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	92	ppbv	ND	580	ug/m3
110-82-7	84.16	Сусюнехапе	ND	92	ppbv	ND	320	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	92	ppbv	ND	370	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	92	ppbv	ND	360	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	92	ppbv	ND	710	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	92	ppbv	ND	370	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	92	ppbv	ND	430	ug/m3
123-91-1	88	1,4-Dioxane	ND	92	ppbv	ND	330	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	92	ppbv	ND	450	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	92	ppbv	ND	780	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	68.9	92	ppbv J	273	360	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	9390	92	ppbv	37200	360	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	92	ppbv	ND	420	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	92	ppbv	ND	550	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	92	ppbv	ND	550	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	92	ppbv	ND	550	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	92	ppbv	ND	420	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID:	SS-1 FLAMINGO SUB SLAB
T 1 0 1 TD.	TOCCOS 10

03/21/06 Date Sampled: Lab Sample ID: J25683-10 Summa ID: A471, A530, A587 Date Received: AIR - Air 03/23/06 Matrix: Percent Solids: n/a

Method: TO-15 Flamingo, 149 North Avenue, New Rochelle, NY Project:

CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	230	ppbv	ND	430	ug/m3
100-41-4	106.2	Ethylbenzene	ND	92	ppbv	ND	400	ug/m3
141-78-6	88	Ethyl Acetate	ND	92	ppbv	ND	330	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	92	ppbv	ND	450	ug/m3
76-13-1	187.4	Freon 113	ND	92	ppbv	ND	710	ug/m3
76-14-2	170.9	Freon 114	ND	92	ppbv	ND	640	ug/m3
142-82-5	100.2	Heptane	ND	92	ppbv	ND	380	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	92	ppbv	ND	980	ug/m3
110-54-3	86.17	Hexane	ND	92	ppbv	ND	320	ug/m3
591-78-6	100	2-Hexanone	ND	92	ppbv	ND	380	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	92	ppbv	ND	230	ug/m3
75-09-2	84.94	Methylene chloride	ND	92	ppbv	ND	320	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	92	ppbv	ND	270	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	92	ppbv	ND	380	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	92	ppbv	ND	330	ug/m3
115-07-1	42	Propylene	ND	230	ppbv	ND	400	ug/m3
100-42-5	104.1	Styrene	ND	92	ppbv	ND	390	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	276	92	ppbv	1510	500	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	92	ppbv	ND	630	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	92	ppbv	ND	500	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	92	ppbv	ND	680	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	92	ppbv	ND	450	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	92	ppbv	ND	450	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	92	ppbv	ND	430	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	92	ppbv	ND	280	ug/m3
127-18-4	165.8	Tetrachloroethylene	84400 a	920	ppbv	572000 a	6200	ug/m3
109-99-9	72	Tetrahydrofuran	ND	92	ppbv	ND	270	ug/m3
108-88-3	92.14	Toluene	ND	92	ppbv	ND	350	ug/m3
79-01-6	131.4	Trichloroethylene	4080	92	ppbv	21900	490	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	92	ppbv	ND	520	ug/m3
75-01-4	62.5	Vinyl chloride	ND	92	ppbv	ND	240	ug/m3
108-05-4	86	Vinyl Acetate	ND	92	ppbv	ND	320	ug/m3
	106.2	m,p-Xylene	ND	92	ppbv	ND	400	ug/m3
95-47-6	106.2	o-Xylene	ND	92	ppbv	ND	400	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	92	ppbv	ND	400	ug/m3
CAS No.	Surrog	gate Recoveries Run#	1 Run# 2	2 Lin	nits			
460-00-4	4-Bron	nofluorobenzene 104%	91%	78-	124%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: SS-1 FLAMINGO SUB SLAB

J25683-10 Lab Sample ID:

AIR - Air

Date Sampled:

03/21/06

Summa ID: A471,A530,A587 Date Received: Matrix: TO-15 Method:

03/23/06

Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

CAS No.

Compound MW

Result

RL

Units Q Result

RL

Units

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 \ddot{B} = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 3

Client Sample ID: SS-2 VACANT SUB SLAB

Lab Sample ID:

J25683-11

AIR - Air

Date Sampled: 03/21/06

Matrix: Method:

Summa ID: A137,A591

Analyzed

Date Received: 03/23/06

Percent Solids: n/a

Project:

Run #2

TO-15

Flamingo, 149 North Avenue, New Rochelle, NY

Prep Batch

Analytical Batch

DF File ID 448 W08438.D Run #1 W08451.D

1792

WG 04/11/06 WG 04/12/06

By

n/a n/a

Prep Date

n/a n/a VW364 VW364

Initial Volume

Run #1 400 ml Run #2

400 ml

ιχαιι πε	100 1111							
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	124	90	ppbv	295	210	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	90	ppbv	ND	200	ug/m3
71-43-2	78.11	Benzene	ND	90	ppbv	ND	290	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	90	ppbv	ND	600	ug/m3
75-25-2	252.8	Bromoform	ND	90	ppbv	ND	930	ug/m3
74-83-9	94.94	Bromomethane	ND	90	ppbv	ND	350	ug/m3
593-60-2	106.9	Bromoethene	ND	90	ppbv	ND	390	ug/m3
100-44-7	126	Benzyl Chloride	ND	90	ppbv	ND	460	ug/m3
75-15-0	76.14	Carbon disulfide	ND	90	ppbv	ND	280	ug/m3
108-90-7	112.6	Chlorobenzene	ND	90	ppbv	ND	410	ug/m3
75-00-3	64.52	Chloroethane	ND	90	ppbv	ND	240	ug/m3
67-66-3	119.4	Chloroform	ND	90	ppbv	ND	440	ug/m3
74-87-3	50.49	Chloromethane	ND	90	ppbv	ND	190	ug/m3
107-05-1	76.53	3-Chloropropene	ND	90	ppbv	ND	280	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	90	ppbv	ND	470	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	90	ppbv	ND	570	ug/m3
110-82-7	84.16	Cyclohexane	ND	90	ppbv	ND	310	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	90	ppbv	ND	360	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	90	ppbv	ND	360	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	90	ppbv	ND	690	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	90	ppbv	ND	360	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	90	ppbv	ND	420	ug/m3
123-91-1	88	1.4-Dioxane	ND	90	ppbv	ND	320	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	90	ppbv	ND	450	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	90	ppbv	ND	770	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	90	ppbv	ND	360	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	1320	90	ppbv	5230	360	ug/m3
10061-01-5		cis-1,3-Dichloropropene	ND	90	ppbv	ND	410	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	90	ppbv	ND	540	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	90	ppbv	ND	540	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	90	ppbv	ND	540	ug/m3
10061-02-6		trans-1,3-Dichloropropene	ND	90	ppbv	ND	410	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: SS-2 VACANT SUB SLAB

Report of Analysis

Page 2 of 3

Lab Sample Matrix: Method: Project:		J25683-11 AIR - Air Summa ID: TO-15 Flamingo, 149 North Ave	: A137,A591	Da Pe	ate Sampled: ate Received: arcent Solids:	03/21/06 03/23/06 n/a		
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	220	ppbv	ND	410	ug/m3
100-41-4	106.2	Ethylbenzene	ND	90	ppbv	ND	390	ug/m3
141-78-6	88	Ethyl Acetate	ND	90	ppbv	ND	320	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	90	ppbv	ND	440	ug/m3
76-13-1	187.4	Freon 113	ND	90	ppbv	ND	690	ug/m3
76-13-1	170.9	Freon 114	ND	90	ppbv	ND	630	ug/m3
142-82-5	100.2	Heptane	ND	90	ppbv	ND	370	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	90	ppbv	ND	960	ug/m3
110-54-3	86.17	Hexane	ND	90	ppbv	ND	320	ug/m3
591-78-6	100	2-Hexanone	ND	90	ppbv	ND	370	ug/m3
67-63-0	60	Isopropyl Alcohol	ND	90	ppbv	ND	220	ug/m3
75-09-2	84.94	Methylene chloride	ND	90	ppbv	ND	310	ug/m3
	72.11	Methyl ethyl ketone	ND	90	ppbv	ND	270	ug/m3
78-93-3	100.2	Methyl Isobutyl Ketone	ND	90	ppbv	ND	370	ug/m3
108-10-1	88.15	Methyl Tert Butyl Ether		90	ppbv J	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	320	ug/m3
1634-04-4		Propylene	ND	220		ND	380	ug/m3
115-07-1	42		ND	90	ppbv	ND	380	ug/m3
100-42-5	104.1	Styrene 1,1,1-Trichloroethane	69.8	90	ppbv J	1.5 (1.5)	490	ug/m3
71-55-6	133.4	1,1,2,2-Tetrachloroetha	The state of the s	90	ppbv	ND	620	ug/m3
79-34-5	167.9		ND	90	ppbv	ND	490	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	90	ppbv	ND	670	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	11 15 HE SALES AND THE	90	ppbv	ND	440	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene		90	ppbv	ND	440	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	90	ppbv	ND	420	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND ND	90	ppbv	ND	270	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	The state of the s	360		453000 a	2400	ug/m3
127-18-4	165.8	Tetrachloroethylene	66800 ^a	90	ppbv	ND	270	ug/m3
109-99-9	72	Tetrahydrofuran	ND ND	90	ppbv	ND	340	ug/m3
108-88-3	92.14	Toluene	1.3.37 (4.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4	90	ppv	6930	480	ug/m3
79-01-6	131.4	Trichloroethylene	1290	. 90	ppv	ND	510	ug/m3
75-69-4	137.4	Trichlorofluoromethane		90	ppbv	ND	230	ug/m3
75-01-4	62.5	Vinyl chloride	ND	* *		ND	320	ug/m3
108-05-4	86	Vinyl Acetate	ND	90	ppbv	ND	390	ug/m3
	106.2	m,p-Xylene	ND	90	ppbv	ND	390	ug/m3
95-47-6	106.2		ND	90	ppbv	The state of the s	390	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	90	ppbv	ND	380	ug/ mo
CAS No.	Surro	gate Recoveries	Run# 1 Run#	2	Limits			
460-00-4	4-Bro	mofluorobenzene	93% 89%		78-124%			

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B=Indicates analyte found in associated method blank N=Indicates presumptive evidence of a compound

Report of Analysis

Page 3 of 3

Client Sample ID: SS-2 VACANT SUB SLAB

Lab Sample ID:

CAS No.

J25683-11

Summa ID: A137,A591

Date Sampled: 03/21/06

Matrix:

MW

AIR - Air TO-15

Date Received: 03/23/06 Percent Solids: n/a

Method: Flamingo, 149 North Avenue, New Rochelle, NY Project:

> Result Compound

RL

Units Q Result

RL

Units

(a) Result is from Run# 2

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 2

Client Sample ID: SS-3 HAIR SALON SUB SLAB

Lab Sample ID:

J25683-12

Summa ID: A451,M118

Date Sampled: 03/21/06

Date Received: 03/23/06

Matrix: Method: AIR - Air TO-15

DF

224

By

WG

Percent Solids: n/a

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

Analyzed

04/11/06

е,	1.	•	

n/a

Prep Date

Prep Batch n/a

Analytical Batch VW364

Run #1 Run #2

Run #1

W08448.D

File ID

Initial Volume

400 ml

Run #2

Run #2								
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	ND	45	ppbv	ND	110	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	45	ppbv	ND	100	ug/m3
71-43-2	78.11	Benzene	ND	45	ppbv	ND	140	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	45	ppbv	ND	300	ug/m3
75-25-2	252.8	Bromoform	ND	45	ppbv	ND	470	ug/m3
74-83-9	94.94	Bromomethane	ND	45	ppbv	ND	170	ug/m3
593-60-2	106.9	Bromoethene	ND	45	ppbv	ND	200	ug/m3
100-44-7	126	Benzyl Chloride	ND	45	ppbv	ND	230	ug/m3
75-15-0	76.14	Carbon disulfide	ND	45	ppbv	ND	140	ug/m3
108-90-7	112.6	Chlorobenzene	ND	45	ppbv	ND	210	ug/m3
75-00-3	64.52	Chloroethane	ND	45	ppbv	ND	120	ug/m3
67-66-3	119.4	Chloroform	ND	45	ppbv	ND	220	ug/m3
74-87-3	50.49	Chloromethane	ND	45	ppbv	ND	93	ug/m3
107-05-1	76.53	3-Chloropropene	ND	45	ppbv	ND	140	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	45	ppbv	ND	230	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	45	ppbv	ND	280	ug/m3
110-82-7	84.16	Cyclohexane	ND	45	ppbv	ND	150	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	45	ppbv	ND	180	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	45	ppbv	ND	180	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	45	ppbv	ND	350	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	45	ppbv	ND	180	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	45	ppbv	ND	210	ug/m3
123-91-1	88	1,4-Dioxane	ND	45	ppbv	ND	160	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	45	ppbv	ND	220	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	45	ppbv	ND	380	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	45	ppbv	ND	180	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	120	45	ppbv	476	180	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	45	ppbv	ND	200	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	45	ppbv	ND	270	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	45	ppbv	ND	270	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	45	ppbv	ND	270	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	45	$\mathbf{p}\mathbf{p}\mathbf{b}\mathbf{v}$	ND	200	ug/m3

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 2 of 2

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		SS-3 HAIR SALON SUB SLAB J25683-12 AIR - Air Summa ID: A451,M118 TO-15 Flamingo, 149 North Avenue, New Rochelle			Received:	03/21/06 03/23/06 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units	
64-17-5	46	Ethanol	ND	110	ppbv	ND	210	ug/m3	
100-41-4	106.2	Ethylbenzene	ND	45	ppbv	ND	200	ug/m3	
141-78-6	88	Ethyl Acetate	ND	45	ppbv	ND	160	ug/m3	
622-96-8	120.2	4-Ethyltoluene	ND	45	ppbv	ND	220	ug/m3	
76-13-1	187.4	Freon 113	ND	45	ppbv	ND	340	ug/m3	
76-13-1 76-14-2	170.9	Freon 114	ND	45	ppbv	ND	310	ug/m3	
142-82-5	100.2	Heptane	ND	45	ppbv	ND	180	ug/m3	
87-68-3	260.8	Hexachlorobutadiene	ND	45	ppbv	ND	480	ug/m3	
110-54-3	86.17	Hexane	ND	45	ppbv	ND	160	ug/m3	
	100	2-Hexanone	ND	45	ppbv	ND	180	ug/m3	
591-78-6	60	Isopropyl Alcohol	56.9	45	ppbv	140	110	ug/m3	
67-63-0	84.94	Methylene chloride	ND	45	ppbv	ND	160	ug/m3	
75-09-2		Methyl ethyl ketone	ND	45	ppbv	ND	130	ug/m3	
78-93-3	72.11 100.2	Methyl Isobutyl Ketone	ND	45	ppbv	ND	180	ug/m3	
108-10-1	88.15	Methyl Tert Butyl Ether	41.3	45	ppbv J	149	160	ug/m3	
1634-04-4			ND	110	ppbv	ND	190	ug/m3	
115-07-1	42	Propylene	ND	45	ppbv	ND	190	ug/m3	
100-42-5	104.1	Styrene	ND	45	ppbv	ND	250	ug/m3	
71-55-6	133.4	1,1,1-Trichloroethane	ND ND	45	ppbv	ND	310	ug/m3	
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	45	ppbv	ND	250	ug/m3	
79-00-5	133.4	1,1,2-Trichloroethane	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	45	ppbv	ND	330	ug/m3	
120-82-1	181.5	1,2,4-Trichlorobenzene	ND ND	45	ppbv	ND	220	ug/m3	
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	45 45	ppv	ND	220	ug/m3	
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	45	ppbv	ND	210	ug/m3	
540-84-1	114.2	2,2,4-Trimethylpentane	ND		ppbv	ND ND	140	ug/m3	
75-65-0	74.12	Tertiary Butyl Alcohol	ND	45		34000	310	ug/m3	
127-18-4	165.8	Tetrachloroethylene	5010	45	ppbv	ND	130	ug/m3	
109-99-9	72	Tetrahydrofuran	ND	45	ppbv	ND ND	170	ug/m3	
108-88-3	92.14	Toluene	ND	45	ppbv	586	240	ug/m3	
79-01-6	131.4	Trichloroethylene	109	45	ppbv	44 4 4 4 4 4	***	ug/m3	
75-69-4	137.4		ND	45	ppbv	ND	250	ug/m3	
75-01-4	62.5	Vinyl chloride	ND	45	ppbv	ND	120		
108-05-4	86	Vinyl Acetate	ND	45	ppbv	ND	160	ug/m3	
	106.2		ND	45	ppbv	ND	200	ug/m3	
95-47-6	106.2	o-Xylene	ND	45	ppbv	ND	200	ug/m3	
1330-20-7	106.2		ND	45	ppbv	ND	200	ug/m3	

Run# 2

Run#1

91%

ND = Not detected

CAS No.

460-00-4

RL = Reporting Limit

E = Indicates value exceeds calibration range

Surrogate Recoveries

4-Bromofluorobenzene

J = Indicates an estimated value

Limits

78-124%

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 2

Client Sample ID: SS-4 TAVERN SUB SLAB

TO-15

Lab Sample ID:

J25683-13 AIR - Air

Summa ID: A200,M113

Date Sampled: 03/21/06

Date Received: 03/23/06

Percent Solids: n/a

Method: Project:

Matrix:

Flamingo, 149 North Avenue, New Rochelle, NY

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch VW364
Run	#1 W08440.D	98.4	04/11/06	WG	n/a	n/a	V W 304

Run #2

	Initial Volume
Run #1	400 ml
Run #2	

Run #Z								
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
67-64-1	58.08	Acetone	274	20	ppbv	651	48	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	20	ppbv	ND	44	ug/m3
71-43-2	78.11	Benzene	ND	20	ppbv	ND	64	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	20	ppbv	ND	130	ug/m3
75-25-2	252.8	Bromoform	ND	20	ppbv	ND	210	ug/m3
74-83-9	94.94	Bromomethane	ND	20	ppbv	ND	78	ug/m3
593-60-2	106.9	Bromoethene	ND	20	ppbv	ND	87	ug/m3
100-44-7	126	Benzyl Chloride	ND	20	ppbv	ND	100	ug/m3
75-15-0	76.14	Carbon disulfide	9.9	20	ppbv J	31	62	ug/m3
108-90-7	112.6	Chlorobenzene	ND	20	ppbv	ND	92	ug/m3
75-00-3	64.52	Chloroethane	ND	20	ppbv	ND	53	ug/m3
67-66-3	119.4	Chloroform	12.1	20	ppbv J	59.1	98	ug/m3
74-87-3	50.49	Chloromethane	ND	20	ppbv	ND	41	ug/m3
107-05-1	76.53	3-Chloropropene	ND	20	ppbv	ND	63	ug/m3
95-49-8	126,6	2-Chlorotoluene	ND	20	ppbv	ND	100	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	20	ppbv	ND	130	ug/m3
110-82-7	84.16	Cyclohexane	ND	20	ppbv	ND	69	ug/m3
75-34-3	98.96	1.1-Dichloroethane	ND	20	ppbv	ND	81	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	20	ppbv	ND	79	ug/m3
106-93-4	187.9	1,2-Dibromoethane	ND	20	ppbv	ND	150	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	20	ppbv	ND	81	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	20	ppbv	ND	92	ug/m3
123-91-1	88	1.4-Dioxane	ND	20	ppbv	ND	72	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	20	ppbv	ND	99	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	20	ppbv	ND	170	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	20	ppbv	ND	79	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	113	20	ppbv	448	79	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	20	ppbv	ND	91	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	20	ppbv	ND	120	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	20	ppbv	ND	120	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	20	ppbv	ND	120	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	20	ppbv	ND	91	ug/m3
10001 00 0								

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B \,=\, Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Page 2 of 2

Client Sample ID: Lab Sample ID: Matrix: Method: Project:		SS-4 TAVERN SUB SLAB J25683-13 AIR - Air Summa ID: A: TO-15 Flamingo, 149 North Avenue	Date Per	e Sampled: e Received: cent Solids:	03/21/06 03/23/06 n/a			
CAS No.	MW	Compound	Result	RL	Units Q	Result	RL	Units
64-17-5	46	Ethanol	ND	49	ppbv	ND	92	ug/m3
100-41-4	106.2	Ethylbenzene	ND	20	ppbv	ND	87	ug/m3
141-78-6	88	Ethyl Acetate	ND	20	ppbv	ND	72	ug/m3
622-96-8	120.2	4-Ethyltoluene	ND	20	ppbv	ND	98	ug/m3
76-13-1	187.4	Freon 113	ND	20	ppbv	ND	150	ug/m3
76-14-2	170.9	Freon 114	ND	20	ppbv	ND	140	ug/m3
142-82-5	100.2	Heptane	ND	20	ppbv	ND	82	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	20	ppbv	ND	210	ug/m3
110-54-3	86.17	Hexane	ND	20	ppbv	ND	70	ug/m3
591-78-6	100	2-Hexanone	ND	20	ppbv	ND	82	ug/m3
67-63-0	60	Isopropyl Alcohol	70.5	20	ppby	173	49	ug/m3
75-09-2	84.94	Methylene chloride	ND	20	ppbv	ND	69	ug/m3
78-93-3	72.11	Methyl ethyl ketone	36.4	20	ppbv	107	59	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	20	ppbv	ND	82	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	298	20	ppbv	1070	72	ug/m3
115-07-1	42	Propylene	ND	49	ppbv	ND	84	ug/m3
100-42-5	104.1	Styrene	ND	20	ppbv	ND	85	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	21.0	20	ppbv	115	110	ug/m3
79-34-5	167.9	1,1,2,2-Tetrachloroethane	ND	20	ppbv	ND	140	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	20	ppbv	ND	110	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	20	ppby	ND	150	ug/m3
95-63-6	120.2	1,2,4-Trimethylbenzene	ND	20	ppbv	ND	98	ug/m3
108-67-8	120.2	1,3,5-Trimethylbenzene	ND	20	ppbv	ND	98	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	15.9	20	ppbv J	74.3	93	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	20	ppbv	ND	61	ug/m3
127-18-4	165.8	Tetrachloroethylene	2320	20	ppbv	15700	140	ug/m3
109-99-9	72	Tetrahydrofuran	13.7	20	ppbv J	40.3	59	ug/m3
100-00-0	14	Totally droitered			T. T. T	CAO	75	40/2

CAS No.	Surrogate	Recoveries
---------	-----------	------------

92.14

131.4

137.4

62.5

106.2

106.2

106.2

86

Toluene

Trichloroethylene

Vinyl chloride

Vinyl Acetate

Xylenes (total)

m,p-Xylene

o-Xylene

Trichlorofluoromethane

Run# 1 Run# 2

17.2

108

ND

ND.

ND

ND

ND

ND

Limits

20

20

20

20

20

20

20

20

460-00-4 4-Bromofluorobenzene

94%

78-124%

108-88-3

79-01-6

75-69-4

75-01-4

108-05-4

95-47-6

1330-20-7

ppbv J

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

ppbv

64.8

580

ND.

ND

ND

ND.

ND

ND ·

75

110

110

51

70

87

87

87

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

N = Indicates presumptive evidence of a compound

3.13

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Summa Canister and Flow Controller Log
- Sample Tracking Chronicle
- Internal Chain of Custody
- 2006 MDL Study Method: TO-15 Matrix: AIR

Av.	CHAIN	OF C	USTODY			eo ex trading#		KAB-	3/16/200	6-3 P	AGE)F. <u>e</u>	3
ACCU		pling Field I				ati Custo II		180,000			J.256	83	and Amelicate
LIBO	Alr Sam	CEant/Re	corting Information	Project Name:				experatura (F	Weather Pa hrenheitt	rameters es	A 1969-1	Reques	BO ANAYSIS
Company Hame CA	Rich Consult	ants, In		1/9	mins			tert:		Madmunt		. !	4
Address	Some Charles	•		Street 149	wan m	<u>د.</u>		3top	-	Minimum:		i l	취
cta Ol	State	Zip	03	CHY New Portreis My					reserve (Inches	of Ho)			Į.
Project Contact	Time 1			Project 8				start		Maximative		i i	의 1
Phone #	[220 fm	122000	arichine	Citant Purchase Order	, , , , , , , , , , , , , , , , , , , 			Stopt		Minimum:		th.	्री ।
(514) 571	6-8844 576-	229 <u>3</u>	Com					Other weather	emmed:	<u>` </u>		Standard TO-45 Reporting List	न्फ
Sampler(a) Name(a)	Zuh Izro/MV	4 year		IN	Died Camp	ing Informat	Hon	ği .	Stop Sampl	lno informa	τίοπ	3	1 1
		Alr Type	Sampling Equips	ment into	Sart Samp	2		-	T			ğ	V8C5
1		Indoor(f)	Canister Size	Flow Controller	Time (24hr		terior famp Sampler		Time (24hr	Pressure	nterior Temp Sampler	pug	3
Lab Samole#	Field ID / Point of Collecti	Soil Vep(SV) On Ambient(A)	-Serial# €Lor1L		ate clock)	(TH9)	(F) Init.	<u>Date</u>	clock)	CH9)	(F) hit	1	The
TA-1	Flamingo lit floor	I	A462 61	FC1701 32	106 0752	 	0 10	3/2/0	1552	ч" -	70 10	-/	715
TA-A	Vacant 1st Floor	ーエ	A285 6L	FC210 31	1100 0747	730	0 19		1547		60 M	12	444
TA-3	Hair Salan Ist Al	vC .	AITI	fca19 1	0808	30	10 NO		1612	6"	70 14	-3	
TACH	Taven las fle	ic	A266	PLUY	0752	30	70 10		1556	0	70 10	4	
111	Flamingo Basem	7	A280	FC/H3	0948	30	15 10	-	1153	8"	65 10	-5-	
TA-(Vacant Basemin	<u>. </u>	A 229	PCOU!	0160	30	65 M		1155	0	65 111	15	
14-6	Hair Salm Basen		A286	PLYTI	0952	70	os m	Sales Sales	1157	3"	601	7	
+A-1	d		A179	FLOW	0944	30	65 10		. 1147	6"	65 100	-8	
<u>+</u> A-6	Mayen Basement	3 A		FC273	0438	1	40 M		1140	7"	40 N	5	
EA-	Baterior WE come		A252				7 2 3-		3111	1 	65 1/	-/6	
55-1	Flamings SWS Sta		4411 V	FC1491 \	0909	erabio informat				Comments/		245.00	
Standard - 15		Approved By:	:	All I	ນ. ຂາ ເ <u>ບ-າຣສ ຫ</u>	endatory Full	T1		•				
	5 Day .	747.010.07		. Com	at 3	7							
	\$Day 2Day	Dete	E	Fell 1	11.	3							
	1 Day		1	. Othe	n			R	•				
				ocumented below as	ch i mo samples ch Religiolete		ion, including co			Description of the second		_	
1 M	Munac 311	6/06 /800	Received By: FED	EX	2	50 F	*	3/20		2//	2/2-	CAR	1h)
Burger Str.	1/2/37	22/06	3 Stephen	- UPS	Palitypotabl	Felk	- UP5	363	@ 1000	Reclination 4	<u> 2</u>		·
Anticopolation of Sept.		Deser	Received by:		Custody Se	** &r	14 &	846		[]			
u .			D 1										R
ah.	1		•		•								. A
201	ı	••											

J25683: Chain of Custody
Page 1 of 2

	CHAIN OF C	CUSTODY	7			PED-EX Track	ng#		PA	y Corto	116/20	4-3	PAGI	<u> 2</u>	OF, 🏯	<u> </u>	
ACCUTEST.	Air Sampling Field	Data Sheet		• •		Lab Quarte #			(25,346)			·	ー	2-56			
	Client / I	leporting Information			rker 2	957 VE	200	A CAN	100		Weather P	arameters	Line			sted Ar	12 VSIS
Company Name CAPLL C	onsultants,1	nc .	Project Name:	Flam	وېد				Temperatu Start	ee (ran		Maximum:				a	
Address 17 Durport	Stet		Street 14	1 1/0	Bh.	Ave	nne		Stop			Minimum;				10-15	
Planview	M 118	13	**New	Cach	منام		*\\\/	,	Limoshob	arlo Dro	a stare (Inché	a af Nat				5	, 1
Project Contact	E-mail		Project #				7 - 1		Start Marchant					葱		L	
Rich J220	17726 carill		Giient Purchus	a Order #	***************************************				Stope Minimum;					TO-15 Reporting List	2	1	
(5)4) 576-6844 Sample (6) Norsele) -	576-009								Other was	ther co	mment;				tepor	δ	
Enh Jz	20/MKe Yage	/	and March		tart Samp	Sec later	akon.		ज	-	top Samp	lee lefor	etlan		-16 F	^	
	AirType	Sampling Equip	nant into	1	reir caruh	***************************************	SEUCIT		1		rop danip	alg mon	BUON	<u> </u>	1 g	\mathcal{L}	
	indexr(f)	Canister Stra	Flow Controller		Tima (24hr	Canister Pressure	Interior Temp	Sampler			Tima (24hr	Canister Pressure	Interior	Sampler	Standard	دلاه	
Lab Sample # Fleid ID / Pol	nt of Collection Soit Ver(6V		Serial#	Data	ciock)	("Hg)	(F)	_ fnët.	<u> </u>	to_	clock)	(°Hg)	(F)	Sn/t.	Sta	-4	
SS-2 Vacant	Sub Slab SV	A137 6L	FC252	3/21/06	0859	30	65	n	32	106	1107	34	65	10	-11	√ ,	W/Fc
55-3 Hair Scho	SW SUD SV	A451	FLIC8		0920	30	65	10			1121	.0	65	D	-12	\checkmark	Ш
155-4 Javen Su	No Sleb SV	A200 V	FLASO		0147	30	4	10		,	1059	6 u	65	N	- <i>j</i> ə	\checkmark	$ \mathcal{Y} $
							[\Box
									ì								
									3				 			_	
		 		-		-	├─		*			•				-	
		 	ļ	-			_		3				ļ <u> </u>	ļ	<u> </u>		
		<u> </u>		<u> </u>	<u> </u>		<u> </u>		-								
		<u> </u>				<u> </u>			I				<u> </u>		•		·
		<u> </u>]	.		<u> </u>	<u> </u>								-		
Standard - 15 Days	and Tors (Business days)	以下,不是不是一个的。		HAJI NJOEP T			ilion	-							美	100	
10 Day	Approved By	·	_	Coram A]			*	rec (I w/ b	فاحط يود	u or	F 6	3/35/	06	
3 Dey		-		Cosm B Reduced 12		1											
2 Day 1 Day	Det	*	-	Full T1													
Other		na Contado mas 1-2		şi			-1										
Rainoping and infrahomatory:	Data Tiron.	ple Custody must be d	ocumented bay	ow each ome \$	Ralingulahad	Ry:	eion, ind	manua cor				Received Dy	* 7.50 *	_			NO.
Representative of the second	3/14/66 1800	Received By:	Ex		Sulfann sighes	O FEX			3/2	<u>را در ا</u>	06	2 ////.	-	<u>(c</u>	A RI	<u>un)</u>	
3 /// (A	Pun) > 22/26	3 OPS			4 (D	<u>خ</u>					1000	Houfas By	and the second				ı
5	D-MY TRANS.	E CHOICHE BY			enseral 388	. Rr	14 8	84	6								

J25683: Chain of Custody Page 2 of 2

Summa Canister and Flow Controller Log Job Number: J25683

Account:

Project:

CARICH C. A. Rich Consultants Flamingo, 149 North Avenue, New Rochelle, NY

Received:

03/23/06

Shipping Summa ID	L	Vac " Hg	Date Out	Ву	SCC Batch	SCC FileID	Receiving Sample Number	Date In	Ву	Vac " Hg	Pres psig	Final psig	Dil Fact
A462	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-1	03/24/06	WG	4			1
A285	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-2	03/24/06	WG	3.5			1
A171	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-3	03/24/06	WG	6			1
A266	6	29.4	03/16/06	WG	CP1723	2W6933.D	J25683-4	03/24/06	WG	0			1
A280	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-5	03/24/06	WG	5			1
A229	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-6	03/24/06	WG	3			1
A286	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-7	03/24/06	WG	4			1
A179	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-8	03/24/06	WG	5			1
A252	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-9	03/24/06	WG	6			1
A471	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-10	03/24/06	WG	2			1
A137	6	29.4	03/16/06	WG	CP1713	W07837.D	J25683-11	03/24/06	WG	0			1
A451	6	29.4	03/16/06	WG	CP1720	W07930.D	J25683-12	03/24/06	WG	0			1
A200	6	29.4	03/16/06	WG	CP1725	W07974.D	J25683-13	03/24/06	WG	3			1

Accutest Bottle Order(s):

KAB-3/16/2006-3

Prep Date 03/16/06

Room Temp(F)

Bar Pres "Hg

69.8

29.83

Page 1 of 1

Internal Sample Tracking Chronicle

C. A. Rich Consultants

Job No:

J25683

Flamingo, 149 North Avenue, New Rochelle, NY

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	Collected: 21-MAR-06 AINGO 1ST FLOOR	15:52 By: RI	Receiv	ved: 23-MA	R-06_B	y; MP
J25683-1 J25683-1	TO-15 TO-15	06-APR-06 01:28 06-APR-06 14:45	WG WG			VTO15STD VTO15STD
	Collected: 21-MAR-06 ANT 1ST FLOOR	15:47 By: RI	Receiv	ved: 23-MA	R-06 B	y: MP
J25683-2	TO-15	06-APR-06 02:13	WG			VTO15STD
J25683-3 IA-3 HAIR	Collected: 21-MAR-06 SALON 1ST FLOOR	16:12 By: RI	Receiv	ved: 23-MA	R-06 B	y: MP
J25683-3 J25683-3	TO-15 TO-15	06-APR-06 02:57 06-APR-06 13:15	WG WG			VTO15STD VTO15STD
	Collected: 21-MAR-06 ERN IST FLOOR	15:56 By: RI	Receir	ved: 23-MA	R-06 B	y: MP
J25683-4	TO-15	06-APR-06 15:30	WG			VTO15STD
	Collected: 21-MAR-06 MNGO BASEMENT	11:53 By: RI	Receiv	ved: 23-MA	R-06 B	y; MP
J25683-5 J25683-5	TO-15 TO-15	06-APR-06 20:35 07-APR-06 11:44	WG WG			VTO15STD VTO15STD
	Collected: 21-MAR-06 ANT BASEMENT	11:55 By: RI	Recel	ved: 23-MA	R-06 B	y: MP
J25683-6	TO-15	10-APR-06 14:15	WG			VTO15STD
J25683-7 IA-7 HAIR	Collected: 21-MAR-06 SALON BASEMENT	11:57 By: RI	Recel	ved: 23-MA	R-06 B	y: MP
J25683-7	TO-15	10-APR-06 15:03	WG			VTO15STD

4.3 4

Internal Sample Tracking Chronicle

C. A. Rich Consultants

Job No:

J25683

Flamingo, 149 North Avenue, New Rochelle, NY

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
	Collected: 21-MAR-06 ERN BASEMENT	11:47 By: RI	Recel	ved: 23-MAI	R-06 B	by: MP
J25683-8	TO-15	10-APR-06 15:51	WG			VTO15STD
	Collected: 21-MAR-06 ERIOR (NE CORNER)	11:40 By: RI	Recei	ved: 23-MAI	R-06 B	y: MP
J25683-9	TO-15	11-APR-06 15:44	WG			VTO15STD
	Collected: 21-MAR-06 MINGO SUB SLAB	11:11 By: RI	Recei	ved: 23-MA)	R-06 B	y: MP
J25683-10 J25683-10	TO-15	10-APR-06 17:26 11-APR-06 20:58	WG WG			VTO15STD VTO15STD
professional and the second se	Collected: 21-MAR-06 ANT SUB SLAB	11:07 By: RI	Recei	ved: 23-MAI	R-06 B	by: MP
J25683-11 J25683-11	TO-15	11-APR-06 16:28 12-APR-06 02:04	WG WG			VTO15STD VTO15STD
	Collected: 21-MAR-06	11:21 By: RI	Recei	ved: 23-MAI	R-06_B	by: MP
J25683-12		11-APR-06 23:53	WG	Andrews Annual Annua	e e e e e e e e e e e e e e e e e e e	VTO15STD
	Collected; 21-MAR-06 ERN SUB SLAB	10:59 By: RI	Recei	ved: 23-MAl	R-06 B	sy: MP
J25683-13	TO-15	11-APR-06 18:04	WG	<u> </u>		VTO15STD

Accutest Internal Chain of Custody Job Number: J25683

Account:

CARICH C. A. Rich Consultants

Project:

Flamingo, 149 North Avenue, New Rochelle, NY

Received:

03/23/06

Number	Transfer FROM	Transfer TO	Date/Time	Reason
J25683-1.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-1.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-1.1	William A. Gordeuk	GCMSW	04/05/06 16:53	Load on Instrument
J25683-1.1	GCMSW	Ruifeng Yau	04/07/06 05:52	Unload from Instrument
J25683-1.1	Ruifeng Yau	Air Storage	04/07/06 05:52	Return to Storage
J25683-2.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-2.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-2.1	William A. Gordeuk	GCMSW		Load on Instrument
J25683-2.1	GCMSW	Ruifeng Yau		Unload from Instrument
J25683-2.1	Ruifeng Yau	Air Storage	04/07/06 05:52	Return to Storage
J25683-3.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-3.1	Air Storage	William A. Gordeuk	04/05/06 17:01	Retrieve from Storage
J25683-3.1	William A. Gordeuk	GCMSW		Load on Instrument
J25683-3.1	GCMSW	William A. Gordeuk		Unload from Instrument
J25683-3.1	William A. Gordeuk	Air Storage	04/06/06 09:28	Return to Storage
J25683-4.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-4.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-4.1	William A. Gordeuk	GCMSW		Load on Instrument
J25683-4.1	GCMSW	Ruifeng Yau		Unload from Instrument
J25683-4.1	Ruifeng Yau	Air Storage	04/07/06 05:52	Return to Storage
J25683-5.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-5.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-5.1	William A. Gordeuk	GCMS2W		Load on Instrument
J25683-5.1	GCMS2W	Ruifeng Yau	04/07/06 05:52	Unload from Instrument
J25683-5.1	Ruifeng Yau	Air Storage	04/07/06 05:53	Return to Storage
J25683-6.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-6.1	Air Storage	Ruifeng Yau		Retrieve from Storage
J25683-6.1	Ruifeng Yau	GCMS2W		Load on Instrument
J25683-6.1	GCMS2W	William A. Gordeuk	04/11/06 15:25	Unload from Instrument
J25683-6.1	William A. Gordeuk	Air Storage	04/11/06 15:25	Return to Storage
J25683-7.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-7.1	Air Storage	Ruifeng Yau	04/10/06 11:00	Retrieve from Storage
J25683-7.1	Ruifeng Yau	GCMS2W		Load on Instrument
J25683-7.1	GCMS2W	William A. Gordeuk		Unload from Instrument
J25683-7.1	William A. Gordeuk	Air Storage	04/11/06 15:25	Return to Storage
J25683-8.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-8.1	Air Storage	Ruifeng Yau	04/10/06 11:00	Retrieve from Storage

Accutest Internal Chain of Custody Job Number: J25683 Account: CARICH C. A. Rich Consultants

Project: Received: Flamingo, 149 North Avenue, New Rochelle, NY 03/23/06

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
	1110111			
J25683-8.1	Ruifeng Yau	GCMS2W		Load on Instrument
J25683-8.1	GCMS2W	William A. Gordeuk	•	Unload from Instrument
J25683-8.1	William A. Gordeuk	Air Storage	04/11/06 15:25	Return to Storage
J25683-9.1	Craig J. Parillo	Air Storage	03/23/06 10:54	Return to Storage
I25683-9.1	Air Storage	Ruifeng Yau		Retrieve from Storage
J25683-9.1	Ruifeng Yau	GCMS2W	04/10/06 11:00	Load on Instrument
J25683-9.1	GCMS2W	Ruifeng Yau	04/11/06 12:53	Unload from Instrument
J25683-9.1	Ruifeng Yau	GCMSW	04/11/06 12:53	Load on Instrument
J25683-9.1	GCMSW	William A. Gordeuk	04/12/06 11:03	Unload from Instrument
J25683-9.1	William A. Gordeuk	Air Storage	04/12/06 11:03	Return to Storage
J25683-10.1	Craig J. Parillo	Air Storage	03/23/06 10:54	Return to Storage
J25683-10.1	Air Storage	Ruifeng Yau		Retrieve from Storage
J25683-10.1	Ruifeng Yau	GCMS2W		Load on Instrument
J25683-10.1	GCMS2W	William A. Gordeuk	04/11/06 15:21	Unload from Instrument
J25683-10.1	William A. Gordeuk	GCMSW	04/11/06 15:21	Load on Instrument
J25683-10.1	GCMSW	William A. Gordeuk	04/12/06 11:03	Unload from Instrument
J25683-10.1	William A. Gordeuk	Air Storage	04/12/06 11:03	Return to Storage
J25683-11.1	Craig J. Parillo	Air Storage	03/23/06 10:54	Return to Storage
J25683-12.1	Craig J. Parillo	Air Storage		Return to Storage
J25683-12.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-12.1	William A. Gordeuk	GCMSW		Load on Instrument
J25683-12.1	GCMSW	William A. Gordeuk	04/12/06 11:03	Unload from Instrument
J25683-12.1	William A. Gordeuk	Air Storage	04/12/06 11:03	Return to Storage
J25683-13.1	Craig J. Parillo	Air Storage	03/23/06 10:54	Return to Storage
J25683-13.1	Air Storage	William A. Gordeuk	04/05/06 16:53	Retrieve from Storage
J25683-13.1	William A. Gordeuk	GCMSW	04/05/06 16:53	Load on Instrument
J25683-13.1	GCMSW	William A. Gordeuk		Unload from Instrument
J25683-13.1	William A. Gordeuk	Air Storage		Return to Storage
J25683-13.1	Air Storage	William A. Gordeuk		Retrieve from Storage
J25683-13.1	William A. Gordeuk	GCMSW	•	Load on Instrument
J25683-13.1	GCMSW	William A. Gordeuk	04/12/06 11:03	Unload from Instrument
J25683-13.1	William A. Gordeuk	Air Storage	04/12/06 11:03	Return to Storage

Accutest Laboratories Annual Method Detection Limit Determination Dayton, NJ Facility

TO-15 (VTO14/15) GCMS2W, GCMSW Pooled

Method: Instrument(s): Analyst:

Matrix: Quant Factor: Study Period:

1.00 November,2005 AIR

		-			Rep	Replicate Spikes	SS							
	Analysis	Spike	윤	R2	R3	R4	RS	R6	R7	X-Bar	X-Bar	STD.Dev.	MOL	Spike/MDL
Cmpd./Element/Parm. Name	Date	vdqq	yddd	vddd	ppbv	hpbv	ppbv	ppbv	vdqq	vdqq	%Recov.	удаа		Ratio
				:								ingle.	New September	
Acetone	3-Nov-05	0.4	0.70	0.68	0.63	0.69	0.68	0.71	0.77	69.0	173.46	0.04	0.14	2.94
1,3-Butadiene	3-Nov-05	4.0	0.47	0.44	0.46	0.46	0.48	0.52	0.53	0.48	120.26	0.03	0.10	4.08
Benzene	4-Nov-05	0.2	0.20	0.19	0.20	0.21	0.21	0.19	0.21	0.20	100.07	0.01	0.02	8.34
Bromodichloromethane	3-Nov-05	0.4	0.37	0.33	0.30	0.32	0.33	0.33	0.33	0.33	82.07	0.02	0.07	6.08
Bromoform	3-Nov-05	0.4	0.32	0.27	0.26	0.27	0.27	0.26	0.28	0.28	68.90	0.02	90.0	6.40
Bromomethane	4-Nov-05	0.2	0.22	0.22	0.22	0.23	0.24	0.25	0.24	0.23	115.88	0.01	0.04	5.46
Bromoethene	4-Nov-05	0.2	0.22	0.21	0.22	0.23	0.23	0.24	0.23	0.23	113.24	0.01	0.03	6.92
Benzyl Chloride	4-Nov-05	0.2	0.12	0.10	0.10	0.10	0.10	60'0	60.0	0.10	49.55	0.01	0.03	6.97
Carbon disulfide	3-Nov-05	0.4	0.42	0.38	0.35	0.36	0.37	0.37	0.38	0.38	93.90	0.02	0.07	5.55
Chlorobenzene	3-Nov-05	0.4	0.41	0.35	0.33	0.35	0.36	0.35	0.35	950	88.99	0.02	0.07	5.43
Chloroethane	4-Nov-05	0.2	0.25	0.25	0.26	0.28	0.29	0.28	0.29	0.27	135.16	0.02	90'0	3.24
Chloroform	3-Nov-05	1.0	0.40	0.36	0.34	0.36	0.35	0.35	0.37	98.0	96'68	0.02	0.07	5.99
Chloromethane	27-Oct-05	0.2	0.42	0.47	0.41	0.50	0.42	0.49	0.43	0.45	223.52	0.04	0.12	1.71
3-Chloropropene	3-Nov-05	0.4	0.40	98.0	0.34	0.34	0.35	0.34	0.37	0.36	89.43	0.02	0.07	5.62
2-Chlorotoluene	3-Nov-05	7.0	0.35	0.32	0.30	0.31	0.31	050	0.31	0.32	79.03	0.02	\$0.0	7.49
Carbon tetrachloride	3-Nov-05	4.0	0.38	0.34	0.32	0.33	0.33	0.33	0.35	0.34	85.09	0.02	0.07	5.83
Cyclohexane	4-Nov-05	0.2	0.23	0.22	0.23	0.23	0.24	0.24	0.24	0.23	116.92	0.01	0.02	9.55
1,1-Dichloroethane	3-Nov-05	0.4	0.42	0.38	0.35	0.37	0.38	0.37	039	0.38	95.05	0.02	0.07	5.53
1,1-Dichloroethylene	27-Oct-05	0.2	0.25	0.26	0.25	0.25	030	0.31	0.30	0.27	137.40	0.03	60.0	2.24
1.2-Dibromoethane	3-Nov-05	0.4	0.37	0.31	0.30	0.31	0.32	0.31	0.31	0.32	79.41	0.02	70.07	5.59
1,2-Dichloroethane	3-Nov-05	0.4	0.41	0.36	0.33	950	0.37	0.36	0.36	96.0	91.10	0.02	.000	5.93
1.2-Dichloropropane	4-Nov-05	0.2	0.19	0.20	0.19	0.22	0.21	0.20	0.21	0.20	101.70	0.01	0.04	4.78
1,4-Dioxane	4-Nov-05	0.2	0.18	0.18	0.17	0.14	0.14	0.17	0.16	0.16	82.01	0.02	90'0	3.32
Dichlorodifluoromethane	27-Oct-05	0.2	0.34	0.36	0.35	0.35	0.35	0.37	0.35	0.35	175.97	0.01	0.03	7.39
Dibromochloromethane	3-Nov-05	4.0	0.35	0.28	0.28	0.29	0.30	0.29	0.30	0.30	74.27	0.02	0.07	5.38
trans-1,2-Dichloroethylene	27-Oct-05	0.2	0.25	0.25	0.29	0.28	0.29	0.26	0.30	0.27	136.86	0.02	0.07	2.88
cis-1,2-Dichloroethylene	4-Nov-05	0.2	0.22	0.19	0.21	0.22	0.19	0.18	0.21	0.20	101,35	0.02	0.05	3.72
cis-1,3-Dichloropropene	27-Oct-05	0.2	0.22	0.23	0.26	0.25	0.24	0.26	0.25	0.24	121.77	0.01	0.04	4.95
m-Dichlorobenzene	4-Nov-05	0.2	0.14	0.14	0.13	0.13	0.13	0.12	0.12	0.13	64.79	0.01	0.03	7.85
o-Dichlorobenzene	4-Nov-05	0.2	0.16	0.15	0.14	0.14	0.14	0.13	0.14	0.14	71.80	0.01	0.03	7.13
p-Dichlorobenzene	4-Nov-05	0.2	0.16	0.14	0.13	0.14	0.14	0.13	0.13	0.14	69.38	10.0	0.03	7.55
trans-1,3-Dichloropropene	27-Oct-05	0.2	0.24	0.24	0.24	0.27	0.26	0.25	0.26	0.25	125.45	0.01	0.04	4.58
Ethanol	3-Nov-05	4.0	0.53	0.42	0.55	0.40	09.0	0.62	0.43	0.51	126.87	60.0	0.28	1.41
Ефујрепдепе	3-Nov-05	4.0	0.35	0.32	0.30	0.32	0.32	0.31	0.32	0.32	80.23	0.02	50'0	8.11
Ethyl Acetate	27-Oct-05	0.2	0.21	0.18	0.24	0.21	0.20	0.21	0.24	0.21	105.96		0.07	2.87
4-Ethyltoluene	4-Nov-05	0.2	0.16	0.15	0.14	0.14	0.14	0.14	0.13	0.14	71.43		0.03	7.10

TO-15 (VTO14/15) GCMS2W, GCMSW Pooled

Method: Instrument(s): Analyst:

Matrix: Quant Factor: Study Period:

1.00 November,2005 AIR

		•												
					Rep	Replicate Spikes	SS							
	Analysis	Spike	R1	R2	R3	R4	R5	R6	R7	X-Bar	X-Bar	STD.Dev.	MDL	Spike/MDL
Cmpd./Element/Parm. Name	Date	vdqq	\qdd	۸qdd	\qdd	hpbv	vdqq	vdqq	vdqq	yddd	%Recov.	hpby		Ratio
												2000		
Freon 113	3-Nov-05	0.4	0.42	0.37	0.34	0.37	0.37	0.36	0.38	0.37	93.32	0.02	0.08	5.28
Freon 114	4-Nov-05	0.2	0.23	0.23	0.23	0.25	0.25	0.26	0.26	0.24	121.55	10.0	0.04	4.55
Heptane	3-Nov-05	0.4	0.39	980	0.31	0.33	0.34	0.35	036	0.35	87.40	0.02	0.08	5.14
Hexachlorobutadiene	4-Nov-05	0.2	0.18	0.13	0.13	0.10	0.12	0.09	0.11	0.12	61.33	0.03	60'0	2.13
Hexane	3-Nov-05	4.0	0.40	036	0.33	0.35	0.36	0.35	0.36	0.36	89.70	0.02	0.07	5.64
2-Hexanone	3-Nov-05	4.0	0.29	0.26	0.24	0.25	0.24	0.25	0.26	0.26	64.24	0.02	90.0	89.9
Коргоруї в препе	3-Nov-05	0.4	0.36	0.32	0.30	0.31	0.32	0.30	0.32	0.32	75.67	0.02	90.0	6.88
Isopropyl Alcohol	3-Nov-05	0.4	0.44	0.45	0.43	0.43	0.48	0.49	0.50	0.46	114.49	0.03	0.09	4.31
Methylene chloride	27-Oct-05	0.2	0.34	0.31	0.30	0.32	0.31	0.31	0.32	0.32	158.42	0.01	0.04	5.50
Methyl ethyl ketone	27-Oct-05	0.2	0.16	0.16	0.18	0.17	0.19	0.14	0.15	0.16	81.64	0.02	0.05	3.85
Methyl Is obutyl Ketone	27-Oct-05	0.2	0.22	0.23	0.24	0.24	0.25	0.24	0.24	0.24	11836	10.0	0.04	5.46
Methyl Tert Butyl Ether	3-Nov-05	4.0	68.0	0.34	0.31	0.33	0.34	0.34	0.34	0.34	85.72	0.02	0.07	5.99
Nonane	3-Nov-05	4.0	0.35	0.32	0.30	0.32	0.32	0.32	0.32	0.32	80.08	0.01	0.05	8.87
Pentane	27-Oct-05	0.2	0.37	0.37	0.32	0.33	0.33	0.38	0.42	0.36	180.24	0.04	1110	1.82
Propykae	27-Oct-05	0.2	0.42	0.42	0.42	0.49	0.45	0.48	0.43	0.44	222.10	0.03	60:0	2.22
Styrene	3-Nov-05	4.0	0.29	0.25	0.24	0.24	0.25	0.24	0.24	0.25	62.11	0.02	90'0	7.16
1,1,1-Trichloroethane	3-Nov-05	0.4	0.38	0.36	0.33	0.35	0.35	0.34	0.37	0.35	88.55	0.02	90'0	6.81
1,1,2,2-Tetrachloroethane	3-Nov-05	0.4	0.38	0.32	0.31	0.31	0.32	0.31	0.33	0.33	81.49	0.02	0.07	5.56
1,1,2-Trichloroethane	3-Nov-05	4.0	980	0.34	0.33	0.30	0.31	0.32	0.35	0.33	82.86	0.02	0.07	5.96
1.2.4-Trichlorobenzene	3-Nov-05	0.4	0.32	020	0.15	0.10	0.10	0.12	0.08	0.15	38.29	80.0	0.26	1.51
1,2,4-Trimethylbenzene	3-Nov-05	0.4	0.31	0.28	0.27	0.26	0.28	0.27	0.27	0.28	69.34	0.02	0.05	L8.L
1,3,5-Trimethylbenzene	3-Nov-05	0.4	0.35	0.31	0.29	0:30	0.31	0.30	0.31	0.31	60.77	0.02	90'0	6.65
2.2.4-Trimethylpentane	3-Nov-05	0.4	0.39	0.35	0.33	0.34	0.35	0.34	0.36	0.35	87.54	0.02	0.07	5.76
Tertiary Butyl Alcohol	27-Oct-05	0.2	020	050	0.31	0.25	0.32	0.31	050	020	149.35	0.02	20.0	2.98
Te trachloroe thyle ne	3-Nov-05	0.4	98'0	0.33	020	0.34	0.34	0.33	0.34	0.33	82.84	0.02	90:0	7.20
Tetrahydrofuran	27-Oct-05	0.2	0.28	0.23	0.31	0.27	0.28	0.27	0.25	0.27	135.84	0.03	0.08	2.48
Toluene	4-Nov-05	0.2	0.23	0.19	0.21	0.21	0.21	0.20	0.22	0.21	104.98	0.01	0.03	66.5
Trichloroethylene	3-Nov-05	0.4	0.40	0.35	0.33	0.33	0.34	0.34	0.35	0.35	87.63	0.02	0.07	5.50
Trichlorofluoromethane	4-Nov-05	0.2	0.23	0.24	0.24	0.26	0.26	0.27	0.27	0.25	126.57	0.01	0.04	4,45
Vinyl chloride	4-Nov-05	0.2	0.24	0.25	0.26	0.28	0.28	0.28	0.29	0.27	133.89	0.02	90'0	3.14
Vinyl Acetate	27-Oct-05	0.2	0.18	0.22	0.18	0.19	0.18	0.22	0.21	0.20	98.51	0.02	0.06	3.40
m.pXylene	3-Nov-05	0.8	0.71	0.63	0.60	0.63	0.63	0.61	0.63	0.63	79.23	0.03	0.11	7.41
o-Xylene	4-Nov-05	0.2	0.17	0.16	0.16		0.17	0.16	0.15	0.16	89.08	0.01	0.02	8,45