

PERIODIC REVIEW REPORT for

June 15, 2022 – June 15, 2025 Reporting Period

Harbor Square
Ossining, Westchester County, NEW YORK

NYSDEC Site # C360091

prepared for:

Harbor Square Crossings, LLC 100 Summit Lake Drive, Suite 100 Valhalla, New York 10595

prepared by:

SESI CONSULTING ENGINEERS 959 Route 46E, Floor 3, Suite 300 Parsippany, New Jersey 07054

AUGUST 2025

Project No.: 07173

PERIODIC REVIEW REPORT

TABLE OF CONTENTS

LIST OF A	ACRONYMS	i	
1.0	INTRODUCTION	1	
1.1	SUMMARY	1	
1.2	EFFECTIVENESS OF REMEDIAL PROGRAM	2	
1.3	COMPLIANCE7		
1.4	RECOMMENDATIONS7		
2.0	SITE OVERVIEW		
2.1	SITE LOCATION AND DESCRIPTION		
2.2	SITE HISTORY		
2.2.1	REMEDIAL INVESTIGATION (RI) CONDUCTED AT THE SITE	.12	
	2.2.1.1 ON-SITE SOIL PRIOR TO REMEDIAL ACTION	. 15	
	2.2.1.2 ON-SITE AND OFF-SITE GROUNDWATER CONTAMINATION PRIOR TO REMEDIAL ACTION	15	
	2.2.1.3 ON-SITE AND OFF-SITE SOIL VAPOR CONTAMINATION PRIOR TO REMEDIAL ACTION	15	
2.2.2	DESCRIPTION OF REMEDIAL ACTIONS	16	
2.2.3	REMOVAL OF CONTAMINATED MATERIALS FROM THE SITE	. 18	
2.2.4	ON-SITE AND OFF-SITE TREATMENT SYSTEMS	.20	
	2.2.4.1 COMPOSITE COVER SYSTEM	.20	
	2.2.4.2 SUB-SLAB DEPRESSURIZATION SYSTEM	.21	
	2.2.4.3 SOIL-BENTONITE SLURRY WALL	.21	
	2.2.4.4 DNAPL RECOVERY SYSTEM	.22	
2.2.5	DESCRIPTION OF RESIDUAL CONTAMINATION	. 25	
2.2.6	MANAGEMENT OF RESIDUAL CONTAMINATION THROU	GH	
ENGI	NEERING AND INSTITUTIONAL CONTROLS IN THE ENVIRONMENT	ΓAL	
EASE	EMENT	.25	
3.0	REMEDY PERFORMANCE, EFFECTIVENESS, & PROTECTIVENESS		
4.0	IC/EC PLAN COMPLIANCE	31	
4.1	IC/EC REQUIREMENTS AND COMPLIANCE	.31	
4.2	IC/EC CERTIFICATION	34	

5.0	MONITORING AND COMPLIANCE	35
6.0	OPERATION AND MAINTENANCE PLAN COMPLIANCE	41
7.0	CONCLUSIONS AND RECOMMENDATIONS	43

TABLES

- TABLE 1.1 GROUNDWATER ANALYTICAL RESULTS (2007-2025)

 TABLE 1.2 GROUNDWATER GEOCHEMICAL PARAMETERS (2007-2025)
- TABLE 2.1 LIST OF SOIL CLEANUP OBJECTIVES
- TABLE 5.1 MONITORING PROGRAM FREQUENCY (embedded in PRR text)

APPENDICES

- APPENDIX A SITE MANAGEMENT PLAN (SMP) FIGURES
- APPENDIX B ARCADIS DOCUMENTATION FOR 2022-2025 REPORTING PERIOD
- APPENDIX C LABORATORY DATA PACKAGES
- APPENDIX D GROUNDWATER SAMPLING PURGE SHEETS
- APPENDIX E INSPECTION CHECKLIST
- APPENDIX F ENVIRONMENTAL EASEMENT
- APPENDIX G NYSDEC INSTITUTIONAL AND ENGINEERING CONTROLS
 CERTIFICATION FORM

LIST OF ACRONYMS

Acronym	Definition	
AST	Aboveground Storage Tank	
BCA	Brownfield Cleanup Agreement	
bgs	Below ground surface	
CCR	Construction Completion Report	
DNAPL	Dense Non-Aqueous Phase Liquid	
ECs	Engineering Controls	
EES	Emergency Environmental Services	
ICs	Institutional Controls	
LNAPL	Light Non-Aqueous Phase Liquid	
MGP	Manufactured Gas Plant	
MW	Monitoring Well	
NYSDEC	New York State Department of Environmental Conservation	
NYSDOH	New York State Department of Health	
OM&M	Operations, Maintenance, and Monitoring	
PRR	Periodic Review Report	
RA	Remedial Action	
RAWP	Remedial Action Work Plan	
RDD	Remedial Design Document	
RI	Remedial Investigation	
RIR	Remedial Investigation Report	
SCO	Soil Cleanup Objectives	
SESI	SESI Consulting Engineers, PC	
SMP	Site Management Plan	
SSDS	Sub-Slab Depressurization System	
SVOCs	Semi-Volatile Organic Compounds	
TAGM	Technical and Administrative Guidance Memorandum	
TOGS	Technical and Operations Guidance Series	
USEPA	United States Environmental Protection Agency	
UST	Underground Storage Tank	

Acronym	Definition
VI	Vapor Intrusion
VOCs	Volatile Organic Compounds

1.0 INTRODUCTION

1.1 SUMMARY

SESI Consulting Engineers (SESI) prepared this Periodic Review Report (PRR) for the period June 15, 2022 to June 15, 2025 for One Harbor Square, located at 1 Westerly Road, Village of Ossining (hereafter referred to as the "Site"). The Site was remediated in accordance with the Brownfield Cleanup Agreement (BCA) Index# A3-0566-1006, Site # C360091, which was issued on December 8, 2006. Remedial Action (RA) work on the Site began in June 2007 and was completed in December 2008. All reports associated with the Site can be viewed by contacting the New York State Department of Environmental Conservation (NYSDEC) Project Manager Caroline Jalanti in NYSDEC's Albany office or any successor Project Manager assigned to managing the Site's Environmental Easement. As noted in those reports, despite completion of the work described in the Remedial Action Work Plan (RAWP), some residual subsurface contamination remains at this Site (in accordance with the Track 4 remedy), which is hereafter referred to as "residual contamination." All Site Management Plan (SMP) figures are located in **Appendix A** of this report.

Most notably, a plume of viscous liquid coal tar material known as dense non-aqueous phase liquid (DNAPL) had continued to migrate onto the Site from an off-Site source. Consolidated Edison (ConEd) conducted an investigation of the nearby former manufactured gas plant (MGP) facility known as the Ossining Gas Works Site (MGP Site), pursuant to a Voluntary Cleanup Agreement (Site No. 360172) with the NYSDEC and identified as Operable Unit No. 3 (OU-3). At present, ConEd, through its consultant, Arcadis of New York, Inc. (Arcadis), has performed the work related to the DNAPL contamination on this Site under an agreement with the applicant.

In addition, since the Site housed a former petroleum tank farm, extensive soil excavation was required to remove petroleum-contaminated soil, some of which contained liquid phase petroleum, known as light non-aqueous phase liquid (LNAPL). Once petroleum sources are removed from a site (as has occurred at this Site), natural attenuation or natural degradation of the residual petroleum compounds does occur, and it is likely at some point in the future that the non-DNAPL portions of the Site can achieve the Track 1

cleanup levels. Until that time, the primary treatment method on the Site consists of containment methods.

SESI has inspected and will continue to inspect the composite cover system and has completed inspection of the sub-slab depressurization system (SSDS), gauging of the monitoring and recovery wells (subsequently conducted by ConEd's consultant, Arcadis for the recovery wells resuming in the 2024 period), and groundwater sampling of MW-2A and MW-7A.

The institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Westchester County Clerk, requires compliance with this SMP and all ECs and ICs placed on the Site. The ICs place restrictions on Site use and mandate operation, maintenance, monitoring, and reporting measures for all ECs.

This PRR reports the required inspection and monitoring activities that were conducted during the current reporting period. The inspection and monitoring were conducted to confirm compliance with all ECs and ICs required by the Environmental Easement and as stated in the SMP as approved by the NYSDEC.

1.2 EFFECTIVENESS OF REMEDIAL PROGRAM

As described above, residual contamination remains on the Site, which has been managed according to the requirements in the SMP to keep the Site safe for commercial and residential reuse.

ConEd's consultant, Arcadis, had previously performed quarterly DNAPL gauging and recovery activities. It is noted that the recovery activities were changed to a quarterly basis at the beginning of 2011 with the concurrence of NYSDEC. The purpose of the quarterly recovery events was to improve the recovery of the DNAPL, determine the rate of DNAPL recovery, maximize the recovery of the DNAPL and determine the need for an automated DNAPL recovery system. During each recovery event, gauging of the five (5) recovery wells for the presence of DNAPL was completed.

Arcadis, on behalf of ConEd, had ceased conducting quarterly gauging of the deep monitoring/recovery wells (MW-A, MW-B, MW-C1, and MW-C2) as well as quarterly DNAPL recovery efforts at MW-D during the 2019 reporting period; specifically, the gauging and evacuation/recovery efforts were ceased in the first quarter of 2019. Subsequently, Arcadis had submitted an initial Construction Completion Report (CCR), titled "OU-3 DNAPL IRM Construction Completion Report" and dated June 2019, to the NYSDEC for its review and formal determination. Based on review of the CCR, the DNAPL evacuation events were ceased in March of 2019 due to the presence of trace or no quantity of recoverable DNAPL detected in the deep monitoring/recovery wells.

On October 14, 2022, the NYSDEC issued a response to the Arcadis June 2019 CCR, which did not agree with Arcadis's recommendation for discontinuation of the OU-3 DNAPL monitoring and recovery efforts. The NYSDEC indicated that efforts be taken to first redevelop recovery wells RW-A and RW-D to encourage flow into the wells and to subsequently resume the DNAPL monitoring/recovery efforts on a quarterly basis. The NYSDEC requested that a revised CCR be submitted incorporating the NYSDEC's comments.

In November 2022, Arcadis submitted their revised CCR for the Site, which incorporated the NYSDEC comments for redevelopment of RW-A and RW-D and the resumption of DNAPL monitoring/recovery efforts on a quarterly basis. Arcadis recommended the events be performed for one (1) year, after which time, a report will be submitted with their findings and recommendations. On November 22, 2022, the NYSDEC issued a response to the Arcadis November 2022 Revised CCR, which approved the document; however, it was noted that the NYSDEC typically requests to see at least eight (8) quarters with no DNAPL present prior to concurring with a recommendation for decommissioning.

During SESI's annual inspection events, SESI gauged the existing monitoring and recovery wells at the Site for the presence of DNAPL; however, it should be noted that Arcadis gauged the recovery wells during the 2024 annual period, which also included well redevelopment efforts for recovery wells RW-A and RW-D in September 2024 and then quarterly gauging events afterward. A slight sheen was observed on the tip of the interface probe at locations RW-A and RW-D, which were reported as none/trace DNAPL

in field reporting. No measurable thickness of DNAPL was detected in any of the wells, and as a result no DNAPL recovery was required.

On October 25, 2024, the NYSDEC requested that ConEd prepare a DNAPL Recovery Well Rehabilitation Work Plan (RWRWP) for further evaluation and rehabilitation of recovery well RW-D located at the Site. An initial RWRWP was submitted to the NYSDEC on November 22, 2024, but agency comments presented in correspondences to ConEd on January 14, 2025 and March 26, 2025 yielded the submission of a revised RWRWP to the NYSDEC on April 10, 2025. ConEd's revised RWRWP recommended that based on a review of recovery well development efforts that were implemented during September 2024, recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL.

Relevant documentation associated with Arcadis' work for the 2022-2025 period is provided in **Appendix B**.

Table 1.1 provides a tabular summary of the current groundwater monitoring results and **Table 1.2** provides a tabular summary of current groundwater geochemical parameters with a side-by-side comparison with the results of the 2007-2025 sampling events. In 2016, SESI requested of NYSDEC that metals analyses be eliminated from the requirements of the annual groundwater sampling protocol outlined in the SMP. This was requested on the basis that exceedances for metals constituents have been reduced dramatically or were non-existent in recent annual sampling events, and in addition, metals were not addressed as contaminants of concern associated with historic activities conducted by ConEd. This change in the sampling regime was approved by the NYSDEC on April 28, 2016. NYSDEC correspondence related to the confirmation of the removal of metals analyses from the annual groundwater sampling protocol for the Site was provided in previous PRR reporting.

A correspondence letter from the NYSDEC to the Owner, dated August 8, 2016, indicated a reduction in frequency for the required submittal of a PRR from an annual to a triennial basis. A copy of the NYSDEC PRR frequency change correspondence was provided in previous PRR reporting. SESI has continued to submit annual letter report updates to the

NYSDEC in July from 2017 to 2024 for the performance of operations, maintenance, and monitoring (OM&M) activities that were completed at the Site.

For the 2022-2025 period, SESI continued to annually monitor the remedial ECs at the Site, which include the following: Performance of an annual site inspection of the ECs, annual groundwater sampling of the on-Site monitoring well network, and gauging of the on-Site DNAPL monitoring and recovery wells (recovery well gauging completed by SESI in 2022 and 2023, followed by Arcadis in 2024). These tasks were completed pursuant to the updated December 2016 SMP, submitted to the NYSDEC on December 28, 2016, and subsequent NYSDEC determinations issued thereafter as provided in previous PRR submissions and their approvals. This PRR presents a summary of these annual monitoring tasks for the Site for the June 15, 2022, to June 15, 2025 reporting period as also reported in our annual letter report updates that were submitted intermittently.

Based on a review of the results of the 2023, 2024, and 2025 groundwater sampling and testing events, it appears that the levels for most of the constituents have continued to trend towards the reduction in overall contaminant concentrations or remained at similar levels observed from previous sampling events.

No VOC exceedances were identified in any of the sampled monitoring wells. Notably, Benzene, which had previously been detected at 12 parts per billion (ppb) in the 2020 sampling event at MW-2A, was reported at a reduced, oscillating level between 0.26 ppb to 0.62 ppb during the 2022-2025 reporting period. SVOC exceedances to NY TAGM levels continue to be noted: Acenaphthene in MW-7A was identified at 27 ppb in 2023, which slightly increased to a concentration of 34 ppb in 2024 and then reduced to 23.4 in 2025. MW-7A remains to be the only monitoring well on-Site exhibiting an oscillating trend of Acenaphthene concentrations above NY TAGM levels detected over time, as natural attenuation patterns were more readily observed in the other monitoring wells with historical detections for Acenaphthene. NY TAGM exceedances of other select polycyclic aromatic hydrocarbons (PAHs) were detected in MW-7A at lower concentrations during the 2022-2025 reporting period compared to previous years. The PAH exceedances identified in MW-2A during the 2023 event were shown to decrease to below the NY TAGM levels during the 2024 and 2025 sampling events. It was noted that a standalone NY

TOGS (but below NY TAGM) exceedance was detected for Bis(2-Ethylhexyl)phthalate in the 2025 sampling event in MW-2A; however, Bis(2-Ethylhexyl)phthalate is a known plasticizer in PVC manufacturing and its detection is most likely attributed to originate from the monitoring well PVC construction and not from historical contaminants of concern at the Site. The 2022-2025 reporting period groundwater sample testing events indicate that overall, natural attenuation continues to trend toward an effective reduction of groundwater contaminant levels at the Site, with the exception of Acenaphthene which has exhibited an oscillating trend throughout the years, as previously noted. Subsequent sampling events should be monitored closely and evaluated for any increasing or decreasing trends. The laboratory analytical reports for the 2022-2025 reporting period groundwater sampling events are provided in **Appendix C**. Associated groundwater purge sheets are provided in **Appendix D**.

In order to monitor the effectiveness of the SSDS and to assess the vapor intrusion, investigations had been performed during the 2016-2017 and 2017-2018 heating seasons across the occupied buildings on Site following construction completion. Exceedances of the NYSDOH Decision Matrices Values, dated May 2017, were not identified in either event. Per the request of the NYSDEC, SESI remobilized to the Site on March 23, 2022 to conduct additional vapor intrusion sampling and testing for another evaluation of the SSDS effectiveness. Four (4) sub-slab sampling ports located in the residential, restaurant, and kiosk buildings were sampled. In addition, four (4) concurrent indoor air samples were collected in close proximity to each sub slab sample. The sub-slab sampling ports were purged with a low flow pump prior to sample collection. Six (6) liter Summa canisters with a 24-hour sample collection duration were used for both indoor air and subslab samples. After sample completion, the Summa canisters were delivered under chain of custody to SGS North America Inc, a NELAP-certified laboratory, for analysis of EPA method TO-15. Both indoor air and sub slab samples were collected in accordance with the NYSDEC "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006. Based on a review of the results of the 2022 sub-slab and indoor air testing event, exceedances to the NYSDOH Vapor/Indoor Air Matrices, dated May 2017, were not identified. Lab reports associated with the vapor and indoor air sampling were included in SESI's 2022 PRR submittal accepted by the NYSDEC on September 8, 2022.

1.3 COMPLIANCE

SESI completed the groundwater sampling and DNAPL gauging for the 2022-2025 reporting period (Arcadis resumed DNAPL gauging of the on-Site recovery wells in 2024, as previously noted). SESI completed an inspection of the composite cover system and components of the SSDS on July 30, 2025 to verify the integrity of the ECs in accordance with the Inspection Checklist provided in **Appendix E**. SESI and Arcadis did not identify the presence of measurable DNAPL in the monitoring and recovery wells during the sitewide gauging events during the 2022-2025 reporting period. Monitoring and recovery wells were observed to be intact and in good condition. As previously discussed, the results of the groundwater sampling for the 2022-2025 reporting period were consistent with previous sampling events. During the Site annual inspections, the integrity of the composite cover system was intact, although it was noted in 2024 that several areas along the bank of the Hudson and Sing Sing Kill exhibited minor soil erosion that had revealed portions of the geotextile demarcation barrier fabric underlying the existing riprap. No disturbances to the cover system were identified, but SESI had notified property management to properly redress the affected areas to mitigate the geotextile exposure. The 2025 engineering control inspection confirmed the affected areas were successfully covered with redistribution of the existing on-Site riprap, and the areas remain intact and restrengthened for erosional protection. A review of the on-Site maintenance records did not indicate any invasive subsurface work or soil export/import completed since the last reporting period. No product seepage was observed along the adjacent Hudson River and Sing Sing Kill.

The SSDS is operating as designed. Deficiencies or damages were not observed in the SSDS components or the concrete slab above the SSDS. On-Site maintenance records did not identify issues with the SSDS since the last reporting period. SSDS is working properly as designed.

1.4 RECOMMENDATIONS

SESI has verified that the ECs and ICs developed for the Site are in compliance with the SMP. We recommend that the composite cover system inspection, SSDS inspection, groundwater sampling of MW-2A and MW-7A, and DNAPL gauging of the well network continue on an annual basis, with the exception of the recently resumed DNAPL gauging

August 2025 SESI Project No. 07173 Page **8** of 44

and monitoring by ConEd on a quarterly basis for the DNAPL recovery wells (resumed since September 2024). Furthermore, SESI awaits the NYSDEC's response to ConEd's revised RWRWP submitted to the NYSDEC on April 10, 2025, which recommended that based on a review of recovery well development efforts that were implemented during September 2024, recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL. All other aspects of the monitoring program should remain at the frequency listed in Table 5.1 of this report.

2.0 SITE OVERVIEW

2.1 SITE LOCATION AND DESCRIPTION

The Site is located in the County of Westchester, New York, and is identified as Section 3, Block 4 and Lots 5, 6 and 7A on the Village of Ossining Tax Map. The Site is an approximately 4.551-acre area bounded by Sing Sing Kill to the north, a marina to the south, Westerly Road and the Metro North railroad tracks and a large commuter lot to the east, and the Hudson River to the west (see Figures 1 and 2 in **Appendix A**).

The boundaries of the Site are more fully described in **Appendix F** (Environmental Easement and Survey of the SMP).

2.2 SITE HISTORY

<u>Danzeisen Parcel</u>

The Danzeisen parcel is located farthest north on the Site. The property, in 2002, contained a two-story brick office building, attached metal garage, an exterior parking area and a small fishing shack on the southwest corner near the Hudson River. Five (5) petroleum spills associated with this parcel have been reported to the NYSDEC. These spills occurred during the period that the Site was operated as a bus storage and maintenance facility.

Emergency Environmental Services of Ossining, New York (EES) removed two (2) 5,000-gallon underground storage tanks (USTs). Subsequently, EES installed a groundwater extraction and treatment system that utilized wells on all three (3) parcels associated with the Site, which had been installed by Maue Oil. This system was operated until 1993.

In 1989, spills associated with the failure of two (2) 4,000-gallon USTs, as demonstrated by the tank tightness testing, were reported. Subsequently, EES removed the two (2) 4,000-gallon USTs.

In 1996, GZA GeoEnvironmental, Inc. completed additional subsurface investigation, disposed of four (4) aboveground storage tanks (ASTs), various drums/containers and cleaned the catch basins, sumps and oil/water separators on the Site.

The Flavor Sciences Chemical Manufacturing Parcel

This Parcel is located between the Danzeisen Parcel, which is located farthest north on the Site, and the Maue Oil Parcel located farthest south on the Site. From about 1982 through 1999, this parcel was associated with the chemical manufacturing operations for production of fragrances and flavoring. This parcel is listed as both a Resource Conservation and Recovery Act hazardous waste generator and as a manufacturer and importer of Toxic Substances Control Act chemicals.

The 1971 Sanborn Maps indicate the presence of an area for storage of laboratory materials. However, 1996 was the first year in which there are records indicating that the facility regulated the disposal of waste (approximately 1,000 gallons).

In 2002, this parcel contained a two-story office/manufacturing/storage building, where numerous 55-gallon storage drums and other containers containing various chemicals were located.

The Maue Oil Company Parcel

The Maue Oil Company, which is located to the south of the other two (2) parcels, has been operating from at least 1949 as indicated by the Sanborn Maps. The property at that time contained seven (7) ASTs ranging in size from 50,000 gallons to 300,000 gallons. These ASTs were removed around 1989 as indicated by the aerial photographs.

The former office building and garage from the Maue Oil Company remained on the property in 2002 and were being utilized by the Village of Ossining Department of Public Works for vehicle storage. There were two (2) 275-gallon fuel oil ASTs and one (1) 275-gallon fuel oil UST on this parcel. The UST was removed on June 15, 1999 as part of the Phase II investigation. An active well recovery system was installed in the late 1980s to address the discharge of petroleum products.

Past Uses and Ownership

The portion of the Site known as the Danzeisen parcel is located in the northern portion of the Site. This property was previously utilized as/by:

- a coal and lumber yard (Miller and Holden Coal and Wood Co.)
- a grain mill (Crow and Williams Grain Mill)
- a machine shop (Koeppel Metal).
- a bus storage and maintenance facility (Laid Law Transit).

The portion of the Site known as the Flavor Sciences parcel is located in the central portion of the Site. This property was previously utilized as/by:

- Jenks Dock
- Benling Fuel and Supply Co.
- Flavor Sciences Chemical Manufacturing

The portion of the Site known as the Maue Oil Company parcel is located at the southern end of the Site. This part of the Site was previously utilized as/by:

- a coal and lumber yard (Washburn and Todd Coal and Lumber Co.), as depicted on the 1903 and 1924 Sanborn Maps.
- Maue Oil Company, as depicted on the 1949 Sanborn Map
- a storage place for vehicles belonging to the Village of Ossining Department of Public Works

Phase I and Phase II Reports

CA Rich Consultants, Inc. completed a Phase I Environmental Site Assessment Report, dated February 1999. The findings associated with this report are summarized in the above section as they relate to the past Site usages and the potential for these operations to have impacted the media at the Site.

CA Rich Consultants, Inc. performed a Phase II investigation on the Site between June 14, 1999 and June 29, 1999. The Phase II investigation consisted of removal of a 275-gallon UST from the Maue parcel; advancing 22 soil borings; collection of four (4) surface and five (5) subsurface soil samples; installation of three (3) monitoring wells; sampling of

the three (3) new and five (5) existing monitoring wells; and collection of four (4) soil gas samples from within the footprint of the proposed buildings.

The Phase II investigation results indicated that surface soil at some locations was impacted with a combination of semi-volatile organic compounds, polychlorinated biphenyls, and metals at concentrations that exceeded the applicable cleanup objectives. Subsurface soils are impacted with low levels of SVOCs and metals throughout the Site. Groundwater quality beneath the Flavor Sciences and Danzeisen parcels is impacted with petroleum compounds. VOCs and methane were detected in the soil gas on the Site.

Ecosystems advanced 26 borings to supplement data included in the RAP developed by CA Rich. Both petroleum and metals contamination were documented.

2.2.1 REMEDIAL INVESTIGATION (RI) CONDUCTED AT THE SITE

The PRR and all Site documents, including the Remedial Investigation Report, RAWP, Final Engineering Report and the SMP, are maintained in the Region 3 offices of the NYSDEC (or successor agency). These reports could also be found at the NYSDEC offices in Albany, New York at the time of publication.

The findings of the Remedial Investigation (RI) activities completed at the Site are documented in the following reports:

- Remedial Investigation Report, dated March 2007, prepared by S&W Redevelopment of North America
- Addendum Remedial Investigation Report, dated June 19, 2007, prepared by SESI

On-Site Findings

Several source areas associated with discharges from former USTs and ASTs were identified. These discharges impacted soil and groundwater in their vicinity. The impacts were primarily heating oil/diesel LNAPL and petroleum-related VOCs/SVOCs. Vertical downward migration of the groundwater impacts is restricted by the presence of clayey confining strata at depths ranging from about 12 to 29 ft bgs.

Off-Site Findings

Based on the results of the investigation performed, the groundwater impacts associated with the on-Site sources were determined to have not migrated off-Site and have not impacted the Hudson River and Sing Sing Kill, which form the western and northern boundaries, respectively, of the Site. However, DNAPL and associated VOC/SVOC groundwater impacts from an off-site source (former Ossining Gas Works manufactured gas plant [MGP Site], for which ConEd is the responsible party), located approximately 700 feet northeast of the Site, have impacted the northeastern part of the Site. An underground slurry wall was constructed as part of the RA to contain all DNAPL in the northeastern portion of the Site, and to prevent any migration toward the Hudson River (see Figure 4A in **Appendix A**). ConEd has agreed to perform DNAPL recovery (i.e., removal) work and long-term monitoring of remaining residual DNAPL levels over time and to report these levels to the State in an annual certification report, which can be relied on by the Applicant or the Applicant's successors or assigns and operator's Engineer of Record in its Annual Site Management Report related to the remaining ECs and ICs on the Site.

Description of Areas of Concern Requiring Remediation

<u>USTs</u>

Six (6) USTs were identified at the Site. The following are the associated capacities and contents:

UST#	<u>Capacity</u>	Contents
T-1	1,000 gallons	#2 Fuel Oil
T-2	3,000 gallons	#2 Fuel Oil
T-3	550 gallons	#2 Fuel Oil and Transmission Fluid
T-4	550 gallons	Mineral Spirits
T-5	10,000 gallons	Diesel Fuel
T-6	2,000 gallons	Mineral Spirits/Trace # 2 Fuel Oil

Separate Phase Contaminant Enclaves

Petroleum LNAPL

There were a total of six (6) areas where petroleum LNAPL was observed during investigations completed to date. Each of these six (6) areas was excavated and the LNAPL removed from the Site during the implementation of the Remedial Action.

Coal Tar-Related DNAPL

DNAPL, migrating onto the Site from the *off-Site* source area, was initially encountered in the northeastern corner of the Site. The DNAPL plume was subsequently delineated and was found to extend about 240 feet to the south, 140 feet west and extends below Westerly Road in the vicinity of former monitoring well MW-1A. (See Figure 4A in **Appendix A**). This DNAPL is believed to have originated at the former Ossining Works Manufactured Gas Plant Site (MGP Site) located upgradient of this Site. ConEd has entered into a multi-site Voluntary Cleanup Agreement with NYSDEC to investigate and remediate MGP Sites and any off-site migration associated with them. Several borings and monitoring wells have been installed by ConEd, at various on/off-Site locations, to investigate the relationship between the on-Site DNAPL impacts and the former MGP operations. ConEd will continue the investigation and DNAPL recovery at Harbor Square, and ultimately will use these results to develop Remedial Alternatives that address the former MGP and any off-Site impacts.

Recorded Spills

Up to five (5) different spills associated with the Danzeisen Parcel were reported. Spills Nos. 8705940 and 8705664 are associated with surface discharges of diesel fuel that occurred in 1987, from two 5,000-gallon diesel fuel USTs. Spills Nos. 8901436 and 8903284 are associated with the failure of two 4,000-gallon USTs, reported in 1989, as demonstrated by their tank tightness testing.

Two (2) known spills associated with the Maue Oil parcel have been reported. Spill No. 8712000 is associated with discharge of petroleum products. Spill No. 0603742 was reported by JM Associates (JMA) on July 5, 2006 and was subsequently closed by NYSDEC on June 14, 2007.

Additionally, Spill No. 0602368 was reported by JM Associates on June 1, 2006, in connection with the discovery of free product and was also closed by NYSDEC on June 14, 2007.

Historic Fill

Historic fill is present throughout the Site and extends to depths ranging between 12 to 22 feet below ground surface.

Below is a summary of Remedial Investigation findings:

2.2.1.1 ON-SITE SOIL PRIOR TO REMEDIAL ACTION

Fill and the underlying native shallow soils at the Site are impacted by discharges associated with historical operations. Also, soils at relatively greater depths are impacted with discharges from the off-Site former MGP Site.

2.2.1.2 ON-SITE AND OFF-SITE GROUNDWATER CONTAMINATION PRIOR TO REMEDIAL ACTION

The groundwater at the Site is impacted above the groundwater standards. The relatively high concentrations associated with these impacts are generally confined to the northeastern part of the site where the DNAPL is present. Based on the investigation results, the groundwater impacts were determined to have not migrated off-Site. The groundwater impacts are being monitored by an existing monitoring well network.

2.2.1.3 ON-SITE AND OFF-SITE SOIL VAPOR CONTAMINATION PRIOR TO REMEDIAL ACTION

On-Site Soil Vapor Contamination

Soil vapor samples were collected along the eastern boundary and the southern part of the Site. The analytes detected in the soil vapor samples, with the exception of the chlorinated compounds, were consistent with known discharges/sources of contamination. None of the analytes (i.e., methylene chloride, tetrachloroethene and

trichloroethene) for which a NYSDOH Air Guideline Value exists have exceeded the applicable guidance value.

2.2.2 DESCRIPTION OF REMEDIAL ACTIONS

The Site was remediated in accordance with the scope of work presented in the NYSDECapproved Remedial Action Work Plan dated April 2007 and the Addendum Remedial Action Work Plan, dated June 22, 2007.

Below is a summary of the Remedial Actions that were required, and have been implemented at the Site to make the Site protective of public health and the environment for reuse as intended:

- Removal of USTs, excavation of grossly impacted soil/fill and removal of groundwater impacted with free-phase/residual LNAPL and soil/fill impacted at levels that significantly exceeded the applicable Track 2 soil cleanup objectives (SCOs);
- 2. Construction and maintenance of an engineered composite cover consisting of a "clean" soil "cover/cap" in landscaped areas to prevent human exposure to residual contaminated soil/fill remaining under the Site;
- Construction and maintenance of an engineered composite cover consisting
 of asphalt covered roads, concrete covered sidewalks and concrete building
 slabs to prevent human exposure to residual contaminated soil/fill remaining
 under the Site;
- 4. Recording of an Environmental Easement to prevent future exposure to any residual contamination remaining at the Site.
- 5. Installation of an SSDS associated with the residential, restaurant, and kiosk building.
- 6. A subsurface soil-bentonite "slurry wall" has been constructed west of the edge of the DNAPL plume to prevent further migration of the DNAPL (encountered in the northeastern and eastern parts of the Site) associated with ConEd's former MGP site so that it will not reach the Hudson River or Village-owned publicly accessible land along the river. The former Ossining Gas Works MGP site is located upgradient and is about 700 feet northeast of the Site.
- 7. A DNAPL recovery well system was installed at the Site. A study to evaluate the DNAPL well yield was commenced by Harbor Square, LLC and completed

- by ConEd. Based on the results of this evaluation, the installation of an automated DNAPL recovery system may be required by NYSDEC. Regardless of the final remedy for the DNAPL, ConEd has agreed to assume all responsibility for the ongoing DNAPL recovery work.
- 8. Two (2) additional precautionary monitoring/recovery wells, MW-B and MW-C2, have been installed at both ends of the subsurface slurry wall to ensure that DNAPL does not migrate around the corners of the wall. These wells are being monitored by ConEd's consultant, Arcadis.
- Screening for indications of contamination (by visual means, odor, and monitoring with a photoionization detector) and soil management of all excavated soil during all intrusive site work in compliance with the Soil Management Plan contained in Section 2.3.2 of the SMP;
- 10. Collection and analysis of end-point samples to evaluate the performance of the remedy with respect to attaining Track [4] SCOs.
- 11. Off-Site disposal of all material removed from the Site in accordance with all Federal, State and local rules and regulations for handling, transport, and disposal;
- 12. Import of materials to be used for backfill and cover in compliance with: (1) Commercial and Protection of Groundwater SCO standards; and (2) compliance with all Federal, State and local rules and regulations in handling and transport of material;
- 13. All responsibilities associated with the Remedial Action, including permitting requirements and pretreatment requirements, addressed in accordance with all applicable Federal, State and local rules and regulations.
- 14. A SMP for long-term management of residual contamination as required by the Environmental Easement, which includes plans for: (1) Operation and maintenance of the Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance oversight; and (4) reporting;

These Remedial Actions were conducted in accordance with the NYSDEC-approved RAWP for Harbor Square, dated April 2007 and the Addendum RAWP, dated June 22, 2007. Any deviations from the RAWP are noted below.

2.2.3 REMOVAL OF CONTAMINATED MATERIALS FROM THE SITE

The goal of the remedial operations at the Site was to remove all the non-DNAPL and petroleum source areas (i.e., residual and free-phase product). With respect to the DNAPL, Harbor Square, LLC installed the slurry wall and one (1) of the recovery wells (MW-A) and began the DNAPL recovery effort. The obligation to perform the DNAPL work remains that of the Applicant, who will be responsible to perform this work. Following the evacuation of MW-A in November 2012, recovery activities in this well were discontinued due to the continued decline of DNAPL product during the previous recovery events. ConEd performed the work related to the DNAPL contamination on this Site, under an agreement with the Applicant. The DNAPL recovery efforts then consisted of quarterly recovery events with evacuations from MW-D, which is adjacent to the northeast portion of the site in Westerly Road. The goal of the long term DNAPL remedy is physical removal of the DNAPL through recovery from one (1) well - MW-D - which was periodically pumped until such time as Track 1 SCOs are achieved, and monitoring in the four (4) additional wells – MW-A, MW-B, MW-C1, and MW-C2 - on either side of the slurry wall. In the unlikely event that DNAPL migrates toward these four (4) wells, recovery pumping would be commenced in these four (4) wells.

As previously discussed, Arcadis on behalf of ConEd ceased DNAPL evacuation events in March of 2019 due to the presence of trace or no quantities of DNAPL detected in the deep monitoring/recovery wells; however, at the request of the NYSDEC, Arcadis conducted redevelopment of recovery wells MW-A and MW-D in September 2024 and resumed quarterly gauging (and DNAPL evacuation, if necessary) of the on-Site recovery wells thereafter. Refer to Section 1.2 of this report for further details. Removal of contaminated well purge water during the September 2024 redevelopment event was containerized and properly disposed of off-Site.

Additionally, the overall Site remedy was designed to ensure that residual soil contamination that remains on-Site in fill materials under the one-foot clean soil cap does not significantly exceed the more stringent of the applicable Track 2 Commercial or Protection of Groundwater Restricted Use Soil Cleanup Objectives [Part 375-6.8(b)]. A list of the Track 2 SCOs compared to the Site-specific data for this project is shown in **Table 2.1**. The composite cap cover system prevents exposure to any of these remaining

fill materials. However, if future excavation occurs, the Soils Management Plan in Section 2.3.2 of the SMP must be followed before the work can proceed.

Five (5) USTs (T-1, T-2, T-3, T-4 and T-6) were removed between June 9, 2007 and October 5, 2007. During the USTs removals, sludge from the USTs, visibly contaminated soil and floating free-phase product associated with the UST excavation were removed and disposed off-Site in accordance with the applicable regulations.

A total of six (6) LNAPL extraction wells were installed to address the LNAPL impacts. Free-phase floating product was skimmed periodically (at least once every week for a month). An estimated 125 gallons of LNAPL was disposed of off-Site. Also, soil in the vicinity of the LNAPL wells that was visibly impacted with product was removed and disposed of off-Site.

Also, piping, likely associated with the former oil storage tanks, was uncovered during testpit excavation activities completed during the same period. The test pits were excavated to evaluate anomalies detected during the magnetometer survey. Free-phase product and impacted soil encountered in this area was removed and disposed of off-Site in accordance with the applicable regulations.

Prior to the 2022-2025 reporting period, drilling mud and development water associated with recovery well MW-A and DNAPL periodically bailed from the same well were drummed and disposed of off-Site. A total of 25 drums had been disposed of off-Site. Furthermore, an estimated 2,159 tons of contaminated soil and 11,983 gallons of impacted groundwater were disposed off-Site by JMA at Deep Green of New York, Inc., New Windsor, NY and Enviro Waste Oil Recovery LLC facility located at 279 Route 6, Mahopac, New York (NYSDEC permit number 3-2720-00155-00003, EPA ID Number NYD044825636), respectively.

During the 2022-2025 reporting period, ConEd conducted redevelopment of recovery wells RW-A and RW-D in September 2024, which resulted in the generation and containerization of approximately 125 gallons of groundwater into drums that were properly disposed offsite on October 4, 2024.

2.2.4 ON-SITE AND OFF-SITE TREATMENT SYSTEMS

Since Track 1 unrestricted SCOs were not yet achieved as a result of the remedial actions performed to date, long-term "treatment" methods are required to address the residual impacts at the Site until such time as the Track 1 SCOs are achieved. Once petroleum sources are removed from a site, such as has occurred at this Site, natural attenuation or natural degradation of the residual petroleum compounds does occur, and it is likely at some point in the future the non-DNAPL portions of the Site can achieve the Track 1 cleanup levels. Until that time, the primary treatment method on the Site consists of These are: (1) a composite cover system consisting of containment methods. asphalt/brick paver covered roads, brick paver covered sidewalks, concrete building slabs, a "clean" one (1) foot soil "cover/cap" in vegetated or landscaped areas, and a "clean" two (2) foot soil "cover/cap" in active recreation areas; and (2) the sub-slab depressurization/venting system in all buildings. For the DNAPL-impacted portions of the Site in the northeastern section, the soil-bentonite slurry wall is containing the material and an active DNAPL recovery system will continue to remove the material. The obligation to perform the DNAPL work remains that of the Applicant, who will be responsible to perform this work. ConEd ceased DNAPL evacuation events in March of 2019 due to the presence of trace or no quantities of DNAPL detected in the deep monitoring/recovery wells, but DNAPL monitoring was resumed in September 2024 as previously discussed in Section 1.2 of this report.

2.2.4.1 COMPOSITE COVER SYSTEM

Exposure to residual contaminated soils is prevented by an engineered, composite cover system that has been built on the Site. This composite cover system is composed of concrete slabs associated with the buildings, brick paver walkways, asphalt and brick paver roads, and a "clean soil cover" (underlain by a demarcation geotextile from Propex GT- 351) over a majority of the Site. Figure 5 in **Appendix A** shows the NYSDEC-approved design for each remedial cover type used on this Site. Figure 6 in **Appendix A** shows the location of each cover type built at the Site. A Soil Management Plan is included in Appendix 4 of the SMP and outlines the procedures required in the event the composite cover system and underlying residual fill soils are disturbed. The Soil Management Plan

is also discussed in detail in Section 2.3.2 of the SMP. Any issues related to maintenance of this cover are provided in the Monitoring Plan included in Section 4 of the SMP.

2.2.4.2 SUB-SLAB DEPRESSURIZATION SYSTEM

Installation of the SSDS has been completed for all of the proposed buildings: the residential, restaurant, and kiosk building. The system is currently operating as passive, with the capability of being turned active if warranted. SSDS plans were provided in the SMP. Vapor intrusion (VI) investigations were performed during the 2016-2017 and 2017-2018 heating season across the occupied buildings on Site following construction completion. Exceedances of the NYSDOH Decision Matrices Values, dated May 2017, were not identified in either event. However, per the request of the NYSDEC and NYSDOH, an additional third VI event was performed in March 2022.

Per the request of the NYSDEC, SESI remobilized to the Site on March 23, 2022 to conduct additional vapor intrusion sampling and testing for another evaluation of the SSDS effectiveness. Four (4) sub slab sampling ports located in the residential, restaurant, and kiosk building were sampled. In addition, four (4) concurrent indoor air samples were collected in close proximity to each sub-slab sample. The sub-slab sampling ports were purged with a low flow pump prior to collection of the samples. Six (6) liter Summa canisters with a 24-hour sample collection duration were used for both indoor air and sub-slab samples. After sample completion, the Summa canisters were delivered under chain of custody to SGS North America Inc, a NELAP certified laboratory, for analysis of EPA method TO-15. Both indoor air and sub-slab samples were collected in accordance with the NYSDEC "Guidance for Evaluating Soil Vapor Intrusion in the State of New York," dated October 2006. Based on a review of the results of the 2022 sub-slab and indoor air testing event, exceedances to the NYSDOH Vapor/Indoor Air Matrices, dated May 2017, were not identified. Lab reports associated with the vapor and indoor air sampling were included in SESI's 2022 PRR submittal accepted by the NYSDEC on September 8, 2022.

2.2.4.3 SOIL-BENTONITE SLURRY WALL

In accordance with the Remedial Design Document (RDD), dated August 29, 2007, and approved by NYSDEC on September 10, 2007, the slurry wall, constructed of a soil-bentonite mixture, was installed west of the DNAPL plume to prevent any further migration

of the DNAPLs encountered in the northeastern part of the Site (originating from an off-Site source associated with former ConEd operations). The slurry wall was constructed by Moretrench located at 100 Stickle Avenue, Rockaway, New Jersey.

Construction activities associated with the slurry wall started around October 22, 2007 and finished by October 30, 2007. A three-foot-wide slurry trench was excavated from the ground surface to depths of about 21 to 24 feet below existing grade (bottom elevations of the wall ranging between -15 msl to -19 msl). The slurry wall extends at least about two (2) feet into the underlying clayey confining unit. Samples collected during the course of the slurry wall construction indicate that the design permeability of less than 10⁻⁷ cm/sec was achieved in accordance with the design details.

2.2.4.4 DNAPL RECOVERY SYSTEM

Harbor Square installed the slurry wall, installed the first DNAPL recovery well (MW-A), and performed several rounds of recovery work. SESI observed the installation of DNAPL recovery well MW-A. This recovery well, 8 inches in diameter and 32.5 feet deep, was installed in the northeastern corner of the Site, in the vicinity of monitoring wells MW-1 and MW-1A. The location of the installed recovery well is depicted on Figure 2 in **Appendix A**. Installation of one (1) additional recovery well (MW-D) was attempted in several locations in the vicinity of MW-2, but it did not encounter DNAPL. During a Site visit by the NYSDEC on December 6, 2007 and documented in an email on the same date, the NYSDEC agreed at that time that this second recovery well was not required.

In accordance with the RDD approved by the NYSDEC, a sump about three (3) feet deep was installed at the bottom of the well. The sump extends into the clayey confining strata encountered at a depth of about 29.5 feet bgs. A PVC screen with slot sizes of 0.020 inches extended from about 19.5 feet to 29.5 feet bgs. A solid PVC riser extended from the ground surface to 19.5 feet bgs.

On June 25, 2008, Harbor Square and ConEd entered into a Site Access Agreement, which allowed ConEd access to the Site to install the remaining two (2) sentinel wells near each end of the slurry wall in order to monitor those locations to ensure DNAPL was not migrating around the wall. These wells were installed and initially sampled in early

October 2008. The obligation to perform the DNAPL work remains that of the Applicant, who will be responsible to perform this work. At present ConEd is performing the work related to the DNAPL contamination on this Site, under an agreement with the Applicant. This work includes and is not limited to, continued extraction of DNAPL material from at least one (1) recovery well on the Property designated "MW-D," associated off-Site disposal of the material, long-term monitoring in any on-Site and, if required by NYSDEC, off-Site monitoring/sentinel wells, including but not limited to the sentinel wells installed in October and December 2008 designated "MW-B" and "MW-C2".

Arcadis in 2012 recovered 0.5 gallons of DNAPL from RW-A during four quarterly recovery events. This was down from about 6.4 gallons recovered in 2011, and 20.5 gallons recovered in 2010. In accordance with a letter dated January 28, 2013 to the NYSDEC, recovery activities at RW-A were omitted beginning in the 2013 activity period as a result of a decreasing trend of recoverable DNAPL observed from the previous monitoring events; however, as previously discussed, redevelopment efforts in September 2024 and subsequent gauging of RW-A on a quarterly basis thereafter was resumed.

During March 2012 and April 2012, Arcadis implemented remedial investigation field activities for Operable Unit No. 1 (OU-1) and OU-2 of the Consolidated Edison Company of New York Inc. Former Ossining Works Site, as outlined in the NYSDEC-approved Remedial Investigation (RI) Work Plan prepared by CMX, Inc. During the remedial investigation, MGP-related residuals were encountered during the completion of soil boring SB-51, which is located within Westerly Road to the south of RW-A. Based on the extent of the MGP-related residuals encountered at SB-51, Arcadis installed recovery well RW-D at that location which consisted of a 6-inch diameter Schedule 40 PVC casing with a 20-slot (0.020-inch slot size) PVC well screen set at a depth of 27 to 37 feet below ground surface (bgs) and a 5-foot sump.

Arcadis, on behalf of ConEd, had ceased conducting quarterly gauging of the deep monitoring/recovery wells (MW-A, MW-B, MW-C1, and MW-C2) as well as quarterly DNAPL recovery efforts at MW-D during the 2019 reporting period; specifically, the gauging and evacuation/recovery efforts were ceased in the first quarter of 2019. Subsequently, Arcadis had submitted an initial Construction Completion Report (CCR),

titled "OU-3 DNAPL IRM Construction Completion Report" and dated June 2019, to the NYSDEC for its review and formal determination. Based on review of the CCR, the DNAPL evacuation events were ceased in March of 2019 due to the presence of trace or no quantity of recoverable DNAPL detected in the deep monitoring/recovery wells.

On October 14, 2022, the NYSDEC issued a response to the Arcadis June 2019 CCR, which did not agree with Arcadis's recommendation for discontinuation of the OU-3 DNAPL monitoring and recovery efforts. The NYSDEC indicated that efforts be taken to first redevelop recovery wells RW-A and RW-D to encourage flow into the wells and to subsequently resume the DNAPL monitoring/recovery efforts on a quarterly basis. The NYSDEC requested that a revised CCR be submitted incorporating the NYSDEC's comments.

In November 2022, Arcadis submitted their revised CCR for the Site, which incorporated the NYSDEC comments for redevelopment of RW-A and RW-D and the resumption of DNAPL monitoring/recovery efforts on a quarterly basis. Arcadis recommended the events be performed for one (1) year, after which time, a report will be submitted with their findings and recommendations. On November 22, 2022, the NYSDEC issued a response to the Arcadis November 2022 Revised CCR, which approved the document; however, it was noted that the NYSDEC typically requests to see at least eight (8) quarters with no DNAPL present prior to concurring with a recommendation for decommissioning.

During SESI's annual inspection events, SESI gauged the existing monitoring and recovery wells at the Site for the presence of DNAPL; however, it should be noted that Arcadis gauged the recovery wells during the 2024 annual period, which also included well redevelopment efforts for recovery wells RW-A and RW-D in September 2024 and then quarterly gauging events afterward. A slight sheen was observed on the tip of the interface probe at locations RW-A and RW-D, which were reported as none/trace DNAPL in field reporting. No measurable thickness of DNAPL was detected in any of the wells, and as a result no DNAPL recovery was required.

On October 25, 2024, the NYSDEC requested that ConEd prepare a DNAPL Recovery Well Rehabilitation Work Plan (RWRWP) for further evaluation and rehabilitation of

recovery well RW-D located at the Site. An initial RWRWP was submitted to the NYSDEC on November 22, 2024, but agency comments presented in correspondences to ConED on January 14, 2025 and March 26, 2025 yielded the submission of a revised RWRWP to the NYSDEC on April 10, 2025. ConEd's revised RWRWP recommended that based on a review of recovery well development efforts that were implemented during September 2024, recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL.

Relevant documentation associated with Arcadis' work for the 2022-2025 period is provided in **Appendix B**.

2.2.5 DESCRIPTION OF RESIDUAL CONTAMINATION

Even after the NAPL sources of contamination were removed from the Site, non-native fill soil material remains throughout the Site, constituting most of the land mass. This fill soil material is primarily impacted with VOCs, SVOCs and metals associated with miscellaneous former industrial uses described previously.

As a result of the remaining VOCs on the Site from both the former NAPL areas, residual contaminated fill soils still in place, there is a potential for vapor intrusion into the existing buildings that are controlled through the SSDSs.

2.2.6 MANAGEMENT OF RESIDUAL CONTAMINATION THROUGH ENGINEERING AND INSTITUTIONAL CONTROLS IN THE ENVIRONMENTAL EASEMENT

The Environmental Easement lists the ECs and ICs required by NYSDEC to manage the residual contamination present at this Site to protect public health and the environment in the future and keep the Site safe for reuse. The Site, also known as the "Controlled Property" in the easements, has four (4) primary Engineering Controls. These are: (1) a composite cover system consisting of asphalt covered roads, concrete covered sidewalks, concrete building slabs and a "clean" one-foot soil "cover/cap" in landscaped areas and two-foot soil "cover/cap" in playground areas; (2) sub-slab depressurization/venting system; (3) soil-bentonite slurry wall; and (4) monitoring of groundwater. The Applicant and Applicant's successors or assigns, must manage the controls and monitoring in full compliance with the terms of the remedial program.

3.0 REMEDY PERFORMANCE, EFFECTIVENESS, & PROTECTIVENESS

The goal of the remedial operations at the Site was to remove all the non-DNAPL and petroleum source areas (i.e., residual and free-phase product). With respect to the DNAPL, Harbor Square, LLC installed the slurry wall and five (5) recovery wells (RW-A, RW-B, RW-C, RW-C2, and RW-D) and conducted the DNAPL recovery effort. ConEd performed the work related to the DNAPL contamination on this Site, under an agreement with the Applicant. The goal of the long term DNAPL remedy is physical removal of the DNAPL through recovery from the DNAPL recovery system, which will be periodically pumped from RW-D until such time as Track 1 SCOs are achieved, and monitoring in four (4) other wells on either end of the slurry wall. In the unlikely event DNAPL migrates toward these four (4) wells, recovery pumping would be commenced in these four (4) wells.

Arcadis, on behalf of ConEd, had ceased conducting quarterly gauging of the deep monitoring/recovery wells (MW-A, MW-B, MW-C1, and MW-C2) as well as quarterly DNAPL recovery efforts at MW-D during the 2019 reporting period; specifically, the gauging and evacuation/recovery efforts were ceased in the first quarter of 2019. Subsequently, Arcadis had submitted an initial Construction Completion Report (CCR), titled "OU-3 DNAPL IRM Construction Completion Report" and dated June 2019, to the NYSDEC for its review and formal determination. Based on review of the CCR, the DNAPL evacuation events were ceased in March of 2019 due to the presence of trace or no quantity of recoverable DNAPL detected in the deep monitoring/recovery wells.

On October 14, 2022, the NYSDEC issued a response to the Arcadis June 2019 CCR, which did not agree with Arcadis's recommendation for discontinuation of the OU-3 DNAPL monitoring and recovery efforts. The NYSDEC indicated that efforts be taken to first redevelop recovery wells RW-A and RW-D to encourage flow into the wells and to subsequently resume the DNAPL monitoring/recovery efforts on a quarterly basis. The NYSDEC requested that a revised CCR be submitted incorporating the NYSDEC's comments.

In November 2022, Arcadis submitted their revised CCR for the Site, which incorporated the NYSDEC comments for redevelopment of RW-A and RW-D and the resumption of DNAPL monitoring/recovery efforts on a quarterly basis. Arcadis recommended the events

be performed for one (1) year, after which time, a report will be submitted with their findings and recommendations. On November 22, 2022, the NYSDEC issued a response to the Arcadis November 2022 Revised CCR, which approved the document; however, it was noted that the NYSDEC typically requests to see at least eight (8) quarters with no DNAPL present prior to concurring with a recommendation for decommissioning.

During SESI's annual inspection events, SESI gauged the existing monitoring and recovery wells at the Site for the presence of DNAPL; however, it should be noted that Arcadis gauged the recovery wells during the 2024 annual period, which also included well redevelopment efforts for recovery wells RW-A and RW-D in September 2024 and then quarterly gauging events afterward. A slight sheen was observed on the tip of the interface probe at locations RW-A and RW-D, which were reported as none/trace DNAPL in field reporting. No measurable thickness of DNAPL was detected in any of the wells, and as a result no DNAPL recovery was required.

On October 25, 2024, the NYSDEC requested that ConEd prepare a DNAPL Recovery Well Rehabilitation Work Plan (RWRWP) for further evaluation and rehabilitation of recovery well RW-D located at the Site. An initial RWRWP was submitted to the NYSDEC on November 22, 2024, but agency comments presented in correspondences to ConED on January 14, 2025 and March 26, 2025 yielded the submission of a revised RWRWP to the NYSDEC on April 10, 2025. ConEd's revised RWRWP recommended that based on a review of recovery well development efforts that were implemented during September 2024, recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL.

Relevant documentation associated with Arcadis' work for the 2022-2025 period is provided in **Appendix B**.

The overall Site remedy was designed to ensure that residual soil contamination that remains on-Site in fill materials below the one-foot clean soil cap does not significantly exceed the more stringent of the applicable Track 2 Commercial or Protection of Groundwater Restricted Use Soil Cleanup Objectives [Part 375-6.8(b)]. The one-foot composite cap cover system prevents exposure to any of these remaining fill materials.

In order to monitor the effectiveness of the contaminant removal and the Site natural attenuation, an on-Site monitoring well network including MW-2A and MW-7A is sampled on an annual basis. Annual groundwater samples were collected for VOCs and SVOCs in accordance with the SMP dated December 2016 and approval from the NYSDEC to remove metals testing dated April 2016.

Table 1.1 provides a tabular summary of the current groundwater monitoring results and **Table 1.2** provides a tabular summary of current groundwater geochemical parameters with a side-by-side comparison with the results of the 2007-2025 sampling events. In 2016, SESI requested of NYSDEC that metals analyses be eliminated from the requirements of the annual groundwater sampling protocol outlined in the SMP. This was requested on the basis that exceedances for metals constituents have been reduced dramatically or were non-existent in recent annual sampling events, and in addition, metals were not addressed as contaminants of concern associated with historic activities conducted by ConEd. This change in the sampling regime was approved by the NYSDEC on April 28, 2016. NYSDEC correspondence related to the confirmation of the removal of metals analyses from the annual groundwater sampling protocol for the Site was provided in previous PRR reporting.

A correspondence letter from the NYSDEC to the Owner, dated August 8, 2016, indicated a reduction in frequency for the required submittal of a PRR from an annual to a triennial basis. A copy of the NYSDEC PRR frequency change correspondence was provided in previous PRR reporting. SESI has continued to submit annual letter report updates to the NYSDEC in July from 2017 to 2024 for the performance of operations, maintenance, and monitoring (OM&M) activities that were completed at the Site.

For the 2022-2025 period, SESI continued to annually monitor the remedial ECs at the Site, which include the following: Performance of an annual site inspection of the ECs, annual groundwater sampling of the on-Site monitoring well network, vapor intrusion sampling of the SSDSs and indoor air, and gauging of the on-Site DNAPL monitoring and recovery wells (recovery well gauging completed by SESI in 2022 and 2023, followed by Arcadis in 2024). These tasks were completed pursuant to the updated December 2016

August 2025 SESI Project No. 07173 Page **29** of 44

SMP, submitted to the NYSDEC on December 28, 2016. This PRR presents a summary of these annual monitoring tasks for the Site for the June 15, 2022, to June 15, 2025 reporting period as also reported in our annual letter report updates that were submitted intermittently.

Based on a review of the results of the 2023, 2024, and 2025 groundwater sampling and testing events, it appears that the levels for most of the constituents have continued to trend towards the reduction in overall contaminant concentrations or remained at similar levels observed from previous sampling events.

No VOC exceedances were identified in any of the sampled monitoring wells. Notably, Benzene, which had previously been detected at 12 parts per billion (ppb) in the 2020 sampling event at MW-2A, was reported at a reduced, oscillating level between 0.26 ppb to 0.62 ppb during the 2022-2025 reporting period. SVOC exceedances to NY TAGM levels continue to be noted: Acenaphthene in MW-7A was identified at 27 ppb in 2023. which slightly increased to a concentration of 34 ppb in 2024 and then reduced to 23.4 in 2025. MW-7A remains to be the only monitoring well on-Site exhibiting an oscillating trend of Acenaphthene concentrations above NY TAGM levels detected over time, as natural attenuation patterns were more readily observed in the other monitoring wells with historical detections for Acenaphthene. NY TAGM exceedances of other select polycyclic aromatic hydrocarbons (PAHs) were detected in MW-7A at lower concentrations during the 2022-2025 reporting period compared to previous years. The PAH exceedances identified in MW-2A during the 2023 event were shown to decrease to below the NY TAGM levels during the 2024 and 2025 sampling events. It was noted that a standalone NY TOGS (but below NY TAGM) exceedance was detected for Bis(2-Ethylhexyl)phthalate in the 2025 sampling event in MW-2A; however, Bis(2-Ethylhexyl)phthalate is a known plasticizer in PVC manufacturing and its detection is most likely attributed to originate from the monitoring well PVC construction and not from historical contaminants of concern at the Site. The 2022-2025 reporting period groundwater sample testing events indicate that overall, natural attenuation continues to trend toward an effective reduction of groundwater contaminant levels at the Site, with the exception of Acenaphthene which has exhibited an oscillating trend throughout the years, as previously noted. Subsequent sampling events should be monitored closely and evaluated for any increasing or decreasing trends.

The laboratory analytical reports for the 2022-2025 reporting period groundwater sampling events are provided in **Appendix C**. Associated groundwater purge sheets are provided in **Appendix D**.

In order to monitor the effectiveness of the SSDS and to assess the vapor intrusion. investigations had been performed during the 2016-2017 and 2017-2018 heating seasons across the occupied buildings on Site following construction completion. Exceedances of the NYSDOH Decision Matrices Values, dated May 2017, were not identified in either event. Per the request of the NYSDEC, SESI remobilized to the Site on March 23, 2022 to conduct additional vapor intrusion sampling and testing for another evaluation of the SSDS effectiveness. Four (4) sub-slab sampling ports located in the residential, restaurant, and kiosk buildings were sampled. In addition, four (4) concurrent indoor air samples were collected in close proximity to each sub slab sample. The sub-slab sampling ports were purged with a low flow pump prior to sample collection. Six (6) liter Summa canisters with a 24-hour sample collection duration were used for both indoor air and subslab samples. After sample completion, the Summa canisters were delivered under chain of custody to SGS North America Inc, a NELAP-certified laboratory, for analysis of EPA method TO-15. Both indoor air and sub slab samples were collected in accordance with the NYSDEC "Guidance for Evaluating Soil Vapor Intrusion in the State of New York", dated October 2006. Based on a review of the results of the 2022 sub-slab and indoor air testing event, exceedances to the NYSDOH Vapor/Indoor Air Matrices, dated May 2017, were not identified. Lab reports associated with the vapor and indoor air sampling were included in SESI's 2022 PRR submittal accepted by the NYSDEC on September 8, 2022.

4.0 IC/EC PLAN COMPLIANCE

4.1 IC/EC REQUIREMENTS AND COMPLIANCE

Institutional Controls

ICs in-place at the Site consist of (1) groundwater use restriction, (2) land-use restriction, (3) Monitoring Plan, and (4) Site Management Plan.

The groundwater use restriction is to prohibit the use of the groundwater underlying the property without treatment to render it safe for its intended use. Prior to its treatment and use, approval must be obtained from the Westchester County Department of Health. There is no intention to use the groundwater for any purpose; therefore, this control remains in-place and is effective.

During the 2015 PRR reporting period, an amended environmental easement document was filed for the subject property to address the new land-use associated with the newly constructed playground on the property that had been completed during the 2015 PRR reporting period. Prior to installation of the playground equipment, a fabric demarcation layer was installed in the playground area above the residual contaminated soil, and two (2) feet of additional clean fill was placed above the fabric. The new easement divides the property into three (3) portions: Easement A, which is associated with the playground area, Easement B, which is associated with the multi-story residential complex, and Easement C, which is associated with the restaurant, kiosk, and landscaped/paved areas. The new easement allows for the "commercial use" of the controlled property for Easement C and "restricted residential use" of the controlled property for Easement A and Easement B. The IC & EC Certification Form, provided in **Appendix G** in this PRR, addresses the change in land-use, and the Environmental Easement, Easement legal descriptions, and the Environmental Easement Map are provided as documentation in **Appendix F** of this PRR.

The Monitoring Plan is intended as a means to observe the long-term effectiveness of the ECs at the Site. If at any time, the results of the monitoring plan indicate that the site remedy is no longer effective or protective of human health, then ICs may be adjusted and/or added based on monitoring data.

The SMP is intended to provide guidance for any and all intrusive activities on the Site, including building construction/expansion, utility line repair/construction and any new construction activities that will cause a disturbance of the soil beneath the demarcation layer. There were no intrusive activities conducted at the Site during this monitoring period. The SMP remains in place and is effective.

Engineering Controls

The ECs in place at the Site consist of (1) site cover system, (2) a subsurface barrier, (3) sub-slab vapor mitigation system, and (4) a monitoring well network.

The Site cover system consists of a minimum six (6) inches of concrete, asphalt or structure or a minimum one-foot-thick clean soil cover underlain by a demarcation barrier (minimum two-foot-thick clean soil cover with underlying demarcation barrier in the playground area). The objective of this is to prevent the public from being exposed to the residual contamination present beneath the soil cover. The Site cover system remains in-place and is effective.

The subsurface barrier is a soil-bentonite slurry wall that was constructed to provide a containment barrier to prevent the migration of DNAPL farther west to the Hudson River. The deep monitoring wells west of the slurry wall have been gauged for the presence of DNAPL. No DNAPL was detected in the deep monitoring wells west of the slurry wall. The subsurface barrier remains in-place and is effective.

A sub-slab vapor mitigation system is required for all buildings constructed on the Site. This system is intended to prevent the intrusion of harmful vapors into the buildings. To date, installation of the SSDS has been completed for all of the buildings on Site. In order to monitor the effectiveness of the SSDS and to assess the vapor intrusion, investigations were performed during the 2016-2017 and 2017-2018 heating season across the occupied buildings on Site following construction completion. Exceedances of the NYSDOH Decision Matrices Values, dated May 2017, were not identified in either event. However, per the request of the NYSDEC and NYSDOH, a third VI event was performed in March 2022 as previously discussed in Section 3.0.

A DNAPL recovery well system is in place and intended to monitor the presence of DNAPL at the ends of the slurry wall and to actively recover DNAPL if necessary. ConEd's environmental consultant, Arcadis, had conducted recovery well redevelopments at RW-A and RW-D in September 2024 and resumed subsequent quarterly DNAPL gauging/monitoring events for the DNAPL recovery well system following a period of DNAPL recovery event cessation in 2019 as previously discussed. SESI had annually gauged the monitoring and recovery wells at the Site for presence of DNAPL, with Arcadis resuming the gauging/monitoring of the DNAPL recovery wells beginning in September 2024. Based on the results of the DNAPL monitoring over this reporting period, there remains no measurable DNAPL present at the Site as previously discussed in Section 1.2 of this report.

Relevant documentation associated with Arcadis' work for the 2022-2025 period is provided in **Appendix B**.

An on-Site groundwater monitoring well network is in place consisting of four (4) monitoring wells. It is intended to monitor both the shallow and deep groundwater impacts. Two (2) of the wells are sampled yearly to compare the results to previous years' testing to check the effectiveness of the natural attenuation/degradation. The deep monitoring wells are also used to gauge for the presence of DNAPL. The monitoring wells are all currently in-place and effective for their purpose. We recommend that the wells continued to be sampled on an annual basis.

During this reporting period, SESI did not observe any deficiencies in the monitoring well network.

• <u>Criteria for Completion of Remediation/Termination of Remedial Systems</u>

Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the remedial action objectives identified by the decision document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

Monitoring Wells associated with Monitored Natural Attenuation

August 2025 SESI Project No. 07173 Page **34** of 44

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC with consultation with NYSDOH, until residual groundwater concentrations are found to be consistently below ambient water quality standards, the Site standards, criteria, and guidance have been met, or have become asymptotic at an acceptable level over an extended period. In the event that monitoring data indicates that monitoring for natural attenuation may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

4.2 IC/EC CERTIFICATION

The NYSDEC Institutional and Engineering Controls Certification Form has been completed and is included in **Appendix G**.

5.0 MONITORING AND COMPLIANCE

Monitoring Completed During Current Reporting Period

Table 5.1: Monitoring Program Frequency

Monitoring Program	Frequency	Matrix	Analysis	Frequency Completed
Composite Cover System	Annual	Solid	Visual Inspection Maintenance Records Review	Annual
Slurry Wall	Annual	Solid	Visual Inspection Maintenance Records Review Gauge monitoring wells MW-A, MW-B, MW-C1, MW-C2, MW- D, MW-2, MW-2A, MW-6A, MW-6B, and MW-7A, for presence of DNAPL	Annual Annual Annual
DNAPL Recovery System	Annual; then Resumed Quarterly since September 2024	Liquid	Visual Inspection Maintenance Records Review Gauge MW-A and MW-D to measure DNAPL thickness, DNAPL Evacuation (if needed)	Annual; then Resumed Quarterly since September 2024
SSDS	Annual	Air	Visual Inspection Maintenance Records Review	Annual
Monitoring Well Sampling	Annual	Liquid	Sample monitoring wells for VOCs and SVOCs	Annual
Indoor Air Quality	Ceased following 2022 PRR Submission Results	Air	Volatile Organics using USEPA Method TO-15	Ceased following 2022 PRR Submission Results

Soil Cover

Soil cover system visual inspection was conducted by SESI on July 30, 2025, as required by the SMP. The cover system was intact and there was no invasive subsurface work conducted during the current reporting period. A copy of the field inspection form is provided in the Inspection Checklist as **Appendix E**.

Groundwater Monitoring

Based on a review of the results of the 2023, 2024, and 2025 groundwater sampling and testing events, it appears that the levels for most of the constituents have continued to trend towards the reduction in overall contaminant concentrations or remained at similar levels observed from previous sampling events.

No VOC exceedances were identified in any of the sampled monitoring wells. Notably, Benzene, which had previously been detected at 12 parts per billion (ppb) in the 2020 sampling event at MW-2A, was reported at a reduced, oscillating level between 0.26 ppb to 0.62 ppb during the 2022-2025 reporting period. SVOC exceedances to NY TAGM levels continue to be noted: Acenaphthene in MW-7A was identified at 27 ppb in 2023, which slightly increased to a concentration of 34 ppb in 2024 and then reduced to 23.4 in 2025. MW-7A remains to be the only monitoring well on-Site exhibiting an oscillating trend of Acenaphthene concentrations above NY TAGM levels detected over time, as natural attenuation patterns were more readily observed in the other monitoring wells with historical detections for Acenaphthene. NY TAGM exceedances of other select polycyclic aromatic hydrocarbons (PAHs) were detected in MW-7A at lower concentrations during the 2022-2025 reporting period compared to previous years. The PAH exceedances identified in MW-2A during the 2023 event were shown to decrease to below the NY TAGM levels during the 2024 and 2025 sampling events. It was noted that a standalone NY TOGS (but below NY TAGM) exceedance was detected for Bis(2-Ethylhexyl)phthalate in the 2025 sampling event in MW-2A; however, Bis(2-Ethylhexyl)phthalate is a known plasticizer in PVC manufacturing and its detection is most likely attributed to originate from the monitoring well PVC construction and not from historical contaminants of concern at the Site. The 2022-2025 reporting period groundwater sample testing events indicate that overall, natural attenuation continues to trend toward an effective reduction of groundwater contaminant levels at the Site, with the exception of Acenaphthene which has exhibited an oscillating trend throughout the years, as previously noted. Subsequent sampling events should be monitored closely and evaluated for any increasing or decreasing trends. The laboratory analytical reports for the 2022-2025 reporting period groundwater sampling events are provided in **Appendix C**. Associated groundwater purge sheets are provided in **Appendix D**.

Slurry Wall Monitoring

SESI was on Site to gauge the monitoring and recovery wells on-Site for the presence of DNAPL annually during the 2022-2025 reporting period; however, as previously noted, Arcadis resumed quarterly gauging of the recovery wells in September 2024. No measurable DNAPL was observed in any of the on-Site monitoring wells. Based on the results of the gauging and monitoring, there is no DNAPL present at the ends of the slurry wall.

SSDS Monitoring

SESI observed the SSDS during the inspection of engineering controls performed on July 30, 2025. SESI did not identify any deficiencies in the SSDS during the inspection and review of Site maintenance records.

Indoor Air Quality

Per request of the NYSDEC and NYSDOH, SESI had performed an additional (third) VI investigation during 2021-2022 heating season to evaluate the sub-slab and indoor air concentrations in the residential, restaurant, and kiosk buildings. Results of the VI investigation did not identify exceedances of the NYSDOH Decision Matrices Values, dated May 2017. Lab reports associated with the vapor and indoor air sampling were included in SESI's 2022 PRR submittal accepted by the NYSDEC on September 8, 2022. No further indoor air sampling was necessary based on the results and confirmation that the SSDS continues to function and no deficiencies noted.

Comparison with Remedial Objectives

Composite Cover System

The remedial objectives for the Composite Cover System are being met. The Composite Cover System continues to be protective of the human health and the environment for the intended restricted residential use of the property.

Groundwater

Based on a review of the results of the 2023, 2024, and 2025 groundwater sampling and testing events, it appears that the levels for most of the constituents have continued to trend towards the reduction in overall contaminant concentrations or remained at similar levels observed from previous sampling events.

No VOC exceedances were identified in any of the sampled monitoring wells. Notably, Benzene, which had previously been detected at 12 parts per billion (ppb) in the 2020 sampling event at MW-2A, was reported at a reduced, oscillating level between 0.26 ppb to 0.62 ppb during the 2022-2025 reporting period. SVOC exceedances to NY TAGM levels continue to be noted: Acenaphthene in MW-7A was identified at 27 ppb in 2023, which slightly increased to a concentration of 34 ppb in 2024 and then reduced to 23.4 in 2025. MW-7A remains to be the only monitoring well on-Site exhibiting an oscillating trend of Acenaphthene concentrations above NY TAGM levels detected over time, as natural attenuation patterns were more readily observed in the other monitoring wells with historical detections for Acenaphthene. NY TAGM exceedances of other select polycyclic aromatic hydrocarbons (PAHs) were detected in MW-7A at lower concentrations during the 2022-2025 reporting period compared to previous years. The PAH exceedances identified in MW-2A during the 2023 event were shown to decrease to below the NY TAGM levels during the 2024 and 2025 sampling events. It was noted that a standalone NY TOGS (but below NY TAGM) exceedance was detected for Bis(2-Ethylhexyl)phthalate in the 2025 sampling event in MW-2A; however, Bis(2-Ethylhexyl)phthalate is a known plasticizer in PVC manufacturing and its detection is most likely attributed to originate from the monitoring well PVC construction and not from historical contaminants of concern at the Site. The 2022-2025 reporting period groundwater sample testing events indicate that overall, natural attenuation continues to trend toward an effective reduction of groundwater contaminant levels at the Site, with the exception of Acenaphthene which has exhibited

August 2025 SESI Project No. 07173 Page **39** of 44

an oscillating trend throughout the years, as previously noted. Subsequent sampling events should be monitored closely and evaluated for any increasing or decreasing trends. The laboratory analytical reports for the 2022-2025 reporting period groundwater sampling events are provided in **Appendix C**. Associated groundwater purge sheets are provided in **Appendix D**.

Monitoring Deficiencies

All aspects of the monitoring plan were in accordance with NYSDEC applicable regulations.

August 2025 SESI Project No. 07173 Page **40** of 44

Conclusions and Recommendations

All aspects of the remedial program appear to be meeting the Site remedy design goal. We recommend that the composite cover system inspection, SSDS inspection, groundwater sampling of MW-2A and MW-7A, and DNAPL gauging of the well network continue on an annual basis, with the exception of the recently resumed DNAPL gauging and monitoring by ConEd on a quarterly basis for the DNAPL recovery wells (resumed since September 2024). Furthermore, SESI awaits the NYSDEC's response to ConEd's revised RWRWP submitted to the NYSDEC on April 10, 2025, which recommended that based on a review of recovery well development efforts that were implemented during September 2024, recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL. All other aspects of the monitoring program should remain at the frequency listed in Table 5.1 above.

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Operation and Maintenance Plan describes the measures necessary to operate and maintain any mechanical components of the remedy selected for the Site (i.e., SSDS). This Operation and Maintenance Plan:

- Includes the steps necessary to allow individuals unfamiliar with the Site to operate and maintain the SSDSs;
- Includes an operation and maintenance contingency plan; and,
- Will be updated periodically to reflect changes in Site conditions or the manner in which the SSDSs are operated and maintained.

A copy of this Operation and Maintenance Plan, along with the complete SMP, will be kept at the Site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of the SMP. The Operation and Maintenance Plan is subject to NYSDEC revision.

Sub-Slab Depressurization System

The SSDS on Site operates in a passive mode with no blowers. SESI completed an annual inspection of the SSDS on July 30, 2025 in accordance with the Operations and Maintenance Plan that can be found in Section 4 of the SMP, dated December 2016. The inspection confirmed components of the SSDS are intact and protective of human health.

DNAPL Recovery

Following the evacuation of MW-A in November 2012, recovery activities in this well were discontinued due to the continued decline of DNAPL product during the previous recovery events. ConEd performed the work related to the DNAPL contamination on this Site, under an agreement with the Applicant. The DNAPL recovery efforts then consisted of quarterly recovery events with evacuations from MW-D, which is adjacent to the northeast portion of the site in Westerly Road. The goal of the long term DNAPL remedy is physical removal of the DNAPL through recovery from one (1) well – MW-D – which was periodically pumped until such time as Track 1 SCOs are achieved, and monitoring in the four (4) additional wells – MW-A, MW-B, MW-C1, and MW-C2 - on either side of the slurry wall. In the unlikely event that DNAPL migrates toward these four (4) wells, recovery pumping would be commenced in these four (4) wells.

As previously discussed, Arcadis on behalf of ConEd ceased DNAPL evacuation events in March of 2019 due to the presence of trace or no quantities of DNAPL detected in the deep monitoring/recovery wells; however, at the request of the NYSDEC, Arcadis conducted redevelopment of recovery wells MW-A and MW-D in September 2024 and resumed quarterly gauging (and DNAPL evacuation, if necessary) of the on-Site recovery wells thereafter.

The need for an automated DNAPL recovery system was evaluated (through field tests of DNAPL yield associated with MW-A) by ConEd. It was decided that an automated DNAPL recovery system was not necessary. In the unlikely event that NYSDEC determines an automated pumping recovery system must be installed, such a system shall be installed. The system operation and maintenance discussed in the operations and maintenance plan will be updated, as needed, if and when the automated recovery system is installed.

Groundwater Monitoring Well Maintenance

If biofouling or silt accumulation has occurred in the on-Site monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring wells will be properly decommissioned and replaced (as per the Monitoring Plan) if an event renders the wells unusable.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Compliance with the SMP

All aspects of the SMP including IC/EC and monitoring have met the requirements. There are no new exposure pathways resulting in an unacceptable risk.

Performance and Effectiveness of the Remedy

The composite cover system remains intact on the Site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination left on Site beneath the cover system.

The slurry wall remains an effective barrier to prevent the migration of the DNAPL into the Hudson River. The slurry wall will continue to meet the remedial objectives for the Site as confirmed by the monitoring well gauging and sampling events.

The sampling of the monitoring well network will be useful in determining the effectiveness of the natural degradation of the residual petroleum-impacted groundwater. Based on a review of the results of the 2023, 2024, and 2025 groundwater sampling and testing events, it appears that the levels for most of the constituents have continued to trend towards the reduction in overall contaminant concentrations or remained at similar levels observed from previous sampling events.

Future PRR Submittals

Annual PRR letters will be submitted each year along with the next formal PRR to be submitted in July 2028.

Recommendations

We recommend the following for the next reporting period:

- o Cover system: continue the annual visual inspection of the cover system
- SSDS: continue the annual visual inspection of the SSDS
- Annual groundwater monitoring and sampling of monitoring wells MW-2A and MW-7A
- Annual (at minimum) well network gauging for the presence of DNAPL, which has been increased in frequency to a quarterly basis under ConEd beginning in September 2024 until sufficient data has been collected to determine next steps and frequency for the DNAPL monitoring for the next triennial period reporting.

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-2	MW-2	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A									
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	07110833-01	AC51902-008	AC58765-006	AC65207-011	AC72263-007	AC78779-001	AC84603-001	AC91349-006	AC98051-005	460-157702-4	460-183874-1	07110833-07	AC51902-007	AC58765-010	AC65207-012	AC72263-001
DATE COLLECTED:			11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013	5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013
Volatile Organics																		
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND									
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND	ND									
1,1,2-trichloro-1,2,2-trifluoroethane	5	5	ND	NA	ND	ND	ND	ND	ND									
1,1,2-Trichloroethane	NA -	1 5	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND
1,1-Dichloroethane 1.1-Dichloroethene	5 5	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND									
1,2,3-Trichloropropane	5	0.04	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	ND	ND								
1,2,4-Trimethylbenzene	NA NA	5	NA	ND	ND	ND	1.2	ND	2.4	ND	ND	ND	ND ND	NA	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND	ND	ND	ND									
1,2-Dichloroethane	5	0.6	ND	ND	36	ND	ND	ND	ND									
1,2-Dichloropropane	NA	1	ND	ND	ND	ND	ND	ND	ND									
1,3,5-Trimethylbenzene	NA F	5	NA ND	ND	ND ND	ND ND	ND ND	ND ND	1.2	ND ND	ND ND	ND ND	NA ND	NA	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene 1,3-Dichloropropane	5 5	<u>3</u> 5	ND NA	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND								
1,3-Dichioroproparie	5	3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
1,4-Dioxane	NA NA	NA NA	NA NA	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
2-Butanone	50	50	ND	640	ND	ND	ND	ND	ND	ND	ND	ND						
2-Chloroethylvinylether	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND								
2-Hexanone	NA	50	ND	ND	ND	ND	ND	ND	ND									
4-Isopropyltoluene	NA 50	5	NA NB	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	NA ND	NA	ND	ND	ND	ND
4-Methyl-2-Pentanone Acetone	50 50	NA NA	ND 2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 440	ND ND	ND ND	ND ND	ND 58	ND ND	ND ND	ND ND	ND ND
Acrolein	NA	NA NA	NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	NA NA	NA	ND ND	ND ND	ND ND	ND ND
Acrylonitrile	NA NA	NA NA	NA NA	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND
Benzene	0.7	1	10	39	ND	ND	8.9	0.67	17	ND	ND	ND	ND	3,300	6,400	5,100	6,500	6,400
Bromodichloromethane	NA	50	ND	ND	ND	ND	ND	ND	ND									
Bromoform	NA	50	ND	ND	ND	ND	ND	ND	ND									
Bromomethane	NA 50	5	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide Carbon tetrachloride	50 5	60 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND									
Chlorobenzene	5	5	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND									
Chloroethane	50	5	ND	ND ND	ND	ND	ND	ND	ND									
Chloroform	7	7	ND	ND	ND	ND	ND	ND	ND									
Chloromethane	NA	NA	ND	ND	ND	ND	ND	ND	ND									
Cis-1,2-Dichloroethene	NA	5	ND	ND	ND	ND	ND	ND	ND									
Cis-1,3-Dichloropropene	NA 50	0.4	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND						
Dibromochloromethane Dichlorodifluoromethane	50 NA	50 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND									
Ethylbenzene	5	5	ND ND	ND ND	ND ND	ND ND	3.7	ND ND	8.8	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	NA NA	5	ND	ND	ND	1	2.6	2.9	6.5	ND	ND	0.36	ND	ND	ND	ND	ND	ND
M&p-Xylenes	5	5	ND	ND	ND	ND	2.3	ND	1.6	ND	ND	ND	ND	ND	ND	65	ND	ND
Methylene chloride	5	5	3	ND	0.36	ND	100	ND	ND	ND	ND							
Methyl-t-butyl ether	NA NA	10	ND NA	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND NA	ND	ND	ND	ND	ND
N-Butylbenzene N-Propylbenzene	NA NA	5 5	NA NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1.4	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND
N-Propylbenzene O-Xylene	NA 5	5 5	NA ND	ND ND	ND ND	ND ND	1 1	ND ND	4.2	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND
Sec-Butylbenzene	NA NA	5	NA NA	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND	ND	ND ND
Styrene	NA	5	2	ND	ND	ND	ND	ND	ND	ND								
T-Butyl Alcohol	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND								
T-Butylbenzene	NA	5	NA	ND	NA	NA	ND	ND	ND	ND								
Tetrachloroethene	5	5	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND							
Toluene Trans-1,2-Dichloroethene	5	<u> </u>	7 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
Trans-1,2-Dichloroethene Trans-1,3-Dichloropropene	5 NA	0.4	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND									
Trichloroethene	5	5	ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND						
Trichlorofluoromethane	NA NA	5	ND	ND	ND	ND	ND	ND	ND									
Vinyl chloride	2	2	ND	ND	ND	ND	ND	ND	ND									
Xylenes (Total)				ND	ND	ND	3.3	ND	5.8	ND	ND	ND	ND	ND	ND	65	ND	ND

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-2	MW-2	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A									
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	07110833-01	AC51902-008	AC58765-006	AC65207-011	AC72263-007	AC78779-001	AC84603-001	AC91349-006	AC98051-005	460-157702-4	460-183874-1	07110833-07	AC51902-007	AC58765-010	AC65207-012	AC72263-001
DATE COLLECTED:			11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013	5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013
Base Neutral Organics																		
1,2,4-Trichlorobenzene	5	5	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA						
1,2-Diphenylhydrazine	NA	ND	NA	ND	NA	NA	ND	ND	ND	ND								
2,4,5-Trichlorophenol	1	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2,4,6-Trichlorophenol	NA	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2,4-Dichlorophenol	1	1	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2,4-Dimethylphenol	NA	50	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2,4-Dinitrophenol	5	10	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2,4-Dinitrotoluene	NA	5	ND	ND	ND	ND	ND	ND	ND									
2,6-Dinitrotoluene	5	5	ND	ND	ND	ND	ND	ND	ND									
2-Chloronaphthalene	NA	10	ND	ND	ND	ND	ND	ND	ND									
2-Chlorophenol	50	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2-Methylnaphthalene	50	NA	ND	ND	ND	ND	ND	ND	5.6	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	5	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
2-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND									
2-Nitrophenol	5	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
3&4-Methylphenol	50	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND	ND	ND	ND									
3-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND									
4,6-Dinitro-2-methylphenol	NA	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND									
4-Chloro-3-methylphenol	5	NA	ND	ND	ND	NA	ND	ND	ND	ND	NA	NA						
4-Chloroaniline	5	5	ND	ND	ND	ND	ND	ND	ND									
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND									
4-Nitroaniline	NA	5	ND	ND	ND	ND	ND	ND	ND									
4-Nitrophenol	5	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA
Acenaphthene	20	20	27	13	24	28	40	33	30	6.9	12	4	11	ND	ND	ND	ND	ND
Acenaphthylene	20	NA	ND	ND	ND	ND	ND	ND	ND									
Aniline	5	5	NA	ND	NA	NA	ND	ND	ND	ND								
Anthracene	50	50	ND	ND	ND	ND	ND	ND	ND									
Benzidine	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND								
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND									
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND									
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND									
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND	ND	ND	ND									
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND									
Benzoic acid	50	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA						

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-2	MW-2	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A									
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	07110833-01	AC51902-008	AC58765-006	AC65207-011	AC72263-007	AC78779-001	AC84603-001	AC91349-006	AC98051-005	460-157702-4	460-183874-1	07110833-07	AC51902-007	AC58765-010	AC65207-012	AC72263-001
DATE COLLECTED:			11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013	5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND	ND	ND	ND									
Bis(2-Chloroethyl)Ether	NA NA	1	ND	ND	ND	ND	ND	ND	ND									
Bis(2-Chloroisopropyl)ether	NA NA	NA NA	ND	NA	ND	ND	ND	ND	ND									
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	2	ND	51	ND	ND									
Butylbenzylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND									
Carbazole	NA	NA	NA	ND	ND	NA	ND	ND	ND	ND								
Chrysene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND									
Dibenzo[a,h]Anthracene	50	NA	ND	ND	ND	ND	ND	ND	ND									
Dibenzofuran	5	NA	ND	ND	ND	ND	ND	ND	ND									
Diethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND									
Dimethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND									
Di-n-butylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND									
DI-n-octylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND									
Fluoranthene	50	50	ND	ND	ND	ND	ND	ND	ND									
Fluorene	50	50	ND	ND	ND	ND	ND	ND	ND									
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND	ND	ND	ND									
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND	ND	ND	ND									
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND	ND	ND	ND									
Hexachloroethane	NA	5	ND	ND	ND	ND	ND	ND	ND									
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND									
Isophorone	50	50	ND	ND	ND	ND	ND	ND	ND									
Naphthalene	10	10	9	ND	ND	ND	3.4	ND	32	ND	ND	ND	ND	ND	ND	ND	ND	ND
Nitrobenzene	5	0.4	ND	ND	ND	ND	ND	ND	ND									
N-Nitrosodimethylamine	NA	NA	NA	ND	NA	NA	ND	ND	ND	ND								
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND	ND	ND	ND									
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND	ND	ND	ND									
Pentachlorophenol	1	1	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	50	ND	ND	ND	ND	ND	ND	ND									
Phenol	1	1	ND	ND	ND	10	11	ND	ND									
Pyrene	50	50	ND	ND	ND	ND	ND	ND	ND									

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-2	MW-2	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A									
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	07110833-01	AC51902-008	AC58765-006	AC65207-011	AC72263-007	AC78779-001	AC84603-001	AC91349-006	AC98051-005	460-157702-4	460-183874-1	07110833-07	AC51902-007	AC58765-010	AC65207-012	AC72263-001
DATE COLLECTED:			11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013	5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	11/26/2007	5/25/2010	4/29/2011	4/9/2012	5/7/2013
Metals																		
Mercury	NA	0.7	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND
Aluminum			NA	NA	ND	NA	NA	NA	NA	ND	NA	ND						
Antimony			NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND
Arsenic Barium	NA	1000	NA NA	ND 270	ND 230	ND 160	ND 200	ND 390	ND 190	NA NA	NA NA	NA NA	NA NA	NA NA	ND 32	ND 41	ND ND	ND ND
Beryllium	IVA	1000	NA NA	ND	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND ND	ND ND
Cadmium			NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	2.1	ND	ND
Calcium			NA	NA	ND	NA	NA	NA	NA	ND	NA	NA						
Chromium	NA	50	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND
Cobalt	NIA.	000	NA NA	NA 00	ND ND	NA NB	NA	NA NB	NA NB	NA NA	NA	NA	NA NA	NA	NA ND	ND	NA NB	ND
Copper Iron	NA	200	NA NA	33 NA	ND ND	ND NA	ND NA	ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	ND ND	ND NA	ND NA
Lead	NA	25	0.034	ND	ND ND	ND ND	5.4	NA ND	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	5.4	ND	4.3
TCLP Lead	. 47 1		NA	NA NA	ND	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	ND	NA NA	NA
Magnesium			NA	NA	ND	NA	NA	NA	NA	ND	NA	NA						
Manganese			NA	NA	ND	NA	NA	NA	NA	ND	NA	NA						
Nickel			NA NA	ND NA	ND ND	ND NA	ND NA	ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	ND ND	ND NA	ND NA
Potassium Selenium			NA NA	NA ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	ND ND	NA ND	NA ND
Silver			NA NA	ND ND	ND	ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND
Sodium			NA	NA	ND	NA	NA	NA	NA	ND	NA	NA						
Thallium			NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND
Vanadium			NA	NA	ND	NA	NA	NA	NA	ND	NA	NA						
Zinc			NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	56	ND	ND
PCBS Aroclor-1016			NA	NA	NA	NA	NA	NA	NA									
Aroclor-1016 Aroclor-1221			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Aroclor-1232			NA	NA	NA	NA	NA	NA	NA									
Aroclor-1242			NA	NA	NA	NA	NA	NA	NA									
Aroclor-1248			NA	NA	NA	NA	NA	NA	NA									
Aroclor-1254			NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260 Aroclor-1262			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Aldrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA								
Alpha-BHC			NA	NA	NA	NA	NA	NA	NA									
beta-BHC			NA	NA	NA	NA	NA	NA	NA									
Chlordane			NA	NA	NA	NA	NA	NA	NA									
delta-BHC Dieldrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Dieldrin Endosulfan I			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Endosulfan II			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate			NA	NA	NA	NA	NA	NA	NA									
Endrin			NA	NA	NA	NA	NA	NA	NA									
Endrin Aldehyde			NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA
Endrin Ketone Gamma-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Gamma-BHC Heptachlor			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Heptachlor Epoxide			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Methoxychlor			NA	NA	NA	NA	NA	NA	NA									
p,p'-DDD			NA	NA	NA	NA	NA	NA	NA									
p,p'-DDE			NA	NA	NA	NA	NA	NA	NA									
p,p'-DDT			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Toxaphene Other Parameters			NA	NA	NA	NA	NA	NA	NA									
% Solids			NA	NA	NA	NA	NA	NA	NA									
Cyanide			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA									
Cr (Hexavalent)			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

			MM/ 04	NUM OA	NAV 04	NAV 04	NAVA 0.0	1404 CA	MM/ 04	N#W 0A	MAY 04	N// 04	NAVA 0.0	NAM 0A	D 00 0 / 4	100/4	N04/ 4	NOW 4	N00/ 4
SAMPLE ID:	NY_Water_TAGM Criteria (ug/L)	NY_TOGS_Water	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-4	MW-4	MW-4	MW-4	MW-4
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78779-002	AC84603-002	AC91349-005	AC98051-004	460-157702-5	460-183874-2	460-212426-1	1061422-01	2060575-01	L2339185-01	L2447470-01	JE16114-1	07110833-02	AC51902-010	AC65207-009	AC72263-008	AC84603-003
DATE COLLECTED:			5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025	11/26/2007	5/25/2010	4/9/2012	5/7/2013	4/28/2015
Volatile Organics																			
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloro-1,2,2-trifluoroethane	5	5	ND ND	ND ND	ND	ND ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane 1,1-Dichloroethane	NA 5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1-Dichloroethene	5	5	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
1,2,3-Trichloropropane	5	0.04	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA NA	NA NA	NA	NA	ND	ND	ND	ND
1,2,4-Trimethylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	NA NA	1 -	ND	ND	ND	ND	ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND	ND	ND	ND	ND ND
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	NA 5	5	ND ND	ND ND	ND ND	ND ND	ND 0.42	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropenzene	5 5	5	ND ND	ND ND	ND ND	ND ND	0.42 ND	NA NA	ND NA	NA NA	ND NA	ND NA	ND NA	ND NA	NA NA	ND ND	ND ND	ND ND	ND ND
1,4-Dichlorobenzene	5	3	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND
1,4-Dioxane	NA NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA	NA	ND	ND	ND	ND ND
2-Butanone	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.5	ND	ND	ND	ND	ND	4700
2-Chloroethylvinylether	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
2-Hexanone	NA NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NA 50	5	ND ND	ND ND	ND	ND	ND	NA ND	NA ND	ND	ND ND	ND ND	ND ND	ND ND	NA	ND ND	ND	ND	ND ND
4-Methyl-2-Pentanone Acetone	50 50	NA NA	ND ND	ND ND	ND ND	ND ND	ND 34	ND 11	7.9	ND 65.8	ND 24.8	ND 18	ND 14	ND ND	ND 3	ND 15	ND ND	ND ND	ND 2100
Acetone	NA	NA NA	ND ND	ND ND	ND ND	ND ND	ND	NA	7.9 NA	NA	24.8 NA	NA	NA	NA NA	NA	ND	ND ND	ND ND	ND
Acrylonitrile	NA NA	NA NA	ND ND	ND ND	ND	ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND	ND ND	ND ND
Benzene	0.7	1	3,900	2,800	2,000	1,300	84	120	12	ND	0.531	0.26	0.62	ND	7	71	ND	0.68	ND
Bromodichloromethane	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	NA 50	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	50	60	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Carbon tetrachloride Chlorobenzene	5 5	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroethane	50	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chloroform	7	7	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	4.2	ND	ND	ND ND
Chloromethane	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,3-Dichloropropene	NA =-	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	50	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NA 5	5	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Ethylbenzene Isopropylbenzene	5 NA	5 5	ND ND	ND ND	ND ND	ND ND	ND 0.77	ND 1.2	ND 1.2	ND 0.596	ND 0.713	ND ND	ND ND	ND ND	ND 3	ND ND	ND 1.8	ND ND	ND ND
M&p-Xylenes	5	5	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	0.390 NA	NA	NA NA	NA NA	NA NA	ND	ND ND	ND	ND ND	ND ND
Methylene chloride	5	5	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA NA	3	ND	ND	ND	ND ND
Methyl-t-butyl ether	NA	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Butylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
N-Propylbenzene	NA -	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
O-Xylene	5	5	ND ND	ND ND	ND	ND	ND	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND NA	ND ND	ND	ND ND	ND ND
Sec-Butylbenzene	NA NA	5 5	ND ND	ND ND	ND ND	ND	ND ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	NA ND	ND ND	2.8 ND	ND ND	ND ND
Styrene T-Butyl Alcohol	NA NA	NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND
T-Butylbenzene	NA NA	5	ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND ND	ND ND	NA NA	ND	ND	ND	ND ND
Tetrachloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4	ND	ND	ND	ND
Trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NA 2	5	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride Xylenes (Total)	2	2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Ayieries (Total)			שוו	IND	טאו	IND	טא	רואף	שוו	IND	ואר	IND	שוא	שוו	טאו	ואט	טאו	שוו	IND

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

	•								ı							1	1		
SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-4	MW-4	MW-4	MW-4	MW-4
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78779-002	AC84603-002	AC91349-005	AC98051-004	460-157702-5	460-183874-2	460-212426-1	1061422-01	2060575-01	L2339185-01	L2447470-01	JE16114-1	07110833-02	AC51902-010	AC65207-009	AC72263-008	AC84603-003
DATE COLLECTED:			5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025	11/26/2007	5/25/2010	4/9/2012	5/7/2013	4/28/2015
Base Neutral Organics																			
1,2,4-Trichlorobenzene	5	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA
1,2-Diphenylhydrazine	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
2,4,5-Trichlorophenol	1	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2,4,6-Trichlorophenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	0.455	ND	ND	ND	ND	ND	NA	NA	NA
2,4-Dichlorophenol	1	1	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2,4-Dimethylphenol	NA	50	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2,4-Dinitrophenol	5	10	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2,4-Dinitrotoluene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NA	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	50	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2-Methylnaphthalene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
2-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
3&4-Methylphenol	50	NA	NA	NA	NA	2.7	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
4-Chloroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	5	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA
Acenaphthene	20	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	0.04	ND	6	ND	6	ND	12
Acenaphthylene	20	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	NA	NA	ND	ND	ND	ND	ND
Aniline	5	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
Anthracene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzidine	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	ND	ND	ND	ND	ND
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND	ND	ND	ND	ND	ND
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND	ND	ND	ND	ND	ND
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	ND	ND	ND	ND	ND	ND	ND
Benzoic acid	50	NA	NA	NA	NA	23	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

				ı		ı											1		
SAMPLE ID:	NY Water TAGM	NY TOGS Water	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-4	MW-4	MW-4	MW-4	MW-4
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78779-002	AC84603-002	AC91349-005	AC98051-004	460-157702-5	460-183874-2	460-212426-1	1061422-01	2060575-01	L2339185-01	L2447470-01	JE16114-1	07110833-02	AC51902-010	AC65207-009	AC72263-008	AC84603-003
DATE COLLECTED:			5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025	11/26/2007	5/25/2010	4/9/2012	5/7/2013	4/28/2015
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroethyl)Ether	NA NA	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroisopropyl)ether	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND.	ND ND	ND	37.4	ND	ND	ND	ND	ND
Butvlbenzvlphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
Chrysene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzola.hlAnthracene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	5	NA NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	1
Diethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .
Dimethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DI-n-octvlphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	ND	ND	ND	ND	ND	ND
Fluorene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND	ND	5	ND	4.6	ND	6.5
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3.5
Nitrobenzene	5	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1	1	ND	ND	ND	ND	ND	ND	ND	ND	0.477	0.06	NA	NA	ND	ND	ND	ND	ND
Phenanthrene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.07	0.06	ND	2	ND	6.9	ND	2.2
Phenol	1	1	ND	ND	ND	9.8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05	ND	ND	ND	ND	ND	ND

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

		NY Water TAGM	NY TOGS Water	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-2A	MW-4	MW-4	MW-4	MW-4	MW-4
	SAMPLE ID: LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78779-002	AC84603-002	AC91349-005	AC98051-004	460-157702-5	460-183874-2	460-212426-1	1061422-01	2060575-01	L2339185-01	L2447470-01	JE16114-1	07110833-02	AC51902-010	AC65207-009	AC72263-008	AC84603-003
	DATE COLLECTED:			5/20/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025	11/26/2007	5/25/2010	4/9/2012	5/7/2013	4/28/2015
	Metals			3/20/2014	4/20/2010	3/13/2010	0/20/2017	0/3/2010	0/0/2013	0/30/2020	0/20/2021	0/10/2022	7710/2020	0/20/2024	773072023	11/20/2001	3/23/2010	4/3/2012	3/1/2013	4/20/2010
	Mercury	NA	0.7	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
	Aluminum			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Antimony			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
	Arsenic	NA	1000	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND 500	ND 430	ND 330	2.5 380
	Barium Beryllium	INA	1000	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND
	Cadmium			ND ND	ND	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND
	Calcium			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chromium	NA	50	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
	Cobalt	NIA	200	NA ND	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	NA ND	NA	NA ND
	Copper Iron	NA	200	ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	ND NA	ND NA	ND NA
	Lead	NA	25	ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	0.061	28	72	9	4.9
	TCLP Lead			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Magnesium			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Manganese			NA ND	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA ND	NA ND
	Nickel Potassium			ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	ND NA	ND NA	ND NA
	Selenium			ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND
	Silver			ND ND	ND	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND
	Sodium			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Thallium			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND
	Vanadium			NA	NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	Zinc PCBS			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	63	ND	ND
	Aroclor-1016			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor-1221			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor-1232			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor-1242			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor-1248			NA NA	NA	NA NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aroclor-1254 Aroclor-1260			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aroclor-1262			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Aldrin			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Alpha-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	beta-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Chlordane			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	delta-BHC Dieldrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Endosulfan I			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA
	Endosulfan II			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E	Endosulfan Sulfate			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Endrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Endrin Aldehyde Endrin Ketone			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Gamma-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Heptachlor			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
H	leptachlor Epoxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Methoxychlor			NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	p,p'-DDD			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	p,p'-DDE p,p'-DDT			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Toxaphene			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA
Ot	her Parameters																			
	% Solids			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cyanide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Cr (Hexavalent)			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

	NIV Mater TAGM	NIV TOOO Weben	MW-4	MW-4A	MW-4A	MW-4A
SAMPLE ID:	NY_Water_TAGM Criteria (ug/L)	NY_TOGS_Water Criteria (ug/L)	1001010 001	08010442-01	1054000 000	A 0.50705 005
LAB ID:	, , ,	, ,	AC91349-004		AC51902-009	AC58765-005
DATE COLLECTED:			5/13/2016	1/15/2008	5/25/2010	4/29/2011
Volatile Organics						
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND
1,1,2-trichloro-1,2,2-trifluoroethane	5 NA	5	ND ND	ND ND	ND ND	ND ND
1,1,2-Trichloroethane 1,1-Dichloroethane	NA 5	1 5	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene	5	5	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane	5	0.04	ND	NA NA	ND	ND
1,2,4-Trimethylbenzene	NA NA	5	ND	NA NA	ND	ND
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND
1,2-Dichloroethane	5	0.6	ND	ND	ND	ND
1,2-Dichloropropane	NA	1	ND	ND	ND	ND
1,3,5-Trimethylbenzene	NA	5	ND	NA	ND	ND
1,3-Dichlorobenzene	5	3	ND	ND	ND	ND
1,3-Dichloropropane	5	5	ND	NA	ND	ND
1,4-Dichlorobenzene	5	3	ND	ND	ND	ND
1,4-Dioxane	NA	NA	ND	NA	ND	ND
2-Butanone	50	50	ND ND	ND NA	ND ND	ND
2-Chloroethylvinylether	NA NA	NA 50	ND ND	NA ND	ND ND	ND
2-Hexanone 4-Isopropyltoluene	NA NA	50 5	ND ND	NA NA	ND ND	ND ND
4-Methyl-2-Pentanone	50	NA	ND ND	ND ND	ND ND	ND ND
Acetone	50	NA NA	ND	18	ND ND	ND
Acrolein	NA	NA NA	ND	NA	ND	ND
Acrylonitrile	NA	NA	ND	NA	ND	ND
Benzene	0.7	1	ND	23	53	2.7
Bromodichloromethane	NA	50	ND	ND	ND	ND
Bromoform	NA	50	ND	ND	ND	ND
Bromomethane	NA	5	ND	ND	ND	ND
Carbon disulfide	50	60	ND	ND	ND	ND
Carbon tetrachloride	5	5	ND	ND	ND	ND
Chlorobenzene	5	5	ND	ND	ND	ND
Chloroethane	50 7	5 7	ND	ND	ND	ND
Chloroform	/ NA	/ NA	ND ND	ND ND	ND ND	ND ND
Chloromethane Cis-1,2-Dichloroethene	NA NA	5	ND ND	ND ND	ND ND	ND ND
Cis-1,3-Dichloropropene	NA NA	0.4	ND	ND ND	ND ND	ND
Dibromochloromethane	50	50	ND	ND	ND	ND
Dichlorodifluoromethane	NA	5	ND	ND	ND	ND
Ethylbenzene	5	5	ND	3	ND	ND
Isopropylbenzene	NA	5	ND	ND	ND	ND
M&p-Xylenes	5	5	ND	11	ND	ND
Methylene chloride	5	5	ND	5	ND	ND
Methyl-t-butyl ether	NA	10	ND	ND	ND	ND
N-Butylbenzene	NA NA	5	ND	NA	ND	ND
N-Propylbenzene	NA F	5	ND	NA 44	ND ND	ND
O-Xylene	5 NA	5 5	ND	11 NA	ND ND	ND ND
Sec-Butylbenzene Styrene	NA NA	5	ND ND	NA ND	ND ND	ND ND
T-Butyl Alcohol	NA NA	NA	ND ND	NA NA	ND ND	ND ND
T-Butyl Alcohol	NA NA	5	ND	NA NA	ND	ND
Tetrachloroethene	5	5	ND	ND ND	ND	ND
Toluene	5	5	ND	3	ND	ND
Trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND
Trans-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND
Trichloroethene	5	5	ND	ND	ND	ND
Trichlorofluoromethane	NA	5	ND	ND	ND	ND
Vinyl chloride	2	2	ND	ND	ND	ND
Xylenes (Total)			ND	ND	ND	ND

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-4	MW-4A	MW-4A	MW-4A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC91349-004	08010442-01	AC51902-009	AC58765-005
DATE COLLECTED:			5/13/2016	1/15/2008	5/25/2010	4/29/2011
Base Neutral Organics						
1,2,4-Trichlorobenzene	5	5	NA	ND	ND	ND
1,2-Diphenylhydrazine	NA	ND	ND	NA	ND	ND
2,4,5-Trichlorophenol	1	NA	NA	ND	ND	ND
2,4,6-Trichlorophenol	NA	NA	NA	ND	ND	ND
2,4-Dichlorophenol	1	1	NA	ND	ND	ND
2,4-Dimethylphenol	NA	50	NA	ND	ND	ND
2,4-Dinitrophenol	5	10	NA	ND	ND	ND
2,4-Dinitrotoluene	NA	5	ND	ND	ND	ND
2,6-Dinitrotoluene	5	5	ND	ND	ND	ND
2-Chloronaphthalene	NA	10	ND	ND	ND	ND
2-Chlorophenol	50	NA	NA	ND	ND	ND
2-Methylnaphthalene	50	NA	ND	17	ND	ND
2-Methylphenol	5	NA	NA	ND	ND	ND
2-Nitroaniline	5	5	ND	ND	ND	ND
2-Nitrophenol	5	NA	NA	ND	ND	ND
3&4-Methylphenol	50	NA	NA	ND	ND	ND
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND
3-Nitroaniline	5	5	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	NA	NA	NA	ND	ND	ND
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND
4-Chloro-3-methylphenol	5	NA	NA	ND	ND	ND
4-Chloroaniline	5	5	ND	ND	ND	ND
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND
4-Nitroaniline	NA	5	ND	ND	ND	ND
4-Nitrophenol	5	NA	NA	ND	ND	ND
Acenaphthene	20	20	ND	9	ND	11
Acenaphthylene	20	NA	ND	ND	ND	ND
Aniline	5	5	ND	NA	ND	ND
Anthracene	50	50	ND	ND	ND	ND
Benzidine	NA	NA	ND	NA	ND	ND
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND
Benzoic acid	50	NA	NA	ND	ND	ND

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-4	MW-4A	MW-4A	MW-4A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC91349-004	08010442-01	AC51902-009	AC58765-005
DATE COLLECTED:			5/13/2016	1/15/2008	5/25/2010	4/29/2011
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND
Bis(2-Chloroethyl)Ether	NA	1	ND	ND	ND	ND
Bis(2-Chloroisopropyl)ether	NA	NA	ND	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	ND	ND
Butylbenzylphthalate	50	50	ND	ND	ND	ND
Carbazole	NA	NA	ND	NA	ND	3.1
Chrysene	0.002	0.002	ND	ND	ND	ND
Dibenzo[a,h]Anthracene	50	NA	ND	ND	ND	ND
Dibenzofuran	5	NA	ND	ND	ND	3
Diethylphthalate	50	50	ND	ND	ND	ND
Dimethylphthalate	50	50	ND	ND	ND	ND
Di-n-butylphthalate	50	50	ND	ND	ND	ND
DI-n-octylphthalate	50	50	ND	ND	ND	ND
Fluoranthene	50	50	ND	ND	ND	ND
Fluorene	50	50	ND	5	ND	4.8
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND
Hexachloroethane	NA	5	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND
Isophorone	50	50	ND	ND	ND	ND
Naphthalene	10	10	ND	141	ND	21
Nitrobenzene	5	0.4	ND	ND	ND	ND
N-Nitrosodimethylamine	NA	NA	ND	NA	ND	ND
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND
Pentachlorophenol	1	1	ND	ND	ND	ND
Phenanthrene	50	50	ND	5	ND	ND
Phenol	1	1	ND	ND	ND	ND
Pyrene	50	50	ND	ND	ND	ND

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SESI CONSULTING ENGINEERS PROJECT #07173

				_		
SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-4	MW-4A	MW-4A	MW-4A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC91349-004	08010442-01	AC51902-009	AC58765-005
DATE COLLECTED:			5/13/2016	1/15/2008	5/25/2010	4/29/2011
Metals						
Mercury	NA	0.7	NA	NA	ND	ND
Aluminum			NA	NA	NA	ND
Antimony			NA	NA	ND	ND
Arsenic	NIA .	4000	NA	NA NA	ND	ND
Barium Beryllium	NA	1000	NA NA	NA NA	260 ND	210 ND
Cadmium			NA NA	NA NA	ND	ND
Calcium			NA	NA	NA NA	ND
Chromium	NA	50	NA	NA	ND	ND
Cobalt			NA	NA	NA	ND
Copper	NA	200	NA	NA	ND	ND
Iron	NIA.	05	NA	NA 0.040	NA 44	ND
Lead TCLP Lead	NA	25	NA NA	0.042 NA	11 NA	31 ND
Magnesium			NA NA	NA NA	NA NA	ND
Manganese			NA	NA	NA	ND
Nickel			NA	NA	ND	ND
Potassium			NA	NA	NA	ND
Selenium			NA	NA	ND	ND
Silver			NA	NA	ND	ND
Sodium			NA NA	NA NA	NA	ND
Thallium Vanadium			NA NA	NA NA	ND NA	ND ND
Zinc			NA NA	NA NA	ND ND	ND ND
PCBS					.,,_	.,,2
Aroclor-1016			NA	NA	NA	NA
Aroclor-1221			NA	NA	NA	NA
Aroclor-1232			NA	NA	NA	NA
Aroclor-1242			NA	NA	NA	NA
Aroclor-1248			NA NA	NA NA	NA NA	NA NA
Aroclor-1254 Aroclor-1260			NA NA	NA NA	NA NA	NA NA
Aroclor-1260 Aroclor-1262			NA NA	NA NA	NA NA	NA NA
Aldrin			NA	NA	NA	NA
Alpha-BHC			NA	NA	NA	NA
beta-BHC			NA	NA	NA	NA
Chlordane			NA	NA	NA	NA
delta-BHC			NA NA	NA NA	NA NA	NA NA
Dieldrin Endosulfan I			NA NA	NA NA	NA NA	NA NA
Endosulfan II			NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate			NA	NA	NA NA	NA
Endrin			NA	NA	NA	NA
Endrin Aldehyde			NA	NA	NA	NA
Endrin Ketone			NA	NA	NA	NA
Gamma-BHC Heptachlor			NA NA	NA NA	NA NA	NA NA
Heptachlor Epoxide			NA NA	NA NA	NA NA	NA NA
Methoxychlor			NA NA	NA NA	NA NA	NA NA
p,p'-DDD			NA	NA	NA	NA
p,p'-DDE			NA	NA	NA	NA
p,p'-DDT			NA	NA	NA	NA
Toxaphene			NA	NA	NA	NA
Other Parameters			NIA	NIA	NIA	NIA
% Solids Cyanide			NA NA	NA NA	NA NA	NA NA
Cyanide Cr (Hexavalent)			NA NA	NA NA	NA NA	NA NA
C. (Hondvalotti)		<u> </u>	17/1	1 171	14/1	17/1

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-4A	MW-4A	MW-6A	MW-6A	MW-6B	MW-6B	MW-6B	MW-6B								
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC65207-010	AC72263-002	08010442-02	AC51902-006	AC58765-008	AC65207-004	AC72263-009	AC84603-004	AC91349-002	AC98051-002	460-157702-3	460-183874-3	08010442-03	AC51902-005	AC58765-007	AC65207-005
DATE COLLECTED:			4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012
Volatile Organics																		
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND										
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND										
1,1,2-trichloro-1,2,2-trifluoroethane	5 NA	5 1	ND ND	ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND							
1,1,2-Trichloroethane 1.1-Dichloroethane	5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
1,1-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND										
1,2,3-Trichloropropane	5	0.04	ND	ND	NA	ND	NA	NA	ND	ND	ND							
1,2,4-Trimethylbenzene	NA	5	ND	ND	NA	ND	NA	NA	ND	ND	ND							
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND	ND	ND										
1,2-Dichloroethane	5	0.6	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichloropropane 1.3.5-Trimethylbenzene	NA NA	5	ND ND	ND ND	ND NA	ND ND	ND NA	NA NA	ND ND	ND ND	ND ND							
1,3-Dichlorobenzene	5	3	ND	ND ND	ND ND	ND ND	0.6	ND ND	ND ND	ND	ND	ND ND						
1,3-Dichloropropane	5	5	ND	ND	NA	ND	NA	NA	ND	ND	ND							
1,4-Dichlorobenzene	5	3	ND	ND	ND	ND	ND	ND										
1,4-Dioxane	NA 	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND							
2-Butanone	50 NA	50	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND
2-Chloroethylvinylether 2-Hexanone	NA NA	NA 50	ND ND	ND ND	NA ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND							
4-Isopropyltoluene	NA NA	5	ND	ND	NA	ND	NA NA	NA NA	ND	ND	ND							
4-Methyl-2-Pentanone	50	NA	ND	ND	ND	ND	ND	ND										
Acetone	50	NA	ND	ND	8	ND	ND	11	ND	ND	ND							
Acrolein	NA	NA	ND	ND	NA	ND	NA	NA	ND	ND	ND							
Acrylonitrile Benzene	NA 0.7	NA 1	ND ND	ND ND	NA ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND							
Bromodichloromethane	NA	50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Bromoform	NA NA	50	ND	ND	ND	ND	ND	ND										
Bromomethane	NA	5	ND	ND	ND	ND	ND	ND										
Carbon disulfide	50	60	ND	ND	ND	ND	ND	ND										
Carbon tetrachloride Chlorobenzene	5 5	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Chloroethane	50	5	ND ND	ND ND	1	ND ND	ND	ND ND										
Chloroform	7	7	ND	ND	ND	ND	ND	ND										
Chloromethane	NA	NA	ND	ND	ND	ND	ND	ND										
Cis-1,2-Dichloroethene	NA	5	ND	ND	ND	ND	ND	ND										
Cis-1,3-Dichloropropene	NA 50	0.4	ND	ND	ND	ND	ND	ND										
Dibromochloromethane Dichlorodifluoromethane	50 NA	50 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Ethylbenzene	5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Isopropylbenzene	NA NA	5	ND	2.4	ND	ND	2	ND	ND	ND								
M&p-Xylenes	5	5	ND	ND	ND	ND	ND	ND										
Methylene chloride	5	5	ND	ND	6	ND	ND	5	ND	ND	ND							
Methyl-t-butyl ether	NA NA	10	ND ND	ND 1.2	ND NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND
N-Butylbenzene N-Propylbenzene	NA NA	5 5	ND ND	1.2 ND	NA NA	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND							
O-Xylene	5	5	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND
Sec-Butylbenzene	NA	5	ND	4	NA	ND	NA	NA	ND	ND	ND							
Styrene	NA	5	ND	ND	ND	ND	ND	ND										
T-Butyl Alcohol	NA NA	NA -	ND	ND	NA NA	ND	ND ND	NA NA	NA NA	ND	ND	ND						
T-Butylbenzene Tetrachloroethene	NA 5	5 5	ND ND	ND ND	NA ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND							
Toluene	5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND	ND	ND										
Trichloroethene	5	5	ND	ND	ND	ND	ND	ND										
Trichlorofluoromethane	NA 2	5	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl chloride Xylenes (Total)	2	2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND										
Aylonos (Total)		1	ואט	ר ואַר	IND	טוו	טוו	שוו	שוו	טוו	טוו	טוו	שוו	רווח	ואט	ואט	ואט	טוו

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

2007.7	NY Water TAGM	NY TOGS Water	MW-4A	MW-4A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6B	MW-6B	MW-6B	MW-6B						
SAMPLE ID:	Criteria (ug/L)	Criteria (ug/L)	AC65207-010	AC72263-002	08010442-02	AC51902-006	AC58765-008	AC65207-004	AC72263-009	AC84603-004	AC91349-002	AC98051-002	460-157702-3	460-183874-3	08010442-03	AC51902-005	AC58765-007	AC65207-005
DATE COLLECTED:			4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012
Base Neutral Organics				0	.,	0,2,0,20,0	0,_0		0,1,2010		57.757.25.75	0,20,2011	0,0,00	0.0.00		0,2,1,20,10	.,,,	
1,2,4-Trichlorobenzene	5	5	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA
1,2-Diphenylhydrazine	NA NA	ND ND	ND ND	ND ND	NA NA	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	NA NA	NA NA	ND	ND	ND
2.4.5-Trichlorophenol	1	NA NA	NA NA	NA NA	ND	ND	ND	NA NA	NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND ND	ND	ND	NA
2.4.6-Trichlorophenol	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	NA NA
2,4-Dichlorophenol	1	1	NA NA	NA NA	ND	ND	ND	NA NA	NA	NA NA	NA NA	NA NA	NA NA	ND ND	ND	ND	ND	NA NA
2.4-Dimethylphenol	NA NA	50	NA NA	NA NA	ND	ND	ND	NA	NA	NA	NA NA	NA	NA	ND	ND	ND	ND	NA
2.4-Dinitrophenol	5	10	NA NA	NA NA	ND	ND	ND	NA NA	NA	NA NA	NA NA	NA	NA	ND	ND	ND	ND	NA
2.4-Dinitrotoluene	NA NA	5	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND
2.6-Dinitrotoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND								
2-Chloronaphthalene	NA	10	ND	ND	ND	ND	ND	ND	ND	ND								
2-Chlorophenol	50	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
2-Methylnaphthalene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND								
2-Methylphenol	5	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
2-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND								
2-Nitrophenol	5	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
3&4-Methylphenol	50	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND	ND	ND	ND	ND								
3-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND								
4,6-Dinitro-2-methylphenol	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND								
4-Chloro-3-methylphenol	5	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA
4-Chloroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND								
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND								
4-Nitroaniline	NA	5	ND	ND	ND	ND	ND	ND	ND	ND								
4-Nitrophenol	5	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA
Acenaphthene	20	20	ND	4.7	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthylene	20	NA	ND	ND	ND	ND	ND	ND	ND	ND								
Aniline	5	5	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND
Anthracene	50	50	ND	ND	ND	ND	ND	ND	ND	ND								
Benzidine	NA	NA	ND	ND	NA	ND	ND	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND								
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND								
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND								
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND								
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND								
Benzoic acid	50	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

			•	•					•					•		1	•	
SAMPLE ID:	NY Water TAGM	NY TOGS Water	MW-4A	MW-4A	MW-6A	MW-6A	MW-6B	MW-6B	MW-6B	MW-6B								
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC65207-010	AC72263-002	08010442-02	AC51902-006	AC58765-008	AC65207-004	AC72263-009	AC84603-004	AC91349-002	AC98051-002	460-157702-3	460-183874-3	08010442-03	AC51902-005	AC58765-007	AC65207-005
DATE COLLECTED:			4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND	ND	ND										
Bis(2-Chloroethyl)Ether	NA	1	ND	ND	ND	ND	ND	ND										
Bis(2-Chloroisopropyl)ether	NA	NA	ND	NA	ND	ND	ND	ND										
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	ND	ND	ND	ND										
Butylbenzylphthalate	50	50	ND	ND	ND	ND	ND	ND										
Carbazole	NA	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND							
Chrysene	0.002	0.002	ND	ND	ND	ND	ND	ND										
Dibenzo[a,h]Anthracene	50	NA	ND	ND	ND	ND	ND	ND										
Dibenzofuran	5	NA	ND	1.1	ND	ND	ND	ND	ND	ND								
Diethylphthalate	50	50	ND	ND	ND	ND	ND	ND										
Dimethylphthalate	50	50	ND	ND	ND	ND	ND	ND										
Di-n-butylphthalate	50	50	ND	ND	ND	ND	ND	ND										
DI-n-octylphthalate	50	50	ND	ND	ND	ND	ND	ND										
Fluoranthene	50	50	ND	ND	ND	ND	ND	2.7										
Fluorene	50	50	ND	3.4	ND	ND	ND	ND	ND	ND								
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND	ND	ND										
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND	ND	ND										
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND	ND	ND										
Hexachloroethane	NA	5	ND	ND	ND	ND	ND	ND										
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND	ND	ND										
Isophorone	50	50	ND	ND	ND	ND	ND	ND										
Naphthalene	10	10	ND	ND	ND	ND	ND	ND										
Nitrobenzene	5	0.4	ND	ND	ND	ND	ND	ND										
N-Nitrosodimethylamine	NA	NA	ND	ND	NA	ND	ND	NA	ND	ND	ND							
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND	ND	ND										
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND	ND	ND										
Pentachlorophenol	1	1	ND	ND	ND	ND	ND	ND										
Phenanthrene	50	50	ND	4.7	3	ND	ND	ND	ND	ND	ND							
Phenol	1	1	ND	ND	ND	ND	ND	ND										
Pyrene	50	50	ND	ND	ND	ND	ND	3.2										

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM Criteria (ug/L)	NY_TOGS_Water Criteria (ug/L)	MW-4A	MW-4A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6A	MW-6B	MW-6B	MW-6B	MW-6B
LAB ID:	Onteria (ug/L)	Criteria (ug/L)	AC65207-010	AC72263-002	08010442-02	AC51902-006	AC58765-008	AC65207-004	AC72263-009	AC84603-004	AC91349-002	AC98051-002	460-157702-3	460-183874-3	08010442-03	AC51902-005	AC58765-007	AC65207-005
DATE COLLECTED:			4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012
Metals																		
Mercury	NA	0.7	ND	ND NA	NA	ND NA	ND	ND	ND NA	ND	NA NA	NA NA	NA	NA NA	NA	ND	ND	11
Aluminum Antimony			NA ND	NA ND	NA NA	NA ND	ND ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	ND ND	NA 16
Arsenic			ND ND	ND	NA NA	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	28
Barium	NA	1000	270	400	NA	200	120	130	300	150	NA	NA	NA	NA	NA	220	110	390
Beryllium			ND	ND	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND
Cadmium			ND	ND	NA	ND NA	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA NA	ND	ND	5.2
Calcium Chromium	NA	50	NA ND	NA ND	NA NA	NA ND	ND ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	ND ND	NA 200
Cobalt	IVA	30	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	NA
Copper	NA	200	ND	ND	NA	ND	29	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	470
Iron			NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Lead	NA	25	26	27	0.06	18	100	ND	6.3	ND	NA	NA	NA	NA	0.506	10	42	760
TCLP Lead			NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA
Magnesium Manganese			NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA
Nickel			ND ND	ND	NA NA	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND
Potassium			NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	NA
Selenium			ND	ND	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND
Silver			ND NA	ND	NA NA	ND	ND	ND NA	ND NA	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	52
Sodium Thallium			NA ND	NA ND	NA NA	NA ND	ND ND	NA ND	NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	ND ND	NA ND
Vanadium			NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA
Zinc			ND	ND	NA	ND	72	ND	ND	ND	NA	NA	NA	NA	NA	ND	65	1000
PCBS																		
Aroclor-1016			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221			NA NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
Aroclor-1232 Aroclor-1242			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1242 Aroclor-1248			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1262			NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA
Aldrin Alpha-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
beta-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chlordane			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
delta-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dieldrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
Endosulfan I Endosulfan II			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II Endosulfan Sulfate			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Aldehyde			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone			NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gamma-BHC Heptachlor			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor Epoxide			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
p,p'-DDD			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p,p'-DDE			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p,p'-DDT			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toxaphene Other Parameters			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
% Solids			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cr (Hexavalent)			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			. <u> </u>		 	<u> </u>	· · · · · · · · · · · · · · · · · · ·	. <u>-</u>				·			-	·	<u>-</u>	

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC72263-003	AC84603-005	AC91349-001	AC98051-001	460-157702-2	460-183874-4	08010442-05	AC51902-003	AC58765-004	AC65207-001	AC72263-004	08010442-04	AC51902-004	AC58765-001	AC65207-002	AC72263-012
DATE COLLECTED:			5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013
Volatile Organics																		
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-trichloro-1,2,2-trifluoroethane 1,1,2-Trichloroethane	5 NA	5	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethane	5 5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	5	0.04	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
1,2,4-Trimethylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	0.6	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND							
1,2-Dichloropropane 1,3,5-Trimethylbenzene	NA NA	1 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND
1,3-Dichlorobenzene	5	3	ND ND	ND ND	ND ND	ND ND	0.44	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,3-Dichloropropane	5	5	ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
1,4-Dichlorobenzene	5	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	NA	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
2-Butanone	50	50	ND	28	ND	ND	ND	ND NA	ND NA	ND	ND	ND	ND ND	ND NA	ND	ND	ND ND	ND
2-Chloroethylvinylether 2-Hexanone	NA NA	NA 50	ND ND	ND ND	ND ND	ND ND	ND ND	NA ND	NA ND	ND ND	ND ND	ND ND	ND ND	NA ND	ND ND	ND ND	ND ND	ND ND
2-Hexanone 4-Isopropyltoluene	NA NA	50	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND
4-Methyl-2-Pentanone	50	NA	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Acetone	50	NA NA	ND	32	ND	ND	ND	ND	10	ND	ND	ND	ND	11	ND	ND	ND	ND
Acrolein	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Acrylonitrile	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Benzene	0.7	1 50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND
Bromodichloromethane Bromoform	NA NA	50 50	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Bromomethane	NA NA	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon disulfide	50	60	ND	ND	ND	ND	0.23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	50	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	7	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND
Chloromethane Cis-1,2-Dichloroethene	NA NA	NA 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Cis-1,3-Dichloropropene	NA NA	0.4	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND
Dibromochloromethane	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dichlorodifluoromethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NA -	5	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	2	ND	ND	ND ND	ND
M&p-Xylenes Methylene chloride	5 5	5 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 5	ND ND	ND ND	ND ND	ND ND	ND 5	ND ND	ND ND	ND ND	ND ND
Methyl-t-butyl ether	NA	10	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.65	ND ND	ND ND	ND ND	2	1.5	0.79	0.87	ND ND
N-Butylbenzene	NA NA	5	ND	ND	ND	ND	ND	NA NA	NA NA	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
N-Propylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
O-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sec-Butylbenzene	NA NA	5	ND	ND	ND	ND	ND	NA NB	NA ND	ND	ND	ND	ND ND	NA ND	ND	ND	ND ND	ND
Styrene T-Butyl Alcohol	NA NA	5 NA	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND	ND NA	ND ND	ND ND	ND ND	ND ND
T-Butylbenzene	NA NA	NA 5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND
Tetrachloroethene	5	5	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NA 2	5	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND
Vinyl chloride Xylenes (Total)	2	2	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Agionos (Total)	1	1	IND	IND	ND	ND	ND	IND	ND	ND	IND	ND	ND	IND	ND	IND	IND	IND

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC72263-003	AC84603-005	AC91349-001	AC98051-001	460-157702-2	460-183874-4	08010442-05	AC51902-003	AC58765-004	AC65207-001	AC72263-004	08010442-04	AC51902-004	AC58765-001	AC65207-002	AC72263-012
DATE COLLECTED:			5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013
Base Neutral Organics																		
1,2,4-Trichlorobenzene	5	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
1,2-Diphenylhydrazine	NA	ND	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
2,4,5-Trichlorophenol	1	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2,4,6-Trichlorophenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2,4-Dichlorophenol	1	1	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2,4-Dimethylphenol	NA	50	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2,4-Dinitrophenol	5	10	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2,4-Dinitrotoluene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NA	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	50	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2-Methylnaphthalene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.7	ND	ND	ND
2-Methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
2-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
3&4-Methylphenol	50	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
4-Chloroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	5	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA
Acenaphthene	20	20	ND	ND	ND	ND	ND	ND	ND	7.7	ND	ND	4.2	ND	83	68	65	47
Acenaphthylene	20	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	55	ND	ND	ND	ND
Aniline	5	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Anthracene	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8	5.7	6.4	2.8	5.5
Benzidine	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND								
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	2.6	ND							
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	2.2	ND							
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	2.2	ND							
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Benzoic acid	50	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	NA	NA

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC72263-003	AC84603-005	AC91349-001	AC98051-001	460-157702-2	460-183874-4	08010442-05	AC51902-003	AC58765-004	AC65207-001	AC72263-004	08010442-04	AC51902-004	AC58765-001	AC65207-002	AC72263-012
DATE COLLECTED:			5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroethyl)Ether	NA	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroisopropyl)ether	NA	NA	ND	ND	ND	ND	ND	NA	ND									
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Butylbenzylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NA	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Chrysene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	3.5	ND							
Dibenzo[a,h]Anthracene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibenzofuran	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	12	11	6.4	9.8
Diethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DI-n-octylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	50	ND	ND	ND	ND	ND	ND	4	6.2	ND	ND	ND	5	5	5.6	5.9	5.1
Fluorene	50	50	ND	ND	ND	ND	ND	ND	ND	3.1	ND	ND	ND	28	30	24	10	19
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7	ND	ND	ND	ND
Nitrobenzene	5	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine	NA	NA	ND	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Phenanthrene	50	50	ND	ND	ND	ND	ND	ND	ND	3.2	ND	ND	ND	33	36	31	ND	ND
Phenol	1	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	27
Pyrene	50	50	ND	ND	ND	ND	ND	ND	5	7.8	ND	ND	ND	4	4	4.7	4.5	4

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-6B	MW-7	MW-7	MW-7	MW-7	MW-7	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC72263-003	AC84603-005	AC91349-001	AC98051-001	460-157702-2	460-183874-4	08010442-05	AC51902-003	AC58765-004	AC65207-001	AC72263-004	08010442-04	AC51902-004	AC58765-001	AC65207-002	AC72263-012
DATE COLLECTED:			5/7/2013	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013	1/15/2008	5/24/2010	4/29/2011	4/9/2012	5/7/2013
Metals																		
Mercury	NA	0.7	ND	ND	NA	NA	NA	NA	NA	0.44	ND	ND	ND	NA	ND	ND	ND	ND
Aluminum			NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Antimony			ND ND	3.6	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND ND	NA NA	ND ND	ND ND	ND ND	ND ND
Arsenic Barium	NA	1000	ND 240	5.7 150	NA NA	NA NA	NA NA	NA NA	NA NA	ND 280	ND 180	ND 130	ND 150	NA NA	ND 210	ND 220	ND 200	ND 210
Beryllium	IVA	1000	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
Cadmium			ND	3.6	NA NA	NA NA	NA NA	NA NA	NA	ND	ND	ND	ND	NA NA	ND	ND	ND	ND
Calcium			NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Chromium	NA	50	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Cobalt			NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Copper	NA	200	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	78	ND	ND	ND	NA	ND NA	ND	ND NA	ND
Iron Lead	NA	25	NA 20	NA 11	NA NA	NA NA	NA NA	NA NA	NA 271	NA 610	ND 5.9	NA 5.1	NA 4.9	NA 0.107	NA ND	ND 5.4	NA 7.9	7.3
TCLP Lead	INA	20	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	5.9 ND	NA	4.9 NA	0.107 NA	NA NA	5.4 ND	7.9 NA	7.3 NA
Magnesium			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA
Manganese			NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Nickel			ND	ND	NA	NA	NA	NA	NA	20	ND	ND	ND	NA	ND	ND	ND	ND
Potassium			NA	NA	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	ND	NA	NA
Selenium			ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	NA	ND	ND	ND	ND
Silver			ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND NA	ND	ND NA	ND NA	NA NA	ND NA	ND	ND NA	ND NA
Sodium Thallium			NA ND	NA ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA ND	ND ND	NA ND	NA ND	NA NA	NA ND	ND ND	NA ND	NA ND
Vanadium			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA	NA NA	NA NA	ND ND	NA NA	NA NA
Zinc			ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	360	ND	ND	ND	NA NA	ND ND	ND	ND ND	ND ND
PCBS																		
Aroclor-1016			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1242			NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
Aroclor-1248 Aroclor-1254			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1262			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aldrin			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
beta-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chlordane			NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA	NA NA	NA
delta-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin Endosulfan I			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan II			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan Sulfate			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA
Endrin			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Aldehyde			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endrin Ketone			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-BHC Heptachlor			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor Epoxide			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Methoxychlor			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
p,p'-DDD			NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA
p,p'-DDE			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p,p'-DDT			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Toxaphene			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Other Parameters																		
% Solids			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cyanide Cr (Hexavalent)			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
OI (I IEXAVAIEIIL)			INA	INA	INA	INA	INA	INA	INA	INA	INA	IVA	INA	INA	INA	INA	INA	INA

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78754-002	AC84603-006	AC91349-003	AC98051-003	460-157702-1	460-183874-5	460-212426-2	1061422-02	2060575-03	L2339185-02	L2447470-02	JE16114-2
DATE COLLECTED:			5/19/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025
Volatile Organics			0/10/2011	1/20/2010	0, 10,2010	0/20/2011	0,0,20.0	0/0/2010	0,00,2020	0/20/2021	0, 10,2022	1710/2020	0/20/2021	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1,1,1-Trichloroethane	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	5	5	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND
1,1,2-trichloro-1,2,2-trifluoroethane	5	5	ND ND	ND ND	ND ND	ND ND	ND ND	NA NA	NA NA	NA NA	ND	ND ND	ND ND	ND
1,1,2-Trichloroethane	NA NA	1	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND
1,1-Dichloroethane	5	5	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND
1.1-Dichloroethene	5	5	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND	ND
1,2,3-Trichloropropane	5	0.04	ND	ND	ND ND	ND	ND	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA
1,2,4-Trimethylbenzene	NA NA	5	ND	ND	ND	ND	ND	NA NA	NA NA	ND ND	ND ND	ND	ND	ND
1,2-Dichlorobenzene	4.7	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloroethane	5	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1.2-Dichloropropane	NA NA	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	NA	5	ND	ND	ND	ND	ND	NA NA	NA	NA	NA	NA NA	NA NA	NA
1,3-Dichlorobenzene	5	3	ND	ND	ND ND	ND	0.94	ND	ND ND	ND ND	ND	ND ND	ND	ND
1,3-Dichloropropane	5	5	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
1.4-Dichlorobenzene	5	3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dioxane	NA NA	NA NA	ND	ND	ND	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA
2-Butanone	50	50	ND	ND	ND	ND	ND	ND	ND	ND	8.43	ND	ND	ND
2-Chloroethylvinylether	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
2-Hexanone	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	NA	5	ND	ND	ND	ND	ND	NA	NA	ND	NA	NA NA	NA NA	NA
4-Methyl-2-Pentanone	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acetone	50	NA NA	ND	ND	ND	ND	ND	ND	6.1	ND	ND	ND	ND	ND
Acrolein	NA NA	NA NA	ND	ND	ND	ND	ND	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
Acrylonitrile	NA NA	NA NA	ND	ND	ND	ND	ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Benzene	0.7	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	NA NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide	50	60	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	50	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	7	7	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,2-Dichloroethene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cis-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	50	50	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Dichlorodifluoromethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylbenzene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Isopropylbenzene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
M&p-Xylenes	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl-t-butyl ether	NA	10	ND	0.77	ND	ND	0.71	0.97	0.73	0.598	ND	ND	0.44	0.62
N-Butylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
N-Propylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
O-Xylene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sec-Butylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Styrene	NA	5	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND
T-Butyl Alcohol	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND
T-Butylbenzene	NA	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Tetrachloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,2-Dichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene	NA	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes (Total)			ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78754-002	AC84603-006	AC91349-003	AC98051-003	460-157702-1	460-183874-5	460-212426-2	1061422-02	2060575-03	L2339185-02	L2447470-02	JE16114-2
DATE COLLECTED:			5/19/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025
Base Neutral Organics														
1,2,4-Trichlorobenzene	5	5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
1,2-Diphenylhydrazine	NA	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
2,4,5-Trichlorophenol	1	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2,4,6-Trichlorophenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	0.541	ND	ND	ND
2,4-Dichlorophenol	1	1	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2,4-Dimethylphenol	NA	50	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrophenol	5	10	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2,4-Dinitrotoluene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2,6-Dinitrotoluene	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloronaphthalene	NA	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorophenol	50	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
2-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
3&4-Methylphenol	50	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND
3,3'-Dichlorobenzidine	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
3-Nitroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4,6-Dinitro-2-methylphenol	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
4-Bromophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chloro-3-methylphenol	5	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
4-Chloroaniline	5	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Chlorophenyl-phenylether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitroaniline	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Nitrophenol	5	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Acenaphthene	20	20	41	59	22	49	19	39	38	35.2	45.9	27	34	23.4
Acenaphthylene	20	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.3	0.42	0.52
Aniline	5	5	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
Anthracene	50	50	6.8	6.1	2.1	6.7	ND	4.5	4.6	6.39	6.13	4.6	5	ND
Benzidine	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA
Benzo[a]anthracene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	0.156	0.176	0.29	0.19	ND
Benzo[a]pyrene	0.002	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.09	0.05	ND
Benzo[b]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	0.0246	ND	0.09	0.05	ND
Benzo[g,h,i]perylene	5	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.03	ND
Benzo[k]fluoranthene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.04	0.04	ND
Benzoic acid	50	NA	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78754-002	AC84603-006	AC91349-003	AC98051-003	460-157702-1	460-183874-5	460-212426-2	1061422-02	2060575-03	L2339185-02	L2447470-02	JE16114-2
DATE COLLECTED:			5/19/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025
Bis(2-Chloroethoxy)methane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroethyl)Ether	NA	1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Chloroisopropyl)ether	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bis(2-Ethylhexyl)phthalate	50	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.5
Butylbenzylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbazole	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND
Chrysene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.18	0.03	ND
Dibenzo[a,h]Anthracene	50	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.03	ND
Dibenzofuran	5	NA	9.6	12	4.3	11	1.3	7.6	7.3	8.53	8.9	5.4	5.1	ND
Diethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dimethylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Di-n-butylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DI-n-octylphthalate	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Fluoranthene	50	50	6	4.8	ND	5.3	2.9	4	5	5.9	5.58	4.9	5.2	3.8
Fluorene	50	50	19	23	8.5	21	ND	ND	15	18.3	19.7	12	13	ND
Hexachlorobenzene	0.35	0.04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorobutadiene	NA	0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachlorocyclopentadiene	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Hexachloroethane	NA	5	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Indeno[1,2,3-cd]pyrene	0.002	0.002	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.02	0.03	ND
Isophorone	50	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	10	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.05	0.05	ND
Nitrobenzene	5	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodimethylamine	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA
N-Nitroso-Di-N-Propylamine	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
N-Nitrosodiphenylamine	NA	50	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Pentachlorophenol	1	1	ND	NA	NA	NA	NA	ND	ND	ND	0.373	0.06	0.06	ND
Phenanthrene	50	50	35	31	12	24	ND	ND	20	30.8	25.6	13	12	ND
Phenol	1	1	ND	NA	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND
Pyrene	50	50	4	4.1	ND	4.1	2.3	1.6	4	4.37	4.46	3.8	3.8	3.2

TABLE 1.1 - GROUNDWATER ANALYTICAL RESULTS SUMMARY TABLE

HARBOR SQUARE VILLAGE OF OSSINING, NEW YORK

			_											
SAMPLE ID:	NY_Water_TAGM	NY_TOGS_Water	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A	MW-7A
LAB ID:	Criteria (ug/L)	Criteria (ug/L)	AC78754-002	AC84603-006	AC91349-003	AC98051-003	460-157702-1	460-183874-5	460-212426-2	1061422-02	2060575-03	L2339185-02	L2447470-02	JE16114-2
DATE COLLECTED:			5/19/2014	4/28/2015	5/13/2016	5/23/2017	6/5/2018	6/6/2019	6/30/2020	6/28/2021	6/10/2022	7/10/2023	8/20/2024	7/30/2025
Metals														
Mercury	NA	0.7	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aluminum			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Antimony			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic		4000	ND	ND 450	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Barium Beryllium	NA	1000	220 ND	150 ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Cadmium			ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Calcium			NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA
Chromium	NA	50	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cobalt			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	NA	200	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Iron	NIA	O.F.	NA ND	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Lead TCLP Lead	NA	25	ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Magnesium			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Potassium			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver Sodium			ND NA	ND NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium			ND ND	ND ND	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Zinc			ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
PCBS														
Aroclor-1016			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1221			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1232			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1242 Aroclor-1248			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1254			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Aroclor-1260			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1262			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aldrin			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alpha-BHC			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
beta-BHC Chlordane			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
delta-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Dieldrin			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endosulfan I			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan II			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Endosulfan Sulfate			NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
Endrin Endrin Aldehyde			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Endrin Aldenyde Endrin Ketone			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Gamma-BHC			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Heptachlor			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Heptachlor Epoxide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Methoxychlor			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
p,p'-DDD			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
p,p'-DDE p,p'-DDT			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Toxaphene			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Other Parameters														
% Solids			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cr (Hexavalent)	·		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 1.2 - SUMMARY OF GROUNDWATER GEOCHEMICAL PARAMETERS HARBOR SQUARE CROSSINGS

1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT # 07173

										Cround			Geo	chemical Par	ameters			
Well ID#	Date Installed	Depth to Top of Screen (ft.)	PVC Elevation above MSL (ft.)	Date Measured	Total Depth (ft.) bgs	Depth to Product (DNAPL) (ft.)	Depth to Groundwater (ft.)	Product Thickness (ft.)	Corrected Depth to Groundwater (ft.)	Ground Water Elevation above MSL (ft.)	рН	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp.	Salinity (%)	Redox Potential (mV)	PID (ppm)
MW-1	12/21/06	5	11.48	11/26/07	13.38	NA	9.42	NA	NA	2.06	7.39	2.39	-0.6	2.60	15.82	1.95	NM	NM
MW-1A	12/22/06	20	11.16	11/26/07	33.16	NM	8.50	NM	NM	2.66	7.58	5.209	97.5	5.61	14.79	3.57	NM	NM
MW-2	12/27/06	5	10.37	11/26/07	13.27	NA	8.10	NA	NA	2.27	7.25	1.968	109.2	3.51	15.10	1.25	NM	NM
MW-2	12/27/06	5	10.37	10/21/08	13.27	NA	7.62	NA	NA	2.75	7.09	2.17	35.5	1.05	18.51	NM	-176.10	0
MW-2	12/27/06	5	10.37	11/20/08	13.27	NA	7.83	NA	NA	2.54	NM	NM	NM	NM	NM	NM	NM	NM
MW-2	12/27/06	5	10.37	5/25/10	13.27	NA	7.82	NA	NA	2.55	7.25	3.72	576	NM	13.24	NM	-164.00	0
MW-2	12/27/06	5	10.37	4/29/11	13.27	NA	7.24	NA	NA	3.13	7.15	3.76	11.1	1.17	10.78	NM	-169.00	0.2
MW-2	12/27/06	5	10.37	4/9/12	14.45	NA	7.20	NA	NA	3.17	7.44	1.86	63.5	8.53	14.12	NM	-92.00	0
MW-2	12/27/06	5	10.37	5/7/13	14.45	NA	7.85	NA	NA	2.52	7.30	2.27	9.5	4.65	13.31	NM	-161.00	0
MW-2	12/27/06	5	10.37	5/20/14	14.44	NA	7.24	NA	NA	3.13	7.80	2.51	2.4	1.26	13.40	NM	-161.00	0
MW-2	12/27/06	5	10.37	4/28/15	14.55	NA	7.67	NA	NA	2.70	6.98	2.80	0.0	0.0	11.60	NM	-188.00	0
MW-2	12/27/06	3.23	8.60	5/13/16	NA	NA	NA	NA	NA	NA	7.62	1.38	8.3	0.81	12.60	NM	-190.80	32.0
MW-2	12/27/06	3.23	8.60	5/23/17	NA	NA	NA	NA	NA	NA	7.32	2.15	8.5	1.33	13.60	NM	-145.90	0.0
MW-2	12/27/06	3.23	8.60	6/5/18	NA	NA	NA	NA	NA	NA	7.19	2.56	4.6	0.56	14.57	NM	-135.30	0.0
MW-2	12/27/06	3.23	8.60	6/6/19	NA	NA	NA	NA	NA	NA	7.55	1.59	49.2	0.00	17.01	NM	-173.00	0.0
MW-2A	12/27/06	15	10.16	11/26/07	35	NA	7.58	NA	NA	2.58	7.64	4.29	43.8	3.38	15.49	2.84	NM	NM
MW-2A	12/27/06	15	10.16	10/21/08	35	NA	7.30	NA	NA	2.86	7.65	2.69	38.5	4.71	17.15	NM	-47.90	0
MW-2A	12/27/06	15	10.16	11/20/08	35	NA	7.50	NA	NA	2.66	NM	NM	NM	NM	NM	NM	NM	NM
MW-2A	12/27/06	15	10.16	5/25/10	35	NA	7.42	NA	NA	2.74	7.33	5.03	470	NM	16.49	NM	-141.00	0
MW-2A	12/27/06	15	10.16	4/29/11	35	NA	7.25	NA	NA	2.91	7.44	4.87	21.2	2.50	19.22	NM	83.00	0
MW-2A	12/27/06	15	10.16	4/9/12	28.5	NA	6.66	NA	NA	3.50	7.39	5.05	42	27.55	8.46	NM	-260.00	0
MW-2A	12/27/06	15	10.16	5/7/13	28.8	NA	6.80	NA	NA	3.36	7.46	4.51	13.1	1.89	22.66	NM	-61.00	0
MW-2A	12/27/06	15	10.16	5/20/14	28.56	NA	6.89	NA	NA	3.27	7.04	4.98	2.8	4.50	16.21	NM	-128.00	0
MW-2A	12/27/06	15	10.16	4/28/15	29.15	NA	6.71	NA	NA	3.45	6.97	5.01	0.0	0.0	13.76	NM	-119.00	0
MW-2A	12/27/06	13.54	8.70	5/13/16	26.95	NA	5.21	NA	NA	3.49	7.31	5.28	56.5	0.68	14.10	NM	-149.90	0.8
MW-2A	12/27/06	13.54	8.70	5/23/17	26.95	NA	10.00	NA	NA	-1.30	7.20	5.00	455.9	1.18	15.40	NM	-123.00	0
MW-2A	12/27/06	13.54	8.70	6/5/18	26.95	NA	5.14	NA	NA	3.56	7.26	4.83	35.2	0.53	14.88	NM	-101.80	0
MW-2A	12/27/06	13.54	8.70	6/6/19	26.95	NA	4.49	NA	NA	4.21	7.40	4.62	35.2	0.00	17.20	NM	-133.00	0
MW-2A	12/27/06	13.54	8.70	6/30/20	28.00	NA	6.35	NA	NA	2.35	7.47	4.78	8.5	1.71	19.60	NM	-149.00	0
MW-2A	12/27/06	13.54	8.70	6/28/21	28.00	NA	5.40	NA NA	NA NA	3.30	7.56	4.45	34.1	0.00	19.61	NM	-98.00	0
MW-2A	12/27/06	13.54	8.70	6/10/22	25.26	NA	5.07	NA NA	NA NA	3.63	7.50	5.58	6.5	0.00	17.46	NM	12.00	2
MW-2A	12/27/06	13.54	8.70	7/10/23	26.00	NA	4.62	NA NA	NA NA	4.08	7.33	4.79	22.8	0.00	18.02	NM	-98.00	0
MW-2A	12/27/06	13.54	8.70	8/20/24	26.00	NA	15.28	NA NA	NA NA	-6.58	7.26	5.48	40.4	0.17	17.86	NM	-136.00	0
MW-2A	12/27/06	13.54	8.70	7/30/25	25.99	NA	13.26	NA NA	NA NA	-4.56	7.28	5.13	24.5	0.17	19.93	NM	-104.00	0
MW-4	12/28/06	7	11.15	11/26/07	12	NA NA	6.00	NA NA	NA NA	5.15	7.67	1.748	40.9	5.98	15.95	1.08	-104.00 NM	NM
MW-4	12/28/06	7	11.15	10/21/08	12	NA NA	5.45	NA NA	NA NA	5.70	7.07	3.3	683.3	0.10	18.55		689.00	0
IVI VV -4	12/20/00	1	<u> </u> 11.10	10/21/00	IΖ	INA	ე.4ე	I INA	Page 1	5.70	1.20	ე ა.ა	1 003.3	1 0.10	10.00	INIVI	003.00	1 0

TABLE 1.2 - SUMMARY OF GROUNDWATER GEOCHEMICAL PARAMETERS HARBOR SQUARE CROSSINGS

1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT # 07173

													Geo	chemical Par	ameters			
Well ID#	Date Installed	Depth to Top of Screen (ft.)	PVC Elevation above MSL (ft.)	Date Measured	Total Depth (ft.) bgs	Depth to Product (DNAPL) (ft.)	Depth to Groundwater (ft.)	Product Thickness (ft.)	Corrected Depth to Groundwater (ft.)	Ground Water Elevation above MSL (ft.)	рН	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp.	Salinity (%)	Redox Potential (mV)	PID (ppm)
MW-4	12/28/06	7	11.15	11/20/08	12	NA	5.63	NA	NA	5.52	NM	NM	NM	NM	NM	NM	NM	NM
MW-4	12/28/06	7	11.15	5/25/10	12	NA	5.70	NA	NA	5.45	7.71	2.47	430	8.97	18.40	NM	-124.00	0
MW-4	12/28/06	7	11.15	4/9/12	13.41	NA	8.60	NA	NA	2.55	7.52	1.46	47.7	2.40	17.83	NM	-141.00	0.3
MW-4	12/28/06	7	11.15	5/7/13	13.43	NA	6.27	NA	NA	4.88	7.47	1.33	16.1	2.75	18.28	NM	-158.00	0.1
MW-4	12/28/06	7	11.15	5/20/14	13.43	NA	6.35	NA	NA	4.80	7.40	1.62	12.3	1.87	20.56	NM	-164.00	NM
MW-4	12/28/06	7	11.15	4/28/15	33.11	NA	9.76	NA	NA	1.39	7.10	2.27	43.5	0.00	13.81	NM	-62.00	0
MW-4	12/28/06	7.15	11.30	5/13/16	29.89	NA	6.49	NA	NA	4.81	7.16	3.21	45.9	0.85	15.80	NM	36.10	1.3
MW-4A	12/20/07	18	9.45	1/15/08	28	NA	6.42	NA	NA	3.03	7.35	1.59	1.43	7.75	11.22	1.13	NM	NM
MW-4A	12/20/07	18	9.45	10/21/08	28	NA	6.76	NA	NA	2.69	6.99	2.981	153	0.41	15.65	NM	-107.20	0
MW-4A	12/20/07	18	9.45	11/20/08	28	NA	6.92	NA	NA	2.53	NM	NM	NM	NM	NM	NM	NM	NM
MW-4A	12/20/07	18	9.45	5/25/10	28	NA	7.11	NA	NA	2.34	7.15	1.91	630	NM	16.60	NM	-114.00	0
MW-4A	12/20/07	18	9.45	4/29/11	28	NA	7.12	NA	NA	2.33	7.11	1.64	80	0.69	13.82	NM	-37.00	0
MW-4A	12/20/07	18	9.45	4/9/12	30.3	NA	6.56	NA	NA	2.89	6.99	1.65	117	5.69	15.95	NM	38.00	0
MW-4A	12/20/07	18	9.45	5/7/13	30.2	NA	7.45	NA	NA	2.00	7.13	1.76	25.00	19.78	19.78	NM	-54.00	0.1
MW-4A	12/20/07	18	9.45	5/20/14	30.26	NA	6.48	NA	NA	2.97	7.45	1.35	24.50	3.57	16.73	NM	-134.00	0
MW-5	12/28/06	7	8.96	11/26/07	15.06	NA	7.25	NA	NA	1.71	7.03	1.036	123	3.78	15.74	0.63	NM	NM
MW-6A	12/20/07	5	8.91	1/15/08	15	NA	6.40	NA	NA	2.51	6.75	5.3	4.75	9.24	10.30	4.04	NM	NM
MW-6A	12/20/07	5	8.91	10/21/08	15	NA	6.34	NA	NA	2.57	6.59	4.548	83.7	0.77	18.09	NM	-69.30	0
MW-6A	12/20/07	5	8.91	11/20/08	15	NA	6.63	NA	NA	2.28	NM	NM	NM	NM	NM	NM	NM	NM
MW-6A	12/20/07	5	8.91	5/24/10	15	NA	6.82	NA	NA	2.09	6.83	4.55	370	NM	16.23	NM	-136.00	0
MW-6A	12/20/07	5	8.91	4/29/11	15	NA	6.32	NA	NA	2.59	6.67	6.43	15.7	0.71	14.08	NM	-113.00	0
MW-6A	12/20/07	5	8.91	4/9/12	17.86	NA	6.72	NA	NA	2.19	6.75	8.89	46.3	1.89	14.69	NM	-116.00	0
MW-6A	12/20/07	5	8.91	5/7/13	17.8	NA	6.92	NA	NA	1.99	6.92	2.24	21.5	2.53	22.36	NM	-92.00	0
MW-6A	12/20/07	5	8.91	5/19/14	17.78	NA	6.77	NA	NA	2.14	7.30	1.22	52.5	3.84	16.00	NM	40.00	0
MW-6A	12/20/07	5	8.91	4/28/15	20.71	NA	10.23	NA	NA	-1.32	7.88	1.49	5.1	0.00	11.20	NM	-62.00	6.2
MW-6A	12/20/07	5.15	9.06	5/13/16	13.51	NA	6.24	NA	NA	2.82	7.58	0.714	8.4	0.76	12.50	NM	-128.50	0
MW-6A	12/20/07	5.15	9.06	5/23/17	13.51	NA	7.19	NA	NA	1.87	6.12	1.000	72.7	7.16	21.90	NM	-24.40	0
MW-6A	12/20/07	5.15	9.06	6/5/18	13.51	NA	6.07	NA	NA	2.99	6.36	1.186	16.6	0.79	14.35	NM	-57.20	0
MW-6A	12/20/07	5.15	9.06	6/6/19	13.51	NA	7.93	NA	NA	1.13	6.71	1.750	20.5	0.00	19.24	NM	-112.00	0
MW-6B	12/20/07	14	9.72	1/15/08	24	NA	7.08	NA	NA	2.64	7.35	2.63	2.4	9.24	9.38	1.98	NM	NM
MW-6B	12/20/07	14	9.72	10/21/08	24	NA	7.11	NA	NA	2.61	6.75	4.42	100.5	0.03	17.56	NM	-119.90	0
MW-6B	12/20/07	14	9.72	11/20/08	24	NA	7.50	NA	NA	2.22	NM	NM	NM	NM	NM	NM	NM	NM
MW-6B	12/20/07	14	9.72	5/24/10	24	NA	7.48	NA	NA	2.24	7.00	2.01	112	NM	14.66	NM	-139.00	0

TABLE 1.2 - SUMMARY OF GROUNDWATER GEOCHEMICAL PARAMETERS HARBOR SQUARE CROSSINGS

1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK

										Ground			Geo	chemical Para	ameters			
Well ID#	Date Installed	Depth to Top of Screen (ft.)	PVC Elevation above MSL (ft.)	Date Measured	Total Depth (ft.) bgs	Depth to Product (DNAPL) (ft.)	Depth to Groundwater (ft.)	Product Thickness (ft.)	Corrected Depth to Groundwater (ft.)	Water Elevation above MSL (ft.)	рН	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp.	Salinity (%)	Redox Potential (mV)	PID (ppm)
MW-6B	12/20/07	14	9.72	4/29/11	24	NA	6.82	NA	NA	2.90	6.91	1.09	56.1	0.60	12.54	NM	-96.00	0
MW-6B	12/20/07	14	9.72	4/9/12	26.55	NA	6.40	NA	NA	3.32	6.88	1.84	1000F	8.62	15.70	NM	-87.00	0.1
MW-6B	12/20/07	14	9.72	5/7/13	26.29	NA	6.92	NA	NA	2.80	6.65	5.51	41	0.69	18.72	NM	-116.00	0.2
MW-6B	12/20/07	14	9.72	5/19/14	26.21	NA	6.21	NA	NA	3.51	7.46	5.72	43.3	3.78	14.68	NM	-145.00	0
MW-6B	12/20/07	14	9.72	4/28/15	27.36	NA	9.07	NA	NA	0.65	6.59	4.24	32.9	0.00	13.23	NM	-112.00	0
MW-6B	12/20/07	13	8.72	5/13/16	22.05	NA	6.46	NA	NA	2.26	6.83	3.11	28.7	0.69	13.00	NM	-140.90	0
MW-6B	12/20/07	13	8.72	5/23/17	22.05	NA	6.35	NA	NA	2.37	7.14	1.00	11.2	1.57	12.33	NM	-95.40	0
MW-6B	12/20/07	13	8.72	6/5/18	22.05	NA	5.97	NA	NA	2.75	7.11	1.08	5.1	0.44	13.19	NM	-111.80	0
MW-6B	12/20/07	13	8.72	6/6/19	22.05	NA	6.35	NA	NA	2.37	7.32	0.74	24.8	0.00	16.07	NM	-118.00	0
MW-7	12/29/06	7	10.95	1/15/07	15	NA	8.67	NA	NA	2.28	7.11	0.65	0.586	8.10	10.49	0.45	NM	NM
MW-7	12/29/06	7	10.95	10/21/08	15	NA	8.67	NA	NA	2.28	6.68	1.119	383.1	0.00	18.98	NM	-121.20	0
MW-7	12/29/06	7	10.95	11/20/08	15	NA	9.13	NA	NA	1.82	NM	NM	NM	NM	NM	NM	NM	NM
MW-7	12/29/06	7	10.95	5/24/10	15	NA	8.55	NA	NA	2.40	6.90	1.12	633	NM	12.11	NM	-174.00	0
MW-7	12/29/06	7	10.95	4/29/11	15	NA	5.74	NA	NA	5.21	7.01	0.79	95.1	3.91	13.37	NM	24.00	0
MW-7	12/29/06	7	10.95	4/9/12	14.86	NA	8.15	NA	NA	2.80	6.78	0.88	5.2	2.86	11.79	NM	-69.00	0
MW-7	12/29/06	7	10.95	5/7/13	14.78	NA	8.55	NA	NA	2.40	6.73	1.38	6.6	3.65	12.93	NM	-123.00	0.1
MW-7	12/29/06	7	10.95	5/19/14	14.82	NA	8.57	NA	NA	2.38	8.72	1.17	37.6	7.45	13.53	NM	26.00	0
MW-7	12/29/06	7	10.95	5/23/17	14.82	NA	9.50	NA	NA	1.45	6.77	8.38	7.5	0.33	13.54	NM	-102.30	0
MW-7A	12/20/07	19	11.24	1/15/08	29	NA	9.00	NA	NA	2.24	6.61	3.63	3.19	7.02	11.20	2.64	NM	NM
MW-7A	12/20/07	19	11.24	10/21/08	29	NA	9.02	NA	NA	2.22	6.80	8.997	71.5	0.37	15.09	NM	-135.10	0
MW-7A	12/20/07	19	11.24	11/20/08	29	NA	9.39	NA	NA	1.85	NM	NM	NM	NM	NM	NM	NM	NM
MW-7A	12/20/07	19	11.24	5/24/10	29	NA	8.09	NA	NA	3.15	6.77	4.68	285	NM	13.29	NM	-139.00	0
MW-7A	12/20/07	19	11.24	4/29/11	29	NA	8.74	NA	NA	2.50	6.87	9.21	52.7	1.04	12.79	NM	-128.00	0.1
MW-7A	12/20/07	19	11.24	4/9/12	30.57	NA	8.60	NA	NA	2.64	6.96	10.10	94.2	2.31	12.55	NM	-138.00	0
MW-7A	12/20/07	19	11.24	5/7/13	34.46	NA	8.77	NA	NA	2.47	7.11	9.92	43.1	0.56	18.25	NM	-162.00	0.1
MW-7A	12/20/07	19	11.24	5/19/14	30.45	NA	9.22	NA	NA	2.02	6.67	9.08	1.0	3.11	17.35	NM	-143.00	0
MW-7A	12/20/07	19	11.24	4/28/15	33.09	NA	11.55	NA	NA	-0.31	6.44	7.71	0.0	0.00	13.29	NM	-118.00	0
MW-7A	12/20/07	19.64	11.88	5/13/16	32.28	NA	9.63	NA	NA	2.25	6.94	10.22	12.8	0.69	13.10	NM	-135.30	0
MW-7A	12/20/07	19.64	11.88	6/5/18	32.28	NA	8.88	NA	NA	3.00	6.75	8.22	36.7	0.91	14.07	NM	-90.20	0
MW-7A	12/20/07	19.64	11.88	6/6/19	32.28	NA	9.40	NA	NA	2.48	6.79	0.76	21.0	0.00	17.18	NM	-100.00	0
MW-7A	12/20/07	19.64	11.88	6/30/20	32.00	NA	9.28	NA	NA	2.60	6.93	7.88	14.9	0.00	16.65	NM	-133.00	0
MW-7A	12/20/07	19.64	11.88	6/28/21	32.00	NA	9.85	NA	NA	2.03	7.04	7.71	26.7	0.00	16.41	NM	-91.00	0
MW-7A	12/20/07	19.64	11.88	6/10/22	31.95	NA	9.33	NA	NA	2.55	6.98	8.62	19.2	0.00	19.15	NM	28.00	0
MW-7A	12/20/07	19.64	11.88	7/10/23	31.96	NA	7.40	NA	NA	4.48	6.84	7.55	20.7	0.00	18.05	NM	-102.00	0
MW-7A	12/20/07	19.64	11.88	8/20/24	31.96	NA	11.20	NA	NA	0.68	6.84	8.77	7.5	0.05	16.87	NM	-113.00	0
MW-7A	12/20/07	19.64	11.88	7/30/25	32.00	NA	10.12	NA	NA Page 3	1.76	6.85	8.95	8.1	0.00	18.51	NM	-116.00	0

TABLE 1.2 - SUMMARY OF GROUNDWATER GEOCHEMICAL PARAMETERS HARBOR SQUARE CROSSINGS 1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091

SESI CONSULTING ENGINEERS PROJECT # 07173

										Ground			Geo	chemical Par	ameters			
Well ID #	Date Installed	Depth to Top of Screen (ft.)	PVC Elevation above MSL (ft.)	Date Measured	Total Depth (ft.) bgs	Depth to Product (DNAPL) (ft.)	Depth to Groundwater (ft.)	Product Thickness (ft.)	Corrected Depth to Groundwater (ft.)	Water Elevation above MSL (ft.)	рН	Specific Conductivity (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/l)	Temp. (°C)	Salinity (%)	Redox Potential (mV)	PID (ppm)
MW-9	01/04/07	15	9.22	11/26/07	28.75	NA	7.00	NA	NA	2.22	7.15	8.56	44.4	3.43	14.57	6.08	NM	NM

Legend:

*: Corrected depth to ground water = DTW - ($t_p * \rho_r$)

°C: Degrees Celcius

DTP: Depth to product

EM: Equipment Malfunction

DTW: Depth to water

mV: Milli volts

NA: Not available / applicable

NM: Not measured

NTU: Nephelometric Turbidity Units

1410. Nephelometric Turbidity offi

 ρ_r : Product Relative Density:

t_p: Product Thickness

mg/L: Milli grams per liter

ms/cm: Milli Siemens per centimeter (mhos/cm)

ppm: Parts per million MSL: Mean sea level

Notes:

Monitoring wells MW-1, MW-3, MW-5, MW-6, MW-8 and MW-9, installed by S&W Redevelopment of North America, LLC, of Syracuse, NY, were either lost to construction activities or were abandoned on 12/12/2007.

	SOIL		
Group	Analyte	CAS#	More Stringent of Commercial/Protection of Groundwater Soil Cleanup Objective (mg/Kg)
	Aluminum	7429-90-5	SB*
	Antimony	7440-36-0	SB*
	Arsenic	7440-38-2	16
	Barium	7440-39-3	400
	Beryllium	7440-41-7	47^
	Cadmium	7440-43-9	7.5^
	Calcium	7440-70-2	SB*
	trivalent Chromium	7440-47-3	1500
	hexavalent Chromium	18540-29-9	19^
	Cobalt	7440-48-4	30 or SB*
	Copper	7440-50-8	270
METALS	Iron	7439-89-6	2000 or SB*
METALS	Lead	7439-92-1	450^
	Magnesium	7439-95-4	SB*
	Manganese	7439-96-5	2000^
	Mercury	7439-97-6	0.73^
	Nickel	7440-02-0	130^
	Potassium	9/7/7440	SB*
	Selenium	7782-49-2	4^
	Silver	7440-22-4	8.3^
	Sodium	7440-23-5	SB*
	Thallium	7440-28-0	SB*
	Vanadium	7440-62-2	150 or SB*
	Zinc	7440-66-6	2480^
	1-Chloropropane	540-54-5	-
	1,2,4-Trichlorobenzene	120-82-1	3.4*
	2,4,5-Trichlorophenol	95-95-4	0.1*
	2,4,6-Trichlorophenol	88-06-2	-
	2,4-Dichlorophenol	120-83-2	0.4*
	2,4-Dimethylphenol	105-67-9	-
	2,4-Dinitrophenol	51-28-5	0.200 (M)*
	2,4-Dinitrotoluene	121-14-2	-
	2,6-Dinitrotoluene	606-20-2	1*
SVCOs	2-Chloronaphthalene	91-58-7	-
	2-Chlorophenol	95-57-8	0.8*
	2-Methylnaphthalene	91-57-6	36.4*
	2-Methylphenol	95-48-7	0.33^
	2-Nitroaniline	88-74-4	0.430 (M)*
	2-Nitrophenol	88-75-5	0.330 (M)*
	3&4-Methylphenol	106-44-5	0.33^
	3,3'-Dichlorobenzidine	91-94-1	-
	3-Nitroaniline	99-09-2	0.500 (M)*
	4,6-Dinitro-2-methylphenol	534-52-1	-

	SOIL		
			More Stringent of
			Commercial/Protection of
Group	Analyte	CAS#	Groundwater Soil Cleanup Objective (mg/Kg)
	4-Bromophenyl-phenylether	101-55-3	-
	4-Chloro-3-methylphenol	59-50-7	0.240 (M)*
	4-Chloroaniline	106-47-8	0.220 (M)*
	4-Chlorophenyl-phenylether	7005-72-3	-
	4-Nitroaniline	100-01-6	-
	4-Nitrophenol	100-02-7	0.100 (M)*
	Acenaphthene	83-32-9	98^
	Acenaphthylene	208-96-8	107^
	Aniline	62-53-3	0.1*
	Anthracene	120-12-7	500
	Benzo[a]Anthracene	56-55-3	1^
	Benzo[a]Pyrene	50-32-8	1
	Benzo[b]Fluoranthene	205-99-2	1.7^
	Benzo[g,h,i]Perylene	191-24-2	500
	Benzo[k]Fluoranthene	207-08-9	1.7^
	Benzoic acid	65-85-0	2.7*
	bis(2-Chloroethoxy)methane	111-91-1	-
	bis(2-Chloroethyl)ether	111-44-4	-
	bis(2-Ethylhexyl)phthalate	117-81-7	50*
	Butylbenzylphthalate	85-68-7	50*
	Carbazole	86-74-8	-
	Caprolactam	105-60-2	-
SVCOs	Chrysene	218-01-9	1^
3,003	Dibenzo[a,h]Anthracene	53-70-3	0.56
	Dibenzofuran	132-64-9	210^
	Diethylphthalate	84-66-2	7.1*
	Dimethylphthalate	131-11-3	2*
	Di-n-Butylphthalate	84-74-2	8.1*
	Di-n-octylphthalate	117-84-0	50*
	Fluoranthene	206-44-0	500
	Fluorene	86-73-7	386^
	Hexachlorobenzene	118-74-1	3.2^
	Hexachlorobutadiene	87-68-3	-
	Hexachlorocyclopentadiene	77-47-4	-
	Hexachloroethane	67-72-1	-
	Indeno[1,2,3-cd]Pyrene	193-39-5	5.6
	Isophorone	78-59-1	4.4*
	Naphthalene	91-20-3	12^
	Nitrobenzene	98-95-3	0.200 (M)*
	N-Nitroso-Di-n-propylamine	621-64-7	-
	N-Nitrosodiphenylamine	86-30-6	-
	Pentachlorophenol	87-86-5	0.8^
	Phenanthrene	85-01-8	500
i l	Phenol	108-95-2	0.33^

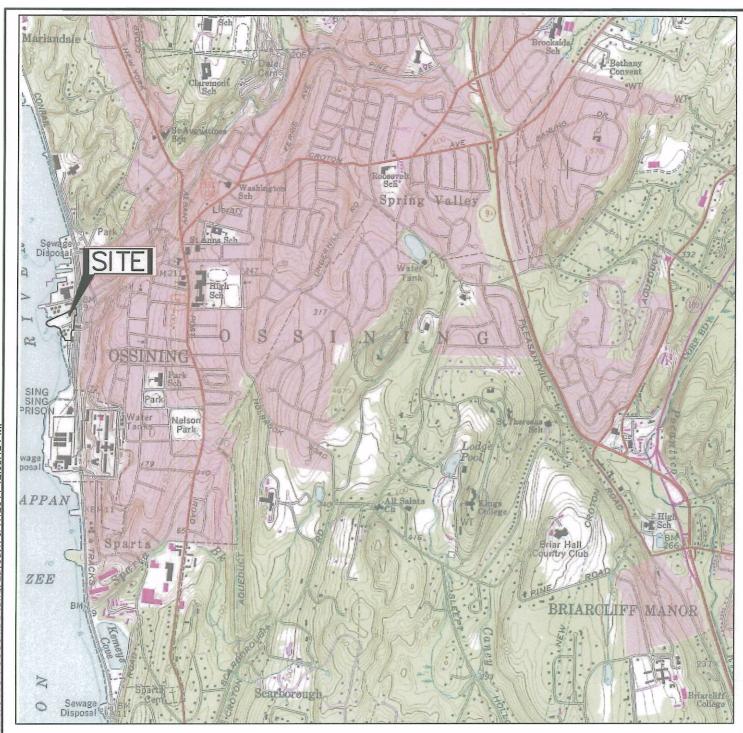
SOIL More Stringent of												
Group	Analyte	CAS#	More Stringent of Commercial/Protection of Groundwater Soil Cleanup Objective (mg/Kg)									
	Pyrene	129-00-0	500									
		-										
	Aroclor-1016	12674-11-2	1									
	Aroclor-1221	11104-28-2	1									
	Aroclor-1232	11141-16-5	1									
PCBSs	Aroclor-1242	53469-21-9	1									
	Aroclor-1248	12672-29-6	1									
	Aroclor-1254	11097-69-1	1									
	Aroclor-1260	11096-82-5	1									
	1											
	2,4-D		0.5*									
	2,4,5-T		1.9*									
	2,4,5-TP Acid (Silvex)	93-72-1	3.8^									
	Aldrin	309-00-2	0.19^									
	Alpha-BHC	319-84-6	0.02^									
	Beta-BHC	319-85-7	0.09^									
	Chlordane	57-74-9	2.9^									
	Delta-BHC	319-86-8	0.25^									
	Dieldrin	60-57-1	0.1^									
	Endosulfan I	959-98-8	102^									
	Endosulfan II	33213-65-9	102^									
HERBICIDES & PESTICIDES	Endosulfan Sulfate	1031-07-8	200									
1 2011010 20	Endrin	72-20-8	0.06^									
	Endrin Aldehyde	7421-93-4	-									
	Endrin Ketone	53494-70-5										
	Gamma-BHC (Lindane)	58-89-9	0.1^									
	Heptachlor	76-44-8	0.38^									
	Heptachlor Epoxide	1024-57-3	0.02*									
	Methoxychlor	72-43-5	10*									
	P,P'-DDD	72-54-8	14									
	P,P'-DDE	72-55-9	17^									
	P,P'-DDT	50-29-3	47									
	Parathion	0001 25 2	1.2*									
	Toxaphene	8001-35-2	-									
	1,1,1-Trichloroethane	71-55-6	0.68^									
	1,1,2,2-Tetrachloroethane	79-34-5	0.6*									
	1,1,2-trichloro-1,2,2-trifluoroethane	76-13-1	6*									
	1,1,2-Trichloroethane	79-00-5	-									
	1,1-Dichloroethane	75-34-3	0.27^									
	1,1-Dichloroethene	75-35-4	0.33^									
VOCs	1,2,3-Trichloropropane	96-18-4	0.4*									
	1,2,4-Trimethylbenzene	95-63-6	3.6^									
	1,2-Dibromomethane	74-95-3	-									

	SOIL		
Group	Analyte	CAS#	More Stringent of Commercial/Protection of Groundwater Soil Cleanup Objective (mg/Kg)
	1,2-Dibromo-3-chloropropane	96-12-8	-
	1,2-Dichlorobenzene	95-50-1	1.1^
	1,2-Dichloroethane	107-06-2	0.02^
	1,2-Dichloropropane	78-87-5	-
	1,3,5-Trimethylbenzene	108-67-8	8.4^
	1,3-Dichlorobenzene	541-73-1	2.4^
	1,3-Dichloropropane	142-28-9	0.3*
	1,4-Dichlorobenzene	106-46-7	1.8^
	1,4-Dioxane	123-91-1	0.1^
	2-Butanone (Methyl ethyl ketone)	78-93-3	0.12^
	2-Hexanone	591-78-6	-
	4-Isopropyltoluene	99-87-6	11 (APA)*
	4-Methyl-2-Pentanone	108-10-1	1*
	Acetone	67-64-1	0.05^
	Benzene	71-43-2	0.06^
	Bromodichloromethane	75-27-4	-
	Bromoform	75-25-2	-
	Bromomethane	74-83-9	-
	Carbon disulfide	75-15-0	2.7*
	Carbon tetrachloride	56-23-5	0.76^
	Chlorobenzene	108-90-7	1.1^
	Chloroethane	75-00-3	1.9*
	Chloroform	67-66-3	0.37^
	Chloromethane	74-87-3	-
	Cis-1,2-Dichloroethene	156-59-2	0.25^
VOCs	Cis-1,3-Dichloropropene	10061-01-5	•
	Cyclohexane	110-82-7	
	Dibromochloromethane	124-48-1	•
	Dichlorodifluoromethane	75-71-8	-
	Ethylbenzene	100-41-4	1^
	Isopropylbenzene	98-82-8	-
	M&p-Xylenes	1330-20-7	1.6^
	Methylene chloride	75-09-2	0.05^
	Methylcyclohexane	108-87-2	-
	Methyl-t-butyl ether	1634-04-4	0.93^
	n-Butylbenzene	104-51-8	12^
	n-Propylbenzene	103-65-1	3.9^
	O-Xylene	95-47-6	1.6^
	sec-Butylbenzene	135-98-8	11^
	Styrene	100-42-5	-
	t-Butyl Alcohol	75-65-0	-
	t-Butylbenzene	98-06-6	5.9^
	Tetrachloroethene	127-18-4	1.3^
	Toluene	108-88-3	0.7^

	SOIL											
Group	Analyte	CAS#	More Stringent of Commercial/Protection of Groundwater Soil Cleanup Objective (mg/Kg)									
	Trans-1,2-dichloroethene	156-60-5	0.19^									
	Trans-1,3-dichloropropene	10061-02-6	-									
	Trichloroethene	79-01-6	0.47^									
	Trichlorofluoromethane	75-69-4	-									
VOCs	Vinyl chloride	75-01-4	0.02^									
	Cyanide	57-12-5	27									

- * TAGM 4046 Recommended Soil Cleanup Objectives
- ^ Protection of Groundwater

GROUNDWATER			
Group	Analyte	CAS#	TOGS /TAGM 4046* SCG (ug/L)
	Aluminum	7429-90-5	-
	Antimony	7440-36-0	-
	Arsenic	7440-38-2	16 ^f
	Barium	7440-39-3	400
	Beryllium	7440-41-7	47
	Cadmium	7440-43-9	7.5
	Calcium	7440-70-2	-
	Chromium, hexavalent ^h	7440-47-3	19
	Chromium,trivalent ^h	7440-47-3	1500
	Cobalt	7440-48-4	-
	Copper	7440-50-8	270
	Total Cyanide		27
METALS	Iron	7439-89-6	-
	Lead	7439-92-1	450
	Magnesium	7439-95-4	-
	Manganese	7439-96-5	2000 ^f
	Mercury	7439-97-6	0.73
	Nickel	7440-02-0	130
	Potassium	9/7/7440	-
	Selenium	7782-49-2	4 ^f
	Silver	7440-22-4	8.3
	Sodium	7440-23-5	-
	Thallium	7440-28-0	-
	Vanadium	7440-62-2	-
	Zinc	7440-66-6	2,480
	T	1	
	1-Chloropropane	540-54-5	-
	1,2,4-Trichlorobenzene	120-82-1	-
SVOCs	1,2-Diphenylhydrazine	122-66-7	-
	2,4,5-Trichlorophenol	95-95-4	-
	2,4,6-Trichlorophenol	88-06-2	-
	2,4-Dichlorophenol	120-83-2	-
	2,4-Dimethylphenol	105-67-9	-
	2,4-Dinitrophenol	51-28-5	-
	2,4-Dinitrotoluene	121-14-2	-
	2,6-Dinitrotoluene	606-20-2	-
	2-Chloronaphthalene	91-58-7	-
	2-Chlorophenol	95-57-8	-
	2-Methylnaphthalene	91-57-6	-


GROUNDWATER			
			TOGS /TAGM 4046* SCG
Group	Analyte	CAS#	(ug/L)
	2-Methylphenol	95-48-7	-
	2-Nitroaniline	88-74-4	-
	2-Nitrophenol	88-75-5	-
	3&4-Methylphenol	106-44-5	-
	3,3'-Dichlorobenzidine	91-94-1	-
	3-Nitroaniline	99-09-2	-
	4,6-Dinitro-2-methylphenol	534-52-1	-
	4-Bromophenyl-phenylether	101-55-3	-
	4-Chloro-3-methylphenol	59-50-7	-
	4-Chloroaniline	106-47-8	-
	4-Chlorophenyl-phenylether	7005-72-3	-
	4-Nitroaniline	100-01-6	-
	4-Nitrophenol	100-02-7	-
	Acenaphthene	83-32-9	98
	Acenaphthylene	208-96-8	107
	Aniline	62-53-3	-
	Anthracene	120-12-7	500 ^b
	Benzidine	92-87-5	-
	Benzo[a]Anthracene	56-55-3	1 ^f
SVOCs	Benzo[a]Pyrene	50-32-8	1 ^f
	Benzo[b]Fluoranthene	205-99-2	1.7
	Benzo[g,h,i]Perylene	191-24-2	500 ^b
	Benzo[k]Fluoranthene	207-08-9	1.7
	Benzoic acid	65-85-0	-
	bis(2-Chloroethoxy)methane	111-91-1	-
	bis(2-Chloroethyl)ether	111-44-4	-
	bis(2-Chloroisopropyl)ether	108-60-1	-
	bis(2-Ethylhexyl)phthalate	117-81-7	-
	Butylbenzylphthalate	85-68-7	-
	Carbazole	86-74-8	-
	Caprolactam	105-60-2	-
	Chrysene	218-01-9	1 ^f
	Dibenzo[a,h]Anthracene	53-70-3	0.56
	Dibenzofuran	132-64-9	210
	Diethylphthalate	84-66-2	-
	Dimethylphthalate	131-11-3	-
	Di-n-Butylphthalate	84-74-2	-
	Di-n-octylphthalate	117-84-0	-
	Fluoranthene	206-44-0	500 ^b

GROUNDWATER			
Group	Analyte	CAS#	TOGS /TAGM 4046* SCG (ug/L)
	Fluorene	86-73-7	386
	Hexachlorobenzene	118-74-1	3.2
	Hexachlorobutadiene	87-68-3	-
	Hexachlorocyclopentadiene	77-47-4	-
	Hexachloroethane	67-72-1	-
	Indeno[1,2,3-cd]Pyrene	193-39-5	5.6
	Isophorone	78-59-1	-
	m-Cresol	-	.33 ^e
	o-Cresol	-	.33 ^e
SVOCs	p-Cresol	-	.33 ^e
	Naphthalene	91-20-3	12
	Nitrobenzene	98-95-3	-
	N-Nitrosodimethylamine	62-75-9	-
	N-Nitroso-Di-n-propylamine	621-64-7	-
	N-Nitrosodiphenylamine	86-30-6	-
	Pentachlorophenol	87-86-5	.8 ^e
	Phenanthrene	85-01-8	500 ^b
	Phenol	108-95-2	.33 ^e
	Pyrene	129-00-0	500 ^b
	Aroclor-1016	12674-11-2	-
	Aroclor-1221	11104-28-2	-
	Aroclor-1232	11141-16-5	-
PCBs	Aroclor-1242	53469-21-9	-
	Aroclor-1248	12672-29-6	•
	Aroclor-1254	11097-69-1	-
	Aroclor-1260	11096-82-5	-
	Aldrin	309-00-2	0.19
	Alpha-BHC	319-84-6	0.02
	Beta-BHC	319-85-7	0.09
	Chlordane (alpha)	57-74-9	2.9
	Delta-BHC	319-86-8	0.25
PESTICIDES	Dieldrin	60-57-1	0.1
	Endosulfan I	959-98-8	102
	Endosulfan II	33213-65-9	102
	Endosulfan Sulfate	1031-07-8	200 ⁱ
	Endrin	72-20-8	0.06
	Endrin Aldehyde	7421-93-4	-

GROUNDWATER			
Group	Analyte	CAS#	TOGS /TAGM 4046* SCG (ug/L)
	Endrin Ketone	53494-70-5	-
	Gamma-BHC	58-89-9	-
	Heptachlor	76-44-8	0.38
	Heptachlor Epoxide	1024-57-3	-
	Lindane	-	0.1
PESTICIDES	Methoxychlor	72-43-5	-
PESTICIDES	Polychlorinated biphenyls	-	3.2
	P,P'-DDD	72-54-8	14
	P,P'-DDE	72-55-9	17
	P,P'-DDT	50-29-3	47
	Parathion		-
	Toxaphene	8001-35-2	-
	1,1,1-Trichloroethane	71-55-6	0.68
	1,1,2,2-Tetrachloroethane	79-34-5	-
	1,1,2-trichloro-1,2,2-trifluoroethane	76-13-1	-
	1,1,2-Trichloroethane	79-00-5	-
	1,1-Dichloroethane	75-34-3	0.27
	1,1-Dichloroethene	75-35-4	0.33
	1,2,3-Trichloropropane	96-18-4	-
	1,2,4-Trimethylbenzene	95-63-6	3.6
	1,2-Dichlorobenzene	95-50-1	1.1
	1,2-Dichloroethane	107-06-2	.02 ^f
	1,2-Dichloropropane	78-87-5	-
	1,3,5-Trimethylbenzene	108-67-8	8.4
VOCc	1,3-Dichlorobenzene	541-73-1	2.4
VOCs	1,3-Dichloropropane	142-28-9	-
	1,4-Dichlorobenzene	106-46-7	1.8
	1,4-Dioxane	123-91-1	0.1 ^e
	2-Butanone	78-93-3	-
	2-Chloroethylvinylether	110-75-8	-
	2-Hexanone	591-78-6	-
	4-Isopropyltoluene	99-87-6	-
	4-Methyl-2-Pentanone	108-10-1	-
	Acetone	67-64-1	0.05
	Acrolein	107-02-8	-
	Acrylonitrile	107-13-1	-
	Benzene	71-43-2	0.06
	Bromodichloromethane	75-27-4	-

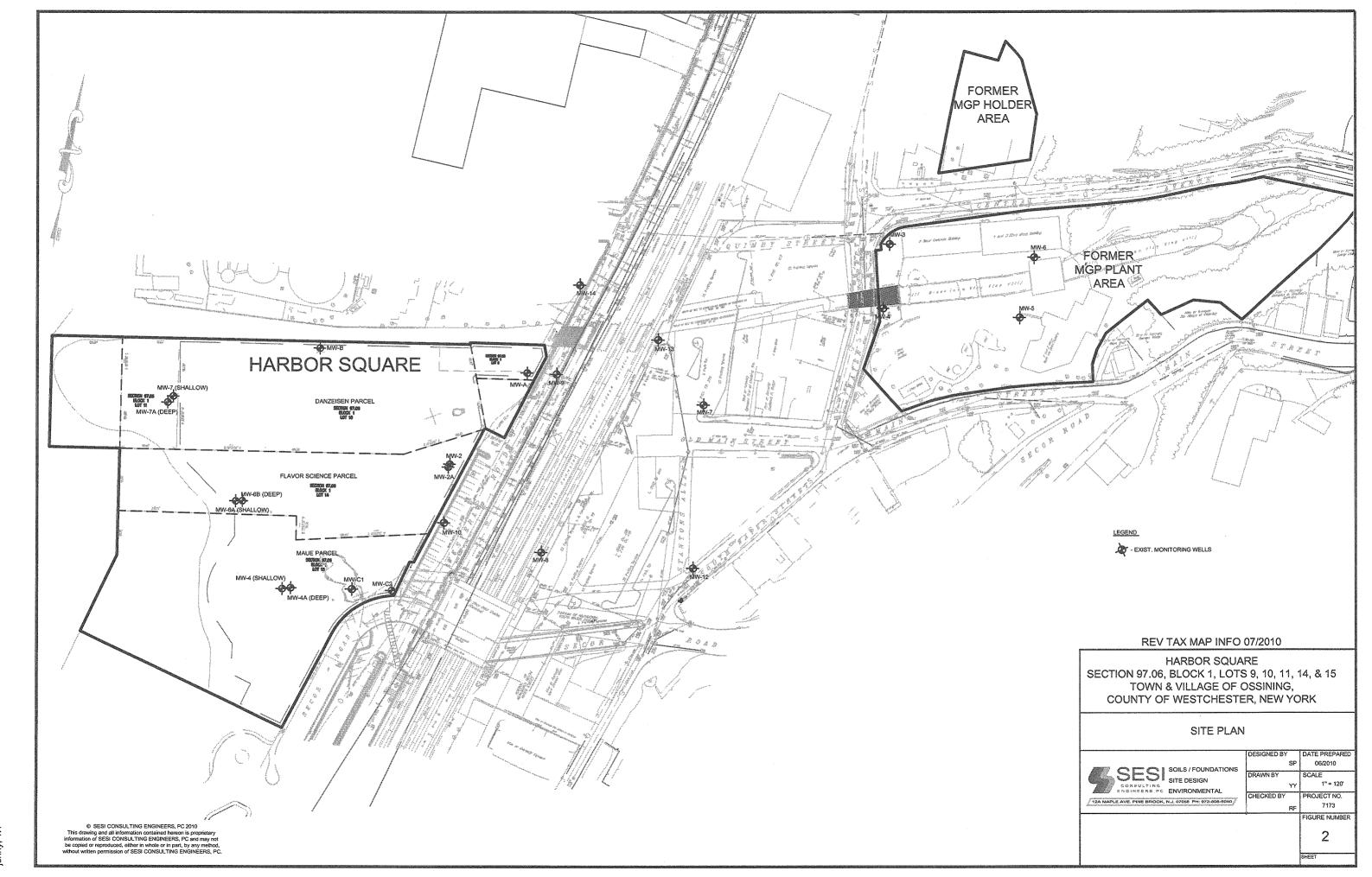
GROUNDWATER			
Group	Analyte	CAS#	TOGS /TAGM 4046* SCG (ug/L)
	Bromoform	75-25-2	-
	Bromomethane	74-83-9	-
	Carbon disulfide	75-15-0	-
	Carbon tetrachloride	56-23-5	0.76
	Chlorobenzene	108-90-7	1.1
	Chloroethane	75-00-3	-
	Chloroform	67-66-3	0.37
	Chloromethane	74-87-3	-
	Cis-1,2-Dichloroethene	156-59-2	0.25
	Cis-1,3-Dichloropropene	10061-01-5	-
	Cyclohexane	110-82-7	-
	Dibromochloromethane	124-48-1	-
	Dichlorodifluoromethane	75-71-8	-
	Ethylbenzene	100-41-4	1
	Isopropylbenzene	98-82-8	-
	M&p-Xylenes	1330-20-7	1.6
	Methylene chloride	75-09-2	0.05
VOCs	Methylcyclohexane	108-87-2	-
	Methyl ethyl ketone	-	0.12
	Methyl-t-butyl ether	1634-04-4	0.93
	Butylbenzene	-	12
	n-Butylbenzene	104-51-8	-
	n-Propylbenzene	103-65-1	3.9
	O-Xylene	95-47-6	-
	sec-Butylbenzene	135-98-8	11
	Styrene	100-42-5	-
	t-Butyl Alcohol	75-65-0	-
	t-Butylbenzene	98-06-6	5.9
	Tetrachloroethene	127-18-4	1.3
	Toluene	108-88-3	0.7
	Trans-1,2-dichloroethene	156-60-5	0.19
	Trans-1,3-dichloropropene	10061-02-6	-
	Trichloroethene	79-01-6	0.47
	Trichlorofluoromethane	75-69-4	-
	Vinyl chloride	75-01-4	0.02
CN-S-9012	Cyanide	57-12-5	-

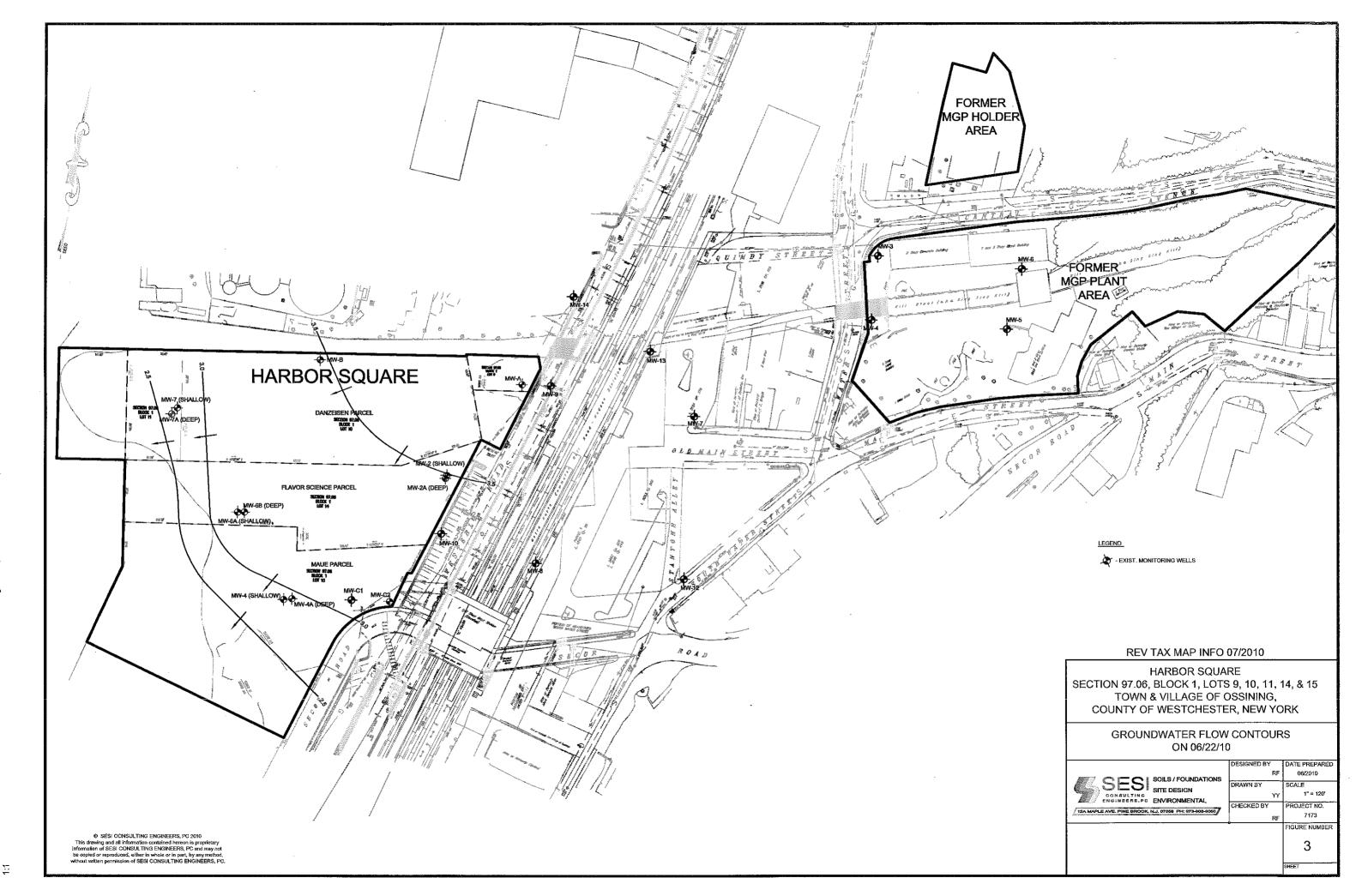
Appendix A: Site Management Plan Figures

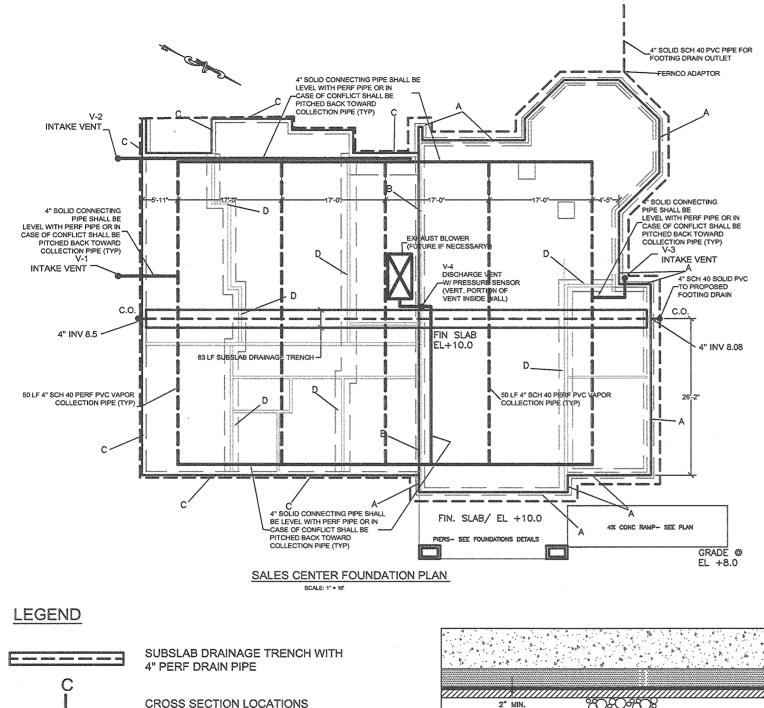
REFERENCE:

INFORMATION TAKEN FROM OSSINING, N.Y. QUADRANGLE, 1967 PHOTOREVISED 1979

ONE HARBOR SQUARE VILLAGE OF OSSINING WESTCHESTER COUNTY, NY


SITE LOCATION MAP



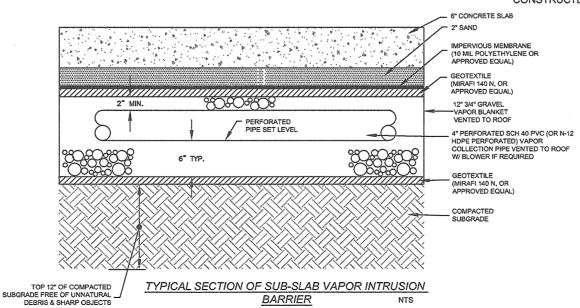

SOILS / FOUNDATIONS SITE DESIGN

12A MAPLE AVE. PINE BROOK, N.J. 07058 PH: 973-808-9050

FIGURE 1		
DRAWN BY:	YY	
CHECKED BY:	RH	
SCALE:	1"=2000'±	
DATE:	06/2010	
IOB NO.:	7173	

SYSTEM DESIGN BASIS AND NOTES

Depending upon the types and concentration of vapors measured below the slab, the sub-slab vapor extraction system is designed to operate (after minor modifications and/or adjustments) in one of the following modes:


- 1. <u>Passive Operation</u>, with the sub-slab piping and gravel system vented only to the atmosphere above the roofline;
- 2. <u>Continuous Active Draft Operation</u>, induced draft operation using a blower(s) at one (or more) vent pipes, with the discharged gas directed to the atmosphere with no treatment; and,
- Timed Active Operation (i.e., a number of sub-slab air purges per day, to be determined based on field measurements) controlled by the timed operation of blowers.

At minimum, the sub-slab vapor extraction system shall maintain a minimum pressure (negative) under the concrete floor slab of -0.2" of water column for options 1, 2 and 3 above. Option 1 has to be determined in the field if passive operation is feasible.

The exhaust fan (if necessary) shall be suitable for exterior installation and of non-explosive construction for handling gas mixtures containing vapors originating from gas lines and fuel oil. The fan shall be capable of providing a minimum exhaust rate of 50 cfm with 3-inches water column. The fan shall be provided with a damper to allow adjustment of the flow rate of air.

A sub-slab pressure detector system shall be provided to continuously detect the sub-slab pressure. The detector system shall be set to provide a visual and audible alarm upon the sub-slab pressure falling below 0.2 inches of water column. The detector system shall be hard-wired with battery operated power backup to provide a minimum of 24-hours of continued operation. The alarm panel shall be placed in a visible location (such as the mechanical room) that is frequently visited by maintenance personnel.

NOTE:
AS OF MAY 2010 ONLY THE CONCRETE SLAB ASSOCIATED WITH ALL SALES CENTER HAS BEEN CONSTRUCTED (SUPER STRUCTURE NOT COMPLETED).

REV TAX MAP INFO 07/2010

HARBOR SQUARE
SECTION 97.06, BLOCK 1, LOTS 9, 10, 11, 14, & 15
TOWN & VILLAGE OF OSSINING,
COUNTY OF WESTCHESTER, NEW YORK

MAP OF ENGINEERING CONTROL TREATMENT SYSTEM - SUBSLAB VENTING/DEPRESSURIZATION SYSTEM

	DESIGN
SOILS / FOUNDATIONS	DRAWN
SITE DESIGN	DIVAVVI
ENGINEERS, PC ENVIRONMENTAL	CHECK
12A MAPLE AVE. PINE BROOK, N.J. 07058 PH: 973-808-9050	OHLOR

Y PROJECT NO.

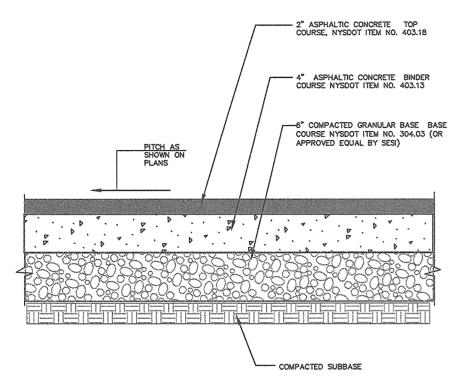
MBA 7173

FIGURE NUMBER

SCALE AS NOTED

06/2010

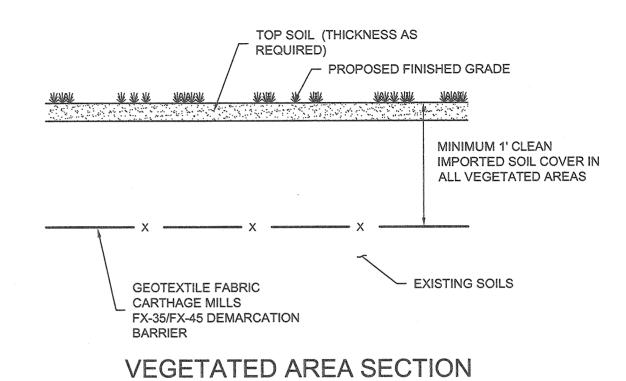
MBA


4B

SESI CONSULTING ENGINEERS, PC 2010 This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS, PC and may not be copied or reproduced, either in whole or in part, by any method,

6"Ø RISER LOCATION & LABEL

4" PERF HDPF VAPOR COLLECTION PIPE


6" SOLID PVC PIPE

ONSITE ASPHALT PAVEMENT SECTION

NOT TO SCALE

SCALE: N.T.S

SCALE: N.T.S

6° CONCRETE SLAB
2° SAND

IMPERVIOUS MEMBRANE
(10 MIL POLYETHYLENE OR
APPROVED EQUIAL)

GEOTEVTILE
(MIRAFI 140 N, OR
APPROVED EQUIAL)

12° MIN,

PERFORATED
PIPE SET LEVEL

6° TYP.

OCHECTRON PIPE VENTED TO ROOF
W BLOWER I REQUIRED

TOP 12° OF COMPACTED
SUBGRADE FREE OF UNINATURAL
DEBRIS & SHARP OBJECTS

TYPICAL SECTION OF SUB-SLAB VAPOR INTRUSION
BARRIER

NTS

SLAB SECTION - SALES CENTER

REV TAX MAP INFO 07/2010

HARBOR SQUARE
SECTION 97.06, BLOCK 1, LOTS 9, 10, 11, 14, & 15
TOWN & VILLAGE OF OSSINING,
COUNTY OF WESTCHESTER, NEW YORK

TYPICAL COVER DETAIL FOR ALL COVER TYPES

© SESI CONSULTING ENGINEERS, PC 2010
This drawing and all information contained hereon is proprietary information of SESI CONSULTING ENGINEERS, PC and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS, PC.

Appendix B:

Arcadis Documentation for 2022-2025 Reporting Period

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 12th Floor, Albany, NY 12233-7014 P: (518) 402-9662 I F: (518) 402-9722 www.dec.ny.gov

Transmitted Via Email Only

October 14, 2022

Ms. Yelena Skorobogatov
Project Manager
Consolidated Edison Company of New York Inc.
31-01 20th Avenue, Bldg. 136, 2nd Floor
Long Island City, NY 11105-2048
SkorobogatovY@coned.com

Re: Draft Operable Unit 3 (OU-3) IRM Construction Completion Report (CCR)

Former Ossining Gas Works

Village of Ossining, Westchester County

Site No.: 360172

Dear Ms. Skorobogatov:

The New York State Department of Environmental Conservation (the Department), in consultation with the New York State Department of Health (NYSDOH), has reviewed the Former Ossining Works' Draft OU-3 IRM Construction Completion Report (CCR), prepared by Arcadis of New York, Inc., dated June 2019. In accordance with 6 NYCRR Part 375-1.6(d)(3), the Department requests further modification of the CCR to address the following comments:

- 1. <u>Title Page</u> Please revise the listed site number to reference the ConEd Ossining MGP site (Site No. 360172) as this report is in relation to the site's OU-3: Harbor Square BCP.
- 2. <u>Section 2.1 Recovery Well Installation (pg. 4)</u> In this section, please include the history of the chosen locations for the recovery wells installed by CMX and Arcadis. If the information is available, please also include construction details (i.e., depth, width, construction methods, etc.) of the slurry wall installed at the site under the BCP.
- 3. Section 3.5 Conclusions and Recommendations (pg. 8) The Department does not agree with the CCR's conclusion that the OU-3 DNAPL monitoring and recovery efforts should be discontinued at this time. Efforts should first be taken to either clean/surge RW-A and RW-D or employ any other approved method to encourage flow into the wells. These efforts should be well documented and presented in a summary report to the Department. DNAPL gauging and recovery efforts should continue at RW-A and RW-D on its current schedule (i.e., quarterly). DNAPL gauging and inspection of RW-B, RW-C, and RW-C2 should continue annually during the PRR inspection.

In accordance with 6 NYCRR Part 375-1.6(d)(3) should ConEd elect to revise the CCR, please notify the Department within 15 days of receipt of this letter and provide a revised CCR incorporating the Department's comments within 30 days of receipt of this letter. In your

response, include itemized responses to the above comments, a redline and strikeout version showing the modifications made to address the above comment and the final duly certified CCR.

If you have any questions or wish to discuss any of the above, please feel free to contact me at 518-402-9717 or rachel.savarie@dec.ny.gov.

Sincerely,

Rachel Savarie, P.E.

Project Manager

Section B, Remedial Bureau C

Division of Environmental Remediation

ec: M. Jones, Arcadis (<u>Michael.Jones@arcadis.com</u>)

K. Kaiser, Con Ed (KAISERK@coned.com)

M. Ginsburg, Harbor Square Crossings LLC (mginsburg@gdcllc.com)

M. St. Pierre, SESI Consulting (msp@sesi.org)

M. Doroski, NYSDOH (melissa.doroski@health.ny.gov)

A. Perretta, NYSDOH (anthony.peretta@health.ny.gov)

S. Wagh, NYSDOH (Sarita.wagh@health.ny.gov)

D. Bendell, NYSDEC Region 3 (Daniel.bendell@dec.ny.gov)

D. Pollock, NYSDEC Region 3 (<u>David.Pollock@dec.ny.gov</u>)

J. Brown, NYSDEC (Janet.brown@dec.ny.gov)

J. Andaloro, NYSDEC (Jennifer.andaloro@dec.ny.gov)

K. Maloney, NYSDEC (Kerry.maloney@dec.ny.gov)

S. Deyette, NYSDEC (Scott.deyette@dec.ny.gov)

M. Hubicki, NYSDEC (<u>matthew.hubicki@dec.ny.gov</u>)

D2

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Remedial Bureau C 625 Broadway, 12th Floor, Albany, NY 12233-7014 P: (518) 402-9662 I F: (518) 402-9722 www.dec.ny.gov

Transmitted Via Email Only

November 22, 2022

Ms. Yelena Skorobogatov
Project Manager
Consolidated Edison Company of New York Inc.
31-01 20th Avenue, Bldg. 136, 2nd Floor
Long Island City, NY 11105-2048
SkorobogatovY@coned.com

Re: Revised OU-3 DNAPL IRM CCR

Former Ossining Gas Works

Village of Ossining, Westchester County

Site No.: 360172

Dear Ms. Skorobogatov:

The New York State Department of Environmental Conservation (the Department) has reviewed the revised November 22 OU-3 DNAPL IRM Construction Completion Report (CCR) in response to the Department's October 14, 2022 comment letter for the above-referenced site. Based on our review, we have found all our comments to be sufficiently addressed and therefore, the revised OU-3 DNAPL IRM CCR is approved.

The Department acknowledges your revision indicating Con Edison will submit a letterreport summary following one year of monitoring. This is acceptable, but please note for any well that has historically shown NAPL, the Department typically requests to see eight (8) quarters or sampling events with no NAPL present to confirm prior to concurring with a recommendation for decommissioning.

If you have any questions or wish to discuss any of the above, please feel free to contact me at 518-402-9717 or rachel.savarie@dec.ny.gov.

Sincerely,

Rachel Savarie, P.E.

Project Manager

Section B, Remedial Bureau C

Division of Environmental Remediation

ec: K. Kaiser, Con Ed (KAISERK@coned.com)

M. Jones, Arcadis (Michael.Jones@arcadis.com)

M. Doroski, NYSDOH (melissa.doroski@health.ny.gov)

A. Perretta, NYSDOH (anthony.peretta@health.ny.gov)

D. Bendell, NYSDEC Region 3 (<u>Daniel.bendell@dec.ny.gov</u>)

D. Pollock, NYSDEC Region 3 (<u>David.Pollock@dec.ny.gov</u>)

J. Brown, NYSDEC (Janet.brown@dec.ny.gov)

J. Andaloro, NYSDEC (<u>Jennifer.andaloro@dec.ny.gov</u>)

K. Maloney, NYSDEC (Kerry.maloney@dec.ny.gov)

S. Deyette, NYSDEC (Scott.deyette@dec.ny.gov)

M. Hubicki, NYSDEC (<u>matthew.hubicki@dec.ny.gov</u>)

D2

Electronic Mailing Only

January 14, 2025

Yelena Skorobogatov - Project Manager Consolidated Edison Company of New York Inc. 31-01 20th Avenue, Bldg. 136, 2nd Floor Long Island City, NY 11105-2048 (skorobogatovy@coned.com)

Re: RW-D2 Further Evaluation and Rehabilitation Plan

CE- Ossining MGP

39 Central Ave. and 30 Water Street

Site No.: 360172

Ms. Yelena Skorobogatov:

The New York State Department of Environmental Conservation (Department), in conjunction with the New York State Department of Health, has reviewed and disapproves the RW-D2 Further Evaluation and Rehabilitation Plan, dated November 22, 2024, for the CE- Ossining MGP (Site No. 360172).

In accordance with the executed Voluntary Cleanup Agreement (Index # D2-0003-02-08) (the VCA), initially signed August 15, 2002, and later amended on August 17, 2021 as an "Amendment to Order on Consent and Administrative Settlement" (the "Order) (Index No. CO 0-20180516-519), within twenty (20) days after receiving written notice of disapproval, Consolidated Edison Company of New York, Inc. (the Respondent) shall elect in writing to modify the disapproved work plan or report. In the event the Respondent fails to make an election or fails to comply with the election, the Respondent will be in violation of the Order.

Reasons for Disapproval

- New Recovery Well RW-D2 Installation Revise this section to indicate the anticipated screen depth for RW-D2.
- New Recovery Well RW-D2 Installation Revise this section to indicate the screening methods that will be implemented to determine the final recovery well and screen depths.
- Existing Recovery Well RW-D Abandonment Correct, "pumping into drums for disposal" to "pumped into drums for disposal".

- Waste Management Revise this section to indicate the transporter and disposal facility information will be provided to the Department prior to transport from the site.
- Revise this work plan to include provisions for the Community Air Monitoring Plan which will be implemented during ground intrusive activities.

Please revise and resubmit the work plan for final review and approval. You may contact me via email, caroline.jalanti@dec.ny.gov, or phone, 518-402-9650, with any questions or to discuss further.

Sincerely,

Caroline Jalanti, P.E.
Professional Engineer 1
Division of Environmental Remediation
Remedial Bureau C, Section B

ec: J. Andaloro, NYSDEC (<u>jennifer.andaloro@dec.ny.gov</u>)

S. Saucier, NYSDEC (sarah.saucier@dec.ny.gov)

K. Maloney, NYSDEC (kerry.maloney@dec.ny.gov)

S. Pawliczak, NYSDEC (<u>sarah.pawliczak@dec.ny.gov</u>)

M. Doroski, NYSDOH (melissa.doroski@health.ny.gov)

A. Perretta, NYSDOH (anthony.peretta@health.ny.gov)

S. McCague, NYSDEC Region 3 (steven.mccague@dec.ny.gov)

S. Kahan, Village of Ossining (kahan@villageofossining.org)

K. D'Attore, Village of Ossining (kdattore@villageofossining.org)

M. Jones, Arcadis (michael.jones@arcadis.com)

K. Kaiser, Con Ed (kaiserk@coned.com)

K. Klesh, Con Ed (kleshk@coned.com)

DecDocs/File

Transmitted via Email

March 26, 2025

Yelena Skorobogatov
Project Manager
Consolidated Edison Company of New York Inc.
31-01 20th Avenue, Bldg. 136, 2nd Floor
Long Island City, NY 11105-2048
skorobogatovy@coned.com

Re: RW-D2 Further Evaluation and Rehabilitation Plan, February 3, 2025

CE-Ossining MGP

39 Central Ave. and 30 Water Street

Site No.: 360172

Ms. Yelena Skorobogatov:

The New York State Department of Environmental Conservation (Department), in conjunction with the New York State Department of Health, has reviewed and disapproves the RW-D2 Further Evaluation and Rehabilitation Plan, dated February 3, 2025, for the CE- Ossining MGP (Site No. 360172).

In accordance with the executed Voluntary Cleanup Agreement (Index # D2-0003-02-08) (the VCA), initially signed August 15, 2002, and later amended on August 17, 2021 as an "Amendment to Order on Consent and Administrative Settlement" (the "Order) (Index No. CO 0-20180516-519), within twenty (20) days after receiving written notice of disapproval, Consolidated Edison Company of New York, Inc. (the Respondent) shall elect in writing to modify the disapproved work plan or report. In the event the Respondent fails to make an election or fails to comply with the election, the Respondent will be in violation of the Order.

Reasons for Disapproval

- Revise the Rehabilitation Plan to include the Remedial Design certification from DER-10 Section 1.5(b)1.
- New Recovery Well RW-D2 Installation Revise this section to indicate the recovery well and sump will be constructed with stainless steel.
- Figure 2 NAPL Recovery Well Specification Revise this figure to indicate the recovery well and sump will be constructed with stainless steel.

Please revise and resubmit the work plan for final review and approval. You may contact me via email, caroline.jalanti@dec.ny.gov, or phone, 518-402-9650, with any questions or to discuss further.

Sincerely,

Caroline Jalanti, P.E.
Professional Engineer 1
Division of Environmental Remediation
Remedial Bureau C, Section B

ec:

S. Kahan, Village of Ossining (kahan@villageofossining.org)

K. D'Attore, Village of Ossining (kdattore@villageofossining.org)

M. Jones, Arcadis (michael.jones@arcadis.com)

K. Kaiser, Con Ed (kaiserk@coned.com)

K. Klesh, Con Ed (kleshk@coned.com)

M. Doroski, NYSDOH (melissa.doroski@health.ny.gov)

A. Perretta, NYSDOH (anthony.peretta@health.ny.gov)

S.McCague, NYSDEC Region 3 (<u>steven.mccague@dec.ny.gov</u>)

S. Saucier, NYSDEC (sarah.saucier@dec.ny.gov)

J. Andaloro, NYSDEC (jennifer.andaloro@dec.ny.gov)

K. Maloney, NYSDEC (kerry.maloney@dec.ny.gov)

C. Jalanti, NYSDEC (caroline.jalanti@dec.ny.gov)

S. Pawliczak, NYSDEC (sarah.pawliczak@dec.ny.gov)

DecDocs/File

Transmitted via Email

May 22, 2025

Yelena Skorobogatov
Project Manager
Consolidated Edison Company of New York Inc.
31-01 20th Avenue, Bldg. 136, 2nd Floor
Long Island City, NY 11105-2048
skorobogatovy@coned.com

Re: RW-D2 Further Evaluation and Rehabilitation Plan, April 11, 2025

CE-Ossining MGP

39 Central Ave. and 30 Water Street

Site No.: 360172

Yelena Skorobogatov:

The New York State Department of Environmental Conservation (Department), in conjunction with the New York State Department of Health, has reviewed the RW-D2 Further Evaluation and Rehabilitation Plan, dated April 2025, for the CE- Ossining MGP (Site No. 360172) and determines this work plan to be acceptable.

Prior to mobilizing for this scope of work, provide a least 7-days' notice to the Department. Also, submit a copy of the work plan to the document repository and provide a record of submission via email to caroline.jalanti@dec.ny.gov.

Sincerely,

Caroline Jalanti, P.E. Professional Engineer 1

Division of Environmental Remediation

Remedial Bureau C, Section B

ec:

S. Kahan, Village of Ossining (kahan@villageofossining.org)

K. D'Attore, Village of Ossining (kdattore@villageofossining.org)

M. Jones, Arcadis (Michael.Jones@arcadis.com)

J. Baratta, Con Ed (<u>barattaj@coned.com</u>)

K. Klesh, Con Ed (kleshk@coned.com)

M. Doroski, NYSDOH (melissa.doroski@health.ny.gov)

A. Perretta, NYSDOH (anthony.peretta@health.ny.gov)

S.McCague, NYSDEC Region 3 (<u>steven.mccague@dec.ny.gov</u>)

- S. Saucier, NYSDEC (sarah.saucier@dec.ny.gov)
- J. Andaloro, NYSDEC (jennifer.andaloro@dec.ny.gov)
- K.Maloney, NYSDEC (kerry.maloney@dec.ny.gov)
- C. Jalanti, NYSDEC (caroline.jalanti@dec.ny.gov)
- S. Pawliczak, NYSDEC (<u>sarah.pawliczak@dec.ny.gov</u>)
 DecDocs/File

Consolidated Edison Company of New York, Inc. 31-01 20th Avenue Long Island City NY 11105-2048 www.conEd.com

October 17, 2024

VIA ELECTRONIC MAIL

Caroline Jalanti.
Project Manager
New York State Department of Environmental Conservation
Division of Environmental Remediation, Remedial Bureau C
625 Broadway, 12th Floor
Albany, New York 12233-7014

Re: Consolidated Edison Company of New York, Inc. Former Ossining Works Site, OU-3, Site No. 360172 2024 Recovery Well Redevelopment and Gauging Summary

Dear Ms. Jalanti:

This letter summarizes dense non-aqueous phase liquid (DNAPL) recovery well redevelopment and gauging activities that were conducted during September 2023 at Operable Unit 3 (OU-3) of the Consolidated Edison former Ossining Works site located in Ossining, New York (**Figure 1**). Two DNAPL recovery wells (recovery wells RW-A and RW-D) were redeveloped on September 16 and 17, 2024. Following redevelopment of the recovery wells, fluid level gauging was conducted on September 23 and 30, 2024.

The recovery well redevelopment and fluid level gauging activities are summarized below.

2024 Recovery Well Redevelopment and Observations

As outlined in the *OU3 DNAPL IRM Construction Completion Report* (Arcadis, November 2022) the results for DNAPL monitoring and recovery activities conducted between 2009 and 2019 appear to indicate that no recoverable NAPL remains at OU-3. At the request of the NYSDEC, Con Edison agreed to further evaluate DNAPL recovery at OU-3 by redeveloping recovery wells RW-A and RW-D to improve the hydraulic conductivity between the wells and the aquifer surrounding the screened interval at each well. Recovery wells RW-A and RW-D were redeveloped on September 16 and 17, 2024 by ADT Drilling with oversight from an Arcadis field geologist. A representative from SESI Consultants (SESI) was also present on behalf of the OU-3 property owner (GDC) to observe the recovery well redevelopment. Redevelopment logs are provided in **Attachment 1**.

Before redevelopment, a community air monitoring station with a photoionization detector was set up. Each well was redeveloped in accordance with the redevelopment protocol that was submitted to the NYSDEC in an April 2, 2024 e-mail and subsequently approved by the New York State Department of Environmental Conservation (NYSDEC) on April 3, 2024. The redevelopment protocol consisted of the following:

• Gauging each well using an oil/water interface probe for depth to water (DTW), depth to non-aqueous phase liquid (NAPL), if any, and depth to bottom (DTB; i.e., total depth)

- The DTB of each well was compared with the installed depth as shown on the well construction log.
- The volume of water was calculated based on the DTW, DTB and diameter of the well. Gauging results indicated that the screened interval of each recovery well was fully saturated and potable water did not need to be added.
- Rehabilitation of the recovery well was completed by mechanical surging and pumping, as follows:
 - o A surge block was installed and lowered to the bottom of the well.
 - o The surge block was actuated within the water column along the entire length of the screened section to force water in and out of the well screen (i.e., surging).
 - The surge block was removed after a few cycles and the well was pumped to remove water and silt. Turbidity was measured after each surging and pumping cycle, as well as DTW and depth to NAPL
 - Surging and pumping was repeated until the following combination of conditions were met:
 - The water level recovered to the ambient (i.e., pre-redevelopment) DTW (RW-A only)
 - Turbidity levels were reduced to less than 50 NTUs, and/or
 - A minimum of 3-well volumes was pumped and removed from the well.
 - o The down-hole equipment was decontaminated following the redevelopment activities.

During redevelopment activities for RW-D, groundwater recharge was observed to be relatively slow (as was the case for previous monitoring and recovery events since the well was installed). Because the well did not recover to the ambient DTW within a reasonable amount of time, redevelopment for RW-D was judged to be complete after a minimum of three well volumes were removed from the well and turbidity levels dropped to less than 50 NTUs. Measurable levels of DNAPL were not observed at either RW-A or RW-D during the redevelopment activities. A small amount of NAPL was observed on the surge block at RW-D during the initial well surging activities and a NAPL sheen was noted in the drummed purge water removed from each well.

Approximately 0.01 feet of light non-aqueous phase liquid (LNAPL) was observed at RW-A during the redevelopment activities. LNAPL was not observed following completion of redevelopment for RW-A.

Approximately 125 gallons of groundwater was recovered from each well during the redevelopment and drummed. The drums were labelled and transported to a Con Edison electrical substation located on Central Avenue in Ossining for staging prior to offsite transportation and disposal on October 4, 2024.

2024 Recovery Well Post-Redevelopment Gauging

Two rounds of post redevelopment gauging (on September 23 and September 30, 2024) were conducted following redevelopment of RW-A and RW-D. The post-redevelopment gauging data is provided in **Attachment 2**. The post redevelopment gauging efforts represent the first of four consecutive quarterly monitoring and recovery event that Con Edison agreed to implement in the *OU3 DNAPL IRM Construction Completion Report*.

NAPL was not observed in either well during these gauging events. PID readings at the top of the well casing at RW-A ranged from 24.8 to 52.4 parts per million (ppm) and PID readings at RW-D ranged from 540 to 546 ppm. Groundwater recharge in RW-D continued to be notably slower when compared to RW-A. DTW at RW-A appeared to fully recover to ambient conditions between the gauging events, with DTW for each gauging event at 5.31 and 5.18 feet below top of casing as compared to a DTW of 5.89 feet prior to start of redevelopment. DTW at RW-D recovered to 24.23 feet for the September 23, 2024 gauging event and to 20.90 feet for the September 30 gauging event. Static DTW before redevelopment at RW-D was 1.78 feet.

Conclusions and Recommendations

Based on the slow recovery of water at RW-D during and following the well development activities, Arcadis completed a review at the request of Con Edison to assess the suitability of the well for ongoing DNAPL monitoring and recovery efforts. Arcadis' conclusions and recommendations include:

- The scope and level of effort for the redevelopment activities (surging and pumping) is appropriate for the given conditions. Other development methods such as brushing of the well screen or use of chemical dispersants do not apply in this case due to the absence of chemical or biological fouling.
- Potential explanations for the reduced groundwater recharge rate at RW-D include:
 - o The depth of the well screen at RW-D was selected based on observations of NAPL during the completion of the recovery well boring. RW-D appears to be installed in lower permeability geologic materials than the other OU-3 recovery wells. RW-D is screened at a depth of 27 to 37 feet below ground surface (bgs) while the other OU-3 recovery wells are screened at 20 to 30 feet BGS. The DNAPL cutoff slurry wall that was installed as part of the remedial activities implemented by the OU-3 property owner was keyed into a confining unit at a depth of 21 to 24 feet bgs. Slow groundwater recharge in RW-D during and after redevelopment is consistent with observations of slow groundwater recharge rates during previous NAPL recovery efforts.
 - o The filter pack surrounding the well screen at RW-D could potentially be clogged with silt and/or clay from the geologic formation. However, the fact that the turbidity levels within the well initially increased during redevelopment before dropping to levels below 50 NTUs indicates that physical fouling/clogging of the sand pack is unlikely.
- It is important to recognize that NAPL transmissivity is not directly related to water transmissivity. Any significant accumulation of DNAPL within the filter pack surrounding the well screen would likely increase NAPL transmissivity into the well. Approximately 121.68 gallons of DNAPL was recovered from RW-D between 2012 (when the well was

installed) and 2019 (when monitoring and recovery efforts were discontinued). A total of 121.5 gallons of DNAPL was recovered at RW-D between 2012 and December 2015. Between 2016 and 2019, only 0.18 gallons of NAPL was recovered for quarterly monitoring and recovery efforts at RW-D. If a significant amount of DNAPL was present in the formation surrounding the screened interval of the well, Arcadis expects that DNAPL would have been observed in the well during and/or following the redevelopment activities.

Arcadis' review of the historical and recent monitoring and recovery data for RW-A and RW-D indicates that both wells remain suitable for recovery of DNAPL. The lack of measurable DNAPL at RW-A and RW-D during the recent redevelopment and monitoring activities suggests that there is no remaining recoverable DNAPL near the recovery well locations.

Based on the above, and consistent with the OU3 DNAPL IRM Construction Completion Report (November 2022), Con Edison intends to continue to conduct quarterly monitoring and recovery efforts utilizing all the OU-3 recovery wells for the fourth quarter of 2024 and the first two quarters of 2025. If no measurable NAPL continues to be observed in any of the existing recovery wells, including during this monitoring period, Con Edison will recommend discontinuing further monitoring and abandoning of the OU-3 recovery wells. Please note that Con Edison proposed to install DNAPL monitoring and recovery wells downgradient of OU-2 at the site as part of the recommended remedial alternative in the *OU-2 Alternative Analysis Report* (Arcadis, August 2024).

Please feel free to contact me at 917-658-6715 if you have any questions or would like to discuss.

Very truly yours,

Yelena Skorobogatov Technical Specialist EH&S, MGP Remediation Con Edison

cc: Mihir Chokshi, Con Edison Michael Jones, Arcadis Matthew Hysell, P.E. Arcadis Cynthia Buchanan, Arcadis

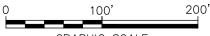

Enclosures:

Figure 1 – Site Map
Attachment 1 – 2024 OU-3 DNAPL Recovery Well Redevelopment Log
Attachment 2 – 2024 OU-3 DNAPL Recovery Well Redevelopment Gauging Data

:][i fYg

US/AUS-9999999-CON ED FORMER MGP_OSSINING_NYIProject Files/10_WIP/10T_ARC_ENV/20240/1-DWG/OU3-DNAPL-CCR_F02-EX RW MAP.dwg LAYOUT: 2 SAVED: 3///2024 5:04 PM ACADVER: 24.28 (LMS TECH) PAGESETUP: C-PA-PDF 3//8/2024 1:59 PM BY: POSENAUER, LISA

MICROSOFT CORPORATION © 2024 MAXAR © CNES (2024) DISTRIBUTION AIRBUS DS.

GRAPHIC SCALE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. FORMER OSSINING WORKS MANUFACTURED GAS PLANT SITE OSSINING, NEW YORK

OU-3, HARBOR SQUARE DNAPL RECOVERY WELLS

EXISTING RECOVERY WELL MAP

FIGURE

SECOR ROAD

Attachment 1

Redevelopment Logs

Consolidated Edison Company of New York, Inc. Former Ossining Works Site OU-3 DNAPL Recovery Well Redevelopment Log

Well ID: RW-A		Static DTW: 5.89 FT BTOC					
Date: 9/17/2024		DTB: 34.89 FT BTOC					
Staff: Mike Redman (AN	IA) / Luke Caballero & Artie La	Contractor: ADT Drilling / ANA / SESI					
		Re	development Logs				
Date & Time	Depth To NAPL (FTBTOC)	DTW (FT BTOC)	Turbidity (NTU)	Total Volume Purged (Gallons)	Notes		
9/17/24 @ 9:00 AM	ND	6.74	457	~3	Odor detected		
9/17/24 @ 9:12 AM	ND	8.54	237	~18	Odor detected		
9/17/24 @ 9:39 AM	ND	9.10	47.8	~40	Odor detected		
9/17/24 @ 10:02 AM	9.18	9.19	57.7	~65	Odor detected		
9/17/24 @ 10:24 AM	9.29	9.30	108	~85	Odor detected		
9/17/24 @ 10:50 AM	ND	9.38	14.4	~105	Odor detected		
9/17/24 @ 11:25 AM	ND	7.20	7.32	~125	Odor detected		
Notos: Total volumo	of GW purged from RW-A	was w125 gallons of G	2)//				
			7 V V .				
	IDW generated from RW-I	D: # -0, -0 α -/.					
Drum #4 is for PPE (f	· · · · · · · · · · · · · · · · · · ·	potation 9 labeled wit	h ConEdicion IDW Do	nding Analyses Johola			
	ondary containment at su	ibstation & tabeled wit	n ConEdision IDW Pe	nuing Analyses labets.			
FT BTOC = Feet Belo	w rop of Casing						

Consolidated Edison of New York, Inc Former Ossining Works Site OU-3 DNAPL Recovery Well Redevelopment Log

FT BTOC = Feet below Top of Casing

Well ID: RW-D			Sta	Static DTW: 1.78 FT BTOC					
Date: 9/16/2024				DTE	DTB: 41.78 FT BTOC				
Staff: Mike Redman (AN	NA) / Luke Caballero & Artie I	LaRocca (ADT) / Christia	Cor	Contractor: ADT Drilling / ANA / SESI					
		F	Redevelopment Log	s					
Date & Time	Depth To NAPL (FTBTOC)	DTW (FT BTOC)	Turbidity (NTU)	Total Volume Purged (Gallons)	Notes			
9/16/24 @ 10:10 AM	ND	1.78			0	NAPL is detected on surge block but not detected with interface probe.			
9/16/24 @ 10:25 AM	ND	Cannot Collect Data*	75.6		~40	Odor detected			
9/16/24 @ 11:30 AM	ND	41.00	115.6		~60	Odor detected			
9/16/24 @ 12:40 AM	ND	5.42	62.5		~70	Odor detected			
9/16/24 @ 13:00 AM	ND	9.82	33.1		~85	Odor detected			
9/16/24 @ 13:15 AM	ND	15.63	29.7		~125	Odor detected			
Notes: Total volume	of GW purged from RW-	D was ~125 gallons .							
	IDW generated from RW								
Drum #4 is for PPE	-								
IDW is staged in sec	ondary containment at s	substation & labeled	with ConEdision II)W Pe	ending Analyses labels.				
*Cannot collect DTV	N data point due to pum	p is in way of collecti	ing data at this time	9.	·				

Attachment 2

Fluid Level Gauging Data

Consolidated Edison of New York, Inc. Former Ossining Works Site OU-3 DNAPL Recovery Well Gauging Data

	NAPL Gauging Event											
Monitoring	Date	T:	PID Reading		Depth (feet)		Thickne	ss (feet)	Comments		
Well	Date	Time	(ppm)	LNAPL	Water	DNAPL	Well	LNAPL	DNAPL	Comments		
RW-A		9:00 AM	24.8	ND	5.31	ND	33.13	ND	ND			
RW-B		8:30 AM	0.0	ND	10.15	ND	34.81	ND	ND			
RW-C2	9/23/24	8:45 AM	0.0	ND	5.95	ND	24.93	ND	ND			
RW-C		9:10 AM	0.0	ND	8.06	ND	37.30	ND	ND			
RW-D		8:20 AM	546.0	ND	24.23	ND	41.64	ND	ND			
RW-A		8:10 AM	52.4	ND	5.18	ND	33.13	ND	ND			
RW-B		9:20 AM	0.0	ND	10.32	ND	34.81	ND	ND			
RW-C2	9/30/24	8:00 AM	5.4	ND	6.08	ND	24.93	ND	ND			
RW-C		8:30 AM	0.0	ND	8.21	ND	37.30	ND	ND			
RW-D		8:15 AM	540.0	ND	20.90	ND	41.64	ND	ND			

MEMO

To: Copies:

Yelena Skorobogatov, Con Edison Mihir Chokshi, Con Edison

Matt Bell, Arcadis

Arcadis of New York, Inc.
One Lincoln Center
110 West Fayette Street

Suite 300

Syracuse New York 13202

Tel 315 446 9120 Fax 315 449 0017

Date: Arcadis Project No.:

December 12, 2024 30193311

Subject:

From:

Michael Jones, Arcadis

Former Ossining Works Site – OU-3 DNAPL Monitoring and Recovery Fourth Quarter 2024 DNAPL Monitoring Event Summary

Arcadis completed the Fourth Quarter 2024 DNAPL Monitoring and Recovery event on December 10, 2024 for the recovery wells located at OU-3 (Harbor Square Property) at the Consolidated Edison of New York, Inc. (Con Edison) former Ossining Works site located in Ossining New York. Monitoring observations and results are summarized below.

Monitoring Activities

Monitoring activities were conducted starting at approximately 08:00 hours on December 10, 2024. Monitoring activities consisted of accessing each of the five DNAPL recovery wells at the site (including RW-A, RW-B, RW-C1, RW-C2, and RW-D) and obtaining the following measurements:

- Photoionization detector (PID) measurement of ambient air within the well casing (measured from the top of the casing).
- Depth from the top of casing measuring point to the bottom of the well (DTB)
- Depth to product as measured form the top of casing measuring point with an oil-water interface probe (DTP)
- Depth to water as measured from the top of casing measuring point with an oil-water interface probe (DTW).

Field notes which summarize the monitoring observations at each recover well are presented in Attachment A. No photographs were taken of the monitoring activities.

Observations/Measurements

Depth to water from the top of casing ranged from 5.89 feet below measuring point to 12.6 feet below measuring point. A slight sheen was observed on the tip of the interface probe at locations RW-A and

RW-D (reported as none/trace on the field notes). No measurable thickness of NAPL was detected in any of the wells and no DANPL recovery was attempted.

Investigation Derived Waste

No investigation derived waste (IDW) was generated for the Fourth Quarter 2024 monitoring activities.

ATTACHMENT A

DNAPL Monitorign Feild Notes

Ossining Gauging 12/10/24

09:06 - Rui- C2	DTW-7.18	DTP - hone
	DTB - 29.75	P10-20
09:25 - RW-C	DW-9.15	DTP- none
LOWER CONTRACTOR	DT8 - 35.34	P10-1.9
09.32 - RV- MA	DTW - 5.78	PTP- none/Trace
	DTB - 31.56	PID-72.4
09:50 - RW-D	Mw-12.60	MP- none Frace
	MB-41.22	P10-120.0
16:00 - Rw-B	Mw - 11.16	DTP- none
	078-33.92	PID- 00

Peakskill Gauging 12/10/24

Rw-1	Dru: 540	SMORPH TO
-2	1.38	+ 110 mi tockory ou
- }	dã. þ	wells/ don'ts
-4	3.46	

Rite in the Rain.

MEMO

To: Copies:

Yelena Skorobogatov, Con Edison Mihir Chokshi, Con Edison

Matt Bell, Arcadis

Arcadis of New York, Inc.
One Lincoln Center
110 West Fayette Street

Suite 300

Syracuse

New York 13202 Tel 315 446 9120 Fax 315 449 0017

From:

Michael Jones, Arcadis

Date: Arcadis Project No.:

Mach 24, 2025 30193311

Subject:

Former Ossining Works Site – OU-3 DNAPL Monitoring and Recovery First Quarter 2025 DNAPL Monitoring Event Summary

Arcadis completed the First Quarter 2025 DNAPL Monitoring and Recovery event on March 20, 2025 for the recovery wells located at OU-3 (Harbor Square Property) at the Consolidated Edison of New York, Inc. (Con Edison) former Ossining Works site located in Ossining New York. Monitoring observations and results are summarized below.

Monitoring Activities

Monitoring activities were conducted starting at approximately 10:56 hours on March 20, 2025 and were completed by 13:14 hours. Monitoring activities consisted of accessing each of the five DNAPL recovery wells shown on Figure 1 (including RW-A, RW-B, RW-C1, RW-C2, and RW-D) and obtaining the following measurements:

- Photoionization detector (PID) measurement of ambient air within the well casing (measured from the top of the casing).
- Depth from the top of casing measuring point to the bottom of the well (DTB)
- Depth to product as measured form the top of casing measuring point with an oil-water interface probe (DTP)
- Depth to water as measured from the top of casing measuring point with an oil-water interface probe (DTW).

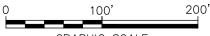
Field notes which summarize the monitoring observations at each recover well are presented in Attachment A. Photographs of wells RW-B, RW-C1, RW-C2, and RW-D are included in Attachment B.

Access to recovery well RW-A was initially restricted by a parked vehicle (cargo van) when Arcadis arrived onsite to complete the gauging efforts. Arcadis was able to coordinate with the building owner to request

that the owner move the vehicle. The vehicle was moved to allow for gauging of the well. As soon as the gauging measurements were complete, the vehicle returned to the previous location before Arcadis could obtain a photograph of the well.

Observations/Measurements

Depth to water from the top of casing ranged from 5.22 feet below measuring point (at RW-A) to 10.81 feet below measuring point (at RW-B). No sheens were observed on the tip of the interface probe at locations RW-A and RW-D. No measurable thickness of NAPL was detected in any of the wells and no DANPL recovery was attempted.


Investigation Derived Waste

No investigation derived waste (IDW) was generated for the First Quarter 2025 monitoring activities.

US/AUS-9999999-CON ED FORMER MGP_OSSINING_NYIProject Files/10_WIP/10T_ARC_ENV/20240/1-DWG/OU3-DNAPL-CCR_F02-EX RW MAP.dwg LAYOUT: 2 SAVED: 3///2024 5:04 PM ACADVER: 24.28 (LMS TECH) PAGESETUP: C-PA-PDF 3//8/2024 1:59 PM BY: POSENAUER, LISA

MICROSOFT CORPORATION © 2024 MAXAR © CNES (2024) DISTRIBUTION AIRBUS DS.

GRAPHIC SCALE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. FORMER OSSINING WORKS MANUFACTURED GAS PLANT SITE OSSINING, NEW YORK

OU-3, HARBOR SQUARE DNAPL RECOVERY WELLS

EXISTING RECOVERY WELL MAP

FIGURE

SECOR ROAD

ATTACHMENT A

DNAPL Monitoring Feild Notes

Table 1 Recovery Well Gauging and Recovery Form Consolidated Edison Company of New York, Inc. Former Ossining Works Site, OU-3 1 Harbor Square, Ossining, NY Personnel: Shekhal Ganlod GARCADIS

Date	Date Time		Surface Elevation	Well Depth ²	PID Reading (feet below TOC)			Thickness Recovery (Gallons)			Observations		
		Well ¹	(feet AMSL)	(feet bgs)	(ppm) Water DN		DNAPL	Bottom	DNAPL	Total Fluid ³	DNAPL		
1314	1127	RW-A	NS	37	8.5	5.22	NE	32.99	_	_	-	Covered by vehicle	NO J-plug
	1131	RW-B	NS	35	0.0	10.81	NE	35.03		- 1	1	No J-plug, grated lid	
3/20125	1103	RW-C	NS	35	0.0	8.49	NE	37.11	-	1	-	3 botts missing	
	1056	RW-C2	NS	31	0.0	6.45	NF	29.86	-	-	1	2 bolls Missing	
	1120	RW-D	7.04	41.5	43.7	9.67	NE	41.55	-	-		1 bolt 155.79	

- 1. Recovery wells are 6-inch diameter PVC with 10-foot screen and 5-foot-long sump. Recovery wells are flushmounted at the grade surface.
- Well depth is to the bottom of the 5-foot-long sump.
 Total fluid includes groundwater and DNAPL recovered.

Acroynms AMSL - Above mean sea level bgs - below grade surface

DNAPL - Dense non-aqueous phase liquid

NE - not encountered

NR - no recovery

NS - not surveyed

PID - photoionization detector

ppm - parts per million

PVC - polyvinyl chloride

TOC - Top of PVC well casing

ATTACHMENT B

DNAPL Recovery Well Photos

Recovery Well RW-B

Recovery Well RW-C1

Recovery Well RW-C2

Recovery Well RW-D

MEMO

To: Copies:

Yelena Skorobogatov, Con Edison Mihir Chokshi, Con Edison

Matt Bell, Arcadis

Arcadis of New York, Inc.
One Lincoln Center
110 West Fayette Street

Suite 300

Syracuse

New York 13202 Tel 315 446 9120 Fax 315 449 0017

From:

Michael Jones, Arcadis

Date: Arcadis Project No.:

June 12, 2025 30193311

Subject:

Former Ossining Works Site – OU-3 DNAPL Monitoring and Recovery Second Quarter 2025 DNAPL Monitoring Event Summary

Arcadis completed the Second Quarter 2025 DNAPL Monitoring and Recovery event on June 9, 2025 for the recovery wells located at OU-3 (Harbor Square Property) at the Consolidated Edison of New York, Inc. (Con Edison) former Ossining Works site located in Ossining New York. Monitoring observations and results are summarized below.

Monitoring Activities

Monitoring activities were conducted between 08:00 hours and 09:00 hours on June 10, 2025. Monitoring activities consisted of accessing each of the five DNAPL recovery wells shown on Figure 1 (including RW-A, RW-B, RW-C1, RW-C2, and RW-D) and obtaining the following measurements:

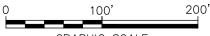
- Photoionization detector (PID) measurement of ambient air within the well casing (measured from the top of the casing).
- Depth from the top of casing measuring point to the bottom of the well (DTB)
- Depth to product as measured form the top of casing measuring point with an oil-water interface probe (DTP)
- Depth to water as measured from the top of casing measuring point with an oil-water interface probe (DTW).

Field notes which summarize the monitoring observations at each recovery well are presented in Attachment A. No changes in the well conditions were noted from the last monitoring event completed in March 2025. Photographs of wells RW-B, RW-C1, RW-C2, and RW-D were included in Attachment B to the First Quarter 2025 summary memorandum dated March 24, 2025.

Observations/Measurements

Depth to water from the top of casing ranged from 5.28 feet below measuring point (at RW-A) to 10.87 feet below measuring point (at RW-B). NAPL sheens were observed on the tip of the interface probe at locations RW-A and RW-C. No sheens were observed for the remaining wells. No measurable thickness of NAPL was detected in any of the wells and no DNAPL recovery was attempted.

Arcadis also noted several condition issues with the recovery wells which will be addressed for the next monitoring event, including missing J-plugs for wells RW-A and RW-B, a replaced well lid at RW-B that allows precipitation to enter the well, and one or more missing bolts for the well lids at RW-C1, RW-C2, and RW-D.


Investigation Derived Waste

No investigation derived waste (IDW) was generated for the Second Quarter 2025 monitoring activities.

US/AUS-9999999-CON ED FORMER MGP_OSSINING_NYIProject Files/10_WIP/10T_ARC_ENV/20240/1-DWG/OU3-DNAPL-CCR_F02-EX RW MAP.dwg LAYOUT: 2 SAVED: 3///2024 5:04 PM ACADVER: 24.28 (LMS TECH) PAGESETUP: C-PA-PDF 3//8/2024 1:59 PM BY: POSENAUER, LISA

MICROSOFT CORPORATION © 2024 MAXAR © CNES (2024) DISTRIBUTION AIRBUS DS.

GRAPHIC SCALE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC. FORMER OSSINING WORKS MANUFACTURED GAS PLANT SITE OSSINING, NEW YORK

OU-3, HARBOR SQUARE DNAPL RECOVERY WELLS

EXISTING RECOVERY WELL MAP

FIGURE

SECOR ROAD

ATTACHMENT A

DNAPL Monitoring Field Notes

Table 1 Recovery Well Gauging and Recovery Form
Consolidated Edison Company of New York, Inc.
Former Ossining Works Site, OU-3
1 Harbor Square, Ossining, NY

35 S. 140		Recovery	Surface Elevation	Well Depth ²	Diameter	PID Reading	Depth (feet below TOC)			Thickness (feet)	Recovery (Gallons)		Observations
Date	Time	Well ¹	(feet AMSL)	(feet bgs)	(inches)	(ppm)	Water	DNAPL	Bottom	DNAPL	Total Fluid ³	DNAPL	
	0410	RW-A	NS	37	8	3.3	5.28	ND	3310	NE	-	NR	Ctrace on Plobe)
	0819	RW-B	NS	35	8	0.0	10.87	ND	35.02	NE	-	NR	6 in well, If outer casing
,	0827	RW-C	NS	35	8		8.47	ND	41.54	NE	-	NR	(Trace on Probe)
819/25		RW-C2	NS	31	8	0.0	6.24	ND	29.89	NE	-	NR	2 bolts missing
	0835	RW-D	7.04	41.5	6	0.0	8.33	NO	37.24	NE	-	NR	3 holds Missing

Recovery wells are PVC with 10-foot screen and 5-foot-long sump. Recovery wells are flushmounted at the grade surface.
 Well depth is to the bottom of the 5-foot-long sump.
 Total fluid includes groundwater and DNAPL recovered.

Acroynms

AMSL - Above mean sea level
bgs - below grade surface
DNAPL - Dense non-aqueous phase liquid
NE - not encountered
NR - no recovery

NR - no recovery
NS - not surveyed
PID - photoionization detector
ppm - parts per million
PVC - polyvinyl chloride
TOC - Top of PVC well casing

Consolidated Edison Company of New York, Inc. 31-01 20th Avenue Long Island City NY 11105-2048 www.conEd.com

April 10, 2025

VIA ELECTRONIC MAIL

Caroline Jalanti, P.E.
Professional Engineer 1
New York State Department of Environmental Conservation
Division of Environmental Remediation, Remedial Bureau C
625 Broadway, 12th Floor
Albany, New York 12233-7014

Consolidated Edison Company of New York, Inc. Former Ossining Works Site, OU-3, Site No. 360172 DNAPL Recovery Well Rehabilitation Work Plan

Dear Ms. Jalanti:

Please find the attached Dense Non-Aqueous Phase Liquid (DNAPL) Recovery Well Rehabilitation Work Plan (Work Plan) for further evaluation and rehabilitation of recovery well RW-D located at Operable Unit No. 3 (OU-3) of the Consolidated Edison Company of New York, Inc. (Con Edison) former Ossining Works site in Ossining, New York (Site No. 360172). The Work Plan has been prepared by Arcadis of New York, Inc. (Arcadis) on behalf of Con Edison.

The Work Plan incorporates the following revisions pursuant to the New York State Department of Environmental Conservation (NYSDEC) comments presented in your March 26, 2025 letter t Con Edison:

- In accordance with the requirements of Section 1.5(b)(1) of the New York State
 Department of Environmental Conservation (NYSDEC) Division of Environmental
 Remediation document entitled *Technical Guidance for Site Investigation and*Remediation (DER-10, May 2010), a Certification Statement signed by Arcadis' Engineer
 of Record for the former Ossining Works site in included as Attachment A.
- All references to polyvinyl chloride (PVC) well construction materials have been changed to Type 304 Stainless Steel in the Work Plan text and on the Well Construction Diagram presented as Figure 2.

Please feel free to contact me at 917-658-6715 or skorobogatovy@coned.com if you have any questions regarding the above Work Plan.

Very truly yours,

Yelena Skorobogatov Technical Specialist EH&S, MGP Remediation Con Edison Ms. Caroline Jalanti, P.E. New York State Department of Environmental Conservation April 10, 2025

cc: Mihir Chokshi, Con Edison Michael Jones, Arcadis Matthew Hysell, P.E., Arcadis Cynthia Buchanan, Arcadis

enc: DNAPL Recovery Well Rehabilitation Work Plan

VIA ELECTRONIC MAIL

Caroline Jalanti, P.E.
Professional Engineer 1
New York State Department of Environmental Conservation
Division of Environmental Remediation, Remedial Bureau C
625 Broadway, 12th Floor
Albany, New York 12233-7014

Date: April 10, 2025 Our Ref: 30193311

Subject: Consolidated Edison Company of New York, Inc.

Former Ossining Works Site, OU-3, Site No. 360172 DNAPL Recovery Well Rehabilitation Work Plan

Dear Ms. Jalanti:

Arcadis of New York, Inc. One Lincoln Center 110 West Fayette Street Suite 300 Syracuse, NY 13202 United States

Phone: 315 446 9120 Fax: 315 449 0017 www.arcadis.com

This letter presents a revised Dense Non-Aqueous Phase Liquid (DNAPL) Recovery Well Rehabilitation Work Plan (Work Plan) for further evaluation and rehabilitation of recovery well RW-D located at Operable Unit No. 3 (OU-3) of the Consolidated Edison Company of New York, Inc. (Con Edison) former Ossining Works site in Ossining, New York (Site No. 360172). The Work Plan has been prepared by Arcadis of New York, Inc. (Arcadis) on behalf of Con Edison. In accordance with the requirements of Section 1.5(b)(1) of the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation document entitled *Technical Guidance for Site Investigation and Remediation* (DER-10, May 2010), a Certification Statement signed by Arcadis' Engineer of Record for the former Ossining Works site in included as Attachment A. The NYSDEC initially requested the Work Plan in an October 25, 2004 letter to Con Edison. The Work Plan was submitted to the NYSDEC on November 22, 2024 and this revised document addresses agency comments that were presented in letters to Con Edison dated January 14, 2025 and March 26, 2025.

Based on a review of recovery well RW-D redevelopment efforts that were implemented during September 2024, Con Edison recommends that recovery well RW-D be abandoned and that a new recovery well be installed at a nearby location for monitoring and recovery of DNAPL.

RW-D Evaluation

Con Edison and NYSDEC agree that RW-D exhibits a very slow recharge of water to static water level conditions following pumping which suggests that either the well is screened in low conductivity material or that the screen has become clogged over time with DNAPL or fine particulates. Redevelopment efforts for RW-D were implemented during the week of September 23, 2024. Based in the results of the redevelopment activities (as summarized in an October 21, 2024 letter to the NYSDEC), Con Edison has concluded that:

 Additional redevelopment of RW-D, even with more aggressive surging techniques, is not anticipated to be successful in unclogging the well screen, given the efforts to date. Ms. Caroline Jalanti, P.E. NYSDEC April 10, 2025

• Installation of a new well (RW-D2) near the existing well and subsequent abandonment of the existing well is recommended.

The following sections detail the new well installation, existing well abandonment, and waste management.

New Recovery Well RW-D2 Installation

New well RW-D2 is proposed to be installed approximately 10 feet to the north of the existing RW-D location. This proposed location for the new well is shown on Figure 1. The new well will be installed within the center of a parking space at the 1 Harbor Square property to facilitate access and is contingent upon the property owner's approval of the new well installation activities.

As shown on the well log for the existing RW-D location (included as Attachment B), the boring for the existing well was completed to weathered bedrock at a depth of approximately 90 feet below ground surface (bgs), The top of a continuous peat layer was encountered at a depth of approximately 60 feet bgs and extended to a depth of approximately 76.5 feet bgs. The boring for the new well RW-D2 will be completed using sonic drilling methods to the top of the peat layer at an anticipated depth of approximately 60 feet bgs. Soil samples from the boring will be logged and screened using a photoionization detector (PID) to support selection and placement of the screened interval. Con Edison does not propose to collect any soil samples for laboratory analysis. All subsurface intrusive activities associated with installation of new well RW-D2 or with the abandonment of existing well RW-D will be conducted in accordance with a project-specific Health and Safety Plan (HASP). Community Air Monitoring will be performed during intrusive activities in accordance with the New York State Department of Health Generic Community Air Monitoring Plan (CAMP) included as Appendix 1A of DER-10. The generic CAMP is included as Attachment C.

The proposed construction of new recovery well RW-D2 is shown on Figure 2. The new well will be constructed in general accordance with American Society for Testing Materials (ASTM) D5092 - Standard Practice for Design and Installation of Ground Water Monitoring Wells. RW-D2 will be constructed using 6-inch diameter Type 304 stainless steel (stainless steel) well riser with a 10-foot stainless steel screen and 5-foot stainless steel sump. Con Edison anticipates that the screen for the new well will be installed at a depth of approximately 27 to 37 feet bgs (consistent with the existing RW-D). The screened interval will target areas of visual NAPL and elevated PID headspace screening results and may be adjusted based on soil screening from the RW-D2 boring. After installation, the new well will be developed by pumping and surging until the turbidity of water removed from the well is reduced to less than 50 nephelometric turbidity units (NTUs) or a minimum of three well volumes are removed from the well. Following development, the top of casing and ground surface elevation for the new well will be surveyed. The well will be allowed to equilibrate for one week before gauging. If non-aqueous phase liquid (NAPL) is observed, recovery will be performed using a peristaltic pump to pump the NAPL into a drum, consistent with the current monitoring and recovery approach. The NAPL recovery approach will be re-evaluated if appropriate based on the observed NAPL thickness/quantity in the new recovery well.

Existing Recovery Well RW-D Abandonment

After installation of new well RW-D2, Con Edison will continue to monitor both RW-D and RW-D2 to compare simultaneous data from the recovery wells. If it is determined that RW-D is not providing useful data (subject to approval by the NYSDEC), the existing RW-D will be abandoned in accordance with NYSDEC guidance (CP-43:

Ms. Caroline Jalanti, P.E. NYSDEC April 10, 2025

Groundwater Monitoring Well Decommissioning Policy). Decommissioning activities will consist of removing the top 6-feet of well casing, tremie grouting to grade, and removing the surface completion and well cover. Groundwater displaced by the tremie grouting will be captured and pumped into drums for disposal.

Waste Management

All waste from the new well installation and well abandonment will be containerized in U.S. Department of Transportation-approved 55-gallon drums. The waste will be temporally staged at a nearby Con Edison-owned substation (located on Central Avenue in Ossining) prior to transport for off-site treatment/disposal at a Con Edison-approval disposal facility. Con Edison anticipates that all waste transport and disposal services will be provided by Clean Earth of New Jersey, Inc. (USEPA ID NJD991291105). Con Edison will notify the NYSDEC if an alternate transport or disposal vendor is to be utilized for any portion of the waste generated by the well installation and abandonment activities.

Reporting

Con Edison will prepare summary letters to document the installation of new recovery well RW-D2 and decommissioning of the existing RW-D (if conducted).

Please feel free to Ms. Yelena Skorobogatov of Con Edison at 917-658-6715 or skorobogatovy@coned.com if you have any questions regarding the above Work Plan.

Sincerely,

Arcadis of New York, Inc.

Michael Jones Technical Expert

Email: michael.jones@arcadis.com

Direct Line: 315.671.9211 Mobile: 315.247.3244

cc: Mihir Chokshi, Con Edison

Michael Jones, Arcadis Matthew Hysell, P.E., Arcadis Cynthia Buchanan, Arcadis Ms. Caroline Jalanti, P.E. NYSDEC April 10, 2025

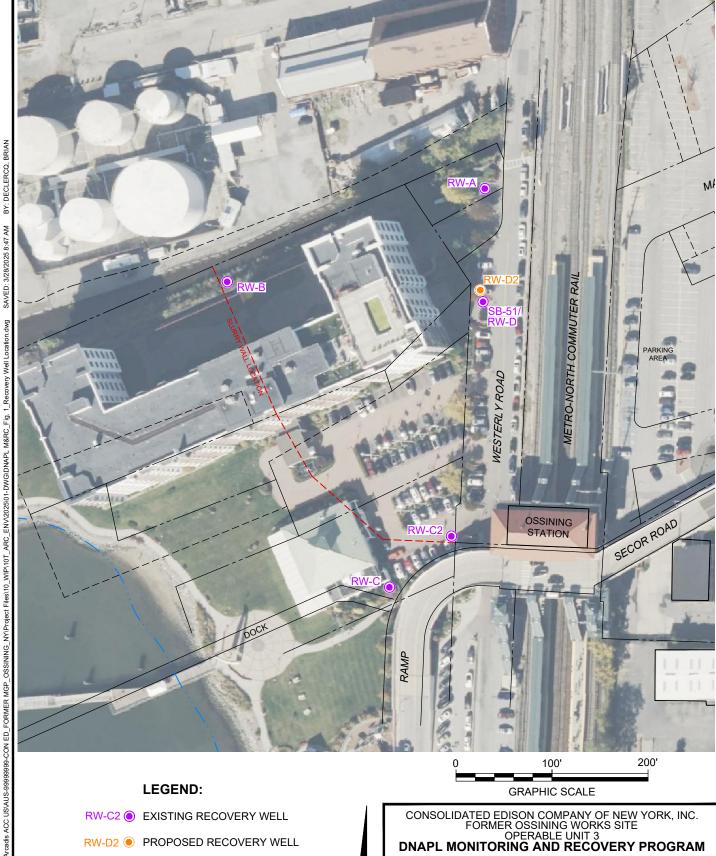

enc: Figure 1 – Proposed New Recovery Well Location

Figure 2 – NAPL Recovery Well Specifications

Attachment A – Certification Statement

Attachment B - RW-D Well Log

Attachment C – Generic Community Air Monitoring Plan

NOTE:

SITE AERIAL PHOTOGRAPH FROM © 2024 MICROSOFT CORPORATION © 2024 MAXAR © CNES (2024) DISTRIBUTION AIRBUS DS.

PROPOSED NEW RECOVERY WELL LOCATION

FIGURE

1

NOT TO SCALE

CONSOLIDATED EDISON COMPANY OF NEW YORK, INC.
FORMER OSSINING WORKS SITE
OPERABLE UNIT 3
DNAPL MONITORING AND RECOVERY PROGRAM

NAPL RECOVERY WELL SPECIFICATIONS

FIGURE

Attachment A

Certification Statement

DNAPL Recovery Well Rehabilitation Work Plan

Former Ossining Works Site Site No. 360172 Ossining, New York

April 3, 2025

Prepared By:

Arcadis of New York, Inc.

York, Inc.

One Lincoln Center, 110 West Fayette Street, Suite 300

Syracuse

New York 13202 Phone: 315 446 9120

Fax: 315 449 0017

Prepared For:

Consolidated Edison Company of New

Our Ref:

30193311

Certification Statement

I, Matthew S. Hysell, P.E., certify that I am currently a New York State registered professional engineer as defined in Title 6 of the New York Codes, Rules, and Regulations Part 375 and that this DNAPL Recovery Well Rehabilitation Work Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) and Green Remediation (DER-31). Based on my inquiry of the persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

D - 1 -		
Date		
Daic		

Matthew S. Hysell, P.E. NYS PE License No. <u>091121</u>

Attachment B

RW-D Well Log

Date Start/Finish: 3/23/12 Drilling Company: Boart Longyear Driller's Name: Kevin Regan Drilling Method: Rotary Sonic

Sampling Method: 8"x5' override casing, 4"x5' core

Rig Type: Track Mounted Mini SONIC

Northing: 847457.72 Easting: 665753.19 Casing Elevation: NA

basorehole Depth: 90' bgs Surface Elevation: 7.04' amsl

Descriptions By: L.Terrell & M. Skowronek

Well/Boring ID: SB-51/RW-D

Client: Consolidated Edison Company of New

Location: 20 Water Street, Ossining, NY.

DЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
-	_								Steel Flushmount over Locking J-Plug
- 0 - - -	5-	1	0-5	5.0	0.0			ASPHALT, little red Brick and Subbase Dark brown fine to medium SAND, little sub-angular to sub-rounded Gravel, trace Silt, Cobbles, Brick, moist. Grayish brown fine to medium SAND, trace Silt, coarse Sand and sub-angular to sub-rounded Gravel, wet.	Concrete Pad (0- 1' bgs) Steel Flushmount Cover Sand Drain (0.5- 1' bgs)
	0-	2	5-10	5.0	0.0	×		Brown fine to medium SAND, little fine to coarse sub-rounded Gravel, trace Silt, moist. Gray/brown medium SAND, little fine Sand, trace coarse Sand and fine to coarse sub-rounded to sub-angular Gravel and Mica, wet.	Grout (1-22' bgs)
— 10 - - - -	-5 -	3	10-15	5.0	0.0			Gray/brown fine to medium SAND, trace fine to coarse sub-rounded to sub-angular Gravel and Mica, wet. Dark gray-black coarse SAND, some fine sub-angular Gravel, trace medium to coarse sub-rounded Gravel, fine Sand and Mica, wet. Gray/brown fine to medium SAND, little-trace coarse Sand, trace fine to coarse sub-rounded to sub-angular Gravel and Mica, wet. Dark gray coarse SAND, some fine sub-rounded to sub-angular Gravel, little fine to medium Sand, trace medium to coarse sub-rounded Gravel and Mica, wet.	6" Sch 40 PVC Riser (0.5-27' bgs)
		4	15-20	5.0	0.0			Dark gray medium SAND, little fine to coarse Sand, trace fine to coarse sub- rounded to sub-angular multi-colored Gravel, Mica and Shells, wet. Remarks: bgs = below ground surface; NA = Not Applicable/	

Analytical sample collected from 5-6'bgs, 29-30' bgs, 32-33' bgs, 59-60' bgs and 83-84' bgs for VOCs, SVOCs, TAL Metals and Cyanide. A blank duplicate BD032812 was also collected on 03/28/12.

Project: B0043025.0002.00002

Template:G:\Aproject\ConED

Page: 1 of 5

Data File:SB-51 Date: 3/26/2013

Edison Company of New York.

Danahala Dantha 001 km

Well/Boring ID: SB-51/RW-D

Borehole Depth: 90' bgs

Site Location:

20 Water Street, Ossining, NY.

ОЕРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
	-10 -	4	15-20	5.0	0.0			Dark gray medium SAND, little fine to coarse Sand, trace fine to coarse sub- rounded to sub-angular multi-colored Gravel, Mica and Shells, wet.	Grout (1-22' bgs)
-	-15 -	5	20-25	5.0	1.3 3.4 8.6 40 2.1			Gray SILT, trace Clay, fine Sand, Mica, fine to coarse Sand, Wood and Shells, chemical like odor at 24-25' bgs, wet.	6" Sch 40 PVC Riser (0.5-27' bgs) Bentonite Seal (22-24' bgs)
-	-20 -	6	25-30	4.5	49.4 145 127 523 1491	×		Gray medium SAND, some coarse Sand, trace fine Sand, Mica and Shells, coal tar-like odor, wet. Gray SILT, trace fine to coarse Sand, fine to coarse sub-rounded Gravel, Shells and Mica.	
- 30	-25 - -	7	30-35	4.5	365 1367 1125 164 1019	×		Gray fine SAND, trace fine to coarse sub-rounded to rounded Gravel and Cobbles, saturated with oil-like material, strong coal tar-like odor, wet. Gray SILT and CLAY, trace Shells, soft, some plasticity, wet. Gray fine to medium SAND, trace Shells, fine to coarse Gravel, Mica and Silt, saturated with brown oil-like material, wet. Gray clayey SILT, trace Shells, Wood and Sand, trace brown oil-like material, sheen, coal tar-like odor, wet.	#1 Silica Sand Pack (24-37' bgs) 6" Sch 40 PVC 0.010" Slot Screen (27-37' bgs)
		8	35-40	5.0	114				

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea

Analytical sample collected from 5-6'bgs, 29-30' bgs, 32-33' bgs, 59-60' bgs and 83-84' bgs for VOCs, SVOCs, TAL Metals and Cyanide. A blank duplicate BD032812 was also collected on 03/28/12.

Project: B0043025.0002.00002 Temp

Template:G:\Aproject\ConED

Page: 2 of 5

Data File:SB-51 Date: 3/26/2013

Well/Boring ID: SB-51/RW-D

Borehole Depth: 90' bgs

Site Location:

20 Water Street, Ossining, NY.

DEРТН	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
					10.6				#1 Silica Sand Pack (24-37'
-	-30 -				10.6			Gray fine to coarse SAND, trace Mica, Shells and Wood, faint coal tar-like odor, wet. Gray SILT and fine SAND, trace Shells, wet.	Pack (24-37' bgs)
		8	35-40	5.0	8				6" Sch 40 PVC 0.010" Slot
	_				7			Shells, faint coal tar-like odor, wet.	Screen (27-37' bgs)
-	_				0.4				
					3.4				Grout (37-90' bgs)
- 40	_							Gray fine SAND, little medium Sand, coal tar-like odor, wet.	
-	_				118				6" Sch 40 PVC
					140		••••	Gray fine to medium SAND, trace fine to coarse sub-rounded to sub-angular Grayel.	Sump (37-42' bgs)
-	-35 -							Gray fine to medium SAND, trace fine to coarse sub-rounded to sub-angular Gravel, Shells and Mica, coal tar-like odor.	
-	_	9	40-45	5.0	167				
					19.3				
-	-				9.9				
- 45	_								
+	_				223				
	-40 -				13.6				
	-40 -	10	45-50	5.0	10.9				
L	-			0.0					
					8.6				Grout (37-90'
					7.5				bgs)
- 50	_								
	_								
-	-45 -								
		11	50-55	2.0	265				
	_								
-	_								
 55	_								
1		12	55-60	4.5	194	1	1		I

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea

Analytical sample collected from 5-6'bgs, 29-30' bgs, 32-33' bgs, 59-60' bgs and 83-84' bgs for VOCs, SVOCs, TAL Metals and Cyanide. A blank duplicate BD032812 was also collected on 03/28/12.

Project: B0043025.0002.00002 Data File:SB-51 Template:G:\Aproject\ConED

Page: 3 of 5

Date: 3/26/2013

Well/Boring ID: SB-51/RW-D

Site Location:

20 Water Street, Ossining, NY.

Borehole Depth: 90' bgs

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
- 60	-50 -	12	55-60	2.5	31.2	×		Gray fine to medium SAND, trace fine to coarse sub-rounded to sub-angular Gravel, Shells and Mica, coal tar-like odor. Dark gray to black SILT, trace Peat, Wood, Shells and Mica, sulfur like odor, wet.	
-	-55 -				0.0 57 3.2			Brown PEAT, trace Wood and Mica, moist.	
65 - - -	-60 -	13	60-70	7.5	0.0		+ + + + + + + + + + + + + + + + + + +		Grout (37-90' bgs)
70 	-65 -	14	70-80	5.0	0.0		- 1 # # # # # # # # # # # # # # # # # #		

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea

Analytical sample collected from 5-6'bgs, 29-30' bgs, 32-33' bgs, 59-60' bgs and 83-84' bgs for VOCs, SVOCs, TAL Metals and Cyanide. A blank duplicate BD032812 was also collected on 03/28/12.

Project: B0043025.0002.00002

Data File:SB-51

Template:G:\Aproject\ConED

Page: 4 of 5

Date: 3/26/2013

Site Location:

20 Water Street, Ossining, NY.

Well/Boring ID: SB-51/RW-D

Borehole Depth: 90' bgs

Brown PEAT and SLT, trace fine. Sand and mica, very soft, wet. Gray fine to medium SAND, trace coarse Sand, Peat and Mica, wet. Gray fine to medium SAND, trace coarse Sand and mica, wet. Gray fine to medium SAND, trace coarse angular Gravel, trace fine to coarse Sand and Mica, moith ball-like odor, wet. Franchisch Sand and Mica, moith ball-like odor, wet. Gray fine to medium SAND, trace coarse Sand and Mica, moith ball-like odor, wet. Gray fine to medium SAND, trace coarse Sand and Mica, moith ball-like odor, wet. Gray fine to medium SAND, trace coarse Sand and Mica, moith ball-like odor, wet. Gray fine to medium SAND, trace coarse sub-rounded to sub-angular GRAVEL, trace fine to coarse Sand, wet. Gray fine to medium SAND, trace coarse sub-angular Gravel, trace fine to coarse Sand, wet. Gray fine to medium SAND, trace coarse sub-angular Gravel, trace fine to coarse Sand, wet. Gray fine to medium SAND, trace coarse sub-angular Gravel, trace fine to coarse Sand, wet. Gray fine to medium SAND, trace coarse sub-angular Gravel, trace fine to coarse Sand, silt and Mica, moith SAND, trace coarse sub-angular Gravel, trace fine to coarse Sand, Silt and Mica, moith SAND, trace coarse sub-angular for angular Gravel, trace fine to coarse Sand, Silt and Mica, moith SAND, trace coarse sub-angular for angular Gravel, trace fine to coarse Sand, Silt and Mica, moith SAND, trace coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND, trace fine to coarse Sand and Mica, moith SAND,	DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	PID Headspace (ppm)	Analytical Sample	Geologic Column	Stratigraphic Description	Well/Boring Construction
Total Control of the sample is weathered bedrock. Total of the sample is weathered bedrock.	80	-70 - -	14	70-80	5.0	0.0	_		Gray fine to medium SAND, trace coarse Sand, Peat and Mica, wet. Gray/black/white/olive green SILT, fine to coarse angular Gravel, trace fine to coarse Sand and Mica, moist.	
- 85	-	-75 = -				75.3 132	×			Grout (37-90' bgs)
Last 6" of the sample is weathered bedrock. Bottom of boring at 90' bgs.	- 85	- -80 =	15	80-90	10.0	46 2.7			fine to coarse Sand, wet.	
	- 									
	- - - 95	-85 - -								

Remarks: bgs = below ground surface; NA = Not Applicable/Available; AMSL = Above Mean Sea Level.

> Analytical sample collected from 5-6'bgs, 29-30' bgs, 32-33' bgs, 59-60' bgs and 83-84' bgs for VOCs, SVOCs, TAL Metals and Cyanide. A blank duplicate BD032812 was also collected on 03/28/12.

Project: B0043025.0002.00002

Template:G:\Aproject\ConED Data File:SB-51 Date: 3/26/2013 Created/Edited by: SD

Attachment C

Generic Community Air Monitoring Plan

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226 May 2010

Appendix C:

Laboratory Data Packages

ANALYTICAL REPORT

Lab Number: L2339185

Client: Soils Engineering Services, Inc.

959 Route 46E

Parsippany, NJ 07054

ATTN: Jonathan Stuart Phone: (973) 808-9050

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Report Date: 07/17/23

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OH (CL108), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

 Lab Number:
 L2339185

 Report Date:
 07/17/23

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2339185-01	MW-2A	WATER	OSSINING NY	07/10/23 10:00	07/10/23
L2339185-02	MW-7A	WATER	OSSINING NY	07/10/23 11:30	07/10/23
L2339185-03	DUP20230710	WATER	OSSINING NY	07/10/23 00:00	07/10/23

Project Name:HARBOUR SQUARELab Number:L2339185Project Number:7173 PH 13Report Date:07/17/23

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

L2339185-02: The pH was greater than two; however, the sample was analyzed within the method required holding time.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 07/17/23

Jufani Morrissey-Tiffani Morrissey

ORGANICS

VOLATILES

07/10/23 10:00

Not Specified

07/10/23

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

SAMPLE RESULTS

Lab Number: L2339185

Report Date: 07/17/23

Date Collected:

Date Received:

Field Prep:

Lab ID: L2339185-01

Client ID: MW-2A

Sample Location: OSSINING NY

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 07/13/23 22:42

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - West	borough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.26	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	18		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter		Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	2.64	J	ug/l	1
Indane	2.64	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	107	70-130	

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

SAMPLE RESULTS

Lab Number: L2339185

Report Date: 07/17/23

Lab ID: L2339185-02

Client ID: MW-7A

Sample Location: OSSINING NY

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/13/23 23:07

Analyst: MJV

Date Collected:	07/10/23 11:30
Date Received:	07/10/23
Field Prep:	Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02 Date Collected: 07/10/23 11:30

Client ID: MW-7A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Ur	nits RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab				
Trichloroethene	ND	uç	g/l 0.5	0 0.18	1
1,2-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
1,3-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
1,4-Dichlorobenzene	ND	uç	g/l 2.5	5 0.70	1
Methyl tert butyl ether	ND	uç	g/l 2.5	5 0.70	1
p/m-Xylene	ND	uç	g/l 2.5	5 0.70	1
o-Xylene	ND	uç	g/l 2.5	5 0.70	1
Xylenes, Total	ND	uç	g/l 2.5	5 0.70	1
cis-1,2-Dichloroethene	ND	uç	g/l 2.5	5 0.70	1
1,2-Dichloroethene, Total	ND	uç	g/l 2.5	5 0.70	1
Dibromomethane	ND	uç	g/l 5.0	1.0	1
1,2,3-Trichloropropane	ND	uç	g/l 2.5	5 0.70	1
Acrylonitrile	ND	uç	g/l 5.0	1.5	1
Styrene	ND	uç	g/l 2.5	5 0.70	1
Dichlorodifluoromethane	ND	uç	g/l 5.0	1.0	1
Acetone	ND	uç	g/l 5.0	1.5	1
Carbon disulfide	ND	uç	g/l 5.0	1.0	1
2-Butanone	ND	uç	g/l 5.0	1.9	1
Vinyl acetate	ND	uç	g/l 5.0	1.0	1
4-Methyl-2-pentanone	ND	uç	g/l 5.0	1.0	1
2-Hexanone	ND	uç	g/l 5.0	1.0	1
Bromochloromethane	ND	uç	g/l 2.5	5 0.70	1
2,2-Dichloropropane	ND	uç	g/l 2.5	5 0.70	1
1,2-Dibromoethane	ND	uç	g/l 2.0	0.65	1
1,3-Dichloropropane	ND	uç	g/l 2.5	5 0.70	1
1,1,1,2-Tetrachloroethane	ND	uç	g/l 2.5	5 0.70	1
Bromobenzene	ND	uç	g/l 2.5	5 0.70	1
n-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
sec-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
tert-Butylbenzene	ND	uç	g/l 2.5	5 0.70	1
o-Chlorotoluene	ND	uç	g/l 2.5	5 0.70	1
p-Chlorotoluene	ND	uç	g/l 2.	5 0.70	1
1,2-Dibromo-3-chloropropane	ND	uç	g/l 2.	5 0.70	1
Hexachlorobutadiene	ND	uç	g/l 2.5	5 0.70	1
Isopropylbenzene	ND	uç	g/l 2.	5 0.70	1
p-Isopropyltoluene	ND	uç	g/l 2.5	5 0.70	1
Naphthalene	ND	uç	g/l 2.5	5 0.70	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02 Date Collected: 07/10/23 11:30

Client ID: MW-7A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter		Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	3.56	J	ug/l	1
Unknown Aromatic	1.09	J	ug/l	1
Indane	2.47	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	98	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	109	70-130	

07/10/23 00:00

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

SAMPLE RESULTS

Lab Number: L2339185

Report Date: 07/17/23

Lab ID: L2339185-03

DUP20230710

OSSINING NY

Date Received: 07/10/23

Date Collected:

Field Prep: Not Specified

Sample Depth:

Sample Location:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 07/13/23 23:32

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborou	gh Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.25	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-03 Date Collected: 07/10/23 00:00

Client ID: DUP20230710 Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Trichloroethene	ND		ua/I	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	 1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
p/m-Xylene	ND			2.5	0.70	1
o-Xylene	ND		ug/l ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND			5.0	1.5	1
Styrene	ND		ug/l ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND			5.0	1.0	1
Acetone	18		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	 1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	 1
n-Butylbenzene	ND			2.5	0.70	1
sec-Butylbenzene	ND		ug/l ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	
Naphthalene	ND		ug/l	2.5	0.70	
. Tapital lalotto	NO		ug/i	2.0	0.70	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-03 Date Collected: 07/10/23 00:00

Client ID: DUP20230710 Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westbo	rough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	2.70	J	ug/l	1
Indane	2.70	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	110	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	107	70-130	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/13/23 20:35

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-03 Batch:	WG1803166-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/13/23 20:35

Analyst: TMS

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01-03 Batch:	WG1803166-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.70
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Report Date: 07/17/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/13/23 20:35

Analyst: TMS

Parameter	Result	Qualifier Units	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s): 01-03	3 Batch:	WG1803166-5	
o-Chlorotoluene	ND	ug/l	2.5	0.70	
p-Chlorotoluene	ND	ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	
Isopropylbenzene	ND	ug/l	2.5	0.70	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	
Naphthalene	ND	ug/l	2.5	0.70	
n-Propylbenzene	ND	ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70	
1,4-Dioxane	ND	ug/l	250	61.	
p-Diethylbenzene	ND	ug/l	2.0	0.70	
p-Ethyltoluene	ND	ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54	
Ethyl ether	ND	ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 07/13/23 20:35

Analyst: TMS

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1803166-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	106		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	99		70-130		
Dibromofluoromethane	97		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Report Date: 07/17/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-03 Batch:	WG1803166-3	WG1803166-4			
Methylene chloride	110		100		70-130	10	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		100		70-130	0	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	94		97		70-130	3	20	
Dibromochloromethane	82		86		63-130	5	20	
1,1,2-Trichloroethane	94		94		70-130	0	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	100		100		75-130	0	20	
Trichlorofluoromethane	120		110		62-150	9	20	
1,2-Dichloroethane	100		100		70-130	0	20	
1,1,1-Trichloroethane	110		100		67-130	10	20	
Bromodichloromethane	97		95		67-130	2	20	
trans-1,3-Dichloropropene	78		82		70-130	5	20	
cis-1,3-Dichloropropene	88		90		70-130	2	20	
1,1-Dichloropropene	96		97		70-130	1	20	
Bromoform	81		87		54-136	7	20	
1,1,2,2-Tetrachloroethane	87		97		67-130	11	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	120		110		64-130	9	20	
Bromomethane	84		83		39-139	1	20	

Lab Control Sample Analysis Batch Quality Control

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Report Date: 07/17/23

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	Lab Associated	sample(s):	01-03 Batch:	WG1803166-3	WG1803166-4			
Vinyl chloride	120		110		55-140	9		20
Chloroethane	110		100		55-138	10		20
1,1-Dichloroethene	110		100		61-145	10		20
trans-1,2-Dichloroethene	110		100		70-130	10		20
Trichloroethene	100		100		70-130	0		20
1,2-Dichlorobenzene	98		100		70-130	2		20
1,3-Dichlorobenzene	100		100		70-130	0		20
1,4-Dichlorobenzene	99		100		70-130	1		20
Methyl tert butyl ether	88		92		63-130	4		20
p/m-Xylene	105		105		70-130	0		20
o-Xylene	105		105		70-130	0		20
cis-1,2-Dichloroethene	110		100		70-130	10		20
Dibromomethane	100		100		70-130	0		20
1,2,3-Trichloropropane	93		94		64-130	1		20
Acrylonitrile	110		110		70-130	0		20
Styrene	100		100		70-130	0		20
Dichlorodifluoromethane	110		100		36-147	10		20
Acetone	110		110		58-148	0		20
Carbon disulfide	110		110		51-130	0		20
2-Butanone	100		100		63-138	0		20
Vinyl acetate	87		110		70-130	23	Q	20
4-Methyl-2-pentanone	82		91		59-130	10		20
2-Hexanone	90		100		57-130	11		20

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborou	gh Lab Associated	sample(s):	01-03 Batch:	WG1803166-3	WG1803166-4			
Bromochloromethane	110		99		70-130	11	20	
2,2-Dichloropropane	100		100		63-133	0	20	
1,2-Dibromoethane	88		92		70-130	4	20	
1,3-Dichloropropane	88		93		70-130	6	20	
1,1,1,2-Tetrachloroethane	93		94		64-130	1	20	
Bromobenzene	97		99		70-130	2	20	
n-Butylbenzene	100		100		53-136	0	20	
sec-Butylbenzene	110		100		70-130	10	20	
tert-Butylbenzene	100		100		70-130	0	20	
o-Chlorotoluene	100		100		70-130	0	20	
p-Chlorotoluene	100		100		70-130	0	20	
1,2-Dibromo-3-chloropropane	88		96		41-144	9	20	
Hexachlorobutadiene	100		100		63-130	0	20	
Isopropylbenzene	100		100		70-130	0	20	
p-Isopropyltoluene	100		100		70-130	0	20	
Naphthalene	80		83		70-130	4	20	
n-Propylbenzene	100		100		69-130	0	20	
1,2,3-Trichlorobenzene	93		92		70-130	1	20	
1,2,4-Trichlorobenzene	88		88		70-130	0	20	
1,3,5-Trimethylbenzene	100		100		64-130	0	20	
1,2,4-Trimethylbenzene	97		98		70-130	1	20	
1,4-Dioxane	102		100		56-162	2	20	
p-Diethylbenzene	99		98		70-130	1	20	

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery	Qual	LCSD %Recover	y Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-03 Batch:	: WG1803166-3	WG1803166-4				
p-Ethyltoluene	100		100		70-130	0		20	
1,2,4,5-Tetramethylbenzene	78		78		70-130	0		20	
Ethyl ether	93		94		59-134	1		20	
trans-1,4-Dichloro-2-butene	90		95		70-130	5		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Quai	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	103	102	70-130	
Toluene-d8	99	99	70-130	
4-Bromofluorobenzene	96	97	70-130	
Dibromofluoromethane	104	98	70-130	

SEMIVOLATILES

L2339185

07/10/23 10:00

Not Specified

07/10/23

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

SAMPLE RESULTS

Report Date: 07/17/23

Lab Number:

Date Collected:

Date Received:

Field Prep:

Lab ID: L2339185-01

Client ID: MW-2A

Sample Location: **OSSINING NY**

Sample Depth:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 07/13/23 12:01

Analyst: JG

Extraction	Method:	EPA 3510C
Extraction	Date:	07/12/23 01:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - V	Vestborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	- Westborough Lab					
Dibenzofuran	ND		ug/l	2.0	0.50	1
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1
Acetophenone	ND		ug/l	5.0	0.53	1
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1
2-Chlorophenol	ND		ug/l	2.0	0.48	1
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1
2-Nitrophenol	ND		ug/l	10	0.85	1
4-Nitrophenol	ND		ug/l	10	0.67	1
2,4-Dinitrophenol	ND		ug/l	20	6.6	1
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1
Phenol	ND		ug/l	5.0	0.57	1
2-Methylphenol	ND		ug/l	5.0	0.49	1
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1
Benzoic Acid	ND		ug/l	50	2.6	1
Benzyl Alcohol	ND		ug/l	2.0	0.59	1
Carbazole	ND		ug/l	2.0	0.49	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	101	J	ug/l	1
Unknown	5.13	J	ug/l	1
Unknown	2.00	J	ug/l	1
Unknown	2.18	J	ug/l	1
Unknown	2.84	J	ug/l	1
Unknown Organic Acid	22.0	J	ug/l	1
Unknown	3.09	J	ug/l	1
Unknown	3.74	J	ug/l	1
Unknown	3.93	J	ug/l	1
Unknown	4.07	J	ug/l	1
Unknown Organic Acid	29.0	J	ug/l	1
Unknown	4.07	J	ug/l	1
Unknown	8.07	J	ug/l	1
Unknown	4.25	J	ug/l	1
Unknown	3.13	J	ug/l	1
Unknown Organic Acid	3.09	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	72	21-120
Phenol-d6	65	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	118	10-120
4-Terphenyl-d14	81	41-149

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 07/12/23 01:50
Analytical Date: 07/12/23 15:43

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor					
Semivolatile Organics by GC/MS-SIM - V	Semivolatile Organics by GC/MS-SIM - Westborough Lab										
Acenaphthene	0.03	J	ug/l	0.10	0.01	1					
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1					
Fluoranthene	ND		ug/l	0.10	0.02	1					
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1					
Naphthalene	ND		ug/l	0.10	0.05	1					
Benzo(a)anthracene	0.05	J	ug/l	0.10	0.02	1					
Benzo(a)pyrene	0.03	J	ug/l	0.10	0.02	1					
Benzo(b)fluoranthene	0.03	J	ug/l	0.10	0.01	1					
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1					
Chrysene	0.02	J	ug/l	0.10	0.01	1					
Acenaphthylene	0.02	J	ug/l	0.10	0.01	1					
Anthracene	0.03	J	ug/l	0.10	0.01	1					
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1					
Fluorene	0.03	J	ug/l	0.10	0.01	1					
Phenanthrene	0.07	J	ug/l	0.10	0.02	1					
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1					
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1					
Pyrene	0.05	J	ug/l	0.10	0.02	1					
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1					
Pentachlorophenol	0.06	J	ug/l	0.80	0.01	1					
Hexachlorobenzene	ND		ug/l	0.80	0.01	1					
Hexachloroethane	ND		ug/l	0.80	0.06	1					

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 **Report Date:** 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-01 Date Collected: 07/10/23 10:00

Client ID: MW-2A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	68	21-120
Phenol-d6	66	10-120
Nitrobenzene-d5	115	23-120
2-Fluorobiphenyl	79	15-120
2,4,6-Tribromophenol	108	10-120
4-Terphenyl-d14	64	41-149

L2339185

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02

Client ID: MW-7A

Sample Location: OSSINING NY

Sample Depth:

Matrix: Water

Analytical Method: 1,8270E

Analytical Date: 07/13/23 12:24

Analyst: JG

Date Collected: 07/10/23 11:30

Lab Number:

Date Received: 07/10/23

Field Prep: Not Specified

Extraction Method: EPA 3510C Extraction Date: 07/12/23 01:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westbo	rough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1
Isophorone	ND		ug/l	5.0	1.2	1
Nitrobenzene	ND		ug/l	2.0	0.77	1
NDPA/DPA	ND		ug/l	2.0	0.42	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1
Diethyl phthalate	ND		ug/l	5.0	0.38	1
Dimethyl phthalate	ND		ug/l	5.0	1.8	1
Biphenyl	ND		ug/l	2.0	0.46	1
4-Chloroaniline	ND		ug/l	5.0	1.1	1
2-Nitroaniline	ND		ug/l	5.0	0.50	1
3-Nitroaniline	ND		ug/l	5.0	0.81	1
4-Nitroaniline	ND		ug/l	5.0	0.80	1

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02 Date Collected: 07/10/23 11:30

Client ID: MW-7A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Result	Qualifier	Units	RL	MDL	Dilution Factor
tborough Lab					
5.4		ug/l	2.0	0.50	1
ND		ug/l	10	0.44	1
ND		ug/l	5.0	0.53	1
ND		ug/l	5.0	0.61	1
ND		ug/l	2.0	0.35	1
ND		ug/l	2.0	0.48	1
ND		ug/l	5.0	0.41	1
ND		ug/l	5.0	1.8	1
ND		ug/l	10	0.85	1
ND		ug/l	10	0.67	1
ND		ug/l	20	6.6	1
ND		ug/l	10	1.8	1
ND		ug/l	5.0	0.57	1
ND		ug/l	5.0	0.49	1
ND		ug/l	5.0	0.48	1
ND		ug/l	5.0	0.77	1
ND		ug/l	50	2.6	1
ND		ug/l	2.0	0.59	1
ND		ug/l	2.0	0.49	1
	tborough Lab 5.4 ND ND ND ND ND ND ND ND ND N	tborough Lab 5.4 ND ND ND ND ND ND ND ND ND N	S.4	S.4 ug/l 2.0 ND ug/l 10 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 2.0 ND ug/l 5.0 ND ug/l 5.0 ND ug/l 10 ND ug/l 5.0 ND ug/l	tborough Lab 5.4 ug/l 2.0 0.50 ND ug/l 10 0.44 ND ug/l 5.0 0.53 ND ug/l 5.0 0.61 ND ug/l 2.0 0.35 ND ug/l 2.0 0.48 ND ug/l 5.0 0.41 ND ug/l 5.0 0.41 ND ug/l 10 0.85 ND ug/l 10 0.67 ND ug/l 10 1.8 ND ug/l 20 6.6 ND ug/l 5.0 0.57 ND ug/l 5.0 0.49 ND ug/l 5.0 0.48 ND ug/l 5.0 0.77 ND ug/l 5.0 0.77 ND ug/l 5.0 0.77 ND ug/l 50 2.6 ND ug/l 50 2.6 ND ug/l 50 2.6 ND ug/l 2.0 0.59

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02 Date Collected: 07/10/23 11:30

Client ID: MW-7A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	133	J	ug/l	1
Unknown Naphthalene	5.38	J	ug/l	1
Unknown PAH	5.67	J	ug/l	1
Unknown PAH	6.47	J	ug/l	1
Unknown PAH	16.2	J	ug/l	1
Unknown	3.31	J	ug/l	1
Unknown	4.47	J	ug/l	1
Unknown Naphthalene	3.02	J	ug/l	1
Unknown	4.91	J	ug/l	1
Unknown	7.96	J	ug/l	1
Unknown	2.76	J	ug/l	1
Unknown	2.80	J	ug/l	1
Unknown Organic Acid	33.4	J	ug/l	1
Unknown PAH	3.89	J	ug/l	1
Unknown Organic Acid	29.2	J	ug/l	1
Unknown	3.74	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	63	21-120
Phenol-d6	51	10-120
Nitrobenzene-d5	71	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	111	10-120
4-Terphenyl-d14	76	41-149

L2339185

Lab Number:

Project Name: HARBOUR SQUARE

Project Number: Report Date:

7173 PH 13 07/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 07/10/23 11:30 L2339185-02

Client ID: Date Received: 07/10/23 MW-7A Sample Location: **OSSINING NY** Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/12/23 01:50 Analytical Method: 1,8270E-SIM Analytical Date: 07/12/23 15:59

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	27		ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	4.9			0.10	0.02	1	
			ug/l				
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	0.05	J	ug/l	0.10	0.05	1	
Benzo(a)anthracene	0.29		ug/l	0.10	0.02	1	
Benzo(a)pyrene	0.09	J	ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	0.09	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.01	1	
Chrysene	0.18		ug/l	0.10	0.01	1	
Acenaphthylene	0.30		ug/l	0.10	0.01	1	
Anthracene	4.6		ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.02	J	ug/l	0.10	0.01	1	
Fluorene	12		ug/l	0.10	0.01	1	
Phenanthrene	13		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.02	J	ug/l	0.10	0.01	1	
Pyrene	3.8		ug/l	0.10	0.02	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.02	1	
Pentachlorophenol	0.06	J	ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 **Report Date:** 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-02 Date Collected: 07/10/23 11:30

Client ID: MW-7A Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	66	21-120
Phenol-d6	63	10-120
Nitrobenzene-d5	111	23-120
2-Fluorobiphenyl	77	15-120
2,4,6-Tribromophenol	101	10-120
4-Terphenyl-d14	63	41-149

L2339185

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

SAMPLE RESULTS

Report Date: 07/17/23

Lab Number:

Lab ID: L2339185-03 Client ID: DUP20230710 Sample Location: **OSSINING NY** Date Collected: 07/10/23 00:00 Date Received: 07/10/23

Field Prep: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8270E

Analytical Date: 07/13/23 12:46

Analyst: JG

Extraction Method:	EPA 3510C
Extraction Date:	07/12/23 01:49

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.50	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.50	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.45	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.40	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.43	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.6	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	1.2	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.93	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.49	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.38	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.53	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.50	1	
Hexachlorocyclopentadiene	ND		ug/l	20	0.69	1	
Isophorone	ND		ug/l	5.0	1.2	1	
Nitrobenzene	ND		ug/l	2.0	0.77	1	
NDPA/DPA	ND		ug/l	2.0	0.42	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.64	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.5	1	
Butyl benzyl phthalate	ND		ug/l	5.0	1.2	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.39	1	
Di-n-octylphthalate	ND		ug/l	5.0	1.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.38	1	
Dimethyl phthalate	ND		ug/l	5.0	1.8	1	
Biphenyl	ND		ug/l	2.0	0.46	1	
4-Chloroaniline	ND		ug/l	5.0	1.1	1	
2-Nitroaniline	ND		ug/l	5.0	0.50	1	
3-Nitroaniline	ND		ug/l	5.0	0.81	1	
4-Nitroaniline	ND		ug/l	5.0	0.80	1	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 **Report Date:** 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-03 Date Collected: 07/10/23 00:00

Client ID: DUP20230710 Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Dibenzofuran	ND		ug/l	2.0	0.50	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.44	1		
Acetophenone	ND		ug/l	5.0	0.53	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	0.61	1		
p-Chloro-m-cresol	ND		ug/l	2.0	0.35	1		
2-Chlorophenol	ND		ug/l	2.0	0.48	1		
2,4-Dichlorophenol	ND		ug/l	5.0	0.41	1		
2,4-Dimethylphenol	ND		ug/l	5.0	1.8	1		
2-Nitrophenol	ND		ug/l	10	0.85	1		
4-Nitrophenol	ND		ug/l	10	0.67	1		
2,4-Dinitrophenol	ND		ug/l	20	6.6	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	1.8	1		
Phenol	ND		ug/l	5.0	0.57	1		
2-Methylphenol	ND		ug/l	5.0	0.49	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	0.48	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	0.77	1		
Benzoic Acid	ND		ug/l	50	2.6	1		
Benzyl Alcohol	ND		ug/l	2.0	0.59	1		
Carbazole	ND		ug/l	2.0	0.49	1		

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-03 Date Collected: 07/10/23 00:00

Client ID: DUP20230710 Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Tentatively Identified Compounds				
Total TIC Compounds	84.5	J	ug/l	1
Unknown	1.56	J	ug/l	1
Unknown	1.67	J	ug/l	1
Unknown	2.65	J	ug/l	1
Unknown	2.84	J	ug/l	1
Unknown	1.82	J	ug/l	1
Unknown	2.22	J	ug/l	1
Unknown	3.42	J	ug/l	1
Unknown	1.64	J	ug/l	1
Unknown	2.76	J	ug/l	1
Unknown	3.60	J	ug/l	1
Unknown Organic Acid	25.0	J	ug/l	1
Unknown	2.40	J	ug/l	1
Unknown Organic Acid	21.5	J	ug/l	1
Unknown	3.31	J	ug/l	1
Unknown	8.11	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	65	21-120
Phenol-d6	60	10-120
Nitrobenzene-d5	70	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	103	10-120
4-Terphenyl-d14	76	41-149

L2339185

Project Name: Lab Number: HARBOUR SQUARE

Project Number: Report Date: 7173 PH 13

07/17/23

SAMPLE RESULTS

Lab ID: Date Collected: 07/10/23 00:00 L2339185-03 Client ID: Date Received: 07/10/23 DUP20230710

Sample Location: Field Prep: **OSSINING NY** Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 07/12/23 01:50 Analytical Method: 1,8270E-SIM Analytical Date: 07/12/23 16:32

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	0.03	J	ug/l	0.10	0.01	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	ND		ug/l	0.10	0.02	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.05	1	
Naphthalene	0.21		ug/l	0.10	0.05	1	
Benzo(a)anthracene	0.06	J		0.10	0.03	1	
	0.05		ug/l	0.10	0.02	1	
Benzo(a)pyrene		J	ug/l				
Benzo(b)fluoranthene	0.04	J	ug/l	0.10	0.01	1	
Benzo(k)fluoranthene	0.02	J	ug/l	0.10	0.01	1	
Chrysene	0.03	J	ug/l	0.10	0.01	1	
Acenaphthylene	0.05	J	ug/l	0.10	0.01	1	
Anthracene	0.03	J	ug/l	0.10	0.01	1	
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.01	1	
Fluorene	0.04	J	ug/l	0.10	0.01	1	
Phenanthrene	0.10		ug/l	0.10	0.02	1	
Dibenzo(a,h)anthracene	0.01	J	ug/l	0.10	0.01	1	
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.01	1	
Pyrene	0.14		ug/l	0.10	0.02	1	
2-Methylnaphthalene	0.05	J	ug/l	0.10	0.02	1	
Pentachlorophenol	0.08	J	ug/l	0.80	0.01	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.06	1	

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 **Report Date:** 07/17/23

SAMPLE RESULTS

Lab ID: L2339185-03 Date Collected: 07/10/23 00:00

Client ID: DUP20230710 Date Received: 07/10/23
Sample Location: OSSINING NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	70	21-120
Phenol-d6	69	10-120
Nitrobenzene-d5	115	23-120
2-Fluorobiphenyl	80	15-120
2,4,6-Tribromophenol	110	10-120
4-Terphenyl-d14	63	41-149

Lab Number:

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 07/12/23 11:56 Extraction Date: 07/11/23 19:18

Analyst: JG

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	sample(s):	01-03	Batch:	WG1802032-1
Acenaphthene	ND		ug/l	2.0		0.44
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.50
Hexachlorobenzene	ND		ug/l	2.0		0.46
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.50
2-Chloronaphthalene	ND		ug/l	2.0		0.44
1,2-Dichlorobenzene	ND		ug/l	2.0		0.45
1,3-Dichlorobenzene	ND		ug/l	2.0		0.40
1,4-Dichlorobenzene	ND		ug/l	2.0		0.43
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.6
2,4-Dinitrotoluene	ND		ug/l	5.0		1.2
2,6-Dinitrotoluene	ND		ug/l	5.0		0.93
Fluoranthene	ND		ug/l	2.0		0.26
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.49
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.38
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.53
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.50
Hexachlorobutadiene	ND		ug/l	2.0		0.66
Hexachlorocyclopentadiene	ND		ug/l	20		0.69
Hexachloroethane	ND		ug/l	2.0		0.58
Isophorone	ND		ug/l	5.0		1.2
Naphthalene	ND		ug/l	2.0		0.46
Nitrobenzene	ND		ug/l	2.0		0.77
NDPA/DPA	ND		ug/l	2.0		0.42
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.64
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.5
Butyl benzyl phthalate	ND		ug/l	5.0		1.2
Di-n-butylphthalate	ND		ug/l	5.0		0.39
Di-n-octylphthalate	ND		ug/l	5.0		1.3
Diethyl phthalate	ND		ug/l	5.0		0.38

Lab Number:

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 07/12/23 11:56

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 07/11/23 19:18

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/M	1S - Westborough	Lab for s	ample(s):	01-03	Batch:	WG1802032-1
Dimethyl phthalate	ND		ug/l	5.0		1.8
Benzo(a)anthracene	ND		ug/l	2.0		0.32
Benzo(a)pyrene	ND		ug/l	2.0		0.41
Benzo(b)fluoranthene	ND		ug/l	2.0		0.35
Benzo(k)fluoranthene	ND		ug/l	2.0		0.37
Chrysene	ND		ug/l	2.0		0.34
Acenaphthylene	ND		ug/l	2.0		0.46
Anthracene	ND		ug/l	2.0		0.33
Benzo(ghi)perylene	ND		ug/l	2.0		0.30
Fluorene	ND		ug/l	2.0		0.41
Phenanthrene	ND		ug/l	2.0		0.33
Dibenzo(a,h)anthracene	ND		ug/l	2.0		0.32
Indeno(1,2,3-cd)pyrene	ND		ug/l	2.0		0.40
Pyrene	ND		ug/l	2.0		0.28
Biphenyl	ND		ug/l	2.0		0.46
4-Chloroaniline	ND		ug/l	5.0		1.1
2-Nitroaniline	ND		ug/l	5.0		0.50
3-Nitroaniline	ND		ug/l	5.0		0.81
4-Nitroaniline	ND		ug/l	5.0		0.80
Dibenzofuran	ND		ug/l	2.0		0.50
2-Methylnaphthalene	ND		ug/l	2.0		0.45
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10		0.44
Acetophenone	ND		ug/l	5.0		0.53
2,4,6-Trichlorophenol	ND		ug/l	5.0		0.61
p-Chloro-m-cresol	ND		ug/l	2.0		0.35
2-Chlorophenol	ND		ug/l	2.0		0.48
2,4-Dichlorophenol	ND		ug/l	5.0		0.41
2,4-Dimethylphenol	ND		ug/l	5.0		1.8
2-Nitrophenol	ND		ug/l	10		0.85

Lab Number:

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 07/12/23 11:56

Analyst: JG

Extraction Method: EPA 3510C Extraction Date: 07/11/23 19:18

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01-03	Batch:	WG1802032-1
4-Nitrophenol	ND		ug/l	10		0.67
2,4-Dinitrophenol	ND		ug/l	20		6.6
4,6-Dinitro-o-cresol	ND		ug/l	10		1.8
Pentachlorophenol	ND		ug/l	10		1.8
Phenol	ND		ug/l	5.0		0.57
2-Methylphenol	ND		ug/l	5.0		0.49
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		0.48
2,4,5-Trichlorophenol	ND		ug/l	5.0		0.77
Benzoic Acid	ND		ug/l	50		2.6
Benzyl Alcohol	ND		ug/l	2.0		0.59
Carbazole	ND		ug/l	2.0		0.49

Tentatively Identified Compounds			
Total TIC Compounds	14.0	J	ug/l
Unknown	8.00	J	ug/l
Unknown	3.49	J	ug/l
Unknown Organic Acid	2.51	J	ug/l

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 07/12/23 11:56 Extraction Date: 07/11/23 19:18

Analyst: JG

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 01-03 Batch: WG1802032-1

Surrogate	%Recovery Qualifie	Acceptance r Criteria
2-Fluorophenol	66	21-120
Phenol-d6	52	10-120
Nitrobenzene-d5	84	23-120
2-Fluorobiphenyl	84	15-120
2,4,6-Tribromophenol	90	10-120
4-Terphenyl-d14	86	41-149

Lab Number:

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 07/12/23 09:00

Analyst: AH

Extraction Method: EPA 3510C Extraction Date: 07/11/23 19:18

arameter	Result	Qualifier	Units	RL	MDL
emivolatile Organics by GC/M	1S-SIM - Westbo	rough Lab	for sample(s)	: 01-03	Batch: WG1802033-
Acenaphthene	ND		ug/l	0.10	0.01
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	ND		ug/l	0.10	0.02
Hexachlorobutadiene	ND		ug/l	0.50	0.05
Naphthalene	ND		ug/l	0.10	0.05
Benzo(a)anthracene	ND		ug/l	0.10	0.02
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.01
Benzo(k)fluoranthene	ND		ug/l	0.10	0.01
Chrysene	ND		ug/l	0.10	0.01
Acenaphthylene	ND		ug/l	0.10	0.01
Anthracene	ND		ug/l	0.10	0.01
Benzo(ghi)perylene	ND		ug/l	0.10	0.01
Fluorene	ND		ug/l	0.10	0.01
Phenanthrene	0.03	J	ug/l	0.10	0.02
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.01
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.01
Pyrene	ND		ug/l	0.10	0.02
2-Methylnaphthalene	ND		ug/l	0.10	0.02
Pentachlorophenol	ND		ug/l	0.80	0.01
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.06

L2339185

Project Name: HARBOUR SQUARE Lab Number:

Project Number: 7173 PH 13 Report Date: 07/17/23

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 07/12/23 09:00 Extraction Date: 07/11/23 19:18

Analyst: AH

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 01-03 Batch: WG1802033-1

		Acceptance
Surrogate	%Recovery	Qualifier Criteria
2-Fluorophenol	71	21-120
Phenol-d6	60	10-120
Nitrobenzene-d5	96	23-120
2-Fluorobiphenyl	82	15-120
2,4,6-Tribromophenol	92	10-120
4-Terphenyl-d14	84	41-149

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	ated sample(s):	01-03	Batch:	WG1802032-2 WG18020)32-3	
Acenaphthene	75		70		37-111	7	30
1,2,4-Trichlorobenzene	82		68		39-98	19	30
Hexachlorobenzene	93		83		40-140	11	30
Bis(2-chloroethyl)ether	77		60		40-140	25	30
2-Chloronaphthalene	78		76		40-140	3	30
1,2-Dichlorobenzene	78		62		40-140	23	30
1,3-Dichlorobenzene	73		62		40-140	16	30
1,4-Dichlorobenzene	77		66		36-97	15	30
3,3'-Dichlorobenzidine	61		65		40-140	6	30
2,4-Dinitrotoluene	85		81		48-143	5	30
2,6-Dinitrotoluene	87		89		40-140	2	30
Fluoranthene	81		75		40-140	8	30
4-Chlorophenyl phenyl ether	80		77		40-140	4	30
4-Bromophenyl phenyl ether	90		87		40-140	3	30
Bis(2-chloroisopropyl)ether	63		52		40-140	19	30
Bis(2-chloroethoxy)methane	79		63		40-140	23	30
Hexachlorobutadiene	84		75		40-140	11	30
Hexachlorocyclopentadiene	77		69		40-140	11	30
Hexachloroethane	86		69		40-140	22	30
Isophorone	78		65		40-140	18	30
Naphthalene	87		70		40-140	22	30
Nitrobenzene	82		70		40-140	16	30
NDPA/DPA	79		80		40-140	1	30

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery	Qual	LCSI %Recov		%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbo	rough Lab Associ	iated sample(s):	01-03	Batch:	WG1802032-2 WG18020	32-3	
n-Nitrosodi-n-propylamine	87		66		29-132	27	30
Bis(2-ethylhexyl)phthalate	96		88		40-140	9	30
Butyl benzyl phthalate	90		83		40-140	8	30
Di-n-butylphthalate	89		81		40-140	9	30
Di-n-octylphthalate	91		83		40-140	9	30
Diethyl phthalate	86		83		40-140	4	30
Dimethyl phthalate	83		84		40-140	1	30
Benzo(a)anthracene	82		72		40-140	13	30
Benzo(a)pyrene	86		78		40-140	10	30
Benzo(b)fluoranthene	80		75		40-140	6	30
Benzo(k)fluoranthene	86		75		40-140	14	30
Chrysene	82		75		40-140	9	30
Acenaphthylene	86		83		45-123	4	30
Anthracene	82		75		40-140	9	30
Benzo(ghi)perylene	82		75		40-140	9	30
Fluorene	79		74		40-140	7	30
Phenanthrene	79		71		40-140	11	30
Dibenzo(a,h)anthracene	82		73		40-140	12	30
Indeno(1,2,3-cd)pyrene	79		72		40-140	9	30
Pyrene	83		76		26-127	9	30
Biphenyl	74		69		40-140	7	30
4-Chloroaniline	85		75		40-140	13	30
2-Nitroaniline	90		90		52-143	0	30

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery	Qual	LCSI %Recov		% Qual	Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westborou	ıgh Lab Assoc	iated sample(s):	01-03	Batch:	WG1802032	2-2 WG1802	2032-3		
3-Nitroaniline	80		76			25-145	5		30
4-Nitroaniline	88		82			51-143	7		30
Dibenzofuran	82		79			40-140	4		30
2-Methylnaphthalene	86		74			40-140	15		30
1,2,4,5-Tetrachlorobenzene	76		70			2-134	8		30
Acetophenone	73		60			39-129	20		30
2,4,6-Trichlorophenol	90		89			30-130	1		30
p-Chloro-m-cresol	91		90			23-97	1		30
2-Chlorophenol	80		71			27-123	12		30
2,4-Dichlorophenol	95		79			30-130	18		30
2,4-Dimethylphenol	82		70			30-130	16		30
2-Nitrophenol	91		70			30-130	26		30
4-Nitrophenol	88	Q	84		Q	10-80	5		30
2,4-Dinitrophenol	93		86			20-130	8		30
4,6-Dinitro-o-cresol	106		92			20-164	14		30
Pentachlorophenol	100		92			9-103	8		30
Phenol	58		51			12-110	13		30
2-Methylphenol	77		65			30-130	17		30
3-Methylphenol/4-Methylphenol	87		79			30-130	10		30
2,4,5-Trichlorophenol	99		94			30-130	5		30
Benzoic Acid	100		85			10-164	16		30
Benzyl Alcohol	86		68			26-116	23		30
Carbazole	84		77			55-144	9		30

Project Name: HARBOUR SQUARE

Lab Number:

L2339185

Project Number: 7173 PH 13

Report Date:

07/17/23

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-03 Batch: WG1802032-2 WG1802032-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	76	62	21-120
Phenol-d6	64	53	10-120
Nitrobenzene-d5	83	73	23-120
2-Fluorobiphenyl	81	77	15-120
2,4,6-Tribromophenol	111	105	10-120
4-Terphenyl-d14	78	77	41-149

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185

Parameter	LCS %Recovery		.CSD ecovery	Qua	%Recove Limits		Qual	RPD Limits	
Semivolatile Organics by GC/MS-SIM -	Westborough Lab A	Associated sample(s):	01-03	Batch:	WG1802033-2	WG1802033-3			
Acenaphthene	74		70		40-140	6		40	
2-Chloronaphthalene	71		67		40-140	6		40	
Fluoranthene	68		69		40-140	1		40	
Hexachlorobutadiene	72		66		40-140	9		40	
Naphthalene	77		62		40-140	22		40	
Benzo(a)anthracene	77		77		40-140	0		40	
Benzo(a)pyrene	80		84		40-140	5		40	
Benzo(b)fluoranthene	76		82		40-140	8		40	
Benzo(k)fluoranthene	83		83		40-140	0		40	
Chrysene	73		74		40-140	1		40	
Acenaphthylene	74		70		40-140	6		40	
Anthracene	74		74		40-140	0		40	
Benzo(ghi)perylene	67		74		40-140	10		40	
Fluorene	74		72		40-140	3		40	
Phenanthrene	70		72		40-140	3		40	
Dibenzo(a,h)anthracene	70		76		40-140	8		40	
Indeno(1,2,3-cd)pyrene	68		70		40-140	3		40	
Pyrene	66		68		40-140	3		40	
2-Methylnaphthalene	73		68		40-140	7		40	
Pentachlorophenol	78		73		40-140	7		40	
Hexachlorobenzene	81		80		40-140	1		40	
Hexachloroethane	76		67		40-140	13		40	

Project Name: HARBOUR SQUARE

Lab Number:

L2339185

Project Number: 7173 PH 13

Report Date:

07/17/23

	LCS	LCS			%Recovery		R		
Parameter	%Recovery	Qual	%Recovery	Qual	l imits	RPD	Qual	l imits	

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01-03 Batch: WG1802033-2 WG1802033-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	71	67	21-120
Phenol-d6	62	59	10-120
Nitrobenzene-d5	93	86	23-120
2-Fluorobiphenyl	71	69	15-120
2,4,6-Tribromophenol	93	94	10-120
4-Terphenyl-d14	65	69	41-149

Project Name: HARBOUR SQUARE

Project Number: 7173 PH 13

Lab Number: L2339185
Report Date: 07/17/23

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Cooler Custody Seal

A Absent

Container Information				Initial	Final	Temp			Frozen Date/Time	
	Container ID	Container Type	Cooler			deg C Pres		Seal		Analysis(*)
	L2339185-01A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-01B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-01C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-01D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2339185-01E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2339185-02A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-02B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-02C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-02D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2339185-02E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2339185-03A	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-03B	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-03C	Vial HCl preserved	Α	NA		3.1	Υ	Absent		NYTCL-8260(14)
	L2339185-03D	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)
	L2339185-03E	Amber 250ml unpreserved	Α	7	7	3.1	Υ	Absent		NYTCL-8270-SIM-LVI(7),NYTCL-8270-LVI(7)

Project Name: HARBOUR SQUARE Lab Number: L2339185

Project Number: 7173 PH 13 **Report Date:** 07/17/23

GLOSSARY

Acronyms

LOQ

MS

RL

SRM

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report. - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:HARBOUR SQUARELab Number:L2339185Project Number:7173 PH 13Report Date:07/17/23

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:HARBOUR SQUARELab Number:L2339185Project Number:7173 PH 13Report Date:07/17/23

Data Qualifiers

Identified Compounds (TICs).

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- ${f P}$ The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- V The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:HARBOUR SQUARELab Number:L2339185Project Number:7173 PH 13Report Date:07/17/23

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 20

Published Date: 6/16/2023 4:52:28 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; 4-Ethyltoluene, Az

Ethyltoluene

EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables)

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Nay	Pag	ge of		Date Rein Lab	500	111	0/-	23		ALPHA Job # 9185	
8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193	320 Forbes Blvd TEL: 508-822-9300 FAX: 508-822-3288	Project Information Project Name: Project Location:	by Squar	e			ASP-A EQuIS (1	l File)		ASP-E	3 S (4 File	-	Same as Client Info	
Client Information	THE REAL PROPERTY.	Project # 1173	ph 13			-	Other	n deama		PAGE D	1000		Dianosal Site Information	
Address: ST	540€399 144050	(Use Project name as Project Manager: ALPHAQuote #: Turn-Around Time Standard	Saronol	Jon 540	av+	CA-	atory Red NY TOGS AWQ Stan NY Restric NY Unrest	ndards ated Use		NY Par NY CP- Other			Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY	
Email:\S@S@S- /)/	o Lychon a	Rush (only if pre approved		Date:			NYC Sewe					_	Other:	
These samples have b	Name and Address of the Owner, when the Owner, which the Owne						YSIS		9.5			\neg	Sample Filtration	Т
Other project specific		ents:				JCL VO-1	SUOCS						□ Done □ Lab to do Preservation □ Lab to do	otal Bot
ALPHA Lab ID	Sar	mple ID	Collection	Sample	Sampler's	5						- [KONTON MANAGEMENT (CONTON	t
(Lab Use Only)	Mul OV		Date Tin	-	Initials		-		Щ		_	_	Sample Specific Comments	e
39185- 01 07 03	MU-719 DUZ032	0710	10005 101	Dale	70	X	Ž							
												A		
LOAD DESCRIPTION OF THE PROPERTY OF	Container Code P = Plastic	Westboro: Certification No	o: MA935	Cor	ntainer Type	H	-	\vdash			-W	1	Please print clearly, legibly	
C = HNO ₃ D = H ₂ SO ₄ E = NaOH	V = Vial G = Glass B = Bacteria Cup	Mansfield: Certification No			reservative						\perp		and completely. Samples car not be logged in and turnaround time clock will not start until any ambiguities are	t
$G = NaHSO_4$ $H = Na_2S_2O_3$	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished B	AAL-7/10/33	Date/Time	24	Reçejve	ed By:	7/	100	32	85		resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)	

ANALYTICAL REPORT

Lab Number: L2447470

Client: Soils Engineering Services, Inc.

959 Route 46E

Parsippany, NJ 07054

ATTN: Jonathan Stuart Phone: (973) 808-9050

Project Name: HARBOR SQUARE

Project Number: 07173:15

Report Date: 08/28/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

ALPHA ANALYTISAL Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number:

L2447470

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2447470-01	MW-2A	WATER	1 HARBOR SQUARE OSSINING, NY	08/20/24 09:20	08/20/24
L2447470-02	MW-7A	WATER	1 HARBOR SQUARE OSSINING, NY	08/20/24 10:35	08/20/24
L2447470-03	DUP-MW	WATER	1 HARBOR SQUARE OSSINING, NY	08/20/24 00:00	08/20/24

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15

Report Date: 08/28/24

Project Number: 07173:15 Report Date: 08/28/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments and solids are reported on a dry weight basis unless otherwise noted. Tissues are reported "as received" or on a wet weight basis, unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.								

Project Name:HARBOR SQUARELab Number:L2447470Project Number:07173:15Report Date:08/28/24

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

The WG1963737-2/-3 LCS/LCSD recoveries, associated with L2447470-03, are below the acceptance criteria for benzoic acid (0%/0%); however, it has been identified as a "difficult" analyte. The results of the associated sample are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/28/24

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

L2447470

08/20/24 09:20

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number:

Report Date: 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-01 Date Collected:

Client ID: Date Received: 08/20/24 MW-2A Field Prep: Sample Location: 1 HARBOR SQUARE OSSINING, NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/22/24 12:45

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	0.62		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

L2447470

08/28/24

Project Name: HARBOR SQUARE

L2447470-01

MW-2A

Project Number: 07173:15

SAMPLE RESULTS

Date Collected: 08/20/24 09:20

Date Received: 08/20/24

Lab Number:

Report Date:

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Lab ID:

Client ID:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ua/I	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.70	1
	ND		ug/l	2.5	0.17	1
p/m-Xylene o-Xylene	ND ND		ug/l	2.5	0.70	1
<u> </u>	ND ND		ug/l	2.5	0.70	1
Xylenes, Total			ug/l			
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND 		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	14		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	2.5	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1
			-			

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-01 Date Collected: 08/20/24 09:20

Client ID: MW-2A Date Received: 08/20/24
Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Trivitabort odorate Goodinito, iti

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	11.3	J	ug/l	1
Indane	11.3	NJ	ug/l	1

Surrogate	% Recovery	eptance riteria	
1,2-Dichloroethane-d4	109	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	105	70-130	

08/20/24 10:35

Project Name: HARBOR SQUARE

Project Number: 07173:15

SAMPLE RESULTS

Lab Number: L2447470

Report Date: 08/28/24

Lab ID: L2447470-02

Client ID: MW-7A

Sample Location: 1 HARBOR SQUARE OSSINING, NY Date Received: 08/20/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/23/24 10:35

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Volatile Organics by GC/MS - West	Volatile Organics by GC/MS - Westborough Lab								
Methylene chloride	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1			
Chloroform	ND		ug/l	2.5	0.70	1			
Carbon tetrachloride	ND		ug/l	0.50	0.13	1			
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1			
Dibromochloromethane	ND		ug/l	0.50	0.15	1			
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1			
Tetrachloroethene	ND		ug/l	0.50	0.18	1			
Chlorobenzene	ND		ug/l	2.5	0.70	1			
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1			
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1			
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1			
Bromodichloromethane	ND		ug/l	0.50	0.19	1			
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1			
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1			
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1			
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1			
Bromoform	ND		ug/l	2.0	0.65	1			
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1			
Benzene	ND		ug/l	0.50	0.16	1			
Toluene	ND		ug/l	2.5	0.70	1			
Ethylbenzene	ND		ug/l	2.5	0.70	1			
Chloromethane	ND		ug/l	2.5	0.70	1			
Bromomethane	ND		ug/l	2.5	0.70	1			
Vinyl chloride	ND		ug/l	1.0	0.07	1			
Chloroethane	ND		ug/l	2.5	0.70	1			
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1			
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1			

L2447470

Lab Number:

Project Name: HARBOR SQUARE

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

Client ID: Date Received: 08/20/24 MW-7A Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.44	J	ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: HARBOR SQUARE L2447470

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

Client ID: Date Received: 08/20/24 MW-7A Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	8.06	J	ug/l	1
Indane	4.56	NJ	ug/l	1
Unknown Aromatic	2.17	J	ug/l	1
Unknown	1.33	J	ug/l	1

% Recovery	Acceptance Qualifier Criteria	
113	70-130	
99	70-130	
91	70-130	
103	70-130	
	113 99 91	% Recovery Qualifier Criteria 113 70-130 99 70-130 91 70-130

08/20/24 00:00

Project Name: HARBOR SQUARE

Project Number: 07173:15

SAMPLE RESULTS

Lab Number: L2447470

Report Date: 08/28/24

Lab ID: L2447470-03

Client ID: **DUP-MW**

Sample Location: 1 HARBOR SQUARE OSSINING, NY Date Received: 08/20/24 Field Prep: Not Specified

Date Collected:

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 08/22/24 13:11

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.71		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	ND		ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	17		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	3.7	J	ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	0.70	J	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24 Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter		Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westborou	gh Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	12.3	J	ug/l	1
Indane	12.3	NJ	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	112	70-130	
Toluene-d8	97	70-130	
4-Bromofluorobenzene	95	70-130	
Dibromofluoromethane	106	70-130	

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/22/24 10:09

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS - V	Vestborough Lal	o for sample(s): 01,0	3 Batch:	WG1963618-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/22/24 10:09

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	01,03 Batch:	WG1963618-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2447470

Lab Number:

Project Name: HARBOR SQUARE

Report Date: Project Number:

07173:15 08/28/24

> **Method Blank Analysis Batch Quality Control**

Analytical Method: 1,8260D Analytical Date: 08/22/24 10:09

Analyst: PID

Parameter	Result	Qualifier	Units	RL	MDL	
Volatile Organics by GC/MS - Wes	tborough Lab	for sample	e(s): 01,03	Batch:	WG1963618-5	
o-Chlorotoluene	ND		ug/l	2.5	0.70	
p-Chlorotoluene	ND		ug/l	2.5	0.70	
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	
Hexachlorobutadiene	ND		ug/l	2.5	0.70	
Isopropylbenzene	ND		ug/l	2.5	0.70	
p-Isopropyltoluene	ND		ug/l	2.5	0.70	
Naphthalene	ND		ug/l	2.5	0.70	
n-Propylbenzene	ND		ug/l	2.5	0.70	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	
1,4-Dioxane	ND		ug/l	250	61.	
p-Diethylbenzene	ND		ug/l	2.0	0.70	
p-Ethyltoluene	ND		ug/l	2.0	0.70	
1,2,4,5-Tetramethylbenzene	1.4	J	ug/l	2.0	0.54	
Ethyl ether	ND		ug/l	2.5	0.70	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 Report Date: 08/28/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/22/24 10:09

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01,03 Batch: WG1963618-5

		Acceptance		
Surrogate	%Recovery C	lualifier Criteria		
1,2-Dichloroethane-d4	108	70-130		
Toluene-d8	97	70-130		
4-Bromofluorobenzene	101	70-130		
Dibromofluoromethane	104	70-130		

L2447470

Project Name: HARBOR SQUARE Lab Number:

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/24 09:24

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	02 Batch:	WG1963895-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/24 09:24

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS -	Westborough Lab	for sample(s):	02 Batch:	WG1963895-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Report Date: 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/24 09:24

Analyst: PID

Parameter	Result	Qualifier Units	RL	MDL
Volatile Organics by GC/MS	- Westborough Lab	for sample(s): 02	Batch:	WG1963895-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 08/23/24 09:24

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 02 Batch: WG1963895-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	107		70-130		
Toluene-d8	98		70-130		
4-Bromofluorobenzene	92		70-130		
Dibromofluoromethane	103		70-130		

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Wes	stborough Lab Associated	sample(s):	01,03 Batch: V	VG1963618-3	WG1963618-4			
Methylene chloride	100		99		70-130	1		20
1,1-Dichloroethane	120		110		70-130	9		20
Chloroform	100		100		70-130	0		20
Carbon tetrachloride	120		120		63-132	0		20
1,2-Dichloropropane	120		110		70-130	9		20
Dibromochloromethane	98		94		63-130	4		20
1,1,2-Trichloroethane	100		95		70-130	5		20
Tetrachloroethene	110		110		70-130	0		20
Chlorobenzene	99		98		75-130	1		20
Trichlorofluoromethane	120		120		62-150	0		20
1,2-Dichloroethane	110		100		70-130	10		20
1,1,1-Trichloroethane	110		110		67-130	0		20
Bromodichloromethane	100		100		67-130	0		20
trans-1,3-Dichloropropene	100		96		70-130	4		20
cis-1,3-Dichloropropene	100		100		70-130	0		20
1,1-Dichloropropene	100		100		70-130	0		20
Bromoform	97		92		54-136	5		20
1,1,2,2-Tetrachloroethane	100		94		67-130	6		20
Benzene	110		110		70-130	0		20
Toluene	100		100		70-130	0		20
Ethylbenzene	100		100		70-130	0		20
Chloromethane	110		100		64-130	10		20
Bromomethane	110		120		39-139	9		20

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	Qual	RPD Limits	
/olatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01,03 Batch:	WG1963618-3	WG1963618-4				
Vinyl chloride	120		110		55-140	9		20	
Chloroethane	120		110		55-138	9		20	
1,1-Dichloroethene	120		120		61-145	0		20	
trans-1,2-Dichloroethene	100		100		70-130	0		20	
Trichloroethene	100		100		70-130	0		20	
1,2-Dichlorobenzene	97		94		70-130	3		20	
1,3-Dichlorobenzene	99		98		70-130	1		20	
1,4-Dichlorobenzene	95		93		70-130	2		20	
Methyl tert butyl ether	110		110		63-130	0		20	
p/m-Xylene	110		105		70-130	5		20	
o-Xylene	105		105		70-130	0		20	
cis-1,2-Dichloroethene	100		100		70-130	0		20	
Dibromomethane	100		96		70-130	4		20	
1,2,3-Trichloropropane	98		89		64-130	10		20	
Acrylonitrile	120		110		70-130	9		20	
Styrene	90		90		70-130	0		20	
Dichlorodifluoromethane	82		80		36-147	2		20	
Acetone	130		94		58-148	32	Q	20	
Carbon disulfide	130		130		51-130	0		20	
2-Butanone	100		98		63-138	2		20	
Vinyl acetate	130		120		70-130	8		20	
4-Methyl-2-pentanone	110		94		59-130	16		20	
2-Hexanone	97		91		57-130	6		20	

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - We	stborough Lab Associated	sample(s): (01,03 Batch: W	G1963618-3	WG1963618-4			
Bromochloromethane	110		110		70-130	0		20
2,2-Dichloropropane	120		110		63-133	9		20
1,2-Dibromoethane	95		90		70-130	5		20
1,3-Dichloropropane	110		100		70-130	10		20
1,1,1,2-Tetrachloroethane	100		98		64-130	2		20
Bromobenzene	99		97		70-130	2		20
n-Butylbenzene	98		97		53-136	1		20
sec-Butylbenzene	110		110		70-130	0		20
tert-Butylbenzene	100		100		70-130	0		20
o-Chlorotoluene	100		99		70-130	1		20
p-Chlorotoluene	100		99		70-130	1		20
1,2-Dibromo-3-chloropropane	83		76		41-144	9		20
Hexachlorobutadiene	120		120		63-130	0		20
Isopropylbenzene	110		110		70-130	0		20
p-Isopropyltoluene	100		99		70-130	1		20
Naphthalene	96		90		70-130	6		20
n-Propylbenzene	110		100		69-130	10		20
1,2,3-Trichlorobenzene	92		92		70-130	0		20
1,2,4-Trichlorobenzene	95		92		70-130	3		20
1,3,5-Trimethylbenzene	100		100		64-130	0		20
1,2,4-Trimethylbenzene	100		100		70-130	0		20
1,4-Dioxane	90		90		56-162	0		20
p-Diethylbenzene	100		99		70-130	1		20

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number:

L2447470

Parameter	LCS %Recovery	Qual		CSD ecovery		%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01,03	Batch:	WG1963618-3	WG1963618-4				
p-Ethyltoluene	110			100		70-130	10		20	
1,2,4,5-Tetramethylbenzene	94			92		70-130	2		20	
Ethyl ether	120			110		59-134	9		20	
trans-1,4-Dichloro-2-butene	110			100		70-130	10		20	

	LCS	LCSD	Acceptance	
Surrogate	%Recovery Qual	%Recovery Qual	Criteria	
1,2-Dichloroethane-d4	104	100	70-130	
Toluene-d8	98	98	70-130	
4-Bromofluorobenzene	106	103	70-130	
Dibromofluoromethane	97	97	70-130	

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s): (02 Batch: WG19	963895-3	WG1963895-4			
Methylene chloride	99		100		70-130	1	20	
1,1-Dichloroethane	110		110		70-130	0	20	
Chloroform	100		110		70-130	10	20	
Carbon tetrachloride	100		100		63-132	0	20	
1,2-Dichloropropane	100		110		70-130	10	20	
Dibromochloromethane	99		110		63-130	11	20	
1,1,2-Trichloroethane	100		110		70-130	10	20	
Tetrachloroethene	100		100		70-130	0	20	
Chlorobenzene	100		110		75-130	10	20	
Trichlorofluoromethane	100		97		62-150	3	20	
1,2-Dichloroethane	110		110		70-130	0	20	
1,1,1-Trichloroethane	100		98		67-130	2	20	
Bromodichloromethane	100		100		67-130	0	20	
trans-1,3-Dichloropropene	98		110		70-130	12	20	
cis-1,3-Dichloropropene	97		100		70-130	3	20	
1,1-Dichloropropene	100		100		70-130	0	20	
Bromoform	88		98		54-136	11	20	
1,1,2,2-Tetrachloroethane	100		110		67-130	10	20	
Benzene	100		100		70-130	0	20	
Toluene	100		100		70-130	0	20	
Ethylbenzene	100		100		70-130	0	20	
Chloromethane	100		98		64-130	2	20	
Bromomethane	72		64		39-139	12	20	

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborou	ugh Lab Associated	sample(s): 0	2 Batch: WG1	963895-3	WG1963895-4		
Vinyl chloride	100		100		55-140	0	20
Chloroethane	120		130		55-138	8	20
1,1-Dichloroethene	100		96		61-145	4	20
trans-1,2-Dichloroethene	100		98		70-130	2	20
Trichloroethene	97		96		70-130	1	20
1,2-Dichlorobenzene	100		110		70-130	10	20
1,3-Dichlorobenzene	100		110		70-130	10	20
1,4-Dichlorobenzene	100		110		70-130	10	20
Methyl tert butyl ether	86		97		63-130	12	20
p/m-Xylene	100		105		70-130	5	20
o-Xylene	100		100		70-130	0	20
cis-1,2-Dichloroethene	100		100		70-130	0	20
Dibromomethane	96		100		70-130	4	20
1,2,3-Trichloropropane	97		100		64-130	3	20
Acrylonitrile	100		120		70-130	18	20
Styrene	100		105		70-130	5	20
Dichlorodifluoromethane	95		88		36-147	8	20
Acetone	91		100		58-148	9	20
Carbon disulfide	110		100		51-130	10	20
2-Butanone	110		120		63-138	9	20
Vinyl acetate	150	Q	160	Q	70-130	6	20
4-Methyl-2-pentanone	93		110		59-130	17	20
2-Hexanone	90		110		57-130	20	20

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

arameter	LCS %Recovery	Qual	LCSD %Recove	ery Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics by GC/MS - Westborough I	_ab Associated	sample(s): 02	2 Batch:	WG1963895-3	WG1963895-4			
Bromochloromethane	95		100		70-130	5		20
2,2-Dichloropropane	100		100		63-133	0		20
1,2-Dibromoethane	95		100		70-130	5		20
1,3-Dichloropropane	100		110		70-130	10		20
1,1,1,2-Tetrachloroethane	98		100		64-130	2		20
Bromobenzene	99		100		70-130	1		20
n-Butylbenzene	100		100		53-136	0		20
sec-Butylbenzene	98		99		70-130	1		20
tert-Butylbenzene	98		99		70-130	1		20
o-Chlorotoluene	97		100		70-130	3		20
p-Chlorotoluene	98		100		70-130	2		20
1,2-Dibromo-3-chloropropane	80		98		41-144	20		20
Hexachlorobutadiene	110		110		63-130	0		20
Isopropylbenzene	95		97		70-130	2		20
p-Isopropyltoluene	98		99		70-130	1		20
Naphthalene	67	Q	89		70-130	28	Q	20
n-Propylbenzene	99		99		69-130	0		20
1,2,3-Trichlorobenzene	88		100		70-130	13		20
1,2,4-Trichlorobenzene	92		100		70-130	8		20
1,3,5-Trimethylbenzene	98		99		64-130	1		20
1,2,4-Trimethylbenzene	98		100		70-130	2		20
1,4-Dioxane	74		86		56-162	15		20
p-Diethylbenzene	97		98		70-130	1		20

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number:

L2447470

Report Date:

08/28/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s): 02	Batch: WG	1963895-3	WG1963895-4				
p-Ethyltoluene	98		100		70-130	2		20	
1,2,4,5-Tetramethylbenzene	86		92		70-130	7		20	
Ethyl ether	95		100		59-134	5		20	
trans-1,4-Dichloro-2-butene	110		130		70-130	17		20	

	LCS	LCSD	Acceptance
Surrogate	%Recovery Qual	%Recovery Qual	Criteria
1,2-Dichloroethane-d4	110	111	70-130
Toluene-d8	100	101	70-130
4-Bromofluorobenzene	92	91	70-130
Dibromofluoromethane	99	99	70-130

SEMIVOLATILES

L2447470

Project Name: Lab Number: HARBOR SQUARE

Project Number: Report Date: 07173:15

08/28/24

SAMPLE RESULTS

Lab ID: L2447470-01 Date Collected: 08/20/24 09:20

Date Received: Client ID: 08/20/24 MW-2A

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/24/24 14:32

Analytical Method: 1,8270E Analytical Date: 08/26/24 03:57

Analyst: MRG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westl	orough Lab					
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.98	1
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
1,2-Dichlorobenzene	ND		ug/l	2.0	0.33	1
1,3-Dichlorobenzene	ND		ug/l	2.0	0.32	1
1,4-Dichlorobenzene	ND		ug/l	2.0	0.39	1
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
Isophorone	ND		ug/l	5.0	0.86	1
Nitrobenzene	ND		ug/l	2.0	0.20	1
NDPA/DPA	ND		ug/l	2.0	0.92	1
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
Diethyl phthalate	ND		ug/l	5.0	0.76	1
Dimethyl phthalate	ND		ug/l	5.0	0.92	1
Biphenyl	ND		ug/l	2.0	0.20	1
4-Chloroaniline	ND		ug/l	5.0	0.47	1
2-Nitroaniline	ND		ug/l	5.0	1.0	1
3-Nitroaniline	ND		ug/l	5.0	1.2	1
4-Nitroaniline	ND		ug/l	5.0	1.4	1

Date Collected:

L2447470

08/20/24 09:20

Project Name: Lab Number: HARBOR SQUARE

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Date Received: Client ID: 08/20/24 MW-2A Field Prep: Not Specified

Sample Location: 1 HARBOR SQUARE OSSINING, NY

L2447470-01

Sample Depth:

Lab ID:

					MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Dibenzofuran	ND		ug/l	2.0	0.40	1		
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1		
Acetophenone	ND		ug/l	5.0	0.92	1		
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1		
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1		
2-Chlorophenol	ND		ug/l	2.0	0.65	1		
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1		
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1		
2-Nitrophenol	ND		ug/l	10	2.0	1		
4-Nitrophenol	ND		ug/l	10	1.4	1		
2,4-Dinitrophenol	ND		ug/l	20	5.4	1		
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1		
Phenol	ND		ug/l	5.0	0.35	1		
2-Methylphenol	ND		ug/l	5.0	2.3	1		
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1		
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1		
Benzoic Acid	ND		ug/l	50	2.6	1		
Benzyl Alcohol	ND		ug/l	2.0	0.38	1		
Carbazole	ND		ug/l	2.0	0.31	1		

Tentatively Identified Compounds				
Total TIC Compounds	15.7	J	ug/l	1
Unknown	4.60	J	ug/l	1
Unknown	5.60	J	ug/l	1
Unknown	5.50	J	ug/l	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	12	Q	21-120
Phenol-d6	12		10-120
Nitrobenzene-d5	46		23-120
2-Fluorobiphenyl	54		15-120
2,4,6-Tribromophenol	24		10-120
4-Terphenyl-d14	73		41-149

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-01 Date Collected: 08/20/24 09:20

Client ID: MW-2A Date Received: 08/20/24

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 08/24/24 14:32
Analytical Date: 08/25/24 14:36

Analyst: JJW

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS-SIM - Westborough Lab							
Acenaphthene	0.04	J	ug/l	0.10	0.02	1	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1	
Fluoranthene	0.05	J	ug/l	0.10	0.03	1	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1	
Naphthalene	ND		ug/l	0.10	0.02	1	
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1	
Chrysene	ND		ug/l	0.10	0.03	1	
Acenaphthylene	ND		ug/l	0.10	0.02	1	
Anthracene	ND		ug/l	0.10	0.02	1	
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1	
Fluorene	ND		ug/l	0.10	0.03	1	
Phenanthrene	0.06	J	ug/l	0.10	0.04	1	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1	
Pyrene	ND		ug/l	0.10	0.04	1	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1	
Pentachlorophenol	ND		ug/l	0.80	0.06	1	
Hexachlorobenzene	ND		ug/l	0.80	0.01	1	
Hexachloroethane	ND		ug/l	0.80	0.02	1	

Project Name: Lab Number: HARBOR SQUARE L2447470

Report Date: **Project Number:** 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: L2447470-01 08/20/24 09:20

Date Received: Client ID: 08/20/24 MW-2A Sample Location: Field Prep: 1 HARBOR SQUARE OSSINING, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	12	Q	21-120
Phenol-d6	13		10-120
Nitrobenzene-d5	56		23-120
2-Fluorobiphenyl	63		15-120
2,4,6-Tribromophenol	23		10-120
4-Terphenyl-d14	62		41-149

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

Client ID: MW-7A Date Received: 08/20/24
Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C
Analytical Method: 1.8270E Extraction Date: 08/24/24 14:32

Analytical Method: 1,8270E Extraction Date: 08/24/24 14:32
Analytical Date: 08/26/24 04:20

Analyst: MRG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - 1	Westborough Lab						
1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.98	1	
Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1	
1,2-Dichlorobenzene	ND		ug/l	2.0	0.33	1	
1,3-Dichlorobenzene	ND		ug/l	2.0	0.32	1	
1,4-Dichlorobenzene	ND		ug/l	2.0	0.39	1	
3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1	
2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1	
2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1	
4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1	
4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1	
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1	
Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1	
Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1	
Isophorone	ND		ug/l	5.0	0.86	1	
Nitrobenzene	ND		ug/l	2.0	0.20	1	
NDPA/DPA	ND		ug/l	2.0	0.92	1	
n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1	
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1	
Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1	
Di-n-butylphthalate	ND		ug/l	5.0	0.96	1	
Di-n-octylphthalate	ND		ug/l	5.0	2.3	1	
Diethyl phthalate	ND		ug/l	5.0	0.76	1	
Dimethyl phthalate	ND		ug/l	5.0	0.92	1	
Biphenyl	ND		ug/l	2.0	0.20	1	
4-Chloroaniline	ND		ug/l	5.0	0.47	1	
2-Nitroaniline	ND		ug/l	5.0	1.0	1	
3-Nitroaniline	ND		ug/l	5.0	1.2	1	
4-Nitroaniline	ND		ug/l	5.0	1.4	1	

Project Name: Lab Number: HARBOR SQUARE L2447470

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

Client ID: Date Received: 08/20/24 MW-7A

Field Prep: Sample Location: 1 HARBOR SQUARE OSSINING, NY Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Dibenzofuran	5.1		ug/l	2.0	0.40	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1			
Acetophenone	ND		ug/l	5.0	0.92	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1			
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1			
2-Chlorophenol	ND		ug/l	2.0	0.65	1			
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1			
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1			
2-Nitrophenol	ND		ug/l	10	2.0	1			
4-Nitrophenol	ND		ug/l	10	1.4	1			
2,4-Dinitrophenol	ND		ug/l	20	5.4	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1			
Phenol	ND		ug/l	5.0	0.35	1			
2-Methylphenol	ND		ug/l	5.0	2.3	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1			
Benzoic Acid	ND		ug/l	50	2.6	1			
Benzyl Alcohol	ND		ug/l	2.0	0.38	1			
Carbazole	ND		ug/l	2.0	0.31	1			

Tentatively Identified Compounds				
Total TIC Compounds	39.3	J	ug/l	1
Unknown PAH	14.5	J	ug/l	1
Unknown PAH	6.00	J	ug/l	1
Unknown	6.10	J	ug/l	1
Unknown Naphthalene	4.50	J	ug/l	1
Unknown	4.20	J	ug/l	1
Unknown	4.00	J	ug/l	1

Project Name: Lab Number: HARBOR SQUARE L2447470

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: Date Collected: L2447470-02 08/20/24 10:35

Date Received: Client ID: 08/20/24 MW-7A Sample Location: Field Prep: 1 HARBOR SQUARE OSSINING, NY Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL **Dilution Factor**

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria
2-Fluorophenol	10	Q	21-120
Phenol-d6	12		10-120
Nitrobenzene-d5	56		23-120
2-Fluorobiphenyl	59		15-120
2,4,6-Tribromophenol	18		10-120
4-Terphenyl-d14	83		41-149

Project Name: Lab Number: HARBOR SQUARE L2447470

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

MW-7A Date Received: Client ID: 08/20/24 Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water

Extraction Date: 08/27/24 14:22 Analytical Method: 1,8270E-SIM Analytical Date: 08/28/24 16:03

Analyst: MRG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	34		ug/l	0.10	0.02	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	5.2		ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	0.07	J	ug/l	0.10	0.02	1		
Benzo(a)anthracene	0.19		ug/l	0.10	0.03	1		
Benzo(a)pyrene	0.05	J	ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	0.05	J	ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	0.04	J	ug/l	0.10	0.03	1		
Chrysene	0.11		ug/l	0.10	0.03	1		
Acenaphthylene	0.42		ug/l	0.10	0.02	1		
Anthracene	5.0		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	0.03	J	ug/l	0.10	0.02	1		
Fluorene	13		ug/l	0.10	0.03	1		
Phenanthrene	12		ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	0.03	J	ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	0.03	J	ug/l	0.10	0.02	1		
Pyrene	3.8		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	0.07	J	ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-02 Date Collected: 08/20/24 10:35

Client ID: MW-7A Date Received: 08/20/24
Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	45	21-120
Phenol-d6	37	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	94	15-120
2,4,6-Tribromophenol	83	10-120
4-Terphenyl-d14	76	41-149

L2447470

Project Name: Lab Number: HARBOR SQUARE

Project Number: Report Date: 07173:15 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Date Received: Client ID: **DUP-MW** 08/20/24

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 3510C Matrix: Water **Extraction Date:** 08/26/24 15:48

Analytical Method: 1,8270E Analytical Date: 08/27/24 14:24

Analyst: IM

Sistance ND	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Section ND Ug/l 2.0 0.39 1	Semivolatile Organics by GC/MS - W	estborough Lab					
1,2-Dichlorobenzene ND ug/l 2.0 0.33 1 1,3-Dichlorobenzene ND ug/l 2.0 0.32 1 1,4-Dichlorobenzene ND ug/l 2.0 0.32 1 1,4-Dichlorobenzene ND ug/l 2.0 0.39 1 1,4-Dichlorobenzene ND ug/l 5.0 1.8 1 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,4-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Cholorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Cholorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.24 1 4-Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 4-Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.84 1 4-Bis(2-chloroethoxy)methane ND ug/l 2.0 0.86 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.92 1 4-Bis(2-chloroethoxy)methane ND ug/l 2.0 0.92 1 4-Bis(2-chloroethoxy)methane ND ug/l 2.0 0.92 1 4-Bis(2-chloroethoxy)methane ND ug/l 3.0 0.86 1 4-Chlorophenyl phenyl ether ND ug/l 5.0 0.96 1 4-Din-Din-Din-Diphylphthalate ND ug/l 5.0 0.91 1 5-Din-Dutylphthalate ND ug/l 5.0 0.96 1	1,2,4-Trichlorobenzene	ND		ug/l	5.0	0.98	1
1,2-Dichlorobenzene ND ug/l 2,0 0,33 1 1,3-Dichlorobenzene ND ug/l 2,0 0,32 1 1,4-Dichlorobenzene ND ug/l 2,0 0,39 1 1,4-Dichlorobenzene ND ug/l 2,0 0,39 1 3,3-Dichlorobenzidine ND ug/l 5,0 1,8 1 2,4-Dinitrotoluene ND ug/l 5,0 0,54 1 2,4-Dinitrotoluene ND ug/l 5,0 0,84 1 4-Chlorophenyl phenyl ether ND ug/l 2,0 0,39 1 4-Chlorophenyl phenyl ether ND ug/l 2,0 0,39 1 4-Bromophenyl phenyl ether ND ug/l 2,0 0,39 1 4-Bromophenyl phenyl ether ND ug/l 2,0 0,40 1 4-Bromophenyl phenyl ether ND ug/l 2,0 0,40 1 4-Bis(2-chlorospropyl)ether ND ug/l 2,0 0,40 1 4-Bis(2-chlorospropyl)ether ND ug/l 5,0 0,84 1 4-Bromophenyl phenyl ether ND ug/l 5,0 0,86 1 4-Chlorospropylbene ND ug/l 5,0 0,86 1 4-Bromophenyl phenyl ether ND ug/l 5,0 0,92 1 4-Bromophenyl phenyl ether ND ug/l 5,0 0,91 1 4-Bromophenyl phenyl ether ND ug/l 5,0 0,96 1 4-Di-n-bryphthalate ND ug/l 5,0 0,96 1 4-Chlorosphiline ND ug/l 5,0 0,97 1 4-Chlorosphiline ND ug/l 5,0 0,97 1 4-Chlorosphiline ND ug/l 5,0 0,97 1 4-Chlorosphiline ND ug/l 5,0 0,47 1	Bis(2-chloroethyl)ether	ND		ug/l	2.0	0.39	1
1,3-Dichlorobenzene ND ug/l 2.0 0.32 1 1,4-Dichlorobenzene ND ug/l 2.0 0.39 1 3,3'-Dichlorobenzidine ND ug/l 5.0 1.8 1 2,4-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6-Dinitrotoluene ND ug/l 5.0 0.84 1 4-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 8-Bis(2-chlorosporpyl)ether ND ug/l 2.0 0.24 1 8-Bis(2-chlorosthoxymethane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.92 1 N-Hitrobenzene ND ug/l 5.0 <td>1,2-Dichlorobenzene</td> <td>ND</td> <td></td> <td></td> <td>2.0</td> <td>0.33</td> <td>1</td>	1,2-Dichlorobenzene	ND			2.0	0.33	1
3,3*-Dichlorobenzidine ND ug/l 5.0 1.8 1 2,4*-Dinitrotoluene ND ug/l 5.0 0.54 1 2,6*-Dinitrotoluene ND ug/l 5.0 0.84 1 4*-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 4*-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 4*-Bromophenyl phenyl ether ND ug/l 2.0 0.40 1 Bis(2-chlorosetporpyl)ether ND ug/l 5.0 0.44 1 Bis(2-chlorosetpoxy)methane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.92 1 NnDPA/DPA ND ug/l	1,3-Dichlorobenzene	ND		ug/l	2.0	0.32	1
ND	1,4-Dichlorobenzene	ND		ug/l	2.0	0.39	1
ND	3,3'-Dichlorobenzidine	ND		ug/l	5.0	1.8	1
A-Chlorophenyl phenyl ether ND ug/l 2.0 0.39 1 A-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chloroisopropyl)ether ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 20 1.2 1 Bisophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 NDPA/DPA ND ug/l 2.0 0.92 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.96 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Di-n-butylphthalate ND ug/l 5.0 0.92 1 Di-n-butylphthalate ND ug/l 5.0 0.47 1	2,4-Dinitrotoluene	ND		ug/l	5.0	0.54	1
A-Bromophenyl phenyl ether ND ug/l 2.0 0.24 1 Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorostopropyl)ether ND ug/l 5.0 0.84 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.84 1 Bis(2-chloroethoxy)methane ND ug/l 20 1.2 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.86 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.86 1 Bis(2-chloroethoxy)methane ND ug/l 2.0 0.20 1 Bis(2-chloroethoxy)methane ND ug/l 2.0 0.92 1 Bis(2-chloroethoxy)methane ND ug/l 5.0 0.91 1 Bis(2-chlyhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-chlyhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-chlyhexyl)phthalate ND ug/l 5.0 0.96 1 Din-n-butylphthalate ND ug/l 5.0 0.96 1 Din-notylphthalate ND ug/l 5.0 0.96 1 Din-notylphthalate ND ug/l 5.0 0.96 1 Din-notylphthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.47 1 Biphenyl Schitroaniline ND ug/l 5.0 0.47 1 Bis(2-thitroaniline ND ug/l 5.0 1.0 1	2,6-Dinitrotoluene	ND		ug/l	5.0	0.84	1
Bis(2-chloroisopropyl)ether ND ug/l 2.0 0.40 1 Bis(2-chlorospymethane ND ug/l 5.0 0.84 1 Hexachlorocyclopentadiene ND ug/l 20 1.2 1 Sophorone ND ug/l 5.0 0.86 1 Nitrobenzene ND ug/l 5.0 0.86 1 NITrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 NDPA/DPA ND ug/l 5.0 0.91 1 Sis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.91 1 Din-butylphthalate ND ug/l 5.0 0.96 1 Din-butylphthalate ND ug/l 5.0 0.92 1 Sighpenyl ND ug/l 5.0 0.47 1 Sighpenyl 5.0 0.47 1 Sighpenyl 5.0 0.47 1 Sighpenyl ND ug/l 5.0 0.47 1	4-Chlorophenyl phenyl ether	ND		ug/l	2.0	0.39	1
ND	4-Bromophenyl phenyl ether	ND		ug/l	2.0	0.24	1
ND	Bis(2-chloroisopropyl)ether	ND		ug/l	2.0	0.40	1
ND	Bis(2-chloroethoxy)methane	ND		ug/l	5.0	0.84	1
Nitrobenzene ND ug/l 2.0 0.20 1 NDPA/DPA ND ug/l 2.0 0.92 1 n-Nitrosodi-n-propylamine ND ug/l 5.0 0.91 1 Bis(2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1 Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-butylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Bis(2-ethylhexyl)phthalate ND ug/l 5.0 0.92 1 Bis(3-ethylhexyl)phthalate ND ug/l 5.0 0.92 1 Bis(4-choroaniline ND ug/l 5.0 0.47 1 Bis(4-choroaniline ND ug/l 5.0 0.47 1 Bis(5-ethylhexyl)phthalate ND ug/l 5.0 0.47 1 Bis(6-ethylhexyl)phthalate ND ug/l 5.0 0.47 1 Bis(6-ethylhexyl)phthalate ND ug/l 5.0 0.47 1 Bis(6-ethylhexyl)phthalate ND ug/l 5.0 1.0 1 Bis(6-ethylhexyl)phthalate ND ug/l 5.0 1.0 1	Hexachlorocyclopentadiene	ND		ug/l	20	1.2	1
NDPA/DPA ND ug/l 2.0 0.92 1 1 1 1 1 1 1 1 1	Isophorone	ND		ug/l	5.0	0.86	1
ND	Nitrobenzene	ND		ug/l	2.0	0.20	1
Sis (2-ethylhexyl)phthalate ND ug/l 3.0 1.4 1	NDPA/DPA	ND		ug/l	2.0	0.92	1
Butyl benzyl phthalate ND ug/l 5.0 2.6 1 Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 0.76 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	n-Nitrosodi-n-propylamine	ND		ug/l	5.0	0.91	1
Di-n-butylphthalate ND ug/l 5.0 0.96 1 Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 5.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0	1.4	1
Di-n-octylphthalate ND ug/l 5.0 2.3 1 Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Butyl benzyl phthalate	ND		ug/l	5.0	2.6	1
Diethyl phthalate ND ug/l 5.0 0.76 1 Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Di-n-butylphthalate	ND		ug/l	5.0	0.96	1
Dimethyl phthalate ND ug/l 5.0 0.92 1 Biphenyl ND ug/l 2.0 0.20 1 4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Di-n-octylphthalate	ND		ug/l	5.0	2.3	1
ND ug/l 2.0 0.20 1	Diethyl phthalate	ND		ug/l	5.0	0.76	1
4-Chloroaniline ND ug/l 5.0 0.47 1 2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Dimethyl phthalate	ND		ug/l	5.0	0.92	1
2-Nitroaniline ND ug/l 5.0 1.0 1 3-Nitroaniline ND ug/l 5.0 1.2 1	Biphenyl	ND		ug/l	2.0	0.20	1
3-Nitroaniline ND ug/l 5.0 1.2 1	4-Chloroaniline	ND		ug/l	5.0	0.47	1
49.	2-Nitroaniline	ND			5.0	1.0	1
1-Nitroaniline ND ug/l 5.0 1.4 1	3-Nitroaniline	ND		ug/l	5.0	1.2	1
	4-Nitroaniline	ND		ug/l	5.0	1.4	1

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor			
Semivolatile Organics by GC/MS - Westborough Lab									
Dibenzofuran	ND		ug/l	2.0	0.40	1			
1,2,4,5-Tetrachlorobenzene	ND		ug/l	10	0.24	1			
Acetophenone	ND		ug/l	5.0	0.92	1			
2,4,6-Trichlorophenol	ND		ug/l	5.0	2.1	1			
p-Chloro-m-cresol	ND		ug/l	2.0	0.61	1			
2-Chlorophenol	ND		ug/l	2.0	0.65	1			
2,4-Dichlorophenol	ND		ug/l	5.0	1.7	1			
2,4-Dimethylphenol	ND		ug/l	5.0	2.0	1			
2-Nitrophenol	ND		ug/l	10	2.0	1			
4-Nitrophenol	ND		ug/l	10	1.4	1			
2,4-Dinitrophenol	ND		ug/l	20	5.4	1			
4,6-Dinitro-o-cresol	ND		ug/l	10	2.3	1			
Phenol	ND		ug/l	5.0	0.35	1			
2-Methylphenol	ND		ug/l	5.0	2.3	1			
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0	1.4	1			
2,4,5-Trichlorophenol	ND		ug/l	5.0	2.1	1			
Benzoic Acid	ND		ug/l	50	2.6	1			
Benzyl Alcohol	ND		ug/l	2.0	0.38	1			
Carbazole	ND		ug/l	2.0	0.31	1			

Tentatively Identified Compounds				
Total TIC Compounds	51.9	J	ug/l	1
Unknown	6.60	J	ug/l	1
Unknown Organic Acid	10.7	J	ug/l	1
Unknown	8.30	J	ug/l	1
Indane	7.10	NJ	ug/l	1
Unknown	4.10	J	ug/l	1
Unknown	8.70	J	ug/l	1
Unknown Organic Acid	6.40	J	ug/l	1

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24 Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	25	21-120
Phenol-d6	24	10-120
Nitrobenzene-d5	81	23-120
2-Fluorobiphenyl	57	15-120
2,4,6-Tribromophenol	27	10-120
4-Terphenyl-d14	69	41-149

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24

Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 3510C

Analytical Method: 1,8270E-SIM Extraction Date: 08/26/24 15:48
Analytical Date: 08/27/24 10:10

Analyst: RP

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS-SIM - Westborough Lab								
Acenaphthene	ND		ug/l	0.10	0.02	1		
2-Chloronaphthalene	ND		ug/l	0.20	0.02	1		
Fluoranthene	0.03	J	ug/l	0.10	0.03	1		
Hexachlorobutadiene	ND		ug/l	0.50	0.02	1		
Naphthalene	ND		ug/l	0.10	0.02	1		
Benzo(a)anthracene	ND		ug/l	0.10	0.03	1		
Benzo(a)pyrene	ND		ug/l	0.10	0.02	1		
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	1		
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	1		
Chrysene	ND		ug/l	0.10	0.03	1		
Acenaphthylene	ND		ug/l	0.10	0.02	1		
Anthracene	ND		ug/l	0.10	0.02	1		
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	1		
Fluorene	ND		ug/l	0.10	0.03	1		
Phenanthrene	0.04	J	ug/l	0.10	0.04	1		
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	1		
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	1		
Pyrene	ND		ug/l	0.10	0.04	1		
2-Methylnaphthalene	ND		ug/l	0.10	0.03	1		
Pentachlorophenol	0.47	J	ug/l	0.80	0.06	1		
Hexachlorobenzene	ND		ug/l	0.80	0.01	1		
Hexachloroethane	ND		ug/l	0.80	0.02	1		

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

SAMPLE RESULTS

Lab ID: L2447470-03 Date Collected: 08/20/24 00:00

Client ID: DUP-MW Date Received: 08/20/24 Sample Location: 1 HARBOR SQUARE OSSINING, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Semivolatile Organics by GC/MS-SIM - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	23	21-120
Phenol-d6	24	10-120
Nitrobenzene-d5	91	23-120
2-Fluorobiphenyl	74	15-120
2,4,6-Tribromophenol	30	10-120
4-Terphenyl-d14	79	41-149

Project Name: HARBOR SQUARE

Project Number: 07173:15 Report

Report Date: 08/28/24

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/25/24 23:29

Analyst: MRG

Extraction Method: EPA 3510C Extraction Date: 08/24/24 14:32

arameter	Result	Qualifier	Units	RL		MDL
emivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01-02	Batch:	WG1963467-1
Acenaphthene	ND		ug/l	2.0		0.40
1,2,4-Trichlorobenzene	ND		ug/l	5.0		0.98
Hexachlorobenzene	ND		ug/l	2.0		0.45
Bis(2-chloroethyl)ether	ND		ug/l	2.0		0.39
2-Chloronaphthalene	ND		ug/l	2.0		0.35
1,2-Dichlorobenzene	ND		ug/l	2.0		0.33
1,3-Dichlorobenzene	ND		ug/l	2.0		0.32
1,4-Dichlorobenzene	ND		ug/l	2.0		0.39
3,3'-Dichlorobenzidine	ND		ug/l	5.0		1.8
2,4-Dinitrotoluene	ND		ug/l	5.0		0.54
2,6-Dinitrotoluene	ND		ug/l	5.0		0.84
Fluoranthene	ND		ug/l	2.0		0.41
4-Chlorophenyl phenyl ether	ND		ug/l	2.0		0.39
4-Bromophenyl phenyl ether	ND		ug/l	2.0		0.24
Bis(2-chloroisopropyl)ether	ND		ug/l	2.0		0.40
Bis(2-chloroethoxy)methane	ND		ug/l	5.0		0.84
Hexachlorobutadiene	ND		ug/l	2.0		0.36
Hexachlorocyclopentadiene	ND		ug/l	20		1.2
Hexachloroethane	ND		ug/l	2.0		0.20
Isophorone	ND		ug/l	5.0		0.86
Naphthalene	ND		ug/l	2.0		0.54
Nitrobenzene	ND		ug/l	2.0		0.20
NDPA/DPA	ND		ug/l	2.0		0.92
n-Nitrosodi-n-propylamine	ND		ug/l	5.0		0.91
Bis(2-ethylhexyl)phthalate	ND		ug/l	3.0		1.4
Butyl benzyl phthalate	ND		ug/l	5.0		2.6
Di-n-butylphthalate	ND		ug/l	5.0		0.96
Di-n-octylphthalate	ND		ug/l	5.0		2.3
Diethyl phthalate	ND		ug/l	5.0		0.76

Project Name: HARBOR SQUARE

Project Number: 07173:15

Корс

L2447470

Report Date: 08/28/24

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/25/24 23:29

Analyst: MRG

Extraction Method: EPA 3510C Extraction Date: 08/24/24 14:32

arameter	Result	Qualifier Units	RL	MDL
emivolatile Organics by GC/MS	S - Westborough	n Lab for sample(s	s): 01-02	Batch: WG1963467-1
Dimethyl phthalate	ND	ug/l	5.0	0.92
Benzo(a)anthracene	ND	ug/l	2.0	0.32
Benzo(a)pyrene	ND	ug/l	2.0	0.37
Benzo(b)fluoranthene	ND	ug/l	2.0	0.53
Benzo(k)fluoranthene	ND	ug/l	2.0	0.62
Chrysene	ND	ug/l	2.0	0.22
Acenaphthylene	ND	ug/l	2.0	0.32
Anthracene	ND	ug/l	2.0	0.47
Benzo(ghi)perylene	ND	ug/l	2.0	0.37
Fluorene	ND	ug/l	2.0	0.44
Phenanthrene	ND	ug/l	2.0	0.42
Dibenzo(a,h)anthracene	ND	ug/l	2.0	0.29
Indeno(1,2,3-cd)pyrene	ND	ug/l	2.0	0.48
Pyrene	ND	ug/l	2.0	0.41
Biphenyl	ND	ug/l	2.0	0.20
4-Chloroaniline	ND	ug/l	5.0	0.47
2-Nitroaniline	ND	ug/l	5.0	1.0
3-Nitroaniline	ND	ug/l	5.0	1.2
4-Nitroaniline	ND	ug/l	5.0	1.4
Dibenzofuran	ND	ug/l	2.0	0.40
2-Methylnaphthalene	ND	ug/l	2.0	0.37
1,2,4,5-Tetrachlorobenzene	ND	ug/l	10	0.24
Acetophenone	ND	ug/l	5.0	0.92
2,4,6-Trichlorophenol	ND	ug/l	5.0	2.1
p-Chloro-m-cresol	ND	ug/l	2.0	0.61
2-Chlorophenol	ND	ug/l	2.0	0.65
2,4-Dichlorophenol	ND	ug/l	5.0	1.7
2,4-Dimethylphenol	ND	ug/l	5.0	2.0
2-Nitrophenol	ND	ug/l	10	2.0

Lab Number:

Project Name: HARBOR SQUARE

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/25/24 23:29

Analyst: MRG

Extraction Method: EPA 3510C Extraction Date: 08/24/24 14:32

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	n Lab for s	ample(s):	01-02	Batch:	WG1963467-1
4-Nitrophenol	ND		ug/l	10		1.4
2,4-Dinitrophenol	ND		ug/l	20		5.4
4,6-Dinitro-o-cresol	ND		ug/l	10		2.3
Pentachlorophenol	ND		ug/l	10		2.5
Phenol	ND		ug/l	5.0		0.35
2-Methylphenol	ND		ug/l	5.0		2.3
3-Methylphenol/4-Methylphenol	ND		ug/l	5.0		1.4
2,4,5-Trichlorophenol	ND		ug/l	5.0		2.1
Benzoic Acid	ND		ug/l	50		2.6
Benzyl Alcohol	ND		ug/l	2.0		0.38
Carbazole	ND		ug/l	2.0		0.31

Tentatively Identified Compounds				
Total TIC Compounds	10.7	J	ug/l	
Unknown	4.80	J	ug/l	
Unknown	5.90	J	ug/l	

Surrogate	%Recovery Qualifie	Acceptance r Criteria
2-Fluorophenol	50	21-120
Phenol-d6	33	10-120
Nitrobenzene-d5	63	23-120
2-Fluorobiphenyl	64	15-120
2,4,6-Tribromophenol	85	10-120
4-Terphenyl-d14	84	41-149

Lab Number:

RL

Project Name: HARBOR SQUARE

Project Number: 07173:15 **Report Date:** 08/28/24

Result

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 08/25/24 14:20

Analyst: JJW

Parameter

Extraction Method:	EPA 3510C
Extraction Date:	08/24/24 14:32

MDL

emivolatile Organics by GC/M	S-SIM - Westborough	Lab for sample	e(s): 01	Batch: WG1963468-1
Acenaphthene	ND	ug/l	0.10	0.02
2-Chloronaphthalene	ND	ug/l	0.20	0.02
Fluoranthene	ND	ug/l	0.10	0.03
Hexachlorobutadiene	ND	ug/l	0.50	0.02
Naphthalene	ND	ug/l	0.10	0.02
Benzo(a)anthracene	ND	ug/l	0.10	0.03
Benzo(a)pyrene	ND	ug/l	0.10	0.02
Benzo(b)fluoranthene	ND	ug/l	0.10	0.03
Benzo(k)fluoranthene	ND	ug/l	0.10	0.03
Chrysene	ND	ug/l	0.10	0.03
Acenaphthylene	ND	ug/l	0.10	0.02
Anthracene	ND	ug/l	0.10	0.02
Benzo(ghi)perylene	ND	ug/l	0.10	0.02
Fluorene	ND	ug/l	0.10	0.03
Phenanthrene	ND	ug/l	0.10	0.04
Dibenzo(a,h)anthracene	ND	ug/l	0.10	0.02
Indeno(1,2,3-cd)pyrene	ND	ug/l	0.10	0.02
Pyrene	ND	ug/l	0.10	0.04
2-Methylnaphthalene	ND	ug/l	0.10	0.03
Pentachlorophenol	ND	ug/l	0.80	0.06
Hexachlorobenzene	ND	ug/l	0.80	0.01
Hexachloroethane	ND	ug/l	0.80	0.02

Qualifier

Units

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/25/24 14:20 Extraction Date: 08/24/24 14:32

Analyst: JJW

 Parameter
 Result
 Qualifier
 Units
 RL
 MDL

 Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s):
 01
 Batch:
 WG1963468-1

Acceptance Surrogate %Recovery Qualifier Criteria 2-Fluorophenol 42 21-120 Phenol-d6 32 10-120 Nitrobenzene-d5 23-120 66 2-Fluorobiphenyl 69 15-120 2,4,6-Tribromophenol 84 10-120 4-Terphenyl-d14 75 41-149

Lab Number:

Project Name: HARBOR SQUARE

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/27/24 03:50

Analyst: IM

Extraction Method: EPA 3510C Extraction Date: 08/26/24 07:51

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	03	Batch:	WG1963737-1	
Acenaphthene	ND		ug/l		2.0	0.40	
1,2,4-Trichlorobenzene	ND		ug/l		5.0	0.98	
Hexachlorobenzene	ND		ug/l		2.0	0.45	
Bis(2-chloroethyl)ether	ND		ug/l		2.0	0.39	
2-Chloronaphthalene	ND		ug/l		2.0	0.35	
1,2-Dichlorobenzene	ND		ug/l		2.0	0.33	
1,3-Dichlorobenzene	ND		ug/l		2.0	0.32	
1,4-Dichlorobenzene	ND		ug/l		2.0	0.39	
3,3'-Dichlorobenzidine	ND		ug/l		5.0	1.8	
2,4-Dinitrotoluene	ND		ug/l		5.0	0.54	
2,6-Dinitrotoluene	ND		ug/l		5.0	0.84	
Fluoranthene	ND		ug/l		2.0	0.41	
4-Chlorophenyl phenyl ether	ND		ug/l		2.0	0.39	
4-Bromophenyl phenyl ether	ND		ug/l		2.0	0.24	
Bis(2-chloroisopropyl)ether	ND		ug/l		2.0	0.40	
Bis(2-chloroethoxy)methane	ND		ug/l		5.0	0.84	
Hexachlorobutadiene	ND		ug/l		2.0	0.36	
Hexachlorocyclopentadiene	ND		ug/l		20	1.2	
Hexachloroethane	ND		ug/l		2.0	0.20	
Isophorone	ND		ug/l		5.0	0.86	
Naphthalene	ND		ug/l		2.0	0.54	
Nitrobenzene	ND		ug/l		2.0	0.20	
NDPA/DPA	ND		ug/l		2.0	0.92	
n-Nitrosodi-n-propylamine	ND		ug/l		5.0	0.91	
Bis(2-ethylhexyl)phthalate	ND		ug/l		3.0	1.4	
Butyl benzyl phthalate	ND		ug/l		5.0	2.6	
Di-n-butylphthalate	ND		ug/l		5.0	0.96	
Di-n-octylphthalate	ND		ug/l		5.0	2.3	
Diethyl phthalate	ND		ug/l		5.0	0.76	

Lab Number:

Project Name: HARBOR SQUARE

Project Number: Report Date: 07173:15

08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/27/24 03:50

Analyst: IM Extraction Method: EPA 3510C 08/26/24 07:51 **Extraction Date:**

Parameter	Result	Qualifier	Units		RL	MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	03	Batch:	WG1963737-1	
Dimethyl phthalate	ND		ug/l		5.0	0.92	
Benzo(a)anthracene	ND		ug/l		2.0	0.32	
Benzo(a)pyrene	ND		ug/l		2.0	0.37	
Benzo(b)fluoranthene	ND		ug/l		2.0	0.53	
Benzo(k)fluoranthene	ND		ug/l		2.0	0.62	
Chrysene	ND		ug/l		2.0	0.22	
Acenaphthylene	ND		ug/l		2.0	0.32	
Anthracene	ND		ug/l		2.0	0.47	
Benzo(ghi)perylene	ND		ug/l		2.0	0.37	
Fluorene	ND		ug/l		2.0	0.44	
Phenanthrene	ND		ug/l		2.0	0.42	
Dibenzo(a,h)anthracene	ND		ug/l		2.0	0.29	
Indeno(1,2,3-cd)pyrene	ND		ug/l		2.0	0.48	
Pyrene	ND		ug/l		2.0	0.41	
Biphenyl	ND		ug/l		2.0	0.20	
4-Chloroaniline	ND		ug/l		5.0	0.47	
2-Nitroaniline	ND		ug/l		5.0	1.0	
3-Nitroaniline	ND		ug/l		5.0	1.2	
4-Nitroaniline	ND		ug/l		5.0	1.4	
Dibenzofuran	ND		ug/l		2.0	0.40	
2-Methylnaphthalene	ND		ug/l		2.0	0.37	
1,2,4,5-Tetrachlorobenzene	ND		ug/l		10	0.24	
Acetophenone	ND		ug/l		5.0	0.92	
2,4,6-Trichlorophenol	ND		ug/l		5.0	2.1	
p-Chloro-m-cresol	ND		ug/l		2.0	0.61	
2-Chlorophenol	ND		ug/l		2.0	0.65	
2,4-Dichlorophenol	ND		ug/l		5.0	1.7	
2,4-Dimethylphenol	ND		ug/l		5.0	2.0	
2-Nitrophenol	ND		ug/l		10	2.0	

Lab Number:

Project Name: HARBOR SQUARE

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E Analytical Date: 08/27/24 03:50

Analyst: IM

Extraction Method: EPA 3510C Extraction Date: 08/26/24 07:51

Parameter	Result	Qualifier Units	RL	MDL	
Semivolatile Organics by GC/MS	- Westborough	Lab for sample(s):	03 Batch:	WG1963737-1	
4-Nitrophenol	ND	ug/l	10	1.4	
2,4-Dinitrophenol	ND	ug/l	20	5.4	
4,6-Dinitro-o-cresol	ND	ug/l	10	2.3	
Pentachlorophenol	ND	ug/l	10	2.5	
Phenol	ND	ug/l	5.0	0.35	
2-Methylphenol	ND	ug/l	5.0	2.3	
3-Methylphenol/4-Methylphenol	ND	ug/l	5.0	1.4	
2,4,5-Trichlorophenol	ND	ug/l	5.0	2.1	
Benzoic Acid	ND	ug/l	50	2.6	
Benzyl Alcohol	ND	ug/l	2.0	0.38	
Carbazole	ND	ug/l	2.0	0.31	

Tentatively Identified Compounds				
Total TIC Compounds	18.3	J	ug/l	
Unknown	6.60	J	ug/l	
Unknown	7.40	J	ug/l	
Unknown	4.30	J	ug/l	

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E Extraction Method: EPA 3510C
Analytical Date: 08/27/24 03:50 Extraction Date: 08/26/24 07:51

Analyst: IM

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS - Westborough Lab for sample(s): 03 Batch: WG1963737-1

Surrogate	%Recovery Qualifie	Acceptance r Criteria	
2-Fluorophenol	29	21-120	
Phenol-d6	24	10-120	
Nitrobenzene-d5	48	23-120	
2-Fluorobiphenyl	50	15-120	
2,4,6-Tribromophenol	26	10-120	
4-Terphenyl-d14	53	41-149	

Lab Number:

Project Name: HARBOR SQUARE

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 08/27/24 11:15

Analyst: RP

Extraction Method: EPA 3510C Extraction Date: 08/26/24 07:51

Parameter	Result	Qualifier	Units	RL	MDL	
Semivolatile Organics by GC/MS-S	IM - Westbo	rough Lab	for sample	e(s): 03	Batch: WG1963738-1	
Acenaphthene	ND		ug/l	0.10	0.02	
2-Chloronaphthalene	ND		ug/l	0.20	0.02	
Fluoranthene	ND		ug/l	0.10	0.03	
Hexachlorobutadiene	ND		ug/l	0.50	0.02	
Naphthalene	ND		ug/l	0.10	0.02	
Benzo(a)anthracene	ND		ug/l	0.10	0.03	
Benzo(a)pyrene	ND		ug/l	0.10	0.02	
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03	
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03	
Chrysene	ND		ug/l	0.10	0.03	
Acenaphthylene	ND		ug/l	0.10	0.02	
Anthracene	ND		ug/l	0.10	0.02	
Benzo(ghi)perylene	ND		ug/l	0.10	0.02	
Fluorene	ND		ug/l	0.10	0.03	
Phenanthrene	ND		ug/l	0.10	0.04	
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02	
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02	
Pyrene	ND		ug/l	0.10	0.04	
2-Methylnaphthalene	ND		ug/l	0.10	0.03	
Pentachlorophenol	0.45	J	ug/l	0.80	0.06	
Hexachlorobenzene	ND		ug/l	0.80	0.01	
Hexachloroethane	ND		ug/l	0.80	0.02	

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/27/24 11:15 Extraction Date: 08/26/24 07:51

Analyst: RP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 03 Batch: WG1963738-1

Surrogate	%Recovery	Acceptance Qualifier Criteria
	·	
2-Fluorophenol	33	21-120
Phenol-d6	32	10-120
Nitrobenzene-d5	75	23-120
2-Fluorobiphenyl	62	15-120
2,4,6-Tribromophenol	34	10-120
4-Terphenyl-d14	70	41-149

Project Name: HARBOR SQUARE

Project Number: 07173:15 Report

Report Date: 08/28/24

Lab Number:

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Analytical Date: 08/27/24 08:48

Analyst: RP

Extraction Method: EPA 3510C Extraction Date: 08/26/24 23:15

Parameter	Result	Qualifier	Units	RL	MDL
Semivolatile Organics by GC/MS-	SIM - Westbo	rough Lab	for sample	(s): 02	Batch: WG1964121-1
Acenaphthene	0.03	J	ug/l	0.10	0.02
2-Chloronaphthalene	ND		ug/l	0.20	0.02
Fluoranthene	0.03	J	ug/l	0.10	0.03
Hexachlorobutadiene	ND		ug/l	0.50	0.02
Naphthalene	0.06	J	ug/l	0.10	0.02
Benzo(a)anthracene	ND		ug/l	0.10	0.03
Benzo(a)pyrene	ND		ug/l	0.10	0.02
Benzo(b)fluoranthene	ND		ug/l	0.10	0.03
Benzo(k)fluoranthene	ND		ug/l	0.10	0.03
Chrysene	ND		ug/l	0.10	0.03
Acenaphthylene	ND		ug/l	0.10	0.02
Anthracene	ND		ug/l	0.10	0.02
Benzo(ghi)perylene	ND		ug/l	0.10	0.02
Fluorene	ND		ug/l	0.10	0.03
Phenanthrene	0.06	J	ug/l	0.10	0.04
Dibenzo(a,h)anthracene	ND		ug/l	0.10	0.02
Indeno(1,2,3-cd)pyrene	ND		ug/l	0.10	0.02
Pyrene	ND		ug/l	0.10	0.04
2-Methylnaphthalene	0.05	J	ug/l	0.10	0.03
Pentachlorophenol	0.50	J	ug/l	0.80	0.06
Hexachlorobenzene	ND		ug/l	0.80	0.01
Hexachloroethane	ND		ug/l	0.80	0.02

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 **Report Date:** 08/28/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270E-SIM Extraction Method: EPA 3510C
Analytical Date: 08/27/24 08:48 Extraction Date: 08/26/24 23:15

Analyst: RP

Parameter Result Qualifier Units RL MDL

Semivolatile Organics by GC/MS-SIM - Westborough Lab for sample(s): 02 Batch: WG1964121-1

		Acceptance
Surrogate	%Recovery Qua	lifier Criteria
2-Fluorophenol	51	21-120
Phenol-d6	35	10-120
Nitrobenzene-d5	93	23-120
2-Fluorobiphenyl	88	15-120
2,4,6-Tribromophenol	68	10-120
4-Terphenyl-d14	94	41-149

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSE %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01-02	Batch:	WG196346	7-2 WG19634	67-3		
Acenaphthene	71		64			37-111	10		30
1,2,4-Trichlorobenzene	61		57			39-98	7		30
Hexachlorobenzene	78		75			40-140	4		30
Bis(2-chloroethyl)ether	61		63			40-140	3		30
2-Chloronaphthalene	68		64			40-140	6		30
1,2-Dichlorobenzene	66		59			40-140	11		30
1,3-Dichlorobenzene	56		60			40-140	7		30
1,4-Dichlorobenzene	62		62			36-97	0		30
3,3'-Dichlorobenzidine	83		74			40-140	11		30
2,4-Dinitrotoluene	84		80			48-143	5		30
2,6-Dinitrotoluene	78		71			40-140	9		30
Fluoranthene	83		78			40-140	6		30
4-Chlorophenyl phenyl ether	72		68			40-140	6		30
4-Bromophenyl phenyl ether	76		73			40-140	4		30
Bis(2-chloroisopropyl)ether	37	Q	36		Q	40-140	3		30
Bis(2-chloroethoxy)methane	61		66			40-140	8		30
Hexachlorobutadiene	52		52			40-140	0		30
Hexachlorocyclopentadiene	31	Q	30		Q	40-140	3		30
Hexachloroethane	47		53			40-140	12		30
Isophorone	63		66			40-140	5		30
Naphthalene	66		65			40-140	2		30
Nitrobenzene	58		64			40-140	10		30
NDPA/DPA	79		70			40-140	12		30

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSE %Recov		9 Qual	%Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC/MS - Westbo	orough Lab Associ	ated sample(s):	01-02	Batch:	WG196346	7-2 WG19634	167-3		
n-Nitrosodi-n-propylamine	59		60			29-132	2		30
Bis(2-ethylhexyl)phthalate	75		74			40-140	1		30
Butyl benzyl phthalate	83		81			40-140	2		30
Di-n-butylphthalate	80		78			40-140	3		30
Di-n-octylphthalate	77		77			40-140	0		30
Diethyl phthalate	73		70			40-140	4		30
Dimethyl phthalate	77		72			40-140	7		30
Benzo(a)anthracene	72		74			40-140	3		30
Benzo(a)pyrene	80		82			40-140	2		30
Benzo(b)fluoranthene	77		78			40-140	1		30
Benzo(k)fluoranthene	81		80			40-140	1		30
Chrysene	76		72			40-140	5		30
Acenaphthylene	73		70			45-123	4		30
Anthracene	77		76			40-140	1		30
Benzo(ghi)perylene	82		78			40-140	5		30
Fluorene	73		71			40-140	3		30
Phenanthrene	77		76			40-140	1		30
Dibenzo(a,h)anthracene	82		82			40-140	0		30
Indeno(1,2,3-cd)pyrene	77		76			40-140	1		30
Pyrene	85		82			26-127	4		30
Biphenyl	63		60			40-140	5		30
4-Chloroaniline	64		49			40-140	27		30
2-Nitroaniline	92		90			52-143	2		30

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual 9	LCSD %Recover	y Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westboro	ugh Lab Assoc	iated sample(s):	01-02 B	atch: WG196	3467-2 WG1963	167-3	
3-Nitroaniline	83		79		25-145	5	30
4-Nitroaniline	87		87		51-143	0	30
Dibenzofuran	69		69		40-140	0	30
2-Methylnaphthalene	62		62		40-140	0	30
1,2,4,5-Tetrachlorobenzene	54		52		2-134	4	30
Acetophenone	67		71		39-129	6	30
2,4,6-Trichlorophenol	78		78		30-130	0	30
p-Chloro-m-cresol	73		73		23-97	0	30
2-Chlorophenol	72		75		27-123	4	30
2,4-Dichlorophenol	80		80		30-130	0	30
2,4-Dimethylphenol	49		42		30-130	15	30
2-Nitrophenol	81		91		30-130	12	30
4-Nitrophenol	42		41		10-80	2	30
2,4-Dinitrophenol	80		75		20-130	6	30
4,6-Dinitro-o-cresol	96		81		20-164	17	30
Pentachlorophenol	89		72		9-103	21	30
Phenoi	34		34		12-110	0	30
2-Methylphenol	69		66		30-130	4	30
3-Methylphenol/4-Methylphenol	62		64		30-130	3	30
2,4,5-Trichlorophenol	85		79		30-130	7	30
Benzoic Acid	43		43		10-164	0	30
Benzyl Alcohol	63		62		26-116	2	30
Carbazole	87		80		55-144	8	30

Project Name: HARBOR SQUARE

Lab Number:

L2447470

Project Number: 07173:15

Report Date:

08/28/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1963467-2 WG1963467-3

LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
55	56	21-120
38	39	10-120
68	68	23-120
74	71	15-120
96	87	10-120
89	82	41-149
	%Recovery Qual 55 38 68 74 96	%Recovery Qual %Recovery Qual 55 56 38 39 68 68 74 71 96 87

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

arameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - West	borough Lab As	ssociated samp	ole(s): 01 Bate	ch: WG1963468-2 WG1963	468-3	
Acenaphthene	71		69	40-140	3	40
2-Chloronaphthalene	64		62	40-140	3	40
Fluoranthene	73		69	40-140	6	40
Hexachlorobutadiene	54		51	40-140	6	40
Naphthalene	61		59	40-140	3	40
Benzo(a)anthracene	80		76	40-140	5	40
Benzo(a)pyrene	70		67	40-140	4	40
Benzo(b)fluoranthene	70		68	40-140	3	40
Benzo(k)fluoranthene	71		69	40-140	3	40
Chrysene	75		71	40-140	5	40
Acenaphthylene	63		60	40-140	5	40
Anthracene	78		76	40-140	3	40
Benzo(ghi)perylene	83		79	40-140	5	40
Fluorene	69		67	40-140	3	40
Phenanthrene	77		74	40-140	4	40
Dibenzo(a,h)anthracene	83		79	40-140	5	40
Indeno(1,2,3-cd)pyrene	87		82	40-140	6	40
Pyrene	71		67	40-140	6	40
2-Methylnaphthalene	61		59	40-140	3	40
Pentachlorophenol	96		90	40-140	6	40
Hexachlorobenzene	86		85	40-140	1	40
Hexachloroethane	50		46	40-140	8	40

Project Name: HARBOR SQUARE

Lab Number:

L2447470

Project Number: 07173:15

Banari Data

Report Date: 08/28/24

LCS LCSD %Recovery RPD
Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 01 Batch: WG1963468-2 WG1963468-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , , , , , , , , , , , , , , , , , ,	
2-Fluorophenol	48	47	21-120
Phenol-d6	37	37	10-120
Nitrobenzene-d5	67	65	23-120
2-Fluorobiphenyl	72	69	15-120
2,4,6-Tribromophenol	92	87	10-120
4-Terphenyl-d14	74	70	41-149

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westbore	ough Lab Assoc	iated sample(s):	03 Batch:	WG1963737-2	2 WG1963737-3		
Acenaphthene	50		56		37-111	11	30
1,2,4-Trichlorobenzene	42		49		39-98	15	30
Hexachlorobenzene	57		66		40-140	15	30
Bis(2-chloroethyl)ether	52		64		40-140	21	30
2-Chloronaphthalene	46		56		40-140	20	30
1,2-Dichlorobenzene	44		52		40-140	17	30
1,3-Dichlorobenzene	42		51		40-140	19	30
1,4-Dichlorobenzene	44		53		36-97	19	30
3,3'-Dichlorobenzidine	55		60		40-140	9	30
2,4-Dinitrotoluene	52		66		48-143	24	30
2,6-Dinitrotoluene	56		75		40-140	29	30
Fluoranthene	58		64		40-140	10	30
4-Chlorophenyl phenyl ether	51		60		40-140	16	30
4-Bromophenyl phenyl ether	54		68		40-140	23	30
Bis(2-chloroisopropyl)ether	54		66		40-140	20	30
Bis(2-chloroethoxy)methane	54		67		40-140	21	30
Hexachlorobutadiene	40		46		40-140	14	30
Hexachlorocyclopentadiene	29	Q	35	Q	40-140	19	30
Hexachloroethane	41		46		40-140	11	30
Isophorone	53		68		40-140	25	30
Naphthalene	46		55		40-140	18	30
Nitrobenzene	50		63		40-140	23	30
NDPA/DPA	56		68		40-140	19	30

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Parameter	LCS %Recovery Q	LCSD ual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS -	- Westborough Lab Associated	sample(s): 03 Batch:	WG1963737-2 WG1963737-3		
n-Nitrosodi-n-propylamine	54	68	29-132	23	30
Bis(2-ethylhexyl)phthalate	54	64	40-140	17	30
Butyl benzyl phthalate	64	72	40-140	12	30
Di-n-butylphthalate	55	68	40-140	21	30
Di-n-octylphthalate	61	69	40-140	12	30
Diethyl phthalate	55	71	40-140	25	30
Dimethyl phthalate	57	75	40-140	27	30
Benzo(a)anthracene	53	58	40-140	9	30
Benzo(a)pyrene	58	60	40-140	3	30
Benzo(b)fluoranthene	57	60	40-140	5	30
Benzo(k)fluoranthene	61	59	40-140	3	30
Chrysene	56	59	40-140	5	30
Acenaphthylene	49	63	45-123	25	30
Anthracene	58	64	40-140	10	30
Benzo(ghi)perylene	61	64	40-140	5	30
Fluorene	53	62	40-140	16	30
Phenanthrene	56	61	40-140	9	30
Dibenzo(a,h)anthracene	61	62	40-140	2	30
Indeno(1,2,3-cd)pyrene	61	62	40-140	2	30
Pyrene	57	62	26-127	8	30
Biphenyl	43	53	40-140	21	30
4-Chloroaniline	50	63	40-140	23	30
2-Nitroaniline	56	75	52-143	29	30

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG 3-Nitroaniline 54 68 4-Nitroaniline 55 63 Dibenzofuran 50 57 2-Methylnaphthalene 46 56 1,2,4,5-Tetrachlorobenzene 39 47 Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66 4-Nitrophenol 26 41	VG1963737-2 WG1963737-3 25-145 23 30 51-143 14 30 40-140 13 30 40-140 20 30 2-134 19 30	
4-Nitroaniline 55 63 Dibenzofuran 50 57 2-Methylnaphthalene 46 56 1,2,4,5-Tetrachlorobenzene 39 47 Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	51-143 14 30 40-140 13 30 40-140 20 30	
Dibenzofuran 50 57 2-Methylnaphthalene 46 56 1,2,4,5-Tetrachlorobenzene 39 47 Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	40-140 13 30 40-140 20 30	
2-Methylnaphthalene 46 56 1,2,4,5-Tetrachlorobenzene 39 47 Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	40-140 20 30	
1,2,4,5-Tetrachlorobenzene 39 47 Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66		
Acetophenone 48 60 2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	2-134 19 30	
2,4,6-Trichlorophenol 48 72 p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	<u> </u>	
p-Chloro-m-cresol 56 73 2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	39-129 22 30	
2-Chlorophenol 50 64 2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	30-130 40 Q 30	
2,4-Dichlorophenol 50 66 2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	23-97 26 30	
2,4-Dimethylphenol 39 52 2-Nitrophenol 49 66	27-123 25 30	
2-Nitrophenol 49 66	30-130 28 30	
	30-130 29 30	
4-Nitrophenol 26 41	30-130 30 30	
	10-80 45 Q 30	
2,4-Dinitrophenol 61 89	20-130 37 Q 30	
4,6-Dinitro-o-cresol 55 81	20-164 38 Q 30	
Pentachlorophenol 57 80	9-103 34 Q 30	
Phenol 31 38	12-110 20 30	
2-Methylphenol 48 60	30-130 22 30	
3-Methylphenol/4-Methylphenol 51 64	30-130 23 30	
2,4,5-Trichlorophenol 54 78	30-130 36 Q 30	
Benzoic Acid 0 Q 0	Q 10-164 NC 30	
Benzyl Alcohol 50 62	26-116 21 30	
Carbazole 57 64	55-144 12 30	

Lab Control Sample Analysis

Project Name: HARBOR SQUARE

Lab Number:

L2447470

Project Number: 07173:15

Batch Quality Control

Report Date:

08/28/24

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 03 Batch: WG1963737-2 WG1963737-3

Surrogate	LCS %Recovery Qua	LCSD I %Recovery Qual	Acceptance Criteria
2-Fluorophenol	39	49	21-120
Phenol-d6	29	36	10-120
Nitrobenzene-d5	50	59	23-120
2-Fluorobiphenyl	50	63	15-120
2,4,6-Tribromophenol	46	64	10-120
4-Terphenyl-d14	52	58	41-149

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

rameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS-SIM - Wes	tborough Lab A	ssociated samp	ole(s): 03 Bato	ch: WG1963738-2 WG1963	3738-3	
Acenaphthene	48		52	40-140	8	40
2-Chloronaphthalene	48		53	40-140	10	40
Fluoranthene	58		65	40-140	11	40
Hexachlorobutadiene	39	Q	41	40-140	5	40
Naphthalene	43		48	40-140	11	40
Benzo(a)anthracene	55		62	40-140	12	40
Benzo(a)pyrene	64		71	40-140	10	40
Benzo(b)fluoranthene	58		68	40-140	16	40
Benzo(k)fluoranthene	60		64	40-140	6	40
Chrysene	54		59	40-140	9	40
Acenaphthylene	56		61	40-140	9	40
Anthracene	60		66	40-140	10	40
Benzo(ghi)perylene	73		81	40-140	10	40
Fluorene	52		57	40-140	9	40
Phenanthrene	55		62	40-140	12	40
Dibenzo(a,h)anthracene	78		85	40-140	9	40
Indeno(1,2,3-cd)pyrene	78		86	40-140	10	40
Pyrene	58		64	40-140	10	40
2-Methylnaphthalene	47		52	40-140	10	40
Pentachlorophenol	49		76	40-140	43	Q 40
Hexachlorobenzene	52		57	40-140	9	40
Hexachloroethane	40		44	40-140	10	40

Lab Control Sample Analysis

Project Name: HARBOR SQUARE

Batch Quality Control

Lab Number: L2447470

Project Number: 07173:15

Report Date:

08/28/24

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 03 Batch: WG1963738-2 WG1963738-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
- Currogate	/oncovery quar	wheelery quar	
2-Fluorophenol	41	49	21-120
Phenol-d6	35	40	10-120
Nitrobenzene-d5	66	76	23-120
2-Fluorobiphenyl	53	59	15-120
2,4,6-Tribromophenol	48	59	10-120
4-Terphenyl-d14	59	66	41-149

Lab Control Sample Analysis Batch Quality Control

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470

Report Date: 08/28/24

rameter	LCS %Recovery	Qual	LCSD %Recover	<u>y</u>		covery nits	RPD	Qual	RPD Limits
mivolatile Organics by GC/MS-SIM - Wes	tborough Lab A	ssociated sample	e(s): 02	Batch:	WG1964121-2	WG1964	121-3		
Acenaphthene	73		80		40-	140	9		40
2-Chloronaphthalene	74		78		40-	140	5		40
Fluoranthene	84		88		40-	140	5		40
Hexachlorobutadiene	70		73		40-	140	4		40
Naphthalene	66		69		40-	140	4		40
Benzo(a)anthracene	78		85		40-	140	9		40
Benzo(a)pyrene	91		99		40-	140	8		40
Benzo(b)fluoranthene	83		92		40-	140	10		40
Benzo(k)fluoranthene	88		87		40-	140	1		40
Chrysene	76		81		40-	140	6		40
Acenaphthylene	81		86		40-	140	6		40
Anthracene	85		91		40-	140	7		40
Benzo(ghi)perylene	92		116		40-	140	23		40
Fluorene	76		81		40-	140	6		40
Phenanthrene	79		85		40-	140	7		40
Dibenzo(a,h)anthracene	100		121		40-	140	19		40
Indeno(1,2,3-cd)pyrene	102		124		40-	140	19		40
Pyrene	83		86		40-	140	4		40
2-Methylnaphthalene	74		78		40-	140	5		40
Pentachlorophenol	96		103		40-	140	7		40
Hexachlorobenzene	74		80		40-	140	8		40
Hexachloroethane	69		70		40-	140	1		40

Lab Control Sample Analysis Batch Quality Control

Project Name: HARBOR SQUARE

Lab Number:

L2447470

Project Number: 07173:15

Report Date:

08/28/24

	LCS		LCSD		%Recovery			RPD
Parameter	%Recoverv	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS-SIM - Westborough Lab Associated sample(s): 02 Batch: WG1964121-2 WG1964121-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	53	55	21-120
Phenol-d6	41	45	10-120
Nitrobenzene-d5	88	89	23-120
2-Fluorobiphenyl	72	76	15-120
2,4,6-Tribromophenol	71	77	10-120
4-Terphenyl-d14	84	88	41-149

Serial_No:08282417:24

Project Name: HARBOR SQUARE

Project Number: 07173:15

Lab Number: L2447470 Report Date: 08/28/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information		rmation		Initial		Temp			Frozen	
	Container ID	Container Type	Cooler	pН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2447470-01A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-01B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-01C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-01D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
	L2447470-01E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
	L2447470-02A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-02B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-02C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-02D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
	L2447470-02E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
	L2447470-03A	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-03B	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-03C	Vial HCl preserved	Α	NA		3.6	Υ	Absent		NYTCL-8260(14)
	L2447470-03D	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)
	L2447470-03E	Amber 100ml unpreserved	Α	7	7	3.6	Υ	Absent		NYTCL-8270-RVT(7),NYTCL-8270-SIM-RVT(7)

Project Name: HARBOR SQUARE Lab Number: L2447470

Project Number: 07173:15 Report Date: 08/28/24

GLOSSARY

Acronyms

EDL

EPA

LOD

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or (SML) and the second of EDLs is specific to the analysis of PALIs using Salid Phase Microsystems (SML).

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

Environmental Protection Agency.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content,

where applicable. (DoD report formats only.)

LOQ - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated

using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:HARBOR SQUARELab Number:L2447470Project Number:07173:15Report Date:08/28/24

Footnotes

1 - The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benzo(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:HARBOR SQUARELab Number:L2447470Project Number:07173:15Report Date:08/28/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Serial_No:08282417:24

Project Name:HARBOR SQUARELab Number:L2447470Project Number:07173:15Report Date:08/28/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Serial_No:08282417:24

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 21

Page 1 of 1

Published Date: 04/17/2024

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Serial_No:08282417:24 **L2447470 27AUG24** Service Centers **NEW YORK** Page SESI Date Rec'd Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 CHAIN OF of In Lab 8/21/24 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 CUSTODY Westborough, MA 01581 Mansfield, MA 02048 Billing Information Deliverables Project Information 8 Walkup Dr. 320 Forbes Blvd ASP-B Same as Client Info Hurbor Savare ASP-A TEL: 508-898-9220 TEL: 508-822-9300 Project Name: FAX: 508-822-3288 FAX: 508-898-9193 Hobor Sque OSS: ning, NY EQuIS (4 File) EQuIS (1 File) PO# Project Location: Other Project # (77173:15 Client Information Disposal Site Information Regulatory Requirement (Use Project name as Project #) 959 US46 F13 S300 NY TOGS NY Part 375 Project Manager: Jon Stuart Please identify below location of Address: applicable disposal facilities. V AWQ Standards NY CP-51 Pursippens 15 07054 ALPHAQuote #: Other Disposal Facility: NY Restricted Use Turn-Around Time NY Standard V NY Unrestricted Use NJ Due Date: Fax: JCS OSPSI, Org NYC Sewer Discharge Other Rush (only if pre approved) # of Days: \ Email: Sample Filtration These samples have been previously analyzed by Alpha **ANALYSIS** Other project specific requirements/comments: Done Lab to do Preservation Lab to do Please specify Metals or TAL. (Please Specify below) Collection Sampler's ALPHA Lab ID Sample Sample ID Initials (Lab Use Only) Matrix Sample Specific Comments Date Time 8/20/24 970 5 CB rh 47470-5 1035 5 Container Code Preservative Code: Westboro: Certification No: MA935 Please print clearly, legibly Container Type P = Plastic A = None and completely. Samples can Mansfield: Certification No: MA015 B = HCI A = Amber Glass not be logged in and C = HNO₃ V = Vial В turnaround time clock will not Preservative G = Glass $D = H_2SO_4$ start until any ambiguities are B = Bacteria Cup E = NaOH F = MeOH C = Cube resolved. BY EXECUTING Received By: Date/Time Relinquished By: Date/Time O = Other THIS COC, THE CLIENT G = NaHSO, 8120124 1552 E = Encore HAS READ AND AGREES $H = Na_2S_2O_3$ D = BOD Bottle 8/20/64 1806 K/E = Zn Ac/NaOH TO BE BOUND BY ALPHA'S O = Other **TERMS & CONDITIONS** See reverse side.) Form No: 01-25 HC (rev. 30-Sept-2013).

Page 80 of 80

Dayton, NJ

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

SESI Consulting Engineers

07113:16, 1 Harbor Square, Ossining, NY

07173:16

SGS Job Number: JE16114

Sampling Date: 07/30/25

Report to:

js@sesi.org jcs@sesi.org

ATTN: Distribution4

Total number of pages in report: 21

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

Uga 4. agonou

Olga Azarian Technical Director

Client Service contact: Louie Devletter 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103),AZ (AZ0786),PA(68-00408),RI,SC,TX (T104704234),UT,VA,WA,WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

Sample Summary

Job No:

JE16114

SESI Consulting Engineers

07113:16, 1 Harbor Square, Ossining, NY Project No: 07173:16

Sample Number	Collected Date Ti	ime By	Received	Matr Code		Client Sample ID				
This report contains results reported as ND = Not detected. The following applies: Organics ND = Not detected above the MDL										
JE16114-1	07/30/25 10	0:20 ET	07/30/25	AQ	Ground Water	MW-2A				
JE16114-2	07/30/25 11	1:55 ET	07/30/25	AQ	Ground Water	MW-7A				
JE16114-3	07/30/25 00	0:00 ET	07/30/25	AQ	Ground Water	DUP20250730				
JE16114-4	07/30/25 11	1:55 ET	07/30/25	AQ	Trip Blank Water	ТВ				

Client Sample ID: MW-2A

 Lab Sample ID:
 JE16114-1
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2V116009.D 1 08/04/25 13:15 NW n/a n/a V2V4446

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units ()
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane ^a	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK) ^b	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride ^c	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene ^c	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
					_	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: MW-2A

 Lab Sample ID:
 JE16114-1
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

VOA TCL List

CAS No. Compound		Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m,p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Run# 2 Limits		
1868-53-7	Dibromofluoromethane	105%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	95%		80-12	20%	
2037-26-5	Toluene-D8	100%	80-120%			
460-00-4	4-Bromofluorobenzene	98%		14%		

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

⁽b) Associated CCV outside of control limits low. A sensitivity check was analyzed to demonstrate system suitability to detect affected analyte. Sample was ND.

⁽c) This compound in blank spike is outside in house QC limits bias high.

Client Sample ID: MW-2A

 Lab Sample ID:
 JE16114-1
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 3P112619.D
 1
 08/05/25 22:55 AC
 08/04/25 11:16 OP65947
 E3P5347

Run #2

Initial Volume Final Volume

Run #1 250 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

Compound	Result	RL	MDL	Units	Q
2-Chlorophenol	ND	4.0	0.37	ug/l	
4-Chloro-3-methyl phenol	ND	4.0	0.53	ug/l	
2,4-Dichlorophenol	ND	2.0	0.52	ug/l	
2,4-Dimethylphenol	ND	4.0	0.67	ug/l	
2,4-Dinitrophenol	ND	4.0	1.9	ug/l	
4,6-Dinitro-o-cresol	ND	4.0	1.5	ug/l	
2-Methylphenol	ND	2.0	0.47	ug/l	
3&4-Methylphenol	ND	2.0	1.5	ug/l	
2-Nitrophenol	ND	4.0	0.40	ug/l	
4-Nitrophenol	ND	8.0	0.45	ug/l	
Pentachlorophenol	ND	4.0	1.2	ug/l	
Phenol	ND	2.0	0.26	ug/l	
2,3,4,6-Tetrachlorophenol	ND	4.0	0.64	ug/l	
2,4,5-Trichlorophenol	ND	4.0	0.49	ug/l	
2,4,6-Trichlorophenol	ND	4.0	0.59	ug/l	
Acenaphthene	ND	1.0	0.61	ug/l	
Acenaphthylene	ND	1.0	0.42	ug/l	
Acetophenone	ND	2.0	0.52	ug/l	
Anthracene	ND	1.0	0.56	ug/l	
Atrazine	ND	2.0	0.72	ug/l	
Benzaldehyde	ND	4.0	0.44	ug/l	
Benzo(a)anthracene	ND	1.0	0.51	ug/l	
			0.63	-	
Benzo(b)fluoranthene	ND	1.0	0.57	-	
Benzo(g,h,i)perylene	ND	1.0	0.64	ug/l	
Benzo(k)fluoranthene	ND	1.0	0.48	ug/l	
	ND	2.0	0.55	ug/l	
			0.59	ug/l	
	ND	2.0	0.43	ug/l	
	ND	4.0	0.53	ug/l	
Carbazole	ND	1.0	0.58	ug/l	
	2-Chlorophenol 4-Chloro-3-methyl phenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 4,6-Dinitro-o-cresol 2-Methylphenol 3&4-Methylphenol 3-Methylphenol 2-Nitrophenol 4-Nitrophenol Pentachlorophenol Pentachlorophenol Phenol 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,5-Trichlorophenol Acenaphthene Acenaphthylene Acetophenone Anthracene Atrazine Benzaldehyde Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl ether Butyl benzyl phthalate 1,1'-Biphenyl 2-Chloronaphthalene 4-Chloroaniline	2-Chlorophenol ND 4-Chloro-3-methyl phenol ND 2,4-Dichlorophenol ND 2,4-Dimethylphenol ND 2,4-Dimitrophenol ND 4,6-Dinitro-o-cresol ND 2-Methylphenol ND 3&4-Methylphenol ND 4-Nitrophenol ND 4-Nitrophenol ND Pentachlorophenol ND Pentachlorophenol ND 2,3,4,6-Tetrachlorophenol ND 2,4,5-Trichlorophenol ND 2,4,5-Trichlorophenol ND Acenaphthene ND Acenaphthene ND Actophenone ND Artazine ND Benzo(a)anthracene ND Benzo(b)fluoranthene ND Benzo(k)fluoranthene ND Benzo(k)fluoranthene ND Benzo(b)rluoraphenol ND Benzo(b)rluoranthene ND Benzo(k)fluoranthene ND Benzo(k)fluoranthene ND Benzo(b)rluoranthene ND Benzo(k)fluoranthene ND	2-Chlorophenol ND 4.0 4-Chloro-3-methyl phenol ND 2.0 2,4-Dichlorophenol ND 4.0 2,4-Dimethylphenol ND 4.0 2,4-Dinitrophenol ND 4.0 4,6-Dinitro-o-cresol ND 4.0 2-Methylphenol ND 2.0 3&4-Methylphenol ND 2.0 3-Methylphenol ND 2.0 2-Nitrophenol ND 4.0 4-Nitrophenol ND 4.0 4-Nitrophenol ND 4.0 4-Nitrophenol ND 4.0 Pentachlorophenol ND 4.0 Phenol ND 2.0 2,3,4,6-Tetrachlorophenol ND 4.0 2,4,5-Trichlorophenol ND 4.0 2,4,6-Trichlorophenol ND 4.0 Acenaphthene ND 1.0 Acenaphthene ND 1.0 Acetophenone ND 2.0 Anthracene ND 1.0 Arrazine ND 2.0 Benzaldehyde ND 4.0 Benzo(a)anthracene ND 1.0 Benzo(b)fluoranthene ND 1.0 Benzo(b)fluoranthene ND 1.0 Benzo(b)fluoranthene ND 1.0 Benzo(k)fluoranthene ND 1.0	2-Chlorophenol ND 4.0 0.37 4-Chloro-3-methyl phenol ND 2.0 0.52 2,4-Dichlorophenol ND 4.0 0.67 2,4-Dimethylphenol ND 4.0 0.67 2,4-Dinitrophenol ND 4.0 1.9 4,6-Dinitro-o-cresol ND 4.0 1.5 2-Methylphenol ND 2.0 0.47 3&4-Methylphenol ND 2.0 1.5 2-Nitrophenol ND 4.0 0.40 4-Nitrophenol ND 4.0 0.40 4-Nitrophenol ND 4.0 1.2 Pentachlorophenol ND 4.0 1.2 Phenol ND 2.0 0.26 2,3,4,6-Tetrachlorophenol ND 4.0 0.64 2,4,5-Trichlorophenol ND 4.0 0.49 2,4,6-Trichlorophenol ND 4.0 0.59 Acenaphthene ND 1.0 0.61 Acenaphthylene ND 1.0 0.61 Acenaphthylene ND 1.0 0.52 Anthracene ND 1.0 0.56 Atrazine ND 2.0 0.72 Benzaldehyde ND 4.0 0.44 Benzo(a)anthracene ND 1.0 0.51 Benzo(b)fluoranthene ND 1.0 0.63 Benzo(b)fluoranthene ND 1.0 0.64 4-Bromophenyl phenyl ether ND 1.0 0.48 4-Bromophenyl phenyl ether ND 1.0 0.55 Butyl benzyl phthalate ND 2.0 0.55 Butyl benzyl phthalate ND 2.0 0.59 2-Chloronaphthalene ND 1.0 0.59 2-Chloronaphthalene ND 2.0 0.43 4-Chloroaniline ND 2.0 0.43	2-Chlorophenol

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-2A

 Lab Sample ID:
 JE16114-1
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.35	ug/l	
218-01-9	Chrysene	ND	1.0	0.52	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.46	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1 2,2'-Oxybis(1-chloropropane)		ND	2.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.60	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.56	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	1.1	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.50	ug/l	
132-64-9	Dibenzofuran	ND	4.0	0.73	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	1.6	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.58	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.55	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	37.4	2.0	1.3	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.58	ug/l	
86-73-7	Fluorene	ND	1.0	0.59	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.54	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.35	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	8.0	0.98	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.64	ug/l	
78-59-1	Isophorone	ND	2.0	0.39	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.64	ug/l	
88-74-4	2-Nitroaniline	ND	4.0	0.62	ug/l	
99-09-2	3-Nitroaniline	ND	4.0	0.64	ug/l	
100-01-6	4-Nitroaniline	ND	4.0	0.75	ug/l	
91-20-3	Naphthalene	ND	1.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.65	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.0	0.42	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.48	ug/l	
129-00-0	Pyrene	ND	1.0	0.50	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits		
367-12-4	2-Fluorophenol	42%		10-69	9%	

367-12-4 2-Fluorophenol 42% 10-69%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-2A

 Lab Sample ID:
 JE16114-1
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

Surrogate Recoveries	Run# 1	Run# 2	Limits
Phenol-d5	30%		10-47%
2,4,6-Tribromophenol	75%		17-144%
Nitrobenzene-d5	66%		17-126%
2-Fluorobiphenyl	68%		23-124%
Terphenyl-d14	52%		13-135%
	Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl	Phenol-d5 30% 2,4,6-Tribromophenol 75% Nitrobenzene-d5 66% 2-Fluorobiphenyl 68%	Phenol-d5 30% 2,4,6-Tribromophenol 75% Nitrobenzene-d5 66% 2-Fluorobiphenyl 68%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: MW-7A

 Lab Sample ID:
 JE16114-2
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 2U78668.D 1 07/31/25 18:50 NW n/a n/a V2U2766

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units ()
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	
					_	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7A

 Lab Sample ID:
 JE16114-2
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.62	1.0	0.51	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m, p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	# 2 Limits		
1868-53-7	Dibromofluoromethane	101%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	101%		80-12	20%	
2037-26-5	Toluene-D8	102%	80-120%			
460-00-4	4-Bromofluorobenzene	100%	82-114%			

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7A

 Lab Sample ID:
 JE16114-2
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 3P112620.D
 1
 08/05/25 23:15 AC
 08/04/25 11:16 OP65947
 E3P5347

Run #2

Initial Volume Final Volume

Run #1 250 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.0	0.37	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.0	0.53	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	0.52	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.0	0.67	ug/l	
51-28-5	2,4-Dinitrophenol	ND	4.0	1.9	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.0	1.5	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.47	ug/l	
	3&4-Methylphenol	ND	2.0	1.5	ug/l	
88-75-5	2-Nitrophenol	ND	4.0	0.40	ug/l	
100-02-7	4-Nitrophenol	ND	8.0	0.45	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.2	ug/l	
108-95-2	Phenol	ND	2.0	0.26	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.0	0.64	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.0	0.49	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.0	0.59	ug/l	
83-32-9	Acenaphthene	23.4	1.0	0.61	ug/l	
208-96-8	Acenaphthylene	0.52	1.0	0.42	ug/l	J
98-86-2	Acetophenone	ND	2.0	0.52	ug/l	
120-12-7	Anthracene	ND	1.0	0.56	ug/l	
1912-24-9	Atrazine	ND	2.0	0.72	ug/l	
100-52-7	Benzaldehyde	ND	4.0	0.44	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.51	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.63	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.57	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.48	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.55	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.86	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.59	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.43	ug/l	
106-47-8	4-Chloroaniline	ND	4.0	0.53	ug/l	
86-74-8	Carbazole	ND	1.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-7A

 Lab Sample ID:
 JE16114-2
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.35	ug/l	
218-01-9	Chrysene	ND	1.0	0.52	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.46	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.60	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.56	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	1.1	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.50	ug/l	
132-64-9	Dibenzofuran	ND	4.0	0.73	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	1.6	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.58	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.55	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	4.5	2.0	1.3	ug/l	
206-44-0	Fluoranthene	3.8	1.0	0.58	ug/l	
86-73-7	Fluorene	ND	1.0	0.59	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.54	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.35	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	8.0	0.98	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.64	ug/l	
78-59-1	Isophorone	ND	2.0	0.39	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.64	ug/l	
88-74-4	2-Nitroaniline	ND	4.0	0.62	ug/l	
99-09-2	3-Nitroaniline	ND	4.0	0.64	ug/l	
100-01-6	4-Nitroaniline	ND	4.0	0.75	ug/l	
91-20-3	Naphthalene	ND	1.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.65	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.0	0.42	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.48	ug/l	
129-00-0	Pyrene	3.2	1.0	0.50	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
367-12-4	2-Fluorophenol	35%		10-69	9%	

367-12-4 2-Fluorophenol 35% 10-69%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: MW-7A

 Lab Sample ID:
 JE16114-2
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	25%		10-47%
118-79-6	2,4,6-Tribromophenol	64%		17-144%
4165-60-0	Nitrobenzene-d5	52%		17-126%
321-60-8	2-Fluorobiphenyl	52%		23-124%
1718-51-0	Terphenyl-d14	44%		13-135%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Client Sample ID: DUP20250730

 Lab Sample ID:
 JE16114-3
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1U78669.D 1 07/31/25 19:05 NW n/a n/a V1U2766
Run #2

Purge Volume
Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis Page 2 of 2

Client Sample ID: DUP20250730

 Lab Sample ID:
 JE16114-3
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	0.68	1.0	0.51	ug/l	J
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m, p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	103%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	103%		80-12	20%	
2037-26-5	Toluene-D8	104%		80-12	20%	
460-00-4	4-Bromofluorobenzene	99%		82-1	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: DUP20250730 Lab Sample ID: JE16114-3

 Lab Sample ID:
 JE16114-3
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 3P112621.D
 1
 08/05/25 23:35 AC
 08/04/25 11:16 OP65947
 E3P5347

Run #2

Initial Volume Final Volume

Run #1 250 ml 1.0 ml

Run #2

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	4.0	0.37	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	4.0	0.53	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.0	0.52	ug/l	
105-67-9	2,4-Dimethylphenol	ND	4.0	0.67	ug/l	
51-28-5	2,4-Dinitrophenol	ND	4.0	1.9	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	4.0	1.5	ug/l	
95-48-7	2-Methylphenol	ND	2.0	0.47	ug/l	
	3&4-Methylphenol	ND	2.0	1.5	ug/l	
88-75-5	2-Nitrophenol	ND	4.0	0.40	ug/l	
100-02-7	4-Nitrophenol	ND	8.0	0.45	ug/l	
87-86-5	Pentachlorophenol	ND	4.0	1.2	ug/l	
108-95-2	Phenol	ND	2.0	0.26	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.0	0.64	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	4.0	0.49	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	4.0	0.59	ug/l	
83-32-9	Acenaphthene	31.5	1.0	0.61	ug/l	
208-96-8	Acenaphthylene	0.54	1.0	0.42	ug/l	J
98-86-2	Acetophenone	ND	2.0	0.52	ug/l	
120-12-7	Anthracene	ND	1.0	0.56	ug/l	
1912-24-9	Atrazine	ND	2.0	0.72	ug/l	
100-52-7	Benzaldehyde	ND	4.0	0.44	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.0	0.51	ug/l	
50-32-8	Benzo(a)pyrene	ND	1.0	0.63	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.57	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.64	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.48	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.55	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.0	0.86	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.0	0.59	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.0	0.43	ug/l	
106-47-8	4-Chloroaniline	ND	4.0	0.53	ug/l	
86-74-8	Carbazole	ND	1.0	0.58	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: DUP20250730 Lab Sample ID: **Date Sampled:** 07/30/25 JE16114-3 **Matrix:** AQ - Ground Water **Date Received:** 07/30/25 Method: SW846 8270E SW846 3510C Percent Solids: n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.35	ug/l	
218-01-9	Chrysene	ND	1.0	0.52	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.46	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.43	ug/l	
108-60-1	2,2'-Oxybis(1-chloropropane)	ND	2.0	0.50	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.60	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.56	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	1.1	ug/l	
123-91-1	1,4-Dioxane	ND	1.0	0.18	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.50	ug/l	
132-64-9	Dibenzofuran	1.6	4.0	0.73	ug/l	J
84-74-2	Di-n-butyl phthalate	ND	2.0	0.53	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	1.6	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.58	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.55	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	2.8	2.0	1.3	ug/l	
206-44-0	Fluoranthene	4.4	1.0	0.58	ug/l	
86-73-7	Fluorene	2.8	1.0	0.59	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.54	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.35	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	8.0	0.98	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.55	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.64	ug/l	
78-59-1	Isophorone	ND	2.0	0.39	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.64	ug/l	
88-74-4	2-Nitroaniline	ND	4.0	0.62	ug/l	
99-09-2	3-Nitroaniline	ND	4.0	0.64	ug/l	
100-01-6	4-Nitroaniline	ND	4.0	0.75	ug/l	
91-20-3	Naphthalene	ND	1.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.42	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.65	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	4.0	0.42	ug/l	
85-01-8	Phenanthrene	ND	1.0	0.48	ug/l	
129-00-0	Pyrene	3.4	1.0	0.50	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.48	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	

367-12-4 2-Fluorophenol 45% 10-69%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: DUP20250730

 Lab Sample ID:
 JE16114-3
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Ground Water
 Date Received:
 07/30/25

 Method:
 SW846 8270E
 SW846 3510C
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

ABN TCL List (SOM0 2.0)

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
4165-62-2	Phenol-d5	33%		10-47%
118-79-6	2,4,6-Tribromophenol	78%		17-144%
4165-60-0	Nitrobenzene-d5	64%		17-126%
321-60-8	2-Fluorobiphenyl	67%		23-124%
1718-51-0	Terphenyl-d14	57%		13-135%

ND = Not detected MDL = Method Detection Limit J = Indicates an estimated value

RL = Reporting Limit

E = Indicates value exceeds calibration range

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Client Sample ID: TB

 Lab Sample ID:
 JE16114-4
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 1U78663.D 1 07/31/25 17:35 NW n/a n/a V1U2766

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
67-64-1	Acetone	ND	10	3.1	ug/l	
71-43-2	Benzene	ND	0.50	0.43	ug/l	
74-97-5	Bromochloromethane	ND	1.0	0.48	ug/l	
75-27-4	Bromodichloromethane	ND	1.0	0.45	ug/l	
75-25-2	Bromoform	ND	1.0	0.63	ug/l	
74-83-9	Bromomethane	ND	2.0	1.6	ug/l	
78-93-3	2-Butanone (MEK)	ND	10	2.7	ug/l	
75-15-0	Carbon disulfide	ND	2.0	1.8	ug/l	
56-23-5	Carbon tetrachloride	ND	1.0	0.55	ug/l	
108-90-7	Chlorobenzene	ND	1.0	0.56	ug/l	
75-00-3	Chloroethane	ND	1.0	0.73	ug/l	
67-66-3	Chloroform	ND	1.0	0.50	ug/l	
74-87-3	Chloromethane ^a	ND	1.0	0.76	ug/l	
110-82-7	Cyclohexane	ND	5.0	0.78	ug/l	
96-12-8	1,2-Dibromo-3-chloropropane	ND	2.0	0.53	ug/l	
124-48-1	Dibromochloromethane	ND	1.0	0.56	ug/l	
106-93-4	1,2-Dibromoethane	ND	1.0	0.48	ug/l	
95-50-1	1,2-Dichlorobenzene	ND	1.0	0.53	ug/l	
541-73-1	1,3-Dichlorobenzene	ND	1.0	0.54	ug/l	
106-46-7	1,4-Dichlorobenzene	ND	1.0	0.51	ug/l	
75-71-8	Dichlorodifluoromethane	ND	2.0	0.56	ug/l	
75-34-3	1,1-Dichloroethane	ND	1.0	0.57	ug/l	
107-06-2	1,2-Dichloroethane	ND	1.0	0.60	ug/l	
75-35-4	1,1-Dichloroethene	ND	1.0	0.59	ug/l	
156-59-2	cis-1,2-Dichloroethene	ND	1.0	0.51	ug/l	
156-60-5	trans-1,2-Dichloroethene	ND	1.0	0.54	ug/l	
78-87-5	1,2-Dichloropropane	ND	1.0	0.51	ug/l	
10061-01-5	cis-1,3-Dichloropropene	ND	1.0	0.47	ug/l	
10061-02-6	trans-1,3-Dichloropropene	ND	1.0	0.43	ug/l	
100-41-4	Ethylbenzene	ND	1.0	0.60	ug/l	
76-13-1	Freon 113	ND	5.0	0.58	ug/l	
591-78-6	2-Hexanone	ND	5.0	4.8	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Client Sample ID: TB

 Lab Sample ID:
 JE16114-4
 Date Sampled:
 07/30/25

 Matrix:
 AQ - Trip Blank Water
 Date Received:
 07/30/25

 Method:
 SW846 8260D
 Percent Solids:
 n/a

Project: 07113:16, 1 Harbor Square, Ossining, NY

VOA TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q
98-82-8	Isopropylbenzene	ND	1.0	0.65	ug/l	
79-20-9	Methyl Acetate	ND	5.0	0.80	ug/l	
108-87-2	Methylcyclohexane	ND	5.0	0.60	ug/l	
1634-04-4	Methyl Tert Butyl Ether	ND	1.0	0.51	ug/l	
108-10-1	4-Methyl-2-pentanone(MIBK)	ND	5.0	4.9	ug/l	
75-09-2	Methylene chloride	ND	2.0	1.0	ug/l	
100-42-5	Styrene	ND	1.0	0.49	ug/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	0.65	ug/l	
127-18-4	Tetrachloroethene	ND	1.0	0.56	ug/l	
108-88-3	Toluene	ND	1.0	0.49	ug/l	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	0.50	ug/l	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	0.50	ug/l	
71-55-6	1,1,1-Trichloroethane	ND	1.0	0.54	ug/l	
79-00-5	1,1,2-Trichloroethane	ND	1.0	0.53	ug/l	
79-01-6	Trichloroethene	ND	1.0	0.53	ug/l	
75-69-4	Trichlorofluoromethane	ND	2.0	0.40	ug/l	
75-01-4	Vinyl chloride	ND	1.0	0.52	ug/l	
	m, p-Xylene	ND	1.0	0.78	ug/l	
95-47-6	o-Xylene	ND	1.0	0.59	ug/l	
1330-20-7	Xylene (total)	ND	1.0	0.59	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	102%		80-12	20%	
17060-07-0	1,2-Dichloroethane-D4	103%		80-12	20%	
2037-26-5	Toluene-D8	101%		80-12	20%	
460-00-4	4-Bromofluorobenzene	99%		82-11	14%	

⁽a) Associated CCV outside of control limits high, sample was ND.

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client / Reporting Information Company Name: SES / Street Address 959 US 46E	Project Name: Haybor Squar	Billing Information (If different from Report to)	rton	FED-EX Tracking W SGS Quote #	Page L of L Bottle Order Control # LD - C72221-257 SGS Job # Matrix Codes DW - Drinking Water GW - Ground Water WW - Water SW - Surface Water SU - Soal SL - Sudge
Cty State Parsiponity NJ Proact Cordet Emat NOE SY OV OLIVO 156055100 Prone # 973 800 0 835 Samperis Name(s) Flisa Taybell	Project Manager 102 SCAYAMO	Congany Name See See Address City Attention:	State Zp Number of Bottles	TCL - VOC. S VOC.	SED-Sedment OI - OI UI) - Other Uquid ARR - Ar SOL - Other Sold WP - Wipe FB - Field Blank EB-Equipment Blank RB - Rinse Blank TB - Try Blank
5004 Field ID / Point of Collection 1 MW - 2A 2 MW - 7A 3 DAP205573	MEDHIDI Vali # Date Time 1/30/25 10:20 1/30/25 11:55	ET G GW 5 3		メ メ 7	LAB USE ONLY
3 DUP20250130 TD	The state of the s				
			Deliverable		Commants' Statistic Instructions
Turn Around Time (Bu 18 Business Days 5 Business Days 2 Business Days* 1 Business Days*	Approved By (SGS PM) / Date:	Commercial "A" (Level 1) Commercial "B" (Level 2) NJ Reduced (Level 3) Full Tier (Level 4) Commercial "C" NJ DKQP	NYASP Category A NYASP Category B COTT MAMOP Criteria CT RCP Criteria State Forms EDD Format	pare to MY as we excelline	Comments / Special Instructions • Q×250ml Assessment3
Sample Custody must be documented below each time s Retinquished by: 1 F SA TABLE Date / Time 1 F SA TABLE Dete / Time 3	25@4.74 1 Received By:	tor delivery.	At a Bonulus colur, Commandel 1921 - Results - OC Summary + Partial Raw data at 1°C" = Results - OC Summary + Partial Raw data satingular for the	2 [53 Data Tigns: Data / Tigns:	http://www.s.gs.com/en/terms-and-conditions Received by: Received by: 4 Cooker Isson, 'C
Retinquished by: Dete / Time	: Received By:		The state of the s	No. of the state o	1-2(116)

JE16114: Chain of Custody Page 1 of 2

SGS Sample Receipt Summary

Job Number:	JE16114 Clie	nt: SESI CONSUL	TING ENGI	NEERS	Project: HARBOR SQL	JARE, OSS	INING, N	Y
Date / Time Received:	7/30/2025 7:38:00 PM	Delivery Meth	od:S	GS COURIER	Airbill #'s:			
Cooler Temps (Raw Mea	asured) °C: Cooler 1: (1	.0);						
Cooler Temps (Cor	rected) °C: Cooler 1: (1	.0);						
Cooler Security	Y or N	<u>_Y</u>	or N	Sample Integ	rity - Documentation	<u>Y</u>	or N	
1. Custody Seals Present:	<u>. </u>	C Present: ✓		Sample labe	Is present on bottles:	•		
2. Custody Seals Intact:	✓ 4. Smpl D	ates/Time OK			peling complete:	•		
Cooler Temperature	Y or N			3. Sample cont	ainer label / COC agree:	•		
1. Temp criteria achieved:				Sample Integ	rity - Condition	<u>Y</u>	or N	
Cooler temp verification	: IR-50	<u></u>		Sample recv		•		
3. Cooler media:	Ice (Bag)			· ·	s accounted for:	•		
4. No. Coolers:	1	_		3. Condition of	sample:		ntact	
Quality Control Preserv	vatio Y or N M	<u>√A</u>		Sample Inter	rity - Instructions	Υ	or N	N/A
				Sample integ	nty monaonono		01 14	
1. Trip Blank present / coo				_	quested is clear:	<u> </u>		
Trip Blank present / coo Trip Blank listed on COO				1. Analysis red				
·	c: 🗹 🗆			Analysis rece Bottles rece	quested is clear:			
2. Trip Blank listed on CO	C: 🗹 🗆			Analysis rece Bottles rece Sufficient vo	quested is clear: ived for unspecified tests	<u>✓</u>		<u> </u>
Trip Blank listed on COC Samples preserved property.	C: 🗹 🗆			Analysis rec Bottles rece Sufficient vo Compositing	quested is clear: ived for unspecified tests blume recvd for analysis:		□ ✓	
Trip Blank listed on COC Samples preserved property.	C: 🗹 🗆		pH 12+:	Analysis rec Bottles rece Sufficient vo Compositing	quested is clear: ived for unspecified tests plume recvd for analysis: g instructions clear: tructions clear:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y y
Trip Blank listed on COO Samples preserved prop VOCs headspace free:	C: V		pH 12+:	Analysis rec Bottles rece Sufficient vo Compositing Filtering inst	quested is clear: ived for unspecified tests plume recvd for analysis: g instructions clear: tructions clear:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y y
Trip Blank listed on COC Samples preserved prop VOCs headspace free: Test Strip Lot #s:	C: V		pH 12+:	Analysis rec Bottles rece Sufficient vo Compositing Filtering inst	quested is clear: ived for unspecified tests plume recvd for analysis: g instructions clear: tructions clear:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y y
Trip Blank listed on COC Samples preserved prop VOCs headspace free: Test Strip Lot #s:	C: V		pH 12+:	Analysis rec Bottles rece Sufficient vo Compositing Filtering inst	quested is clear: ived for unspecified tests plume recvd for analysis: g instructions clear: tructions clear:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y y
Trip Blank listed on COC Samples preserved prop VOCs headspace free: Test Strip Lot #s:	C: V		pH 12+:	Analysis rec Bottles rece Sufficient vo Compositing Filtering inst	quested is clear: ived for unspecified tests plume recvd for analysis: g instructions clear: tructions clear:		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	y y

SM089-03 Rev. Date 12/7/17

> JE16114: Chain of Custody Page 2 of 2

Groundwater Sampling Purge Sheets

Location:			-	Job Number:	7173	WELL I.D. : N	IW-2A			
Personnel:	TAJ		-	Date:	7/10/2023					
			•	PID:	0		SE			
Stickup N	Distance From Rim	Total Depth of	Depth to	Depth to Water	Standing	Middle of	Depth to	TOV @ Well	Pump	
Distance ground to	to PVC	Well Rim/PVC	Product	(Rim/PVC)	Water Column	Saturated	Sample Tube	Head (ppmv)	Peristaltic	
Stickup Rim/PVC	torve	Well Killi/F VC	Rim/PVC	(14111//- 40)	(feet)	Zone (feet)	(feet)	rieau (ppiliv)	or Bladder	
	0.3'	26	NE	4.62	21.38	15.31	15		Peristaltic	
Turbidity at co	Turbidity at collection (NTU): 22.8 (Less than 5 NTU is desirable) Duplicate Collected? Y				Filtered Sam	ple N				
Stabilizatio	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	mV No Limit drawdown desirable			
	1	1		Considia	Discolved	I ODD	1		1	
Volume Purged	Time (actual Time)	TEMP.		Specific	Dissolved	ORP	Turbidity	DTW	Odors	
(gallons)	5 minute Intervals	(Deg. C)	pН	Conductivity	Oxygen	mV	NTUs	(feet)	Y/N	
	020	40.22	7 22	uS/cm	(mg/L)	millivolts	20.0	5 0	N	
	930 935	19.32	7.22 7.28	4.74 4.79	0	16 -59	30.9 28.6	5.9 7.3	N N	
	940	18.74 18.49	7.20	4.79	0	-86	23.6	9.5	N N	
	945	18.3	7.32	4.78	0	-93	22.2	11.8	N	
	950	18.12	7.32	4.78	0	-95	20.1	11.9	N	
1	955	18.02	7.33	4.79	0	-98	22.8	12	N	
			<u> </u>	all Condition Summ	<u> </u>					
		ī	T VV	ell Condition Summa	ary	1		1		
Cover: Y		Bolts: Y		Concrete Pad OK:		Gripper: Y				
	1	T	Samı	ole Collection Inform	nation		1			
Sample Time:	1000	Appearance: Cle		Filtered Sample Tu	-					
establish stabilization. Notes/ Calculations:	n (slow drip) & turbidity <10 if possible. sing; 1"=0.041 gal. 2"= 0.163		d and unfiltered sample	es. Notify PM of high turbidity and o	collection of filtered samples	s prior to lab submittal.		Minimum 20	minute purge to	
				ABSORBENT SOCK	(
Sock Length (ft) =		Capacity	(Qt.) =		Present:	Y/N	Product Measu	red (Inches):		
Sock Insta	llation Date:			Sock Cha	inged :	Y/N				
Sock Dept	h (Depth to sock mid p	ooint):				· · ·				

Location:		, NY	_	Job Number:	7173	WELL I.D. : M). : MW-7A		
Personnel:	TAJ		-	Date:	7/10/2023				
				PID:	0		SE		
Stickup N	Distance From Rim	Total Depth of	Depth to	Depth to Water	Standing	Middle of	Depth to	TOV @ Well	Pump
Distance ground to Stickup Rim/PVC	to PVC	Well Rim/PVC	Product Rim/PVC	(Rim/PVC)	Water Column (feet)	Saturated Zone (feet)	Sample Tube (feet)	Head (ppmv)	Peristaltic or Bladder
	0.5'	32	NE	7.4	24.6	19.7	20		Peristaltic
Turbidity at co	ollection (NTU):	20.7	(Less than	5 NTU is desirable)	Dup	licate Collecte	d? N Filtered Sample		ple N
Stabilizatio	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	mV No Limit <.3 feet drawdown No desirable		
	1	1	1	Coosific	Dissolved	ORP	1		1
Volume Purged	Time (actual Time)	TEMP.		Specific			Turbidity	DTW	Odors
(gallons)	5 minute Intervals	(Deg. C)	pН	Conductivity uS/cm	Oxygen (mg/L)	mV millivolts	NTUs	(feet)	Y/N
	1100	20.64	7.32	7.39	0	25	36.9	8.02	N
	1105	18.77	6.92	7.67	0	87	33.7	8.05	N
	1110	18.28	6.89	7.69	0	-92	25.3	8.08	N
	1115	18.13	6.87	7.59	0	-97	22.2	8.08	N
	1120	18.06	6.84	7.58	0	-101	23.9	8.08	N
1.5	1125	18.05	6.84	7.55	0	-102	20.7	8.08	N
Cover: Y	4400	Bolts: Y	Samı	ell Condition Summa Concrete Pad OK:	Y nation	Gripper: Y	OTHER		
Sample Time:	1130	Appearance: Cl							
establish stabilization. Notes/ Calculations:	n (slow drip) & turbidity <10 if possible sing; 1"=0.041 gal. 2"= 0.163			es. Notify PM of high turbidity and o		s prior to lab submittal.		Minimum 20	minute purge to
Sock Longth (ft) =		Capacity		ADOURDENT SUCK	Present:	Y/N	Product Measu	red (Inches) :	
Sock Length (ft) =	I llation Date:	Capacity	(\(\alpha(\text{i.}) =	Sock Cha		Y/N	F TOUUCI WIEdSt	iieu (iiiciies) .	
	h (Depth to sock mid p	ooint):		J SOCK CHA	iliyeu .	1 1 / N	1		
L									

Location:	1 Harbor Squar	e, Ossining, NY		Job Number:	7173	WELL I.D. : MW-2A			
Personnel:				Date:	8/20/2024				
Personner.	Cinistial	Darietta		PID:	PPM		SES		
Stickup? N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	3"	25.98	NE	15.28	10.7	20	20		Peristaltic
Turbidity at co	ellection (NTU):	40.4	(Less than 5 N	TU is desirable)	Г	Ouplicate Collected?	Y	Filtered	Sample N
Stabilization	ı Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable	No Limit
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg. C)	рН	Specific Conductivity uS/cm	Dissolved Oxygen (mg/L)	ORP mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
	9:00	20.02	7.23	530	0.56	-116	69.3	15.26	N
	9:05	18.56	7.23	543	0.29	-126	47.2	15.44	N
	9:10	18	7.24	546	0.21	-132	48.1	15.71	N
	9:15	18	7.25	545	0.19	-134	40	16.21	N
	9:20	17.86	7.26	548	0.17	-136	40.4	16.48	N
				Well Conditi	on Summary				
				Well Colluit	on Summary				
Cover: Y		Bolts: Y		Concrete Pad OK: Y Sample Collect		Gripper: Y			
				Janiple Collect	ion inionnation				
Sample Time: 9:20 Appearance: Clear Desired purge flow rate <100mL/min (slow drip) & turbidity <10 if possible. If turbidity > 10 collect filtered and unfiltered samples. No				Filtered Sample Turl	<u> </u>		OTHER: mum 20 minute purge to establish s	tabilization	
Notes/ Calculations:	sing; 1"=0.041 gal. 2"= 0.16	•	rough and find			IVIII	20 mmate purge to establish s		
				ABSORBE	NT SOCK				
Sock Length (ft) =		Capacit	y (Qt.) =	0	Present:	Y/N	Product Meas	ured (Inches) :	
Sock Instal	lation Date: pth (Depth to sock mi	id noint):		Sock Cl	nanged :	Y / N			
SOCK DE	pui (Depui to sock Mi	ա բաււլ.							

Location:		e, Ossining, NY	•	Job Number:	7173	WELL I.D. : MW-7A			
Personnel:	Christian	n Barletta	•	Date:	8/20/2024		CEC	N I	
				PID:	РРМ		SES CONSULTING ENGIN		
Stickup? N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	2"	32	NE	11.2	20.8	21	21		Peristaltic
Turbidity at co	ollection (NTU):		(Less than 5 N	TU is desirable)	Γ	Ouplicate Collected?	N	Filtered Sample N	
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable No Limit	
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg. C)	рН	Specific Conductivity uS/cm	Dissolved Oxygen (mg/L)	ORP mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
	10:15	18.91	6.88	860	0.53	-103	27.5	11.2	N
	10:20	17.7	6.86	882	0.21	-109	24.9	11.25	N
	10:25	17.47	6.9	870	0.42	-116	19.5	11.31	N
	10:30	17	6.88	877	0.61	-112	8.9	11.36	N
	10:35	16.87	6.84	877	0.65	-113	7.5	11.42	N
				Well Conditi	on Summary			-	
Cover: Y		Bolts: Y		Concrete Pad OK: Y Sample Collect		Gripper: Y			
Sample Time:	10:35	Appearance: Clear		Filtered Sample Turk	•		OTHER:		
Notes/ Calculations:	in (slow drip) & turbidity <10 if possib sing; 1"=0.041 gal. 2"= 0.16	le. If turbidity > 10 collect filtered and 63 gal. 4"=0.653 gal.	unfiltered samples. Notify PM of hig			Mir	ilmum 20 minute purge to establish s	tabilization.	
	1		(01)	ABSORBE	NT SOCK				1
Sock Length (ft) = Sock Instal		Capacit	y (Qt.) =	Sock Ct	Present:	Y/N Y/N	Product Meas	ured (Inches) :	
	pth (Depth to sock m	id point):		1 JOCK OI	.agou .	1 / 14	1		
	, , -p	1 . 7							

Location:		e, Ossining, NY		Job Number:	7173	WELL I.D. : MW-2A			
Personnel:	Elisa	Tarbell		Date:	7/30/2025		CEC		
				PID:	0.0		SES CONSULTING ENGINE		
Stickup? N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	3"	25.99	NE	13.26	12.73	19.63	19		Peristaltic
Turbidity at co	ellection (NTU):	24.5	(Less than 5 N	TU is desirable)	С	Ouplicate Collected?	Filtered Sample N		Sample N
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV No Limit		<.3 feet drawdown desirable	No Limit
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg.	рН	Specific Conductivity uS/cm	Dissolved Oxygen (mg/L)	ORP mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
	10:00	20.17	7.25	505	0.38	-82	40.2	16.33	N
	10:05	19.98	7.27	509	0.22	-97	30.2	16.58	N
	10:10	19.93	7.27	511	0.16	-102	24.6	16.60	N
	10:15	19.92	7.28	512	0.13	-104	24.5	16.62	N
	10:20	19.93	7.28	513	0.12	-104	24.5	16.64	N
				Well Conditi	on Summary				
				Well Conditi	on Summary				
Cover: Y		Bolts: Y		Concrete Pad OK: Y	ion Information	Gripper: Y			
Sample Time: 10:20 Appearance: Clear			Filtered Sample Turbidity:				OTHER:		
Desired purge flow rate <100mL/mi Notes/ Calculations:	in (slow drip) & turbidity <10 if possib	le. If turbidity > 10 collect filtered and	unfiltered samples. Notify PM of hig	gh turbidity and collection of filtered s	amples prior to lab submittal.	Mir	nimum 20 minute purge to establish	stabilization.	
	sing; 1"=0.041 gal. 2"= 0.1	163 gal. 4"=0.653 gal.							
			(21)	ABSORBE	NT SOCK				
Sock Length (ft) =		Capacit	y (Qt.) =	0	Present:	Y/N	Product Meas	ured (Inches) :	
Sock Install	lation Date: oth (Depth to sock m	id noint):		Sock Cl	nanged :	Y / N	•		
Sock Det	ուս (Dehrii to 200K III	ια μυπιή.							

LOW-FLOW GROUNDWATER SAMPLING LOG

Location: 1 Harbor Square, Ossining, NY					WELL I.D. : WW-7A				
Personnel: Elisa Tarbell			Date: 7/30/2025			SES	N		
				PID:	0.0		CONBULTING ENGINE		
Stickup? N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	2"	32.00	NE	10.12	21.88	16	16		Peristaltic
Turbidity at co	ellection (NTU):	8.1	(Less than 5 N	TU is desirable)	Γ	Ouplicate Collected? Y		Filtered Sample N	
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable	No Limit
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg.	рН	Specific Conductivity uS/cm	Dissolved Oxygen (mg/L)	ORP mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
	11:35	19.97	7.03	872	0.28	-109	32.3	12.65	N
	11:40	18.86	6.89	889	0.12	-113	19.8	12.73	N
	11:45	18.55	6.86	895	0	-115	12.5	12.77	N
	11:50	18.52	6.85	894	0	-116	8.8	12.77	N
	11:55	18.51	6.85	895	0	-116	8.1	12.77	N
				Well Conditi	on Summary	ļ			
					•				
Cover: Y		Bolts: Y		Concrete Pad OK: Y		Gripper: Y			
				Sample Collect	ion Information				
Sample Time: 11:55 Appearance: Clear Desired purge flow rate <100mL/min (slow drip) & turbidity <10 if possible. If turbidity > 10 collect filtered and unfiltered s				Filtered Sample Tur			OTHER: nimum 20 minute purge to establish	stahilization	
Notes/ Calculations:	sing; 1"=0.041 gal. 2"= 0.1		annoted campos. Hour,	gradiant and conceder of medical a	ampree prior to les cestimas.		milan 20 milato pargo to ecabilor		
0 11	1		- (01) -	ABSORBE	ENT SOCK				
Sock Length (ft) = Sock Install		Capacit	y (Qt.) =	Sock Ci	Present: nanged :	Y/N Y/N	Product Meas	ured (Inches) :	
	oth (Depth to sock m	id point):		JUCK CI	iangeu .	I / N			
222 20	· (= -p to occivin	·							

Appendix E:

Inspection Checklist

PERIODIC REVIEW REPORT – INSPECTION CHECKLIST

HARBOR SQUARE WATERFRONT 1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

COMPOSITE COVER SYSTEM

-	Is the integrity of the cover system in tact?	Yes <u>X</u> No <u></u>
-	Do the maintenance records indicate any invasive subsurface work has been completed after the last inspection?	Yes No <u>X</u>
-	Has any soil been removed or imported from the Site since the last inspection?	Yes No <u>X</u>
-	If soil has been disposed off-Site or imported, has this been completed in accordance with the NYSDEC approved Soil Management Plan for the Site?	Yes No(N/A)
-	If subsurface invasive work was undertaken, has the demarcation geotextile and the "clean soil cover" been restored?	Yes No (N/A)
-	Did a Professional Engineer or a qualified environmental professional (approved by the NYSDEC) oversee the above work?	Yes No (N/A)
-	Was NYSDEC notified of disturbances to the "Clean Soil Cover"?	Yes No (N/A)
SLUR	RY WALL	
-	Have DNAPL monitoring/recovery wells MW-A, MW-B, MW-C1, MW-C2, and MW-D been checked/gauged for the presence and the DNAPL?	nickness of Yes <u>X</u> No
-	Have the relatively deep monitoring wells MW-6A and MW-7A been checked/gauged for the presence and thickness of DNAPL?	Yes <u>X</u> No
-	Have any product seeps been observed along the property lines abutting the Hudson River and Sing Sing Kill?	Yes No <u>X</u>
-	If indications of DNAPL were observed in any of the above instances, has the NYSDEC been notified?	Yes No(N/A)

PERIODIC REVIEW REPORT – INSPECTION CHECKLIST

HARBOR SQUARE WATERFRONT 1 WESTERLY ROAD, VILLAGE OF OSSINING, NEW YORK NYSDEC BCP No. C360091 SESI CONSULTING ENGINEERS PROJECT #07173

SUB-SLAB VENTING/DEPRESSURIZATION SYSTEM (SSDS)

-	Is the SSDS operating as designed?	Yes <u>X</u> No
-	Do the maintenance records indicate any problems since the last inspection (e.g., broken vent pipes, clogged sub-slab drainage pipes, odors reported by residents and others etc.)	Yes No <u>X</u>
-	Did an inspection of the concrete slab above the SSDS indicate new cracks or other breaches (e.g., new utilities going through the slab, etc.)?	Yes No <u>X</u>
-	Have the cracks been sealed?	Yes No(N/A)
-	Is the labeling associated with the system intact?	Yes <u>X</u> No
-	Has the annual indoor sampling been completed?	YesNo(N/A)
-	Has the NYSDEC been notified of any problem with the SSDS?	Yes No(N/A)
MONI	TORING WELL NETWORK	
-	Are all the on-Site monitoring wells accessible for annual compliance sampling (i.e., they are not covered by soil, dumpsters, etc.)?	Yes <u>X</u> No
-	Is the integrity of the flush-mount manhole covers and associated concrete pads intact?	Yes <u>X</u> No
-	Are the monitoring wells locked and the locks functioning?	Yes <u>X</u> No

Notes:

SESI (Anthony Raposo, PE) onsite 7/30/2025. 82°F; Cloudy.

Appendix F:Environmental Easement

County: Westchester Site No: C360091 Order on Consent Index : A3-0566-1006

OF THE NEW YORK STATE ENVIRONMENTAL CONSERVATION LAW

THIS INDENTURE made this	day of	, 20, between	
Owner(s) Harbor Square Crossings, LLC, h	aving an office at 10	O Summit Lake Drive, Su	ite 235,
Valhalla, New York 10595, County of Wes	tchester, State of Ne	w York (the "Grantor"), a	and The
People of the State of New York (the "G	rantee."), acting thro	ough their Commissioner	r of the
Department of Environmental Conservation	(the "Commissioner'	, or "NYSDEC" or "Depa	ırtment"
as the context requires) with its headquarters	s located at 625 Broad	dway, Albany, New York	12233,

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to encourage the remediation of abandoned and likely contaminated properties ("sites") that threaten the health and vitality of the communities they burden while at the same time ensuring the protection of public health and the environment; and

WHEREAS, the Legislature of the State of New York has declared that it is in the public interest to establish within the Department a statutory environmental remediation program that includes the use of Environmental Easements as an enforceable means of ensuring the performance of operation, maintenance, and/or monitoring requirements and the restriction of future uses of the land, when an environmental remediation project leaves residual contamination at levels that have been determined to be safe for a specific use, but not all uses, or which includes engineered structures that must be maintained or protected against damage to perform properly and be effective, or which requires groundwater use or soil management restrictions; and

WHEREAS, the Legislature of the State of New York has declared that Environmental Easement shall mean an interest in real property, created under and subject to the provisions of Article 71, Title 36 of the New York State Environmental Conservation Law ("ECL") which contains a use restriction and/or a prohibition on the use of land in a manner inconsistent with engineering controls which are intended to ensure the long term effectiveness of a site remedial program or eliminate potential exposure pathways to hazardous waste or petroleum; and

WHEREAS, Grantor, is the owner of real property located at the address of 3 Westerly Road in the Village and Town of Ossining, County of Westchester and State of New York, known and designated on the tax map of the County Clerk of Westchester as tax map parcel number: Section 97.06 Block 1 Lot 9.1, being the same as the property conveyed to Grantor by deed dated April 10, 2014 and recorded in the Westchester County Clerk's Office at Control No. 540993596. The property subject to this Environmental Easement (the "Controlled Property") comprises approximately 3.8662 +/- acres, and is hereinafter more fully described in the Land Title Survey dated August 24, 2015 and last revised January 28, 2016 prepared by Contractors' Line & Grade South, LLC, which will be attached to the Site Management Plan. The Controlled Property descriptions are set forth in and attached hereto as Schedules A through C; and

WHEREAS, the Department accepts this Environmental Easement in order to ensure the protection of public health and the environment and to achieve the requirements for remediation established for the Controlled Property until such time as this Environmental Easement is

County: Westchester Site No: C360091 Order on Consent Index: A3-0566-1006

extinguished pursuant to ECL Article 71, Title 36; and

NOW THEREFORE, in consideration of the mutual covenants contained herein and the terms and conditions of Order on Consent Index Number: A3-0566-1006, Grantor conveys to Grantee a permanent Environmental Easement pursuant to ECL Article 71, Title 36 in, on, over, under, and upon the Controlled Property as more fully described herein ("Environmental Easement").

- 1. <u>Purposes</u>. Grantor and Grantee acknowledge that the Purposes of this Environmental Easement are: to convey to Grantee real property rights and interests that will run with the land in perpetuity in order to provide an effective and enforceable means of encouraging the reuse and redevelopment of this Controlled Property at a level that has been determined to be safe for a specific use while ensuring the performance of operation, maintenance, and/or monitoring requirements; and to ensure the restriction of future uses of the land that are inconsistent with the above-stated purpose.
- 2. <u>Institutional and Engineering Controls</u>. The controls and requirements listed in the Department approved Site Management Plan ("SMP") including any and all Department approved amendments to the SMP are incorporated into and made part of this Environmental Easement. These controls and requirements apply to the use of the Controlled Property, run with the land, are binding on the Grantor and the Grantor's successors and assigns, and are enforceable in law or equity against any owner of the Controlled Property, any lessees and any person using the Controlled Property.
 - A. (1) The Controlled Property may be used for:

Restricted Residential as described in 6 NYCRR Part 375-1.8(g)(2)(ii), Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv) except that portion of the Controlled Property described in Schedule C as the "Commercial Use Parcel", which may be used for Commercial as described in 6 NYCRR Part 375-1.8(g)(2)(iii) and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(iv)

- (2) All Engineering Controls must be operated and maintained as specified in the Site Management Plan (SMP);
- (3) All Engineering Controls must be inspected at a frequency and in a manner defined in the SMP;
- (4) The use of groundwater underlying the property is prohibited without necessary water quality treatment_as determined by the NYSDOH or the Westchester County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- (5) Groundwater and other environmental or public health monitoring must be performed as defined in the SMP;

County: Westchester Site No: C360091 Order on Consent Index: A3-0566-1006

(6) Data and information pertinent to Site Management of the Controlled Property must be reported at the frequency and in a manner defined in the SMP;

- (7) All future activities on the property that will disturb remaining contaminated material must be conducted in accordance with the SMP;
- (8) Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP;
- (9) Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical components of the remedy shall be performed as defined in the SMP;
- (10) Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by this Environmental Easement.
- B. The Controlled Property described in Schedule A and B shall not be used for Residential purposes as defined in 6NYCRR 375-1.8(g)(2)(i), except that portion of the controlled property identified in Schedule C herein, which shall not be used for Residential or Restricted Residential purposes as defined in 6 NYCRR 375-1.8(g)(2)(i) and (ii), and the above-stated engineering controls may not be discontinued without an amendment or extinguishment of this Environmental Easement.
- C. The SMP describes obligations that the Grantor assumes on behalf of Grantor, its successors and assigns. The Grantor's assumption of the obligations contained in the SMP which may include sampling, monitoring, and/or operating a treatment system, and providing certified reports to the NYSDEC, is and remains a fundamental element of the Department's determination that the Controlled Property is safe for a specific use, but not all uses. The SMP may be modified in accordance with the Department's statutory and regulatory authority. The Grantor and all successors and assigns, assume the burden of complying with the SMP and obtaining an up-to-date version of the SMP from:

Site Control Section Division of Environmental Remediation NYSDEC 625 Broadway Albany, New York 12233 Phone: (518) 402-9553

- D. Grantor must provide all persons who acquire any interest in the Controlled Property a true and complete copy of the SMP that the Department approves for the Controlled Property and all Department-approved amendments to that SMP.
- E. Grantor covenants and agrees that until such time as the Environmental Easement is extinguished in accordance with the requirements of ECL Article 71, Title 36 of the ECL, the property deed and all subsequent instruments of conveyance relating to the Controlled Property shall state in at least fifteen-point bold-faced type:

This property is subject to an Environmental Easement held by the New York State Department of Environmental Conservation

pursuant to Title 36 of Article 71 of the Environmental Conservation

Law.

F. Grantor covenants and agrees that this Environmental Easement shall be incorporated in full or by reference in any leases, licenses, or other instruments granting a right to use the Controlled Property.

- G. Grantor covenants and agrees that it shall, at such time as NYSDEC may require, submit to NYSDEC a written statement by an expert the NYSDEC may find acceptable certifying under penalty of perjury, in such form and manner as the Department may require, that:
- (1) the inspection of the site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under the direction of the individual set forth at 6 NYCRR Part 375-1.8(h)(3).
 - (2) the institutional controls and/or engineering controls employed at such site:
 - (i) are in-place;
- (ii) are unchanged from the previous certification, or that any identified changes to the controls employed were approved b the NYSDEC and that all controls are in the Department-approved format; and
- (iii) that nothing has occurred that would impair the ability of such control to protect the public health and environment;
- (3) the owner will continue to allow access to such real property to evaluate the continued maintenance of such controls;
- (4) nothing has occurred that would constitute a violation or failure to comply with any site management plan for such controls;
- (5) the report and all attachments were prepared under the direction of, and reviewed by, the party making the certification;
- (6) to the best of his/her knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and
 - (7) the information presented is accurate and complete.
- 3. <u>Right to Enter and Inspect</u>. Grantee, its agents, employees, or other representatives of the State may enter and inspect the Controlled Property in a reasonable manner and at reasonable times to assure compliance with the above-stated restrictions.
- 4. <u>Reserved Grantor's Rights</u>. Grantor reserves for itself, its assigns, representatives, and successors in interest with respect to the Property, all rights as fee owner of the Property, including:
- A. Use of the Controlled Property for all purposes not inconsistent with, or limited by the terms of this Environmental Easement;

County: Westchester Site No: C360091 Order on Consent Index: A3-0566-1006

B. The right to give, sell, assign, or otherwise transfer part or all of the underlying fee interest to the Controlled Property, subject and subordinate to this Environmental Easement;

5. Enforcement

- A. This Environmental Easement is enforceable in law or equity in perpetuity by Grantor, Grantee, or any affected local government, as defined in ECL Section 71-3603, against the owner of the Property, any lessees, and any person using the land. Enforcement shall not be defeated because of any subsequent adverse possession, laches, estoppel, or waiver. It is not a defense in any action to enforce this Environmental Easement that: it is not appurtenant to an interest in real property; it is not of a character that has been recognized traditionally at common law; it imposes a negative burden; it imposes affirmative obligations upon the owner of any interest in the burdened property; the benefit does not touch or concern real property; there is no privity of estate or of contract; or it imposes an unreasonable restraint on alienation.
- B. If any person violates this Environmental Easement, the Grantee may revoke the Certificate of Completion with respect to the Controlled Property.
- C. Grantee shall notify Grantor of a breach or suspected breach of any of the terms of this Environmental Easement. Such notice shall set forth how Grantor can cure such breach or suspected breach and give Grantor a reasonable amount of time from the date of receipt of notice in which to cure. At the expiration of such period of time to cure, or any extensions granted by Grantee, the Grantee shall notify Grantor of any failure to adequately cure the breach or suspected breach, and Grantee may take any other appropriate action reasonably necessary to remedy any breach of this Environmental Easement, including the commencement of any proceedings in accordance with applicable law.
- D. The failure of Grantee to enforce any of the terms contained herein shall not be deemed a waiver of any such term nor bar any enforcement rights.
- 6. <u>Notice</u>. Whenever notice to the Grantee (other than the annual certification) or approval from the Grantee is required, the Party providing such notice or seeking such approval shall identify the Controlled Property by referencing the following information:

County, NYSDEC Site Number, NYSDEC Brownfield Cleanup Agreement, State Assistance Contract or Order Number, and the County tax map number or the Liber and Page or computerized system identification number.

Parties shall address correspondence to: Site Number: C360091

Office of General Counsel

NYSDEC 625 Broadway

Albany New York 12233-5500

With a copy to: Site Control Section

Division of Environmental Remediation

NYSDEC

County: Westchester Site No: C360091 Order on Consent Index: A3-0566-1006

625 Broadway Albany, NY 12233

All notices and correspondence shall be delivered by hand, by registered mail or by Certified mail and return receipt requested. The Parties may provide for other means of receiving and communicating notices and responses to requests for approval.

- 7. <u>Recordation</u>. Grantor shall record this instrument, within thirty (30) days of execution of this instrument by the Commissioner or her/his authorized representative in the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 8. <u>Amendment</u>. Any amendment to this Environmental Easement may only be executed by the Commissioner of the New York State Department of Environmental Conservation or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 9. <u>Extinguishment.</u> This Environmental Easement may be extinguished only by a release by the Commissioner of the New York State Department of Environmental Conservation, or the Commissioner's Designee, and filed with the office of the recording officer for the county or counties where the Property is situated in the manner prescribed by Article 9 of the Real Property Law.
- 10. <u>Joint Obligation</u>. If there are two or more parties identified as Grantor herein, the obligations imposed by this instrument upon them shall be joint and several.

Remainder of Page Intentionally Left Blank

County: Westchester Site No: C360091 Order on Consent Index : A3-0566-1006

IN WITNESS WHEREOF, Grantor has caused this instrument to be signed in its name.

	Harbor Square C	crossings, LLC:
	Ву:	
	Print Name:	
	Title:	Date:
	Gran	ntor's Acknowledgment
STATE OF NEW Y	YORK)	
COUNTY OF) 55.	
of satisfactory evidinstrument and accapacity(ies), and	dence to be the ind eknowledged to me that by his/her/their	, in the year 20, before me, the undersigned,, personally known to me or proved to me on the basis lividual(s) whose name is (are) subscribed to the within e that he/she/they executed the same in his/her/their signature(s) on the instrument, the individual(s), or the dual(s) acted, executed the instrument.
Notary Public - Sta	te of New York	

County: Westchester Site No: C360091 Order on Consent Index : A3-0566-1006

THIS	ENVIRONME	NTAL E	ASEMENT	IS	HEREB	Y ACCI	EPTED	BY	THE
PEOPLE OF	THE STATE	OF NEW	YORK, A	cting	By and	Through	the Dep	partme	ent of
Environmenta	l Conservation as	s Designee	of the Com	nissi	oner,				

PEOPLE OF THE STATE OF NEW ! Environmental Conservation as Designee of	YORK, Acting By and Through the Department of the Commissioner,
Ву:	Robert W. Schick, Director
	Division of Environmental Remediation
Grantee's	s Acknowledgment
STATE OF NEW YORK)) ss: COUNTY OF ALBANY)	
personally appeared Robert W. Schick, persatisfactory evidence to be the individual instrument and acknowledged to me that he/of the Commissioner of the State of New Y	, in the year 20, before me, the undersigned sonally known to me or proved to me on the basis of al(s) whose name is (are) subscribed to the within she/executed the same in his/her/capacity as Designed York Department of Environmental Conservation, and the individual, or the person upon behalf of which the

Appendix G:

NYSDEC Institutional and Engineering Controls Certification Form

5/6/2025

Martin Ginsburg
Managing Member
Harbor Square Crossings, LLC
c/o Ginsburg Development Companies LLC
100 Summit Lake Drive, Suite 100
Valhalla, NY 10595
mginsburg@gdcllc.com

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal

Site Name: The Harbor Square Site

Site No.: C360091

Site Address: One Harbor Sq (frmrly Westerly Road)

Ossining, NY 10562

Dear Martin Ginsburg:

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than **July 15, 2025**. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Professional Engineer (PE). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.

All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact Caroline Jalanti, the Project Manager, at 518-402-9650 or caroline.jalanti@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation Division of Environmental Remediation, BURC 625 Broadway Albany, NY 12233-7014

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures

ec: w/ enclosures

Caroline Jalanti, Project Manager

Kerry Maloney, Section Chief

Steven McCague, Hazardous Waste Remediation Supervisor, Region 3

SESI Consulting - Michael St. Pierre, PE - msp@sesi.org

The following parcel owner did not receive an ec: Harbor Square Crossings, LLC - Parcel Owner Village Of Ossining - Parcel Owner

Enclosure 1

Certification Instructions

I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

- 1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.
- 2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.
- 3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site Details Box 1 Site No. C360091 Site Name The Harbor Square Site Site Address: One Harbor Sq (frmrly Westerly Road) Zip Code: 10562 City/Town: Ossining County: Westchester Site Acreage: 4.550 Reporting Period: June 15, 2022 to June 15, 2025 YES NO 1. Is the information above correct? If NO, include handwritten above or on a separate sheet. 2. Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period? 3. Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))? 4. Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period? If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form. 5. Is the site currently undergoing development? Box 2 YES NO 6. Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial 7. Are all ICs in place and functioning as designed? IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue. A Corrective Measures Work Plan must be submitted along with this form to address these issues. Signature of Owner, Remedial Party or Designated Representative Date

		Box 2	A
		YES	NO
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	•	
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.		
SITI	Воз	c 3	
	Description of Institutional Controls		

Parcel Owner Institutional Control

97.06-1-11.1 Village of Ossining

Ground Water Use Restriction
Landuse Restriction

Monitoring Plan Site Management Plan

- 1. Groundwater Use Restriction: The use of groundwater underlying the property is prohibited without treatment to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval from the Department and the Westchester County Department of Health.
- 2. Land Use Restriction: The controlled property as described in the environmental easement is restricted to a commercial use. Vegetable gardens and farming on the controlled property is prohibited.
- 3. Site Management Plan: Any intrusive activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction which will cause a disturbance of the soil below the demarcation barrier (e.g. geotextile) must be conducted in accordance with the Department approved Site Management Plan (SMP).
- 4. Monitoring Plan: Monitor, maintain, and replace as necessary any on-site Groundwater Monitoring Wells, DNAPL Recovery Wells, and sub-slab vapor extraction systems as depicted on Schedule A Survey and as set forth in Section 4 of the Department approved SMP.

97.06-1-9.1 Harbor Square Crossings, LLC

Monitoring Plan
Ground Water Use Restriction
Landuse Restriction
Site Management Plan

- 1. Groundwater Use Restriction: The use of groundwater underlying the property is prohibited without treatment to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval from the Department and the Westchester County Department of Health.
- 2. Land Use Restriction: The controlled property as described in the 2016 executed environmental easement and survey is restricted to a restricted-residential and commercial use. Vegetable gardens and farming on the controlled property is prohibited.
- 3. Site Management Plan: Any intrusive activities, including building renovation/expansion, subgrade utility line repair/relocation, and new construction which will cause a disturbance of the soil below the demarcation barrier (e.g. geotextile) must be conducted in accordance with the Department approved Site Management Plan (SMP).
- 4. Monitoring Plan: Monitor, maintain, and replace as necessary any on-site Groundwater Monitoring Wells, DNAPL Recovery Wells, and sub-slab vapor extraction systems as depicted on Schedule A Survey and as set forth in Section 4 of the Department approved SMP.

Box 4

Description of Engineering Controls

<u>Parcel</u> <u>Engineering Control</u>

97.06-1-11.1

Vapor Mitigation Cover System

- 1. Cover System: Any soil on the property must be covered by a barrier layer approved by the Department such as concrete, asphalt, structures, or a minimum one (1) foot soil cover underlain by a demarcation barrier (e.g. geotextile) for vegetated areas.
- 2. Vapor Mitigation: Should a building(s) be erected, prior to construction, a Soil Vapor Intrusion (SVI) Investigation shall be conducted in accordance with the applicable guidance in effect at the time of the investigation. If the results of this SVI investigation demonstrate the need for a sub-slab vapor extraction system, an appropriate system shall be designed, constructed and maintained.

Parcel

Engineering Control

3. Groundwater Monitoring Wells: Maintain and replace as necessary, MW-7 and MW-7A, as depicted on Schedule A Survey and as set forth in Section 4 of the Department approved SMP. **97.06-1-9.1**

Vapor Mitigation Cover System Subsurface Barriers

- 1. Cover System: Any soil on the property must be covered by a barrier layer approved by the Department such as 6 inches of concrete, asphalt, structures, or a minimum of one (1) foot or two (2) foot soil cover for those areas designated uses, commercial or the active park area, underlain by a demarcation barrier (e.g. geotextile) for vegetated areas.
- 2. Vapor Mitigation: 3 Buildings have been erected with a passive sub-slab depressurization systems. A Soil Vapor Intrusion (SVI) Investigation shall be conducted in accordance with the applicable DOH guidance in effect once the buildings have been in service for at least 30 days with an operating heating and cooling system. If the results of this SVI investigation demonstrate the need for further investigation or an active sub-slab vapor extraction system, the indoor air shall be tested, and if needed, systems shall be upgraded.
- 3. Subsurface Barriers: Maintain the DNAPL Slurry Wall as depicted on Schedule A Survey and as set forth in Section 4 of the Department Approved Site Management Plan but allow installation of conical pipe piles behind the slurry wall (as described in the Department approved August 2007 Remedial Design).
- 4. DNAPL Recovery System: Operate and maintain, provide access to the dense non-aqueous phase liquid (DNAPL) Recovery System (e.g. MW-D) as depicted on Schedule A Survey and as set forth in Section 4 of the Department Approved SMP.
- 5. Groundwater Monitoring Wells: Maintain and replace as necessary groundwater monitoring wells as depicted on Schedule A Survey and as set forth in Section 4 of the Department approved SMP.

R	^	v	5
О			1

	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted engineering practices; and the information presented is accurate and compete.	
	YES NO	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;	
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	
		_

IC CERTIFICATIONS SITE NO. C360091

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Penai Law.	
print name at Moscommet Loss	he Drive Valladla MY
am certifying asOUVER	(Owner or Remedial Party)
For the Site named in the Site Details Section of this form. Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	8-25-25 Date

EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Michael St. Pierre, PE	at	959 Route 46E, Floor 3, Suite 300, Parsippany, NJ 07054
print name	_	print business address
am certifying as a Professional Engineer	for	theHarbor Square Crossings, LLC
		(Owner or Remedial Party)
MII II) -		LICENS AND
IM MP		080271
Signature of Professional Engineer, for t		Owner or Statopession Date
Remedial Party, Rendering Certification		(Required for PE)

Enclosure 3 Periodic Review Report (PRR) General Guidance

I. Executive Summary: (1/2-page or less)

- A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
- B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
 - 1. progress made during the reporting period toward meeting the remedial objectives for the site
 - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.

C. Compliance

- 1. Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
- 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.

D. Recommendations

- 1. recommend whether any changes to the SMP are needed
- 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
- 3. recommend whether the requirements for discontinuing site management have been met.

II. Site Overview (one page or less)

- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
 - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.

III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

IV. IC/EC Plan Compliance Report (if applicable)

- A. IC/EC Requirements and Compliance
 - 1. Describe each control, its objective, and how performance of the control is evaluated.
 - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
 - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
 - 4. Conclusions and recommendations for changes.

B. IC/EC Certification

1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).

V. Monitoring Plan Compliance Report (if applicable)

- A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
- B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
- C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
- D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
- E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.

VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)

- A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
- B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
- C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

- the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.
- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.

VII. Overall PRR Conclusions and Recommendations

- A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
 - 1. whether all requirements of each plan were met during the reporting period
 - 2. any requirements not met
 - 3. proposed plans and a schedule for coming into full compliance.
- B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.

C. Future PRR Submittals

- 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
- 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.