

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

BY EMAIL matthew.hubicki@dec.ny.gov

Matthew Hubicki Project Manager, Remedial Bureau C Division of Environmental Remediation New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7014

Re: Mr. Cleaners - Shrub Oak Shopping Center Site VI Indoor Air Results and Vacuum Pressure Readings 1336-1378 East Main Street Tax Parcel: 16.09-2-14 Shrub Oak (Town of Yorktown), Westchester County, New York Site Name: Mr. Cleaners Site No.: 360117

Dear Mr. Hubicki:

Per your request and on behalf of the property owner, Shrub Oak Partners, LLC, (Shrub Oak) enclosed are the findings of the recent indoor air and vacuum pressure reading data collected on March 26, 2019 at the above-referenced site in Shrub Oak, New York.

The sub-slab depressurization system (SSDS) was operating and appeared in good working condition on the day of the indoor air sampling. No SSDS alarm conditions were logged since the last indoor sampling event conducted in March 2018.

Indoor air samples collected on March 26, 2019 at the Acme, Mr. Cleaners, Pizzeria, Post Office and Wells Fargo tenant spaces reported all site related Contaminants of Concern (COCs) below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Based on the indoor air results, concentrations continue to reduce over time as shown on Figure 1 and Table 1, enclosed with this letter. As shown on Figure 2, vacuum pressure readings indicate good vacuum communication with the SSDS.

Mr. Matthew Hubicki Division of Environmental Remediation Page 2 of 7

Additionally, tenant survey forms and tenant notification letters are enclosed for your reference. A notification letter was sent to each tenant that Excel conducted indoor air sampling indicating the results with supporting fact sheets, FAQs and lab data.

If you have any questions or would like to discuss further, please do not hesitate to contact me at (732) 545-9525.

Sincerely,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael J. Meriney, P.G. Vice President/Director Investigation Services

Enclosures

Cc: Sam Liebman, Shrub Oak Partners, LLC Daniel Perla, Shrub Oak Partners, LLC Kevin Carpenter, NYSDEC Stephen Lawrence, NYSDOH Maureen Schuck, NYSDOH

TABLES

TABLE 10 SUMMARY OF SUB SLAB, INDOCA RIA NA ABMIENT AIR ANALYTICAL RESULTS Mr. Cleaners / Shurb Oak, Shopping Center 1360 E. Main Street Shurb Oak, New York

		"B"					Grocery Store Dry Cleaner						leaner			Pizza Parlor																
	NYSDOH	NYSDOH	EPA 2001	HEI RIOPA	ASTM 2600-08	SS-1	IA-1	SS-2	IA-2	IA-1	IA-2	SS-1	IA-1	IA-1	IA-1	SS-2	IA-2	IA-2	IA-2	SS-3	IA-3	SS-3	IA-3	IA-3	IA-3	SS-4	IA-4	IA-4	SS-5	IA-5	IA-5	IA-5
Sample ID	Air Guidelines	Upper Fence [*]	BASE	2005	VOC Data	I 1503623 06	1 1503623 01	1 1503623 07	1 1503623 02	1 1612222 01	1 1612222 02	1 1630206 07	1 1630206 01	1 1000210 01	1 1012042 01	1 1630206 08	1 1639206 02	1 1909219 02	1 1012042 02	1 1503623 08	1 1503623 03	1 1630206 00	1 1639206 03	1 1000210 03	1 1012042 03	1 1503623 00	I 1503623 04	1 1612222 04	1 1639206 11	1 1630206 05	1 1909219 05	1 1012042 05
Laboratory ID Sample Media	values		90th Fercentile	95th Fercentule	Residences ⁵	Soil Gas	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air
Sample Date					residences	2/25/2015	2/25/2015	2/25/2015	2/25/2015	4/22/2016	4/22/2016	12/2/2016	12/2/2016	3/8/2018	3/26/2019	12/2/2016	12/2/2016	3/8/2018	3/26/2019	2/25/2015	2/25/2015	12/2/2016	12/2/2016	3/8/2018	3/26/2019	2/25/2015	2/25/2015	4/22/2016	12/2/2016	12/2/2016	3/8/2018	3/26/2019
Unit of Measure						ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³	ug/m ³
Method TO-15 Parameters	NCC	NCC	NCC	NCC	NCC	24.2	10.8	7.02	7.01	67	10.2			16.5	10.7			17.6	12.2	-	12.0		12.6	0.6	10.7	11.1	22	22.2	6.08	17.5	7.20	11.1
Benzene	NS	13	9.4	10	13	1.9	1.36	1.49	1.49												12.9			9.6		1.5	1.04		0.98		1.29	
Bromodichloromethane	NCC	NCC	NCC	NCC	NCC																					3.6						
Bromoethene (vinyl bromide) Bromoform	NCC	NCC	NCC	NCC	NCC																											
Bromomethane (methyl bromide)	NCC	NCC	NCC	NCC	NCC																											
1,3-Butadiene (vinyl ethylene)	NCC	NCC	NCC	NCC	NCC																											
Carbon disulfide	NCC	NCC	NCC	NCC	NCC	0.754		3.39	1.55	2.42	1.80		1.3/			2.03	4.90	3.10								0.638	1.04					1.80
Carbon tetrachloride	NS	1.3	<1.3	1.1	NS		0.566		0.604	0.78			0.660	0.63	0.623		0.642	0.623	0.654		0.566		0.447	0.472	0.484		0.629	0.554		0.409	0.415	0.465
Chlorobenzene Chloroathana (athul ablorida)	NS	0.4	<0.9	NS	NS																											
Chloroform	NCC	NCC	NCC	NCC	NCC					1.08																						1.05
Chloromethane (methyl chloride)	NS	4.2	3.7	NS	NS		1.42		1.37	1.42	1.24		1.19	1.08	1.27		1.23	1.1	1.27		1.43		1.30	1.05	1.19	0.748	1.41	1.13		0.923	1.01	1.2
3-Chloropropene (allyl chloride) 2-Chlorotoluene (o-chlorotoluene)	NCC	NCC	NCC	NCC	NCC																											
Cyclohexane	NCC	NCC	NCC	NCC	NCC																		1.25									
Dibromochloromethane	NCC	NCC	NCC	NCC	NCC																											
1,2-Dibromoetnane (ethylene dibromide) 1,2-Dichlorobenzene (o)	NCC	0.5	<1.2	NS	NS																											
1,3-Dichlorobenzene (m)																																
1,4-Dichlorobenzene (p) Dichlorodifluoromethane (Freon 12)	NCC	NCC	NCC	NCC	NCC	2.21	2.07	1.82	1.83	4 34	3.38		2.05	6.33	3.17	2.49	2.36	6.43	3.36		1.94		1.67	2.56	2.37	1.74	1.27	2.38		1.43	2.08	2.29
1,2-Dichlorotetrafluoroethane (Freon 114)	NCC	NCC	NCC	NCC	NCC																											
1,1-Dichloroethane	NS	0.4	<0.7	NS	NS																											
1,2-Dichloroethane 1,1-Dichloroethane	NS	0.4	<0.9	NS	NS																0.127											
cis-1,2-Dichloroethene	NS	0.4	<1.9	NS	NS	7.69	0.103	13.3	0.198			7,410				201	0.119			66,200	1.73	5,270	0.682	0.159	0.27	84.8	1.34		2.42		0.151	0.182
trans-1,2-Dichloroethene	NS	NS	NS	NS	NS							900				3.45				801		176			0.27	0.92			2.87			
1,2-Dichloropropane	NS	0.4	<1.6	NS	NS																				0.27							0.182
cis-1,3-Dichloropropene	NCC	NCC	NCC	NCC	NCC																											
trans-1,3-Dichloropropene 1,3-Dichloropropene (total)	NCC	NCC	NCC	NCC	NCC																											
1,4-Dioxane	NCC	NCC	NCC	NCC	NCC																											
Ethanol Extends and an and a second	NCC	NCC	NCC	NCC 7.62	NCC 12	60.5	578	32.6	377	2,220 E	1,440 E		680	571	462	88.0	2,090 E	1100 E	952 E		112	298	203	43.9	134	26.9	624	1,040 E		52.8	569	332
Ethyl Acetate	NCC	NCC	NCC	NCC	NCC		2.5		9.33	62.7	20		15.4	9.51	17.5	2.13	46.1	25.3	69.9						2.19			2.94		2.19		
4-Ethyltoluene (p-Ethyltoluene)	NCC	NCC	NCC	NCC	NCC						1.03																					
n-Heptane Hexachlorobutadiene	NCC	NCC	NCC	NCC	NCC	1.13					0.869															0.955						
n-Hexane	NCC	NCC	NCC	NCC	NCC	0.782			0.807	0.758											0.786					1.22	0.786					
2-Hexanone	NCC	NCC	NCC	NCC	NCC			 5.52					7.20	12.20		 5.16														2.27	1.04	
Methylene chloride (dichloromethane)	60	16	10	7.5	NS		20.30	5.55					7.20			5.16	6.10	0.0.3	4.25		2.00		8.10 	2.88	2.31	2.92	9.94	5.00		3.51	1.94	
Methyl Methacrylate	NCC	NCC	NCC	NCC	NCC																											
4-Metnyi-2-pentanone (MIBK) MTBE (methyl tert-butyl ether)	NCC	NCC 14	NCC 11.5	36	NCC																											
Naphthalene	NS	NS	5.1	NS	2.1																											
Propylene	NCC	NCC	NCC	NCC	NCC																											
Tertiary butyl alcohol (TBA)	NCC	NCC	NCC	NCC	NCC					1.02																						
1,1,2,2-Tetrachloroethane	NCC	NCC	NCC	NCC	NCC																											
Tetrachloroethene (PCE)	100 NCC	2.5 NCC	15.9 NCC	6.01 NCC	4.9 - 6.8 NCC	3.0 2.47	3.66	3.17	2.85	37.00	34.20	4,980	8.68	2.59	0.339	119	8.41	1.7	0.461	1,240,000 E	319	1,570	1,240 E	50.7	6.17	2.16	51.7	30	1,010	30.6	24.5	9.97
Toluene	NS	57	43	39.8	29 - 49	4.71	1.88	2.97	2.03	4.22	3.84		2.06	1.12	1.1	5.46	2.57	1.09			1.81		2.29		1.17	6.29	2.62	1.05	3.30	9.31	1.21	2.33
1,2,4-Trichlorobenzene	NCC	NCC	NCC	NCC	NCC																											
1,1,1-1 richloroethane 1,1,2-Trichloroethane	NS NCC	2.5 NCC	20.6 NCC	NS	7.6 - 17 NCC																											
Trichloroethene (TCE)	5	0.5	4.2	1.36	0.70 - 1.4	8.81	0.559	13.7	0.473	1.30	1.32	3,910	0.978	0.43	0.113	60.2	0.806	0.21	0.145	308,000 E	49.6	758	129	11	3.9	77.9	9.51	0.382	53.4	2.53	3.8	1.38
Trichlorofluoromethane (Freon 11)	NCC	NCC	NCC	NCC	NCC	2.00	3.65	2.14	3.83	6.74	5.68		3.70	8.43	3.42	5.11	3.65	8.65	3.53		1.62		1.55	1.53	1.56	1.25	1.47	1.26		1.24		1.3
1,2,4-Trimethylbenzene	NS	9.8	9.5	NS	NS	1.51		1.08		3.51	4.4					1.21										1.71						
1,3,5-Trimethylbenzene	NS	3.9	3.7	NS	NS					1.14	1.33																					
2,2,4-1 rimethylpentane Vinvl chloride	NCC	0.4	NCC <1.9	NCC NS	0.1	0.736		1.54																								
Xylenes (m,p)	NS	11	22.2	22.2	22	4.56		2.99								7.77										4.43			4.69			
Xylene (o) Total Tarrated Compounds	NS	7.1	7.9	7.24	7	1.62	624.608	1.06	422.272	2 261 808	100 549	17.200	772.499	620.814	512 525	2.31	2 166 997	1 174 652	1.050.015	67.001		5 744	1 602 949	125 751		1.57	724 025	1 105 556	1.083.66	125 812	611 206	368.679
rour rargered compounds		1		1		1.72.042	0.34.090	27./1	743.414	4,001.070	100.249	17,200	122.400	0.00.014	312.333	200.10	4,100.00/	1,1/4.033	1,050.915	07,001	30/.037	2,/44	1,002.747	140./01	100.704	007.301	137.753	1,103.330	1,002.00	142.014	011.390	500.079

Result is above the "Take Practical Action" level as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health Result is above the "Monitor" level, as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health Result is above the "Minigare" level, as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health

 Notes:

 - - Compound not detected

 NS - No stabilished criteria has been made for this compound

 NCC - Not a comminant of concern (Based on fuel oil and/or dry cleaning operations)

 E - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.

 Bold and Shaded – Beault is in sceedmae of the New York State Department Of Health (NYSDOH) Indoor Air Quality Criteria.

 ¹NYSDOH Arc Guidedle – Result is in sceedmae of the New York State Department Of Health (NYSDOH) Judoor Air Quality Criteria.

 ¹NYSDOH Arc Guideline Values (AGVs) presented in the Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006 ("NYSDOH) Vapor Intrusion Guidance Document, Propendix ("C) (Cotober 2005).

 ²Upper fence indoor air values from "Table C.1. NYSDOH 2003: Study of Volatile Organic Chemicals in Air of Fuel Oil Heated Homes", published in the NYSDOH Soil Vapor Intrusion Guidance Document, Appendix ("C) (Cotober 2006).

 ³004 Percentile indoor air values from "Table C.2. EPA 2001: Building Assessment and Survey Evaluation (BASE) Database, SUMMA canister method", published in the NYSDOH Soil Vapor Intrusion Guidance Document, Appendix ("C) (Cotober 2006).

 ³904 Percentile Indoor air Values from Table C.5. Health Effects Institute (HEI) 2005: Relationship of Indoor, Outdoor and Personal Air, published in the NYSDOH Soil Vapor Intrusion Guidance Document, Appendix ("C) (Cotober 2006).

 ³958 Percentile NOC data for cisting residences and Median VOC data for ambient air from "Standard Pasctice for Assessment of Vapor Intrusion intos Structures o

TABLE 10 SUMMARY OF SUB SLAB, INDOOR AIR AND ABMIENT AIR ANALYTICAL RESULTS Mr. Cleaners / Shruh Oak Shopping Center 1360 E. Main Street Shruh Oak, New York

		"B"							Post Office					Wells	Fargo					Ambient Air			
	NYSDOH	NYSDOH	EPA 2001	HEI RIOPA	ASTM 2600-08	\$\$.1	14-1	14-3	SS-4	14-4	14-4	14-4	SS-1	14-1	14-6	14-6	AMR-1	AMR-1	AMB-1	AMB-1	AMB-1	AMB-1	AMB-1
mple ID	Air Guidelines	Upper Fence ²	BASE	2005	VOC Data	33-1	13-1	145	55-4	14-4	13-4	1.4-4	33-1	13-1	1.1-0	174-0	AMD-1	AMD-1	AMD-1	AMD-1	A310-1	AMD-1	AMD-1
boratory ID	Values		90th Percentile ³	95th Percentile ⁴	95th Percentile	L1513910-03	L1513910-02	L1612222-03	L1639206-10	L1639206-04	L1808218-04	L1912042-04	L1518138-03	L1518138-02	L1808218-06	L1912042-06	L1503623-05	L1513910-01	L1518138-01	L1612222-05	L1639206-06	L1808218-07	L1912042-07
mple Media					Residences	Soil Gas	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Soil Gas	Indoor Air	Indoor Air	Indoor Air	Ambient						
mple Date						6/18/2015	6/18/2015	4/22/2016	12/2/2016	12/2/2016	3/8/2018	3/26/2019	7/29/2015	7/29/2015	3/8/2018	3/26/2019	2/25/2015	6/18/2015	7/29/2015	4/22/2016	12/2/2016	3/8/2018	3/26/2019
ethod TO-15 Parameters						ug/m	ug/m3	ug/m3	ug/m														
ectone (2-propanone)	NCC	NCC	NCC	NCC	NCC	473	77.2	25.9	10.0	27.6	8.48	9.76	416	24.9	8.39	9.76	4.58	9.03	15.5	21.8	3.35	4.49	3.25
nzene	NS	13	9.4	10	13	2.64		0.732		0.847			8.79				0.955						
omodichloromethane	NCC	NCC	NCC	NCC	NCC				4.09														
omoethene (vinyl bromide)	NCC	NCC	NCC	NCC	NCC																		
omomethane (methyl bromide)	NCC	NCC	NCC	NCC	NCC																		
-Butadiene (vinyl ethylene)	NCC	NCC	NCC	NCC	NCC	1.48				0.894			7.65										
Butanone (methyl ethyl ketone)	NCC	NCC	NCC	NCC	NCC	6.58	1.53	1.61	3.45				36										
rbon disuitide	NCC	13	<1.3	NCC 11	NCC	1.38	0.453	0.51		0.503	0.371	0.459	9.44	0.421	0.396	0.459	0.472	0.478	0.428	0.541	0.390	0.497	0.516
lorobenzene	NS	0.4	<0.9	NS	NS																		
loroethane (ethyl chloride)	NS	0.4	<1.1	NS	NS																		
lloroform	NCC	NCC	NCC	NCC	NCC				36.9	5.03													
norometnane (methyl chloride) Chloropropene (allyl chloride)	NS	4.2 NCC	3./ NCC	NS	NS	1.07	1.26	1.18		0.989	1.01	1.18	1.66	1.12	1.04	1.22	1.13	1.14	1.13	1.1	0.946	0.993	1.04
Chlorotoluene (o-chlorotoluene)	NCC	NCC	NCC	NCC	NCC																		
clohexane	NCC	NCC	NCC	NCC	NCC	0.861							1.95										
bromochloromethane	NCC	NCC	NCC	NCC	NCC																		
2-Dioromoculane (etnylene dibromide)	NCC	0.5	<1.2	NCC	NCC																		
8-Dichlorobenzene (m)																							
I-Dichlorobenzene (p)																							
chlorodifluoromethane (Freon 12)	NCC	NCC	NCC	NCC	NCC	2.19	1.98	2.73	2.24		1.95	2.13		2.12	2.1	2.38	1.73	2.57	1.26	2.79	1.87	2.53	2.04
-Dichloroethane	NS	0.4	<0.7	NS	NS																		
2-Dichloroethane	NS	0.4	<0.9	NS	NS																		
-Dichloroethene	NS	0.4	<1.4	NS	NS																		
-1,2-Dichloroethene	NS	0.4	<1.9 NS	NS	NS				149	0.956													
2-Dichloroethene (total)	NCC	NCC	NCC	NCC	NCC																		
2-Dichloropropane	NS	0.4	<1.6	NS	NS																		
-1,3-Dichloropropene	NCC	NCC	NCC	NCC	NCC																		
B-Dichloropropene (total)	NCC	NCC	NCC	NCC	NCC																		
-Dioxane	NCC	NCC	NCC	NCC	NCC																		
hanol	NCC	NCC	NCC	NCC	NCC	61.2	144	155	33.2	1,050 E	63.3	30	54.3	209	62	309		8.67	5.84	13.6			31.1
hylbenzene	NS	6.4 NCC	5.7 NCC	7.62 NCC	13 NCC		2.06	2.71	2.75	2.29		2.06	1.72			2.29							
Ethyltoluene (p-Ethyltoluene)	NCC	NCC	NCC	NCC	NCC																		
Heptane	NCC	NCC	NCC	NCC	NCC	1.7							48.4	1.29					1.14				
exachlorobutadiene	NCC	NCC	NCC	NCC	NCC																		
Hexane	NCC	NCC	NCC	NCC	NCC	2.13							101						1.19				
propyl Alcohol (isopropanol)	NCC	NCC	NCC	NCC	NCC	20.9	25.8	14.4		17.2	2.75	2.48	12.9	34.4	9.78	8.14		1.67	2.4	1.64			
ethylene chloride (dichloromethane)	60	16	10	7.5	NS		5.11						2	1.92				32.7					3.38
ethyl Methacrylate	NCC	NCC	NCC	NCC	NCC																		
TBE (methyl tert-butyl ether)	NCC	14	11.5	36	NCC																		
phthalene	NS	NS	5.1	NS	2.1																		
opylene	NCC	NCC	NCC	NCC	NCC																		
rene retireme hustral alarch al (TDA)	NCC	NCC	NCC	NCC	NCC								0.877										
.2.2-Tetrachloroethane	NCC	NCC	NCC	NCC	NCC				3.27				3.06										
trachloroethene (PCE)	100	2.5	15.9	6.01	4.9 - 6.8	465.0	42.5	14.0	1,030	187	6.22	0.854	64.3	1.38	1.02	0.271	0.441	0.848	3.42	1.23	5.56		
trahydrofuran	NCC	NCC	NCC	NCC	NCC																		
duene 4 Trichlorobenzene	NS	57 NCC	43 NCC	39.8 NCC	29 - 49 NCC	7.01	7.65	5.43	7.65	2.08	2.29	2.33	8.52					0.878		2.45			
,1-Trichloroethane	NS	2.5	20.6	NS	7.6 - 17	15.1																	
,2-Trichloroethane	NCC	NCC	NCC	NCC	NCC																		
ichloroethene (TCE)	5	0.5	4.2	1.36	0.70 - 1.4	2.57	1.47	1.75	157	18.9	0.86	0.435								0.156			
2-Trichloro-1.2.2-trifluoroethane (Freon TE)	NCC	NCC	NCC	NCC	NCC	1.86	1.98	1.32		1.20		1.25	1.71	1.23		1.21	1.29	1.52	1.20	1.2	1.15	1.37	
4-Trimethylbenzene	NS	9.8	9.5	NS	NS								2.82										
3,5-Trimethylbenzene	NS	3.9	3.7	NS	NS																		
2,4-Trimethylpentane	NCC	NCC	NCC	NCC	NCC																		
lenes (m.p)	NS	0.4	<1.9 22.2	22.2	22				10.3				4.43										
vlene (o)	NS	7.1	7.9	7.24	7				2.61				1.72	l									
tal Targeted Compounds						1080.471	314.893	227.272	1,452.46	1,316.479	87.231	52.938	789.247	277.781	84.726	335.82	10.598	59.504	33.478	46.507	13.266	9.88	41.326
4																							

Result is above the "Take Practical Action" level as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health Result is above the "Monitor" level, as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health Result is above the "Mitigate" level, as defined by the Soil Vapor / Indoor Air Matrix 1 and 2 of the New York State Department of Health

FIGURES

LEGEND:		
	PROPERTY BOUNDARY	Ĵ
	EXISTING BUILDING	l
	OVERHEAD CANOPY	
•	SUB-SLAB SOIL GAS/INDOOR AIR SAMPLE LOCATION	
	AMBIENT AIR SAMPLE LOCATION	
۲	EXTRACTION POINT	
GREEN	RESULTS INDICATE NO ADDITIONAL ACTIONS ARE RECOMMENDED TO ADDRESS HUMAN EXPOSURES PER THE SOIL VAPOR/INDOOR AIR MATRIX A FOR THE NYSDOH	
ORANGE	RESULT IS ABOVE THE "MONITOR" LEVEL AS DEFINED BY THE SOIL VAPOR/INDOOR AIR MATRIX 1 & 2 FOR THE NYSDOH	
PINK	RESULT IS ABOVE THE "MITIGATE" LEVEL AS DEFINED BY THE SOIL VAPOR/INDOOR AIR MATRIX 1 & 2 FOR THE NYSDOH	
NYSDOH	NEW YORK STATE DEPARTMENT OF HEALTH	
PCE	TETRACHLOROETHENE	
TCE	TRICHLOROETHENE	
СТ	CARBON TETRACHLORIDE	
ND	COMPOUND NOT DETECTED	
E	CONCENTRATION OF ANALYTE EXCEEDS THE RANGE OF THE CALIBRATION CURVE AND/OR LINEAR RANGE OF THE INSTRUMENT	
. ⊳	CONCRETE	
¥ , ¥	GRASS	
\bigcirc	TREELINE	

			-SAMPLE DESIGNATION	
	SS-1	IA-1		
PCE	4,980	8.68	SAMPLING DATE	
		CAL PARAMETER	- ANALYTICAL RESULT (MICROGRAMS PER CUBIC METER) R	
	DF	RAF	Т	
20		40		80

EXCEL Environmental Resources, Inc.										
Solving E	Solving Environmental Problems & Creating Redevelopment Opportunities									
PROJECT :	136 IRUB O	MR. C O EAST AK, YOF	LEANERS MAIN STR RKTOWN, N	EET IEW YORK						
DESCRIPTION : GEN SLUB/ A1	ERALIZE 'INDOOF NALYTIC	FIG ED SITE R AIR S AL RES	URE 1 PLAN SH GAMPLE LO ULTS: MAR	OWING SUB CATIONS AND CH 2019						
DRAWN BY :	RC	SCALE :	1"=20'	DATE : 4/22/19						
CHECKED BY :	MM	REVISION :		PROJECT # 12229						

Δ

Solving Environmenta	I Problems & Creating Redeve	nvironmental esources, Inc.								
PROJECT : 136 SHRUB O	PROJECT : MR. CLEANERS 1360 EAST MAIN STREET SHRUB OAK, YORKTOWN, NEW YORK									
DESCRIPTION : FIGURE 2 VI SUB SLAB DEPRESSURIZATION SYSTEM RADIUS OF INFLUENCE (MARCH 2019)										
DRAWN BY : RC	SCALE : 1"=20'	DATE: 4/22/19								
CHECKED BY : MM	REVISION :	PROJECT # 12229								

V

•

Ν

N

- 🗸

LEGEND:

INDOOR AIR BUILDING SURVEY & SAMPLING FORM NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name _	Brian	Ehalt	Date/Time	Prepared _	3/26/14	
Preparer's Affiliation	on Excel	Environmental Re	Sures, Inc. Phone No	732-5	45-9525	
Purpose of Investig	ation Ind	as Air Sampl	hy of shall Dad	k Shop	pilling Center	- ACME Grocery
1. OCCUPANT:	N/A					510/10
Interviewed: Y/I	N					
Last Name:		First	Name:			
Address:						
County:						
Home Phone:		Office Pho	one:			
Number of Occupar	its/persons	at this location	Age of Occupants	s		-
2. OWNER OR LA	NDLORD	: (Check if same a	s occupant) N/	A		
Interviewed: Y/N	4					
Last Name:		First N	ame:			
Address:						
County:						
Home Phone:		Office Ph	one:			
3. BUILDING CHA	ARACTER	ISTICS				
Type of Building: (Circle appr	opriate response)				
Residential Industrial		School (C Church O	ommercial/Multi-use			

OSR – 3

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type?	Prot-Office Wells Forgo Burk
Business Type(s) // Cleares / Cleares / Cleares	
Does it include residences (i.e., multi-use)? Y $/(N)$	If yes, how many?

Other characteristics:

Number of floors	Building age
Is the building insulated? $(Y)/N$	How air tight? Tight Average Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	(concrete)	stone	brick						
b. Basement type:	full	crawlspace	slab	other						
c. Basement floor:	concrete	dirt	stone	other						
d. Basement floor:	uncovered	covered	covered with _							
e. Concrete floor: unsealed (sealed) sealed with										
f. Foundation walls:	poured	block	stone	other						
g. Foundation walls:	unsealed	sealed	sealed with							
h. The basement is:	wet	damp	dry	moldy						
i. The basement is:	finished	unfinished	partially finish	ed						
j. Sump present?	j. Sump present? $(Y)/N$ $(P'_1 Z Z C ricc)$									
k. Water in sump? Y 🕅	k. Water in sump? Y /N/ not applicable									
Basement/Lowest level depth below grade: 3 (feet) (fizzeria)										

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	oump n radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other							
The primary type of fuel used is:											
Natural Gas Electric Wood	Fuel O Propar Coal	ii) (AST3) Ie	Kerosene Solar								
Domestic hot water tank fu	eled by:										
Boiler/furnace located in:	Basement	Outdoors	(Main Floor)	Other							
Air conditioning:	Central Air	Window units	Open Windows	None							

Are there air distribution ducts present? (Y)/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fa	amilyroom, bedro	om, laundry, w	orkshop, storage)
Basement	Sump (Pizza	rici			
1 st Floor	Storefronts				
2 nd Floor					
3 rd Floor					
4 th Floor					
8. FACTORS	FHAT MAY INFLUE	NCE INDOOI	R AIR QUALITY		
a. Is there an	attached garage?			Y /N	
b. Does the g	arage have a separate	heating unit?		Y / N / NA	
c. Are petrole	eum-powered machine	s or vehicles		Y/N/NA)	

- stored in the garage (e.g., lawnmower, atv, car)
- d. Has the building ever had a fire?
- e. Is a kerosene or unvented gas space heater present?
- f. Is there a workshop or hobby/craft area?
- g. Is there smoking in the building?
- h. Have cleaning products been used recently?
- i. Have cosmetic products been used recently?
- Y / N When & Type? _____
- Y / N When & Type? _____

Please specify_____

Y/N When?_____

Y / N Where?

Y / N Where & Type? _____

Y / N How frequently?

4

			5				
j. Has painting/s	staining been don	e in the last 6 n	nonths? Y	/N)	Where & W	/hen?	
k. Is there new o	carpet, drapes or	other textiles?	Y	N	Where & W	'hen?	
l. Have air fresh	eners been used i	recently?	Y	N	When & Ty	pe?	
m. Is there a kit	chen exhaust fan	?	Ŷ	'N	If yes, wher	e vented?Roof(Acme + Pizzenia)
n. Is there a bat	hroom exhaust fa	nn?	Ŷ	N	If yes, where	e vented?	
o. Is there a clot	hes dryer?		$(\mathbf{\hat{Y}})$	Ν	If yes, is it v	vented outside?(Y) N	1
p. Has there been	n a pesticide appl	ication?	Υ/	N	When & Tyj	pe?	
Are there odors If yes, please de	in the building? scribe:		Υ (Ñ)			
Do any of the build (e.g., chemical manu boiler mechanic, pes	ing occupants use ifacturing or labor ticide application,	e solvents at wo atory, auto mech cosmetologist	ork? Y (nanic or auto bo	N ody s	hop, paintin	g, fuel oil delivery,	
If yes, what types	of solvents are use	ed?		_			
If yes, are their clo	othes washed at wo	ork?	Y/1	N			
Do any of the buildi response)	ing occupants reg	ularly use or w	ork at a dry-c	leani	ing service?	(Circle appropriate	
Yes, use dry Yes, use dry Yes, work at	-cleaning regularly -cleaning infreque a dry-cleaning ser	v (weekly) ntly (monthly or vice	·less)	N L	Vo Jnknown		
Is there a radon mit Is the system active	igation system fo or passive?	r the building/s Active/Passive	tructure?(Y)/	NE	Date of Instal	llation:	_
9. WATER AND SE	WAGE						
Water Supply:	Public Water	Drilled Well	Driven Well	D	ug Well	Other:	
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	D	ry Well	Other:	
10. RELOCATION	INFORMATION	(for oil spill re	sidential emer	genc	cy)		
a. Provide reasor	is why relocation	is recommende	ed:				
b. Residents choo	ose to: remain in h	ome reloca	te to friends/far	mily	reloca	te to hotel/motel	
c. Responsibility	for costs associat	ed with reimbu	rsement expla	ined	? Y/N		
d. Relocation pac	kage provided ar	d explained to	residents?		Y/N		

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

Acme - Produce/Floral Area + Backroom

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the front and back of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Brian Ehalt	Date/Time Prepared 3/26/19
Preparer's Affiliation	on Excel Environmental Resource	5, Inc. Phone No. 732-545-9525
Purpose of Investig	ation Indus Air Sampling	of shub Dak Shopping Center - Mr. cleaners
1. OCCUPANT:	N/A	
Interviewed: Y/I	N	
Last Name:	First Name	3.
Address:		
County:		
Home Phone:	Office Phone: _	
Number of Occupan	its/persons at this location	Age of Occupants
2. OWNER OR LA	NDLORD: (Check if same as occu	upant) N/A
Interviewed: Y/N	1	
Last Name:	First Name:	
Address:		
County:		
Home Phone:	Office Phone:	
3. BUILDING CHA Type of Building: ((RACTERISTICS Circle appropriate response)	
Residential Industrial	School Comme Church Other:	ercial/Multi-use

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type?	Part-Office Wells Forgo Burk
Business Type(s) Acme, Wrelewers, Reading US	
Does it include residences (i.e., multi-use)? Y $/(N)$	If yes, how many?

Other characteristics:

Number of floors

Building age_____

Is the building insulated? (Y)/N

How air tight? Tight (Average) Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

N

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction	: wood frame	(concrete)	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ed
j. Sump present?	(Y)/N (Piz	zeria		
k. Water in sump? Y	/N/ not applicable			
Basement/Lowest level depth belo	ow grade: <u>3</u>	(feet) (fizz	eria)	

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply – note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	ump 1 radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel O Propan Coal	il) (AST3) e	Kerosene Solar	
Domestic hot water tank fue	led by:			
Boiler/furnace located in:	Basement	Outdoors	(Main Floor)	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? $(\dot{Y})/N$

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

N/A

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., f	amilyroom, bedro	om, laundry, w	orkshop, storage)
Basement	Sump (Pizze	ricy			
1 st Floor	Storefronts				
2 nd Floor					
3 rd Floor					
4 th Floor					
8. FACTORS	THAT MAY INFLUE	NCE INDOOI	R AIR QUALITY		
a. Is there an	attached garage?			Y/N	
b. Does the g	arage have a separate l	heating unit?		Y/N/NA	
c. Are petrole stored in th	eum-powered machine ne garage (e.g., lawnmo	s or vehicles wer, atv, car)		Y / N / NA) Please specify_	

d. Has the building ever had a fire?

e. Is a kerosene or unvented gas space heater present?

f. Is there a workshop or hobby/craft area?

g. Is there smoking in the building?

h. Have cleaning products been used recently?

i. Have cosmetic products been used recently?

4

Y/N	How frequently?
Y/N	When & Type?

Y / N Where & Type? _____

Y/N When?_____

Y/N Where?_____

Y / N When & Type? _____

·		G	Where & Where
J. Has painting	staining been done in the last 6 m	onths? Y/N	where & when?
k. Is there new	carpet, drapes or other textiles?	Y/N)	Where & When?
l. Have air fres	neners been used recently?	Y N	When & Type?
m. Is there a ki	tchen exhaust fan?	(Ŷ) N	If yes, where vented? $\frac{R_{oo} f}{R_{oo}}$
n. Is there a ba	throom exhaust fan?	Y N	If yes, where vented?
o. Is there a clo	hes dryer?	(¥)/ N	If yes, is it vented outside? \widehat{Y} N
p. Has there bee	en a pesticide application?	Y/N	When & Type?
Are there odors If yes, please de	in the building? escribe:	Y (Ñ	
Do any of the build (e.g., chemical man boiler mechanic, pe	ling occupants use solvents at wor ufacturing or laboratory, auto mech sticide application, cosmetologist	rk? Y (N anic or auto body s	hop, painting, fuel oil delivery,
If yes, what types	of solvents are used?		
If yes, what types If yes, are their cl	of solvents are used?	Y/N	
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a	of solvents are used? othes washed at work? ing occupants regularly use or wo r-cleaning regularly (weekly) r-cleaning infrequently (monthly or t a dry-cleaning service	Y / N ork at a dry-cleani less) L	ng service? (Circle appropriate Io Inknown
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active	ot solvents are used? othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) -cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? Active/Passive	Y/N ork at a dry-cleani less) U tructure?(Y/N D	ng service? (Circle appropriate Io Inknown Pate of Installation:
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI	ot solvents are used? othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) -cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? EWAGE	Y/N ork at a dry-cleani less) U tructure?(Y/N D	ng service? (Circle appropriate lo Inknown Pate of Installation:
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply:	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) -cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? EWAGE Public Water Drilled Well	Y/N ork at a dry-cleani less) U tructure?(Y/N D Driven Well D	ng service? (Circle appropriate lo Inknown Pate of Installation: ug Well Other:
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply: Sewage Disposal:	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) c-cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? EWAGE Public Water Drilled Well Public Sewer Septic Tank	Y/N ork at a dry-cleani less) U tructure? (Y/N D Driven Well D Leach Field D	ng service? (Circle appropriate To Inknown Pate of Installation: ug Well Other: ry Well Other:
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply: Sewage Disposal: 0. RELOCATION	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) c-cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? Active/Passive EWAGE Public Water Drilled Well Public Sewer Septic Tank INFORMATION (for oil spill res	Y/N ork at a dry-cleani less) L tructure? Y/N D Driven Well D Leach Field D sidential emergenc	ng service? (Circle appropriate lo Inknown Pate of Installation: ug Well Other: ry Well Other: y)
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply: Sewage Disposal: 0. RELOCATION a. Provide reaso	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) c-cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? Active/Passive EWAGE (Public Water Drilled Well (Public Sewer) Septic Tank INFORMATION (for oil spill res ns why relocation is recommende	Y / N ork at a dry-cleani less) U tructure? Y/ N D Leach Field D sidential emergenc d:	ng service? (Circle appropriate lo Inknown Pate of Installation: ug Well Other: ry Well Other: y)
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply: Sewage Disposal: 0. RELOCATION a. Provide reaso b. Residents cho	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) -cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? Active/Passive EWAGE Public Water Drilled Well Public Sewer Septic Tank INFORMATION (for oil spill ress ns why relocation is recommende ose to: remain in home relocate	Y / N ork at a dry-cleani less) U tructure? (Y) N D Driven Well D Leach Field D sidential emergence d: e to friends/family	ng service? (Circle appropriate lo Inknown Pate of Installation: ug Well Other: ry Well Other: y) relocate to hotel/motel
If yes, what types If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work a Is there a radon mi Is the system active O. WATER AND SI Water Supply: Sewage Disposal: 0. RELOCATION a. Provide reaso b. Residents cho c. Responsibility	othes washed at work? ing occupants regularly use or wo c-cleaning regularly (weekly) -cleaning infrequently (monthly or t a dry-cleaning service tigation system for the building/st or passive? Active/Passive EWAGE Public Water Drilled Well Public Sewer Septic Tank INFORMATION (for oil spill ress ns why relocation is recommende ose to: remain in home relocate for costs associated with reimbur	Y / N ork at a dry-cleani less) L tructure?(Y)/ N D Driven Well D Leach Field D sidential emergence d: e to friends/family rsement explained	ng service? (Circle appropriate lo Inknown Pate of Installation: ug Well Other: ry Well Other: y) relocate to hotel/motel ? Y / N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

0-0 = Clothing Racks

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Mr. Clemers	DF2000 Hydrocarbon		in-use		N/A	N
	Solvent					

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	non Ehalt	Date/Time Prepared 3/26/19	
Preparer's Affiliation 4	Excel Environmenta	a/ Resources, Inc. Phone No. 732-545-9525	
Purpose of Investigatio	n Indear Air Su	mpling of shub Dak Shopping Center - Francesca Pizza +	, s Pasta
1. OCCUPANT: /	//A		- (
Interviewed: Y/N			
Last Name:	F	First Name:	
Address:			
County:			
Home Phone:	Office	e Phone:	
Number of Occupants/p	ersons at this location	Age of Occupants	
2. OWNER OR LAND	LORD: (Check if sar	ame as occupant) N/A	
Interviewed: Y/N			
Last Name:	Fir	rst Name:	
Address:			
County:			
Home Phone:	Office	e Phone:	
3. BUILDING CHARA	CTERISTICS	se)	
Residential Industrial	School Church	Commercial/Multi-use Other:	

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type?		
Business Type(s) Acme, By-clauers, P.	zcenia, US Po	sst-Office, Wells Fargo Bank
Does it include residences (i.e., multi-use)?	Y /N	If yes, how many?

Other characteristics:

Number of floors_	1
-------------------	---

Is the building insulated?(Y)/ N

How air tight? Tight / Average) Not Tight

Building age_____

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction	on: wood frame	(concrete)	(stone)	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered w	ith
e. Concrete floor:	unsealed	sealed	sealed with	1
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	1
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially fir	nished
j. Sump present?	(Y)/N (Piz	zzerici)		
k. Water in sump?	Y /N/ not applicable			

Basement/Lowest level depth below grade: ______ (feet) (fizzeria)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Strean Wood	ump 1 radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other				
The primary type of fuel use	The primary type of fuel used is:							
Natural Gas Electric Wood	(Fuel Oil) (ASTS) Propane Coal		Kerosene Solar					
Domestic hot water tank fueled by:								
Boiler/furnace located in:	Basement	Outdoors	(Main Floor)	Other				
Air conditioning:	Central Air	Window units	Open Windows	None				

Are there air distribution ducts present? $(\hat{Y})/N$

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

N/A

Is basement/lowest level occupied?		Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fa	amilyroom, bedro	oom, laundry, w	orkshop, storage)
Basement 1 st Floor 2 nd Floor 3 rd Floor 4 th Floor	Sump (Pizza Storefronts	ric)			-

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?		Y /N
b. Does the garage have a separate heating unit?		Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has the building ever had a fire?		Y/N When?
e. Is a kerosene or unvented gas space heater present?		Y/N Where?
f. Is there a workshop or hobby/craft area?	Y/N	Where & Type?
g. Is there smoking in the building?	Y/N	How frequently?
h. Have cleaning products been used recently?	Y/N	When & Type?
i. Have cosmetic products been used recently?	Y/N	When & Type?

4

j. Has painting/staining been done in the last 6 months?	Y / (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Y / N Where & When?
I. Have air fresheners been used recently?	Y 🔊 When & Type?
m. Is there a kitchen exhaust fan?	$(\hat{\mathbf{Y}})$ N If yes, where vented? $\mathcal{R}_{00} \neq (Ac_{MR} + f_{i}^{2} = 2c_{Vin})$
n. Is there a bathroom exhaust fan?	Y N If yes, where vented?
o. Is there a clothes dryer?	$(\widehat{Y})/N$ If yes, is it vented outside? $(\widehat{Y})/N$
p. Has there been a pesticide application?	Y / N When & Type?
Are there odors in the building? If yes, please describe:	Y (Ń)
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y (N) auto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y/N
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes. use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure Is the system active or passive? (Active/Passive	e?(Y) N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: (Public Water) Drilled Well Driver	Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	Field Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia	l emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to frie	nds/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursemen	t explained? Y / N
d. Relocation package provided and explained to residen	ts? Y / N

.

ţ

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

Francesca's Pizza + Pasta

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
sink	Pak-IT- Henry Muty	3L	0			N
0						
			-			

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible. NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

 This form must be completed for each residence involved in indoor air testing.

 Preparer's Name
 Bricul Ehalt

 Preparer's Affiliation
 Excel Environmental Resources, Enc. Phone No. 732-545-9525

Purpose of Investigation Indean Air Sampling of shub Dack Shopping Center - US Post

1. OCCUPANT:	N/A
--------------	-----

Interviewed: Y/N				
Last Name: First Name:				
Address:				
County:				
Home Phone: Office Phone:				
Number of Occupants/persons at this location Age of Occupants				
2. OWNER OR LANDLORD: (Check if same as occupant) N/A Interviewed: Y/N N/A				
Last Name:First Name:				
Address:				
County:				
Home Phone: Office Phone:				
3. BUILDING CHARACTERISTICS				

Type of Building: (Circle appropriate response)

Residential	School	Commercial/Multi-use
Industrial	Church	Other:

OSR – 3

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type? Business Type(s) Acme, by cleaners, Rizceria, US Post-Office, Wells Forgo Bunk

Does it include residences (i.e., multi-use)? Y/N If yes, how many?

NI

Other characteristics:

Number of floors

Building age_____

Is the building insulated? (Y)/N

How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

a. Above grade construction: wood frame (concrete) stone) brick b. Basement type: full crawlspace other slab c. Basement floor: dirt concrete other stone d. Basement floor: covered covered with _____ uncovered e. Concrete floor: unsealed (sealed) sealed with _____ f. Foundation walls: (poured) (block) other _____ stone g. Foundation walls: unsealed (sealed) sealed with h. The basement is: wet damp dry moldy i. The basement is: finished unfinished partially finished (YIN (Pizzeria) j. Sump present? Y / (N) / not applicablek. Water in sump? Basement/Lowest level depth below grade: ______ (feet) (fizzeria) Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove		Hot water baseboard Radiant floor Outdoor wood boiler	Other				
The primary type of fuel us	ed is:							
Natural Gas Electric Wood	Fuel Oil) (ASTS) Propane Coal		Kerosene Solar					
Domestic hot water tank fueled by:								
Boiler/furnace located in:	Basement	Outdoors	(Main Floor)	Other				
Air conditioning:	Central Air	Window units	Open Windows	None				
Are there air distribution ducts present? $(\widehat{Y})/N$

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

N/A

Is basement/le	owest level occupied?	Full-time	Occasionally	Seldom	Almost Never
Level	General Use of Each	Floor (e.g., fa	milyroom, bedro	om, laundry	, workshop, storage
Basement	Sump (Pizza	ric			
1 st Floor	JURETUALS				
2 nd Floor					
3 rd Floor					
4 th Floor					

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?		Y /N
b. Does the garage have a separate heating unit?		Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has the building ever had a fire?		Y/N When?
e. Is a kerosene or unvented gas space heater present?		Y/N Where?
f. Is there a workshop or hobby/craft area?	Y/N	Where & Type?
g. Is there smoking in the building?	Y/N	How frequently?
h. Have cleaning products been used recently?	Y/N	When & Type?
i. Have cosmetic products been used recently?	Y/N	When & Type?

		-	
j. Has painting	staining been done in the last 6 months?	Y /(N) Where & When?	
k. Is there new	carpet, drapes or other textiles?	Y / N Where & When?	
l. Have air fres	neners been used recently?	Y / N When & Type?	
m. Is there a ki	chen exhaust fan?	(\hat{Y}) /N If yes, where vented?	Roof (Acme + 1
n. Is there a ba	throom exhaust fan?	YN If yes, where vented?	
o. Is there a clot	hes dryer?	$(\widehat{Y})/N$ If yes, is it vented out	side?YN
p. Has there bee	n a pesticide application?	Y / N When & Type?	
Are there odors If yes, please de	in the building? scribe:	Y (Î)	
Do any of the build (e.g., chemical man boiler mechanic, pe	ling occupants use solvents at work? ufacturing or laboratory, auto mechanic or sticide application, cosmetologist	Y / N auto body shop, painting, fuel of	l delivery,
If yes, what types	of solvents are used?		
If yes, are their cl	othes washed at work?	Y/N	
If yes, are their cl Do any of the build response)	othes washed at work? ing occupants regularly use or work at	Y / N dry-cleaning service? (Circle a	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) a dry-cleaning service	Y / N dry-cleaning service? (Circle a No Unknown	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon min Is the system active	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? Active/Passive	Y / N dry-cleaning service? (Circle a No Unknown e? (Y)/ N Date of Installation:	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon mit Is the system active 9. WATER AND SE	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? EWAGE	Y / N dry-cleaning service? (Circle a No Unknown e? Y / N Date of Installation:	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon mi Is the system active 9. WATER AND SE Water Supply:	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infrequently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? CWAGE Public Water Drilled Well Drive	Y / N dry-cleaning service? (Circle a No Unknown e? Y / N Date of Installation: Well Dug Well Other:	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon min Is the system active 9. WATER AND SH Water Supply: Sewage Disposal:	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infreouently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? Active/Passive CWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach	Y / N dry-cleaning service? (Circle a No Unknown e? Y / N Date of Installation: Well Dug Well Other: Field Dry Well Other:	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, use dry Yes, work at Is there a radon mi Is the system active 9. WATER AND SH Water Supply: Sewage Disposal: 10. RELOCATION	ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infreouently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? Active/Passive CWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach INFORMATION (for oil spill residentie	Y / N dry-cleaning service? (Circle a No Unknown e? Y/N Date of Installation: Well Dug Well Other: Field Dry Well Other: I emergency)	ppropriate
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon mi Is the system active 9. WATER AND SH Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reaso	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infreouently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? Active/Passive CWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach INFORMATION (for oil spill residention ns why relocation is recommended:	Y / N dry-cleaning service? (Circle a No Unknown e? Y / N Date of Installation: Well Dug Well Other: Field Dry Well Other: l emergency)	
If yes, are their cl Do any of the build response) Yes, use dry Yes, use dry Yes, work at Is there a radon mi Is the system active 9. WATER AND SH Water Supply: Sewage Disposal: 10. RELOCATION a. Provide reaso b. Residents cho	othes washed at work? ing occupants regularly use or work at -cleaning regularly (weekly) -cleaning infreouently (monthly or less) a dry-cleaning service tigation system for the building/structur or passive? Active/Passive CWAGE Public Water Drilled Well Drive Public Sewer Septic Tank Leach INFORMATION (for oil spill residentians ns why relocation is recommended: pose to: remain in home relocate to friction	Y / N dry-cleaning service? (Circle a No Unknown e? Y N Date of Installation: Well Dug Well Other: Field Dry Well Other: I emergency) nds/family relocate to hote	ppropriate

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: _____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
					_	

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible. OSR – 3

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name	Brian Ehalt	Date/Time Prepared	3/26/19		
Preparer's Affiliation	m Excel Environmental	Resources, Inc. Phone No. 732-	-545-9525		
Purpose of Investig	ation Indean Air Surry	pliling of shub Oak Sho	opping center -	Wells Burk	Firgo
1. OCCUPANT:	N/A				
Interviewed: Y/N	4				
Last Name:	Firs	st Name:			
Address:					
County:					
Home Phone:	Office P	Phone:			
Number of Occupan	s/persons at this location	Age of Occupants			
2. OWNER OR LA	NDLORD: (Check if same	e as occupant) M/A			
Interviewed: Y/N					
Last Name:	First]	Name:			
Address:					
County:					
Home Phone:	Office P	hone:			
3. BUILDING CHA	RACTERISTICS				
Type of Building: (C	ircle appropriate response)				
Residential Industrial	School (Church	Commercial/Multi-use, Other:			

2

If the property is residential, type? (Circle appropriate response)

Ranch	2-Family	3-Family
Raised Ranch	Split Level	Colonial
Cape Cod	Contemporary	Mobile Home
Duplex	Apartment House	Townhouses/Condos
Modular	Log Home	Other:

If multiple units, how many? _____

If the property is commercial, type?		
Business Type(s) Acme, by - cleaners	Pizzania, US Post-Office	, Wells Fargo Bunk

Does it include residences (i.e., multi-use)? Y/N If yes, how many?

.

Other characteristics:

Number of floors

Building age_____

Is the building insulated? (Y)/ N How air tight? Tight / Average / Not Tight

4. AIRFLOW

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

N/A

Airflow between floors

Airflow near source

Outdoor air infiltration

Infiltration into air ducts

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construction:	wood frame	(concrete)	stone	brick
b. Basement type:	full	crawlspace	slab	other
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	(poured)	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finishe	d
j. Sump present?	(Y)/N (Piz	Zerici		
k. Water in sump? Y /N	/ not applicable			
Basement/Lowest level depth below	grade: <u>~</u> 3	(feet) (Pizz	eria)	

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	ump 1 radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel use	ed is:			
Natural Gas Electric Wood	Fuel O Propan Coal	il) (AST) le	Kerosene Solar	
Domestic hot water tank fue	led by:			
Boiler/furnace located in:	Basement	Outdoors	(Main Floor)	Other
Air conditioning:	Central Air	Window units	Open Windows	None

Are there air distribution ducts present? $(\hat{Y})/N$

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

N/A

Is basement/lo	west level occupied?	Full-time	Occas	sionally	Seldo	om	Almost Never
Level	General Use of Each	Floor (e.g., i	familyrooi	m, bedr	oom, la	undry, wo	orkshop, storage)
Basement	Sump (Pizze	rice					
1 st Floor	Storefronts			_			
2 nd Floor							
3 rd Floor			_				
4 th Floor							
8. FACTORS 7	THAT MAY INFLUE	NCE INDOO	R AIR QU	JALITY	7 		
h Doos the g	attached garage:				YIN	6	
D. Does the ga	arage have a separate l	reating unit?			Y / N /	(NA)	
c. Are petrole stored in th	eum-powered machines e garage (e.g., lawnmo	s or vehicles wer, atv, car)			Y / N / Please	NA) specify	
d. Has the bui	ilding ever had a fire?				Y/N	When?_	
e. Is a kerosen	e or unvented gas spa	ce heater pre	sent?		Y/N	Where?	
f. Is there a we	orkshop or hobby/craf	t area?		Y/N	Where	& Type?	
g. Is there smo	oking in the building?			Y/N	How fr	equently?	

h. Have cleaning products been used recently? Y / N When & Type?

Y / N When & Type? _____

i. Have cosmetic products been used recently?

j. Has painting/staining been done in the last 6 months?	Y / (N) Where & When?
k. Is there new carpet, drapes or other textiles?	Y /N Where & When?
I. Have air fresheners been used recently?	Y (N When & Type?
m. Is there a kitchen exhaust fan?	(\hat{Y}) N If yes, where vented? $R_{00} \hat{F} (\Lambda_{CME} + P_{122})$
n. Is there a bathroom exhaust fan?	Y N If yes, where vented?
o. Is there a clothes dryer?	$(\widehat{Y})/N$ If yes, is it vented outside? $(\widehat{Y})N$
p. Has there been a pesticide application?	Y / N When & Type?
Are there odors in the building? If yes, please describe:	Y (Ñ)
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y (N) uto body shop, painting, fuel oil delivery,
If yes, what types of solvents are used?	
If yes, are their clothes washed at work?	Y / N
Do any of the building occupants regularly use or work at a response)	dry-cleaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	No Unknown
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive	?(Y) N Date of Installation:
9. WATER AND SEWAGE	
Water Supply: (Public Water) Drilled Well Driven	Well Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	ield Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residentia)	emergency)
a. Provide reasons why relocation is recommended:	
b. Residents choose to: remain in home relocate to friend	ds/family relocate to hotel/motel
c. Responsibility for costs associated with reimbursement	explained? Y / N
d. Relocation package provided and explained to residen	s? Y / N

ľ

5

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

Wells Fargo Bank

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used: ____

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo " <u>Y / N</u>
201						

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical

ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

TENANT NOTIFICATION FORMS

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

VIA US MAIL

US Post Office 1350 East Main Street Shrub Oak, New York 10588

RE: Notification of Indoor Air Test Results

To Whom It May Concern:

Excel Environmental Resources, Inc. (Excel), on behalf of Shrub Oak Partners, LLC, owner of the Shrub Oak Shopping Center located at 1336-1378 East Main Street in the Town of Yorktown, New York is continuing a Vapor Intrusion (VI) investigation of the property.

As outlined in the New York State Environmental Conservation Law (ECL 27-2405), all tenants and occupants have the right to request the test results of this VI investigation.

Indoor air sample IA-4 collected on March 26, 2019 at your location reported the site related Contaminants of Concern (COCs) Trichloroethene (TCE) and Tetrachloroethene (PCE) at 0.435 micrograms per cubic meter (ug/m³) and 0.854 ug/m³, respectively. The reported concentrations are below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Provided with this letter are Frequently Asked Questions for Soil Vapor Intrusion investigations, and NYS DOH fact sheets for TCE and PCE, the contaminants of concern at the subject property.

A copy of your indoor air sampling results is attached. Should you have any questions, please contact the undersigned at (732)-545-9525, or New York State Department of Environmental Conservation (NYSDEC) Case Manager Matthew Hubicki at (518) 402-9605. If you would like more information on the health effects of TCE and PCE in indoor air, please contact Mr. Stephen Lawrence or Ms. Maureen Schuck from NYS DOH at (518) 402-7860.

Thank you,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael Meriney, PG Vice President

Attachments: Tenant-Space Specific Indoor Air Sampling Results NYS DOH Soil Vapor Intrusion Frequently Asked Questions NYS DOH Tenant Notification Fact Sheet for Trichloroethene (TCE) NYS DOH Tenant Notification Fact Sheet for Tetrachloroethene (PCE)

K:\Projects\12229 Mr Cleaners-Shrub Oak SC\RI\VI\VI Notification and Factsheets-FAQs\March 2019\Post Office\VI letter - Post Office.docx 111 North Center Drive • North Brunswick, New Jersey 08902 • PHONE: (732) 545-9525 • FAX: (732) 545-9425 • WEBSITE: www.excelenv.com Indoor Air Sampling Results

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 21:12
Analyst:	TS

Date Collected:	03/26/19 16:30
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ïeld Lab							
Dichlorodifluoromethane	0.431	0.200		2.13	0.989			1
Chloromethane	0.571	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	15.9	5.00		30.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.11	1.00		9.76	2.38			1
Trichlorofluoromethane	0.223	0.200		1.25	1.12			1
Isopropanol	1.01	0.500		2.48	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.572	0.500		2.06	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 16:30

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-04Client ID:IA-4Sample Location:SHRUB OAK, NY

Sample Depth:

Campio Dopan		ppbV ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.619	0.200		2.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 16:30

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

Sample Depth:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	86		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 21:12
Analyst:	TS

Date Collected:	03/26/19 16:30
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.073	0.020		0.459	0.126			1
Trichloroethene	0.081	0.020		0.435	0.107			1
Tetrachloroethene	0.126	0.020		0.854	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	88		60-140

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

VIA US MAIL

Francesca's Pizza & Pasta 1356 East Main Street Shrub Oak, New York 10588

RE: Notification of Indoor Air Test Results

To Whom It May Concern:

Excel Environmental Resources, Inc. (Excel), on behalf of Shrub Oak Partners, LLC, owner of the Shrub Oak Shopping Center located at 1336-1378 East Main Street in the Town of Yorktown, New York is continuing a Vapor Intrusion (VI) investigation of the property.

As outlined in the New York State Environmental Conservation Law (ECL 27-2405), all tenants and occupants have the right to request the test results of this VI investigation.

Indoor air sample IA-5 collected on March 26, 2019 at your location reported the site related Contaminants of Concern (COCs) Trichloroethene (TCE) and Tetrachloroethene (PCE) at 1.38 micrograms per cubic meter (ug/m³) and 9.97 ug/m³, respectively. The reported concentrations are below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Provided with this letter are Frequently Asked Questions for Soil Vapor Intrusion investigations, and NYS DOH fact sheets for TCE and PCE, the contaminants of concern at the subject property.

A copy of your indoor air sampling results is attached. Should you have any questions, please contact the undersigned at (732)-545-9525, or New York State Department of Environmental Conservation (NYSDEC) Case Manager Matthew Hubicki at (518) 402-9605. If you would like more information on the health effects of TCE and PCE in indoor air, please contact Mr. Stephen Lawrence or Ms. Maureen Schuck from NYS DOH at (518) 402-7860.

Thank you,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael Meriney, PG

Vice President

Attachments: Tenant-Space Specific Indoor Air Sampling Results NYS DOH Soil Vapor Intrusion Frequently Asked Questions NYS DOH Tenant Notification Fact Sheet for Trichloroethene (TCE) NYS DOH Tenant Notification Fact Sheet for Tetrachloroethene (PCE)

K:\Projects\12229 Mr Cleaners-Shrub Oak SC\RI\VI\VI Notification and Factsheets-FAQs\March 2019\Pizzeria\VI letter - Pizzeria.docx 111 North Center Drive • North Brunswick, New Jersey 08902 • PHONE: (732) 545-9525 • FAX: (732) 545-9425 • WEBSITE: www.excelenv.com Indoor Air Sampling Results

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-05Client ID:IA-5Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 21:51
Analyst:	TS

Date Collected:	03/26/19 17:50
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	sfield Lab							
Dichlorodifluoromethane	0.464	0.200		2.29	0.989			1
Chloromethane	0.582	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	176	5.00		332	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.67	1.00		11.1	2.38			1
Trichlorofluoromethane	0.231	0.200		1.30	1.12			1
Isopropanol	1.37	0.500		3.37	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.629	0.500		1.86	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.214	0.200		1.05	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 17:50

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-05Client ID:IA-5Sample Location:SHRUB OAK, NY

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.619	0.200		2.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 17:50

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-05 Client ID: IA-5 Sample Location: SHRUB OAK, NY

Sample Depth:

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	85		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-05 Client ID: IA-5 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 21:51
TS

Date Collected:	03/26/19 17:50
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SI	N - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.046	0.020		0.182	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.074	0.020		0.465	0.126			1
Trichloroethene	0.256	0.020		1.38	0.107			1
Tetrachloroethene	1.47	0.020		9.97	0.136			1
1,2-Dichloroethene (total)	0.046	0.020		0.182	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	86		60-140

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

VIA US MAIL

Mr. Cleaners, Inc. 1360 East Main Street Shrub Oak, New York 10588

RE: Notification of Indoor Air Test Results

To Whom It May Concern:

Excel Environmental Resources, Inc. (Excel), on behalf of Shrub Oak Partners, LLC, owner of the Shrub Oak Shopping Center located at 1336-1378 East Main Street in the Town of Yorktown, New York is continuing a Vapor Intrusion (VI) investigation of the property.

As outlined in the New York State Environmental Conservation Law (ECL 27-2405), all tenants and occupants have the right to request the test results of this VI investigation.

Indoor air sample IA-3 collected on March 26, 2019 at your location reported the site related Contaminants of Concern (COCs) Trichloroethene (TCE) and Tetrachloroethene (PCE) at 3.9 micrograms per cubic meter (ug/m³) and 6.17 ug/m³, respectively. The reported concentrations are below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Provided with this letter are Frequently Asked Questions for Soil Vapor Intrusion investigations, and NYS DOH fact sheets for TCE and PCE, the contaminants of concern at the subject property.

A copy of your indoor air sampling results is attached. Should you have any questions, please contact the undersigned at (732)-545-9525, or New York State Department of Environmental Conservation (NYSDEC) Case Manager Matthew Hubicki at (518) 402-9605. If you would like more information on the health effects of TCE and PCE in indoor air, please contact Mr. Stephen Lawrence or Ms. Maureen Schuck from NYS DOH at (518) 402-7860.

Thank you,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael Meriney, PG Vice President

Attachments: Tenant-Space Specific Indoor Air Sampling Results NYS DOH Soil Vapor Intrusion Frequently Asked Questions NYS DOH Tenant Notification Fact Sheet for Trichloroethene (TCE) NYS DOH Tenant Notification Fact Sheet for Tetrachloroethene (PCE)

K:\Projects\12229 Mr Cleaners-Shrub Oak SC\RI\VI\VI Notification and Factsheets-FAQs\March 2019\Mr. Cleaners\VI letter - Mr. Cleaners.docx

111 North Center Drive • North Brunswick, New Jersey 08902 • PHONE: (732) 545-9525 • FAX: (732) 545-9425 • WEBSITE: www.excelenv.com

Indoor Air Sampling Results

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-03Client ID:IA-3Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 20:32
Analyst:	TS

Date Collected:	03/26/19 15:50
Date Received:	03/26/19
Field Prep:	Not Specified

ppbV			ug/m3			Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.479	0.200		2.37	0.989			1
Chloromethane	0.578	0.200		1.19	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	71.3	5.00		134	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.52	1.00		10.7	2.38			1
Trichlorofluoromethane	0.277	0.200		1.56	1.12			1
Isopropanol	1.02	0.500		2.51	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.609	0.500		2.19	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 15:50

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-03 Client ID: IA-3 Sample Location: SHRUB OAK, NY

Sample Depth:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.310	0.200		1.17	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 15:50

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-03 Client ID: IA-3 Sample Location: SHRUB OAK, NY

Sample Depth:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	86		60-140

Project Name: MR. CLEANERS
Project Number: 12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-03 Client ID: IA-3 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 20:32
Analyst:	TS

Date Collected:	03/26/19 15:50
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.068	0.020		0.270	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.077	0.020		0.484	0.126			1
Trichloroethene	0.726	0.020		3.90	0.107			1
Tetrachloroethene	0.910	0.020		6.17	0.136			1
1,2-Dichloroethene (total)	0.068	0.020		0.270	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	88		60-140

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

VIA US MAIL

Acme/Albertsons 1366 East Main Street Shrub Oak, New York 10588

RE: Notification of Indoor Air Test Results

To Whom It May Concern:

Excel Environmental Resources, Inc. (Excel), on behalf of Shrub Oak Partners, LLC, owner of the Shrub Oak Shopping Center located at 1336-1378 East Main Street in the Town of Yorktown, New York is continuing a Vapor Intrusion (VI) investigation of the property.

As outlined in the New York State Environmental Conservation Law (ECL 27-2405), all tenants and occupants have the right to request the test results of this VI investigation.

Indoor air samples IA-1 and IA-2 collected on March 26, 2019 at your location reported the site related Contaminants of Concern (COCs) Trichloroethene (TCE) at 0.113 micrograms per cubic meter (ug/m³) and 0.145 ug/m³, respectively, and Tetrachloroethene (PCE) at 0.339 ug/m³ and 0.461 ug/m³, respectively. The reported concentrations are below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Provided with this letter are Frequently Asked Questions for Soil Vapor Intrusion investigations, and NYS DOH fact sheets for TCE and PCE, the contaminants of concern at the subject property.

A copy of your indoor air sampling results is attached. Should you have any questions, please contact the undersigned at (732)-545-9525, or New York State Department of Environmental Conservation (NYSDEC) Case Manager Matthew Hubicki at (518) 402-9605. If you would like more information on the health effects of TCE and PCE in indoor air, please contact Mr. Stephen Lawrence or Ms. Maureen Schuck from NYS DOH at (518) 402-7860.

Thank you,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael Meriney, PG Vice President

Attachments: Tenant-Space Specific Indoor Air Sampling Results NYS DOH Soil Vapor Intrusion Frequently Asked Questions NYS DOH Tenant Notification Fact Sheet for Trichloroethene (TCE) NYS DOH Tenant Notification Fact Sheet for Tetrachloroethene (PCE)

K:\Projects\12229 Mr Cleaners-Shrub Oak SC\RI\VI\VI Notification and Factsheets-FAQs\March 2019\ACME\VI letter - Acme.docx 111 North Center Drive • North Brunswick, New Jersey 08902 • PHONE: (732) 545-9525 • FAX: (732) 545-9425 • WEBSITE: www.excelenv.com Indoor Air Sampling Results

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-01Client ID:IA-1Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 18:34
Analyst:	TS

Date Collected:	03/26/19 15:40
Date Received:	03/26/19
Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.642	0.200		3.17	0.989			1
Chloromethane	0.615	0.200		1.27	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	245	5.00		462	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.35	1.00		12.7	2.38			1
Trichlorofluoromethane	0.609	0.200		3.42	1.12			1
Isopropanol	4.17	0.500		10.3	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	4.85	0.500		17.5	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 15:40

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-01 Client ID: IA-1 Sample Location: SHRUB OAK, NY

Sample Depth:

Campio Dopan	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.292	0.200		1.10	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-01Client ID:IA-1Sample Location:SHRUB OAK, NY

	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	84		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	85		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-01 Client ID: IA-1 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 18:34
Analyst:	TS

Date Collected:	03/26/19 15:40
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.099	0.020		0.623	0.126			1
Trichloroethene	0.021	0.020		0.113	0.107			1
Tetrachloroethene	0.050	0.020		0.339	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	87		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-02 Client ID: IA-2 Sample Location: SHRUB OAK, NY

Air
48,TO-15
04/01/19 19:13
TS

Date Collected:	03/26/19 15:35
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.679	0.200		3.36	0.989			1
Chloromethane	0.613	0.200		1.27	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	505	5.00		952	9.42		Е	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.17	1.00		12.3	2.38			1
Trichlorofluoromethane	0.628	0.200		3.53	1.12			1
Isopropanol	1.73	0.500		4.25	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.752	0.500		2.22	1.47			1
Ethyl Acetate	19.4	0.500		69.9	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-02 Client ID: IA-2 Sample Location: SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.219	0.200		0.825	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-02 Client ID: IA-2 Sample Location: SHRUB OAK, NY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	87		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-02 Client ID: IA-2 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 19:13
TS

Date Collected:	03/26/19 15:35
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.104	0.020		0.654	0.126			1
Trichloroethene	0.027	0.020		0.145	0.107			1
Tetrachloroethene	0.068	0.020		0.461	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	88		60-140

Project Name: Project Number:	MR. CLEANERS 12229					Lab N Repor	umber t Date:	: L19 : 04/	912042 ⁄04/19
			SAMPLE	RESULT	S				
Lab ID: Client ID: Sample Location:	L1912042-02 IA-2 SHRUB OAK, N	D				Date C Date F Field F	Collecte Receive Prep:	ed: 03/26 ed: 03/26 Not S	5/19 15:35 5/19 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 04/02/19 07:12 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield La	ıb							

	•					
Ethanol		474	8.34	 893	15.7	 1.667

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	109		60-140
chlorobenzene-d5	95		60-140

Solving Environmental Problems & Creating Redevelopment Opportunities

May 10, 2019

VIA US MAIL

Wells Fargo 1342 East Main Street Shrub Oak, New York 10588

RE: Notification of Indoor Air Test Results

To Whom It May Concern:

Excel Environmental Resources, Inc. (Excel), on behalf of Shrub Oak Partners, LLC, owner of the Shrub Oak Shopping Center located at 1336-1378 East Main Street in the Town of Yorktown, New York is continuing a Vapor Intrusion (VI) investigation of the property.

As outlined in the New York State Environmental Conservation Law (ECL 27-2405), all tenants and occupants have the right to request the test results of this VI investigation.

Indoor air sample IA-6 collected on March 26, 2019 at your location reported the site related Contaminants of Concern (COCs) Trichloroethene (TCE) and Tetrachloroethene (PCE) at non-detect and 0.271 micrograms per cubic meter (ug/m³), respectively. The reported concentrations are below the New York State Department of Health (NYS DOH) Air Guidelines Values (AVGs) and Immediate Action Levels (IALs). Provided with this letter are Frequently Asked Questions for Soil Vapor Intrusion investigations, and NYS DOH fact sheets for TCE and PCE, the contaminants of concern at the subject property.

A copy of your indoor air sampling results is attached. Should you have any questions, please contact the undersigned at (732)-545-9525, or New York State Department of Environmental Conservation (NYSDEC) Case Manager Matthew Hubicki at (518) 402-9605. If you would like more information on the health effects of TCE and PCE in indoor air, please contact Mr. Stephen Lawrence or Ms. Maureen Schuck from NYS DOH at (518) 402-7860.

Thank you,

EXCEL ENVIRONMENTAL RESOURCES, INC.

Michael Meriney, PG

Vice President

Attachments:

Tenant-Space Specific Indoor Air Sampling Results NYS DOH Soil Vapor Intrusion Frequently Asked Questions NYS DOH Tenant Notification Fact Sheet for Trichloroethene (TCE) NYS DOH Tenant Notification Fact Sheet for Tetrachloroethene (PCE)

K:\Projects\12229 Mr Cleaners-Shrub Oak SC\RI\VI\VI Notification and Factsheets-FAQs\March 2019\Wells Fargo\VI letter - Wells Fargo.docx 111 North Center Drive • North Brunswick, New Jersey 08902 • PHONE: (732) 545-9525 • FAX: (732) 545-9425 • WEBSITE: www.excelenv.com Indoor Air Sampling Results

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 22:31
Analyst:	TS

Date Collected:	03/26/19 17:00
Date Received:	03/26/19
Field Prep:	Not Specified

-		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.481	0.200		2.38	0.989			1
Chloromethane	0.591	0.200		1.22	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	164	5.00		309	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.11	1.00		9.76	2.38			1
Trichlorofluoromethane	0.216	0.200		1.21	1.12			1
Isopropanol	3.31	0.500		8.14	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.937	0.500		3.38	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 17:00

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 17:00

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	87		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 22:31
Analyst:	TS

Date Collected:	03/26/19 17:00
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.073	0.020		0.459	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.040	0.020		0.271	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	89		60-140

LABORATORY REPORT

ANALYTICAL REPORT

Lab Number:	L1912042
Client:	Excel Environmental Resources, Inc. 111 North Center Drive North Brunswick, NJ 08902
ATTN: Phone: Project Name: Project Number: Report Date:	Mike Meriney (732) 545-9525 MR. CLEANERS 12229 04/04/19

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Serial_No:04041911:00

Project Name:MR. CLEANERSProject Number:12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1912042-01	IA-1	AIR	SHRUB OAK, NY	03/26/19 15:40	03/26/19
L1912042-02	IA-2	AIR	SHRUB OAK, NY	03/26/19 15:35	03/26/19
L1912042-03	IA-3	AIR	SHRUB OAK, NY	03/26/19 15:50	03/26/19
L1912042-04	IA-4	AIR	SHRUB OAK, NY	03/26/19 16:30	03/26/19
L1912042-05	IA-5	AIR	SHRUB OAK, NY	03/26/19 17:50	03/26/19
L1912042-06	IA-6	AIR	SHRUB OAK, NY	03/26/19 17:00	03/26/19
L1912042-07	AMB-1	AIR	SHRUB OAK, NY	03/26/19 17:05	03/26/19
L1912042-08	UNUSED CAN #919	AIR	SHRUB OAK, NY		03/26/19

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.

Lab Number: L1912042 **Report Date:** 04/04/19

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on March 19, 2019. The canister certification results are provided as an addendum.

L1912042-02: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L1912042-02: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

WG1221824-5: The sample was re-analyzed on dilution in order to quantify the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

WG1221824-5: The sample has elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the sample.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Juren E Dil Susan O' Neil

Title: Technical Director/Representative

Date: 04/04/19

AIR

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-01Client ID:IA-1Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 18:34
Analyst:	TS

Date Collected:	03/26/19 15:40
Date Received:	03/26/19
Field Prep:	Not Specified

		nnhV			ua/m3			Dilucian
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.642	0.200		3.17	0.989			1
Chloromethane	0.615	0.200		1.27	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	245	5.00		462	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.35	1.00		12.7	2.38			1
Trichlorofluoromethane	0.609	0.200		3.42	1.12			1
Isopropanol	4.17	0.500		10.3	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	4.85	0.500		17.5	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-01Client ID:IA-1Sample Location:SHRUB OAK, NY

Sumple Depth.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.292	0.200		1.10	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-01 Client ID: IA-1 Sample Location: SHRUB OAK, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	84		60-140
Bromochloromethane	91		60-140
chlorobenzene-d5	85		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-01 Client ID: IA-1 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 18:34
TS

Date Collected:	03/26/19 15:40
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	I - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.099	0.020		0.623	0.126			1
Trichloroethene	0.021	0.020		0.113	0.107			1
Tetrachloroethene	0.050	0.020		0.339	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	86		60-140
bromochloromethane	91		60-140
chlorobenzene-d5	87		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-02Client ID:IA-2Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 19:13
Analyst:	TS

Date Collected:	03/26/19 15:35
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Dichlorodifluoromethane	0.679	0.200		3.36	0.989			1
Chloromethane	0.613	0.200		1.27	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	505	5.00		952	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	5.17	1.00		12.3	2.38			1
Trichlorofluoromethane	0.628	0.200		3.53	1.12			1
Isopropanol	1.73	0.500		4.25	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.752	0.500		2.22	1.47			1
Ethyl Acetate	19.4	0.500		69.9	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-02Client ID:IA-2Sample Location:SHRUB OAK, NY

Sumple Depth.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.219	0.200		0.825	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-02Client ID:IA-2Sample Location:SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	87		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-02 Client ID: IA-2 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 19:13
Analyst:	TS

Date Collected:	03/26/19 15:35
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	A - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.104	0.020		0.654	0.126			1
Trichloroethene	0.027	0.020		0.145	0.107			1
Tetrachloroethene	0.068	0.020		0.461	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	88		60-140

Project Name: Project Number:	MR. CLEANERS 12229					Lab N Repor	umber t Date:	: L19 : 04/	912042 ′04/19
			SAMPLE	RESULT	S				
Lab ID: Client ID: Sample Location:	L1912042-02 IA-2 SHRUB OAK, N	D				Date C Date R Field F	collecte leceive Prep:	ed: 03/26 ed: 03/26 Not S	5/19 15:35 5/19 Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 04/02/19 07:12 TS								
Parameter		Results	ppbV RL	MDL	Results	ug/m3 RL	MDL	Qualifier	Dilution Factor
Volatile Organics in Air - Mansfield Lab									

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	108		60-140
Bromochloromethane	109		60-140
chlorobenzene-d5	95		60-140

8.34

893

15.7

--

474

1.667

Ethanol

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-03Client ID:IA-3Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 20:32
Analyst:	TS

Analyst: IS								
		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Ma	nsfield Lab							
Dichlorodifluoromethane	0.479	0.200		2.37	0.989			1
Chloromethane	0.578	0.200		1.19	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	71.3	5.00		134	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.52	1.00		10.7	2.38			1
Trichlorofluoromethane	0.277	0.200		1.56	1.12			1
Isopropanol	1.02	0.500		2.51	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.609	0.500		2.19	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-03Client ID:IA-3Sample Location:SHRUB OAK, NY

Sample Deptil.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.310	0.200		1.17	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-03 Client ID: IA-3 Sample Location: SHRUB OAK, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	86		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-03 Client ID: IA-3 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 20:32
TS

Date Collected:	03/26/19 15:50
Date Received:	03/26/19
Field Prep:	Not Specified

ppbV		ug/m3				Dilution	
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
nsfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
0.068	0.020		0.270	0.079			1
ND	0.020		ND	0.109			1
0.077	0.020		0.484	0.126			1
0.726	0.020		3.90	0.107			1
0.910	0.020		6.17	0.136			1
0.068	0.020		0.270	0.079			1
	Results nsfield Lab ND 0.068 ND 0.077 0.726 0.910 0.068	ppbV Results RL nsfield Lab 0.020 ND 0.020 ND 0.020 0.068 0.020 ND 0.020 0.077 0.020 0.726 0.020 0.910 0.020 0.068 0.020	ppbV Results RL MDL nsfield Lab ND 0.020 ND 0.020 0.068 0.020 ND 0.020 0.077 0.020 0.726 0.020 0.910 0.020 0.068 0.020	ppbV Results RL MDL Results NB 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.068 0.020 ND 0.077 0.020 ND 0.726 0.020 3.90 0.910 0.020 6.17 0.068 0.020 0.270	ppbV ug/m3 Results RL MDL Results RL nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 0.068 0.020 ND 0.079 ND 0.020 ND 0.079 0.068 0.020 ND 0.109 0.077 0.020 ND 0.109 0.077 0.020 3.90 0.107 0.910 0.020 6.17 0.136 0.068 0.020 0.270 0.079	ppbV ug/m3 Results RL MDL Results RL MDL nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 0.068 0.020 ND 0.109 ND 0.020 ND 0.109 0.068 0.020 0.484 0.126 0.726 0.020 3.90 0.107 0.910 0.020 6.17 0.136 0.068 0.020 0.270 0.079	ppbV ug/m3 Results RL MDL Results RL MDL Qualifier nsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 0.068 0.020 ND 0.109 ND 0.020 ND 0.109 0.068 0.020 0.484 0.126 0.077 0.020 3.90 0.107 0.726 0.020 6.17 0.136 0.068 0.020 0.270 0.079

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	88		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 21:12
Analyst:	TS

Date Collected:	03/26/19 16:30
Date Received:	03/26/19
Field Prep:	Not Specified

,		ррьV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.431	0.200		2.13	0.989			1
Chloromethane	0.571	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	15.9	5.00		30.0	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.11	1.00		9.76	2.38			1
Trichlorofluoromethane	0.223	0.200		1.25	1.12			1
Isopropanol	1.01	0.500		2.48	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.572	0.500		2.06	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 16:30

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-04Client ID:IA-4Sample Location:SHRUB OAK, NY

Sumple Depth.	ррьV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.619	0.200		2.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 16:30

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	93		60-140
chlorobenzene-d5	86		60-140

 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-04 Client ID: IA-4 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 21:12
TS

Date Collected:	03/26/19 16:30
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.073	0.020		0.459	0.126			1
Trichloroethene	0.081	0.020		0.435	0.107			1
Tetrachloroethene	0.126	0.020		0.854	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	89		60-140
bromochloromethane	93		60-140
chlorobenzene-d5	88		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-05 Client ID: IA-5 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 21:51
Analyst:	TS
Anaytical Method: Analytical Date: Analyst:	48,TO-15 04/01/19 21:5 [,] TS

Date Collected:	03/26/19 17:50
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.464	0.200		2.29	0.989			1
Chloromethane	0.582	0.200		1.20	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	176	5.00		332	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.67	1.00		11.1	2.38			1
Trichlorofluoromethane	0.231	0.200		1.30	1.12			1
Isopropanol	1.37	0.500		3.37	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	0.629	0.500		1.86	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	0.214	0.200		1.05	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 17:50

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-05Client ID:IA-5Sample Location:SHRUB OAK, NY

Sumple Depth.	ppbV		ug/m3				Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	0.619	0.200		2.33	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 17:50

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-05 Client ID: IA-5 Sample Location: SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	87		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	85		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-05Client ID:IA-5Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 21:51
Analyst:	TS

Date Collected:	03/26/19 17:50
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	0.046	0.020		0.182	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.074	0.020		0.465	0.126			1
Trichloroethene	0.256	0.020		1.38	0.107			1
Tetrachloroethene	1.47	0.020		9.97	0.136			1
1,2-Dichloroethene (total)	0.046	0.020		0.182	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	88		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	86		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 22:31
Analyst:	TS

Date Collected:	03/26/19 17:00
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.481	0.200		2.38	0.989			1
Chloromethane	0.591	0.200		1.22	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	164	5.00		309	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.11	1.00		9.76	2.38			1
Trichlorofluoromethane	0.216	0.200		1.21	1.12			1
Isopropanol	3.31	0.500		8.14	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	0.937	0.500		3.38	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 17:00

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-06Client ID:IA-6Sample Location:SHRUB OAK, NY

Sumple Depth.	ррьV			ug/m3			Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield I	Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 17:00

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	89		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	87		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID: L1912042-06 Client ID: IA-6 Sample Location: SHRUB OAK, NY

Air
48,TO-15-SIM
04/01/19 22:31
TS

Date Collected:	03/26/19 17:00
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.073	0.020		0.459	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.040	0.020		0.271	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	90		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	89		60-140

Serial_No:04041911:00

03/26/19 17:05

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-07Client ID:AMB-1Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15
Analytical Date:	04/01/19 17:54
Analyst:	TS

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.413	0.200		2.04	0.989			1
Chloromethane	0.503	0.200		1.04	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	16.5	5.00		31.1	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	1.37	1.00		3.25	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	0.974	0.500		3.38	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

03/26/19 17:05

Not Specified

03/26/19

Project Name:	MR. CLEANERS
Project Number:	12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-07Client ID:AMB-1Sample Location:SHRUB OAK, NY

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

03/26/19 17:05

Not Specified

03/26/19

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID:L1912042-07Client ID:AMB-1Sample Location:SHRUB OAK, NY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	90		60-140

Project Name: MR. CLEANERS Project Number: 12229
 Lab Number:
 L1912042

 Report Date:
 04/04/19

SAMPLE RESULTS

Lab ID:L1912042-07Client ID:AMB-1Sample Location:SHRUB OAK, NY

Sample Depth:	
Matrix:	Air
Anaytical Method:	48,TO-15-SIM
Analytical Date:	04/01/19 17:54
Analyst:	TS

Date Collected:	03/26/19 17:05
Date Received:	03/26/19
Field Prep:	Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	A - Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.082	0.020		0.516	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	99		60-140
chlorobenzene-d5	92		60-140

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air	- Mansfield Lab for samp	le(s): 01-0	7 Batch:	WG12218	24-4			
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - M	lansfield Lab for sample	e(s): 01-0	07 Batch:	WG12218	24-4			
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab for samp	le(s): 01-	07 Batch	n: WG12218	24-4			
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab fo	or sample	e(s): 01-07	Batch: W	G122182	29-4		
Propylene	ND	0.500		ND	0.861			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Ethyl Alcohol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
iso-Propyl Alcohol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
1,2-Dichloroethene (total)	ND	0.020		ND	0.079			1
tert-Butyl Alcohol	ND	0.500		ND	1.52			1
1,3-Dichloropropene, Total	ND	0.020		ND	0.091			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Ma	insfield Lab fo	or sample	e(s): 01-07	Batch: W	G122182	29-4		
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.020		ND	0.098			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Cyclohexane	ND	0.200		ND	0.688			1
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
2-Hexanone	ND	0.200		ND	0.820			1

Project Number: 12229

Method Blank Analysis Batch Quality Control

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - M	ansfield Lab fo	or sample	(s): 01-07	Batch: V	VG122182	9-4		
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
Xylene (Total)	ND	0.020		ND	0.087			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
1,2,3-Trichloropropane	ND	0.020		ND	0.121			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethylbenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mans	field Lab f	or sample	(s): 01-07	7 Batch: Wo	G122182	9-4		
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Project Number: 12229 Lab Number: L1912042

Report Date: 04/04/19

	LCS			LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%F	Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s):	01-07	Batch:	WG12218	24-3					
Propylene	109			-		70-130	-			
Dichlorodifluoromethane	86			-		70-130	-			
Chloromethane	96			-		70-130	-			
Freon-114	95			-		70-130	-			
Vinyl chloride	96			-		70-130	-			
1,3-Butadiene	102			-		70-130	-			
Bromomethane	96			-		70-130	-			
Chloroethane	93			-		70-130	-			
Ethanol	90			-		40-160	-			
Vinyl bromide	95			-		70-130	-			
Acetone	72			-		40-160	-			
Trichlorofluoromethane	91			-		70-130	-			
Isopropanol	82			-		40-160	-			
1,1-Dichloroethene	93			-		70-130	-			
Tertiary butyl Alcohol	91			-		70-130	-			
Methylene chloride	99			-		70-130	-			
3-Chloropropene	97			-		70-130	-			
Carbon disulfide	93			-		70-130	-			
Freon-113	98			-		70-130	-			
trans-1,2-Dichloroethene	90			-		70-130	-			
1,1-Dichloroethane	94			-		70-130	-			
Methyl tert butyl ether	97			-		70-130	-			
Vinyl acetate	98			-		70-130	-			

Lab Control Sample Analysis

Batch Quality Control

Project Number: 12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

LCSD LCS %Recovery RPD %Recovery Limits RPD %Recovery Limits Parameter Qual Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-07 Batch: WG1221824-3 2-Butanone 91 70-130 -cis-1.2-Dichloroethene 93 70-130 --Ethyl Acetate 99 70-130 --Chloroform 98 70-130 --Tetrahydrofuran 94 70-130 --70-130 1,2-Dichloroethane 95 -n-Hexane 99 70-130 --1,1,1-Trichloroethane 105 70-130 --Benzene 100 70-130 --Carbon tetrachloride 70-130 114 --Cyclohexane 101 70-130 --1,2-Dichloropropane 105 70-130 --Bromodichloromethane 107 70-130 --70-130 1,4-Dioxane 107 --Trichloroethene 103 70-130 --2,2,4-Trimethylpentane 104 70-130 --Heptane 107 70-130 -cis-1,3-Dichloropropene 70-130 112 --70-130 4-Methyl-2-pentanone 109 -trans-1,3-Dichloropropene 100 70-130 --1,1,2-Trichloroethane 106 70-130 --70-130 Toluene 106 --112 70-130 2-Hexanone --

Lab Control Sample Analysis

Batch Quality Control

Project Number: 12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

LCSD LCS %Recovery RPD %Recovery Limits RPD Limits %Recovery Qual Parameter Qual Qual Volatile Organics in Air - Mansfield Lab Associated sample(s): 01-07 Batch: WG1221824-3 Dibromochloromethane 112 70-130 --106 1,2-Dibromoethane 70-130 --Tetrachloroethene 107 70-130 --Chlorobenzene 105 70-130 --Ethylbenzene 107 70-130 -p/m-Xylene 70-130 107 --Bromoform 124 70-130 --Styrene 108 70-130 --1,1,2,2-Tetrachloroethane 112 70-130 --112 70-130 o-Xylene --4-Ethyltoluene 106 70-130 --1,3,5-Trimethylbenzene 111 70-130 --1,2,4-Trimethylbenzene 116 70-130 --Benzyl chloride 70-130 123 --70-130 1,3-Dichlorobenzene 109 --1,4-Dichlorobenzene 114 70-130 --1,2-Dichlorobenzene 112 70-130 --1,2,4-Trichlorobenzene 125 70-130 --Hexachlorobutadiene 70-130 116 --

Project Number: 12229 Lab Number: L1912042 04/04/19

Report Date:

	LCS	LCSD	%Recovery		RPD
Parameter	%Recovery Qua	al %Recovery Qual	Limits	RPD	Qual Limits
Volatile Organics in Air by SIM - Mansfiel	d Lab Associated sample(s): 01-07 Batch: WG122182	9-3		
Propylene	106	-	70-130	-	25
Dichlorodifluoromethane	92	-	70-130	-	25
Chloromethane	102	-	70-130	-	25
1,2-Dichloro-1,1,2,2-tetrafluoroethane	99	-	70-130	-	25
Vinyl chloride	99	-	70-130	-	25
1,3-Butadiene	104	-	70-130	-	25
Bromomethane	99	-	70-130	-	25
Chloroethane	98	-	70-130	-	25
Ethyl Alcohol	102	-	40-160	-	25
Vinyl bromide	98	-	70-130	-	25
Acetone	75	-	40-160	-	25
Trichlorofluoromethane	94	-	70-130	-	25
iso-Propyl Alcohol	86	-	40-160	-	25
Acrylonitrile	95	-	70-130	-	25
1,1-Dichloroethene	94	-	70-130	-	25
tert-Butyl Alcohol ¹	94	-	70-130	-	25
Methylene chloride	102	-	70-130	-	25
3-Chloropropene	103	-	70-130	-	25
Carbon disulfide	96	-	70-130	-	25
1,1,2-Trichloro-1,2,2-Trifluoroethane	100	-	70-130	-	25
trans-1,2-Dichloroethene	92	-	70-130	-	25
1,1-Dichloroethane	96	-	70-130	-	25
Methyl tert butyl ether	100	-	70-130	-	25

Project Number: 12229 Lab Number: L1912042 04/04/19

Report Date:

Deservation	LCS	0	LCSD % Boooverv	0	%Recovery		0	RPD Limite	
Parameter	%Recovery	Quai	%Recovery	Quai	Limits	RPD	Quai	Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated s	ample(s):	01-07 Batch: WG	61221829-3					
Vinyl acetate	101		-		70-130	-		25	
2-Butanone	93		-		70-130	-		25	
cis-1,2-Dichloroethene	94		-		70-130	-		25	
Ethyl Acetate	108		-		70-130	-		25	
Chloroform	99		-		70-130	-		25	
Tetrahydrofuran	99		-		70-130	-		25	
1,2-Dichloroethane	95		-		70-130	-		25	
n-Hexane	98		-		70-130	-		25	
1,1,1-Trichloroethane	99		-		70-130	-		25	
Benzene	95		-		70-130	-		25	
Carbon tetrachloride	107		-		70-130	-		25	
Cyclohexane	97		-		70-130	-		25	
Dibromomethane ¹	86		-		70-130	-		25	
1,2-Dichloropropane	98		-		70-130	-		25	
Bromodichloromethane	102		-		70-130	-		25	
1,4-Dioxane	102		-		70-130	-		25	
Trichloroethene	93		-		70-130	-		25	
2,2,4-Trimethylpentane	101		-		70-130	-		25	
cis-1,3-Dichloropropene	97		-		70-130	-		25	
4-Methyl-2-pentanone	105		-		70-130	-		25	
trans-1,3-Dichloropropene	109		-		70-130	-		25	
1,1,2-Trichloroethane	98		-		70-130	-		25	
Toluene	101		-		70-130	-		25	

Project Number: 12229 Lab Number: L1912042 04/04/19

Report Date:

Demonster	LCS	0	LCSD	0	%Recovery		0	RPD Limite	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	
Volatile Organics in Air by SIM -	Mansfield Lab Associated s	ample(s): 01	-07 Batch: W	G1221829-3					
2-Hexanone	107		-		70-130	-		25	
Dibromochloromethane	113		-		70-130	-		25	
1,2-Dibromoethane	105		-		70-130	-		25	
Tetrachloroethene	103		-		70-130	-		25	
1,1,1,2-Tetrachloroethane	99		-		70-130	-		25	
Chlorobenzene	103		-		70-130	-		25	
Ethylbenzene	105		-		70-130	-		25	
p/m-Xylene	105		-		70-130	-		25	
Bromoform	123		-		70-130	-		25	
Styrene	110		-		70-130	-		25	
1,1,2,2-Tetrachloroethane	110		-		70-130	-		25	
o-Xylene	109		-		70-130	-		25	
1,2,3-Trichloropropane ¹	95		-		70-130	-		25	
Isopropylbenzene	100		-		70-130	-		25	
Bromobenzene ¹	99		-		70-130	-		25	
4-Ethyltoluene	108		-		70-130	-		25	
1,3,5-Trimethylbenzene	111		-		70-130	-		25	
1,2,4-Trimethylbenzene	115		-		70-130	-		25	
Benzyl chloride	117		-		70-130	-		25	
1,3-Dichlorobenzene	115		-		70-130	-		25	
1,4-Dichlorobenzene	118		-		70-130	-		25	
sec-Butylbenzene	98		-		70-130	-		25	
p-Isopropyltoluene	91		-		70-130	-		25	

Lab Control Sample Analysis

Batch Quality Control

Project Name: MR. CLEANERS

Project Number: 12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

LCS LCSD %Recovery RPD %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 01-07 Batch: WG1221829-3 112 1,2-Dichlorobenzene 70-130 25 --101 25 n-Butylbenzene 70-130 _ -25 1,2,4-Trichlorobenzene 127 70-130 --Naphthalene 110 70-130 25 --1,2,3-Trichlorobenzene 115 70-130 25 --70-130 25 Hexachlorobutadiene 120 --

Lab Duplicate Analysis Batch Quality Control

Project Name: MR. CLEANERS

Project Number: 12229

Lab Number:

Report Date: 04/0

r: L1912042 e: 04/04/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits	
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1221824-5	QC Sample:	L1912042-0	2 Client ID:	IA-2	
Dichlorodifluoromethane	0.679	0.686	ppbV	1		25	
Chloromethane	0.613	0.614	ppbV	0		25	
Freon-114	ND	ND	ppbV	NC		25	
1,3-Butadiene	ND	ND	ppbV	NC		25	
Bromomethane	ND	ND	ppbV	NC		25	
Chloroethane	ND	ND	ppbV	NC		25	
Ethanol	505E	527E	ppbV	11		25	
Vinyl bromide	ND	ND	ppbV	NC		25	
Acetone	5.17	5.13	ppbV	1		25	
Trichlorofluoromethane	0.628	0.640	ppbV	2		25	
Isopropanol	1.73	1.75	ppbV	1		25	
Tertiary butyl Alcohol	ND	ND	ppbV	NC		25	
Methylene chloride	ND	ND	ppbV	NC		25	
3-Chloropropene	ND	ND	ppbV	NC		25	
Carbon disulfide	ND	ND	ppbV	NC		25	
Freon-113	ND	ND	ppbV	NC		25	
trans-1,2-Dichloroethene	ND	ND	ppbV	NC		25	
1,1-Dichloroethane	ND	ND	ppbV	NC		25	
Methyl tert butyl ether	ND	ND	ppbV	NC		25	
2-Butanone	0.752	0.762	ppbV	1		25	
Ethyl Acetate	19.4	18.9	ppbV	3		25	

L1912042

Lab Duplicate Analysis Batch Quality Control

Project Name: MR. CLEANERS

Project Number: 12229

Lab Number:

Report Date: 04/04/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1221824-5	QC Sample:	L1912042-	02 Client ID: IA-2
Chloroform	ND	ND	ppbV	NC	25
Tetrahydrofuran	ND	ND	ppbV	NC	25
1,2-Dichloroethane	ND	ND	ppbV	NC	25
n-Hexane	ND	ND	ppbV	NC	25
Benzene	ND	ND	ppbV	NC	25
Cyclohexane	ND	ND	ppbV	NC	25
1,2-Dichloropropane	ND	ND	ppbV	NC	25
Bromodichloromethane	ND	ND	ppbV	NC	25
1,4-Dioxane	ND	ND	ppbV	NC	25
2,2,4-Trimethylpentane	ND	ND	ppbV	NC	25
Heptane	ND	ND	ppbV	NC	25
cis-1,3-Dichloropropene	ND	ND	ppbV	NC	25
4-Methyl-2-pentanone	ND	ND	ppbV	NC	25
trans-1,3-Dichloropropene	ND	ND	ppbV	NC	25
1,1,2-Trichloroethane	ND	ND	ppbV	NC	25
Toluene	0.219	0.217	ppbV	1	25
2-Hexanone	ND	ND	ppbV	NC	25
Dibromochloromethane	ND	ND	ppbV	NC	25
1,2-Dibromoethane	ND	ND	ppbV	NC	25
Chlorobenzene	ND	ND	ppbV	NC	25
Ethylbenzene	ND	ND	ppbV	NC	25

L1912042

Lab Duplicate Analysis Batch Quality Control

Project Name: MR. CLEANERS

Project Number: 12229

Lab Number:

Report Date: 04/04/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	R Qual L	PD imits
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1221824-5	QC Sample:	L1912042-0	2 Client ID: I	A-2
p/m-Xylene	ND	ND	ppbV	NC		25
Bromoform	ND	ND	ppbV	NC		25
Styrene	ND	ND	ppbV	NC		25
1,1,2,2-Tetrachloroethane	ND	ND	ppbV	NC		25
o-Xylene	ND	ND	ppbV	NC		25
4-Ethyltoluene	ND	ND	ppbV	NC		25
1,3,5-Trimethylbenzene	ND	ND	ppbV	NC		25
1,2,4-Trimethylbenzene	ND	ND	ppbV	NC		25
Benzyl chloride	ND	ND	ppbV	NC		25
1,3-Dichlorobenzene	ND	ND	ppbV	NC		25
1,4-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2-Dichlorobenzene	ND	ND	ppbV	NC		25
1,2,4-Trichlorobenzene	ND	ND	ppbV	NC		25
Hexachlorobutadiene	ND	ND	ppbV	NC		25
Volatile Organics in Air - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG1221824-5	QC Sample:	L1912042-0	2 Client ID: I	A-2
Ethanol	474	573	ppbV	19		25

Lab Duplicate Analysis Batch Quality Control

Project Name: MR. CLEANERS Project Number: 12229

Lab Number: L1912042 Report Date:

04/04/19

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sample(s): 01-07	QC Batch ID: WG12	221829-5	QC Sample: L1	1912042-02 Client ID:	IA-2
Vinyl chloride	ND	ND	ppbV	NC	25	
1,1-Dichloroethene	ND	ND	ppbV	NC	25	
cis-1,2-Dichloroethene	ND	ND	ppbV	NC	25	
1,1,1-Trichloroethane	ND	ND	ppbV	NC	25	
Carbon tetrachloride	0.104	0.096	ppbV	8	25	
Trichloroethene	0.027	ND	ppbV	NC	25	
Tetrachloroethene	0.068	0.067	ppbV	1	25	
1,2-Dichloroethene (total)	ND	ND	ppbV	NC	25	

Project Name: MR. CLEANERS

Project Number: 12229

Serial_No:04041911:00 Lab Number: L1912042

Report Date: 04/04/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Lea Check	Initial k Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1912042-01	IA-1	0047	Flow 4	03/19/19	287229		-	-	-	Pass	10.0	9.6	4
L1912042-01	IA-1	1642	6.0L Can	03/19/19	287229	L1910440-01	Pass	-29.3	-9.8	-	-	-	-
L1912042-02	IA-2	0236	Flow 5	03/19/19	287229		-	-	-	Pass	9.9	9.5	4
L1912042-02	IA-2	584	6.0L Can	03/19/19	287229	L1910440-01	Pass	-29.2	-6.3	-	-	-	-
L1912042-03	IA-3	0235	Flow 5	03/19/19	287229		-	-	-	Pass	9.9	9.5	4
L1912042-03	IA-3	1598	6.0L Can	03/19/19	287229	L1910440-02	Pass	-29.2	-7.3	-	-	-	-
L1912042-04	IA-4	0084	Flow 5	03/19/19	287229		-	-	-	Pass	10.0	9.6	4
L1912042-04	IA-4	2779	6.0L Can	03/19/19	287229	L1910440-02	Pass	-29.2	-7.9	-	-	-	-
L1912042-05	IA-5	0635	Flow 5	03/19/19	287229		-	-	-	Pass	10.0	9.8	2
L1912042-05	IA-5	1981	6.0L Can	03/19/19	287229	L1910440-01	Pass	-29.2	-10.2	-	-	-	-
L1912042-06	IA-6	0386	Flow 3	03/19/19	287229		-	-	-	Pass	9.9	10.0	1
L1912042-06	IA-6	2811	6.0L Can	03/19/19	287229	L1910440-02	Pass	-29.2	-8.1	-	-	-	-
L1912042-07	AMB-1	0715	Flow 5	03/19/19	287229		-	-	-	Pass	10.1	9.5	6
L1912042-07	AMB-1	997	6.0L Can	03/19/19	287229	L1910440-02	Pass	-29.1	-8.4	-	-	-	-
L1912042-08	UNUSED CAN #919	0723	Flow 5	03/19/19	287229		-	-	-	Pass	10.0	9.8	2

Project Name: MR. CLEANERS

Project Number: 12229

Serial_No:04041911:00
Lab Number: L1912042

Report Date: 04/04/19

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L1912042-08	UNUSED CAN #919	919	6.0L Can	03/19/19	287229	L1910440-01	Pass	-29.2	-29.2	-	-	-	-

Project Number:	CANISTER QC E	ВАТ				R	leport D	ate: (04/04/19		
		Air Can	ister Cer	tificati	on Results						
Lab ID: Client ID: Sample Location:	L1910440-01 CAN 1051 SHE	_F 51				Date Collecte Date Receive Field Prep:			ed: 03/16/19 12:00 ed: 03/17/19 Not Specified		
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 03/18/19 11:28 TS										
_			ppbV		<u> </u>	ug/m3		o	Dilution Factor		
Parameter):. Monofield Lob	Results	RL	MDL	Results	RL	MDL	Qualifier			
Volatile Organics in A	AIT - Mansheid Lab										
Chlorodifluoromethane		ND	0.200		ND	0.707			1		
Propylene		ND	0.500		ND	0.861			1		
Propane		ND	0.500		ND	0.902			1		
Dichlorodifluoromethane		ND	0.200		ND	0.989			1		
Chloromethane		ND	0.200		ND	0.413			1		
Freon-114		ND	0.200		ND	1.40			1		
Methanol		ND	5.00		ND	6.55			1		
Vinyl chloride		ND	0.200		ND	0.511			1		
1,3-Butadiene		ND	0.200		ND	0.442			1		
Butane		ND	0.200		ND	0.475			1		
Bromomethane		ND	0.200		ND	0.777			1		
Chloroethane		ND	0.200		ND	0.528			1		
Ethanol		ND	5.00		ND	9.42			1		
Dichlorofluoromethane		ND	0.200		ND	0.842			1		
Vinyl bromide		ND	0.200		ND	0.874			1		
Acrolein		ND	0.500		ND	1.15			1		
Acetone		ND	1.00		ND	2.38			1		
Acetonitrile		ND	0.200		ND	0.336			1		
Trichlorofluoromethane		ND	0.200		ND	1.12			1		
Isopropanol		ND	0.500		ND	1.23			1		
Acrylonitrile		ND	0.500		ND	1.09			1		
Pentane		ND	0.200		ND	0.590			1		
Ethyl ether		ND	0.200		ND	0.606			1		
1,1-Dichloroethene		ND	0.200		ND	0.793			1		

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:04041911:00

L1910440

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04041911:00 Lab Number: L1910440 Report Date: 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-01	Date Collected:	03/16/19 12:00
Client ID:	CAN 1051 SHELF 51	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	ıb							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Serial_No:04041911:00

 Lab Number:
 L1910440

 Report Date:
 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-01	Date Collected:	03/16/19 12:00
Client ID:	CAN 1051 SHELF 51	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04041911:00 Lab Number: L1910440 Report Date: 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-01	Date Collected:	03/16/19 12:00
Client ID:	CAN 1051 SHELF 51	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

						Serial_No:04041911:00			
Project Name:	BATCH CANIST	ER CERTI	FICATION	I		La	b Num	ber:	L1910440
Project Number:	CANISTER QC	BAT				Re	eport D	Date:	04/04/19
		Air Can	ister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L1910440-01 CAN 1051 SHE	LF 51				Date C Date F Field F	Collecte Receive Prep:	ed: ed:	03/16/19 12:00 03/17/19 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	sults	Qualifier	Units	RDL		Dilutio Facto	on or
Tentatively Identified Cor	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	102		60-140
chlorobenzene-d5	93		60-140

		Air Can	ister Cer	tificatio	on Results	5			
Lab ID: Client ID: Sample Location:	L1910440-01 CAN 1051 SHE	LF 51				Date Date Field	Collecte Receive Prep:	ed: ed:	03/16/19 12:00 03/17/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 03/18/19 11:28 TS								
-			ppbV		Desults	ug/m3		Qualifian	Dilution Factor
Parameter	Air by SIM Monofi	Results	RL	MDL	Results	RL	MDL	Qualifier	
		ND	0.200		ND	0.989			1
		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	9	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT

Serial_No:04041911:00

L1910440

04/04/19

Lab Number:

Report Date:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Serial_No:04041911:00

 Lab Number:
 L1910440

 Report Date:
 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-01	Date Collected:	03/16/19 12:00
Client ID:	CAN 1051 SHELF 51	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

Serial_No:040419							
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1910440				
Project Number:	CANISTER QC BAT	Report Date:	04/04/19				
Air Canister Certification Results							

Lab ID:	L1910440-01	Date Collected:	03/16/19 12:00
Client ID:	CAN 1051 SHELF 51	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results RL MDL		Results RL MDL		Qualifier	Factor		
Volatile Organics in Air by SIM - Man	sfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	95		60-140
bromochloromethane	100		60-140
chlorobenzene-d5	93		60-140

Project Number:	CANISTER QC E	ЗАТ				R	eport D)ate: (04/04/19
		Air Can	ister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L1910440-02 CAN 1691 SHE	LF 52				Date Date Field	Collecte Receive Prep:	ed: ed:	03/16/19 12:00 03/17/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15 03/18/19 12:07 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in	Air - Mansfield Lab								
Chlorodifluoromethane		ND	0.200		ND	0.707			1
Propylene		ND	0.500		ND	0.861			1
Propane		ND	0.500		ND	0.902			1
Dichlorodifluoromethane	e	ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.200		ND	1.40			1
Methanol		ND	5.00		ND	6.55			1
Vinyl chloride		ND	0.200		ND	0.511			1
1,3-Butadiene		ND	0.200		ND	0.442			1
Butane		ND	0.200		ND	0.475			1
Bromomethane		ND	0.200		ND	0.777			1
Chloroethane		ND	0.200		ND	0.528			1
Ethanol		ND	5.00		ND	9.42			1
Dichlorofluoromethane		ND	0.200		ND	0.842			1
Vinyl bromide		ND	0.200		ND	0.874			1
Acrolein		ND	0.500		ND	1.15			1
Acetone		ND	1.00		ND	2.38			1
Acetonitrile		ND	0.200		ND	0.336			1
Trichlorofluoromethane		ND	0.200		ND	1.12			1
Isopropanol		ND	0.500		ND	1.23			1
Acrylonitrile		ND	0.500		ND	1.09			1
Pentane		ND	0.200		ND	0.590			1
Ethyl ether		ND	0.200		ND	0.606			1
1,1-Dichloroethene		ND	0.200		ND	0.793			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:04041911:00 Lab Number: L1910440

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04041911:00
Lab Number: L1910440
Report Date: 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-02	Date Collected:	03/16/19 12:00
Client ID:	CAN 1691 SHELF 52	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Serial_No:04041911:00

 Lab Number:
 L1910440

 Report Date:
 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-02	Date Collected:	03/16/19 12:00
Client ID:	CAN 1691 SHELF 52	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	ab							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

Serial_No:04041911:00 Lab Number: L1910440 Report Date: 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-02	Date Collected:	03/16/19 12:00
Client ID:	CAN 1691 SHELF 52	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

							Serial	_No:040	41911:00
Project Name:	BATCH CANIST	ER CERTI	FICATION	I		Lal	b Num	ber:	L1910440
Project Number:	CANISTER QC	ВАТ				Re	port D	ate:	04/04/19
		Air Can	ister Ce	rtification	Results				
Lab ID: Client ID: Sample Location:	L1910440-02 CAN 1691 SHE	LF 52				Date C Date R Field P	collecte leceive Prep:	ed: ed:	03/16/19 12:00 03/17/19 Not Specified
Sample Depth:			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifie	r Factor
Volatile Organics in	Air - Mansfield Lab								
		Re	esults	Qualifier	Units	RDL		Dilutio Facto	on or
Tentatively Identified Con	npounds								

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	90		60-140
Bromochloromethane	100		60-140
chlorobenzene-d5	91		60-140

Project Number:	CANISTER QC E	BAT				R	leport D	Date: (04/04/19
		Air Car	nister Cer	tificati	on Results				
Lab ID: Client ID: Sample Location:	L1910440-02 CAN 1691 SHE	LF 52				Date Date Field	Collecte Receive Prep:	ed: ed:	03/16/19 12:00 03/17/19 Not Specified
Sample Depth: Matrix: Anaytical Method: Analytical Date: Analyst:	Air 48,TO-15-SIM 03/18/19 12:07 TS								
			ppbV			ug/m3			Dilution
Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in A	Air by SIM - Mansfie	eld Lab							
Dichlorodifluoromethane		ND	0.200		ND	0.989			1
Chloromethane		ND	0.200		ND	0.413			1
Freon-114		ND	0.050		ND	0.349			1
Vinyl chloride		ND	0.020		ND	0.051			1
1,3-Butadiene		ND	0.020		ND	0.044			1
Bromomethane		ND	0.020		ND	0.078			1
Chloroethane		ND	0.100		ND	0.264			1
Acetone		ND	1.00		ND	2.38			1
Trichlorofluoromethane		ND	0.050		ND	0.281			1
Acrylonitrile		ND	0.500		ND	1.09			1
1,1-Dichloroethene		ND	0.020		ND	0.079			1
Methylene chloride		ND	0.500		ND	1.74			1
Freon-113		ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene)	ND	0.020		ND	0.079			1
1,1-Dichloroethane		ND	0.020		ND	0.081			1
Methyl tert butyl ether		ND	0.200		ND	0.721			1
2-Butanone		ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene		ND	0.020		ND	0.079			1
Chloroform		ND	0.020		ND	0.098			1
1,2-Dichloroethane		ND	0.020		ND	0.081			1
1,1,1-Trichloroethane		ND	0.020		ND	0.109			1
Benzene		ND	0.100		ND	0.319			1
Carbon tetrachloride		ND	0.020		ND	0.126			1
1,2-Dichloropropane		ND	0.020		ND	0.092			1

Project Name: BATCH CANISTER CERTIFICATION

Serial_No:04041911:00

L1910440

Lab Number:

Project Name:	BATCH CANISTER CERTIFICATION
Project Number:	CANISTER QC BAT

 Serial_No:04041911:00

 Lab Number:
 L1910440

 Report Date:
 04/04/19

Air Canister Certification Results

Lab ID:	L1910440-02	Date Collected:	03/16/19 12:00
Client ID:	CAN 1691 SHELF 52	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.050		ND	0.188			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1
sec-Butylbenzene	ND	0.200		ND	1.10			1

		Serial_No:04	4041911:00
Project Name:	BATCH CANISTER CERTIFICATION	Lab Number:	L1910440
Project Number:	CANISTER QC BAT	Report Date:	04/04/19
	Air Canister Certification Results		

Lab ID:	L1910440-02	Date Collected:	03/16/19 12:00
Client ID:	CAN 1691 SHELF 52	Date Received:	03/17/19
Sample Location:		Field Prep:	Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - Mar	sfield Lab							
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	91		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	89		60-140

Project Name: MR. CLEANERS Project Number: 12229

Serial_No:04041911:00 *Lab Number:* L1912042 *Report Date:* 04/04/19

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler	Custody Seal
N/A	Present/Intact

Container Information

Container Information			Initial	Final	Temp			Frozen			
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)		
L1912042-01A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-02A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-03A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-04A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-05A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-06A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-07A	Canister - 6 Liter	N/A	NA			Y	Absent		TO15-LL(30),TO15-SIM(30)		
L1912042-08A	Canister - 6 Liter	N/A	NA			Y	Absent		CLEAN-FEE()		

YES

L1912042

04/04/19

Lab Number:

Report Date:

Project Name: MR. CLEANERS

Project Number: 12229

GLOSSARY

Acronyms

DL	- Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
EDL	- Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).
EMPC	- Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.
EPA	- Environmental Protection Agency.
LCS	- Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LCSD	- Laboratory Control Sample Duplicate: Refer to LCS.
LFB	- Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.
LOD	- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
LOQ	- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
	Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)
MDL	- Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
MS	- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.
MSD	- Matrix Spike Sample Duplicate: Refer to MS.
NA	- Not Applicable.
	- Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.
NDPA/DPA	- N-Nitrosodipnenylamine/Dipnenylamine.
ND	
NP	- Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.
RL	- Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.
RPD	- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.
SRM	- Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.
STLP	- Semi-dynamic Tank Leaching Procedure per EPA Method 1315.
TEF	- Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.
TEQ	- Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.
TIC	- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

Report Format: Data Usability Report

Project Name: MR. CLEANERS

Project Number: 12229

Lab Number: L1912042 Report Date: 04/04/19

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum. Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Project Name: MR. CLEANERS Project Number: 12229

 Lab Number:
 L1912042

 Report Date:
 04/04/19

REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene **EPA 8260C:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. **EPA 8270D:** <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics, EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil. Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial_No:04041911:00

AUDICA	AIR AI	NALY	'SIS	F	PAGE 1	OF I	Date F	Rec'd in La	ıb: 3	5/27	119	K	AL	PHA	Job	#: L1912042
220 Earthan Phot Ma	CHAIN OF CUSTODY	Project	Informat	ion		Contraction of	Repo	ort Inform	ation	- Data I	Deliver	ables	Bi	ling Ir	nform	ation
TEL: 508-822-9300	FAX: 508-822-3288	Project N	lame: M/	Cleane	ers		D FA	x					¥s	ame as	s Clien	it info PO #:
Client Information	dentine shows	Project L	ocation: 5	inub O	ak, N	Y 1058)Ex Criteria Ch	nakan							
Client: Mike N	eriney	Project #	12220	1				(Default basi	ecker: ed on Reg	ulatory Cri	iteria Indics	ted)	-			21
Address: 111 Nor	h center Drive	Project N	lanager:				YEN	Other Forn (AlL (stand	nats: lard odf	report)	-	-	Re	gulato	ory R	equirements/Report Lim
North Brus	wick, N5 08902	ALPHA	Quote #:				Ad	ditional De	liverabl	es:			Stat	e/Fed	1	Program Res / Com
Phone: 732-54	5-9525	Turn-A	round Tir	ne			Repor	t to: (if differen	t than Proje	ct Minager)	0					
Fax: 732-545	- 9425	1				a share to the	-				_	-	-		-	
Email: m meriney	excelencen	Standa	ard 🗆	RUSH (and)	continued if pre-a	ppravid!)	_		-				1	AN	ALY	SIS
These samples have	been previously analyzed by Alpha	Date Du	e:		Time:		-						$\overline{\Box}$	19	1	,///
Other Project Sp	ecific Requirements/Comr	nents:										3	11	1	10	1.1.1
Project-Specific	Target Compound List:	li.								8	E	-/	11		aplans	//
	AI	I Col	umn	s Bel	low I	Must	Be I	Filled	10	ut	-		NIS	³ ases	a Meno	/ /
ALPHA Lab ID (Lab Use Only)	Sample ID	End Date	COL Start Time	LECTIO End Time	N Initial	Final Vacuum	Sample Matrix*	Sampler's Initials	Can Size	I D Can	I D - Flow Controlle	70.15	APH S	Sumos Sumos	//	Sample Comments (i.e. Pl
12042 - 01	IA-1	3/26/19	0740	1540	ZB.94	9.81	AA	BE	6L	919	0047	X				CanID-1642
02	IA-2	1	0735	1535	30,10	6,88	1		1	584	0236	X				
03	IA-3		0750	1550	29.92	7.14				1598	0235	X				
04	IA-4		0830	1630	29.81	7.31				2779	0084	X	Ħ	T		
05	IA-5		0450	1750	30.15	9,89				1981	0635	X	T			
06	IA-6		6900	1700	30,24	7.36				2811	0386	X				
07	AMB-1	*	0905	1705	29.05	8,58	*	-	-	997	0715	X				
*SAMPLE	MATRIX CODES	A = Ambien / = Soil Vap her = Please	t Air (Indoor or/Landfill C Specify	/Outdoor) ias/SVE				C	ontaine	г Туре						Please print clearly, legibly and completely. Samples can not be lowed in and turneround time
	0.0	Relinquis	shed By:		Date	e/Time	-	Receiv	ved By:			D	ate/Tim	le:		clock will not start until any ambi duities are resolved. All sampler
	12 hh	Va -	Exal	Env.	3/26/	19 1545	Bri	2g	A	AL,	11.0	21H	ylq_	184	5	submitted are subject to Alpha's Terms and Conditions.
	15.	3	0	6	State	7715	- /	11	116	00	cer				_	See reverse side.