

# 2021 PERIODIC REVIEW REPORT

# SPIC AND SPAN CLEANERS BRONXVILLE, WESTCHESTER COUNTY, NEW YORK

NYSDEC Site No. 360160

REPORTING PERIOD (December 26, 2019 – May 26, 2021)

Prepared for:

81 Pondfield Road Company 1311 Mamaroneck Avenue, Suite 340 White Plains, New York 10605

Prepared by:

SESI CONSULTING ENGINEERS D.P.C. 12A Maple Avenue Pine Brook, NJ 07058

May 26, 2021

Project No.: 11663

# TABLE OF CONTENTS

| LIST OF ACRONYMS                                                     | iv      |
|----------------------------------------------------------------------|---------|
| 1.0 EXECUTIVE SUMMARY                                                | 1       |
| 1.1 SITE INFORMATION                                                 | 1       |
| 1.2 EFFECTIVENESS OF REMEDIAL PROGRAM                                | 3       |
| 1.3 COMPLIANCE                                                       | 4       |
| 1.4 RECOMMENDATIONS                                                  | 4       |
| 2.0 SITE OVERVIEW                                                    | 6       |
| 2.1 SITE LOCATION AND DESCRIPTION                                    | 6       |
| 2.2 SITE HISTORY                                                     | 6       |
| 2.3 REMEDIAL INVESTIGATION                                           | 6       |
| 2.4 DESCRIPTION OF REMEDIAL ACTIONS                                  | 8       |
| 3.0 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVE                 | NESS 10 |
| 4.0 IC/EC PLAN COMPLIANCE                                            | 11      |
| 4.1 IC REQUIREMENTS AND COMPLIANCE                                   | 11      |
| 4.2 RECOMMENDATIONS                                                  | 12      |
| 4.3 IC/EC CERTIFICATION                                              | 13      |
| 5.0 MONITORING PLAN COMPLIANCE REPORT                                | 14      |
| 5.1 GROUNDWATER SAMPLING – FEBRUARY 2020                             | 14      |
| 5.2 GROUNDWATER SAMPLING – OCTOBER 2020                              | 14      |
| 5.3 GROUNDWATER, SUBSLAB SOIL VAPOR AND INDOOR AIR SAM<br>MARCH 2021 |         |
| 5.4 CONCLUSIONS AND RECOMMENDATIONS                                  | 17      |
| 6.0 OPERATIONS AND MAINTENANCE COMPLIANCE                            | 19      |
| 7.0 CONCLUSIONS AND RECOMMENDATIONS                                  | 20      |
| 7.1 COMPLIANCE WITH THE SMP                                          | 20      |
| 7.2 PERFORMANCE AND EFFECTIVENESS OF THE REMEDY                      | 20      |
| 7.3 FUTURE PRR SUBMITTAL                                             | 20      |

# LIST OF FIGURES

FIGURE 2.1 – SITE PLAN

FIGURE 2.2 – AS/SVE AND SSD SYSTEM LAYOUT

FIGURE 5.1 – BUILDING SKETCH

# LIST OF ATTACHMENTS

ATTACHMENT A - NYSDEC INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORMS ATTACHMENT B – ACT GROUNDWATER MONITORING STATUS REPORT ATTACHMENT C – ACT DRAFT GROUNDWATER MONITORING STATUS REPORT ATTACHMENT D – SESI GROUNDWATER, VAPOR, INDOOR AIR SAMPLING

ATTACHMENT E – LABORATORY DATA

# LIST OF ACRONYMS

| Acronym | Definition                                                     |
|---------|----------------------------------------------------------------|
| AOC     | Area of Concern                                                |
| AST     | Aboveground Storage Tank                                       |
| BCA     | Brownfield Cleanup Agreement                                   |
| ВСР     | Brownfield Cleanup Program                                     |
| bgs     | Below ground surface                                           |
| CAMP    | Community Air Monitoring Plan                                  |
| C&D     | Construction & Demolition Materials                            |
| COC     | Contaminant of Concern                                         |
| COPEC   | Constituents of Potential Ecological Concern                   |
| CY      | Cubic yard                                                     |
| DER     | Division of Environmental Remediation                          |
| DER-10  | NYSDEC Technical Guidance for Site Investigation & Remediation |
| DUSR    | Data Usability Summary Report                                  |
| ECs     | Engineering Controls                                           |
| ECL     | Environmental Conservation Law                                 |
| ESA     | Environmental Site Assessment                                  |
| FER     | Final Engineering Report                                       |
| FWRIA   | Fish and Wildlife Resources Impact Analysis                    |
| gpm     | Gallons per minute                                             |
| HHEA    | Human Health Exposure Assessment                               |
| ICs     | Institutional Controls                                         |
| MW      | Monitoring Well                                                |
| NYSDEC  | New York State Department of Environmental<br>Conservation     |
| РСВ     | Polychlorinated Biphenyls                                      |
| PID     | Photoionization Detector                                       |
| ppm     | Parts Per Million                                              |
| QAPP    | Quality Assurance Project Plan                                 |
| RA      | Remedial Action                                                |
| RASR    | Remedial Action Selection Report                               |

| Acronym | Definition                                          |
|---------|-----------------------------------------------------|
| RAWP    | Remedial Action Work Plan                           |
| RCRA    | Resource Conservation and Recovery Act              |
| RDD     | Remedial Design Document                            |
| RI      | Remedial Investigation                              |
| RIR     | Remedial Investigation Report                       |
| RIWP    | Remedial Investigation Work Plan                    |
| SCG     | Standards, Criteria, and Guidance                   |
| SCO     | Soil Cleanup Objectives                             |
| SESI    | SESI Consulting Engineers, PC                       |
| SMP     | Site Management Plan                                |
| SSDS    | Sub-Slab Depressurization System                    |
| SVOCs   | Semi-Volatile Organic Compounds                     |
| S&W     | S&W Redevelopment of North America, LLC.            |
| TAGM    | Technical and Administrative Guidance<br>Memorandum |
| TAL     | Target Analyte List                                 |
| TOGS    | Technical and Operations Guidance Series            |
| USEPA   | United States Environmental Protection Agency       |
| UST     | Underground Storage Tank                            |
| VOCs    | Volatile Organic Compounds                          |

#### **1.0 EXECUTIVE SUMMARY**

### **1.1 SITE INFORMATION**

This Periodic Review Report (PRR) is an element of the remedial program at the Spic and Span Cleaners (hereinafter referred to as the "Site") located at 79-81 Pondfield Road, Bronxville, New York. The Site has participated in the New York State (NYS) Brownfield Cleanup Program (BCP) administered by the New York State Department of Environmental Conservation (NYSDEC). The Site was investigated and remediated in accordance with the Brownfield Cleanup Agreement (BCA) Site #C360130, executed with the NYSDEC on September 19, 2013. The Certificate of Completion (COC) was issued on December 26, 2019 and recorded on January 22, 2019 in the Westchester County Clerk's office as Control No. 600223387. This PRR was prepared for the period from December 26, 2019 to April 26, 2021. ACT was the Engineer of Record from the commencement of the project until January 24, 2021. SESI became the Engineer of Record on January 24, 2021.

Residual contamination has remained on the Site since the COC was issued, which must be managed according to the requirements in the NYSDEC approved "Site Management Plan (SMP), Spic and Span Cleaners, Westchester, New York", dated September 2019, prepared by Andrew R. Levenbaum, P.E., and Advanced Cleanup Technologies, Inc and the environmental easement recorded on July 26, 2019 in the Westchester County Clerk's office as Control No. 581593529.

Engineering Controls (ECs) have been constructed on the Site to prevent exposure to the remaining residual contamination during Site use. An Environmental Easement granted to the NYSDEC, and recorded with the Westchester County Clerk, requires compliance with the SMP and ECs and institutional controls (ICs) placed on the Site. The ICs place restrictions on Site use, and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs.

This PRR reports the required inspection and monitoring activities that were conducted during the current reporting period. The inspection and monitoring were

conducted mostly in compliance with ECs and ICs required by the Environmental Easement and as stated in the SMP as approved by NYSDEC.

As described in the "Final Engineering Report (FER), Spic and Span Cleaners, Westchester County, New York, NYSDEC Site Number: C360130", dated September 2019, prepared by Andrew R. Levenbaum, P.E., and ACT, the following items were the components of the selected remedy:

1. A Site cover currently exists in areas not occupied by buildings and will be maintained to allow for commercial use of the Site. Any Site redevelopment will maintain the existing Site cover.

2. Construction and operation of a sub-slab depressurization (SSD) system, soil vapor extraction (SVE) system and air sparge (AS) system at the Site.

3. Execution and recording of an Environmental Easement to restrict land use and prevent future exposure to any contamination remaining at the Site. Permitted future uses (commercial & industrial) must comply with 6 NYCRR 375-1.8(g)(iii) for commercial uses and 6 NYCRR 375-1.8(g)(iv) for industrial uses.

4. Development and implementation of a Site Management Plan (SMP) for long term management of remaining contamination as required by the Environmental Easement, which includes plans for: (1) Institutional and Engineering Controls, (2) monitoring, (3) operation and maintenance and (4) reporting;

5. Periodic certification of the institutional and engineering controls listed above.

Of note, SESI Engineering Consultants, DPC was retained as Engineer of Record in January 2021. Prior to that time, ACT performed Site operation and maintenance (O and M), environmental sampling and reporting. Therefore, documentation provided herein prior to January 2021 was prepared by ACT.

The remedy for this Site was largely performed as an Interim Remedial Measure (IRM) in accordance with the NYSDEC approved "Interim Remedial Measures Work Plan, Spic and Span Cleaners, 79-81 Pondfield Road, Bronxville, New York, 10708, Tax

Map No.: Section 4, Block 1, Lots 5,8", dated February 25, 2013, prepared by ACT. The remedy included the installation of an SSD system, an SVE system and an AS system.

The SVE system collected vapors released by the AS system for subsequent vapor-phase granular activated carbon treatment. The SVE system was installed in March 2015 and an AS system was installed in April 2015. The SSD system maintained negative pressure in the area of concern under the building footprint. The SSD system was installed in September 2011. In May 2015, the combined AS/SVE/SSD system commenced operation. The remedial system had been operating continuously since startup, except for routine maintenance, repairs, and occasional electrical outages until sometime before January 2021.

#### **1.2 EFFECTIVENESS OF REMEDIAL PROGRAM**

Residual contamination remains on the Site, which has been managed according to the requirements of the SMP for commercial and restricted residential uses.

The composite cover system remains intact on the Site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination.

The groundwater, subslab soil vapor and indoor air sampling has been conducted at this Site during this reporting period. The concentrations have significantly reduced since implementation of the remedial actions. Based on this data, it is apparent that the SVE and AS systems have been effective in reducing the concentrations of contaminants in the subgrade to either drinking water standards or close to the drinking water standards in an urban environment.

In order to further evaluate existing post-COC Site Conditions, SESI collected sub-slab soil vapor samples from the existing soil vapor sampling locations in the basement area of the building and three (3) indoor air samples that were co-located with the sub-slab vapor sample locations.

Subslab soil vapor and indoor air sampling results were compared to New York State Department of Health (NYSDOH) Indoor Air Concentrations (IAC-A) Sub-slab

Vapor Concentrations (SSC-A) Matrix A for trichloroethene (TCE), cis-1,2dichloroethene and carbon tetrachloride, and the results were favorable. For subslab concentrations less than 6 mcg/m3 and indoor air concentrations less than 1.0 mcg/m<sup>3</sup>, no further action is required. Since the results were below these screening levels during the most recent sampling event, no further operation of the SSDS, SVE and AS systems are required at this Site.

For PCE, the results were compared to Matrix B and the results were also favorable. For subslab concentrations less than 100 mcg/m<sup>3</sup> and indoor air concentrations less than 10 mcg/m<sup>3</sup>, no further action is required. Once again, the latest sample results did not reveal exceedances of these screening level for this Site.

# **1.3 COMPLIANCE**

A summary of the compliance of the Site activities in accordance with the SMP conducted during this reporting period is included below:

-IC/EC Plan: The ICs initiated in the SMP have remained in place for this reporting period. The ECs, including the AS/SVE/SSD are currently not operational. An evaluation of historical and recent Site data showed a significant decreasing trend in the concentrations. (See Section 1.4 Recommendations).

-Monitoring and Sampling Plan: Groundwater monitoring has been conducted in accordance with SMP requirements.

-Operations and Maintenance (O&M) Plan: The AS/SVE/SSD systems are currently not operational. O&M activities were not needed since the system has not been operating since SESI became the Engineer of Record (January 2021).

# **1.4 RECOMMENDATIONS**

Based on an evaluation of the groundwater, subslab soil vapor and indoor air data, the concentration of contaminants in the subgrade have reduced significantly since the installation of the remedial measures. The remedial measures were effective for treatment of the impacts in the subgrade. A teleconference was attended by representatives from the NYSDEC (John Miller), the NYSDOH (Jacquelyn Nealon) and SESI (Fuad Dahan and Patricia Petrino) on April 16, 2021. The discussion focused on

the current groundwater and sub-slab soil gas data trends and the recent indoor air data. Since both groundwater and sub-slab soil gas are showing consistent reductions and a downward trend, and indoor air concentrations were below NYSDOH action levels, it was agreed that additional rounds of sampling would be conducted to confirm these trends and the SVE/AS and SSD systems would not be restarted at this time. Groundwater sampling, including annual and semi-annual sampling, will be conducted in accordance with the SMP.

The continuation of the operation of the AS/SVE/SSD systems is not warranted at this time, so the systems will not be re-started. Once the additional sampling confirms the reducing trends of the contaminants in the subgrade, removal of the components of the systems will be proposed, and once approved, will be decommissioned.

# 2.0 SITE OVERVIEW

# 2.1 SITE LOCATION AND DESCRIPTION

The Site is identified as Section 4, Block 1, Lots 5 and 8 by the Village of Bronxville Assessor's office. The Village of Bronxville Assessor's Office indicates the property consists of two abutting lots comprising a total of 0.287-acres in area and owned by 81 Pondfield Road Company. Previous property owners have reportedly included 81 Pondfield Road Corporation (1971-1982) and 81 Pondfield Road Company (1982-1996). According to the Phase I Report, 81 Pondfield Road Corporation had operated at the Site in the current configuration since its purchase in 1971. A Site Plan is shown on **Figure 2.1**.

# 2.2 SITE HISTORY

The basement beneath Lot 8 is used for utilities and tenant storage. The basement beneath Lot 5 had reportedly been used for dry-cleaning operations since the building's construction in the 1930's until dry-cleaning operations were terminated in 2012. The basement is currently used by a non-dry-cleaning laundry only business for washing, drying, and pressing with aqueous detergents only. A complete Site history can be found in the Remedial Investigation Report (RIR), Spic and Span Cleaners, Bronxville, New York, NYSDEC BCP Site Number: C360130, dated September 2017, prepared by ACT.

# 2.3 REMEDIAL INVESTIGATION

Included below is a summary of the remedial investigation (RI) prepared by ACT as presented in the RIR.

1. Elevation of the property is approximately 95 feet above mean sea level.

2. Depth to groundwater ranges from 8.90 to 12.95 feet below the top of well casing at the on-Site groundwater monitoring wells. Depth to ground water ranged from 21.55 to 24.56 feet below the top of well casing at the off-Site groundwater monitoring wells on Pondfield Road. The groundwater elevation of off-Site groundwater wells, MW-4S and

MW-4I to the southeast was measured at depth of 7.63 and 7.66 feet below the top of casing, respectively.

3. Groundwater flow in the overburden aquifer is generally from northeast to southwest beneath the Site.

4. Depth to bedrock beneath the eastern portion of the Site is approximately 50 feet based upon refusal encountered during installation of two on-Site groundwater monitoring wells (MW-2 and MW-3) at 47 and 48 feet below grade surface. Depth to bedrock beneath the western portion of the Site is believed to be approximately 24 feet based upon refusal encountered during installation of off-Site monitoring wells MW-6 and MW-7.

5. The stratigraphy of the Site, from the surface down, generally consists predominantly of fine-grained poorly graded sand underlain by lenses of low plasticity silt to at least 17 feet below grade surface.

6. Soil samples collected during the RI showed detectable concentrations of VOCs in nine of the eleven soil borings excluding, methylene chloride, a common laboratory artifact. PCE, a chlorinated VOC commonly utilized at dry cleaning facilities was detected in two soil borings (ACT-1 and ACT-9) above UUSCOs. Soil boring ACT-1 contained PCE above UUSCOs in the 10 to 11-foot sample (2,800  $\mu$ g/kg) and above CSCOs in the 14 to 15-foot sample (300,000  $\mu$ g/kg). Soil boring ACT-9 contained PCE above UUSCOs only in the deeper soil sample from 13 to 15-foot depth (6,000  $\mu$ g/kg). 1,2,4,5 Tetramethylbenzene was detected at a concentration of 10,000  $\mu$ g/kg in soil sample ACT-1 from 14 to 15 foot. There is no NYSDEC soil cleanup objective for the compound.

7. Groundwater samples collected during the RI showed concentrations of VOCs above the NYSDEC TOGS (Technical and Operational Guidance Series, 1.1.1 Groundwater Effluent Limitations) in 15 of the 20 groundwater samples collected from thirteen temporary groundwater wells (ACT-1 through ACT-13). The most ubiquitous compound exceeding a NYSDEC guidance standard was PCE, which was detected in 15 groundwater samples with the greatest concentration detected in ACT-9 (14 ft.) at 5,100  $\mu$ g/L. The chlorinated VOC, degradation products TCE and cis-1,2-Dichloethene were

detected above NYSDEC guidance standards in ACT-8 (16'), ACT-9 (14') and ACT-10 (14'). The petroleum hydrocarbons, 1,2,4,5 Trimethylbenzene, 1,2,4 Trimethylbenzene and Naphthalene exhibited exceedances above NYSDEC guidance standards. 1,2,4,5 Trimethylbenzene was detected in three (3) groundwater samples above guidance standards in temporary wells, ACT-6 (17'), ACT-8 (16'), and ACT-9 (14') at concentrations of 7.1, 25 and 15 mg/L, respectively. Naphthalene was detected in two (2) groundwater samples above guidance standards in ACT-8 (16') and ACT-9 (14') at concentrations of 41 and 32  $\mu$ g/L, respectively. 1,2,4 Trimethylbenzene was detected in one (1) groundwater sample above its guidance standard in ACT-9 (14') at a concentration of 9  $\mu$ g/L. Methylene chloride a common laboratory artifact introduced during the laboratory processing of samples was detected above guidance standards in three (3) groundwater samples, ACT-1 (25'), ACT-6 (17') and ACT-8 (16') exhibited concentrations of methylene chloride at 5.1, 5.8 and 5.2  $\mu$ g/L, respectively.

8. A groundwater monitoring network consisting of nine (9) on-Site multi-level groundwater monitoring wells and five (5) off-Site conventional groundwater monitoring wells was installed in 2014 and eight (8) periodic monitoring events have been performed to date to evaluate trends in groundwater quality at the Site and its vicinity over time. After implementation of the remedy, including the SVE/AS and SSD systems, groundwater quality has shown steady improvement over time. The monitoring event in May 2017 found PCE above water quality standards only in on-Site monitoring wells MW-1s (59  $\mu$ g/L) and MW-2s (65  $\mu$ g/L) and off-Site monitoring wells MW-5i (420  $\mu$ g/L) and MW-6 (150  $\mu$ g/L), which are the lowest levels that PCE has been detected since monitoring began.

9. Soil vapor samples collected during the RI contained on-Site sub-slab soil vapor concentrations of PCE ranging from 3,663.9  $\mu$ g/m3 to 67,850  $\mu$ g/m3 and TCE ranging from 467.45  $\mu$ g/m3 to 13,443  $\mu$ g/m3. On-Site concentrations of PCE in indoor air ranged from 4.67.45  $\mu$ g/m3 to 13,443  $\mu$ g/m3.

# 2.4 DESCRIPTION OF REMEDIAL ACTIONS

The remedy for this Site (previously described in Section 1.0) was performed as an IRM in accordance with the approved IRM Work Plan. The remedy included the installation of a sub-slab depressurization (SSD) system, a soil vapor extraction (SVE) system and an air sparge (AS) system. The SSD system maintained negative pressure over the entire area of concern. The SVE system collected vapors released by the AS system for subsequent vapor-phase granular activated carbon treatment. The SSD system was installed in September 2011. The SVE system was installed in March 2015 and an AS system was installed in April 2015. In May 2015, the combined SSD/SVE/AS system was put into operation. The remedial systems were reportedly operating continuously since startup, except for routine maintenance, repairs, and occasional electrical outages per ACT. However, at the time that SESI was retained as the Engineer of Record (January 2021), the systems were not operational. The AS/SVE/SSD system layout is shown on **Figure 2.2**.

# 3.0 REMEDY PERFORMANCE, EFFECTIVENESS AND PROTECTIVENESS

The remedy performance, effectiveness and protectiveness were evaluated based on an evaluation of the groundwater, subslab soil vapor and indoor air data. A summary of the results of the data collected during this reporting period is included Section 5.0. The concentrations of contaminants in the subgrade have reduced significantly since the installation of the remedial measures. The remedial measures were effective for treatment of the impacts in the subgrade.

# 4.0 IC/EC PLAN COMPLIANCE

# 4.1 IC REQUIREMENTS AND COMPLIANCE

Since remaining contamination exists at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

# Institutional Controls

A series of ICs is required to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the Site to commercial and industrial uses only. Adherence to these ICs on the Site is required by the Environmental Easement and is implemented under the SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement.

These ICs are described below:

- Permitted future uses (commercial and industrial) must comply with 6 NYCRR 375-1.8(g)(2)(iii) for commercial uses and 6 NYCRR 375-1.8(g)(2)(iv) for industrial uses.
- All ECs must be operated and maintained as specified in the SMP.
- All ECs must be inspected at a frequency and in a manner defined in the SMP.
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Westchester County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
- Groundwater and other environmental or public health monitoring must be performed as defined in the SMP.
- Data and information pertinent to Site management must be reported at a frequency and in a manner as defined in the SMP.

- All future activities that will disturb remaining contaminated material must be conducted in accordance with the SMP.
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in the SMP.
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in the SMP.
- Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.
- Vegetable gardens and farming on the Site are prohibited.

# Engineering Controls

The ECs for the Site are described herein.

- Exposure to remaining contamination at the Site is prevented by a cover system maintained over portions of the Site not occupied by buildings. SSD, SVE and AS systems installed at the Site as part of the IRM have been mitigating soil vapor intrusion for the on-Site building and improving soil and groundwater quality in the vicinity of the Site.
- Procedures for operating and maintaining the SVE, SSD and AS systems are documented in the O and M Plan (Section 5.0 of the SMP).

Activities for the compliance with the ICs for this reporting period have been conducted. For the ECs, the O and M activities were not needed since the AS/SVE/SSD system was not operational (for the time period after SESI became the Engineer of Record).

# **4.2 RECOMMENDATIONS**

Based on a recent evaluation of the groundwater, subslab soil vapor and indoor air data (See Section 5.0), the concentration of contaminants in the subgrade have reduced significantly since the installation of the remedial measures. The remedial measures

were effective for treatment of the impacts in the subgrade. To confirm these trends will continue, two (2) additional rounds of subslab soil vapor and indoor sampling will be conducted. Groundwater sampling, including annual and semi-annual sampling, will be conducted in accordance with the SMP.

The continuation of the operation of the AS/SVE/SSD systems is not warranted at this time, so the systems will not be re-started. Once the additional sampling confirms the reducing trends of the contaminants in the subgrade, removal of the components of the systems will be proposed, and once approved, will be decommissioned.

# **4.3 IC/EC CERTIFICATION**

The NYSDEC Institutional and Engineering Controls Certification Form has been completed and is included in **Attachment A.** 

#### 5.0 MONITORING PLAN COMPLIANCE REPORT

#### 5.1 GROUNDWATER SAMPLING – FEBRUARY 2020

The first post-Certificate of Completion groundwater sampling was conducted February 18-19, 2020 by ACT. In accordance with the SMP, the groundwater samples were collected from two (2) on-Site monitoring wells, (MW-1S and MW-2S) and five (5) off-Site monitoring wells (MW-4S, MW-4I, MW-5S. MW-5I, MW-6). A copy of the "Groundwater Monitoring Status Report, Spic and Span Cleaners, 79 Pondfield Rd., Bronxville, N.Y., NYSDEC Site No. C360130", prepared by ACT, dated April 20, 2020 is included as **Attachment B.** 

As described in the Status Report, the samples collected from on-Site shallow monitoring wells MW-1 and MW-2 contained lower concentrations of PCE than the previous monitoring event in March 2019. Monitoring well MW-1S, located in the southwestern portion of the parking lot, contained 7.2 ug/L of PCE compared with 37 ug/L in March 2019. Monitoring well MW-2, located in the southeastern portion of the parking lot, contained to 9.7 ug/L in March 2019.

Off-Site monitoring wells MW-4S and MW-4I, located to the southeast of the Site, contained chlorinated volatile organic compounds (CVOCs) at or below water quality standards or detection limits. Similarly, off-Site monitoring well MW-5I, PCE levels decreased from 1,800 ug/L in March 2019 to 370 ug/L in February 2020. However, PCE concentrations in off-Site monitoring well MW-6, located southwest of the Site, increased slightly from 150 ug/L in March to 210 ug/L in February 2020. It should be noted that there are likely other off-Site sources downgradient of the Site that could be impacting this monitoring well since there is historic evidence of another dry cleaner closer to that well.

#### 5.2 GROUNDWATER SAMPLING - OCTOBER 2020

On October 13, 2020, the second post-COC biannual groundwater monitoring event took place by ACT. In accordance with the approved SMP, ACT attempted to collect groundwater samples from off-Site monitoring wells MW-5I and MW-6. A

groundwater sample was collected from monitoring well MW-51. However, monitoring well MW-6 was not accessible because it was located under a portion of the adjacent restaurant that occupied the street due to COVID-19. Before sample collection, depth to water was measured and groundwater was purged utilizing a low flow peristaltic pump, a Horiba in-line water quality meter and dedicated polyethylene and neoprene tubing. Sampling was performed when indicator parameters had stabilized. One groundwater sample was submitted to York Analytical Laboratories, Inc. (NYSDOH #10854) for analysis in accordance with EPA Method 8260. A copy of the "Draft Groundwater Monitoring Status Report, Spic and Span Cleaners, 79 Pondfield Road, Bronxville, NY, NYSDEC Site No. 360160" dated November 6, 2020, prepared by ACT is included as **Attachment C**. The current and historical laboratory analytical results are summarized in this report. It can be seen from Table 1 that the sample collected from monitoring well MW-51 on October 13, 2020 contained 67 ug/L of PCE, which is one of the lowest levels detected in MW-51 since monitoring began in 2014 and over 80% lower than the previous monitoring event on February 18, 2020.

# 5.3 GROUNDWATER, SUBSLAB SOIL VAPOR AND INDOOR AIR SAMPLING - MARCH 2021

In March 2021, a total of seven (7) groundwater samples were collected by SESI from existing on-Site and off-Site monitoring wells, three (3) soil vapor samples were collected from two (2) existing and one (1) new soil vapor sampling ports in the laundry basement area, and three (3) indoor air samples were also collected in the basement near the soil vapor sampling port locations. Field sampling was performed in substantial conformance with applicable NYSDEC regulations. Groundwater samples were submitted under chain-of-custody to Alpha Analytical Laboratories, a NELAP-certified laboratory (NY Certification MA0086), for analyses of the TCL VOC+30 (Target Compound List Volatile Organic Compounds + 30).

Similarly, soil vapor and indoor air samples were submitted under chain-of-custody to Alpha Analytical Laboratories for analysis. Soil vapor samples were analyzed for TO-15 (Toxic Organics - 15) and indoor air samples were analyzed for TO-15 and TO-15 SIM (Selective Ion Monitoring).

Groundwater sampling results were compared to the NYSDEC TOGS GA. Based on our review, MW-1S, MW-5S, MW-5I, and MW-6 exhibited PCE exceedances.

The review of the groundwater data showed continuing significant reduction in concentrations for the contaminants of concern (PCE, TCE, and cis-1,2-dichloroethene) in the monitoring wells included in the SMP monitoring program from 2014 to 2021. A summary of the sampling event is included as **Attachment D.** The concentrations of PCE in the on-Site monitoring wells showed reductions as follows:

• MW-1S (on-Site) concentrations:

| 0 | PCE (highest): | 5,800 ug/l | (5/14/14) |
|---|----------------|------------|-----------|
| 0 | PCE (lowest):  | 1.6 ug/kg  | (9/27/17) |
| 0 | PCE (current): | 13 ug/kg   | (3/15/21) |

• MW-2S (on-Site) concentrations

| 0 | PCE (highest): | 670 ug/l  | (1/10/14) |
|---|----------------|-----------|-----------|
| 0 | PCE (lowest):  | 4.5 ug/kg | (3/15/21) |
| 0 | PCE (current): | 4.5 ug/kg | (3/15/21) |

Based on this data, it is apparent that the SVE and AS have been effective in reducing the concentrations of contaminants in the subgrade to either drinking water standards or close to the drinking water standards in an urban environment. The SVE and AS systems consisted of a two (2) vertical vapor extraction wells screened from 1 ft. above the water table to the bottom of the parking lot asphalt layer, and two (2) air sparge wells screened at thirty (30) ft. below grade. These remedial measures addressed the soil and groundwater impacts by treating the contaminants. The reduction of contaminant concentrations was also enhanced by the design and construction of the SSD system, which included three (3) vertical vapor extraction wells under the building (within the building footprint). This type of vertical extraction system essentially functions as an SVE system and is more effective at reducing contaminant mass in the subgrade than typical SSD systems, which include horizontal venting piping

directly under the building floor slabs. Therefore, the SSD had also been effective at reducing the concentrations in the subgrade.

In order to further evaluate Site Conditions, SESI then collected sub-slab soil vapor samples from the existing soil vapor sampling locations in the basement area of the building. (The vapor pin at one location was damaged, so it was replaced prior to sampling.) During this event, SESI also collected three (3) indoor air samples that were co-located with the sub-slab vapor sample locations. The results of the sub-slab and indoor air sampling are also summarized in the Summary Letter in **Attachment D**.

Subslab soil vapor and indoor air sampling results were compared to New York State Department of Health (NYSDOH) Indoor Air Concentrations (IAC-A) Sub-slab Vapor Concentrations (SSC-A) Matrix A for TCE, cis-1,2-dichloroethene and carbon tetrachloride, and the results were favorable. For subslab concentrations less than 6 mcg/m<sup>3</sup> and indoor air concentrations less than 1.0 mcg/m<sup>3</sup>, no further action is required. Based on the recent results under these thresholds applicable to this Site, it is no longer necessary to actively operate the remedial systems.

For PCE, the results were compared to Matrix B and the results were favorable. For subslab concentrations less than 100 mcg/m<sup>3</sup> and indoor air concentrations less than 10 mcg/m<sup>3</sup>, no further action is required. Similarly, since the recent results under these thresholds for this Site, it is no longer necessary to actively operate the remedial systems. Nevertheless, additional monitoring will be performed for two (2) more rounds to confirm the remedial goals have been achieved.

Laboratory data is included as **Attachment E**.

# 5.4 CONCLUSIONS AND RECOMMENDATIONS

After review of the recent groundwater data, a teleconference was attended by representatives from the NYSDEC (John Miller), the NYSDOH (Jacquelyn Nealon) and SESI (Fuad Dahan and Patricia Petrino) on April 16, 2021. The discussion focused on the current groundwater and sub-slab soil gas data trends and the recent indoor air data. Since both groundwater and sub-slab soil gas are showing consistent reductions and a downward trend, and indoor air concentrations were below NYSDOH action levels, it

was agreed that additional rounds of sampling would be conducted to confirm these trends and the SVE/AS and SSD systems would not be restarted at this time.

Additional sub-slab vapor and indoor air sampling will be conducted for two (2) additional rounds during the summer (July) and the next heating season (November). The sub-slab sampling will be conducted at the three (3) existing vapor pin sampling locations. The indoor air sampling in the basement will be conducted at co-located positions. One (1) duplicate sample will be collected. In addition, indoor air sampling in each of the tenant spaces on the first floor will be conducted. A figure showing the store area layouts is included as **Figure 5.1**. It is estimated that a minimum of one (1) sample per store will be collected (6 samples), and if there are areas that are partitioned off within a store, an additional sample will be collected per partitioned area (for a maximum of 12 samples). One (1) ambient (outside) air sample will also be collected.

Continuation of the current groundwater monitoring schedule, as required in the SMP, will be conducted until it is deemed not necessary. This includes the following:

| GW Monitoring Wells      | Sampling      |
|--------------------------|---------------|
| MW-1S, 2S, 4S, 4I and 5S | Annually      |
| MW- 5I and 6 (Off-Site)  | Semi-Annually |

If concentrations in the on-Site groundwater confirm the downward trend in the next two rounds of sampling, and the sub-slab vapor samples and indoor air samples show concentrations below the NYSDOH action levels, then the operation of the SVE, AS and SSD system will not be required. The AS and SVE wells would be properly decommissioned and abandoned in place. The SSD extraction wells would be sealed and the conveyance piping from the wells to the blower and carbon units would be removed, as well as the piping to the discharge vent. The control panel for the blower would also be removed.

# 6.0 OPERATIONS AND MAINTENANCE COMPLIANCE

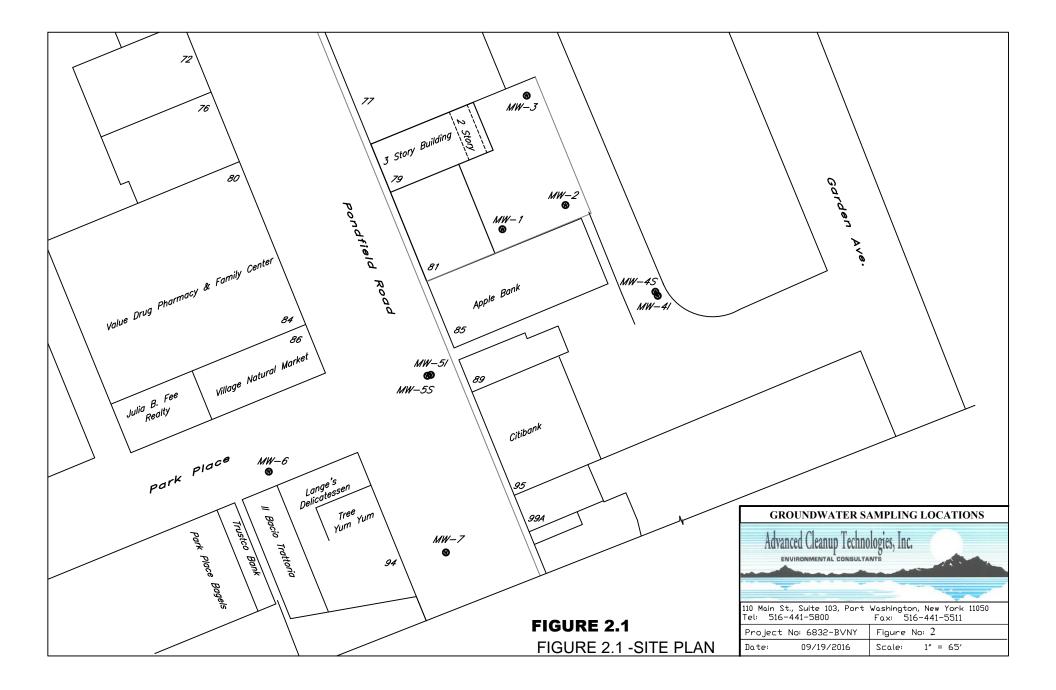
As previously described, For the EC's, the O and M activities were not needed, since the AS/SVE/SSD system was not operational for the time period after SESI became the Engineer of Record.

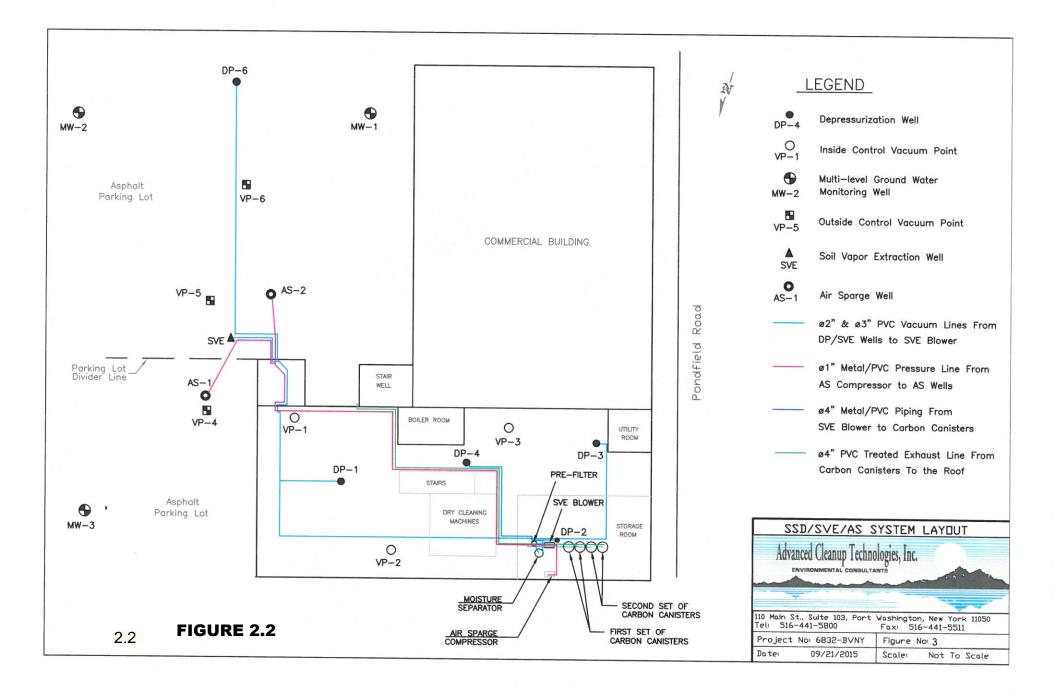
# 7.0 CONCLUSIONS AND RECOMMENDATIONS

### 7.1 COMPLIANCE WITH THE SMP

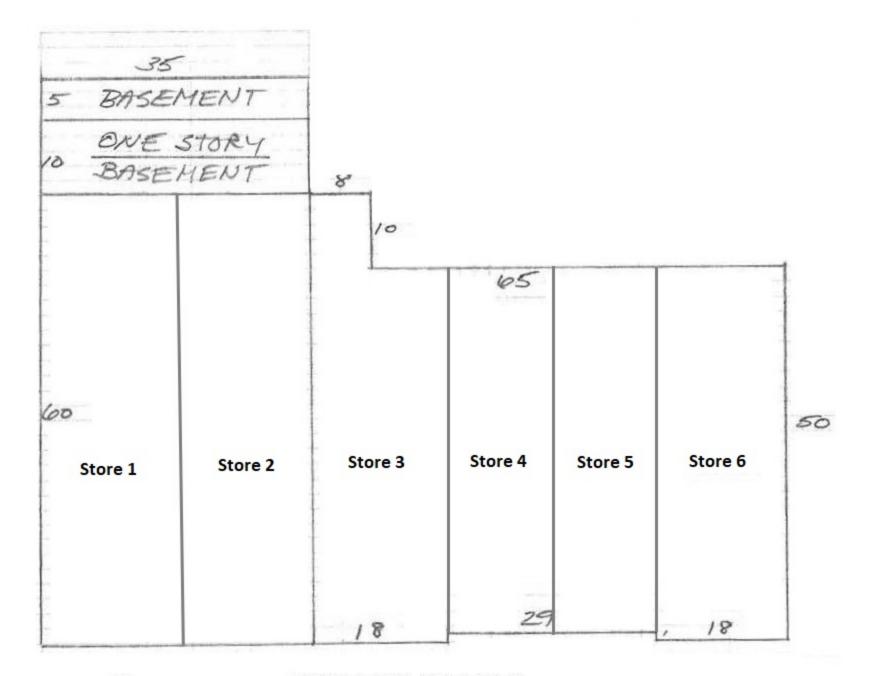
The IC requirements of the SMP have met the requirements. The O and M activities is not required at this time for the Site.

There are no new exposure pathways resulting in an unacceptable risk.


#### 7.2 PERFORMANCE AND EFFECTIVENESS OF THE REMEDY


The remedy performance, effectiveness and protectiveness were evaluated based on an evaluation of the groundwater, subslab soil vapor and indoor air data. A summary of the results of the data collected during this reporting period is included Section 5.0. The concentrations of contaminants in the subgrade have reduced significantly since the installation of the remedial measures. The remedial measures were effective for treatment of the impacts in the subgrade.

# 7.3 FUTURE PRR SUBMITTAL


Per the SMP, the frequency of the submittal of the PRR is every three (3) years. Changes to the frequency of the PRR submittal are not recommended at this time. The next PRR will be submitted in May 2024.

FIGURES





79-81 Pondfield Road Bronxville NY Ground Floor Storefronts



# **BUILDING SKETCH**

# FIGURE 5.1

FIGURE 5.1

# ATTACHMENT A -

# NYSDEC INSTITUTIONAL AND ENGINEERING CONTROLS CERTIFICATION FORMS

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation 625 Broadway, 11<sup>th</sup> Floor, Albany, NY 12233-7020 P: (518)402-9543 | F: (518)402-9547 www.dec.ny.gov

4/2/2021

John J. Lee, Jr., Attn: Charles Goldberger, Esq. Winding Up Partner 81 Pondfield Road Company McCullough, Goldberger & Staudt, LLP 1311 Mamaroneck Avenue, Suite 340 White Plains, NY 10605 plee12@optonline.net

Re: Reminder Notice: Site Management Periodic Review Report and IC/EC Certification Submittal Site Name: Spic & Span Cleaners Site No.: C360130 Site Address: 79-81 Pondfield Road Bronxville, NY 10708

Dear John J. Lee, Jr., Attn: Charles Goldberger,

This letter serves as a reminder that sites in active Site Management (SM) require the submittal of a periodic progress report. This report, referred to as the Periodic Review Report (PRR), must document the implementation of, and compliance with, site-specific SM requirements. Section 6.3(b) of DER-10 *Technical Guidance for Site Investigation and Remediation* (available online at http://www.dec.ny.gov/regulations/67386.html) provides guidance regarding the information that must be included in the PRR. Further, if the site is comprised of multiple parcels, then you as the Certifying Party must arrange to submit one PRR for all parcels that comprise the site. The PRR must be received by the Department no later than May 26, 2021. Guidance on the content of a PRR is enclosed.

Site Management is defined in regulation (6 NYCRR 375-1.2(at)) and in Chapter 6 of DER-10. Depending on when the remedial program for your site was completed, SM may be governed by multiple documents (e.g., Operation, Maintenance, and Monitoring Plan; Soil Management Plan) or one comprehensive Site Management Plan.

A Site Management Plan (SMP) may contain one or all of the following elements, as applicable to the site: a plan to maintain institutional controls and/or engineering controls ("IC/EC Plan"); a plan for monitoring the performance and effectiveness of the selected remedy ("Monitoring Plan"); and/or a plan for the operation and maintenance of the selected remedy ("O&M Plan"). Additionally, the technical requirements for SM are stated in the decision document (e.g., Record of Decision) and, in some cases, the legal agreement directing the remediation of the site (e.g., order on consent, voluntary agreement, etc.).

When you submit the PRR (by the due date above), include the enclosed forms documenting that all SM requirements are being met. The Institutional Controls (ICs) portion of the form (Box 6) must be signed by you or your designated representative. The Engineering Controls (ECs) portion of the form (Box 7) must be signed by a Qualified Environmental Professional (QEP). If you cannot certify that all SM requirements are being met, you must submit a Corrective Measures Work Plan that identifies the actions to be taken to restore compliance. The work plan must include a schedule to be approved by the Department. The Periodic Review process will not be considered complete until all necessary corrective measures are completed and all required controls are certified. Instructions for completing the certifications are enclosed.



All site-related documents and data, including the PRR, must be submitted in electronic format to the Department of Environmental Conservation. The required format for documents is an Adobe PDF file with optical character recognition and no password protection. Data must be submitted as an electronic data deliverable (EDD) according to the instructions on the following webpage:

#### https://www.dec.ny.gov/chemical/62440.html

Documents may be submitted to the project manager either through electronic mail or by using the Department's file transfer service at the following webpage:

#### https://fts.dec.state.ny.us/fts/

The Department will not approve the PRR unless all documents and data generated in support of the PRR have been submitted using the required formats and protocols.

You may contact John Miller, the Project Manager, at 518-402-9589 or john.miller@dec.ny.gov with any questions or concerns about the site. Please notify the project manager before conducting inspections or field work. You may also write to the project manager at the following address:

New York State Department of Environmental Conservation Division of Environmental Remediation, BURC 625 Broadway

Albany, NY 12233-7014

Enclosures

PRR General Guidance Certification Form Instructions Certification Forms

ec: w/ enclosures John Miller, Project Manager Daniel Eaton, Section Chief Dan Bendell, Hazardous Waste Remediation Supervisor, Region 3

SESI Consulting Engineers - FUAD DAHAN - fd@sesi.org

#### **Enclosure 1**

#### **Certification Instructions**

#### I. Verification of Site Details (Box 1 and Box 2):

Answer the three questions in the Verification of Site Details Section. The Owner and/or Qualified Environmental Professional (QEP) may include handwritten changes and/or other supporting documentation, as necessary.

#### II. Certification of Institutional Controls/ Engineering Controls (IC/ECs)(Boxes 3, 4, and 5)

1.1.1. Review the listed IC/ECs, confirming that all existing controls are listed, and that all existing controls are still applicable. If there is a control that is no longer applicable the Owner / Remedial Party should petition the Department separately to request approval to remove the control.

2. In Box 5, complete certifications for all Plan components, as applicable, by checking the corresponding checkbox.

3. If you <u>cannot</u> certify "YES" for each Control listed in Box 3 & Box 4, sign and date the form in Box 5. Attach supporting documentation that explains why the **Certification** cannot be rendered, as well as a plan of proposed corrective measures, and an associated schedule for completing the corrective measures. Note that this **Certification** form must be submitted even if an IC or EC cannot be certified; however, the certification process will not be considered complete until corrective action is completed.

If the Department concurs with the explanation, the proposed corrective measures, and the proposed schedule, a letter authorizing the implementation of those corrective measures will be issued by the Department's Project Manager. Once the corrective measures are complete, a new Periodic Review Report (with IC/EC Certification) must be submitted within 45 days to the Department. If the Department has any questions or concerns regarding the PRR and/or completion of the IC/EC Certification, the Project Manager will contact you.

#### III. IC/EC Certification by Signature (Box 6 and Box 7):

If you certified "YES" for each Control, please complete and sign the IC/EC Certifications page as follows:

- For the Institutional Controls on the use of the property, the certification statement in Box 6 shall be completed and may be made by the property owner or designated representative.
- For the Engineering Controls, the certification statement in Box 7 must be completed by a Professional Engineer or Qualified Environmental Professional, as noted on the form.



#### Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form



| Si                                                                                                                                                                                             | te No.                                                      | C360130                                                | Site Details                                                         |                | Box 1 |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------|----------------|-------|----|
| Si                                                                                                                                                                                             | te Name Sp                                                  | ic & Span Cleaners                                     |                                                                      |                |       |    |
| Ci<br>Co                                                                                                                                                                                       | te Address:<br>ty/Town: Bro<br>bunty: Westch<br>te Acreage: | hester                                                 | Zip Code: 10708                                                      |                |       |    |
| Re                                                                                                                                                                                             | eporting Perio                                              | od: December 26, 2019                                  | to April 26, 2021                                                    |                |       |    |
|                                                                                                                                                                                                |                                                             |                                                        |                                                                      |                | YES   | NO |
| 1.                                                                                                                                                                                             | Is the inform                                               | mation above correct?                                  |                                                                      |                | х     |    |
|                                                                                                                                                                                                | lf NO, inclu                                                | de handwritten above o                                 | r on a separate sheet.                                               |                |       |    |
| 2.                                                                                                                                                                                             | Has some o<br>tax map an                                    | or all of the site property<br>nendment during this Re | been sold, subdivided, merged, o<br>porting Period?                  | r undergone a  |       | x  |
| 3.                                                                                                                                                                                             | Has there b<br>(see 6NYC                                    | peen any change of use<br>RR 375-1.11(d))?             | at the site during this Reporting Pe                                 | eriod          | D     | x  |
| 4.                                                                                                                                                                                             | Have any fe<br>for or at the                                | ederal, state, and/or loca<br>property during this Re  | al permits (e.g., building, discharge<br>porting Period?             | e) been issued |       | x  |
|                                                                                                                                                                                                | lf you ansv<br>that docun                                   | vered YES to question<br>nentation has been pre        | s 2 thru 4, include documentatic<br>viously submitted with this cert | on or evidence | •     |    |
| 5.                                                                                                                                                                                             | Is the site c                                               | urrently undergoing dev                                | elopment?                                                            |                |       | X  |
|                                                                                                                                                                                                |                                                             |                                                        |                                                                      |                |       |    |
|                                                                                                                                                                                                |                                                             |                                                        |                                                                      |                | Box 2 |    |
|                                                                                                                                                                                                |                                                             |                                                        |                                                                      |                | YES   | NO |
| 6.                                                                                                                                                                                             |                                                             | nt site use consistent wi<br>I and Industrial          | the use(s) listed below?                                             |                | x     | 0  |
| 7.                                                                                                                                                                                             | Are all ICs i                                               | n place and functioning                                | as designed?                                                         | 0              | х     |    |
| IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                              |                                                             |                                                        |                                                                      |                |       |    |
| A Corrective Measures Work Plan must be submitted along with this form to address these issues.                                                                                                |                                                             |                                                        |                                                                      |                |       |    |
| A Corrective Measures Work Plan was submitted on 5/18/21.<br>A Corrective Measures Work Plan was submitted on 5/18/21.<br>Signature of Owner, Remedial Party or Designated Representative Date |                                                             |                                                        |                                                                      |                |       |    |

| SITE NO. C360130                                                                                                                | Box 3                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Department of leading to and                                                                                                    |                                                                                                                                                                                                              |
| Description of Institutional Cor                                                                                                |                                                                                                                                                                                                              |
|                                                                                                                                 | ield Road Company                                                                                                                                                                                            |
|                                                                                                                                 | Ground Water Use Restriction<br>Soil Management Plan<br>Landuse Restriction<br>Monitoring Plan<br>Site Management Plan<br>O&M Plan<br>IC/EC Plan                                                             |
| buildings erected at the site must evalu                                                                                        | vironmental easement include groundwater use restrictions, land use<br>the requirement that the site adheres to the approved SMP. Future<br>ate the potential for soil vapor intrusion.<br>ield Road Company |
|                                                                                                                                 | Ground Water Use Restriction<br>Soil Management Plan<br>Landuse Restriction<br>Monitoring Plan<br>Site Management Plan<br>O&M Plan<br>IC/EC Plan                                                             |
| Institutional controls required by the environmentation (commercial/industrial) and buildings erected at the site must evaluate | ironmental easement include groundwater use restrictions, land use<br>he requirement that the site adheres to the approved SMP. Future<br>te the potential for soil vapor intrusion.                         |
| Description of Engineering Con                                                                                                  |                                                                                                                                                                                                              |
| Parcel                                                                                                                          |                                                                                                                                                                                                              |
| 4-1-5                                                                                                                           | Engineering Control                                                                                                                                                                                          |
|                                                                                                                                 | Vapor Mitigation<br>Cover System<br>Air Sparging/Soil Vapor Extraction<br>Monitoring Wells                                                                                                                   |
| inspection of the site's cover syste                                                                                            | environmental easement include maintenance and annual<br>n. The Air Sparging/SVE system and SSDS will be operated<br>onitoring wells will be maintained and sampled in accordance                            |
|                                                                                                                                 | Vapor Mitigation<br>Cover System<br>Air Sparging/Soil Vapor Extraction<br>Monitoring Wells                                                                                                                   |
| Inspection of the site's cover system                                                                                           | environmental easement include maintenance and annual<br>n. The Air Sparging/SVE system and SSDS will be operated<br>onitoring wells will be maintained and sampled in accordance                            |

|                                 |                                                                                                                                                                                                                                    |                       | Box 5                  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------|
|                                 | Periodic Review Report (PRR) Certification Statements                                                                                                                                                                              |                       |                        |
| 1. I certify by                 | checking "YES" below that:                                                                                                                                                                                                         |                       |                        |
| a) ti<br>revie                  | he Periodic Review report and all attachments were prepared under the dire<br>wed by, the party making the Engineering Control certification;                                                                                      | ction of,             | and                    |
| are i                           | o the best of my knowledge and belief, the work and conclusions described in<br>accordance with the requirements of the site remedial program, and gener<br>ring practices; and the information presented is accurate and compete. | n this ce<br>ally acc | ertification<br>repted |
|                                 |                                                                                                                                                                                                                                    | YES                   | NO                     |
|                                 |                                                                                                                                                                                                                                    |                       |                        |
| 2. For each E<br>following s    | ingineering control listed in Box 4, I certify by checking "YES" below that all o tatements are true:                                                                                                                              | of the                |                        |
| (a) 1<br>since                  | The Engineering Control(s) employed at this site is unchanged<br>the date that the Control was put in-place, or was last approved by the Dep                                                                                       | artmen                | t;                     |
| (b) r<br>the e                  | nothing has occurred that would impair the ability of such Control, to protect provionment;                                                                                                                                        | public h              | ealth and              |
| (c) a<br>reme                   | access to the site will continue to be provided to the Department, to evaluate<br>edy, including access to evaluate the continued maintenance of this Control;                                                                     | the                   |                        |
| (d) n<br>Site l                 | nothing has occurred that would constitute a violation or failure to comply with<br>Management Plan for this Control; and                                                                                                          | h the                 |                        |
| (e) if<br>mect                  | a financial assurance mechanism is required by the oversight document for<br>nanism remains valid and sufficient for its intended purpose established in th                                                                        | the site<br>e docun   | e, the<br>nent.        |
|                                 |                                                                                                                                                                                                                                    | YES                   | NO                     |
|                                 |                                                                                                                                                                                                                                    |                       |                        |
|                                 | IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.                                                                                                              |                       |                        |
| A Corrective<br>A Corrective Me | Measures Work Plan must be submitted along with this form to address th<br>easures Work Plan was submitted on 5/18/21.                                                                                                             | ese issi              | ues.                   |
| Signature of C                  | owner, Remedial Party or Designated Representative Date                                                                                                                                                                            |                       |                        |

Γ

|                                   | SITE NO. C360130                                                                                                                                                  | Box 6                           |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|                                   |                                                                                                                                                                   | DUX 0                           |
| l certify that all information ar | ER OR DESIGNATED REPRESENTATIVE SIGNATURE<br>nd statements in Boxes 1,2, and 3 are true. I understand<br>nishable as a Class "A" misdemeanor, pursuant to Section | that a false<br>n 210.45 of the |
| print name                        | atprint business address                                                                                                                                          | ,                               |
| Print ridirio                     | print business address                                                                                                                                            |                                 |
| am certifying as                  | (Ourses a                                                                                                                                                         | • Demonstration of the          |
| am certifying as                  | (Owner o                                                                                                                                                          | r Remedial Party                |
|                                   | (000000                                                                                                                                                           | r Remedial Party                |
|                                   | (000000                                                                                                                                                           | r Remedial Party                |
| am certifying as                  | (000000                                                                                                                                                           | r Remedial Party                |

| EC CERTIFIC                                                                                                       | ATIONS                                                                              |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Qualified Environmental                                                                                           | Box 7<br>Professional Signature                                                     |
| I certify that all information in Boxes 4 and 5 are true.<br>punishable as a Class "A" misdemeanor, pursuant to s | I understand that a false statement made herein is Section 210.45 of the Penal Law. |
| Iat                                                                                                               | print business address                                                              |
| am certifying as a Qualified Environmental Profession                                                             |                                                                                     |
| Signature of Qualified Environmental Professional, for the Owner or Remedial Party, Rendering Certification       |                                                                                     |

### Enclosure 3 Periodic Review Report (PRR) General Guidance

- I. Executive Summary: (1/2-page or less)
  - A. Provide a brief summary of site, nature and extent of contamination, and remedial history.
  - B. Effectiveness of the Remedial Program Provide overall conclusions regarding;
    - 1. progress made during the reporting period toward meeting the remedial objectives for the site
    - 2. the ultimate ability of the remedial program to achieve the remedial objectives for the site.
  - C. Compliance
    - Identify any areas of non-compliance regarding the major elements of the Site Management Plan (SMP, i.e., the Institutional/Engineering Control (IC/EC) Plan, the Monitoring Plan, and the Operation & Maintenance (O&M) Plan).
    - 2. Propose steps to be taken and a schedule to correct any areas of non-compliance.
  - D. Recommendations
    - 1. recommend whether any changes to the SMP are needed
    - 2. recommend any changes to the frequency for submittal of PRRs (increase, decrease)
    - 3. recommend whether the requirements for discontinuing site management have been met.
- II. Site Overview (one page or less)
- A. Describe the site location, boundaries (figure), significant features, surrounding area, and the nature extent of contamination prior to site remediation.
  - B. Describe the chronology of the main features of the remedial program for the site, the components of the selected remedy, cleanup goals, site closure criteria, and any significant changes to the selected remedy that have been made since remedy selection.
- III. Evaluate Remedy Performance, Effectiveness, and Protectiveness

Using tables, graphs, charts and bulleted text to the extent practicable, describe the effectiveness of the remedy in achieving the remedial goals for the site. Base findings, recommendations, and conclusions on objective data. Evaluations and should be presented simply and concisely.

- IV. IC/EC Plan Compliance Report (if applicable)
  - A. IC/EC Requirements and Compliance
    - 1. Describe each control, its objective, and how performance of the control is evaluated.
    - 2. Summarize the status of each goal (whether it is fully in place and its effectiveness).
    - 3. Corrective Measures: describe steps proposed to address any deficiencies in ICECs.
    - 4. Conclusions and recommendations for changes.
  - B. IC/EC Certification
    - 1. The certification must be complete (even if there are IC/EC deficiencies), and certified by the appropriate party as set forth in a Department-approved certification form(s).
- V. Monitoring Plan Compliance Report (if applicable)
  - A. Components of the Monitoring Plan (tabular presentations preferred) Describe the requirements of the monitoring plan by media (i.e., soil, groundwater, sediment, etc.) and by any remedial technologies being used at the site.
  - B. Summary of Monitoring Completed During Reporting Period Describe the monitoring tasks actually completed during this PRR reporting period. Tables and/or figures should be used to show all data.
  - C. Comparisons with Remedial Objectives Compare the results of all monitoring with the remedial objectives for the site. Include trend analyses where possible.
  - D. Monitoring Deficiencies Describe any ways in which monitoring did not fully comply with the monitoring plan.
  - E. Conclusions and Recommendations for Changes Provide overall conclusions regarding the monitoring completed and the resulting evaluations regarding remedial effectiveness.
- VI. Operation & Maintenance (O&M) Plan Compliance Report (if applicable)
  - A. Components of O&M Plan Describe the requirements of the O&M plan including required activities, frequencies, recordkeeping, etc.
  - B. Summary of O&M Completed During Reporting Period Describe the O&M tasks actually completed during this PRR reporting period.
  - C. Evaluation of Remedial Systems Based upon the results of the O&M activities completed, evaluated

the ability of each component of the remedy subject to O&M requirements to perform as designed/expected.

- D. O&M Deficiencies Identify any deficiencies in complying with the O&M plan during this PRR reporting period.
- E. Conclusions and Recommendations for Improvements Provide an overall conclusion regarding O&M for the site and identify any suggested improvements requiring changes in the O&M Plan.
- VII. Overall PRR Conclusions and Recommendations
  - A. Compliance with SMP For each component of the SMP (i.e., IC/EC, monitoring, O&M), summarize;
    - 1. whether all requirements of each plan were met during the reporting period
    - 2. any requirements not met
    - 3. proposed plans and a schedule for coming into full compliance.
  - B. Performance and Effectiveness of the Remedy Based upon your evaluation of the components of the SMP, form conclusions about the performance of each component and the ability of the remedy to achieve the remedial objectives for the site.
  - C. Future PRR Submittals
    - 1. Recommend, with supporting justification, whether the frequency of the submittal of PRRs should be changed (either increased or decreased).
    - 2. If the requirements for site closure have been achieved, contact the Departments Project Manager for the site to determine what, if any, additional documentation is needed to support a decision to discontinue site management.

### VIII. Additional Guidance

Additional guidance regarding the preparation and submittal of an acceptable PRR can be obtained from the Departments Project Manager for the site.

ATTACHMENT B- ACT GROUNDWATER MONITORING STATUS REPORT



April 20, 2020

John B. Miller, P.E. NYS Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11<sup>th</sup> Floor Albany, NY 12233-7014

> Re: Groundwater Monitoring Status Report Spic and Span Cleaners, 79 Pondfield Road, Bronxville, NY NYSDEC Site No. C360130

Dear Mr. Miller,

The first post-Certificate of Completion groundwater monitoring event took place on February 18<sup>th</sup> and 19<sup>th</sup>, 2020. In accordance with the approved Site Management Plan, groundwater samples were collected from 2 on-site monitoring wells (MW-1S and MW-2S) and 5 off-site monitoring wells (MW-4S, MW-4I, MW-5S, MW-5I and MW-6).

Prior to purging, depth to water was determined using a conductivity meter. Before sample collection, groundwater was purged utilizing a low flow peristaltic pump, a Horiba inline water quality meter and dedicated polyethylene and neoprene tubing. Sampling was performed when indicator parameters had stabilized. A total of nine water samples including seven groundwater samples and two equipment blanks were submitted to York Analytical Laboratories, Inc. (NYSDOH #10854) for analysis in accordance with EPA Method 8260. The current and historical laboratory analytical results are summarized in Table 1.

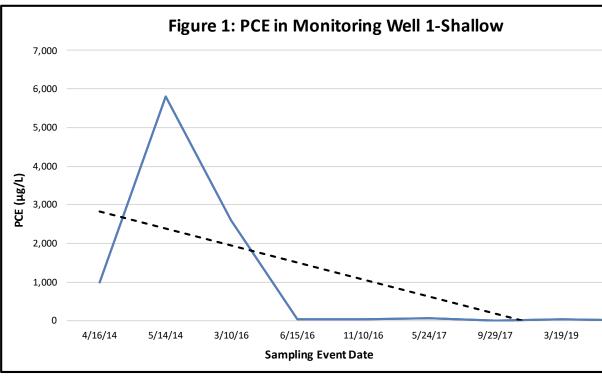
It can be seen from Table 1 and the accompanying figures that samples collected from on-site shallow monitoring wells MW-1 and MW-2 contained lower concentrations of PCE than the previous monitoring event in March 2019. Monitoring well MW-1S, located in the southwestern portion of the parking lot, contained 7.2  $\mu$ g/L of Tetrachloroethene compared with 37  $\mu$ g/L in March 2019. MW-2, located in the southeastern portion of the parking lot, contained 6.2  $\mu$ g/L of Tetrachloroethene compared to 9.7  $\mu$ g/L in March 2019.

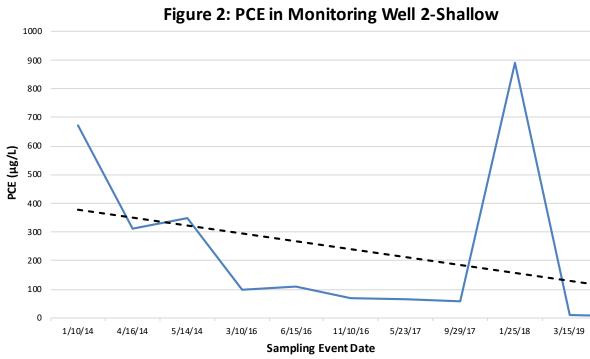
Off-site wells MW-4S and MW-4I, located to the southeast of the site, contained CVOCs at or below water quality standards or detection limits. Similarly, off-site well MW-5S contained CVOCs at or below water quality standards or detection limits. In MW-5I, Tetrachloroethene levels decreased from 1,800  $\mu$ g/L in March 2019 to 370  $\mu$ g/L in February 2020. However,

Groundwater Monitoring Status Report 79 Pondfield Road, Bronxville, NY April 20, 2020



Tetrachloroethene concentrations in off-site monitoring well MW-6, located southwest of the site, increased slightly from 150  $\mu$ g/L in March 2019 to 210  $\mu$ g/L in February 2020.


### Conclusions

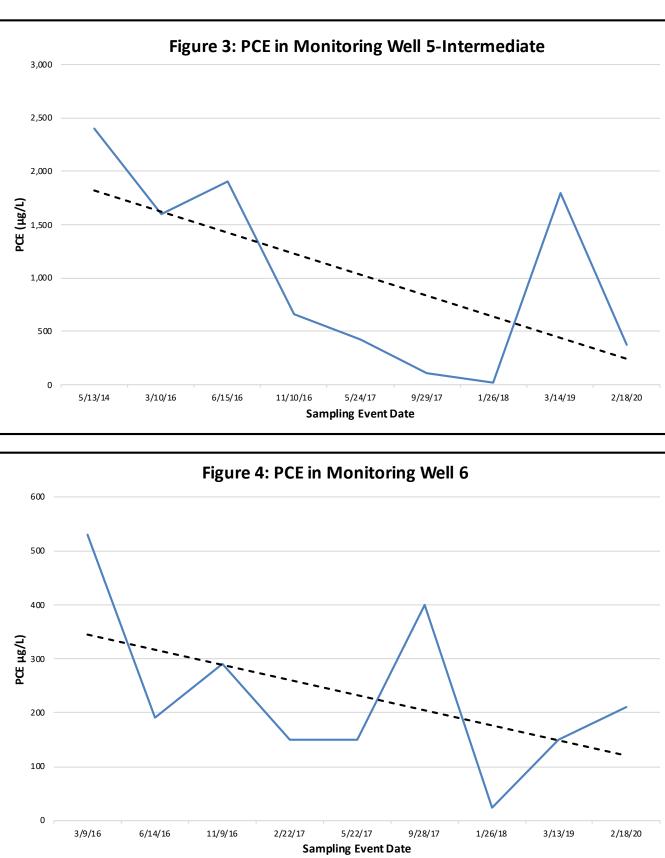

As depicted in Figures 1 and 2, groundwater quality in on-site shallow monitoring wells MW-1 and MW-2 have shown continuous improvement in groundwater quality since monitoring commenced in 2014 and have now reached asymptotic levels. As depicted in Figure 3, groundwater quality in off-site monitoring well MW-5I has shown significant improvement since the previous monitoring event. In contrast, groundwater quality in off-site monitoring well MW-6 has shown a continuous increase in contaminant levels since 2018, which is consistent with an offsite source of contamination.

### Recommendations

Groundwater monitoring will continue in accordance with the approved SMP. The next post-COC biannual groundwater monitoring event will take place August 2020 and include monitoring wells MW-5I and MW-6.

| Table 1<br>Historical Groundwater Data (2014 to 2020)                      |                 |                |               |  |  |  |
|----------------------------------------------------------------------------|-----------------|----------------|---------------|--|--|--|
| Spic & Span Cleaners<br>79 to 81 Pondfield Road<br>NYSDEC Site No. C360130 |                 |                |               |  |  |  |
| MW-1S                                                                      | PCE             | TCE            | Cis-1,2-DCE   |  |  |  |
| 4/16/14                                                                    | 1,000           | <10            | <10           |  |  |  |
| 5/14/14                                                                    | 5,800           | 51             | 17            |  |  |  |
| 3/10/16                                                                    | 2,600           | 13             | 4.4           |  |  |  |
| 6/15/16                                                                    | 34              | 0.58           | <0.2          |  |  |  |
| 11/10/16                                                                   | 23              | 2.4            | 0.22          |  |  |  |
| 5/24/17                                                                    | 59              | 1.4            | <0.2          |  |  |  |
| 9/29/17                                                                    | 1.6<br>37       | < 0.2          | <0.2          |  |  |  |
| 3/19/19                                                                    | 37<br>7.2       | 1.3            | <0.2<br><2.5  |  |  |  |
| 2/19/20                                                                    | 1.2             | <2.5           | <2.5          |  |  |  |
| MW-2S                                                                      | PCE             | TCE            | Cis-1,2-DCE   |  |  |  |
| 1/10/14                                                                    | 670             | <10            | <10           |  |  |  |
| 4/16/14                                                                    | 310             | <10            | <10           |  |  |  |
| 5/14/14                                                                    | 350             | <10            | <10           |  |  |  |
| 3/10/16                                                                    | 100             | 1.6            | 0.21          |  |  |  |
| 6/15/16                                                                    | 110             | 2.4            | 0.47          |  |  |  |
| 11/10/16                                                                   | 70              | 1.4            | 0.32          |  |  |  |
| 5/23/17                                                                    | 65              | 1.5            | 0.23          |  |  |  |
| 9/29/17                                                                    | 58              | 1.4            | 0.86          |  |  |  |
| 1/25/18                                                                    | 890             | <2             | <2            |  |  |  |
| 3/15/19                                                                    | 9.7             | 0.69           | <0.2          |  |  |  |
| 2/19/20                                                                    | 6.2             | <2.5           | <2.5          |  |  |  |
| MW-4S                                                                      | PCE             | TCE            | Cis-1,2-DCE   |  |  |  |
| 5/13/14                                                                    | <10             | <10            | <10           |  |  |  |
| 3/9/16                                                                     | 0.59            | <0.50          | <0.2          |  |  |  |
| 6/14/16                                                                    | 0.94            | <0.2           | <0.2          |  |  |  |
| 11/9/16                                                                    | 3.1             | <0.2           | <0.2          |  |  |  |
| 2/22/17                                                                    | 1.1             | <0.2           | <0.2          |  |  |  |
| 5/22/17                                                                    | 0.23            | <0.2           | <0.2          |  |  |  |
| 9/28/17                                                                    | 1.4             | <0.2           | <0.2          |  |  |  |
| 1/25/18                                                                    | 2               | <0.2           | <0.2          |  |  |  |
| 3/19/19                                                                    | 0.33            | <0.2           | <0.2          |  |  |  |
| 2/19/20                                                                    | <2.5            | <2.5           | <2.5          |  |  |  |
| Notes:                                                                     |                 |                |               |  |  |  |
| All units in ug                                                            | /L              |                |               |  |  |  |
| PCE: Tetrachlo                                                             | oroethene       |                |               |  |  |  |
| TCE: Trichloro                                                             | oethene         |                |               |  |  |  |
| Cis-1,2-DCE: c                                                             | is-1,2-Dichloro | pethene        |               |  |  |  |
| Highlight indi                                                             | cates an excee  | dance of the N | /SDEC TOGS    |  |  |  |
| 1.1.1, June 19                                                             |                 |                |               |  |  |  |
|                                                                            | signify detecti | on above meth  | nod detection |  |  |  |
| limit                                                                      |                 |                |               |  |  |  |






Note:

Trendline shown as dashed-line on figures

|         | - |
|---------|---|
|         |   |
|         | - |
| 2/19/20 |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         | _ |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |

| Historica                                                                                                 | Table 1 (c<br>Il Groundwate                                        | continued)<br>er Data (2014 | to 2020)                                      |   |              |  |  |
|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-----------------------------------------------|---|--------------|--|--|
| Spic & Span Cleaners<br>79 to 81 Pondfield Road<br>NYSDEC Site No. C360130                                |                                                                    |                             |                                               |   |              |  |  |
| MW-4I                                                                                                     | PCE                                                                | TCE                         | Cis-1,2-DCE                                   |   |              |  |  |
| 5/13/14                                                                                                   | <10                                                                | <10                         | <10                                           |   |              |  |  |
| 3/9/16                                                                                                    | <0.2                                                               | <0.5                        | <0.5                                          |   |              |  |  |
| 6/14/16                                                                                                   | 0.75                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 11/9/16                                                                                                   | 0.38                                                               | <0.2                        | <0.2                                          |   | _            |  |  |
| 2/22/17                                                                                                   | 0.68                                                               | <0.2                        | <0.2                                          |   | g/L          |  |  |
| 5/23/17<br>9/28/17                                                                                        | 0.32<br>4.1                                                        | <0.2<br><0.2                | <0.2<br><0.2                                  |   | PCE (µg/L    |  |  |
| 1/25/18                                                                                                   | 9.2                                                                | 0.23                        | <0.2                                          |   | BG           |  |  |
| 3/19/19                                                                                                   | <0.2                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 2/18/20                                                                                                   | <2.5                                                               | <2.5                        | <2.5                                          |   |              |  |  |
| MW-5S                                                                                                     | PCE                                                                | TCE                         | Cis-1,2-DCE                                   |   |              |  |  |
| 5/13/14                                                                                                   | <10                                                                | <10                         | <10                                           |   |              |  |  |
| 3/9/16                                                                                                    | 1                                                                  | <0.5                        | <0.5                                          |   |              |  |  |
| 6/14/16                                                                                                   | 0.35                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 11/9/16                                                                                                   | 0.69                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 2/22/17                                                                                                   | 0.91                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 5/23/17                                                                                                   | 0.29                                                               | <0.2                        | <0.2                                          |   |              |  |  |
| 9/28/17                                                                                                   | < 0.2                                                              | <0.2                        | <0.2                                          |   |              |  |  |
| 3/13/19<br>2/18/20                                                                                        | <b>0.39</b><br><2.5                                                | <0.2<br><2.5                | <0.2<br><2.5                                  | L |              |  |  |
| 2/10/20                                                                                                   | 12.5                                                               | 12.5                        | 12.5                                          | ו |              |  |  |
| MW-51                                                                                                     | PCE                                                                | TCE                         | Cis-1,2-DCE                                   |   |              |  |  |
| 5/13/14<br>3/10/16                                                                                        | 2,400<br>1,600                                                     | <10<br><b>3.3</b>           | <10<br><5                                     |   |              |  |  |
| 6/15/16                                                                                                   | 1,900                                                              | <5                          | <5<br><5                                      |   |              |  |  |
| 11/10/16                                                                                                  | 660                                                                | 4.2                         | 10                                            |   |              |  |  |
| 5/24/17                                                                                                   | 420                                                                | 2.2                         | 3.6                                           |   |              |  |  |
| 9/29/17                                                                                                   | 110                                                                | 2.5                         | 7                                             |   |              |  |  |
| 1/26/18                                                                                                   | 19                                                                 | 1                           | 3.4                                           |   |              |  |  |
| 3/14/19<br>2/18/20                                                                                        | 1,800<br>370                                                       | <b>3.2</b><br><2.5          | <b>1.1</b><br><2.5                            |   |              |  |  |
| 2/10/20                                                                                                   | 570                                                                | 12.5                        | ~2.5                                          |   |              |  |  |
| MW-6                                                                                                      | PCE                                                                | TCE                         | Cis-1,2-DCE                                   |   | <del>ب</del> |  |  |
| 3/9/16                                                                                                    | 530                                                                | 2                           | <2.5                                          |   | PCE µg/L     |  |  |
| 6/14/16                                                                                                   | 190<br>200                                                         | <0.4<br><b>1.1</b>          | 0.42                                          |   | Ä            |  |  |
| 11/9/16<br>2/22/17                                                                                        | 290<br>150                                                         | 0.91                        | 0.63<br>0.59                                  |   |              |  |  |
| 5/22/17                                                                                                   | 150                                                                | 1.1                         | 0.39                                          |   |              |  |  |
| 9/28/17                                                                                                   | 400                                                                | 2                           | <1                                            |   |              |  |  |
| 1/26/18                                                                                                   | 24                                                                 | 0.22                        | <0.2                                          |   |              |  |  |
| 3/13/19                                                                                                   | 150                                                                | 0.75                        | 0.39                                          |   |              |  |  |
| 2/18/20                                                                                                   | 210                                                                | <2.5                        | <2.5                                          |   |              |  |  |
|                                                                                                           |                                                                    |                             | <u>م</u> ــــــــــــــــــــــــــــــــــــ |   |              |  |  |
| Notes:<br>All units in ug<br>PCE: Tetrachlo<br>TCE: Trichloro<br>CIS-1.2-DCE: c                           | oroethene<br>oethene                                               | pethene                     |                                               |   |              |  |  |
| All units in ug<br>PCE: Tetrachlo<br>TCE: Trichloro<br>CIS-1,2-DCE: c                                     | proethene                                                          |                             | YSDEC TOGS                                    |   |              |  |  |
| All units in ug<br>PCE: Tetrachlo<br>TCE: Trichloro<br>CIS-1,2-DCE: c<br>Highlight indi<br>1.1.1, June 19 | oroethene<br>lethene<br>lis-1,2-Dichloro<br>cates an exceed<br>998 | dance of the N'             |                                               |   |              |  |  |
| All units in ug<br>PCE: Tetrachlo<br>TCE: Trichloro<br>CIS-1,2-DCE: c<br>Highlight indi<br>1.1.1, June 19 | proethene<br>oethene<br>is-1,2-Dichloro<br>cates an exceed         | dance of the N'             |                                               |   |              |  |  |



Note:

Trendline shown as dashed-line on figures

ATTACHMENT C – ACT DRAFT GROUNDWATER MONITORING STATUS REPORT



November 6, 2020

John B. Miller, P.E. NYS Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 11<sup>th</sup> Floor Albany, NY 12233-7014

> Re: Draft Groundwater Monitoring Status Report Spic and Span Cleaners, 79 Pondfield Road, Bronxville, NY NYSDEC Site No. C360130

Dear Mr. Miller,

On October 13, 2020, the second post-COC biannual groundwater monitoring event took place. In accordance with the approved Site Management Plan, ACT attempted to collect groundwater samples from off-site monitoring wells MW-5I and MW-6. A groundwater sample was collected from monitoring well MW-5I. However, monitoring well MW-6 was not accessible because it was located under a portion of the adjacent restaurant that occupied the street due to COVID-19.

Before sample collection, depth to water was measured and groundwater was purged utilizing a low flow peristaltic pump, a Horiba in-line water quality meter and dedicated polyethylene and neoprene tubing. Sampling was performed when indicator parameters had stabilized. One groundwater sample was submitted to York Analytical Laboratories, Inc. (NYSDOH #10854) for analysis in accordance with EPA Method 8260. The current and historical laboratory analytical results are summarized in Table 1.

It can be seen from Table 1 that the sample collected from monitoring well MW-5I on October 13, 2020 contained 67 ug/L of PCE, which is one of the lowest levels detected in MW-5I since monitoring began in 2014 and over 80% lower than the previous monitoring event on February 18, 2020.

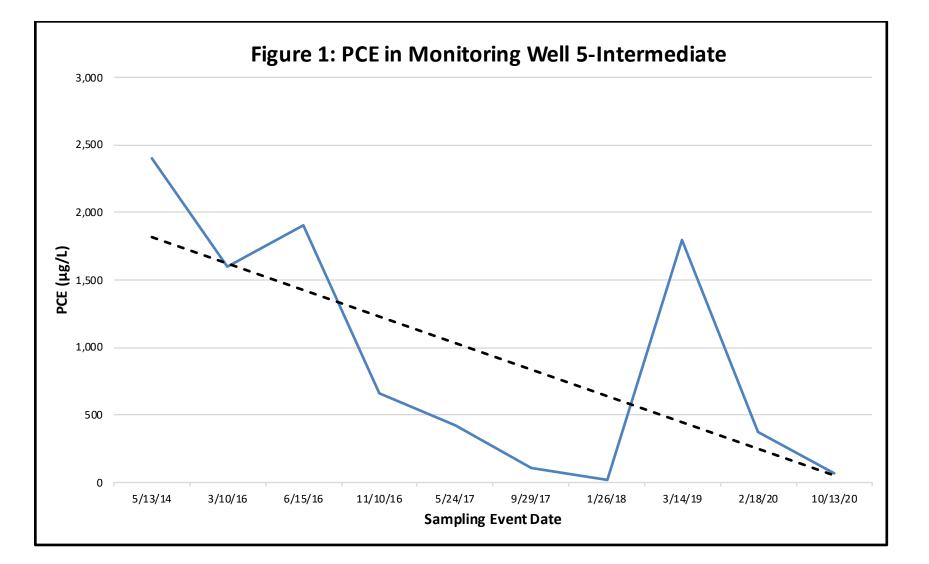
Groundwater Monitoring Status Report 79 Pondfield Road, Bronxville, NY October 6, 2020



### Conclusions

As depicted in Figure 1, groundwater quality in off-site monitoring well MW-5I has shown significant improvement since the previous monitoring event. Continued improvement is expected over the next year.

### Recommendations


Groundwater monitoring will continue in accordance with the approved SMP. The next post-COC biannual groundwater monitoring event will take place in February of 2021 and include monitoring wells MW-1S, MW-2S, MW-4S, MW-4I, MW-5S, MW-5I and MW-6.

Please feel free to contact me if you have any questions or comments concerning the above.

Very truly yours,

Paul P. Stewart, MS, QEP President

| Table 1<br>Historical Groundwater Data (2014 to 2020)                      |                 |                |               |  |  |  |
|----------------------------------------------------------------------------|-----------------|----------------|---------------|--|--|--|
| Spic & Span Cleaners<br>79 to 81 Pondfield Road<br>NYSDEC Site No. C360130 |                 |                |               |  |  |  |
| MW-51                                                                      | PCE             | TCE            | Cis-1,2-DCE   |  |  |  |
| 5/13/14                                                                    | 2,400           | <10            | <10           |  |  |  |
| 3/10/16                                                                    | 1,600           | 3.3            | <5            |  |  |  |
| 6/15/16                                                                    | 1,900           | <5             | <5            |  |  |  |
| 11/10/16                                                                   | 660             | 4.2            | 10            |  |  |  |
| 5/24/17                                                                    | 420             | 2.2            | 3.6           |  |  |  |
| 9/29/17                                                                    | 110             | 2.5            | 7             |  |  |  |
| 1/26/18                                                                    | 19              | 1              | 3.4           |  |  |  |
| 3/14/19                                                                    | 1,800           | 3.2            | 1.1           |  |  |  |
| 2/18/20                                                                    | 370             | <2.5           | <2.5          |  |  |  |
| 10/13/20                                                                   | 67              | 1.6            | 2.2           |  |  |  |
| Notes:                                                                     |                 |                |               |  |  |  |
| All units in ug                                                            | /L              |                |               |  |  |  |
| PCE: Tetrachlo                                                             | proethene       |                |               |  |  |  |
| TCE: Trichloro                                                             | ethene          |                |               |  |  |  |
| CIS-1,2-DCE: c                                                             | is-1,2-Dichlor  | pethene        |               |  |  |  |
| Highlight indi                                                             | cates an exceed | dance of the N | SDEC TOGS     |  |  |  |
| 1.1.1, June 1998                                                           |                 |                |               |  |  |  |
| Bolded values                                                              | signify detecti | on above meth  | nod detection |  |  |  |
| limit                                                                      |                 |                |               |  |  |  |



ATTACHMENT D -

SESI GROUNDWATER, VAPOR, INDOOR AIR SAMPLING SUMMARY



Geotechnical Foundations Land Planning Geo-Structural Environmental Water Resources

Principals:

Anthony Castillo, PE Fuad Dahan, PhD, PE, LSRP John M. Nederfield, PE Justin M. Protasiewicz, PE Michael St. Pierre, PE

April 12, 2021

Mr. Thomas Liptak 81 Pondfield Road Company 1311 Mamaroneck Avenue Suite 340 White Plains, New York 10605

### RE: Groundwater, Soil Vapor and Indoor Air Sampling 79-81 Pondfield Road Bronxville, New York 10708 SESI Project No. 116663

Dear Mr. Liptak:

SESI Consulting Engineers (SESI) performed recent environmental sampling and testing in accordance with our Professional Services Agreement (PSA) dated February 16, 2021 and other recent discussions. Specifically, the field activities included sampling of several groundwater monitoring wells, sub-slab soil vapor points and indoor air at the Site located at 79-81 Pondfield Road in Bronxville, New York. The groundwater monitoring well location plan, subslab and indoor air sampling locations are included as Figure 1 and Figure 2, respectively.

In summary, a total of seven (7) groundwater samples were collected from existing monitoring wells at the Site for laboratory analysis, three (3) soil vapor samples were collected from two (2) existing and one (1) new soil vapor sampling ports, and three (3) indoor air samples were collected in the basement near the soil vapor sampling port locations. Field sampling was performed in substantial conformance with applicable New York State Department of Environmental Conservation (NYSDEC) regulations.

Groundwater samples were submitted under chain-of-custody to Alpha Analytical Laboratories, a NELAP-certified laboratory (NY Certification MA0086), for analyses of the TCL VOC+30 (Target Compound List Volatile Organic Compounds + 30).

Similarly, soil vapor and indoor air samples were submitted under chain-of-custody to Alpha Analytical Laboratories for analysis. Soil vapor samples were analyzed for TO-15 (Toxic Organics - 15) and indoor air samples were analyzed for TO-15 and TO-15 SIM (Selective Ion Monitoring).

### **Analytical Results**

Groundwater sampling results were compared to the New York State Department of Environmental Conservation (NYSDEC) TOGS GA (Technical and Operational Guidance Series, 1.1.1 Groundwater Effluent Limitations). Based on our review, MW-1S, MW-5S, MW-5I, and MW-6 exhibited tetrachloroethene (PCE) exceedances. A summary of exceedances to the NYDEC TOGS GA is shown in Table 1 below.

| LOCATION                   |            |       | MW-1S       |   | MW-5S       |   | MW-5I       |   | MW-6           |   | DUP-1       |   |
|----------------------------|------------|-------|-------------|---|-------------|---|-------------|---|----------------|---|-------------|---|
| SAMPLING DATE              |            |       | 3/15/2021   |   | 3/15/2021   |   | 3/15/2021   |   | 3/15/2021      |   | 3/15/2021   |   |
| LAB SAMPLE ID              |            |       | L2112852-01 |   | L2112852-05 |   | L2112852-06 |   | L2112852-07    |   | L2112852-08 |   |
| SAMPLE TYPE                |            |       | WATER       |   | WATER       |   | WATER       |   | WATER          |   | WATER       |   |
|                            | NY-TOGS-GA | Units | Results     | Q | Results     | Q | Results     | Q | <b>Results</b> | Q | Results     | Q |
| Volatile Organics by GC/MS |            |       |             |   |             |   |             |   |                |   |             |   |
| Tetrachloroethene          | 5          | ug/l  | 13          |   | 7.1         |   | 1800        |   | 200            |   | 170         |   |

| Table 1 – Groundwate | r Exceedances to | o the NYDEC TOGS GA |
|----------------------|------------------|---------------------|
|----------------------|------------------|---------------------|

NY-TOGS-GA: New York TOGS 111 Groundwater Effluent Limitations criteria reflects all addendum to criteria through June 2004

For comparison, the results of this groundwater sampling were included on the ACT Groundwater Monitoring Status Report (Attachment 1) and SESI data is included on Table 1 of that report (outlined in boxes).

Soil vapor and indoor air sampling results were compared to New York State Department of Health (NYSDOH) Indoor Air Concentrations (IAC-A) Sub-slab Vapor Concentrations (SSC-A) Matrix A for trichloroethene (TCE), cis-1,2-dichloroethene and carbon tetrachloride. For PCE, the results were compared to Matrix B. A summary of the data is shown below on Table 2.

| LOCATION                 |          |          |       | VP-1        |   | VP-2        |   | VP-3        |   | AA-1        |   | AA-2        |   | AA-3        |   |
|--------------------------|----------|----------|-------|-------------|---|-------------|---|-------------|---|-------------|---|-------------|---|-------------|---|
| SAMPLING DATE            |          |          |       | 3/10/2021   |   | 3/10/2021   |   | 3/15/2021   |   | 3/15/2021   |   | 3/15/2021   |   | 3/15/2021   |   |
| LAB SAMPLE ID            |          |          |       | L2111970-02 |   | L2111970-01 |   | L2112883-01 |   | L2112883-02 |   | L2112883-03 |   | L2112883-04 |   |
| SAMPLE TYPE              |          |          |       | SOIL_VAPOR  |   | SOIL_VAPOR  |   | SOIL_VAPOR  |   | AIR         |   | AIR         |   | AIR         |   |
|                          | NY-IAC-A | NY-SSC-A | Units | Results     | Q |
| Volatile Organics in Air |          |          |       |             |   |             |   |             |   |             |   |             |   |             |   |
| cis-1,2-Dichloroethene   | 0.2      | 6        | ug/m3 | 0.793       | U | 0.793       | U | 0.971       |   | -           | - | -           | - | -           | - |
| Trichloroethene          | 0.2      | 6        | ug/m3 | 1.68        |   | 1.41        |   | 2.08        |   | -           | - | -           | - | -           | - |
| Volatile Organics in Air | by SIM   |          |       |             |   |             |   |             |   |             |   |             |   |             |   |
| Carbon tetrachloride     | 0.2      | 6        | ug/m3 | -           | - | -           | - | -           | - | 0.491       |   | 0.478       |   | 0.465       |   |
| Trichloroethene          | 0.2      | 6        | ug/m3 | -           | - | -           | - | -           | - | 0.382       |   | 0.14        |   | 0.801       |   |

 Table 2 – Subslab Soil Vapor and Indoor Air Data

NY-IAC-A: New York DOH Matrix A Indoor Air Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017. NY-SSC-A: New York DOH Matrix A Sub-slab Vapor Concentrations Criteria per Guidance for Evaluating Soil Vapor Intrusion, October 2006, and updated May 2017.

These initial results appear favorable based on a review of the Matrix A. For subslab concentrations less than 6 mcg/m3 and indoor air concentrations less than 1.0 mcg/m3, no further action is required. For Matrix B, for subslab concentrations less than 100 mcg/m3 and indoor air concentrations less than 10 mcg/m3, no further action is required.

The tables showing the compounds detected are also included herein (Table 3 -Groundwater Data and Table 4 Soil Vapor and Indoor Air Data).

If you have any questions, please feel free to call.

Sincerely,

### SESI CONSULTING ENGINEERS

Patricia Petrino, P.E. P.P., LSRP Senior Project Engineer

Enclosed:

Table 3 – Groundwater Sampling DataTable 4 – Subslab and Indoor Air DataFigure 1 - Groundwater Sampling LocationsFigure 2- SSDS LayoutAttachment A – Analytical Result Tables

ATTACHMENT E – LABORATORY DATA

**EDDs in Progess** 



### ANALYTICAL REPORT

| Lab Number:     | L2112883                                                                     |
|-----------------|------------------------------------------------------------------------------|
| Client:         | Soils Engineering Services, Inc.<br>12A Maple Avenue<br>Pine Brook, NJ 07058 |
| ATTN:           | Patricia Petrino                                                             |
| Phone:          | (973) 808-9050                                                               |
| Project Name:   | 79 PONDFIELD ROAD                                                            |
| Project Number: | 11663                                                                        |
| Report Date:    | 03/22/21                                                                     |
|                 |                                                                              |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



Serial\_No:03222116:08

Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

| Alpha<br>Sample ID | Client ID       | Matrix     | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------------|------------|--------------------|-------------------------|--------------|
| L2112883-01        | VP-3            | SOIL_VAPOR | BRONXVILLE, NY     | 03/15/21 10:17          | 03/15/21     |
| L2112883-02        | AA-1            | AIR        | BRONXVILLE, NY     | 03/15/21 16:00          | 03/15/21     |
| L2112883-03        | AA-2            | AIR        | BRONXVILLE, NY     | 03/15/21 16:01          | 03/15/21     |
| L2112883-04        | AA-3            | AIR        | BRONXVILLE, NY     | 03/15/21 16:02          | 03/15/21     |
| L2112883-05        | UNUSED_CAN#3338 | SOIL_VAPOR | BRONXVILLE, NY     |                         | 03/15/21     |
| L2112883-06        | UNUSED_CAN#2242 | SOIL_VAPOR | BRONXVILLE, NY     |                         | 03/15/21     |



Project Name: 79 PONDFIELD ROAD Project Number: 11663 Lab Number: L2112883 Report Date: 03/22/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: 79 PONDFIELD ROAD Project Number: 11663 
 Lab Number:
 L2112883

 Report Date:
 03/22/21

#### **Case Narrative (continued)**

Volatile Organics in Air

Canisters were released from the laboratory on March 15, 2021. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christoph J Curdence Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 03/22/21



## AIR



03/15/21 10:17

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

# Lab ID:L2112883-01Client ID:VP-3Sample Location:BRONXVILLE, NY

| Matrix:           | Soil_Vapor     |
|-------------------|----------------|
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/22/21 00:54 |
| Analyst:          | RY             |

| Analysi. Ri                    |             |       |     |         |       |     |           |          |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
|                                |             | ppbV  |     |         | ug/m3 |     |           | Dilution |
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.449       | 0.200 |     | 2.22    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.361       | 0.200 |     | 0.745   | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Vinyl chloride                 | ND          | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 57.2        | 5.00  |     | 108     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 5.91        | 1.00  |     | 14.0    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.229       | 0.200 |     | 1.29    | 1.12  |     |           | 1        |
| Isopropanol                    | 10.1        | 0.500 |     | 24.8    | 1.23  |     |           | 1        |
| 1,1-Dichloroethene             | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol         | ND          | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 0.611       | 0.500 |     | 1.80    | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene         | 0.245       | 0.200 |     | 0.971   | 0.793 |     |           | 1        |
|                                |             |       |     |         |       |     |           |          |



03/15/21 10:17

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

## Lab ID:L2112883-01Client ID:VP-3Sample Location:BRONXVILLE, NY

| Sample Depth:                  |            | ppbV  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Ethyl Acetate                  | 6.57       | 0.500 |     | 23.7    | 1.80  |     |           | 1        |
| Chloroform                     | ND         | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND         | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 1,2-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                       | ND         | 0.200 |     | ND      | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane          | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Benzene                        | 0.274      | 0.200 |     | 0.875   | 0.639 |     |           | 1        |
| Carbon tetrachloride           | ND         | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                    | ND         | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane            | ND         | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane           | ND         | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                    | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                | 0.387      | 0.200 |     | 2.08    | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane         | ND         | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                        | ND         | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene        | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone           | ND         | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene      | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane          | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                        | 0.764      | 0.200 |     | 2.88    | 0.754 |     |           | 1        |
| 2-Hexanone                     | ND         | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane           | ND         | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane              | ND         | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene              | 1.60       | 0.200 |     | 10.8    | 1.36  |     |           | 1        |
| Chlorobenzene                  | ND         | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                   | ND         | 0.200 |     | ND      | 0.869 |     |           | 1        |
|                                |            |       |     |         |       |     |           |          |



03/15/21 10:17

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

### SAMPLE RESULTS

# Lab ID:L2112883-01Client ID:VP-3Sample Location:BRONXVILLE, NY

| ppbV    |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                                                                                                  | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| eld Lab |                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.413   | 0.400                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.263   | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND      | 0.200                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | eld Lab<br>0.413<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.263<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Results         RL           eld Lab         0.413         0.400           ND         0.200           ND         0.200 | Results         RL         MDL           Add Lab         0.413         0.400            ND         0.200            ND         0.200 | Results         RL         MDL         Results           eld Lab         0.413         0.400          1.79           ND         0.200          ND           ND         0.200 </td <td>Results         RL         MDL         Results         RL           eld Lab         0.413         0.400          1.79         1.74           ND         0.200          ND         2.07           ND         0.200          ND         0.852           ND         0.200          ND         0.869           ND         0.200          ND         0.983           0.263         0.200          ND         0.983           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.48  </td> <td>Results         RL         MDL         Results         RL         MDL           eld Lab         0.413         0.400          1.79         1.74            ND         0.200          ND         2.07            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.869            ND         0.200          ND         0.869            ND         0.200          ND         0.983            ND         0.200          ND         0.983            0.263         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48         <td< td=""><td>Results         RL         MDL         Results         RL         MDL         Qualifier           eld Lab         0.413         0.400          1.79         1.74             ND         0.200          ND         2.07             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.869             ND         0.200          ND         0.869             ND         0.200          ND         0.983             ND         0.200          ND         1.04             ND         0.200          ND         1.20             ND         0.200          ND         1.20             ND</td></td<></td> | Results         RL         MDL         Results         RL           eld Lab         0.413         0.400          1.79         1.74           ND         0.200          ND         2.07           ND         0.200          ND         0.852           ND         0.200          ND         0.869           ND         0.200          ND         0.983           0.263         0.200          ND         0.983           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.20           ND         0.200          ND         1.48 | Results         RL         MDL         Results         RL         MDL           eld Lab         0.413         0.400          1.79         1.74            ND         0.200          ND         2.07            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.869            ND         0.200          ND         0.869            ND         0.200          ND         0.983            ND         0.200          ND         0.983            0.263         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48 <td< td=""><td>Results         RL         MDL         Results         RL         MDL         Qualifier           eld Lab         0.413         0.400          1.79         1.74             ND         0.200          ND         2.07             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.869             ND         0.200          ND         0.869             ND         0.200          ND         0.983             ND         0.200          ND         1.04             ND         0.200          ND         1.20             ND         0.200          ND         1.20             ND</td></td<> | Results         RL         MDL         Results         RL         MDL         Qualifier           eld Lab         0.413         0.400          1.79         1.74             ND         0.200          ND         2.07             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.852             ND         0.200          ND         0.869             ND         0.200          ND         0.869             ND         0.200          ND         0.983             ND         0.200          ND         1.04             ND         0.200          ND         1.20             ND         0.200          ND         1.20             ND |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 99         |           | 60-140                 |
| Bromochloromethane  | 98         |           | 60-140                 |
| chlorobenzene-d5    | 96         |           | 60-140                 |



## Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

### SAMPLE RESULTS

# Lab ID:L2112883-02Client ID:AA-1Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/21/21 17:00 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:00 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

|                                |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.460      | 0.200 |     | 2.27    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.602      | 0.200 |     | 1.24    | 0.413 |     |           | 1        |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 9.88       | 5.00  |     | 18.6    | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 2.06       | 1.00  |     | 4.89    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.240      | 0.200 |     | 1.35    | 1.12  |     |           | 1        |
| Isopropanol                    | 17.4       | 0.500 |     | 42.8    | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND         | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND         | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND         | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | ND         | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Ethyl Acetate                  | ND         | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                     | ND         | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND         | 0.500 |     | ND      | 1.47  |     |           | 1        |



03/15/21 16:00

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

### SAMPLE RESULTS

## Lab ID:L2112883-02Client ID:AA-1Sample Location:BRONXVILLE, NY

| Sample Depth:                    | ррьV     |       |     | ug/m3   |       |     |           | Dilution |
|----------------------------------|----------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results  | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | ield Lab |       |     |         |       |     |           |          |
| 1,2-Dichloroethane               | ND       | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                         | ND       | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Benzene                          | ND       | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Cyclohexane                      | ND       | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane              | ND       | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane             | ND       | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                      | ND       | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2,2,4-Trimethylpentane           | ND       | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                          | ND       | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene          | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1-Methyl-2-pentanone             | ND       | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene         | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane            | ND       | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                          | ND       | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 2-Hexanone                       | ND       | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane             | ND       | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                | ND       | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Chlorobenzene                    | ND       | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                     | ND       | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                       | ND       | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                        | ND       | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                          | ND       | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane        | ND       | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                         | ND       | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 1-Ethyltoluene                   | ND       | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene           | ND       | 0.200 |     | ND      | 0.983 |     |           | 1        |
|                                  |          |       |     |         |       |     |           |          |



03/15/21 16:00

Not Specified

03/15/21

### Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

### SAMPLE RESULTS

## Lab ID:L2112883-02Client ID:AA-1Sample Location:BRONXVILLE, NY

|                               |             | ppbV  |     |         | ug/m3      |     |           | Dilution |
|-------------------------------|-------------|-------|-----|---------|------------|-----|-----------|----------|
| Parameter                     | Results     | RL    | MDL | Results | Results RL | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Ma | nsfield Lab |       |     |         |            |     |           |          |
| 1,2,4-Trimethylbenzene        | ND          | 0.200 |     | ND      | 0.983      |     |           | 1        |
| Benzyl chloride               | ND          | 0.200 |     | ND      | 1.04       |     |           | 1        |
| 1,3-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20       |     |           | 1        |
| 1,4-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20       |     |           | 1        |
| 1,2-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20       |     |           | 1        |
| 1,2,4-Trichlorobenzene        | ND          | 0.200 |     | ND      | 1.48       |     |           | 1        |
| Hexachlorobutadiene           | ND          | 0.200 |     | ND      | 2.13       |     |           | 1        |
|                               |             |       |     |         |            |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 91         |           | 60-140                 |
| Bromochloromethane  | 92         |           | 60-140                 |
| chlorobenzene-d5    | 92         |           | 60-140                 |



### Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

### SAMPLE RESULTS

## Lab ID:L2112883-02Client ID:AA-1Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15-SIM   |
| Analytical Date:  | 03/21/21 17:00 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:00 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

|                                       | ppbV        |       | ug/m3 |         |       |     | Dilution  |        |
|---------------------------------------|-------------|-------|-------|---------|-------|-----|-----------|--------|
| Parameter                             | Results     | RL    | MDL   | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM - Mai | nsfield Lab |       |       |         |       |     |           |        |
| Vinyl chloride                        | ND          | 0.020 |       | ND      | 0.051 |     |           | 1      |
| 1,1-Dichloroethene                    | ND          | 0.020 |       | ND      | 0.079 |     |           | 1      |
| cis-1,2-Dichloroethene                | ND          | 0.020 |       | ND      | 0.079 |     |           | 1      |
| 1,1,1-Trichloroethane                 | 0.105       | 0.020 |       | 0.573   | 0.109 |     |           | 1      |
| Carbon tetrachloride                  | 0.078       | 0.020 |       | 0.491   | 0.126 |     |           | 1      |
| Trichloroethene                       | 0.071       | 0.020 |       | 0.382   | 0.107 |     |           | 1      |
| Tetrachloroethene                     | 0.568       | 0.020 |       | 3.85    | 0.136 |     |           | 1      |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 89         |           | 60-140                 |
| bromochloromethane  | 90         |           | 60-140                 |
| chlorobenzene-d5    | 92         |           | 60-140                 |



## Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

### SAMPLE RESULTS

# Lab ID:L2112883-03Client ID:AA-2Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/21/21 17:40 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:01 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

| Analyst. KT                    |            | nnh\/ |     |         |       |     |           |                    |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|--------------------|
|                                |            | ppbV  |     | ug/m3   |       |     |           | Dilution<br>Factor |
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | i actor            |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |                    |
| Dichlorodifluoromethane        | 0.470      | 0.200 |     | 2.32    | 0.989 |     |           | 1                  |
| Chloromethane                  | 0.618      | 0.200 |     | 1.28    | 0.413 |     |           | 1                  |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1                  |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1                  |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1                  |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1                  |
| Ethanol                        | 8.00       | 5.00  |     | 15.1    | 9.42  |     |           | 1                  |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1                  |
| Acetone                        | 1.89       | 1.00  |     | 4.49    | 2.38  |     |           | 1                  |
| Trichlorofluoromethane         | 0.233      | 0.200 |     | 1.31    | 1.12  |     |           | 1                  |
| Isopropanol                    | 6.60       | 0.500 |     | 16.2    | 1.23  |     |           | 1                  |
| Tertiary butyl Alcohol         | ND         | 0.500 |     | ND      | 1.52  |     |           | 1                  |
| Methylene chloride             | ND         | 0.500 |     | ND      | 1.74  |     |           | 1                  |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1                  |
| Carbon disulfide               | ND         | 0.200 |     | ND      | 0.623 |     |           | 1                  |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1                  |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1                  |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1                  |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1                  |
| 2-Butanone                     | ND         | 0.500 |     | ND      | 1.47  |     |           | 1                  |
| Ethyl Acetate                  | ND         | 0.500 |     | ND      | 1.80  |     |           | 1                  |
| Chloroform                     | ND         | 0.200 |     | ND      | 0.977 |     |           | 1                  |
| Tetrahydrofuran                | ND         | 0.500 |     | ND      | 1.47  |     |           | 1                  |



03/15/21 16:01

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

# Lab ID:L2112883-03Client ID:AA-2Sample Location:BRONXVILLE, NY

| Sample Depth:                    |          | ppbV  |     |         | ug/m3 |     |           | Dilution |
|----------------------------------|----------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results  | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | ield Lab |       |     |         |       |     |           |          |
| 1,2-Dichloroethane               | ND       | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                         | ND       | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Benzene                          | ND       | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Cyclohexane                      | ND       | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane              | ND       | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane             | ND       | 0.200 |     | ND      | 1.34  |     |           | 1        |
| I,4-Dioxane                      | ND       | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2,2,4-Trimethylpentane           | ND       | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                          | ND       | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene          | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| I-Methyl-2-pentanone             | ND       | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene         | ND       | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane            | ND       | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Foluene                          | ND       | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 2-Hexanone                       | ND       | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane             | ND       | 0.200 |     | ND      | 1.70  |     |           | 1        |
| I,2-Dibromoethane                | ND       | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Chlorobenzene                    | ND       | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                     | ND       | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                       | ND       | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                        | ND       | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                          | ND       | 0.200 |     | ND      | 0.852 |     |           | 1        |
| ,1,2,2-Tetrachloroethane         | ND       | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                         | ND       | 0.200 |     | ND      | 0.869 |     |           | 1        |
| -Ethyltoluene                    | ND       | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ,3,5-Trimethylbenzene            | ND       | 0.200 |     | ND      | 0.983 |     |           | 1        |
|                                  |          |       |     |         |       |     |           |          |



03/15/21 16:01

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

### SAMPLE RESULTS

## Lab ID:L2112883-03Client ID:AA-2Sample Location:BRONXVILLE, NY

|                               |             | ppbV  |     | ug/m3   |       |     |           | Dilution |
|-------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                     | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Ma | nsfield Lab |       |     |         |       |     |           |          |
| 1,2,4-Trimethylbenzene        | ND          | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Benzyl chloride               | ND          | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene        | ND          | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene           | ND          | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                               |             |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 91         |           | 60-140                 |
| Bromochloromethane  | 92         |           | 60-140                 |
| chlorobenzene-d5    | 92         |           | 60-140                 |



### Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

### SAMPLE RESULTS

## Lab ID:L2112883-03Client ID:AA-2Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15-SIM   |
| Analytical Date:  | 03/21/21 17:40 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:01 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

| ppbV        |                                                    | ug/m3                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results     | RL                                                 | MDL                                                                                                                                                                                                                                                          | Results                                                                                                                                                                                                                                                            | RL                                                                   | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nsfield Lab |                                                    |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                    |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ND          | 0.020                                              |                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                 | 0.051                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND          | 0.020                                              |                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                 | 0.079                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ND          | 0.020                                              |                                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                 | 0.079                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.076       | 0.020                                              |                                                                                                                                                                                                                                                              | 0.415                                                                                                                                                                                                                                                              | 0.109                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.076       | 0.020                                              |                                                                                                                                                                                                                                                              | 0.478                                                                                                                                                                                                                                                              | 0.126                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.026       | 0.020                                              |                                                                                                                                                                                                                                                              | 0.140                                                                                                                                                                                                                                                              | 0.107                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0.362       | 0.020                                              |                                                                                                                                                                                                                                                              | 2.45                                                                                                                                                                                                                                                               | 0.136                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | nsfield Lab<br>ND<br>ND<br>0.076<br>0.076<br>0.026 | Results         RL           nsfield Lab         0.020           ND         0.020           ND         0.020           ND         0.020           ND         0.020           0.076         0.020           0.076         0.020           0.026         0.020 | Results         RL         MDL           nsfield Lab             ND         0.020            ND         0.020            ND         0.020            ND         0.020            0.076         0.020            0.076         0.020            0.026         0.020 | Results         RL         MDL         Results           nsfield Lab | Results         RL         MDL         Results         RL           Insfield Lab         ND         0.020          ND         0.051           ND         0.020          ND         0.079           ND         0.020          ND         0.079           ND         0.020          ND         0.079           0.076         0.020          0.415         0.109           0.076         0.020          0.478         0.126           0.026         0.020          0.140         0.107 | Results         RL         MDL         Results         RL         MDL           Insfield Lab         ND         0.020          ND         0.051            ND         0.020          ND         0.051            ND         0.020          ND         0.079            ND         0.020          ND         0.079            ND         0.020          ND         0.079            0.076         0.020          0.415         0.109            0.076         0.020          0.478         0.126            0.026         0.020          0.140         0.107 | Results         RL         MDL         Results         RL         MDL         Qualifier           nsfield Lab         ND         0.020          ND         0.051             ND         0.020          ND         0.051              ND         0.020          ND         0.079              ND         0.020          ND         0.079              0.076         0.020          0.415         0.109             0.076         0.020          0.478         0.126             0.026         0.020          0.140         0.107 |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 90         |           | 60-140                 |
| bromochloromethane  | 90         |           | 60-140                 |
| chlorobenzene-d5    | 92         |           | 60-140                 |



### Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

### SAMPLE RESULTS

# Lab ID:L2112883-04Client ID:AA-3Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/21/21 18:20 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:02 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

| Parameter                      | ppbV        |       |     | ug/m3   |       |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
|                                | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.473       | 0.200 |     | 2.34    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.624       | 0.200 |     | 1.29    | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 9.85        | 5.00  |     | 18.6    | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 2.42        | 1.00  |     | 5.75    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.244       | 0.200 |     | 1.37    | 1.12  |     |           | 1        |
| Isopropanol                    | 14.6        | 0.500 |     | 35.9    | 1.23  |     |           | 1        |
| Tertiary butyl Alcohol         | ND          | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Ethyl Acetate                  | ND          | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                     | ND          | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                | ND          | 0.500 |     | ND      | 1.47  |     |           | 1        |



03/15/21 16:02

Not Specified

03/15/21

### Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

### SAMPLE RESULTS

## Lab ID:L2112883-04Client ID:AA-3Sample Location:BRONXVILLE, NY

| Sample Depth:                    | ppbV      |       |     | ug/m3   |       |     |           | Dilution |
|----------------------------------|-----------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                        | Results   | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | field Lab |       |     |         |       |     |           |          |
| 1,2-Dichloroethane               | ND        | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                         | ND        | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Benzene                          | ND        | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Cyclohexane                      | ND        | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane              | ND        | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane             | ND        | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                      | ND        | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2,2,4-Trimethylpentane           | ND        | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                          | ND        | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene          | ND        | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1-Methyl-2-pentanone             | ND        | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene         | ND        | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane            | ND        | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                          | ND        | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 2-Hexanone                       | ND        | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane             | ND        | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                | ND        | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Chlorobenzene                    | ND        | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                     | ND        | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                       | ND        | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                        | ND        | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                          | ND        | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane        | ND        | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                         | ND        | 0.200 |     | ND      | 0.869 |     |           | 1        |
| I-Ethyltoluene                   | ND        | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene           | ND        | 0.200 |     | ND      | 0.983 |     |           | 1        |
|                                  |           |       |     |         |       |     |           |          |



03/15/21 16:02

Not Specified

03/15/21

# Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

# Lab ID:L2112883-04Client ID:AA-3Sample Location:BRONXVILLE, NY

|                               |             | ppbV  |     | ug/m3   |       |     |           | Dilution |
|-------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                     | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Ma | nsfield Lab |       |     |         |       |     |           |          |
| 1,2,4-Trimethylbenzene        | ND          | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Benzyl chloride               | ND          | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene           | ND          | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene        | ND          | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene           | ND          | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                               |             |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 89         |           | 60-140                 |
| Bromochloromethane  | 89         |           | 60-140                 |
| chlorobenzene-d5    | 89         |           | 60-140                 |



# Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2112883

 Report Date:
 03/22/21

#### SAMPLE RESULTS

# Lab ID:L2112883-04Client ID:AA-3Sample Location:BRONXVILLE, NY

| Sample Depth:     |                |
|-------------------|----------------|
| Matrix:           | Air            |
| Anaytical Method: | 48,TO-15-SIM   |
| Analytical Date:  | 03/21/21 18:20 |
| Analyst:          | RY             |

| Date Collected: | 03/15/21 16:02 |
|-----------------|----------------|
| Date Received:  | 03/15/21       |
| Field Prep:     | Not Specified  |

|                                     |               | ppbV  |     | ug/m3   |       |     |           | Dilution |
|-------------------------------------|---------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                           | Results       | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM - I | Mansfield Lab |       |     |         |       |     |           |          |
| Vinyl chloride                      | ND            | 0.020 |     | ND      | 0.051 |     |           | 1        |
| 1,1-Dichloroethene                  | ND            | 0.020 |     | ND      | 0.079 |     |           | 1        |
| cis-1,2-Dichloroethene              | 0.027         | 0.020 |     | 0.107   | 0.079 |     |           | 1        |
| 1,1,1-Trichloroethane               | 0.092         | 0.020 |     | 0.502   | 0.109 |     |           | 1        |
| Carbon tetrachloride                | 0.074         | 0.020 |     | 0.465   | 0.126 |     |           | 1        |
| Trichloroethene                     | 0.149         | 0.020 |     | 0.801   | 0.107 |     |           | 1        |
| Tetrachloroethene                   | 1.05          | 0.020 |     | 7.12    | 0.136 |     |           | 1        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 87         |           | 60-140                 |
| bromochloromethane  | 88         |           | 60-140                 |
| chlorobenzene-d5    | 90         |           | 60-140                 |



 Lab Number:
 L2112883

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 03/21/21 15:18

|                                   |                   | ppbV      |            | ug/m3     |         |     |           | Dilution |
|-----------------------------------|-------------------|-----------|------------|-----------|---------|-----|-----------|----------|
| Parameter                         | Results           | RL        | MDL        | Results R |         | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM - | Mansfield Lab for | or sample | (s): 02-04 | Batch: W  | G147691 | 5-4 |           |          |
| Vinyl chloride                    | ND                | 0.020     |            | ND        | 0.051   |     |           | 1        |
| 1,1-Dichloroethene                | ND                | 0.020     |            | ND        | 0.079   |     |           | 1        |
| cis-1,2-Dichloroethene            | ND                | 0.020     |            | ND        | 0.079   |     |           | 1        |
| 1,1,1-Trichloroethane             | ND                | 0.020     |            | ND        | 0.109   |     |           | 1        |
| Carbon tetrachloride              | ND                | 0.020     |            | ND        | 0.126   |     |           | 1        |
| Trichloroethene                   | ND                | 0.020     |            | ND        | 0.107   |     |           | 1        |
| Tetrachloroethene                 | ND                | 0.020     |            | ND        | 0.136   |     |           | 1        |
|                                   |                   |           |            |           |         |     |           |          |



Lab Number: L2112883

**Report Date:** 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/21/21 14:39

|                                    |                 | ppbV        |           |           | ug/m3 | _   | Dilution  |        |
|------------------------------------|-----------------|-------------|-----------|-----------|-------|-----|-----------|--------|
| Parameter                          | Results         | RL          | MDL       | Results   | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfie | ld Lab for samp | ole(s): 01- | 04 Batch: | : WG14769 | 916-4 |     |           |        |
| Dichlorodifluoromethane            | ND              | 0.200       |           | ND        | 0.989 |     |           | 1      |
| Chloromethane                      | ND              | 0.200       |           | ND        | 0.413 |     |           | 1      |
| Freon-114                          | ND              | 0.200       |           | ND        | 1.40  |     |           | 1      |
| Vinyl chloride                     | ND              | 0.200       |           | ND        | 0.511 |     |           | 1      |
| 1,3-Butadiene                      | ND              | 0.200       |           | ND        | 0.442 |     |           | 1      |
| Bromomethane                       | ND              | 0.200       |           | ND        | 0.777 |     |           | 1      |
| Chloroethane                       | ND              | 0.200       |           | ND        | 0.528 |     |           | 1      |
| Ethanol                            | ND              | 5.00        |           | ND        | 9.42  |     |           | 1      |
| Vinyl bromide                      | ND              | 0.200       |           | ND        | 0.874 |     |           | 1      |
| Acetone                            | ND              | 1.00        |           | ND        | 2.38  |     |           | 1      |
| Trichlorofluoromethane             | ND              | 0.200       |           | ND        | 1.12  |     |           | 1      |
| Isopropanol                        | ND              | 0.500       |           | ND        | 1.23  |     |           | 1      |
| 1,1-Dichloroethene                 | ND              | 0.200       |           | ND        | 0.793 |     |           | 1      |
| Tertiary butyl Alcohol             | ND              | 0.500       |           | ND        | 1.52  |     |           | 1      |
| Methylene chloride                 | ND              | 0.500       |           | ND        | 1.74  |     |           | 1      |
| 3-Chloropropene                    | ND              | 0.200       |           | ND        | 0.626 |     |           | 1      |
| Carbon disulfide                   | ND              | 0.200       |           | ND        | 0.623 |     |           | 1      |
| Freon-113                          | ND              | 0.200       |           | ND        | 1.53  |     |           | 1      |
| trans-1,2-Dichloroethene           | ND              | 0.200       |           | ND        | 0.793 |     |           | 1      |
| 1,1-Dichloroethane                 | ND              | 0.200       |           | ND        | 0.809 |     |           | 1      |
| Methyl tert butyl ether            | ND              | 0.200       |           | ND        | 0.721 |     |           | 1      |
| 2-Butanone                         | ND              | 0.500       |           | ND        | 1.47  |     |           | 1      |
| cis-1,2-Dichloroethene             | ND              | 0.200       |           | ND        | 0.793 |     |           | 1      |
| Ethyl Acetate                      | ND              | 0.500       |           | ND        | 1.80  |     |           | 1      |
| Chloroform                         | ND              | 0.200       |           | ND        | 0.977 |     |           | 1      |
|                                    |                 |             |           |           |       |     |           |        |



 Lab Number:
 L2112883

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/21/21 14:39

|                           |                         | ppbV        |          |           | ug/m3 | _   | Dilution  |        |
|---------------------------|-------------------------|-------------|----------|-----------|-------|-----|-----------|--------|
| Parameter                 | Results                 | RL          | MDL      | Results   | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air  | - Mansfield Lab for sam | ple(s): 01- | 04 Batch | : WG14769 | 16-4  |     |           |        |
| Tetrahydrofuran           | ND                      | 0.500       |          | ND        | 1.47  |     |           | 1      |
| 1,2-Dichloroethane        | ND                      | 0.200       |          | ND        | 0.809 |     |           | 1      |
| n-Hexane                  | ND                      | 0.200       |          | ND        | 0.705 |     |           | 1      |
| 1,1,1-Trichloroethane     | ND                      | 0.200       |          | ND        | 1.09  |     |           | 1      |
| Benzene                   | ND                      | 0.200       |          | ND        | 0.639 |     |           | 1      |
| Carbon tetrachloride      | ND                      | 0.200       |          | ND        | 1.26  |     |           | 1      |
| Cyclohexane               | ND                      | 0.200       |          | ND        | 0.688 |     |           | 1      |
| 1,2-Dichloropropane       | ND                      | 0.200       |          | ND        | 0.924 |     |           | 1      |
| Bromodichloromethane      | ND                      | 0.200       |          | ND        | 1.34  |     |           | 1      |
| 1,4-Dioxane               | ND                      | 0.200       |          | ND        | 0.721 |     |           | 1      |
| Trichloroethene           | ND                      | 0.200       |          | ND        | 1.07  |     |           | 1      |
| 2,2,4-Trimethylpentane    | ND                      | 0.200       |          | ND        | 0.934 |     |           | 1      |
| Heptane                   | ND                      | 0.200       |          | ND        | 0.820 |     |           | 1      |
| cis-1,3-Dichloropropene   | ND                      | 0.200       |          | ND        | 0.908 |     |           | 1      |
| 4-Methyl-2-pentanone      | ND                      | 0.500       |          | ND        | 2.05  |     |           | 1      |
| trans-1,3-Dichloropropene | ND                      | 0.200       |          | ND        | 0.908 |     |           | 1      |
| 1,1,2-Trichloroethane     | ND                      | 0.200       |          | ND        | 1.09  |     |           | 1      |
| Toluene                   | ND                      | 0.200       |          | ND        | 0.754 |     |           | 1      |
| 2-Hexanone                | ND                      | 0.200       |          | ND        | 0.820 |     |           | 1      |
| Dibromochloromethane      | ND                      | 0.200       |          | ND        | 1.70  |     |           | 1      |
| 1,2-Dibromoethane         | ND                      | 0.200       |          | ND        | 1.54  |     |           | 1      |
| Tetrachloroethene         | ND                      | 0.200       |          | ND        | 1.36  |     |           | 1      |
| Chlorobenzene             | ND                      | 0.200       |          | ND        | 0.921 |     |           | 1      |
| Ethylbenzene              | ND                      | 0.200       |          | ND        | 0.869 |     |           | 1      |
| p/m-Xylene                | ND                      | 0.400       |          | ND        | 1.74  |     |           | 1      |
|                           |                         |             |          |           |       |     |           |        |



 Lab Number:
 L2112883

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/21/21 14:39

|                                   |                   | ppbV        |          |            | ug/m3 |     | Dilution  |        |
|-----------------------------------|-------------------|-------------|----------|------------|-------|-----|-----------|--------|
| Parameter                         | Results           | RL          | MDL      | Results    | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfi | ield Lab for samp | ole(s): 01- | 04 Batch | n: WG14769 | 16-4  |     |           |        |
| Bromoform                         | ND                | 0.200       |          | ND         | 2.07  |     |           | 1      |
| Styrene                           | ND                | 0.200       |          | ND         | 0.852 |     |           | 1      |
| 1,1,2,2-Tetrachloroethane         | ND                | 0.200       |          | ND         | 1.37  |     |           | 1      |
| o-Xylene                          | ND                | 0.200       |          | ND         | 0.869 |     |           | 1      |
| 4-Ethyltoluene                    | ND                | 0.200       |          | ND         | 0.983 |     |           | 1      |
| 1,3,5-Trimethylbenzene            | ND                | 0.200       |          | ND         | 0.983 |     |           | 1      |
| 1,2,4-Trimethylbenzene            | ND                | 0.200       |          | ND         | 0.983 |     |           | 1      |
| Benzyl chloride                   | ND                | 0.200       |          | ND         | 1.04  |     |           | 1      |
| 1,3-Dichlorobenzene               | ND                | 0.200       |          | ND         | 1.20  |     |           | 1      |
| 1,4-Dichlorobenzene               | ND                | 0.200       |          | ND         | 1.20  |     |           | 1      |
| 1,2-Dichlorobenzene               | ND                | 0.200       |          | ND         | 1.20  |     |           | 1      |
| 1,2,4-Trichlorobenzene            | ND                | 0.200       |          | ND         | 1.48  |     |           | 1      |
| Hexachlorobutadiene               | ND                | 0.200       |          | ND         | 2.13  |     |           | 1      |
|                                   |                   |             |          |            |       |     |           |        |



# Lab Control Sample Analysis

Batch Quality Control

Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number: L2112883 Report Date: 03/22/21

LCS LCSD RPD %Recovery %Recovery Parameter %Recovery Qual Qual Limits RPD Qual Limits Volatile Organics in Air by SIM - Mansfield Lab Associated sample(s): 02-04 Batch: WG1476915-3 Vinyl chloride 102 70-130 25 --101 25 1,1-Dichloroethene 70-130 -cis-1,2-Dichloroethene 102 70-130 25 --1,1,1-Trichloroethane 95 70-130 25 --Carbon tetrachloride 95 70-130 25 --25 Trichloroethene 99 70-130 --25 Tetrachloroethene 95 70-130 --



# Lab Control Sample Analysis Batch Quality Control

Project Number: 11663

Lab Number: L2112883 03/22/21

| arameter                                    | LCS<br>%Recovery  | Qual    | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|---------------------------------------------|-------------------|---------|-------------------|------|---------------------|-----|------|---------------|
| olatile Organics in Air - Mansfield Lab Ass | ociated sample(s) | : 01-04 | Batch: WG147697   | 6-3  |                     |     |      |               |
| Dichlorodifluoromethane                     | 92                |         | -                 |      | 70-130              | -   |      |               |
| Chloromethane                               | 113               |         | -                 |      | 70-130              | -   |      |               |
| Freon-114                                   | 98                |         | -                 |      | 70-130              | -   |      |               |
| Vinyl chloride                              | 115               |         | -                 |      | 70-130              | -   |      |               |
| 1,3-Butadiene                               | 111               |         | -                 |      | 70-130              | -   |      |               |
| Bromomethane                                | 118               |         | -                 |      | 70-130              | -   |      |               |
| Chloroethane                                | 114               |         | -                 |      | 70-130              | -   |      |               |
| Ethanol                                     | 96                |         | -                 |      | 40-160              | -   |      |               |
| Vinyl bromide                               | 112               |         | -                 |      | 70-130              | -   |      |               |
| Acetone                                     | 92                |         | -                 |      | 40-160              | -   |      |               |
| Trichlorofluoromethane                      | 110               |         | -                 |      | 70-130              | -   |      |               |
| Isopropanol                                 | 101               |         | -                 |      | 40-160              | -   |      |               |
| 1,1-Dichloroethene                          | 111               |         | -                 |      | 70-130              | -   |      |               |
| Tertiary butyl Alcohol                      | 84                |         | -                 |      | 70-130              | -   |      |               |
| Methylene chloride                          | 118               |         | -                 |      | 70-130              | -   |      |               |
| 3-Chloropropene                             | 129               |         | -                 |      | 70-130              | -   |      |               |
| Carbon disulfide                            | 106               |         | -                 |      | 70-130              | -   |      |               |
| Freon-113                                   | 120               |         | -                 |      | 70-130              | -   |      |               |
| trans-1,2-Dichloroethene                    | 109               |         | -                 |      | 70-130              | -   |      |               |
| 1,1-Dichloroethane                          | 112               |         | -                 |      | 70-130              | -   |      |               |
| Methyl tert butyl ether                     | 93                |         | -                 |      | 70-130              | -   |      |               |
| 2-Butanone                                  | 116               |         | -                 |      | 70-130              | -   |      |               |
| cis-1,2-Dichloroethene                      | 111               |         | -                 |      | 70-130              | -   |      |               |



# Lab Control Sample Analysis Batch Quality Control

Project Number: 11663

Lab Number: L2112883 03/22/21

| arameter                                    | LCS<br>%Recovery  | Qual    | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|---------------------------------------------|-------------------|---------|-------------------|------|---------------------|-----|------|---------------|
| olatile Organics in Air - Mansfield Lab Ass | ociated sample(s) | : 01-04 | Batch: WG147691   | 16-3 |                     |     |      |               |
| Ethyl Acetate                               | 118               |         | -                 |      | 70-130              | -   |      |               |
| Chloroform                                  | 99                |         | -                 |      | 70-130              | -   |      |               |
| Tetrahydrofuran                             | 114               |         | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloroethane                          | 106               |         | -                 |      | 70-130              | -   |      |               |
| n-Hexane                                    | 110               |         | -                 |      | 70-130              | -   |      |               |
| 1,1,1-Trichloroethane                       | 104               |         | -                 |      | 70-130              | -   |      |               |
| Benzene                                     | 95                |         | -                 |      | 70-130              | -   |      |               |
| Carbon tetrachloride                        | 102               |         | -                 |      | 70-130              | -   |      |               |
| Cyclohexane                                 | 108               |         | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloropropane                         | 123               |         | -                 |      | 70-130              | -   |      |               |
| Bromodichloromethane                        | 103               |         | -                 |      | 70-130              | -   |      |               |
| 1,4-Dioxane                                 | 115               |         | -                 |      | 70-130              | -   |      |               |
| Trichloroethene                             | 110               |         | -                 |      | 70-130              | -   |      |               |
| 2,2,4-Trimethylpentane                      | 115               |         | -                 |      | 70-130              | -   |      |               |
| Heptane                                     | 124               |         | -                 |      | 70-130              | -   |      |               |
| cis-1,3-Dichloropropene                     | 102               |         | -                 |      | 70-130              | -   |      |               |
| 4-Methyl-2-pentanone                        | 127               |         | -                 |      | 70-130              | -   |      |               |
| trans-1,3-Dichloropropene                   | 87                |         | -                 |      | 70-130              | -   |      |               |
| 1,1,2-Trichloroethane                       | 115               |         | -                 |      | 70-130              | -   |      |               |
| Toluene                                     | 107               |         | -                 |      | 70-130              | -   |      |               |
| 2-Hexanone                                  | 118               |         | -                 |      | 70-130              | -   |      |               |
| Dibromochloromethane                        | 116               |         | -                 |      | 70-130              | -   |      |               |
| 1,2-Dibromoethane                           | 96                |         | -                 |      | 70-130              | -   |      |               |



# Lab Control Sample Analysis Batch Quality Control

Project Number: 11663

Lab Number: L2112883 03/22/21

| arameter                                   | LCS<br>%Recovery     | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|--------------------------------------------|----------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| /olatile Organics in Air - Mansfield Lab A | ssociated sample(s): | 01-04 | Batch: WG147697   | 16-3 |                     |     |      |               |
| Tetrachloroethene                          | 103                  |       | -                 |      | 70-130              | -   |      |               |
| Chlorobenzene                              | 99                   |       | -                 |      | 70-130              | -   |      |               |
| Ethylbenzene                               | 108                  |       | -                 |      | 70-130              | -   |      |               |
| p/m-Xylene                                 | 110                  |       | -                 |      | 70-130              | -   |      |               |
| Bromoform                                  | 115                  |       | -                 |      | 70-130              | -   |      |               |
| Styrene                                    | 95                   |       | -                 |      | 70-130              | -   |      |               |
| 1,1,2,2-Tetrachloroethane                  | 116                  |       | -                 |      | 70-130              | -   |      |               |
| o-Xylene                                   | 113                  |       | -                 |      | 70-130              | -   |      |               |
| 4-Ethyltoluene                             | 94                   |       | -                 |      | 70-130              | -   |      |               |
| 1,3,5-Trimethylbenzene                     | 96                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2,4-Trimethylbenzene                     | 103                  |       | -                 |      | 70-130              | -   |      |               |
| Benzyl chloride                            | 117                  |       | -                 |      | 70-130              | -   |      |               |
| 1,3-Dichlorobenzene                        | 106                  |       | -                 |      | 70-130              | -   |      |               |
| 1,4-Dichlorobenzene                        | 99                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichlorobenzene                        | 104                  |       | -                 |      | 70-130              | -   |      |               |
| 1,2,4-Trichlorobenzene                     | 112                  |       | -                 |      | 70-130              | -   |      |               |
| Hexachlorobutadiene                        | 108                  |       | -                 |      | 70-130              | -   |      |               |



# Lab Duplicate Analysis Batch Quality Control

Project Name: 79 PONDFIELD ROAD

Project Number: 11663

rol

 Lab Number:
 L2112883

 Report Date:
 03/22/21

| Parameter                                       | Native Sample               | Duplicate Sample  | Units   | RPD            | RPD<br>Qual Limits  |      |
|-------------------------------------------------|-----------------------------|-------------------|---------|----------------|---------------------|------|
| /olatile Organics in Air by SIM - Mansfield Lab | Associated sample(s): 02-04 | QC Batch ID: WG14 | 76915-5 | QC Sample: L21 | 12883-04 Client ID: | AA-3 |
| Vinyl chloride                                  | ND                          | ND                | ppbV    | NC             | 25                  |      |
| 1,1-Dichloroethene                              | ND                          | ND                | ppbV    | NC             | 25                  |      |
| cis-1,2-Dichloroethene                          | 0.027                       | 0.028             | ppbV    | 4              | 25                  |      |
| 1,1,1-Trichloroethane                           | 0.092                       | 0.086             | ppbV    | 7              | 25                  |      |
| Carbon tetrachloride                            | 0.074                       | 0.073             | ppbV    | 1              | 25                  |      |
| Trichloroethene                                 | 0.149                       | 0.150             | ppbV    | 1              | 25                  |      |
| Tetrachloroethene                               | 1.05                        | 1.01              | ppbV    | 4              | 25                  |      |



L2112883

### Lab Duplicate Analysis Batch Quality Control

Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number:

**Report Date:** 03/22/21

| arameter                                | Native Sample               | Duplicate Sample         | Units     | RPD          | RPD<br>Qual Limits |
|-----------------------------------------|-----------------------------|--------------------------|-----------|--------------|--------------------|
| platile Organics in Air - Mansfield Lab | Associated sample(s): 01-04 | QC Batch ID: WG1476916-5 | QC Sample | e: L2112883- | 04 Client ID: AA-3 |
| Dichlorodifluoromethane                 | 0.473                       | 0.466                    | ppbV      | 1            | 25                 |
| Chloromethane                           | 0.624                       | 0.627                    | ppbV      | 0            | 25                 |
| Freon-114                               | ND                          | ND                       | ppbV      | NC           | 25                 |
| 1,3-Butadiene                           | ND                          | ND                       | ppbV      | NC           | 25                 |
| Bromomethane                            | ND                          | ND                       | ppbV      | NC           | 25                 |
| Chloroethane                            | ND                          | ND                       | ppbV      | NC           | 25                 |
| Ethanol                                 | 9.85                        | 9.82                     | ppbV      | 0            | 25                 |
| Vinyl bromide                           | ND                          | ND                       | ppbV      | NC           | 25                 |
| Acetone                                 | 2.42                        | 2.42                     | ppbV      | 0            | 25                 |
| Trichlorofluoromethane                  | 0.244                       | 0.237                    | ppbV      | 3            | 25                 |
| Isopropanol                             | 14.6                        | 14.4                     | ppbV      | 1            | 25                 |
| Tertiary butyl Alcohol                  | ND                          | ND                       | ppbV      | NC           | 25                 |
| Methylene chloride                      | ND                          | ND                       | ppbV      | NC           | 25                 |
| 3-Chloropropene                         | ND                          | ND                       | ppbV      | NC           | 25                 |
| Carbon disulfide                        | ND                          | ND                       | ppbV      | NC           | 25                 |
| Freon-113                               | ND                          | ND                       | ppbV      | NC           | 25                 |
| trans-1,2-Dichloroethene                | ND                          | ND                       | ppbV      | NC           | 25                 |
| 1,1-Dichloroethane                      | ND                          | ND                       | ppbV      | NC           | 25                 |
| Methyl tert butyl ether                 | ND                          | ND                       | ppbV      | NC           | 25                 |
| 2-Butanone                              | ND                          | ND                       | ppbV      | NC           | 25                 |
| Ethyl Acetate                           | ND                          | ND                       | ppbV      | NC           | 25                 |



L2112883

# Lab Duplicate Analysis Batch Quality Control

Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number:

**Report Date:** 03/22/21

| arameter                                | Native Sample               | Duplicate Sample         | Units      | RPD       | RPD<br>Qual Limits |  |
|-----------------------------------------|-----------------------------|--------------------------|------------|-----------|--------------------|--|
| platile Organics in Air - Mansfield Lab | Associated sample(s): 01-04 | QC Batch ID: WG1476916-5 | QC Sample: | L2112883- | 04 Client ID: AA-3 |  |
| Chloroform                              | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Tetrahydrofuran                         | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 1,2-Dichloroethane                      | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| n-Hexane                                | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Benzene                                 | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Cyclohexane                             | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 1,2-Dichloropropane                     | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Bromodichloromethane                    | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 1,4-Dioxane                             | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 2,2,4-Trimethylpentane                  | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Heptane                                 | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| cis-1,3-Dichloropropene                 | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 4-Methyl-2-pentanone                    | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| trans-1,3-Dichloropropene               | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 1,1,2-Trichloroethane                   | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Toluene                                 | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 2-Hexanone                              | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Dibromochloromethane                    | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| 1,2-Dibromoethane                       | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Chlorobenzene                           | ND                          | ND                       | ppbV       | NC        | 25                 |  |
| Ethylbenzene                            | ND                          | ND                       | ppbV       | NC        | 25                 |  |



### Lab Duplicate Analysis Batch Quality Control

Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number:

 Lab Number:
 L2112883

 Report Date:
 03/22/21

| arameter                                | Native Sample               | Duplicate Sample         | Units      | RPD       | Qual          | RPD<br>Limits |
|-----------------------------------------|-----------------------------|--------------------------|------------|-----------|---------------|---------------|
| olatile Organics in Air - Mansfield Lab | Associated sample(s): 01-04 | QC Batch ID: WG1476916-5 | QC Sample: | L2112883- | -04 Client II | D: AA-3       |
| p/m-Xylene                              | ND                          | ND                       | ppbV       | NC        |               | 25            |
| Bromoform                               | ND                          | ND                       | ppbV       | NC        |               | 25            |
| Styrene                                 | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,1,2,2-Tetrachloroethane               | ND                          | ND                       | ppbV       | NC        |               | 25            |
| o-Xylene                                | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 4-Ethyltoluene                          | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,3,5-Trimethylbenzene                  | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,2,4-Trimethylbenzene                  | ND                          | ND                       | ppbV       | NC        |               | 25            |
| Benzyl chloride                         | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,3-Dichlorobenzene                     | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,4-Dichlorobenzene                     | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,2-Dichlorobenzene                     | ND                          | ND                       | ppbV       | NC        |               | 25            |
| 1,2,4-Trichlorobenzene                  | ND                          | ND                       | ppbV       | NC        |               | 25            |
| Hexachlorobutadiene                     | ND                          | ND                       | ppbV       | NC        |               | 25            |



Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Serial\_No:03222116:08
Lab Number: L2112883

Report Date: 03/22/21

#### Canister and Flow Controller Information

|                 |                                                                                            |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client ID       | Media ID                                                                                   | Media Type                                                                                                                                                                                                                                                    | Date<br>Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bottle<br>Order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cleaning<br>Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Can Leak<br>Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flow<br>Controler<br>Leak Chk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Flow Out<br>mL/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flow In<br>mL/min                                                                                                                                                                                                                                                                                                                                     | % RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VP-3            | 0949                                                                                       | Flow 1                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| VP-3            | 192                                                                                        | 2.7L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2110928-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -29.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AA-1            | 0904                                                                                       | Flow 4                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.4                                                                                                                                                                                                                                                                                                                                                  | 36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AA-1            | 2891                                                                                       | 6.0L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2111725-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -29.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AA-2            | 0144                                                                                       | Flow 4                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.7                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AA-2            | 1829                                                                                       | 6.0L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2111725-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -8.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AA-3            | 0159                                                                                       | Flow 3                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.2                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AA-3            | 643                                                                                        | 6.0L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2111725-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNUSED_CAN#3338 | 01695                                                                                      | Flow 4                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.5                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UNUSED_CAN#3338 | 3338                                                                                       | 6.0L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2111725-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -29.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNUSED_CAN#2242 | 01771                                                                                      | Flow 1                                                                                                                                                                                                                                                        | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 206                                                                                                                                                                                                                                                                                                                                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| UNUSED_CAN#2242 | 2242                                                                                       | 2.7L Can                                                                                                                                                                                                                                                      | 03/15/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 345704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L2110928-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -28.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -28.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                 | VP-3<br>VP-3<br>AA-1<br>AA-1<br>AA-2<br>AA-2<br>AA-3<br>UNUSED_CAN#3338<br>UNUSED_CAN#2242 | VP-3       0949         VP-3       192         AA-1       0904         AA-1       2891         AA-2       0144         AA-2       1829         AA-3       0159         AA-3       643         UNUSED_CAN#3338       01695         UNUSED_CAN#2242       01771 | Client ID         Media ID            VP-3         0949         Flow 1           VP-3         192         2.7L Can           AA-1         0904         Flow 4           AA-1         2891         6.0L Can           AA-2         0144         Flow 4           AA-2         1829         6.0L Can           AA-3         0159         Flow 3           AA-3         643         6.0L Can           UNUSED_CAN#3338         01695         Flow 4           UNUSED_CAN#2242         01771         Flow 1 | Client ID         Media ID         Prepared           VP-3         0949         Flow 1         03/15/21           VP-3         192         2.7L Can         03/15/21           AA-1         0904         Flow 4         03/15/21           AA-1         2891         6.0L Can         03/15/21           AA-2         0144         Flow 4         03/15/21           AA-2         1829         6.0L Can         03/15/21           AA-3         0159         Flow 3         03/15/21           AA-3         643         6.0L Can         03/15/21           UNUSED_CAN#3338         01695         Flow 4         03/15/21           UNUSED_CAN#3338         0338         6.0L Can         03/15/21           UNUSED_CAN#23242         01771         Flow 1         03/15/21 | Client ID         Media ID         Prepared         Order           VP-3         0949         Flow 1         03/15/21         345704           VP-3         192         2.7L Can         03/15/21         345704           AA-1         0904         Flow 4         03/15/21         345704           AA-1         0904         Flow 4         03/15/21         345704           AA-1         2891         6.0L Can         03/15/21         345704           AA-2         0144         Flow 4         03/15/21         345704           AA-2         1829         6.0L Can         03/15/21         345704           AA-3         0159         Flow 3         03/15/21         345704           AA-3         0159         Flow 3         03/15/21         345704           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704           UNUSED_CAN#3338         3338         6.0L Can         03/15/21         345704           UNUSED_CAN#3338         0338         6.0L Can         03/15/21         345704 | Client ID         Media ID         Prepared         Order         Batch ID           VP-3         0949         Flow 1         03/15/21         345704         L2110928-06           VP-3         192         2.7L Can         03/15/21         345704         L2110928-06           AA-1         0904         Flow 4         03/15/21         345704         L2110928-06           AA-1         0904         Flow 4         03/15/21         345704         L2111725-10           AA-2         0144         Flow 4         03/15/21         345704         L2111725-03           AA-2         0144         Flow 4         03/15/21         345704         L2111725-03           AA-3         0159         Flow 3         03/15/21         345704         L2111725-03           AA-3         0159         Flow 3         03/15/21         345704         L2111725-03           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704         L2111725-03           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704         L2111725-03           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704         L2111725-03           UNUSED_CAN#33 | Client ID         Media ID         Prepared         Order         Batch ID         Check           VP-3         0949         Flow 1         03/15/21         345704         -         -           VP-3         192         2.7L Can         03/15/21         345704         L2110928-06         Pass           AA-1         0904         Flow 4         03/15/21         345704         L2110928-06         Pass           AA-1         0904         Flow 4         03/15/21         345704         L211028-06         Pass           AA-1         2891         6.0L Can         03/15/21         345704         L2111725-10         Pass           AA-2         0144         Flow 4         03/15/21         345704         L2111725-03         Pass           AA-2         1829         6.0L Can         03/15/21         345704         L2111725-03         Pass           AA-3         0159         Flow 3         03/15/21         345704         L2111725-03         Pass           UNUSED_CAN#338         01695         Flow 4         03/15/21         345704         L2111725-03         Pass           UNUSED_CAN#338         01695         Flow 4         03/15/21         345704         L2111725-03         P | Client ID         Media ID         Marka Prepared         Order         Batch ID         Check         (in. Hg)           VP-3         0949         Flow 1         03/15/21         345704         L2110928-06         Pass         -29.4           VP-3         192         2.7L Can         03/15/21         345704         L2110928-06         Pass         -29.4           AA-1         0904         Flow 4         03/15/21         345704         L2111725-10         Pass         -29.6           AA-1         2891         6.0L Can         03/15/21         345704         L2111725-10         Pass         -29.6           AA-2         0144         Flow 4         03/15/21         345704         L2111725-03         Pass         -29.5           AA-2         1829         6.0L Can         03/15/21         345704         L2111725-03         Pass         -29.5           AA-3         0159         Flow 3         03/15/21         345704         L2111725-03         Pass         -29.5           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704         L2111725-03         Pass         -29.5           UNUSED_CAN#3338         01695         Flow 4         03/15/21         345704 <td>Client IDMedia IDMedia TypeDate<br/>PreparedBottleGleaning<br/>Batch IDCan Leak<br/>PreskyPreskyon ReceiptVP-3949Flow 103/15/2134570412110928-06Pass29.43.2VP-31922.7 L Can03/15/2134570412110928-06Pass29.43.2A-10904Flow 403/15/2134570412110928-06Pass29.43.2A-128916.0 L Can03/15/213457041211725-01Pass29.66.7A-20144Flow 403/15/213457041211725-03Pass29.58.4A-315996.0 L Can03/15/213457041211725-03Pass29.58.4A-30599Flow 303/15/213457041211725-03Pass29.53.4A-30599Flow 303/15/213457041211725-03Pass29.57.0INUSED_CANH933801695Flow 403/15/213457041211725-03Pass29.53.4INUSED_CANH933801695Flow 303/15/213457041211725-03Pass29.53.4INUSED_CANH933801695Flow 103/15/213457041211725-03Pass29.529.6INUSED_CANH933801791Flow 103/15/213457041211725-03Pass29.529.6INUSED_CANH933801695Flow 103/15/213457041211725-03Pass<td>Client IDMedia IDMedia TypePare<br/>PreparedBotle<br/>OrderCleaning<br/>Batch IDCan Leak<br/>CheckPressue<br/>(n. Heg)on Receip<br/>(ch. Heg)Controler<br/>(ch. Heg)VP-30949Flow 103/15/213457042.10928-06Pass-9.4-3.2-VP-31922.7L Can03/15/21345704L2110928-06Pass-9.4-3.2-AA-10904Flow 403/15/21345704L211072-01Pass-9.4PassAA-128916.0L Can03/15/21345704L211172-01Pass-29.66.7Pass-AA-20149Flow 403/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5<td>Client DMedia TypePate<br/>PreparedSottleCleaning<br/>Batch DCan Leak<br/>PressurePressure<br/>(n. Hg)Cleak OFFlow AutVP-30949Flow 103/15/21345704Pas200VP-31922.7L Can03/15/21345704L211028-06Pass29.43.2A-10904Flow 403/15/21345704L211028-06Pass29.4.32A-10904Flow 403/15/21345704L211725-00Pass29.6.6.7A-128916.0 Can03/15/21345704L211725-00Pass.9.6</td><td>Client DMedia TypeDate<br/>PreparedBottleGottleCancelPressueon ReceiptCentroleFlow, notFlow, notVP-30949Flow 103/15/2134570424.05.5.9.833.202.02VP-31922.7L Can03/15/2134570412110928-00Pass2.9.403.205.1.001.40AA-10904Flow 403/15/213457041211725-10Pass2.9.405.6.7.501.0.01.0.0AA-128916.0L Can03/15/213457041211725-10Pass2.9.606.7.501.0.01.2.5AA-21044Flow 403/15/213457041211725-10Pass2.9.606.4.501.0.01.2.5AA-31059Flow 303/15/213457041211725-00Pass1.9.11.0.01.0.11.2.5AA-31059Flow 303/15/213457041.2111725-00Pass1.9.11.0.01.1.5AA-31059Flow 303/15/213457041.2111725-00Pass1.0.01.2.51.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.0.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.5</td></td></td> | Client IDMedia IDMedia TypeDate<br>PreparedBottleGleaning<br>Batch IDCan Leak<br>PreskyPreskyon ReceiptVP-3949Flow 103/15/2134570412110928-06Pass29.43.2VP-31922.7 L Can03/15/2134570412110928-06Pass29.43.2A-10904Flow 403/15/2134570412110928-06Pass29.43.2A-128916.0 L Can03/15/213457041211725-01Pass29.66.7A-20144Flow 403/15/213457041211725-03Pass29.58.4A-315996.0 L Can03/15/213457041211725-03Pass29.58.4A-30599Flow 303/15/213457041211725-03Pass29.53.4A-30599Flow 303/15/213457041211725-03Pass29.57.0INUSED_CANH933801695Flow 403/15/213457041211725-03Pass29.53.4INUSED_CANH933801695Flow 303/15/213457041211725-03Pass29.53.4INUSED_CANH933801695Flow 103/15/213457041211725-03Pass29.529.6INUSED_CANH933801791Flow 103/15/213457041211725-03Pass29.529.6INUSED_CANH933801695Flow 103/15/213457041211725-03Pass <td>Client IDMedia IDMedia TypePare<br/>PreparedBotle<br/>OrderCleaning<br/>Batch IDCan Leak<br/>CheckPressue<br/>(n. Heg)on Receip<br/>(ch. Heg)Controler<br/>(ch. Heg)VP-30949Flow 103/15/213457042.10928-06Pass-9.4-3.2-VP-31922.7L Can03/15/21345704L2110928-06Pass-9.4-3.2-AA-10904Flow 403/15/21345704L211072-01Pass-9.4PassAA-128916.0L Can03/15/21345704L211172-01Pass-29.66.7Pass-AA-20149Flow 403/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5<td>Client DMedia TypePate<br/>PreparedSottleCleaning<br/>Batch DCan Leak<br/>PressurePressure<br/>(n. Hg)Cleak OFFlow AutVP-30949Flow 103/15/21345704Pas200VP-31922.7L Can03/15/21345704L211028-06Pass29.43.2A-10904Flow 403/15/21345704L211028-06Pass29.4.32A-10904Flow 403/15/21345704L211725-00Pass29.6.6.7A-128916.0 Can03/15/21345704L211725-00Pass.9.6</td><td>Client DMedia TypeDate<br/>PreparedBottleGottleCancelPressueon ReceiptCentroleFlow, notFlow, notVP-30949Flow 103/15/2134570424.05.5.9.833.202.02VP-31922.7L Can03/15/2134570412110928-00Pass2.9.403.205.1.001.40AA-10904Flow 403/15/213457041211725-10Pass2.9.405.6.7.501.0.01.0.0AA-128916.0L Can03/15/213457041211725-10Pass2.9.606.7.501.0.01.2.5AA-21044Flow 403/15/213457041211725-10Pass2.9.606.4.501.0.01.2.5AA-31059Flow 303/15/213457041211725-00Pass1.9.11.0.01.0.11.2.5AA-31059Flow 303/15/213457041.2111725-00Pass1.9.11.0.01.1.5AA-31059Flow 303/15/213457041.2111725-00Pass1.0.01.2.51.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.0.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.5</td></td> | Client IDMedia IDMedia TypePare<br>PreparedBotle<br>OrderCleaning<br>Batch IDCan Leak<br>CheckPressue<br>(n. Heg)on Receip<br>(ch. Heg)Controler<br>(ch. Heg)VP-30949Flow 103/15/213457042.10928-06Pass-9.4-3.2-VP-31922.7L Can03/15/21345704L2110928-06Pass-9.4-3.2-AA-10904Flow 403/15/21345704L211072-01Pass-9.4PassAA-128916.0L Can03/15/21345704L211172-01Pass-29.66.7Pass-AA-20149Flow 403/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.56.4AA-30159Flow 303/15/21345704L211172-03Pass-29.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5-20.5 <td>Client DMedia TypePate<br/>PreparedSottleCleaning<br/>Batch DCan Leak<br/>PressurePressure<br/>(n. Hg)Cleak OFFlow AutVP-30949Flow 103/15/21345704Pas200VP-31922.7L Can03/15/21345704L211028-06Pass29.43.2A-10904Flow 403/15/21345704L211028-06Pass29.4.32A-10904Flow 403/15/21345704L211725-00Pass29.6.6.7A-128916.0 Can03/15/21345704L211725-00Pass.9.6</td> <td>Client DMedia TypeDate<br/>PreparedBottleGottleCancelPressueon ReceiptCentroleFlow, notFlow, notVP-30949Flow 103/15/2134570424.05.5.9.833.202.02VP-31922.7L Can03/15/2134570412110928-00Pass2.9.403.205.1.001.40AA-10904Flow 403/15/213457041211725-10Pass2.9.405.6.7.501.0.01.0.0AA-128916.0L Can03/15/213457041211725-10Pass2.9.606.7.501.0.01.2.5AA-21044Flow 403/15/213457041211725-10Pass2.9.606.4.501.0.01.2.5AA-31059Flow 303/15/213457041211725-00Pass1.9.11.0.01.0.11.2.5AA-31059Flow 303/15/213457041.2111725-00Pass1.9.11.0.01.1.5AA-31059Flow 303/15/213457041.2111725-00Pass1.0.01.2.51.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.0.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.5</td> | Client DMedia TypePate<br>PreparedSottleCleaning<br>Batch DCan Leak<br>PressurePressure<br>(n. Hg)Cleak OFFlow AutVP-30949Flow 103/15/21345704Pas200VP-31922.7L Can03/15/21345704L211028-06Pass29.43.2A-10904Flow 403/15/21345704L211028-06Pass29.4.32A-10904Flow 403/15/21345704L211725-00Pass29.6.6.7A-128916.0 Can03/15/21345704L211725-00Pass.9.6 | Client DMedia TypeDate<br>PreparedBottleGottleCancelPressueon ReceiptCentroleFlow, notFlow, notVP-30949Flow 103/15/2134570424.05.5.9.833.202.02VP-31922.7L Can03/15/2134570412110928-00Pass2.9.403.205.1.001.40AA-10904Flow 403/15/213457041211725-10Pass2.9.405.6.7.501.0.01.0.0AA-128916.0L Can03/15/213457041211725-10Pass2.9.606.7.501.0.01.2.5AA-21044Flow 403/15/213457041211725-10Pass2.9.606.4.501.0.01.2.5AA-31059Flow 303/15/213457041211725-00Pass1.9.11.0.01.0.11.2.5AA-31059Flow 303/15/213457041.2111725-00Pass1.9.11.0.01.1.5AA-31059Flow 303/15/213457041.2111725-00Pass1.0.01.2.51.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.2.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.51.0.01.0.01.0.5INUSED_CAME33386.0L Can03/15/213457041.2111725-00Pass1.2.5 |



**Project Number:** CANISTER QC BAT **Report Date:** 03/22/21 **Air Canister Certification Results** Lab ID: L2110928-06 Date Collected: 03/05/21 09:00 Client ID: CAN 513 SHELF16 Date Received: 03/05/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15 Anaytical Method: Analytical Date: 03/07/21 02:27 TS Analyst: ppbV ug/m3 Dilution Factor RL Qualifier Parameter Results RL Results MDL MDL Volatile Organics in Air - Mansfield Lab Chlorodifluoromethane ND 0.200 ND 0.707 ------1 Propylene ND 0.500 1 ND 0.861 ------Propane ND 0.500 ND 0.902 1 -----Dichlorodifluoromethane ND 0.200 ---ND 0.989 ---1 Chloromethane ND 0.200 ND 0.413 ---1 ---Freon-114 ND 0.200 ND 1.40 1 ------Methanol ND 5.00 ND 6.55 1 -----Vinyl chloride ND 0.200 ---ND 0.511 ---1 1,3-Butadiene ND 0.200 ND 0.442 1 ------Butane ND 0.200 ND 0.475 1 ------Bromomethane ND 0.200 ND 0.777 1 ------Chloroethane ND 0.200 ND 0.528 ---1 --Ethanol ND 5.00 ---ND 9.42 ---1 Dichlorofluoromethane ND 0.200 ND 0.842 1 -----Vinyl bromide ND 0.200 ND 0.874 1 ------Acrolein ND 0.500 ND 1 ---1.15 ---Acetone ND 1.00 --ND 2.38 ---1 Acetonitrile ND 0.200 ND 0.336 1 ------Trichlorofluoromethane 0.200 ND ND 1 ---1.12 ---Isopropanol ND 0.500 --ND 1.23 --1 Acrylonitrile ND 0.500 ---ND 1.09 ---1 Pentane 1 ND 0.200 ND 0.590 ----Ethyl ether ND 0.200 ND 0.606 1 ------1,1-Dichloroethene ND 0.200 ND 0.793 ------1



Serial\_No:03222116:08

L2110928

Lab Number:

**Project Name:** 

BATCH CANISTER CERTIFICATION

| Serial_No:0 | 3222116:08 |
|-------------|------------|
| Lab Number: | L2110928   |

# **Air Canister Certification Results**

| Lab ID:          | L2110928-06     | Date Collected: | 03/05/21 09:00 |
|------------------|-----------------|-----------------|----------------|
| Client ID:       | CAN 513 SHELF16 | Date Received:  | 03/05/21       |
| Sample Location: |                 | Field Prep:     | Not Specified  |

|                                      |         | ppbV  |     | ug/m3   |       |     |           | Dilution |
|--------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                            | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield | Lab     |       |     |         |       |     |           |          |
| Tertiary butyl Alcohol               | ND      | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride                   | ND      | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                      | ND      | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide                     | ND      | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                            | ND      | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene             | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                   | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether              | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Vinyl acetate                        | ND      | 1.00  |     | ND      | 3.52  |     |           | 1        |
| 2-Butanone                           | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Xylenes, total                       | ND      | 0.600 |     | ND      | 0.869 |     |           | 1        |
| cis-1,2-Dichloroethene               | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Ethyl Acetate                        | ND      | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                           | ND      | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                      | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 2,2-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 1,2-Dichloroethane                   | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                             | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Diisopropyl ether                    | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| tert-Butyl Ethyl Ether               | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| 1,2-Dichloroethene (total)           | ND      | 1.00  |     | ND      | 1.00  |     |           | 1        |
| 1,1,1-Trichloroethane                | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| 1,1-Dichloropropene                  | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| Benzene                              | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Carbon tetrachloride                 | ND      | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                          | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| tert-Amyl Methyl Ether               | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
|                                      |         |       |     |         |       |     |           |          |



| Serial_No:0 | 3222116:08 |
|-------------|------------|
| Lab Number: | L2110928   |

# **Air Canister Certification Results**

| Lab ID:          | L2110928-06     | Date Collected: | 03/05/21 09:00 |
|------------------|-----------------|-----------------|----------------|
| Client ID:       | CAN 513 SHELF16 | Date Received:  | 03/05/21       |
| Sample Location: |                 | Field Prep:     | Not Specified  |

|                                      |         | ррьV  |     |         | ug/m3 |     | Dilution  |        |
|--------------------------------------|---------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                            | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfield | Lab     |       |     |         |       |     |           |        |
| Dibromomethane                       | ND      | 0.200 |     | ND      | 1.42  |     |           | 1      |
| 1,2-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1      |
| Bromodichloromethane                 | ND      | 0.200 |     | ND      | 1.34  |     |           | 1      |
| 1,4-Dioxane                          | ND      | 0.200 |     | ND      | 0.721 |     |           | 1      |
| Trichloroethene                      | ND      | 0.200 |     | ND      | 1.07  |     |           | 1      |
| 2,2,4-Trimethylpentane               | ND      | 0.200 |     | ND      | 0.934 |     |           | 1      |
| Methyl Methacrylate                  | ND      | 0.500 |     | ND      | 2.05  |     |           | 1      |
| Heptane                              | ND      | 0.200 |     | ND      | 0.820 |     |           | 1      |
| cis-1,3-Dichloropropene              | ND      | 0.200 |     | ND      | 0.908 |     |           | 1      |
| 4-Methyl-2-pentanone                 | ND      | 0.500 |     | ND      | 2.05  |     |           | 1      |
| trans-1,3-Dichloropropene            | ND      | 0.200 |     | ND      | 0.908 |     |           | 1      |
| 1,1,2-Trichloroethane                | ND      | 0.200 |     | ND      | 1.09  |     |           | 1      |
| Toluene                              | ND      | 0.200 |     | ND      | 0.754 |     |           | 1      |
| 1,3-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1      |
| 2-Hexanone                           | ND      | 0.200 |     | ND      | 0.820 |     |           | 1      |
| Dibromochloromethane                 | ND      | 0.200 |     | ND      | 1.70  |     |           | 1      |
| 1,2-Dibromoethane                    | ND      | 0.200 |     | ND      | 1.54  |     |           | 1      |
| Butyl acetate                        | ND      | 0.500 |     | ND      | 2.38  |     |           | 1      |
| Octane                               | ND      | 0.200 |     | ND      | 0.934 |     |           | 1      |
| Tetrachloroethene                    | ND      | 0.200 |     | ND      | 1.36  |     |           | 1      |
| 1,1,1,2-Tetrachloroethane            | ND      | 0.200 |     | ND      | 1.37  |     |           | 1      |
| Chlorobenzene                        | ND      | 0.200 |     | ND      | 0.921 |     |           | 1      |
| Ethylbenzene                         | ND      | 0.200 |     | ND      | 0.869 |     |           | 1      |
| p/m-Xylene                           | ND      | 0.400 |     | ND      | 1.74  |     |           | 1      |
| Bromoform                            | ND      | 0.200 |     | ND      | 2.07  |     |           | 1      |
| Styrene                              | ND      | 0.200 |     | ND      | 0.852 |     |           | 1      |
| 1,1,2,2-Tetrachloroethane            | ND      | 0.200 |     | ND      | 1.37  |     |           | 1      |
|                                      |         |       |     |         |       |     |           |        |



|    | Serial_No:03222116:08 |          |  |  |  |  |  |
|----|-----------------------|----------|--|--|--|--|--|
| La | b Number:             | L2110928 |  |  |  |  |  |

# **Air Canister Certification Results**

| Lab ID:          | L2110928-06     | Date Collected: | 03/05/21 09:00 |
|------------------|-----------------|-----------------|----------------|
| Client ID:       | CAN 513 SHELF16 | Date Received:  | 03/05/21       |
| Sample Location: |                 | Field Prep:     | Not Specified  |

| Sample Depth:                      |         | ppbV  |     |         | ug/m3 |     |           | Dilution |
|------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfie | eld Lab |       |     |         |       |     |           |          |
| o-Xylene                           | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 1,2,3-Trichloropropane             | ND      | 0.200 |     | ND      | 1.21  |     |           | 1        |
| Nonane                             | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| sopropylbenzene                    | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Bromobenzene                       | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 2-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| n-Propylbenzene                    | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 4-Ethyltoluene                     | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ert-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2,4-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Decane                             | ND      | 0.200 |     | ND      | 1.16  |     |           | 1        |
| Benzyl chloride                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| sec-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| p-Isopropyltoluene                 | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| n-Butylbenzene                     | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dibromo-3-chloropropane        | ND      | 0.200 |     | ND      | 1.93  |     |           | 1        |
| Undecane                           | ND      | 0.200 |     | ND      | 1.28  |     |           | 1        |
| Dodecane                           | ND      | 0.200 |     | ND      | 1.39  |     |           | 1        |
| 1,2,4-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Naphthalene                        | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| 1,2,3-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene                | ND      | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                                    |         |       |     |         |       |     |           |          |



|                                           |                             |         |           |             |         |                             | Serial  | _No:032          | 22116:08                                    |
|-------------------------------------------|-----------------------------|---------|-----------|-------------|---------|-----------------------------|---------|------------------|---------------------------------------------|
| Project Name:                             | BATCH CANIST                | ER CERT | IFICATION | 1           |         | La                          | b Num   | ber:             | L2110928                                    |
| Project Number:                           | CANISTER QC                 | ЗАТ     |           |             |         | Re                          | eport D | ate:             | 03/22/21                                    |
|                                           |                             | Air Can | ister Ce  | rtificatior | Results |                             |         |                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L2110928-06<br>CAN 513 SHEL | .F16    |           |             |         | Date C<br>Date F<br>Field F | Receive |                  | 03/05/21 09:00<br>03/05/21<br>Not Specified |
| Sample Depth:                             |                             |         | ppbV      |             |         | ug/m3                       |         |                  |                                             |
| Parameter                                 |                             | Results | RL        | MDL         | Results | RL                          | MDL     | Qualifie         | Dilution<br><sub>r</sub> Factor             |
| Volatile Organics in                      | Air - Mansfield Lab         |         |           |             |         |                             |         |                  |                                             |
|                                           |                             | Re      | esults    | Qualifier   | Units   | RDL                         |         | Dilutio<br>Facto |                                             |
| Tentatively Identified Con                | npounds                     |         |           |             |         |                             |         |                  |                                             |

No Tentatively Identified Compounds

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 95         |           | 60-140                 |
| Bromochloromethane  | 95         |           | 60-140                 |
| chlorobenzene-d5    | 95         |           | 60-140                 |



**Air Canister Certification Results** Lab ID: L2110928-06 Date Collected: 03/05/21 09:00 Client ID: CAN 513 SHELF16 Date Received: 03/05/21 Sample Location: Field Prep: Not Specified Sample Depth: Matrix: Air 48,TO-15-SIM Anaytical Method: Analytical Date: 03/07/21 02:27 Analyst: TS ppbV ug/m3 Dilution Factor RL Qualifier RL Results MDL Parameter Results MDL Volatile Organics in Air by SIM - Mansfield Lab Dichlorodifluoromethane 0.200 ND ND ---0.989 ---1 Chloromethane 0.200 ND ND 0.413 1 ------Freon-114 ND 0.050 ND 0.349 1 -----Vinyl chloride ND 0.020 ---ND 0.051 ---1 1,3-Butadiene ND 0.020 ND 0.044 ---1 ---Bromomethane ND 1 ND 0.020 0.078 ------Chloroethane ND 0.100 ND 0.264 1 -----Acrolein ND 0.050 ---ND 0.115 ---1 Acetone ND 1.00 ND 2.38 1 -----Trichlorofluoromethane ND 0.050 ND 0.281 1 ------Acrylonitrile ND 0.500 ND 1.09 1 ------1,1-Dichloroethene ND 0.020 ND 0.079 1 ----Methylene chloride ND 0.500 ---ND 1.74 ---1 Freon-113 ND 0.050 ND 1 ---0.383 -trans-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------1,1-Dichloroethane ND 0.020 ND 0.081 1 -----Methyl tert butyl ether ND 0.200 ---ND 0.721 ---1 2-Butanone ND 0.500 1 ---ND 1.47 --cis-1,2-Dichloroethene ND 0.020 ND 0.079 1 ------Chloroform ND 0.020 ND 0.098 --1 --1,2-Dichloroethane ND 0.020 ---ND 0.081 ---1 1,1,1-Trichloroethane ND 0.020 ND 1 --0.109 --Benzene ND 0.100 ND 1 0.319 ------Carbon tetrachloride ND 0.020 ND 0.126 ---1 ---



Serial\_No:03222116:08

L2110928

03/22/21

Lab Number:

**Report Date:** 

**Project Name:** 

**Project Number:** 

BATCH CANISTER CERTIFICATION

CANISTER QC BAT

| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2110928   |

# **Air Canister Certification Results**

| Lab ID:          | L2110928-06     | Date Collected: | 03/05/21 09:00 |
|------------------|-----------------|-----------------|----------------|
| Client ID:       | CAN 513 SHELF16 | Date Received:  | 03/05/21       |
| Sample Location: |                 | Field Prep:     | Not Specified  |

| Sample Depth:                   |                 | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |          |
| 1,2-Dichloropropane             | ND              | 0.020 |     | ND      | 0.092 |     |           | 1        |
| Bromodichloromethane            | ND              | 0.020 |     | ND      | 0.134 |     |           | 1        |
| 1,4-Dioxane                     | ND              | 0.100 |     | ND      | 0.360 |     |           | 1        |
| Trichloroethene                 | ND              | 0.020 |     | ND      | 0.107 |     |           | 1        |
| cis-1,3-Dichloropropene         | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| 4-Methyl-2-pentanone            | ND              | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene       | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| 1,1,2-Trichloroethane           | ND              | 0.020 |     | ND      | 0.109 |     |           | 1        |
| Toluene                         | ND              | 0.050 |     | ND      | 0.188 |     |           | 1        |
| Dibromochloromethane            | ND              | 0.020 |     | ND      | 0.170 |     |           | 1        |
| 1,2-Dibromoethane               | ND              | 0.020 |     | ND      | 0.154 |     |           | 1        |
| Tetrachloroethene               | ND              | 0.020 |     | ND      | 0.136 |     |           | 1        |
| 1,1,1,2-Tetrachloroethane       | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| Chlorobenzene                   | ND              | 0.100 |     | ND      | 0.461 |     |           | 1        |
| Ethylbenzene                    | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| p/m-Xylene                      | ND              | 0.040 |     | ND      | 0.174 |     |           | 1        |
| Bromoform                       | ND              | 0.020 |     | ND      | 0.207 |     |           | 1        |
| Styrene                         | ND              | 0.020 |     | ND      | 0.085 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane       | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| o-Xylene                        | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| Isopropylbenzene                | ND              | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Ethyltoluene                  | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| 1,3,5-Trimethybenzene           | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| 1,2,4-Trimethylbenzene          | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| Benzyl chloride                 | ND              | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
| 1,4-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
|                                 |                 |       |     |         |       |     |           |          |



|   | Serial_No:03 | Serial_No:03222116:08 |  |  |  |
|---|--------------|-----------------------|--|--|--|
| 1 | Lab Number:  | L2110928              |  |  |  |
|   | Report Date: | 03/22/21              |  |  |  |

# **Air Canister Certification Results**

| Lab ID:          | L2110928-06     | Date Collected: | 03/05/21 09:00 |
|------------------|-----------------|-----------------|----------------|
| Client ID:       | CAN 513 SHELF16 | Date Received:  | 03/05/21       |
| Sample Location: |                 | Field Prep:     | Not Specified  |

|                                 |                   | ppbV  |     | ug/m3   |       |     |           | Dilution |
|---------------------------------|-------------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results           | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | I - Mansfield Lab |       |     |         |       |     |           |          |
| sec-Butylbenzene                | ND                | 0.200 |     | ND      | 1.10  |     |           | 1        |
| p-Isopropyltoluene              | ND                | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene             | ND                | 0.020 |     | ND      | 0.120 |     |           | 1        |
| n-Butylbenzene                  | ND                | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2,4-Trichlorobenzene          | ND                | 0.050 |     | ND      | 0.371 |     |           | 1        |
| Naphthalene                     | ND                | 0.050 |     | ND      | 0.262 |     |           | 1        |
| 1,2,3-Trichlorobenzene          | ND                | 0.050 |     | ND      | 0.371 |     |           | 1        |
| Hexachlorobutadiene             | ND                | 0.050 |     | ND      | 0.533 |     |           | 1        |
|                                 |                   |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 94         |           | 60-140                 |
| bromochloromethane  | 94         |           | 60-140                 |
| chlorobenzene-d5    | 94         |           | 60-140                 |



| Project Number:                                                               | CANISTER QC E                           | BAT     |           |          |            | R     | eport D                      | Date: (   | )3/22/21                                    |
|-------------------------------------------------------------------------------|-----------------------------------------|---------|-----------|----------|------------|-------|------------------------------|-----------|---------------------------------------------|
|                                                                               |                                         | Air Can | ister Cer | tificati | on Results |       |                              |           |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2111725-03<br>CAN 1659 SHE             | LF 36   |           |          |            |       | Collecte<br>Receive<br>Prep: | -         | 03/09/21 16:00<br>03/10/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15<br>03/10/21 19:05<br>TS |         |           |          |            |       |                              |           |                                             |
| - /                                                                           |                                         |         | ppbV      |          | Desults    | ug/m3 |                              | Qualifian | Dilution<br>Factor                          |
| Parameter                                                                     | Vir Manafield Lab                       | Results | RL        | MDL      | Results    | RL    | MDL                          | Qualifier |                                             |
| Volatile Organics in A                                                        |                                         |         |           |          |            |       |                              |           |                                             |
| Chlorodifluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.707 |                              |           | 1                                           |
| Propylene                                                                     |                                         | ND      | 0.500     |          | ND         | 0.861 |                              |           | 1                                           |
| Propane                                                                       |                                         | ND      | 0.500     |          | ND         | 0.902 |                              |           | 1                                           |
| Dichlorodifluoromethane                                                       |                                         | ND      | 0.200     |          | ND         | 0.989 |                              |           | 1                                           |
| Chloromethane                                                                 |                                         | ND      | 0.200     |          | ND         | 0.413 |                              |           | 1                                           |
| Freon-114                                                                     |                                         | ND      | 0.200     |          | ND         | 1.40  |                              |           | 1                                           |
| Methanol                                                                      |                                         | ND      | 5.00      |          | ND         | 6.55  |                              |           | 1                                           |
| Vinyl chloride                                                                |                                         | ND      | 0.200     |          | ND         | 0.511 |                              |           | 1                                           |
| 1,3-Butadiene                                                                 |                                         | ND      | 0.200     |          | ND         | 0.442 |                              |           | 1                                           |
| Butane                                                                        |                                         | ND      | 0.200     |          | ND         | 0.475 |                              |           | 1                                           |
| Bromomethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.777 |                              |           | 1                                           |
| Chloroethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.528 |                              |           | 1                                           |
| Ethanol                                                                       |                                         | ND      | 5.00      |          | ND         | 9.42  |                              |           | 1                                           |
| Dichlorofluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.842 |                              |           | 1                                           |
| Vinyl bromide                                                                 |                                         | ND      | 0.200     |          | ND         | 0.874 |                              |           | 1                                           |
| Acrolein                                                                      |                                         | ND      | 0.500     |          | ND         | 1.15  |                              |           | 1                                           |
| Acetone                                                                       |                                         | ND      | 1.00      |          | ND         | 2.38  |                              |           | 1                                           |
| Acetonitrile                                                                  |                                         | ND      | 0.200     |          | ND         | 0.336 |                              |           | 1                                           |
| Trichlorofluoromethane                                                        |                                         | ND      | 0.200     |          | ND         | 1.12  |                              |           | 1                                           |
| Isopropanol                                                                   |                                         | ND      | 0.500     |          | ND         | 1.23  |                              |           | 1                                           |
| Acrylonitrile                                                                 |                                         | ND      | 0.500     |          | ND         | 1.09  |                              |           | 1                                           |
| Pentane                                                                       |                                         | ND      | 0.200     |          | ND         | 0.590 |                              |           | 1                                           |
| Ethyl ether                                                                   |                                         | ND      | 0.200     |          | ND         | 0.606 |                              |           | 1                                           |
| 1,1-Dichloroethene                                                            |                                         | ND      | 0.200     |          | ND         | 0.793 |                              |           | 1                                           |

Project Name: BATCH CANISTER CERTIFICATION



Serial\_No:03222116:08

L2111725

Lab Number:

| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-03       | Date Collected: | 03/09/21 16:00 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 1659 SHELF 36 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                        | ррьV    |       |     | ug/m3   |       |     |           | Dilution |
|----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                              | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield L | .ab     |       |     |         |       |     |           |          |
| Tertiary butyl Alcohol                 | ND      | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride                     | ND      | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                        | ND      | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide                       | ND      | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                              | ND      | 0.200 |     | ND      | 1.53  |     |           | 1        |
| rans-1,2-Dichloroethene                | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                     | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether                | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Vinyl acetate                          | ND      | 1.00  |     | ND      | 3.52  |     |           | 1        |
| Xylenes, total                         | ND      | 0.600 |     | ND      | 0.869 |     |           | 1        |
| 2-Butanone                             | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene                 | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Ethyl Acetate                          | ND      | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                             | ND      | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                        | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 2,2-Dichloropropane                    | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 1,2-Dichloroethane                     | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                               | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Diisopropyl ether                      | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| ert-Butyl Ethyl Ether                  | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| 1,2-Dichloroethene (total)             | ND      | 1.00  |     | ND      | 1.00  |     |           | 1        |
| 1,1,1-Trichloroethane                  | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| 1,1-Dichloropropene                    | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| Benzene                                | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Carbon tetrachloride                   | ND      | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                            | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| ert-Amyl Methyl Ether                  | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
|                                        |         |       |     |         |       |     |           |          |



| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-03       | Date Collected: | 03/09/21 16:00 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 1659 SHELF 36 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                         | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|-----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                               | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield La | ab      |       |     |         |       |     |           |          |
| Dibromomethane                          | ND      | 0.200 |     | ND      | 1.42  |     |           | 1        |
| 1,2-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane                    | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                             | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                         | ND      | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane                  | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Methyl Methacrylate                     | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| Heptane                                 | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene                 | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone                    | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene                | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane                   | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                                 | ND      | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 1,3-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 2-Hexanone                              | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane                    | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                       | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Butyl acetate                           | ND      | 0.500 |     | ND      | 2.38  |     |           | 1        |
| Octane                                  | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Tetrachloroethene                       | ND      | 0.200 |     | ND      | 1.36  |     |           | 1        |
| 1,1,1,2-Tetrachloroethane               | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
| Chlorobenzene                           | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                            | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                              | ND      | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                               | ND      | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                                 | ND      | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane               | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
|                                         |         |       |     |         |       |     |           |          |



| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-03       | Date Collected: | 03/09/21 16:00 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 1659 SHELF 36 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                    | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfie | eld Lab |       |     |         |       |     |           |          |
| o-Xylene                           | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 1,2,3-Trichloropropane             | ND      | 0.200 |     | ND      | 1.21  |     |           | 1        |
| Nonane                             | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| lsopropylbenzene                   | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Bromobenzene                       | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 2-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| n-Propylbenzene                    | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 4-Ethyltoluene                     | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ert-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2,4-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Decane                             | ND      | 0.200 |     | ND      | 1.16  |     |           | 1        |
| Benzyl chloride                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| sec-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| p-Isopropyltoluene                 | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| n-Butylbenzene                     | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dibromo-3-chloropropane        | ND      | 0.200 |     | ND      | 1.93  |     |           | 1        |
| Undecane                           | ND      | 0.200 |     | ND      | 1.28  |     |           | 1        |
| Dodecane                           | ND      | 0.200 |     | ND      | 1.39  |     |           | 1        |
| 1,2,4-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Naphthalene                        | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| 1,2,3-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene                | ND      | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                                    |         |       |     |         |       |     |           |          |



|                                           |                             |          |           |            |         |       | Serial                       | _No:032          | 222116:08                                   |
|-------------------------------------------|-----------------------------|----------|-----------|------------|---------|-------|------------------------------|------------------|---------------------------------------------|
| Project Name:                             | BATCH CANIST                | ER CERTI | FICATION  |            |         | La    | b Num                        | ber:             | L2111725                                    |
| Project Number:                           | CANISTER QC                 | BAT      |           |            |         | Re    | eport D                      | ate:             | 03/22/21                                    |
|                                           |                             | Air Can  | ister Cer | tification | Results |       |                              |                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L2111725-03<br>CAN 1659 SHE | LF 36    |           |            |         |       | Collecte<br>Receive<br>Prep: |                  | 03/09/21 16:00<br>03/10/21<br>Not Specified |
| Sample Depth:                             |                             |          | ppbV      |            |         | ug/m3 |                              |                  | Dilution                                    |
| Parameter                                 |                             | Results  | RL        | MDL        | Results | RL    | MDL                          | Qualifie         | Factor                                      |
| Volatile Organics in                      | Air - Mansfield Lab         |          |           |            |         |       |                              |                  |                                             |
|                                           |                             | Re       | esults    | Qualifier  | Units   | RDL   |                              | Dilutic<br>Facto |                                             |
| Tentatively Identified Con                | npounds                     |          |           |            |         |       |                              |                  |                                             |

No Tentatively Identified Compounds

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 85         |           | 60-140                 |
| Bromochloromethane  | 88         |           | 60-140                 |
| chlorobenzene-d5    | 85         |           | 60-140                 |



|                                                                               |                                             | Air Can                        | ister Cer | tificatio | on Results | 5     |                                             |           |                    |
|-------------------------------------------------------------------------------|---------------------------------------------|--------------------------------|-----------|-----------|------------|-------|---------------------------------------------|-----------|--------------------|
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2111725-03<br>CAN 1659 SHE                 | LF 36 Date Colle<br>Field Prep |           |           | Receive    |       | 03/09/21 16:00<br>03/10/21<br>Not Specified |           |                    |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15-SIM<br>03/10/21 19:05<br>TS |                                |           |           |            |       |                                             |           |                    |
|                                                                               |                                             |                                | ppbV      |           |            | ug/m3 |                                             | o         | Dilution<br>Factor |
| Parameter                                                                     |                                             | Results                        | RL        | MDL       | Results    | RL    | MDL                                         | Qualifier |                    |
| Volatile Organics in A                                                        | Air by Silvi - Manshe                       |                                |           |           |            |       |                                             |           |                    |
| Dichlorodifluoromethane                                                       |                                             | ND                             | 0.200     |           | ND         | 0.989 |                                             |           | 1                  |
| Chloromethane                                                                 |                                             | ND                             | 0.200     |           | ND         | 0.413 |                                             |           | 1                  |
| Freon-114                                                                     |                                             | ND                             | 0.050     |           | ND         | 0.349 |                                             |           | 1                  |
| Vinyl chloride                                                                |                                             | ND                             | 0.020     |           | ND         | 0.051 |                                             |           | 1                  |
| 1,3-Butadiene                                                                 |                                             | ND                             | 0.020     |           | ND         | 0.044 |                                             |           | 1                  |
| Bromomethane                                                                  |                                             | ND                             | 0.020     |           | ND         | 0.078 |                                             |           | 1                  |
| Chloroethane                                                                  |                                             | ND                             | 0.100     |           | ND         | 0.264 |                                             |           | 1                  |
| Acrolein                                                                      |                                             | ND                             | 0.050     |           | ND         | 0.115 |                                             |           | 1                  |
| Acetone                                                                       |                                             | ND                             | 1.00      |           | ND         | 2.38  |                                             |           | 1                  |
| Trichlorofluoromethane                                                        |                                             | ND                             | 0.050     |           | ND         | 0.281 |                                             |           | 1                  |
| Acrylonitrile                                                                 |                                             | ND                             | 0.500     |           | ND         | 1.09  |                                             |           | 1                  |
| 1,1-Dichloroethene                                                            |                                             | ND                             | 0.020     |           | ND         | 0.079 |                                             |           | 1                  |
| Methylene chloride                                                            |                                             | ND                             | 0.500     |           | ND         | 1.74  |                                             |           | 1                  |
| Freon-113                                                                     |                                             | ND                             | 0.050     |           | ND         | 0.383 |                                             |           | 1                  |
| trans-1,2-Dichloroethene                                                      | ;                                           | ND                             | 0.020     |           | ND         | 0.079 |                                             |           | 1                  |
| 1,1-Dichloroethane                                                            |                                             | ND                             | 0.020     |           | ND         | 0.081 |                                             |           | 1                  |
| Methyl tert butyl ether                                                       |                                             | ND                             | 0.200     |           | ND         | 0.721 |                                             |           | 1                  |
| 2-Butanone                                                                    |                                             | ND                             | 0.500     |           | ND         | 1.47  |                                             |           | 1                  |
| cis-1,2-Dichloroethene                                                        |                                             | ND                             | 0.020     |           | ND         | 0.079 |                                             |           | 1                  |
| Chloroform                                                                    |                                             | ND                             | 0.020     |           | ND         | 0.098 |                                             |           | 1                  |
| 1,2-Dichloroethane                                                            |                                             | ND                             | 0.020     |           | ND         | 0.081 |                                             |           | 1                  |
| 1,1,1-Trichloroethane                                                         |                                             | ND                             | 0.020     |           | ND         | 0.109 |                                             |           | 1                  |
| Benzene                                                                       |                                             | ND                             | 0.100     |           | ND         | 0.319 |                                             |           | 1                  |
| Carbon tetrachloride                                                          |                                             | ND                             | 0.020     |           | ND         | 0.126 |                                             |           | 1                  |

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT



Serial\_No:03222116:08

L2111725

03/22/21

Lab Number:

| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-03       | Date Collected: | 03/09/21 16:00 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 1659 SHELF 36 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

| Sample Depth:                   |                 | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |          |
| 1,2-Dichloropropane             | ND              | 0.020 |     | ND      | 0.092 |     |           | 1        |
| Bromodichloromethane            | ND              | 0.020 |     | ND      | 0.134 |     |           | 1        |
| 1,4-Dioxane                     | ND              | 0.100 |     | ND      | 0.360 |     |           | 1        |
| Trichloroethene                 | ND              | 0.020 |     | ND      | 0.107 |     |           | 1        |
| cis-1,3-Dichloropropene         | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| 4-Methyl-2-pentanone            | ND              | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene       | ND              | 0.020 |     | ND      | 0.091 |     |           | 1        |
| 1,1,2-Trichloroethane           | ND              | 0.020 |     | ND      | 0.109 |     |           | 1        |
| Toluene                         | ND              | 0.050 |     | ND      | 0.188 |     |           | 1        |
| Dibromochloromethane            | ND              | 0.020 |     | ND      | 0.170 |     |           | 1        |
| 1,2-Dibromoethane               | ND              | 0.020 |     | ND      | 0.154 |     |           | 1        |
| Tetrachloroethene               | ND              | 0.020 |     | ND      | 0.136 |     |           | 1        |
| 1,1,1,2-Tetrachloroethane       | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| Chlorobenzene                   | ND              | 0.100 |     | ND      | 0.461 |     |           | 1        |
| Ethylbenzene                    | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| p/m-Xylene                      | ND              | 0.040 |     | ND      | 0.174 |     |           | 1        |
| Bromoform                       | ND              | 0.020 |     | ND      | 0.207 |     |           | 1        |
| Styrene                         | ND              | 0.020 |     | ND      | 0.085 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane       | ND              | 0.020 |     | ND      | 0.137 |     |           | 1        |
| o-Xylene                        | ND              | 0.020 |     | ND      | 0.087 |     |           | 1        |
| Isopropylbenzene                | ND              | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Ethyltoluene                  | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| 1,3,5-Trimethybenzene           | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| 1,2,4-Trimethylbenzene          | ND              | 0.020 |     | ND      | 0.098 |     |           | 1        |
| Benzyl chloride                 | ND              | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
| 1,4-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
|                                 |                 |       |     |         |       |     |           |          |



| Serial_No:   | 03222116:08 |
|--------------|-------------|
| Lab Number   | L2111725    |
| Report Date: | 03/22/21    |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-03       | Date Collected: | 03/09/21 16:00 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 1659 SHELF 36 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                 | ppbV              |        |  | ug/m3      |       |     |           | Dilution |
|---------------------------------|-------------------|--------|--|------------|-------|-----|-----------|----------|
| Parameter                       | Results           | RL MDL |  | Results RL |       | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | I - Mansfield Lab |        |  |            |       |     |           |          |
| sec-Butylbenzene                | ND                | 0.200  |  | ND         | 1.10  |     |           | 1        |
| p-Isopropyltoluene              | ND                | 0.200  |  | ND         | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene             | ND                | 0.020  |  | ND         | 0.120 |     |           | 1        |
| n-Butylbenzene                  | ND                | 0.200  |  | ND         | 1.10  |     |           | 1        |
| 1,2,4-Trichlorobenzene          | ND                | 0.050  |  | ND         | 0.371 |     |           | 1        |
| Naphthalene                     | ND                | 0.050  |  | ND         | 0.262 |     |           | 1        |
| 1,2,3-Trichlorobenzene          | ND                | 0.050  |  | ND         | 0.371 |     |           | 1        |
| Hexachlorobutadiene             | ND                | 0.050  |  | ND         | 0.533 |     |           | 1        |
|                                 |                   |        |  |            |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 83         |           | 60-140                 |
| bromochloromethane  | 86         |           | 60-140                 |
| chlorobenzene-d5    | 85         |           | 60-140                 |



| Project Number:                                                               | CANISTER QC E                           | BAT     |           |          |            | R     | eport D                      | ate: (    | )3/22/21                                    |
|-------------------------------------------------------------------------------|-----------------------------------------|---------|-----------|----------|------------|-------|------------------------------|-----------|---------------------------------------------|
|                                                                               |                                         | Air Can | ister Cer | tificati | on Results |       |                              |           |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2111725-10<br>CAN 3235 SHE             | LF 32   |           |          |            | Date  | Collecte<br>Receive<br>Prep: |           | 03/10/21 10:30<br>03/10/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15<br>03/10/21 23:50<br>TS |         |           |          |            |       |                              |           |                                             |
|                                                                               |                                         |         | ppbV      |          |            | ug/m3 |                              |           | Dilution<br>Factor                          |
| Parameter                                                                     |                                         | Results | RL        | MDL      | Results    | RL    | MDL                          | Qualifier | Factor                                      |
| Volatile Organics in A                                                        | Air - Mansfield Lab                     |         |           |          |            |       |                              |           |                                             |
| Chlorodifluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.707 |                              |           | 1                                           |
| Propylene                                                                     |                                         | ND      | 0.500     |          | ND         | 0.861 |                              |           | 1                                           |
| Propane                                                                       |                                         | ND      | 0.500     |          | ND         | 0.902 |                              |           | 1                                           |
| Dichlorodifluoromethane                                                       |                                         | ND      | 0.200     |          | ND         | 0.989 |                              |           | 1                                           |
| Chloromethane                                                                 |                                         | ND      | 0.200     |          | ND         | 0.413 |                              |           | 1                                           |
| Freon-114                                                                     |                                         | ND      | 0.200     |          | ND         | 1.40  |                              |           | 1                                           |
| Methanol                                                                      |                                         | ND      | 5.00      |          | ND         | 6.55  |                              |           | 1                                           |
| Vinyl chloride                                                                |                                         | ND      | 0.200     |          | ND         | 0.511 |                              |           | 1                                           |
| 1,3-Butadiene                                                                 |                                         | ND      | 0.200     |          | ND         | 0.442 |                              |           | 1                                           |
| Butane                                                                        |                                         | ND      | 0.200     |          | ND         | 0.475 |                              |           | 1                                           |
| Bromomethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.777 |                              |           | 1                                           |
| Chloroethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.528 |                              |           | 1                                           |
| Ethanol                                                                       |                                         | ND      | 5.00      |          | ND         | 9.42  |                              |           | 1                                           |
| Dichlorofluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.842 |                              |           | 1                                           |
| Vinyl bromide                                                                 |                                         | ND      | 0.200     |          | ND         | 0.874 |                              |           | 1                                           |
| Acrolein                                                                      |                                         | ND      | 0.500     |          | ND         | 1.15  |                              |           | 1                                           |
| Acetone                                                                       |                                         | ND      | 1.00      |          | ND         | 2.38  |                              |           | 1                                           |
| Acetonitrile                                                                  |                                         | ND      | 0.200     |          | ND         | 0.336 |                              |           | 1                                           |
| Trichlorofluoromethane                                                        |                                         | ND      | 0.200     |          | ND         | 1.12  |                              |           | 1                                           |
| Isopropanol                                                                   |                                         | ND      | 0.500     |          | ND         | 1.23  |                              |           | 1                                           |
| Acrylonitrile                                                                 |                                         | ND      | 0.500     |          | ND         | 1.09  |                              |           | 1                                           |
| Pentane                                                                       |                                         | ND      | 0.200     |          | ND         | 0.590 |                              |           | 1                                           |
| Ethyl ether                                                                   |                                         | ND      | 0.200     |          | ND         | 0.606 |                              |           | 1                                           |
| 1,1-Dichloroethene                                                            |                                         | ND      | 0.200     |          | ND         | 0.793 |                              |           | 1                                           |

Project Name: BATCH CANISTER CERTIFICATION



Serial\_No:03222116:08

L2111725

Lab Number:

| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-10       | Date Collected: | 03/10/21 10:30 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 3235 SHELF 32 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                         | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|-----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                               | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield La | ab      |       |     |         |       |     |           |          |
| Tertiary butyl Alcohol                  | ND      | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride                      | ND      | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                         | ND      | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide                        | ND      | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                               | ND      | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene                | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                      | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether                 | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Vinyl acetate                           | ND      | 1.00  |     | ND      | 3.52  |     |           | 1        |
| 2-Butanone                              | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| Xylenes, total                          | ND      | 0.600 |     | ND      | 0.869 |     |           | 1        |
| cis-1,2-Dichloroethene                  | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Ethyl Acetate                           | ND      | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                              | ND      | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                         | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 2,2-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 1,2-Dichloroethane                      | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                                | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Diisopropyl ether                       | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| tert-Butyl Ethyl Ether                  | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| 1,2-Dichloroethene (total)              | ND      | 1.00  |     | ND      | 1.00  |     |           | 1        |
| 1,1,1-Trichloroethane                   | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| 1,1-Dichloropropene                     | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| Benzene                                 | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Carbon tetrachloride                    | ND      | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                             | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| tert-Amyl Methyl Ether                  | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
|                                         |         |       |     |         |       |     |           |          |



| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-10       | Date Collected: | 03/10/21 10:30 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 3235 SHELF 32 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                         |         | ppbV  |     | ug/m3   |       |     |           | Dilution |
|-----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                               | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield La | ab      |       |     |         |       |     |           |          |
| Dibromomethane                          | ND      | 0.200 |     | ND      | 1.42  |     |           | 1        |
| 1,2-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane                    | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                             | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                         | ND      | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane                  | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Methyl Methacrylate                     | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| Heptane                                 | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene                 | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone                    | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene                | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane                   | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                                 | ND      | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 1,3-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 2-Hexanone                              | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane                    | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                       | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Butyl acetate                           | ND      | 0.500 |     | ND      | 2.38  |     |           | 1        |
| Octane                                  | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Tetrachloroethene                       | ND      | 0.200 |     | ND      | 1.36  |     |           | 1        |
| 1,1,1,2-Tetrachloroethane               | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
| Chlorobenzene                           | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                            | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                              | ND      | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                               | ND      | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                                 | ND      | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane               | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
|                                         |         |       |     |         |       |     |           |          |



| Serial_No:03 | 3222116:08 |
|--------------|------------|
| Lab Number:  | L2111725   |

# **Air Canister Certification Results**

| Lab ID:          | L2111725-10       | Date Collected: | 03/10/21 10:30 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 3235 SHELF 32 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                    |         | ppbV  | ug/m3 |         |       |     | Dilution  |        |
|------------------------------------|---------|-------|-------|---------|-------|-----|-----------|--------|
| Parameter                          | Results | RL    | MDL   | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air - Mansfie | ld Lab  |       |       |         |       |     |           |        |
| o-Xylene                           | ND      | 0.200 |       | ND      | 0.869 |     |           | 1      |
| 1,2,3-Trichloropropane             | ND      | 0.200 |       | ND      | 1.21  |     |           | 1      |
| Nonane                             | ND      | 0.200 |       | ND      | 1.05  |     |           | 1      |
| sopropylbenzene                    | ND      | 0.200 |       | ND      | 0.983 |     |           | 1      |
| Bromobenzene                       | ND      | 0.200 |       | ND      | 0.793 |     |           | 1      |
| 2-Chlorotoluene                    | ND      | 0.200 |       | ND      | 1.04  |     |           | 1      |
| n-Propylbenzene                    | ND      | 0.200 |       | ND      | 0.983 |     |           | 1      |
| 4-Chlorotoluene                    | ND      | 0.200 |       | ND      | 1.04  |     |           | 1      |
| 1-Ethyltoluene                     | ND      | 0.200 |       | ND      | 0.983 |     |           | 1      |
| 1,3,5-Trimethylbenzene             | ND      | 0.200 |       | ND      | 0.983 |     |           | 1      |
| ert-Butylbenzene                   | ND      | 0.200 |       | ND      | 1.10  |     |           | 1      |
| 1,2,4-Trimethylbenzene             | ND      | 0.200 |       | ND      | 0.983 |     |           | 1      |
| Decane                             | ND      | 0.200 |       | ND      | 1.16  |     |           | 1      |
| Benzyl chloride                    | ND      | 0.200 |       | ND      | 1.04  |     |           | 1      |
| 1,3-Dichlorobenzene                | ND      | 0.200 |       | ND      | 1.20  |     |           | 1      |
| 1,4-Dichlorobenzene                | ND      | 0.200 |       | ND      | 1.20  |     |           | 1      |
| sec-Butylbenzene                   | ND      | 0.200 |       | ND      | 1.10  |     |           | 1      |
| p-Isopropyltoluene                 | ND      | 0.200 |       | ND      | 1.10  |     |           | 1      |
| 1,2-Dichlorobenzene                | ND      | 0.200 |       | ND      | 1.20  |     |           | 1      |
| n-Butylbenzene                     | ND      | 0.200 |       | ND      | 1.10  |     |           | 1      |
| 1,2-Dibromo-3-chloropropane        | ND      | 0.200 |       | ND      | 1.93  |     |           | 1      |
| Undecane                           | ND      | 0.200 |       | ND      | 1.28  |     |           | 1      |
| Dodecane                           | ND      | 0.200 |       | ND      | 1.39  |     |           | 1      |
| 1,2,4-Trichlorobenzene             | ND      | 0.200 |       | ND      | 1.48  |     |           | 1      |
| Naphthalene                        | ND      | 0.200 |       | ND      | 1.05  |     |           | 1      |
| 1,2,3-Trichlorobenzene             | ND      | 0.200 |       | ND      | 1.48  |     |           | 1      |
| Hexachlorobutadiene                | ND      | 0.200 |       | ND      | 2.13  |     |           | 1      |
|                                    |         |       |       |         |       |     |           |        |



|                                           |                             |          |           |             |         |       | Serial                       | _No:032          | 22116:08                                    |
|-------------------------------------------|-----------------------------|----------|-----------|-------------|---------|-------|------------------------------|------------------|---------------------------------------------|
| Project Name:                             | BATCH CANIST                | ER CERTI | FICATION  |             |         | La    | b Num                        | ber:             | L2111725                                    |
| Project Number:                           | CANISTER QC                 | ВАТ      |           |             |         | Re    | eport D                      | ate:             | 03/22/21                                    |
|                                           |                             | Air Can  | ister Cei | rtification | Results |       |                              |                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location: | L2111725-10<br>CAN 3235 SHE | LF 32    |           |             |         |       | Collecte<br>Receive<br>Prep: |                  | 03/10/21 10:30<br>03/10/21<br>Not Specified |
| Sample Depth:                             |                             |          | ppbV      |             |         | ug/m3 |                              |                  | Dilution                                    |
| Parameter                                 |                             | Results  | RL        | MDL         | Results | RL    | MDL                          | Qualifie         | r Factor                                    |
| Volatile Organics in                      | Air - Mansfield Lab         |          |           |             |         |       |                              |                  |                                             |
|                                           |                             | Re       | esults    | Qualifier   | Units   | RDL   |                              | Dilutic<br>Facto |                                             |
| Tentatively Identified Con                | npounds                     |          |           |             |         |       |                              |                  |                                             |

No Tentatively Identified Compounds

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 85         |           | 60-140                 |
| Bromochloromethane  | 86         |           | 60-140                 |
| chlorobenzene-d5    | 85         |           | 60-140                 |



|                                                                               |                                             | Air Can | ister Cer | tificatio | on Results | <b>i</b> |                              |           |                                             |
|-------------------------------------------------------------------------------|---------------------------------------------|---------|-----------|-----------|------------|----------|------------------------------|-----------|---------------------------------------------|
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2111725-10<br>CAN 3235 SHE                 | LF 32   |           |           |            |          | Collecte<br>Receive<br>Prep: |           | 03/10/21 10:30<br>03/10/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15-SIM<br>03/10/21 23:50<br>TS |         |           |           |            |          |                              |           |                                             |
|                                                                               |                                             |         | ppbV      |           |            | ug/m3    |                              |           | Dilution                                    |
| Parameter                                                                     |                                             | Results | RL        | MDL       | Results    | RL       | MDL                          | Qualifier | Factor                                      |
| Volatile Organics in A                                                        | Air by SIM - Mansfie                        | eld Lab |           |           |            |          |                              |           |                                             |
| Dichlorodifluoromethane                                                       |                                             | ND      | 0.200     |           | ND         | 0.989    |                              |           | 1                                           |
| Chloromethane                                                                 |                                             | ND      | 0.200     |           | ND         | 0.413    |                              |           | 1                                           |
| Freon-114                                                                     |                                             | ND      | 0.050     |           | ND         | 0.349    |                              |           | 1                                           |
| Vinyl chloride                                                                |                                             | ND      | 0.020     |           | ND         | 0.051    |                              |           | 1                                           |
| 1,3-Butadiene                                                                 |                                             | ND      | 0.020     |           | ND         | 0.044    |                              |           | 1                                           |
| Bromomethane                                                                  |                                             | ND      | 0.020     |           | ND         | 0.078    |                              |           | 1                                           |
| Chloroethane                                                                  |                                             | ND      | 0.100     |           | ND         | 0.264    |                              |           | 1                                           |
| Acrolein                                                                      |                                             | ND      | 0.050     |           | ND         | 0.115    |                              |           | 1                                           |
| Acetone                                                                       |                                             | ND      | 1.00      |           | ND         | 2.38     |                              |           | 1                                           |
| Trichlorofluoromethane                                                        |                                             | ND      | 0.050     |           | ND         | 0.281    |                              |           | 1                                           |
| Acrylonitrile                                                                 |                                             | ND      | 0.500     |           | ND         | 1.09     |                              |           | 1                                           |
| 1,1-Dichloroethene                                                            |                                             | ND      | 0.020     |           | ND         | 0.079    |                              |           | 1                                           |
| Methylene chloride                                                            |                                             | ND      | 0.500     |           | ND         | 1.74     |                              |           | 1                                           |
| Freon-113                                                                     |                                             | ND      | 0.050     |           | ND         | 0.383    |                              |           | 1                                           |
| trans-1,2-Dichloroethene                                                      | )                                           | ND      | 0.020     |           | ND         | 0.079    |                              |           | 1                                           |
| 1,1-Dichloroethane                                                            |                                             | ND      | 0.020     |           | ND         | 0.081    |                              |           | 1                                           |
| Methyl tert butyl ether                                                       |                                             | ND      | 0.200     |           | ND         | 0.721    |                              |           | 1                                           |
| 2-Butanone                                                                    |                                             | ND      | 0.500     |           | ND         | 1.47     |                              |           | 1                                           |
| cis-1,2-Dichloroethene                                                        |                                             | ND      | 0.020     |           | ND         | 0.079    |                              |           | 1                                           |
| Chloroform                                                                    |                                             | ND      | 0.020     |           | ND         | 0.098    |                              |           | 1                                           |
| 1,2-Dichloroethane                                                            |                                             | ND      | 0.020     |           | ND         | 0.081    |                              |           | 1                                           |
| 1,1,1-Trichloroethane                                                         |                                             | ND      | 0.020     |           | ND         | 0.109    |                              |           | 1                                           |
| Benzene                                                                       |                                             | ND      | 0.100     |           | ND         | 0.319    |                              |           | 1                                           |
| Carbon tetrachloride                                                          |                                             | ND      | 0.020     |           | ND         | 0.126    |                              |           | 1                                           |

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT



Serial\_No:03222116:08

L2111725

03/22/21

Lab Number:

Report Date:

| Serial_No:03222116:0 |          |  |  |  |  |  |
|----------------------|----------|--|--|--|--|--|
| Lab Number:          | L2111725 |  |  |  |  |  |

**Report Date:** 03/22/21

#### **Air Canister Certification Results**

| Lab ID:          | L2111725-10       | Date Collected: | 03/10/21 10:30 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 3235 SHELF 32 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

| Results ND | RL<br>0.092<br>0.134<br>0.360<br>0.107<br>0.091<br>2.05<br>0.091<br>0.109       | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dilution<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND         | 0.134<br>0.360<br>0.107<br>0.091<br>2.05<br>0.091<br>0.109                      | <br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND         | 0.134<br>0.360<br>0.107<br>0.091<br>2.05<br>0.091<br>0.109                      | <br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ND<br>ND<br>ND<br>ND<br>ND                     | 0.360<br>0.107<br>0.091<br>2.05<br>0.091<br>0.109                               | <br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ND<br>ND<br>ND<br>ND                           | 0.107<br>0.091<br>2.05<br>0.091<br>0.109                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ND<br>ND<br>ND<br>ND                           | 0.091<br>2.05<br>0.091<br>0.109                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND<br>ND<br>ND                                 | 2.05<br>0.091<br>0.109                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND<br>ND                                       | 0.091<br>0.109                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND                                             | 0.109                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND                                             | 0 4 0 0                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                | 0.188                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.170                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.154                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.136                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.137                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.461                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.087                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.174                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.207                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.085                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.137                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.087                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.983                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.098                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.098                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.098                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 1.04                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.120                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ND                                             | 0.120                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                | ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>N | ND         0.170           ND         0.154           ND         0.136           ND         0.137           ND         0.137           ND         0.461           ND         0.461           ND         0.087           ND         0.174           ND         0.207           ND         0.207           ND         0.085           ND         0.085           ND         0.087           ND         0.087           ND         0.087           ND         0.087           ND         0.087           ND         0.087           ND         0.098           ND         0.098           ND         0.098           ND         0.098           ND         1.04           ND         0.120 | ND         0.188            ND         0.170            ND         0.154            ND         0.136            ND         0.137            ND         0.461            ND         0.461            ND         0.461            ND         0.174            ND         0.174            ND         0.174            ND         0.137            ND         0.137            ND         0.137            ND         0.085            ND         0.085            ND         0.087            ND         0.087            ND         0.087            ND         0.087            ND         0.098            ND         0.098            ND         0.098            ND         0.098            ND         1.04 | ND         0.188            ND         0.170            ND         0.154            ND         0.136            ND         0.137            ND         0.137            ND         0.461            ND         0.087            ND         0.174            ND         0.207            ND         0.207            ND         0.137            ND         0.085            ND         0.087            ND         0.087            ND         0.087            ND         0.087            ND         0.0983            ND         0.098            ND         0.098            ND         0.098            ND         0.098            ND         1.04            ND         0.120 |



| Serial_No:03 | 3222116:08 |  |  |
|--------------|------------|--|--|
| Lab Number:  | L2111725   |  |  |
| Demant Dates | 00/00/04   |  |  |

**Report Date:** 03/22/21

#### **Air Canister Certification Results**

| Lab ID:          | L2111725-10       | Date Collected: | 03/10/21 10:30 |
|------------------|-------------------|-----------------|----------------|
| Client ID:       | CAN 3235 SHELF 32 | Date Received:  | 03/10/21       |
| Sample Location: |                   | Field Prep:     | Not Specified  |

|                                 |                   | ppbV   |  |            | ug/m3 |     | Dilution  |        |
|---------------------------------|-------------------|--------|--|------------|-------|-----|-----------|--------|
| Parameter                       | Results           | RL MDL |  | Results RL |       | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM | I - Mansfield Lab |        |  |            |       |     |           |        |
| sec-Butylbenzene                | ND                | 0.200  |  | ND         | 1.10  |     |           | 1      |
| p-Isopropyltoluene              | ND                | 0.200  |  | ND         | 1.10  |     |           | 1      |
| 1,2-Dichlorobenzene             | ND                | 0.020  |  | ND         | 0.120 |     |           | 1      |
| n-Butylbenzene                  | ND                | 0.200  |  | ND         | 1.10  |     |           | 1      |
| 1,2,4-Trichlorobenzene          | ND                | 0.050  |  | ND         | 0.371 |     |           | 1      |
| Naphthalene                     | ND                | 0.050  |  | ND         | 0.262 |     |           | 1      |
| 1,2,3-Trichlorobenzene          | ND                | 0.050  |  | ND         | 0.371 |     |           | 1      |
| Hexachlorobutadiene             | ND                | 0.050  |  | ND         | 0.533 |     |           | 1      |
|                                 |                   |        |  |            |       |     |           |        |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 83         |           | 60-140                 |
| bromochloromethane  | 85         |           | 60-140                 |
| chlorobenzene-d5    | 84         |           | 60-140                 |



#### Project Name: 79 PONDFIELD ROAD Project Number: 11663

Serial\_No:03222116:08 Lab Number: L2112883 Report Date: 03/22/21

#### Sample Receipt and Container Information

Were project specific reporting limits specified?

#### **Cooler Information**

| Cooler | Custody Seal |
|--------|--------------|
| NA     | Absent       |

#### Container Information

| Container Info | rmation              |        | Initial | Final | Temp  |      |        | Frozen    |                          |
|----------------|----------------------|--------|---------|-------|-------|------|--------|-----------|--------------------------|
| Container ID   | Container Type       | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)              |
| L2112883-01A   | Canister - 2.7 Liter | NA     | NA      |       |       | Y    | Absent |           | TO15-LL(30)              |
| L2112883-02A   | Canister - 6 Liter   | NA     | NA      |       |       | Y    | Absent |           | TO15-SIM(30),TO15-LL(30) |
| L2112883-03A   | Canister - 6 Liter   | NA     | NA      |       |       | Y    | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2112883-04A   | Canister - 6 Liter   | NA     | NA      |       |       | Y    | Absent |           | TO15-LL(30),TO15-SIM(30) |
| L2112883-05A   | Canister - 6 Liter   | NA     | NA      |       |       | Y    | Absent |           | CLEAN-FEE()              |
| L2112883-06A   | Canister - 2.7 Liter | NA     | NA      |       |       | Y    | Absent |           | CLEAN-FEE()              |

YES



#### Project Name: 79 PONDFIELD ROAD

Project Number: 11663

#### Lab Number: L2112883

#### **Report Date:** 03/22/21

#### GLOSSARY

#### Acronyms

| ,,,,,    |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | <ul> <li>Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when<br/>those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments<br/>from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)</li> </ul>                                                                     |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | <ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for<br/>which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated<br/>using the native concentration, including estimated values.</li> </ul>                                                                                                         |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | <ul> <li>No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile<br/>Organic TIC only requests.</li> </ul>                                                                                                                                                                                                                                                                             |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: Data Usability Report



#### **Project Name:** 79 PONDFIELD ROAD

**Project Number:** 11663

#### Lab Number: L2112883

**Report Date:** 03/22/21

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



#### Serial\_No:03222116:08

#### Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number: L2112883

**Report Date:** 03/22/21

#### Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report



Project Name: 79 PONDFIELD ROAD Project Number: 11663 
 Lab Number:
 L2112883

 Report Date:
 03/22/21

#### REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

#### LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



#### **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA** 8270D/8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

EPA 8082A: <u>NPW</u>: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. Biological Tissue Matrix: EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7**: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Serial\_No:03222116:08

| AUDUA                          |                                                                 | NALYSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PAGEOF                                 | Date Re           | ec'd in Lab:                      | 5/16/21                     |            | ALPHA Job                       | #: Lalla883                                                                                          |
|--------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------|-----------------------------------|-----------------------------|------------|---------------------------------|------------------------------------------------------------------------------------------------------|
| 320 Forbes Blvd, Ma            | CHAIN OF CUSTODY<br>nsfield, MA 02048                           | Project Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | second and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | Repor             | rt Informati                      | on - Data Deli              | iverables  | Billing Infor                   |                                                                                                      |
|                                | FAX: 508-822-3288                                               | Project Name?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | And the second sec                                                                                                                                                                                                                                             | IRd                                    | L FAX             |                                   |                             |            | Came as Clie                    | ent info PO #: 11663                                                                                 |
| <b>Client Information</b>      |                                                                 | Project Locatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n: Bronk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sille NY                               | C ADE             | =x<br>Criteria Check              | er;                         |            |                                 |                                                                                                      |
| Client: SE                     | I.                                                              | Project #: [[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                      |                   | (Delault based or<br>ther Formats | n Regulatory Criteria<br>S: | Indicated) |                                 |                                                                                                      |
| Address:                       | Maple Are                                                       | CONTRACT OF A DATA STREET, STR | ar Partilicia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | letano                                 |                   | AIL (standard<br>litional Delive  |                             |            |                                 | Requirements/Report Limit                                                                            |
| Fine                           | Brook NJ                                                        | ALPHA Quote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Conception of the local division of the loca | Million Wester                         |                   | to: (rateret the                  |                             |            | State/Fed                       | Program Res / Comm                                                                                   |
| Phone: 975                     | -808 - 9050                                                     | Turn-Aroun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Wilson and so a                        | Report            | ser. in otherers that             | r Project Manager)          |            |                                 |                                                                                                      |
| Fax:                           | 1 71                                                            | Standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RUSH Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y conterned if pre-approved()          |                   |                                   |                             |            | All and the second              |                                                                                                      |
|                                | ia. petrino a sesion                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:                                  |                   |                                   |                             |            | ANALY                           | ISIS                                                                                                 |
|                                | e been previously analyzed by Alpha<br>pecific Requirements/Con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | time:                                  |                   |                                   |                             |            |                                 | 0.15                                                                                                 |
|                                | Target Compound List:                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             | /          |                                 | F / /                                                                                                |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   | Cold Discourses - Handle          |                             | /          | er monte                        |                                                                                                      |
|                                | A                                                               | II Colur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | low Must                               | Be F              | Filled                            | Out                         | 2          | APH Junimer Inc.<br>Fixed Gases | //                                                                                                   |
| ALPHA Lab ID<br>(Lab Use Only) | Sample ID                                                       | End Date   Star                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | COLLECTION<br>Time End Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ON<br>Initial Final<br>e Vacuum Vacuum | Sample<br>Matrix* |                                   | enters eller                | - Flow     | APH Summer                      | Sample Comments (i.e. PID                                                                            |
| 12883-01                       | VP-3                                                            | 3 15 21 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -30.41 -5.40                           | SV                | 3(52                              | 71 152 07                   | 49         |                                 |                                                                                                      |
| -07                            | AA-1                                                            | 8:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52 16:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) -31.02 -8.97                         | AA                | JUI                               | 61 28910                    | 24 -       |                                 |                                                                                                      |
| -03                            | A4 - 2                                                          | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -31,23-9.98                            | 1                 |                                   | L18290                      | 144 1      |                                 |                                                                                                      |
|                                | A1 - 3                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50 16:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-31.09 -8.6                           | 2 1               |                                   | 11/100                      | 159        |                                 |                                                                                                      |
| -af                            | 1717-3                                                          | VT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -31.07 8.0.                            | V                 | V                                 | PLOTS C                     | 151        |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             | _          |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   | _                           |            |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             |            |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             |            |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             |            |                                 |                                                                                                      |
|                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                   |                                   |                             |            |                                 |                                                                                                      |
| *SAMPLE                        | MATRIX CODES                                                    | AA = Ambient Air (<br>SV = Soil Vapor/La<br>Other = Please Spec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ndfill Gas/SVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |                   | Cont                              | tainer Type                 |            |                                 | Please print clearly, legibly and<br>completely. Samples can not be<br>logged in and turnaround time |
|                                |                                                                 | Relinquished                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date/Time                              |                   | Received                          | d By:                       | D          | ate/Time:                       | clock will not start until any ambi-<br>guilies are resolved. All samples                            |
|                                | Jet                                                             | y Lombar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 315/21 18:0                            | 2 60              | D. E.C                            | als un                      | 3/15       | A 18:00                         | submitted are subject to Alpha's<br>Terms and Conditions.                                            |
| Page 64 of 64                  | Sep-15)                                                         | Dr. Oarsan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Adu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1201514/20                             | A L               | with                              | 2 il                        | 3/16/      | 21 0700                         | See reverse side.                                                                                    |



#### ANALYTICAL REPORT

| Lab Number:     | L2111970                                                                     |
|-----------------|------------------------------------------------------------------------------|
| Client:         | Soils Engineering Services, Inc.<br>12A Maple Avenue<br>Pine Brook, NJ 07058 |
| ATTN:           | Patricia Petrino                                                             |
| Phone:          | (973) 808-9050                                                               |
| Project Name:   | 79 PONDFIELD ROAD                                                            |
| Project Number: | 11663                                                                        |
| Report Date:    | 03/17/21                                                                     |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com



Project Name:79 PONDFIELD ROADProject Number:11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

| Alpha<br>Sample ID | Client ID       | Matrix     | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-----------------|------------|--------------------|-------------------------|--------------|
| L2111970-01        | VP-2            | SOIL_VAPOR | BRONXVILLE, NY     | 03/10/21 14:18          | 03/10/21     |
| L2111970-02        | VP-1            | SOIL_VAPOR | BRONXVILLE, NY     | 03/10/21 14:03          | 03/10/21     |
| L2111970-03        | UNUSED CAN #209 | SOIL_VAPOR | BRONXVILLE, NY     |                         | 03/10/21     |



Project Name: 79 PONDFIELD ROAD Project Number: 11663 Lab Number: L2111970 Report Date: 03/17/21

#### **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: 79 PONDFIELD ROAD Project Number: 11663 
 Lab Number:
 L2111970

 Report Date:
 03/17/21

**Case Narrative (continued)** 

Volatile Organics in Air

Canisters were released from the laboratory on March 10, 2021. The canister certification results are provided as an addendum.

The WG1475096-3 LCS recoveries for bromoform (132%), 1,2,4-trichlorobenzene (138%) and hexachlorobutadiene (133%) are above the upper 130% acceptance limit. All samples associated with this LCS do not have reportable amounts of these analytes.

Sample Receipt

The client submitted a revised CoC to change the sample ID for the L2111970-01 sample to VP-2. The original CoC is included to document the transfer of custody of the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative

Date: 03/17/21



## AIR



## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

#### SAMPLE RESULTS

# Lab ID:L2111970-01Client ID:VP-2Sample Location:BRONXVILLE, NY

| Matrix:           | Soil_Vapor     |
|-------------------|----------------|
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/17/21 04:24 |
| Analyst:          | RY             |

| Date Collected: | 03/10/21 14:18 |
|-----------------|----------------|
| Date Received:  | 03/10/21       |
| Field Prep:     | Not Specified  |

|                                |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Man | sfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.450      | 0.200 |     | 2.23    | 0.989 |     |           | 1        |
| Chloromethane                  | 0.357      | 0.200 |     | 0.737   | 0.413 |     |           | 1        |
| Freon-114                      | ND         | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Vinyl chloride                 | ND         | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                  | ND         | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND         | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND         | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 107        | 5.00  |     | 202     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND         | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 35.3       | 1.00  |     | 83.9    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.230      | 0.200 |     | 1.29    | 1.12  |     |           | 1        |
| Isopropanol                    | 27.1       | 0.500 |     | 66.6    | 1.23  |     |           | 1        |
| 1,1-Dichloroethene             | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol         | 2.08       | 0.500 |     | 6.31    | 1.52  |     |           | 1        |
| Methylene chloride             | ND         | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND         | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND         | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND         | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 7.45       | 0.500 |     | 22.0    | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene         | ND         | 0.200 |     | ND      | 0.793 |     |           | 1        |



03/10/21 14:18

Not Specified

03/10/21

## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

## Lab ID:L2111970-01Client ID:VP-2Sample Location:BRONXVILLE, NY

| Sample Depth:                   |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mans | sfield Lab |       |     |         |       |     |           |          |
| Ethyl Acetate                   | 48.8       | 0.500 |     | 176     | 1.80  |     |           | 1        |
| Chloroform                      | ND         | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                 | 0.861      | 0.500 |     | 2.54    | 1.47  |     |           | 1        |
| 1,2-Dichloroethane              | ND         | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                        | ND         | 0.200 |     | ND      | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane           | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Benzene                         | 0.256      | 0.200 |     | 0.818   | 0.639 |     |           | 1        |
| Carbon tetrachloride            | ND         | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                     | ND         | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane             | ND         | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane            | ND         | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                     | ND         | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                 | 0.262      | 0.200 |     | 1.41    | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane          | 0.254      | 0.200 |     | 1.19    | 0.934 |     |           | 1        |
| Heptane                         | 0.248      | 0.200 |     | 1.02    | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene         | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone            | ND         | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene       | ND         | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane           | ND         | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                         | 21.2       | 0.200 |     | 79.9    | 0.754 |     |           | 1        |
| 2-Hexanone                      | 0.308      | 0.200 |     | 1.26    | 0.820 |     |           | 1        |
| Dibromochloromethane            | ND         | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane               | ND         | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene               | 7.08       | 0.200 |     | 48.0    | 1.36  |     |           | 1        |
| Chlorobenzene                   | ND         | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                    | ND         | 0.200 |     | ND      | 0.869 |     |           | 1        |
|                                 |            |       |     |         |       |     |           |          |



03/10/21 14:18

Not Specified

03/10/21

## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

## Lab ID:L2111970-01Client ID:VP-2Sample Location:BRONXVILLE, NY

|                                 |            | ppbV  |     |         | ug/m3 |     |           | Dilution |
|---------------------------------|------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results    | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mans | sfield Lab |       |     |         |       |     |           |          |
| p/m-Xylene                      | 0.750      | 0.400 |     | 3.26    | 1.74  |     |           | 1        |
| Bromoform                       | ND         | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                         | ND         | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane       | ND         | 0.200 |     | ND      | 1.37  |     |           | 1        |
| o-Xylene                        | 0.321      | 0.200 |     | 1.39    | 0.869 |     |           | 1        |
| 4-Ethyltoluene                  | ND         | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene          | 0.255      | 0.200 |     | 1.25    | 0.983 |     |           | 1        |
| 1,2,4-Trimethylbenzene          | 0.893      | 0.200 |     | 4.39    | 0.983 |     |           | 1        |
| Benzyl chloride                 | ND         | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene             | 0.335      | 0.200 |     | 2.01    | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene             | ND         | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene             | ND         | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene          | ND         | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene             | ND         | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                                 |            |       |     |         |       |     |           |          |

|                     |            |           | Acceptance |
|---------------------|------------|-----------|------------|
| Internal Standard   | % Recovery | Qualifier | Criteria   |
| 1,4-Difluorobenzene | 100        |           | 60-140     |
| Bromochloromethane  | 112        |           | 60-140     |
| chlorobenzene-d5    | 121        |           | 60-140     |



## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

#### SAMPLE RESULTS

# Lab ID:L2111970-02Client ID:VP-1Sample Location:BRONXVILLE, NY

| Matrix:           | Soil_Vapor     |
|-------------------|----------------|
| Anaytical Method: | 48,TO-15       |
| Analytical Date:  | 03/17/21 05:03 |
| Analyst:          | RY             |

| Date Collected: | 03/10/21 14:03 |
|-----------------|----------------|
| Date Received:  | 03/10/21       |
| Field Prep:     | Not Specified  |

|                                | _           | ppbV  |     |         | ug/m3 |     |           | Dilution |
|--------------------------------|-------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                      | Results     | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mar | nsfield Lab |       |     |         |       |     |           |          |
| Dichlorodifluoromethane        | 0.441       | 0.200 |     | 2.18    | 0.989 |     |           | 1        |
| Chloromethane                  | ND          | 0.200 |     | ND      | 0.413 |     |           | 1        |
| Freon-114                      | ND          | 0.200 |     | ND      | 1.40  |     |           | 1        |
| Vinyl chloride                 | ND          | 0.200 |     | ND      | 0.511 |     |           | 1        |
| 1,3-Butadiene                  | ND          | 0.200 |     | ND      | 0.442 |     |           | 1        |
| Bromomethane                   | ND          | 0.200 |     | ND      | 0.777 |     |           | 1        |
| Chloroethane                   | ND          | 0.200 |     | ND      | 0.528 |     |           | 1        |
| Ethanol                        | 95.6        | 5.00  |     | 180     | 9.42  |     |           | 1        |
| Vinyl bromide                  | ND          | 0.200 |     | ND      | 0.874 |     |           | 1        |
| Acetone                        | 25.5        | 1.00  |     | 60.6    | 2.38  |     |           | 1        |
| Trichlorofluoromethane         | 0.243       | 0.200 |     | 1.37    | 1.12  |     |           | 1        |
| Isopropanol                    | 25.0        | 0.500 |     | 61.5    | 1.23  |     |           | 1        |
| 1,1-Dichloroethene             | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol         | 0.826       | 0.500 |     | 2.50    | 1.52  |     |           | 1        |
| Methylene chloride             | ND          | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                | ND          | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide               | ND          | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                      | ND          | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene       | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane             | ND          | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether        | ND          | 0.200 |     | ND      | 0.721 |     |           | 1        |
| 2-Butanone                     | 6.42        | 0.500 |     | 18.9    | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene         | ND          | 0.200 |     | ND      | 0.793 |     |           | 1        |



03/10/21 14:03

Not Specified

03/10/21

## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

## Lab ID:L2111970-02Client ID:VP-1Sample Location:BRONXVILLE, NY

| Sample Depth:                      | ррьV    |       |     | ug/m3   |       |     |           | Dilution |
|------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfie | ld Lab  |       |     |         |       |     |           |          |
| Ethyl Acetate                      | 43.9    | 0.500 |     | 158     | 1.80  |     |           | 1        |
| Chloroform                         | ND      | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                    | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 1,2-Dichloroethane                 | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                           | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane              | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Benzene                            | 0.264   | 0.200 |     | 0.843   | 0.639 |     |           | 1        |
| Carbon tetrachloride               | ND      | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                        | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| 1,2-Dichloropropane                | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane               | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                        | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                    | 0.312   | 0.200 |     | 1.68    | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane             | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Heptane                            | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene            | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone               | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene          | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane              | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                            | 21.3    | 0.200 |     | 80.3    | 0.754 |     |           | 1        |
| 2-Hexanone                         | 0.286   | 0.200 |     | 1.17    | 0.820 |     |           | 1        |
| Dibromochloromethane               | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                  | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Tetrachloroethene                  | 4.00    | 0.200 |     | 27.1    | 1.36  |     |           | 1        |
| Chlorobenzene                      | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                       | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |



03/10/21 14:03

Not Specified

03/10/21

## Project Name: 79 PONDFIELD ROAD Project Number: 11663

 Lab Number:
 L2111970

 Report Date:
 03/17/21

Date Collected:

Date Received:

Field Prep:

#### SAMPLE RESULTS

## Lab ID:L2111970-02Client ID:VP-1Sample Location:BRONXVILLE, NY

|         | ppbV                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ug/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dilution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Results | RL                                                                                                                                    | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| eld Lab |                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.738   | 0.400                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.305   | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.869                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.236   | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.847   | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0.351   | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ND      | 0.200                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | eld Lab<br>0.738<br>ND<br>ND<br>ND<br>0.305<br>ND<br>0.236<br>0.847<br>ND<br>0.351<br>ND<br>0.351<br>ND<br>0.351<br>ND<br>0.351<br>ND | Results         RL           eld Lab         0.738         0.400           ND         0.200           ND         0.200           ND         0.200           ND         0.200           ND         0.200           ND         0.200           0.305         0.200           0.305         0.200           0.236         0.200           0.847         0.200           ND         0.200 | Results         RL         MDL           eld Lab         0.738         0.400            ND         0.200            ND         0.200            ND         0.200            ND         0.200            ND         0.200            0.305         0.200            0.305         0.200            0.236         0.200            0.847         0.200            0.351         0.200            ND         0.200 | Results         RL         MDL         Results           eld Lab         0.738         0.400          3.21           ND         0.200          ND           0.305         0.200          ND           0.305         0.200          ND           0.236         0.200          ND           0.236         0.200          ND           0.351         0.200          ND           0.351         0.200          ND           ND         0.200          ND           ND         0.200          ND           ND         0.200          ND | Results         RL         MDL         Results         RL           eld Lab         0.738         0.400          3.21         1.74           ND         0.200          ND         2.07           ND         0.200          ND         0.852           ND         0.200          ND         0.983           0.416         0.983         0.847         0.200          ND         1.04           0.351         0.200          ND         1.20         ND         1.20           ND         0.200          ND         1.20         ND         1.48 <td>Results         RL         MDL         Results         RL         MDL           eld Lab         0.738         0.400          3.21         1.74            ND         0.200          ND         2.07            ND         0.200          ND         2.07            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         1.37            0.305         0.200          ND         0.983            0.236         0.200          ND         0.983            0.847         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48</td> <td>Results         RL         MDL         Results         RL         MDL         Qualifier           eld Lab         0.738         0.400          3.21         1.74             ND         0.200          ND         2.07              ND         0.200          ND         0.852              ND         0.200          ND         0.852              ND         0.200          ND         0.852              ND         0.200          ND         0.852              0.305         0.200          ND         0.853              0.305         0.200          ND         0.983              0.236         0.200          ND         1.04             0.351         0.200          ND         1.20             ND         0.200        </td> | Results         RL         MDL         Results         RL         MDL           eld Lab         0.738         0.400          3.21         1.74            ND         0.200          ND         2.07            ND         0.200          ND         2.07            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         0.852            ND         0.200          ND         1.37            0.305         0.200          ND         0.983            0.236         0.200          ND         0.983            0.847         0.200          ND         1.04            ND         0.200          ND         1.20            ND         0.200          ND         1.20            ND         0.200          ND         1.48 | Results         RL         MDL         Results         RL         MDL         Qualifier           eld Lab         0.738         0.400          3.21         1.74             ND         0.200          ND         2.07              ND         0.200          ND         0.852              ND         0.200          ND         0.852              ND         0.200          ND         0.852              ND         0.200          ND         0.852              0.305         0.200          ND         0.853              0.305         0.200          ND         0.983              0.236         0.200          ND         1.04             0.351         0.200          ND         1.20             ND         0.200 |

|                     |            |           | Acceptance |
|---------------------|------------|-----------|------------|
| Internal Standard   | % Recovery | Qualifier | Criteria   |
| 1,4-Difluorobenzene | 99         |           | 60-140     |
| Bromochloromethane  | 110        |           | 60-140     |
| chlorobenzene-d5    | 112        |           | 60-140     |



**Report Date:** 03/17/21

#### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/16/21 15:37

|                                     |                 | ppbV        |          | ug/m3     |       |     |           | Dilution |
|-------------------------------------|-----------------|-------------|----------|-----------|-------|-----|-----------|----------|
| Parameter                           | Results         | RL          | MDL      | Results   | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfiel | ld Lab for samp | ole(s): 01- | 02 Batch | : WG14750 | 96-4  |     |           |          |
| Dichlorodifluoromethane             | ND              | 0.200       |          | ND        | 0.989 |     |           | 1        |
| Chloromethane                       | ND              | 0.200       |          | ND        | 0.413 |     |           | 1        |
| Freon-114                           | ND              | 0.200       |          | ND        | 1.40  |     |           | 1        |
| Vinyl chloride                      | ND              | 0.200       |          | ND        | 0.511 |     |           | 1        |
| 1,3-Butadiene                       | ND              | 0.200       |          | ND        | 0.442 |     |           | 1        |
| Bromomethane                        | ND              | 0.200       |          | ND        | 0.777 |     |           | 1        |
| Chloroethane                        | ND              | 0.200       |          | ND        | 0.528 |     |           | 1        |
| Ethanol                             | ND              | 5.00        |          | ND        | 9.42  |     |           | 1        |
| Vinyl bromide                       | ND              | 0.200       |          | ND        | 0.874 |     |           | 1        |
| Acetone                             | ND              | 1.00        |          | ND        | 2.38  |     |           | 1        |
| Trichlorofluoromethane              | ND              | 0.200       |          | ND        | 1.12  |     |           | 1        |
| Isopropanol                         | ND              | 0.500       |          | ND        | 1.23  |     |           | 1        |
| 1,1-Dichloroethene                  | ND              | 0.200       |          | ND        | 0.793 |     |           | 1        |
| Tertiary butyl Alcohol              | ND              | 0.500       |          | ND        | 1.52  |     |           | 1        |
| Methylene chloride                  | ND              | 0.500       |          | ND        | 1.74  |     |           | 1        |
| 3-Chloropropene                     | ND              | 0.200       |          | ND        | 0.626 |     |           | 1        |
| Carbon disulfide                    | ND              | 0.200       |          | ND        | 0.623 |     |           | 1        |
| Freon-113                           | ND              | 0.200       |          | ND        | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene            | ND              | 0.200       |          | ND        | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                  | ND              | 0.200       |          | ND        | 0.809 |     |           | 1        |
| Methyl tert butyl ether             | ND              | 0.200       |          | ND        | 0.721 |     |           | 1        |
| 2-Butanone                          | ND              | 0.500       |          | ND        | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene              | ND              | 0.200       |          | ND        | 0.793 |     |           | 1        |
| Ethyl Acetate                       | ND              | 0.500       |          | ND        | 1.80  |     |           | 1        |
| Chloroform                          | ND              | 0.200       |          | ND        | 0.977 |     |           | 1        |



**Report Date:** 03/17/21

#### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/16/21 15:37

|                           |                         | ppbV         |          |           | ug/m3 |     |           | Dilution |
|---------------------------|-------------------------|--------------|----------|-----------|-------|-----|-----------|----------|
| Parameter                 | Results                 | RL           | MDL      | Results   | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air  | - Mansfield Lab for sam | ole(s): 01-0 | 02 Batch | : WG14750 | 96-4  |     |           |          |
| Tetrahydrofuran           | ND                      | 0.500        |          | ND        | 1.47  |     |           | 1        |
| 1,2-Dichloroethane        | ND                      | 0.200        |          | ND        | 0.809 |     |           | 1        |
| n-Hexane                  | ND                      | 0.200        |          | ND        | 0.705 |     |           | 1        |
| 1,1,1-Trichloroethane     | ND                      | 0.200        |          | ND        | 1.09  |     |           | 1        |
| Benzene                   | ND                      | 0.200        |          | ND        | 0.639 |     |           | 1        |
| Carbon tetrachloride      | ND                      | 0.200        |          | ND        | 1.26  |     |           | 1        |
| Cyclohexane               | ND                      | 0.200        |          | ND        | 0.688 |     |           | 1        |
| 1,2-Dichloropropane       | ND                      | 0.200        |          | ND        | 0.924 |     |           | 1        |
| Bromodichloromethane      | ND                      | 0.200        |          | ND        | 1.34  |     |           | 1        |
| 1,4-Dioxane               | ND                      | 0.200        |          | ND        | 0.721 |     |           | 1        |
| Trichloroethene           | ND                      | 0.200        |          | ND        | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane    | ND                      | 0.200        |          | ND        | 0.934 |     |           | 1        |
| Heptane                   | ND                      | 0.200        |          | ND        | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene   | ND                      | 0.200        |          | ND        | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone      | ND                      | 0.500        |          | ND        | 2.05  |     |           | 1        |
| trans-1,3-Dichloropropene | ND                      | 0.200        |          | ND        | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane     | ND                      | 0.200        |          | ND        | 1.09  |     |           | 1        |
| Toluene                   | ND                      | 0.200        |          | ND        | 0.754 |     |           | 1        |
| 2-Hexanone                | ND                      | 0.200        |          | ND        | 0.820 |     |           | 1        |
| Dibromochloromethane      | ND                      | 0.200        |          | ND        | 1.70  |     |           | 1        |
| 1,2-Dibromoethane         | ND                      | 0.200        |          | ND        | 1.54  |     |           | 1        |
| Tetrachloroethene         | ND                      | 0.200        |          | ND        | 1.36  |     |           | 1        |
| Chlorobenzene             | ND                      | 0.200        |          | ND        | 0.921 |     |           | 1        |
| Ethylbenzene              | ND                      | 0.200        |          | ND        | 0.869 |     |           | 1        |
| p/m-Xylene                | ND                      | 0.400        |          | ND        | 1.74  |     |           | 1        |
|                           |                         |              |          |           |       |     |           |          |



**Report Date:** 03/17/21

#### Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 03/16/21 15:37

|                                  |                   | ppbV        |           |            | ug/m3 |     |           | Dilution |
|----------------------------------|-------------------|-------------|-----------|------------|-------|-----|-----------|----------|
| Parameter                        | Results           | RL          | MDL       | Results    | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansf | ield Lab for samp | ole(s): 01- | -02 Batch | n: WG14750 | 96-4  |     |           |          |
| Bromoform                        | ND                | 0.200       |           | ND         | 2.07  |     |           | 1        |
| Styrene                          | ND                | 0.200       |           | ND         | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane        | ND                | 0.200       |           | ND         | 1.37  |     |           | 1        |
| o-Xylene                         | ND                | 0.200       |           | ND         | 0.869 |     |           | 1        |
| 4-Ethyltoluene                   | ND                | 0.200       |           | ND         | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene           | ND                | 0.200       |           | ND         | 0.983 |     |           | 1        |
| 1,2,4-Trimethylbenzene           | ND                | 0.200       |           | ND         | 0.983 |     |           | 1        |
| Benzyl chloride                  | ND                | 0.200       |           | ND         | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene              | ND                | 0.200       |           | ND         | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene              | ND                | 0.200       |           | ND         | 1.20  |     |           | 1        |
| 1,2-Dichlorobenzene              | ND                | 0.200       |           | ND         | 1.20  |     |           | 1        |
| 1,2,4-Trichlorobenzene           | ND                | 0.200       |           | ND         | 1.48  |     |           | 1        |
| Hexachlorobutadiene              | ND                | 0.200       |           | ND         | 2.13  |     |           | 1        |
|                                  |                   |             |           |            |       |     |           |          |



### Lab Control Sample Analysis Batch Quality Control

Project Number: 11663 Lab Number: L2111970 03/17/21

Report Date:

| arameter                                    | LCS<br>%Recovery    | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|---------------------------------------------|---------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| olatile Organics in Air - Mansfield Lab Ass | sociated sample(s): | 01-02 | Batch: WG147509   | 96-3 |                     |     |      |               |
| Dichlorodifluoromethane                     | 107                 |       | -                 |      | 70-130              | -   |      |               |
| Chloromethane                               | 84                  |       | -                 |      | 70-130              | -   |      |               |
| Freon-114                                   | 97                  |       | -                 |      | 70-130              | -   |      |               |
| Vinyl chloride                              | 88                  |       | -                 |      | 70-130              | -   |      |               |
| 1,3-Butadiene                               | 83                  |       | -                 |      | 70-130              | -   |      |               |
| Bromomethane                                | 96                  |       | -                 |      | 70-130              | -   |      |               |
| Chloroethane                                | 90                  |       | -                 |      | 70-130              | -   |      |               |
| Ethanol                                     | 63                  |       | -                 |      | 40-160              | -   |      |               |
| Vinyl bromide                               | 102                 |       | -                 |      | 70-130              | -   |      |               |
| Acetone                                     | 90                  |       | -                 |      | 40-160              | -   |      |               |
| Trichlorofluoromethane                      | 128                 |       | -                 |      | 70-130              | -   |      |               |
| Isopropanol                                 | 81                  |       | -                 |      | 40-160              | -   |      |               |
| 1,1-Dichloroethene                          | 106                 |       | -                 |      | 70-130              | -   |      |               |
| Tertiary butyl Alcohol                      | 80                  |       | -                 |      | 70-130              | -   |      |               |
| Methylene chloride                          | 96                  |       | -                 |      | 70-130              | -   |      |               |
| 3-Chloropropene                             | 103                 |       | -                 |      | 70-130              | -   |      |               |
| Carbon disulfide                            | 97                  |       | -                 |      | 70-130              | -   |      |               |
| Freon-113                                   | 118                 |       | -                 |      | 70-130              | -   |      |               |
| trans-1,2-Dichloroethene                    | 103                 |       | -                 |      | 70-130              | -   |      |               |
| 1,1-Dichloroethane                          | 106                 |       | -                 |      | 70-130              | -   |      |               |
| Methyl tert butyl ether                     | 98                  |       | -                 |      | 70-130              | -   |      |               |
| 2-Butanone                                  | 100                 |       | -                 |      | 70-130              | -   |      |               |
| cis-1,2-Dichloroethene                      | 107                 |       | -                 |      | 70-130              | -   |      |               |



### Lab Control Sample Analysis Batch Quality Control

Project Number: 11663

Lab Number: L2111970

Report Date: 03/17/21

| Parameter                                | LCS<br>%Recovery      | Qual  | LCSD<br>%Recovery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|-----------------------|-------|-------------------|------|---------------------|-----|------|---------------|
| /olatile Organics in Air - Mansfield Lab | Associated sample(s): | 01-02 | Batch: WG14750    | 96-3 |                     |     |      |               |
| Ethyl Acetate                            | 100                   |       | -                 |      | 70-130              | -   |      |               |
| Chloroform                               | 109                   |       | -                 |      | 70-130              | -   |      |               |
| Tetrahydrofuran                          | 96                    |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloroethane                       | 110                   |       | -                 |      | 70-130              | -   |      |               |
| n-Hexane                                 | 81                    |       | -                 |      | 70-130              | -   |      |               |
| 1,1,1-Trichloroethane                    | 97                    |       | -                 |      | 70-130              | -   |      |               |
| Benzene                                  | 84                    |       | -                 |      | 70-130              | -   |      |               |
| Carbon tetrachloride                     | 104                   |       | -                 |      | 70-130              | -   |      |               |
| Cyclohexane                              | 81                    |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dichloropropane                      | 89                    |       | -                 |      | 70-130              | -   |      |               |
| Bromodichloromethane                     | 93                    |       | -                 |      | 70-130              | -   |      |               |
| 1,4-Dioxane                              | 86                    |       | -                 |      | 70-130              | -   |      |               |
| Trichloroethene                          | 94                    |       | -                 |      | 70-130              | -   |      |               |
| 2,2,4-Trimethylpentane                   | 84                    |       | -                 |      | 70-130              | -   |      |               |
| Heptane                                  | 85                    |       | -                 |      | 70-130              | -   |      |               |
| cis-1,3-Dichloropropene                  | 92                    |       | -                 |      | 70-130              | -   |      |               |
| 4-Methyl-2-pentanone                     | 84                    |       | -                 |      | 70-130              | -   |      |               |
| trans-1,3-Dichloropropene                | 80                    |       | -                 |      | 70-130              | -   |      |               |
| 1,1,2-Trichloroethane                    | 98                    |       | -                 |      | 70-130              | -   |      |               |
| Toluene                                  | 98                    |       | -                 |      | 70-130              | -   |      |               |
| 2-Hexanone                               | 90                    |       | -                 |      | 70-130              | -   |      |               |
| Dibromochloromethane                     | 119                   |       | -                 |      | 70-130              | -   |      |               |
| 1,2-Dibromoethane                        | 111                   |       | -                 |      | 70-130              | -   |      |               |



### Lab Control Sample Analysis Batch Quality Control

Project Number: 11663

Lab Number: L2111970

Report Date: 03/17/21

| Parameter                                | LCS<br>%Recovery      | Qual  |          | SD<br>covery | Qual | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|------------------------------------------|-----------------------|-------|----------|--------------|------|---------------------|-----|------|---------------|
| /olatile Organics in Air - Mansfield Lab | Associated sample(s): | 01-02 | Batch: W | /G147509     | 6-3  |                     |     |      |               |
| Tetrachloroethene                        | 110                   |       |          | -            |      | 70-130              | -   |      |               |
| Chlorobenzene                            | 107                   |       |          | -            |      | 70-130              | -   |      |               |
| Ethylbenzene                             | 109                   |       |          | -            |      | 70-130              | -   |      |               |
| p/m-Xylene                               | 112                   |       |          | -            |      | 70-130              | -   |      |               |
| Bromoform                                | 132                   | Q     |          | -            |      | 70-130              | -   |      |               |
| Styrene                                  | 112                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,1,2,2-Tetrachloroethane                | 110                   |       |          | -            |      | 70-130              | -   |      |               |
| o-Xylene                                 | 114                   |       |          | -            |      | 70-130              | -   |      |               |
| 4-Ethyltoluene                           | 118                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,3,5-Trimethylbenzene                   | 121                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,2,4-Trimethylbenzene                   | 126                   |       |          | -            |      | 70-130              | -   |      |               |
| Benzyl chloride                          | 113                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,3-Dichlorobenzene                      | 125                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,4-Dichlorobenzene                      | 128                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,2-Dichlorobenzene                      | 128                   |       |          | -            |      | 70-130              | -   |      |               |
| 1,2,4-Trichlorobenzene                   | 138                   | Q     |          | -            |      | 70-130              | -   |      |               |
| Hexachlorobutadiene                      | 133                   | Q     |          | -            |      | 70-130              | -   |      |               |



Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Serial\_No:03172115:30 Lab Number: L2111970

Report Date: 03/17/21

#### Canister and Flow Controller Information

|             |                 |          |            |                  |                 |                      |                   | Initial | Pressure | Flow                  |                    |                   |       |
|-------------|-----------------|----------|------------|------------------|-----------------|----------------------|-------------------|---------|----------|-----------------------|--------------------|-------------------|-------|
| Samplenum   | Client ID       | Media ID | Media Type | Date<br>Prepared | Bottle<br>Order | Cleaning<br>Batch ID | Can Leak<br>Check |         |          | Controler<br>Leak Chk | Flow Out<br>mL/min | Flow In<br>mL/min | % RPD |
| L2111970-01 | VP-2            | 0490     | Flow 4     | 03/10/21         | 345394          |                      | -                 | -       | -        | Pass                  | 200                | 196               | 2     |
| L2111970-01 | VP-2            | 1745     | 2.7L Can   | 03/10/21         | 345394          | L2110586-01          | Pass              | -29.8   | -4.9     | -                     | -                  | -                 | -     |
| L2111970-02 | VP-1            | 0242     | Flow 1     | 03/10/21         | 345394          |                      | -                 | -       | -        | Pass                  | 200                | 203               | 1     |
| L2111970-02 | VP-1            | 497      | 2.7L Can   | 03/10/21         | 345394          | L2110586-01          | Pass              | -29.0   | -4.3     | -                     | -                  | -                 | -     |
| L2111970-03 | UNUSED CAN #209 | 0352     | Flow 2     | 03/10/21         | 345394          |                      | -                 | -       | -        | Pass                  | 200                | 202               | 1     |
| L2111970-03 | UNUSED CAN #209 | 209      | 2.7L Can   | 03/10/21         | 345394          | L2110586-01          | Pass              | -29.1   | -29.1    | -                     | -                  | -                 | -     |



| Project Number:                                                               | CANISTER QC E                           | ЗАТ     |           |          |            | R           | eport D                      | Date: (   | )3/17/21                                    |
|-------------------------------------------------------------------------------|-----------------------------------------|---------|-----------|----------|------------|-------------|------------------------------|-----------|---------------------------------------------|
|                                                                               |                                         | Air Can | ister Cer | tificati | on Results |             |                              |           |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2110586-01<br>CAN 1738 SHE             | LF 1    |           |          |            | Date        | Collecte<br>Receive<br>Prep: |           | 03/03/21 16:00<br>03/04/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15<br>03/06/21 17:24<br>TS |         |           |          |            |             |                              |           |                                             |
| Deveryor                                                                      |                                         | Desults | ppbV      |          | Results    | ug/m3<br>RL |                              | Qualifier | Dilution<br>Factor                          |
| Parameter<br>Volatile Organics in A                                           | Air - Mansfield Lab                     | Results | RL        | MDL      | Results    | RL          | MDL                          | Quaimer   |                                             |
|                                                                               |                                         |         |           |          |            |             |                              |           |                                             |
| Chlorodifluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.707       |                              |           | 1                                           |
| Propylene                                                                     |                                         | ND      | 0.500     |          | ND         | 0.861       |                              |           | 1                                           |
| Propane                                                                       |                                         | ND      | 0.500     |          | ND         | 0.902       |                              |           | 1                                           |
| Dichlorodifluoromethane                                                       | )                                       | ND      | 0.200     |          | ND         | 0.989       |                              |           | 1                                           |
| Chloromethane                                                                 |                                         | ND      | 0.200     |          | ND         | 0.413       |                              |           | 1                                           |
| Freon-114                                                                     |                                         | ND      | 0.200     |          | ND         | 1.40        |                              |           | 1                                           |
| Methanol                                                                      |                                         | ND      | 5.00      |          | ND         | 6.55        |                              |           | 1                                           |
| Vinyl chloride                                                                |                                         | ND      | 0.200     |          | ND         | 0.511       |                              |           | 1                                           |
| 1,3-Butadiene                                                                 |                                         | ND      | 0.200     |          | ND         | 0.442       |                              |           | 1                                           |
| Butane                                                                        |                                         | ND      | 0.200     |          | ND         | 0.475       |                              |           | 1                                           |
| Bromomethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.777       |                              |           | 1                                           |
| Chloroethane                                                                  |                                         | ND      | 0.200     |          | ND         | 0.528       |                              |           | 1                                           |
| Ethanol                                                                       |                                         | ND      | 5.00      |          | ND         | 9.42        |                              |           | 1                                           |
| Dichlorofluoromethane                                                         |                                         | ND      | 0.200     |          | ND         | 0.842       |                              |           | 1                                           |
| Vinyl bromide                                                                 |                                         | ND      | 0.200     |          | ND         | 0.874       |                              |           | 1                                           |
| Acrolein                                                                      |                                         | ND      | 0.500     |          | ND         | 1.15        |                              |           | 1                                           |
| Acetone                                                                       |                                         | ND      | 1.00      |          | ND         | 2.38        |                              |           | 1                                           |
| Acetonitrile                                                                  |                                         | ND      | 0.200     |          | ND         | 0.336       |                              |           | 1                                           |
| Trichlorofluoromethane                                                        |                                         | ND      | 0.200     |          | ND         | 1.12        |                              |           | 1                                           |
| Isopropanol                                                                   |                                         | ND      | 0.500     |          | ND         | 1.23        |                              |           | 1                                           |
| Acrylonitrile                                                                 |                                         | ND      | 0.500     |          | ND         | 1.09        |                              |           | 1                                           |
| Pentane                                                                       |                                         | ND      | 0.200     |          | ND         | 0.590       |                              |           | 1                                           |
| Ethyl ether                                                                   |                                         | ND      | 0.200     |          | ND         | 0.606       |                              |           | 1                                           |
| 1,1-Dichloroethene                                                            |                                         | ND      | 0.200     |          | ND         | 0.793       |                              |           | 1                                           |

Project Name: BATCH CANISTER CERTIFICATION



Serial\_No:03172115:30 Lab Number: L2110586

| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

Serial\_No:03172115:30 Lab Number: L2110586 Report Date: 03/17/21

#### **Air Canister Certification Results**

| Lab ID:          | L2110586-01      | Date Collected: | 03/03/21 16:00 |
|------------------|------------------|-----------------|----------------|
| Client ID:       | CAN 1738 SHELF 1 | Date Received:  | 03/04/21       |
| Sample Location: |                  | Field Prep:     | Not Specified  |

|                                         | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|-----------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                               | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield La | ıb      |       |     |         |       |     |           |          |
| Tertiary butyl Alcohol                  | ND      | 0.500 |     | ND      | 1.52  |     |           | 1        |
| Methylene chloride                      | ND      | 0.500 |     | ND      | 1.74  |     |           | 1        |
| 3-Chloropropene                         | ND      | 0.200 |     | ND      | 0.626 |     |           | 1        |
| Carbon disulfide                        | ND      | 0.200 |     | ND      | 0.623 |     |           | 1        |
| Freon-113                               | ND      | 0.200 |     | ND      | 1.53  |     |           | 1        |
| trans-1,2-Dichloroethene                | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 1,1-Dichloroethane                      | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| Methyl tert butyl ether                 | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Vinyl acetate                           | ND      | 1.00  |     | ND      | 3.52  |     |           | 1        |
| Xylenes, total                          | ND      | 0.600 |     | ND      | 0.869 |     |           | 1        |
| 2-Butanone                              | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| cis-1,2-Dichloroethene                  | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| Ethyl Acetate                           | ND      | 0.500 |     | ND      | 1.80  |     |           | 1        |
| Chloroform                              | ND      | 0.200 |     | ND      | 0.977 |     |           | 1        |
| Tetrahydrofuran                         | ND      | 0.500 |     | ND      | 1.47  |     |           | 1        |
| 2,2-Dichloropropane                     | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 1,2-Dichloroethane                      | ND      | 0.200 |     | ND      | 0.809 |     |           | 1        |
| n-Hexane                                | ND      | 0.200 |     | ND      | 0.705 |     |           | 1        |
| Diisopropyl ether                       | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| tert-Butyl Ethyl Ether                  | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
| 1,2-Dichloroethene (total)              | ND      | 1.00  |     | ND      | 1.00  |     |           | 1        |
| 1,1,1-Trichloroethane                   | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| 1,1-Dichloropropene                     | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| Benzene                                 | ND      | 0.200 |     | ND      | 0.639 |     |           | 1        |
| Carbon tetrachloride                    | ND      | 0.200 |     | ND      | 1.26  |     |           | 1        |
| Cyclohexane                             | ND      | 0.200 |     | ND      | 0.688 |     |           | 1        |
| ert-Amyl Methyl Ether                   | ND      | 0.200 |     | ND      | 0.836 |     |           | 1        |
|                                         |         |       |     |         |       |     |           |          |



| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

Serial\_No:03172115:30 Lab Number: L2110586 Report Date: 03/17/21

### **Air Canister Certification Results**

| Lab ID:          | L2110586-01      | Date Collected: | 03/03/21 16:00 |
|------------------|------------------|-----------------|----------------|
| Client ID:       | CAN 1738 SHELF 1 | Date Received:  | 03/04/21       |
| Sample Location: |                  | Field Prep:     | Not Specified  |

|                                      | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|--------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                            | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfield | Lab     |       |     |         |       |     |           |          |
| Dibromomethane                       | ND      | 0.200 |     | ND      | 1.42  |     |           | 1        |
| 1,2-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| Bromodichloromethane                 | ND      | 0.200 |     | ND      | 1.34  |     |           | 1        |
| 1,4-Dioxane                          | ND      | 0.200 |     | ND      | 0.721 |     |           | 1        |
| Trichloroethene                      | ND      | 0.200 |     | ND      | 1.07  |     |           | 1        |
| 2,2,4-Trimethylpentane               | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Methyl Methacrylate                  | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| Heptane                              | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| cis-1,3-Dichloropropene              | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 4-Methyl-2-pentanone                 | ND      | 0.500 |     | ND      | 2.05  |     |           | 1        |
| rans-1,3-Dichloropropene             | ND      | 0.200 |     | ND      | 0.908 |     |           | 1        |
| 1,1,2-Trichloroethane                | ND      | 0.200 |     | ND      | 1.09  |     |           | 1        |
| Toluene                              | ND      | 0.200 |     | ND      | 0.754 |     |           | 1        |
| 1,3-Dichloropropane                  | ND      | 0.200 |     | ND      | 0.924 |     |           | 1        |
| 2-Hexanone                           | ND      | 0.200 |     | ND      | 0.820 |     |           | 1        |
| Dibromochloromethane                 | ND      | 0.200 |     | ND      | 1.70  |     |           | 1        |
| 1,2-Dibromoethane                    | ND      | 0.200 |     | ND      | 1.54  |     |           | 1        |
| Butyl acetate                        | ND      | 0.500 |     | ND      | 2.38  |     |           | 1        |
| Octane                               | ND      | 0.200 |     | ND      | 0.934 |     |           | 1        |
| Tetrachloroethene                    | ND      | 0.200 |     | ND      | 1.36  |     |           | 1        |
| 1,1,1,2-Tetrachloroethane            | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
| Chlorobenzene                        | ND      | 0.200 |     | ND      | 0.921 |     |           | 1        |
| Ethylbenzene                         | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| o/m-Xylene                           | ND      | 0.400 |     | ND      | 1.74  |     |           | 1        |
| Bromoform                            | ND      | 0.200 |     | ND      | 2.07  |     |           | 1        |
| Styrene                              | ND      | 0.200 |     | ND      | 0.852 |     |           | 1        |
| 1,1,2,2-Tetrachloroethane            | ND      | 0.200 |     | ND      | 1.37  |     |           | 1        |
|                                      |         |       |     |         |       |     |           |          |



| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

Serial\_No:03172115:30 Lab Number: L2110586 Report Date: 03/17/21

#### **Air Canister Certification Results**

| Lab ID:          | L2110586-01      | Date Collected: | 03/03/21 16:00 |
|------------------|------------------|-----------------|----------------|
| Client ID:       | CAN 1738 SHELF 1 | Date Received:  | 03/04/21       |
| Sample Location: |                  | Field Prep:     | Not Specified  |

Sample Depth:

|                                    | ppbV    |       |     | ug/m3   |       |     |           | Dilution |
|------------------------------------|---------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                          | Results | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air - Mansfie | eld Lab |       |     |         |       |     |           |          |
| o-Xylene                           | ND      | 0.200 |     | ND      | 0.869 |     |           | 1        |
| 1,2,3-Trichloropropane             | ND      | 0.200 |     | ND      | 1.21  |     |           | 1        |
| Nonane                             | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| lsopropylbenzene                   | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Bromobenzene                       | ND      | 0.200 |     | ND      | 0.793 |     |           | 1        |
| 2-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| n-Propylbenzene                    | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 4-Chlorotoluene                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 4-Ethyltoluene                     | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| 1,3,5-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| ert-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2,4-Trimethylbenzene             | ND      | 0.200 |     | ND      | 0.983 |     |           | 1        |
| Decane                             | ND      | 0.200 |     | ND      | 1.16  |     |           | 1        |
| Benzyl chloride                    | ND      | 0.200 |     | ND      | 1.04  |     |           | 1        |
| 1,3-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| 1,4-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| sec-Butylbenzene                   | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| o-Isopropyltoluene                 | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene                | ND      | 0.200 |     | ND      | 1.20  |     |           | 1        |
| n-Butylbenzene                     | ND      | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dibromo-3-chloropropane        | ND      | 0.200 |     | ND      | 1.93  |     |           | 1        |
| Jndecane                           | ND      | 0.200 |     | ND      | 1.28  |     |           | 1        |
| Dodecane                           | ND      | 0.200 |     | ND      | 1.39  |     |           | 1        |
| 1,2,4-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Naphthalene                        | ND      | 0.200 |     | ND      | 1.05  |     |           | 1        |
| 1,2,3-Trichlorobenzene             | ND      | 0.200 |     | ND      | 1.48  |     |           | 1        |
| Hexachlorobutadiene                | ND      | 0.200 |     | ND      | 2.13  |     |           | 1        |
|                                    |         |       |     |         |       |     |           |          |



|                                           |                             |           |          |             |         | Serial_No:03172115:30       |         |                  |                                             |   |
|-------------------------------------------|-----------------------------|-----------|----------|-------------|---------|-----------------------------|---------|------------------|---------------------------------------------|---|
| Project Name:                             | BATCH CANIST                | ER CERTII | FICATION | ١           |         | La                          | b Num   | ber:             | L2110586                                    |   |
| Project Number:                           | CANISTER QC                 | ЗАТ       |          |             |         | Re                          | eport D | Date:            | 03/17/21                                    |   |
|                                           |                             | Air Can   | ister Ce | rtificatior | Results |                             |         |                  |                                             |   |
| Lab ID:<br>Client ID:<br>Sample Location: | L2110586-01<br>CAN 1738 SHE | LF 1      |          |             |         | Date C<br>Date R<br>Field F | Receive |                  | 03/03/21 16:00<br>03/04/21<br>Not Specified | ) |
| Sample Depth:                             |                             |           | ppbV     |             |         | ug/m3                       |         |                  | Dilution                                    |   |
| Parameter                                 |                             | Results   | RL       | MDL         | Results | RL                          | MDL     | Qualifie         | Faster                                      |   |
| Volatile Organics in                      | Air - Mansfield Lab         |           |          |             |         |                             |         |                  |                                             |   |
|                                           |                             | Re        | sults    | Qualifier   | Units   | RDL                         |         | Dilutio<br>Facto |                                             |   |
| Tentatively Identified Con                | npounds                     |           |          |             |         |                             |         |                  |                                             |   |

No Tentatively Identified Compounds

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-Difluorobenzene | 96         |           | 60-140                 |
| Bromochloromethane  | 97         |           | 60-140                 |
| chlorobenzene-d5    | 96         |           | 60-140                 |



|                                                                               |                                             | Air Can | ister Cer | tificatio | on Results | 5                                                |     |           |                                             |  |
|-------------------------------------------------------------------------------|---------------------------------------------|---------|-----------|-----------|------------|--------------------------------------------------|-----|-----------|---------------------------------------------|--|
| Lab ID:<br>Client ID:<br>Sample Location:                                     | L2110586-01<br>CAN 1738 SHE                 | ELF 1   |           |           |            | Date Collected:<br>Date Received:<br>Field Prep: |     |           | 03/03/21 16:00<br>03/04/21<br>Not Specified |  |
| Sample Depth:<br>Matrix:<br>Anaytical Method:<br>Analytical Date:<br>Analyst: | Air<br>48,TO-15-SIM<br>03/06/21 17:24<br>TS |         |           |           |            |                                                  |     |           |                                             |  |
| _                                                                             |                                             |         | ppbV      |           | Desertes   | ug/m3                                            |     | 0         | Dilution<br>Factor                          |  |
| Parameter                                                                     | Vir by SIM Monofi                           | Results | RL        | MDL       | Results    | RL                                               | MDL | Qualifier |                                             |  |
| Volatile Organics in A                                                        |                                             |         |           |           |            |                                                  |     |           |                                             |  |
| Dichlorodifluoromethane                                                       |                                             | ND      | 0.200     |           | ND         | 0.989                                            |     |           | 1                                           |  |
| Chloromethane                                                                 |                                             | ND      | 0.200     |           | ND         | 0.413                                            |     |           | 1                                           |  |
| Freon-114                                                                     |                                             | ND      | 0.050     |           | ND         | 0.349                                            |     |           | 1                                           |  |
| Vinyl chloride                                                                |                                             | ND      | 0.020     |           | ND         | 0.051                                            |     |           | 1                                           |  |
| 1,3-Butadiene                                                                 |                                             | ND      | 0.020     |           | ND         | 0.044                                            |     |           | 1                                           |  |
| Bromomethane                                                                  |                                             | ND      | 0.020     |           | ND         | 0.078                                            |     |           | 1                                           |  |
| Chloroethane                                                                  |                                             | ND      | 0.100     |           | ND         | 0.264                                            |     |           | 1                                           |  |
| Acrolein                                                                      |                                             | ND      | 0.050     |           | ND         | 0.115                                            |     |           | 1                                           |  |
| Acetone                                                                       |                                             | ND      | 1.00      |           | ND         | 2.38                                             |     |           | 1                                           |  |
| Trichlorofluoromethane                                                        |                                             | ND      | 0.050     |           | ND         | 0.281                                            |     |           | 1                                           |  |
| Acrylonitrile                                                                 |                                             | ND      | 0.500     |           | ND         | 1.09                                             |     |           | 1                                           |  |
| 1,1-Dichloroethene                                                            |                                             | ND      | 0.020     |           | ND         | 0.079                                            |     |           | 1                                           |  |
| Methylene chloride                                                            |                                             | ND      | 0.500     |           | ND         | 1.74                                             |     |           | 1                                           |  |
| Freon-113                                                                     |                                             | ND      | 0.050     |           | ND         | 0.383                                            |     |           | 1                                           |  |
| trans-1,2-Dichloroethene                                                      | •                                           | ND      | 0.020     |           | ND         | 0.079                                            |     |           | 1                                           |  |
| 1,1-Dichloroethane                                                            |                                             | ND      | 0.020     |           | ND         | 0.081                                            |     |           | 1                                           |  |
| Methyl tert butyl ether                                                       |                                             | ND      | 0.200     |           | ND         | 0.721                                            |     |           | 1                                           |  |
| 2-Butanone                                                                    |                                             | ND      | 0.500     |           | ND         | 1.47                                             |     |           | 1                                           |  |
| cis-1,2-Dichloroethene                                                        |                                             | ND      | 0.020     |           | ND         | 0.079                                            |     |           | 1                                           |  |
| Chloroform                                                                    |                                             | ND      | 0.020     |           | ND         | 0.098                                            |     |           | 1                                           |  |
| 1,2-Dichloroethane                                                            |                                             | ND      | 0.020     |           | ND         | 0.081                                            |     |           | 1                                           |  |
| 1,1,1-Trichloroethane                                                         |                                             | ND      | 0.020     |           | ND         | 0.109                                            |     |           | 1                                           |  |
| Benzene                                                                       |                                             | ND      | 0.100     |           | ND         | 0.319                                            |     |           | 1                                           |  |
| Carbon tetrachloride                                                          |                                             | ND      | 0.020     |           | ND         | 0.126                                            |     |           | 1                                           |  |

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT



Serial\_No:03172115:30

L2110586

03/17/21

Lab Number:

Report Date:

| Project Name:   | BATCH CANISTER CERTIFICATION |
|-----------------|------------------------------|
| Project Number: | CANISTER QC BAT              |

Serial\_No:03172115:30 Lab Number: L2110586 Report Date: 03/17/21

#### **Air Canister Certification Results**

| Lab ID:          | L2110586-01      | Date Collected: | 03/03/21 16:00 |
|------------------|------------------|-----------------|----------------|
| Client ID:       | CAN 1738 SHELF 1 | Date Received:  | 03/04/21       |
| Sample Location: |                  | Field Prep:     | Not Specified  |

Sample Depth:

| Sample Depth:                     |               | ppbV  |     | ug/m3   |       |     | Dilution  |        |
|-----------------------------------|---------------|-------|-----|---------|-------|-----|-----------|--------|
| Parameter                         | Results       | RL    | MDL | Results | RL    | MDL | Qualifier | Factor |
| Volatile Organics in Air by SIM - | Mansfield Lab |       |     |         |       |     |           |        |
| 1,2-Dichloropropane               | ND            | 0.020 |     | ND      | 0.092 |     |           | 1      |
| Bromodichloromethane              | ND            | 0.020 |     | ND      | 0.134 |     |           | 1      |
| 1,4-Dioxane                       | ND            | 0.100 |     | ND      | 0.360 |     |           | 1      |
| Trichloroethene                   | ND            | 0.020 |     | ND      | 0.107 |     |           | 1      |
| cis-1,3-Dichloropropene           | ND            | 0.020 |     | ND      | 0.091 |     |           | 1      |
| 4-Methyl-2-pentanone              | ND            | 0.500 |     | ND      | 2.05  |     |           | 1      |
| trans-1,3-Dichloropropene         | ND            | 0.020 |     | ND      | 0.091 |     |           | 1      |
| 1,1,2-Trichloroethane             | ND            | 0.020 |     | ND      | 0.109 |     |           | 1      |
| Toluene                           | 0.054         | 0.050 |     | 0.203   | 0.188 |     | В         | 1      |
| Dibromochloromethane              | ND            | 0.020 |     | ND      | 0.170 |     |           | 1      |
| 1,2-Dibromoethane                 | ND            | 0.020 |     | ND      | 0.154 |     |           | 1      |
| Tetrachloroethene                 | ND            | 0.020 |     | ND      | 0.136 |     |           | 1      |
| 1,1,1,2-Tetrachloroethane         | ND            | 0.020 |     | ND      | 0.137 |     |           | 1      |
| Chlorobenzene                     | ND            | 0.100 |     | ND      | 0.461 |     |           | 1      |
| Ethylbenzene                      | ND            | 0.020 |     | ND      | 0.087 |     |           | 1      |
| p/m-Xylene                        | ND            | 0.040 |     | ND      | 0.174 |     |           | 1      |
| Bromoform                         | ND            | 0.020 |     | ND      | 0.207 |     |           | 1      |
| Styrene                           | ND            | 0.020 |     | ND      | 0.085 |     |           | 1      |
| 1,1,2,2-Tetrachloroethane         | ND            | 0.020 |     | ND      | 0.137 |     |           | 1      |
| o-Xylene                          | ND            | 0.020 |     | ND      | 0.087 |     |           | 1      |
| Isopropylbenzene                  | ND            | 0.200 |     | ND      | 0.983 |     |           | 1      |
| 4-Ethyltoluene                    | ND            | 0.020 |     | ND      | 0.098 |     |           | 1      |
| 1,3,5-Trimethybenzene             | ND            | 0.020 |     | ND      | 0.098 |     |           | 1      |
| 1,2,4-Trimethylbenzene            | ND            | 0.020 |     | ND      | 0.098 |     |           | 1      |
| Benzyl chloride                   | ND            | 0.200 |     | ND      | 1.04  |     |           | 1      |
| 1,3-Dichlorobenzene               | ND            | 0.020 |     | ND      | 0.120 |     |           | 1      |
| I,4-Dichlorobenzene               | ND            | 0.020 |     | ND      | 0.120 |     |           | 1      |
| 1,4-Dichlorobenzene               |               |       |     |         |       |     |           |        |



|                                    |                              | Serial_No:03172115:30 |          |  |  |  |
|------------------------------------|------------------------------|-----------------------|----------|--|--|--|
| Project Name:                      | BATCH CANISTER CERTIFICATION | Lab Number:           | L2110586 |  |  |  |
| Project Number:                    | CANISTER QC BAT              | Report Date:          | 03/17/21 |  |  |  |
| Air Canister Certification Results |                              |                       |          |  |  |  |

| Lab ID:          | L2110586-01      | Date Collected: | 03/03/21 16:00 |
|------------------|------------------|-----------------|----------------|
| Client ID:       | CAN 1738 SHELF 1 | Date Received:  | 03/04/21       |
| Sample Location: |                  | Field Prep:     | Not Specified  |

|                                 |                 | ppbV  |     | ug/m3   |       |     |           | Dilution |
|---------------------------------|-----------------|-------|-----|---------|-------|-----|-----------|----------|
| Parameter                       | Results         | RL    | MDL | Results | RL    | MDL | Qualifier | Factor   |
| Volatile Organics in Air by SIM | - Mansfield Lab |       |     |         |       |     |           |          |
| sec-Butylbenzene                | ND              | 0.200 |     | ND      | 1.10  |     |           | 1        |
| p-Isopropyltoluene              | ND              | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2-Dichlorobenzene             | ND              | 0.020 |     | ND      | 0.120 |     |           | 1        |
| n-Butylbenzene                  | ND              | 0.200 |     | ND      | 1.10  |     |           | 1        |
| 1,2,4-Trichlorobenzene          | ND              | 0.050 |     | ND      | 0.371 |     |           | 1        |
| Naphthalene                     | ND              | 0.050 |     | ND      | 0.262 |     |           | 1        |
| 1,2,3-Trichlorobenzene          | ND              | 0.050 |     | ND      | 0.371 |     |           | 1        |
| Hexachlorobutadiene             | ND              | 0.050 |     | ND      | 0.533 |     |           | 1        |
|                                 |                 |       |     |         |       |     |           |          |

| Internal Standard   | % Recovery | Qualifier | Acceptance<br>Criteria |
|---------------------|------------|-----------|------------------------|
| 1,4-difluorobenzene | 96         |           | 60-140                 |
| bromochloromethane  | 97         |           | 60-140                 |
| chlorobenzene-d5    | 95         |           | 60-140                 |



# Project Name:79 PONDFIELD ROADProject Number:11663

Serial\_No:03172115:30 *Lab Number:* L2111970 *Report Date:* 03/17/21

## Sample Receipt and Container Information

Were project specific reporting limits specified?

## **Cooler Information**

| Cooler | Custody Seal |
|--------|--------------|
| NA     | Absent       |

## **Container Information**

| Container Info | rmation              |        | Initial | Final | Temp      |    |        | Frozen    |             |
|----------------|----------------------|--------|---------|-------|-----------|----|--------|-----------|-------------|
| Container ID   | Container Type       | Cooler | рН      | pН    | deg C Pre | es | Seal   | Date/Time | Analysis(*) |
| L2111970-01A   | Canister - 2.7 Liter | NA     | NA      |       | Y         | Ý. | Absent |           | TO15-LL(30) |
| L2111970-02A   | Canister - 2.7 Liter | NA     | NA      |       | Y         | Ý. | Absent |           | TO15-LL(30) |
| L2111970-03A   | Canister - 2.7 Liter | NA     | NA      |       | Y         | Ý. | Absent |           | CLEAN-FEE() |

YES



## Project Name: 79 PONDFIELD ROAD

Project Number: 11663

## Lab Number: L2111970

## **Report Date:** 03/17/21

## GLOSSARY

## Acronyms

| / lor on y mo |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL            | <ul> <li>Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when<br/>those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments<br/>from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)</li> </ul>                                                                     |
| EDL           | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC          | - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.                                                                                                                                                              |
| EPA           | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS           | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD          | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB           | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD           | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ           | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|               | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL           | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS            | <ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for<br/>which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated<br/>using the native concentration, including estimated values.</li> </ul>                                                                                                         |
| MSD           | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA            | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC            | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA      | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI            | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP            | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR            | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL            | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD           | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM           | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP          | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF           | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ           | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC           | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: Data Usability Report



#### **Project Name:** 79 PONDFIELD ROAD

**Project Number:** 11663

#### Lab Number: L2111970

#### **Report Date:** 03/17/21

### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

### Data Qualifiers

- A - Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B - The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- С - Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- D - Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- Е - Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F - The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G - The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- н - The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I - The lower value for the two columns has been reported due to obvious interference.
- J - Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- Μ - Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND - Not detected at the reporting limit (RL) for the sample.
- NJ - Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report



## Serial\_No:03172115:30

## Project Name: 79 PONDFIELD ROAD

Project Number: 11663

Lab Number: L2111970

**Report Date:** 03/17/21

## Data Qualifiers

the identification is based on a mass spectral library search.

- **P** The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- **S** Analytical results are from modified screening analysis.

Report Format: Data Usability Report



Project Name: 79 PONDFIELD ROAD Project Number: 11663 
 Lab Number:
 L2111970

 Report Date:
 03/17/21

## REFERENCES

48 Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



## **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA** 8270D/8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### **Mansfield Facility**

SM 2540D: TSS

**EPA 8082A:** <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7**: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

|                                | AIR AN                                  | ALY        | SIS                                       | PA                 | GE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | OF              | Date Re                                 | ec'd in La                  | b:           |             |                         |      | A      | LPH           | IA Jo    | ob #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |               |           |
|--------------------------------|-----------------------------------------|------------|-------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------|-----------------------------|--------------|-------------|-------------------------|------|--------|---------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|-----------|
| ANALYTICAL                     | CHAIN OF CUSTODY                        | Project    | Informati                                 | on                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Popor                                   | t Inform                    | ation        | Data D      | alivor                  | hlas | P      |               | a luf    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | floor and the second             |               |           |
| 320 Forbes Blvd, Ma            | ansfield, MA 02048<br>FAX: 508-822-3288 |            |                                           |                    | Arte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11              |                                         |                             | ation -      | Data L      | Venivera                | bles |        |               |          | ormat<br>Client ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |               | 10        |
| Client Informatio              |                                         |            | ame: 79                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      | 3      | Sam           | e as (   | Slient in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nfo PO #:                        | 110           | 63        |
|                                |                                         | Project Lo | D                                         | ronku              | ille, A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17              | 1.0000000000000000000000000000000000000 | riteria Che                 | ecker:       |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
| Client: SE                     |                                         | Project #: | 1100                                      |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         | (Default base<br>other Form |              | atory Crite | eria Indicat            | əd)  |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
| Address:                       | Maple Ave                               | Project Ma | anager: /                                 | Patricia           | Petr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the             |                                         | AIL (standa                 | ard pdf r    |             |                         |      | R      | egu           | lator    | y Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | uirement                         | s/Repor       | t Limits  |
| Pin                            | Maple Are<br>Brook, NJ                  | ALPHA Q    | uote #:                                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Add 🖸                                   | itional Del                 | iverable     | s:          |                         |      | St     | ate/F         | ed       | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ogram                            | Res           | Comm      |
| Phone: 97                      | 3-808-9050                              | Turn-A     | round Tim                                 | ie                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | Report                                  | to: (if different           | than Project | Manager)    |                         |      | -      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
| Fax:                           |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      | -      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
| Email: protein                 | la petrino e serieo                     | Standar    |                                           | RUSH (only c       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          | LYSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                |               |           |
| These samples have             | ve been previously analyzed by Alpha    | Date Due   | :<br>Lewn                                 |                    | Time: L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NEPL            |                                         |                             |              |             |                         |      | A      | /             | 1-1      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                  |               |           |
|                                | pecific Requirements/Comr               | nents: ,   | 1                                         | 11 1               | . 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1               | $n_{-}$                                 | 10                          | 2            | Co:         | 1                       | I al | / /    | / /           | HCs      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | //                               |               |           |
| Project-Specific               | Target Compound List:                   | ŀ          | LEWH?                                     | Hen C              | haih                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tore            | meet                                    | VP                          | -            | 200         | mpl                     | en,  | / /    | trole         | -        | 1 Age                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / /                              |               |           |
|                                |                                         |            |                                           | not                | - VP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 50            | PS D.                                   | · Orly                      | pol-cal      | ch          | alla                    | /    | /      | Non-pe        | s        | Captar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | / /                              |               |           |
|                                | AI                                      | I Col      | umns                                      | s Bel              | ow N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lust            | Be F                                    | illec                       |              | ıt          | a part                  |      | SIM    | Subtrac       | & Mei    | //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                |               |           |
| ALPHA Lab ID<br>(Lab Use Only) | Sample ID                               | End Date   | COL<br>Start Time                         | LECTIO<br>End Time | N<br>Initial<br>Vacuum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Final<br>Vacuum | Sample<br>Matrix*                       | Sampler's<br>Initials       | Can<br>Size  | I D<br>Can  | I D - Flow<br>Controlle | 1.01 | 4PL    | Fixed C. Nonp | Sulfides | and the set of the set | Sample Co                        | mments (      | i.e. PID) |
|                                | 1/P-2                                   | 1 - 1      | 14:07                                     |                    | 29.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | SV                                      | JL                          | 2.7L         | .17YS       | 490                     |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                | VP-1                                    | V          | 13:53                                     | 14:03              | and the second se |                 | 1                                       | J                           | J            | 49          | -242                    |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                | 1                                       |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         | ~                           |              | 497         | 01                      |      | -      |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                | 1                                       |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                | JIL                                     |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1               |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |               |           |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         | _                           |              |             |                         | +    | -      |               | _        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
|                                | \                                       |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               | _         |
|                                |                                         |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             |              |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |               |           |
| *SAMPLE                        | E MATRIX CODES ST                       |            | t Air (Indoor<br>or/Landfill C<br>Specify |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         | C                           | ontainer     | Туре        |                         |      |        |               |          | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Please print cl<br>completely. S | amples car    | n not be  |
|                                |                                         | Relinquis  | hed By:                                   |                    | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e/Time          |                                         | Recei                       | ved By:      |             |                         | 1    | Date/1 | Time:         | 1        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ogged in and<br>lock will not s  | tart until ar | ny ambi-  |
|                                |                                         | alle       | la                                        |                    | 3/10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21 18:00        | >                                       |                             |              |             |                         |      |        |               |          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | uities are res<br>ubmitted are   | subject to    |           |
| Form No: 101-02 Rev: (25-      | Sep-15)                                 |            |                                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                                         |                             | 6            |             |                         |      |        |               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erms and Co<br>See reverse si    |               |           |

Serial No:03172115:30

|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | Selial_N0.03172115.30                                                        |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                     | ANALYSIS PAGE   OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date Rec'd in Lab: 3/11/21                                         | ALPHA JOD #: 22111970                                                        |
| CHAIN OF CUSTOL                                                                     | Project Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Report Information - Data Deliverables                             | Billing Information                                                          |
| 320 Forbes Blvd, Mansfield, MA 02048                                                | the state of the s    |                                                                    | Same as Client info PO #: 11663                                              |
| TEL: 508-822-9300 FAX: 508-822-3288                                                 | Project Name: 79 Pondheld Rd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D FAX                                                              |                                                                              |
| Client Information                                                                  | Project Location: Broneville, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Criteria Checker:                                                  |                                                                              |
| Client: SEST                                                                        | Project #: 11663                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Default-based on Regulatory Criteria Indicated)<br>Other Formats: |                                                                              |
| ddress: 120 Made Ave                                                                | Project Manager: Potricia Potrik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EMAIL (standard pdf report)                                        | Regulatory Requirements/Report Lim                                           |
| ddress: 120 Myde Ave<br>Pinebook, NJ                                                | ALPHA Quote #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Additional Deliverables:                                           | State/Fed Program Res / Com                                                  |
| Phone: 973-808-9050                                                                 | Turn-Around Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Report to: (if different than Project Manager)                     |                                                                              |
| ax                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160002                                                             |                                                                              |
| mail Arthin a patrime seci                                                          | Standard RUSH (why confirmed # (management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                  | ANALYSIS                                                                     |
| mail: patricia. petrino & Sesin<br>These samples have been previously analyzed by A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 110/111                                                                      |
| Other Project Specific Requirements/C                                               | pria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                    | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                      |
| Project-Specific Target Compound List                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | ( A A A A A A A A A A A A A A A A A A A                                      |
| isjour epoche isiger composite site                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                        |
|                                                                                     | All Columns Below Mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ust Be Filled Out                                                  | 15 SINA<br>PH Recommended<br>Only & Adage<br>Only & Adage                    |
| ALPHA Lab ID<br>(Lab Use Only) Sample ID                                            | COLLECTION Initial F<br>End Date   Start Time   End Time   Vacuum   V | Final Sample Sampler's Can I D I D-Flow 00                         | Sample Comments (i.e. P                                                      |
| 11970-01 UP-3                                                                       | -//-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67 SV JL 2.7 LI75 490 /                                            |                                                                              |
| OZ VP-1                                                                             | 73 (3:53 14:03 30.7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27 1 1 1 497 261                                                   |                                                                              |
| turi                                                                                | 1013/1013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
| Juz                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |                                                                              |
| *SAMPLE MATRIX CODES                                                                | AA = Ambient Air (Indoor/Outdoor)<br>SV = Soil Vapor/Landfill Gas/SVE<br>Other = Please Specify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Container Type                                                     | Please print clearly, legibly and<br>completely. Samples can not b           |
|                                                                                     | Relinquished By: Date/Ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | me Received By:                                                    | Date/Time: clock will not start until any ant                                |
| 2                                                                                   | Stor Component 3/10/x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1800 Alexin IRAL- 3/10A                                            | 1 18:00 guities are resolved. All sample<br>submitted are subject to Alpha's |
|                                                                                     | 1am-AAL TISAI 19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a glozah                                                           | See reverse side                                                             |
| age 34 of 34                                                                        | 73/1 0130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/11                                                               | 21 0130                                                                      |



## ANALYTICAL REPORT

| Lab Number:     | L2112852                                                                     |
|-----------------|------------------------------------------------------------------------------|
| Client:         | Soils Engineering Services, Inc.<br>12A Maple Avenue<br>Pine Brook, NJ 07058 |
| ATTN:<br>Phone: | Patricia Petrino<br>(973) 808-9050                                           |
| Project Name:   | 79 PONDFIELD RD                                                              |
| Project Number: | 11663                                                                        |
| Report Date:    | 03/22/21                                                                     |

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com



Serial\_No:03222114:58

Project Name:79 PONDFIELD RDProject Number:11663

 Lab Number:
 L2112852

 Report Date:
 03/22/21

| Alpha<br>Sample ID | Client ID   | Matrix | Sample<br>Location | Collection<br>Date/Time | Receive Date |
|--------------------|-------------|--------|--------------------|-------------------------|--------------|
| L2112852-01        | MW-1S       | WATER  | BRONXVILLE, NY     | 03/15/21 13:45          | 03/15/21     |
| L2112852-02        | MW-2S       | WATER  | BRONXVILLE, NY     | 03/15/21 11:45          | 03/15/21     |
| L2112852-03        | MW-4S       | WATER  | BRONXVILLE, NY     | 03/15/21 13:20          | 03/15/21     |
| L2112852-04        | MW-4I       | WATER  | BRONXVILLE, NY     | 03/15/21 12:50          | 03/15/21     |
| L2112852-05        | MW-5S       | WATER  | BRONXVILLE, NY     | 03/15/21 08:50          | 03/15/21     |
| L2112852-06        | MW-5I       | WATER  | BRONXVILLE, NY     | 03/15/21 08:40          | 03/15/21     |
| L2112852-07        | MW-6        | WATER  | BRONXVILLE, NY     | 03/15/21 11:05          | 03/15/21     |
| L2112852-08        | DUP-1       | WATER  | BRONXVILLE, NY     | 03/15/21 12:00          | 03/15/21     |
| L2112852-09        | FIELD BLANK | WATER  | BRONXVILLE, NY     | 03/15/21 13:30          | 03/15/21     |
| L2112852-10        | TRIP BLANK  | WATER  | BRONXVILLE, NY     | 03/10/21 00:00          | 03/15/21     |



Project Name: 79 PONDFIELD RD Project Number: 11663

Lab Number: L2112852 Report Date: 03/22/21

## **Case Narrative**

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.



Project Name: 79 PONDFIELD RD Project Number: 11663 
 Lab Number:
 L2112852

 Report Date:
 03/22/21

## **Case Narrative (continued)**

**Report Submission** 

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Jufani Morrissey - Tiffani Morrissey

Title: Technical Director/Representative

Date: 03/22/21



# ORGANICS



# VOLATILES



|                    |                 |                | Serial_N        | 0:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-01     |                | Date Collected: | 03/15/21 13:45 |
| Client ID:         | MW-1S           |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 22:06  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                       | Result        | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|---------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |      |      |                 |
| Methylene chloride              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                      | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride            | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane             | ND            |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane            | ND            |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND            |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene               | 13            |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane          | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane              | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane           | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane            | ND            |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene         | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total      | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene             | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                       | ND            |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane       | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                         | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                         | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                  | ND            |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene              | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene        | ND            |           | ug/l  | 2.5  | 0.70 | 1               |



|                           |                      |        |           |       | ,<br>,    | Serial_No | :03222114:58    |  |
|---------------------------|----------------------|--------|-----------|-------|-----------|-----------|-----------------|--|
| Project Name:             | 79 PONDFIELD RD      |        |           |       | Lab Nu    | mber:     | L2112852        |  |
| Project Number:           | 11663                |        |           |       | Report    | Date:     | 03/22/21        |  |
| •                         |                      | SAMP   |           | 6     | •         |           | 00,22,21        |  |
| Lab ID:                   | L2112852-01          |        |           |       | Date Col  | lected:   | 03/15/21 13:45  |  |
| Client ID:                | MW-1S                |        |           |       | Date Red  |           | 03/15/21        |  |
| Sample Location:          | BRONXVILLE, NY       |        |           |       | Field Pre | p:        | Not Specified   |  |
|                           |                      |        |           |       |           |           |                 |  |
| Sample Depth:             |                      | Popult | Qualifier | Units | RL        | MDL       | Dilution Factor |  |
| Parameter                 | V CC/MC Masthereus   | Result | Quaimer   | Units | RL        | MDL       | Dilution Factor |  |
| volatile Organics b       | y GC/MS - Westboroug | n Lad  |           |       |           |           |                 |  |
| Trichloroethene           |                      | 0.58   |           | ug/l  | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,3-Dichlorobenzene       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether   |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Xylene                  |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Xylenes, Total            |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene    |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dibromomethane            |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane    |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Acrylonitrile             |                      | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Styrene                   |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane   |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Acetone                   |                      | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Carbon disulfide          |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Butanone                |                      | ND     |           | ug/l  | 5.0       | 1.9       | 1               |  |
| Vinyl acetate             |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone      |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Bromochloromethane        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane         |                      | ND     |           | ug/l  | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane | 9                    | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Bromobenzene              |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene            |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene          |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene         |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene           |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene           |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop  | ane                  | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene       |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Isopropylbenzene          |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Isopropyltoluene        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Naphthalene               |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |



|                        |                        |        |           |       |           | Serial_No | 0:03222114:58   |
|------------------------|------------------------|--------|-----------|-------|-----------|-----------|-----------------|
| Project Name:          | 79 PONDFIELD RD        |        |           |       | Lab Nu    | ımber:    | L2112852        |
| Project Number:        | 11663                  |        |           |       | Report    | Date:     | 03/22/21        |
|                        |                        | SAMP   | LE RESULT | 5     |           |           |                 |
| Lab ID:                | L2112852-01            |        |           |       | Date Co   | llected:  | 03/15/21 13:45  |
| Client ID:             | MW-1S                  |        |           |       | Date Re   | ceived:   | 03/15/21        |
| Sample Location:       | BRONXVILLE, NY         |        |           |       | Field Pre | ep:       | Not Specified   |
| Sample Depth:          |                        |        |           |       |           |           |                 |
| Parameter              |                        | Result | Qualifier | Units | RL        | MDL       | Dilution Factor |
| Volatile Organics b    | oy GC/MS - Westborough | Lab    |           |       |           |           |                 |
| n-Propylbenzene        |                        | ND     |           | ug/l  | 2.5       | 0.70      | 1               |
| 1,2,3-Trichlorobenzene |                        | ND     |           | ug/l  | 2.5       | 0.70      | 1               |
| 1,2,4-Trichlorobenzene |                        | ND     |           | ug/l  | 2.5       | 0.70      | 1               |
|                        |                        |        |           |       |           |           |                 |

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

| No Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|-------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                           |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |    | 107        |           | 70-130                 |   |
| Toluene-d8                          |    | 98         |           | 70-130                 |   |
| 4-Bromofluorobenzene                |    | 102        |           | 70-130                 |   |
| Dibromofluoromethane                |    | 101        |           | 70-130                 |   |



|                                                                                |                                           |                | Serial_N                                         | 0:03222114:58                               |
|--------------------------------------------------------------------------------|-------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                                  | 79 PONDFIELD RD                           |                | Lab Number:                                      | L2112852                                    |
| Project Number:                                                                | 11663                                     |                | Report Date:                                     | 03/22/21                                    |
|                                                                                |                                           | SAMPLE RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2112852-02<br>MW-2S<br>BRONXVILLE, NY    |                | Date Collected:<br>Date Received:<br>Field Prep: | 03/15/21 11:45<br>03/15/21<br>Not Specified |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>03/19/21 21:44<br>NLK |                |                                                  |                                             |

| Parameter                       | Result        | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|---------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |      |      |                 |
| Methylene chloride              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                      | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride            | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane             | ND            |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane            | ND            |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND            |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene               | 4.5           |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane          | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane              | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane           | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane            | ND            |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene         | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total      | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene             | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                       | ND            |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane       | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                         | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                         | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                  | ND            |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene              | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene        | ND            |           | ug/l  | 2.5  | 0.70 | 1               |



|                           |                       |        |           |       | ç         | Serial_No | :03222114:58    |  |
|---------------------------|-----------------------|--------|-----------|-------|-----------|-----------|-----------------|--|
| Project Name:             | 79 PONDFIELD RD       |        |           |       | Lab Nu    | mber:     | L2112852        |  |
| Project Number:           | 11663                 |        |           |       | Report    | Date:     | 03/22/21        |  |
| •                         |                       | SAMP   |           | 6     | •         |           | •••             |  |
| Lab ID:                   | L2112852-02           |        |           |       | Date Col  | lected:   | 03/15/21 11:45  |  |
| Client ID:                | MW-2S                 |        |           |       | Date Red  |           | 03/15/21        |  |
| Sample Location:          | BRONXVILLE, NY        |        |           |       | Field Pre | p:        | Not Specified   |  |
| Sample Depth:             |                       |        |           |       |           |           |                 |  |
| Parameter                 |                       | Result | Qualifier | Units | RL        | MDL       | Dilution Factor |  |
|                           | y GC/MS - Westborougl |        |           |       |           |           |                 |  |
| volatilo organico o       |                       | Lab    |           |       |           |           |                 |  |
| Trichloroethene           |                       | 0.35   | J         | ug/l  | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,3-Dichlorobenzene       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether   |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Xylene                  |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Xylenes, Total            |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene    |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dibromomethane            |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane    |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Acrylonitrile             |                       | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Styrene                   |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane   |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Acetone                   |                       | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Carbon disulfide          |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Butanone                |                       | ND     |           | ug/l  | 5.0       | 1.9       | 1               |  |
| Vinyl acetate             |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone      |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Bromochloromethane        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane         |                       | ND     |           | ug/l  | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane | )                     | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Bromobenzene              |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene            |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene          |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene         |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene           |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene           |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop  | bane                  | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene       |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Isopropylbenzene          |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Isopropyltoluene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Naphthalene               |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| ·                         |                       |        |           | ·     |           | -         |                 |  |



|                        |                        |        |           |       |           | Serial_No:03222114:58 |                 |  |  |
|------------------------|------------------------|--------|-----------|-------|-----------|-----------------------|-----------------|--|--|
| Project Name:          | 79 PONDFIELD RD        |        |           |       | Lab Nu    | umber:                | L2112852        |  |  |
| Project Number:        | 11663                  |        |           |       | Report    | t Date:               | 03/22/21        |  |  |
|                        |                        | SAMP   | LE RESULT | S     |           |                       |                 |  |  |
| Lab ID:                | L2112852-02            |        |           |       | Date Co   | llected:              | 03/15/21 11:45  |  |  |
| Client ID:             | MW-2S                  |        |           |       | Date Re   | ceived:               | 03/15/21        |  |  |
| Sample Location:       | BRONXVILLE, NY         |        |           |       | Field Pre | ep:                   | Not Specified   |  |  |
| Sample Depth:          |                        |        |           |       |           |                       |                 |  |  |
| Parameter              |                        | Result | Qualifier | Units | RL        | MDL                   | Dilution Factor |  |  |
| Volatile Organics b    | oy GC/MS - Westborough | Lab    |           |       |           |                       |                 |  |  |
| n-Propylbenzene        |                        | ND     |           | ug/l  | 2.5       | 0.70                  | 1               |  |  |
| 1,2,3-Trichlorobenzene |                        | ND     |           | ug/l  | 2.5       | 0.70                  | 1               |  |  |
| 1,2,4-Trichlorobenzene |                        | ND     |           | ug/l  | 2.5       | 0.70                  | 1               |  |  |
|                        |                        |        |           |       |           |                       |                 |  |  |

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

| o Tentatively Identified Compounds | tively Identified Compounds ND |            |           | ug/l                   |  |  |
|------------------------------------|--------------------------------|------------|-----------|------------------------|--|--|
| Surrogate                          |                                | % Recovery | Qualifier | Acceptance<br>Criteria |  |  |
| 1,2-Dichloroethane-d4              |                                | 110        |           | 70-130                 |  |  |
| Toluene-d8                         |                                | 98         |           | 70-130                 |  |  |
| 4-Bromofluorobenzene               |                                | 98         |           | 70-130                 |  |  |
| Dibromofluoromethane               |                                | 104        |           | 70-130                 |  |  |



|                    |                 |                | Serial_N        | o:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-03     |                | Date Collected: | 03/15/21 13:20 |
| Client ID:         | MW-4S           |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 21:23  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                          | Result     | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------|------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |      |      |                 |
| Methylene chloride                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                         | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride               | ND         |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane                | ND         |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane               | ND         |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane              | ND         |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene                  | 0.75       |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                      | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane             | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane                 | ND         |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane              | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane               | ND         |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene          | ND         |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene            | ND         |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total         | ND         |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene                | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                          | ND         |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane          | ND         |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                            | ND         |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                            | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                      | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                     | ND         |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene                 | ND         |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene           | ND         |           | ug/l  | 2.5  | 0.70 | 1               |



|                            |                       |        |           |       | ç         | Serial_No | :03222114:58    |  |
|----------------------------|-----------------------|--------|-----------|-------|-----------|-----------|-----------------|--|
| Project Name:              | 79 PONDFIELD RD       |        |           |       | Lab Nu    | mber:     | L2112852        |  |
| Project Number:            | 11663                 |        |           |       | Report    | Date:     | 03/22/21        |  |
| •                          |                       | SAMPI  |           | 6     | •         |           | 00,22,21        |  |
| Lab ID:                    | L2112852-03           |        |           |       | Date Col  | lected:   | 03/15/21 13:20  |  |
| Client ID:                 | MW-4S                 |        |           |       | Date Rec  |           | 03/15/21        |  |
| Sample Location:           | BRONXVILLE, NY        |        |           |       | Field Pre | p:        | Not Specified   |  |
| Sample Depthy              |                       |        |           |       |           |           |                 |  |
| Sample Depth:<br>Parameter |                       | Result | Qualifier | Units | RL        | MDL       | Dilution Factor |  |
|                            | y GC/MS - Westborougl |        |           | ••    |           |           |                 |  |
| Volutile Organico D        |                       |        |           |       |           |           |                 |  |
| Trichloroethene            |                       | ND     |           | ug/l  | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,3-Dichlorobenzene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether    |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                 |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Xylene                   |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Xylenes, Total             |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene     |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total  |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dibromomethane             |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane     |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Acrylonitrile              |                       | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Styrene                    |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane    |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Acetone                    |                       | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Carbon disulfide           |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Butanone                 |                       | ND     |           | ug/l  | 5.0       | 1.9       | 1               |  |
| Vinyl acetate              |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone       |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                 |                       | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Bromochloromethane         |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane          |                       | ND     |           | ug/l  | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane  | )                     | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Bromobenzene               |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene             |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene           |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene          |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene            |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene            |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop   | Dane                  | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
|                            |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Isopropyltoluene         |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Naphthalene                |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |



|                                                                               |                       |                 |           |               |                  | Serial_No          | 0:03222114:58   |
|-------------------------------------------------------------------------------|-----------------------|-----------------|-----------|---------------|------------------|--------------------|-----------------|
| Project Name:                                                                 | 79 PONDFIELD RD       |                 |           |               | Lab Nu           | imber:             | L2112852        |
| Project Number:                                                               | 11663                 |                 |           |               | Report           | Date:              | 03/22/21        |
|                                                                               |                       | SAMP            |           | 5             |                  |                    |                 |
| Lab ID:                                                                       | L2112852-03           |                 |           |               | Date Co          | llected:           | 03/15/21 13:20  |
| Client ID:                                                                    | MW-4S                 |                 |           |               | Date Re          | ceived:            | 03/15/21        |
| Sample Location:                                                              | BRONXVILLE, NY        |                 |           |               | Field Pre        | ep:                | Not Specified   |
| Sample Depth:                                                                 |                       |                 |           |               |                  |                    |                 |
|                                                                               |                       |                 |           |               |                  |                    |                 |
| Parameter                                                                     |                       | Result          | Qualifier | Units         | RL               | MDL                | Dilution Factor |
| Parameter                                                                     | y GC/MS - Westborough |                 | Qualifier | Units         | RL               | MDL                | Dilution Factor |
| Parameter                                                                     | y GC/MS - Westborough |                 | Qualifier | Units<br>ug/l | <b>RL</b><br>2.5 | <b>MDL</b><br>0.70 | Dilution Factor |
| Parameter<br>Volatile Organics b                                              | y GC/MS - Westborough | Lab             | Qualifier |               |                  |                    |                 |
| Parameter<br>Volatile Organics b<br>n-Propylbenzene                           | y GC/MS - Westborough | Lab             | Qualifier | ug/l          | 2.5              | 0.70               | 1               |
| Parameter<br>Volatile Organics b<br>n-Propylbenzene<br>1,2,3-Trichlorobenzene | y GC/MS - Westborough | Lab<br>ND<br>ND | Qualifier | ug/l<br>ug/l  | 2.5<br>2.5       | 0.70<br>0.70       | 1               |

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

p-Ethyltoluene

| No Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|-------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                           |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |    | 112        |           | 70-130                 |   |
| Toluene-d8                          |    | 100        |           | 70-130                 |   |
| 4-Bromofluorobenzene                |    | 98         |           | 70-130                 |   |
| Dibromofluoromethane                |    | 100        |           | 70-130                 |   |



|                    |                 |                | Serial_N        | 0:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-04     |                | Date Collected: | 03/15/21 12:50 |
| Client ID:         | MW-4I           |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 21:02  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                          | Result     | Qualifier | Units | RL   | MDL  | Dilution Factor |
|------------------------------------|------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Westb | orough Lab |           |       |      |      |                 |
| Methylene chloride                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane                 | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                         | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride               | ND         |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane                | ND         |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane               | ND         |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane              | ND         |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene                  | 0.31       | J         | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                      | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane             | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane                 | ND         |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane              | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane               | ND         |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene          | ND         |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene            | ND         |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total         | ND         |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene                | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                          | ND         |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane          | ND         |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                            | ND         |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                            | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                      | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                     | ND         |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                       | ND         |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene                 | ND         |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene           | ND         |           | ug/l  | 2.5  | 0.70 | 1               |



|                                        |                      |          |           |       | ç          | Serial_No | :03222114:58    |  |
|----------------------------------------|----------------------|----------|-----------|-------|------------|-----------|-----------------|--|
| Project Name:                          | 79 PONDFIELD RD      |          |           |       | Lab Nu     | mber:     | L2112852        |  |
| Project Number:                        | 11663                |          |           |       | Report     | Date:     | 03/22/21        |  |
| ,                                      | 11000                | SAMPI    | E RESULTS | 6     |            |           | 00/22/21        |  |
| Lab ID:                                | L2112852-04          |          |           |       | Date Col   | lected:   | 03/15/21 12:50  |  |
| Client ID:                             | MW-4I                |          |           |       | Date Red   |           | 03/15/21        |  |
| Sample Location:                       | BRONXVILLE, NY       |          |           |       | Field Pre  |           | Not Specified   |  |
| -                                      |                      |          |           |       |            |           | ·               |  |
| Sample Depth:<br>Parameter             |                      | Result   | Qualifier | Units | RL         | MDL       | Dilution Factor |  |
|                                        | VCC/MC Mastharaug    |          | Quaimer   | Units | RL         | MDL       | Dilution Factor |  |
| Volatile Organics b                    | y GC/MS - Westboroug | II Lau   |           |       |            |           |                 |  |
| Trichloroethene                        |                      | ND       |           | ug/l  | 0.50       | 0.18      | 1               |  |
| 1,2-Dichlorobenzene                    |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,3-Dichlorobenzene                    |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,4-Dichlorobenzene                    |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Methyl tert butyl ether                |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| p/m-Xylene                             |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| o-Xylene                               |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Xylenes, Total                         |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| cis-1,2-Dichloroethene                 |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total              |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Dibromomethane                         |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| 1,2,3-Trichloropropane                 |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Acrylonitrile                          |                      | ND       |           | ug/l  | 5.0        | 1.5       | 1               |  |
| Styrene                                |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Dichlorodifluoromethane                |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| Acetone                                |                      | ND       |           | ug/l  | 5.0        | 1.5       | 1               |  |
| Carbon disulfide                       |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| 2-Butanone                             |                      | ND       |           | ug/l  | 5.0        | 1.9       | 1               |  |
| Vinyl acetate                          |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| 4-Methyl-2-pentanone                   |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| 2-Hexanone                             |                      | ND       |           | ug/l  | 5.0        | 1.0       | 1               |  |
| Bromochloromethane                     |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 2,2-Dichloropropane                    |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,2-Dibromoethane                      |                      | ND       |           | ug/l  | 2.0        | 0.65      | 1               |  |
| 1,3-Dichloropropane                    |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane              | )                    | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Bromobenzene                           |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| n-Butylbenzene                         |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| sec-Butylbenzene                       |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| tert-Butylbenzene                      |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| o-Chlorotoluene                        |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| p-Chlorotoluene                        |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop               |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
| Hexachlorobutadiene                    |                      | ND<br>ND |           | ug/l  | 2.5<br>2.5 | 0.70      | 1               |  |
| Isopropylbenzene<br>p-Isopropyltoluene |                      | ND       |           | ug/l  | 2.5        | 0.70      | 1               |  |
|                                        |                      | ND       |           | ug/l  |            |           |                 |  |
| Naphthalene                            |                      | NU       |           | ug/l  | 2.5        | 0.70      | 1               |  |



|                        |                        |          | Serial_   |                |            | Serial_No | 0:03222114:58   |
|------------------------|------------------------|----------|-----------|----------------|------------|-----------|-----------------|
| Project Name:          | 79 PONDFIELD RD        |          |           |                | Lab Nu     | mber:     | L2112852        |
| Project Number:        | 11663                  |          |           |                | Report     | Date:     | 03/22/21        |
|                        |                        | SAMP     |           | 6              |            |           |                 |
| Lab ID:                | L2112852-04            |          |           |                | Date Co    | llected:  | 03/15/21 12:50  |
| Client ID:             | MW-4I                  |          |           | Date Received: |            | 03/15/21  |                 |
| Sample Location:       | BRONXVILLE, NY         |          |           |                | Field Pre  | ep:       | Not Specified   |
| Sample Depth:          |                        |          |           |                |            |           |                 |
| Parameter              |                        | Result   | Qualifier | Units          | RL         | MDL       | Dilution Factor |
| Volatile Organics b    | oy GC/MS - Westborough | Lab      |           |                |            |           |                 |
| n-Propylbenzene        |                        |          |           |                |            |           |                 |
| in i ropyiocrizerie    |                        | ND       |           | ug/l           | 2.5        | 0.70      | 1               |
| 1,2,3-Trichlorobenzene |                        | ND<br>ND |           | ug/l<br>ug/l   | 2.5<br>2.5 | 0.70      | 1               |
|                        |                        |          |           | 0              |            |           | · ·             |
| 1,2,3-Trichlorobenzene |                        | ND       |           | ug/l           | 2.5        | 0.70      | 1               |

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

p-Ethyltoluene

| Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|----------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                        |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4            |    | 103        |           | 70-130                 |   |
| Toluene-d8                       |    | 101        |           | 70-130                 |   |
| 4-Bromofluorobenzene             |    | 99         |           | 70-130                 |   |
| Dibromofluoromethane             |    | 102        |           | 70-130                 |   |
|                                  |    |            |           |                        |   |



|                    |                 |                | Serial_No:03222114:58 |                |  |  |
|--------------------|-----------------|----------------|-----------------------|----------------|--|--|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:           | L2112852       |  |  |
| Project Number:    | 11663           |                | Report Date:          | 03/22/21       |  |  |
|                    |                 | SAMPLE RESULTS |                       |                |  |  |
| Lab ID:            | L2112852-05     |                | Date Collected:       | 03/15/21 08:50 |  |  |
| Client ID:         | MW-5S           |                | Date Received:        | 03/15/21       |  |  |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:           | Not Specified  |  |  |
| Sample Depth:      |                 |                |                       |                |  |  |
| Matrix:            | Water           |                |                       |                |  |  |
| Analytical Method: | 1,8260C         |                |                       |                |  |  |
| Analytical Date:   | 03/19/21 20:41  |                |                       |                |  |  |
| Analyst:           | NLK             |                |                       |                |  |  |
|                    |                 |                |                       |                |  |  |

| Parameter                       | Result        | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|---------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |      |      |                 |
| Methylene chloride              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane              | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                      | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride            | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane             | ND            |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane            | ND            |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND            |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene               | 7.1           |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane          | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane              | ND            |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane           | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane            | ND            |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene         | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total      | ND            |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene             | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                       | ND            |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane       | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                         | ND            |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                         | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                   | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                  | ND            |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                    | ND            |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene              | ND            |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene        | ND            |           | ug/l  | 2.5  | 0.70 | 1               |



|                                           |                                        | Serial_No:03222114:58 |           |       |                                  |         | 0:03222114:58                               |
|-------------------------------------------|----------------------------------------|-----------------------|-----------|-------|----------------------------------|---------|---------------------------------------------|
| Project Name:                             | 79 PONDFIELD RD                        |                       |           |       | Lab Nu                           | mber:   | L2112852                                    |
| Project Number:                           | 11663                                  |                       |           |       | Report                           | Date:   | 03/22/21                                    |
| •                                         |                                        | SAMP                  | LE RESULT | 5     | •                                |         | •••,==,= :                                  |
| Lab ID:<br>Client ID:<br>Sample Location: | L2112852-05<br>MW-5S<br>BRONXVILLE, NY |                       |           |       | Date Col<br>Date Re<br>Field Pre | ceived: | 03/15/21 08:50<br>03/15/21<br>Not Specified |
| Sample Depth:                             |                                        |                       |           |       |                                  |         |                                             |
| Parameter                                 |                                        | Result                | Qualifier | Units | RL                               | MDL     | Dilution Factor                             |
| Volatile Organics b                       | y GC/MS - Westboroug                   | h Lab                 |           |       |                                  |         |                                             |
| Trichloroethene                           |                                        | 0.24                  | J         | ug/l  | 0.50                             | 0.18    | 1                                           |
| 1,2-Dichlorobenzene                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,3-Dichlorobenzene                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,4-Dichlorobenzene                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Methyl tert butyl ether                   |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| p/m-Xylene                                |                                        | 0.70                  | J         | ug/l  | 2.5                              | 0.70    | 1                                           |
| o-Xylene                                  |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Xylenes, Total                            |                                        | 0.70                  | J         | ug/l  | 2.5                              | 0.70    | 1                                           |
| cis-1,2-Dichloroethene                    |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,2-Dichloroethene, Total                 |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Dibromomethane                            |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| 1,2,3-Trichloropropane                    |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Acrylonitrile                             |                                        | ND                    |           | ug/l  | 5.0                              | 1.5     | 1                                           |
| Styrene                                   |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Dichlorodifluoromethane                   |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| Acetone                                   |                                        | ND                    |           | ug/l  | 5.0                              | 1.5     | 1                                           |
| Carbon disulfide                          |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| 2-Butanone                                |                                        | ND                    |           | ug/l  | 5.0                              | 1.9     | 1                                           |
| Vinyl acetate                             |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| 4-Methyl-2-pentanone                      |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| 2-Hexanone                                |                                        | ND                    |           | ug/l  | 5.0                              | 1.0     | 1                                           |
| Bromochloromethane                        |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 2,2-Dichloropropane                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,2-Dibromoethane                         |                                        | ND                    |           | ug/l  | 2.0                              | 0.65    | 1                                           |
| 1,3-Dichloropropane                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,1,1,2-Tetrachloroethane                 | )                                      | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Bromobenzene                              |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| n-Butylbenzene                            |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| sec-Butylbenzene                          |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| tert-Butylbenzene                         |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| o-Chlorotoluene                           |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| p-Chlorotoluene                           |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| 1,2-Dibromo-3-chloroprop                  | ane                                    | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Hexachlorobutadiene                       |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Isopropylbenzene                          |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| p-Isopropyltoluene                        |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |
| Naphthalene                               |                                        | ND                    |           | ug/l  | 2.5                              | 0.70    | 1                                           |



|                                                                                            |                        | Serial_No:03222114    |           |                      |                   |                      | 0:03222114:58   |
|--------------------------------------------------------------------------------------------|------------------------|-----------------------|-----------|----------------------|-------------------|----------------------|-----------------|
| Project Name:                                                                              | 79 PONDFIELD RD        |                       |           |                      | Lab Nu            | ımber:               | L2112852        |
| Project Number:                                                                            | 11663                  |                       |           |                      | Report            | Date:                | 03/22/21        |
|                                                                                            |                        | SAMPI                 |           | 6                    |                   |                      |                 |
| Lab ID:                                                                                    | L2112852-05            |                       |           |                      | Date Co           | llected:             | 03/15/21 08:50  |
| Client ID:                                                                                 | MW-5S                  |                       |           |                      | Date Re           | ceived:              | 03/15/21        |
| Sample Location:                                                                           | BRONXVILLE, NY         |                       |           |                      | Field Pre         | ep:                  | Not Specified   |
| Sample Depth:                                                                              |                        |                       |           |                      |                   |                      |                 |
|                                                                                            |                        |                       |           |                      |                   |                      |                 |
| Parameter                                                                                  |                        | Result                | Qualifier | Units                | RL                | MDL                  | Dilution Factor |
|                                                                                            | y GC/MS - Westborough  |                       | Qualifier | Units                | RL                | MDL                  | Dilution Factor |
|                                                                                            | oy GC/MS - Westborough |                       | Qualifier | Units<br>ug/l        | <b>RL</b><br>2.5  | <b>MDL</b><br>0.70   | Dilution Factor |
| Volatile Organics b                                                                        | oy GC/MS - Westborough | Lab                   | Qualifier |                      |                   |                      |                 |
| Volatile Organics b                                                                        | oy GC/MS - Westborough | Lab                   | Qualifier | ug/l                 | 2.5               | 0.70                 | 1               |
| Volatile Organics b<br>n-Propylbenzene<br>1,2,3-Trichlorobenzene                           | oy GC/MS - Westborough | Lab<br>ND<br>ND       | Qualifier | ug/l<br>ug/l         | 2.5<br>2.5        | 0.70<br>0.70         | 1               |
| Volatile Organics b<br>n-Propylbenzene<br>1,2,3-Trichlorobenzene<br>1,2,4-Trichlorobenzene | y GC/MS - Westborough  | Lab<br>ND<br>ND<br>ND | Qualifier | ug/l<br>ug/l<br>ug/l | 2.5<br>2.5<br>2.5 | 0.70<br>0.70<br>0.70 | 1<br>1<br>1     |

ug/l

ug/l

ug/l

ug/l

ug/l

2.0

2.0

2.0

2.5

2.5

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

p-Ethyltoluene

| No Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|-------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                           |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |    | 104        |           | 70-130                 |   |
| Toluene-d8                          |    | 99         |           | 70-130                 |   |
| 4-Bromofluorobenzene                |    | 101        |           | 70-130                 |   |
| Dibromofluoromethane                |    | 105        |           | 70-130                 |   |



|                                                                                |                                           | Serial_No:03222114:58 |                |                                                  |                                             |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------|-----------------------|----------------|--------------------------------------------------|---------------------------------------------|--|--|
| Project Name:                                                                  | 79 PONDFIELD RD                           |                       |                | Lab Number:                                      | L2112852                                    |  |  |
| Project Number:                                                                | 11663                                     |                       |                | Report Date:                                     | 03/22/21                                    |  |  |
|                                                                                |                                           |                       | SAMPLE RESULTS |                                                  |                                             |  |  |
| Lab ID:<br>Client ID:<br>Sample Location:                                      | L2112852-06<br>MW-5I<br>BRONXVILLE, NY    | D                     |                | Date Collected:<br>Date Received:<br>Field Prep: | 03/15/21 08:40<br>03/15/21<br>Not Specified |  |  |
| Sample Depth:<br>Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>03/19/21 22:27<br>NLK |                       |                |                                                  |                                             |  |  |

| Parameter                       | Result        | Qualifier | Units | RL  | MDL  | Dilution Factor |
|---------------------------------|---------------|-----------|-------|-----|------|-----------------|
| Volatile Organics by GC/MS - We | stborough Lab |           |       |     |      |                 |
| Methylene chloride              | ND            |           | ug/l  | 25  | 7.0  | 10              |
| 1,1-Dichloroethane              | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Chloroform                      | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Carbon tetrachloride            | ND            |           | ug/l  | 5.0 | 1.3  | 10              |
| 1,2-Dichloropropane             | ND            |           | ug/l  | 10  | 1.4  | 10              |
| Dibromochloromethane            | ND            |           | ug/l  | 5.0 | 1.5  | 10              |
| 1,1,2-Trichloroethane           | ND            |           | ug/l  | 15  | 5.0  | 10              |
| Tetrachloroethene               | 1800          |           | ug/l  | 5.0 | 1.8  | 10              |
| Chlorobenzene                   | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Trichlorofluoromethane          | ND            |           | ug/l  | 25  | 7.0  | 10              |
| 1,2-Dichloroethane              | ND            |           | ug/l  | 5.0 | 1.3  | 10              |
| 1,1,1-Trichloroethane           | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Bromodichloromethane            | ND            |           | ug/l  | 5.0 | 1.9  | 10              |
| trans-1,3-Dichloropropene       | ND            |           | ug/l  | 5.0 | 1.6  | 10              |
| cis-1,3-Dichloropropene         | ND            |           | ug/l  | 5.0 | 1.4  | 10              |
| 1,3-Dichloropropene, Total      | ND            |           | ug/l  | 5.0 | 1.4  | 10              |
| 1,1-Dichloropropene             | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Bromoform                       | ND            |           | ug/l  | 20  | 6.5  | 10              |
| 1,1,2,2-Tetrachloroethane       | ND            |           | ug/l  | 5.0 | 1.7  | 10              |
| Benzene                         | ND            |           | ug/l  | 5.0 | 1.6  | 10              |
| Toluene                         | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Ethylbenzene                    | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Chloromethane                   | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Bromomethane                    | ND            |           | ug/l  | 25  | 7.0  | 10              |
| Vinyl chloride                  | ND            |           | ug/l  | 10  | 0.71 | 10              |
| Chloroethane                    | ND            |           | ug/l  | 25  | 7.0  | 10              |
| 1,1-Dichloroethene              | ND            |           | ug/l  | 5.0 | 1.7  | 10              |
| trans-1,2-Dichloroethene        | ND            |           | ug/l  | 25  | 7.0  | 10              |



|                           |                     |          |            |              | Ş         | Serial No  | :03222114:58    |  |
|---------------------------|---------------------|----------|------------|--------------|-----------|------------|-----------------|--|
| Project Name:             | 79 PONDFIELD RD     |          |            |              | Lab Nu    |            | L2112852        |  |
| Project Number:           | 11663               |          |            |              | Report    | Date:      | 03/22/21        |  |
| ,                         | 11000               | SAMP     | LE RESULTS | 6            |           |            | 00/22/21        |  |
| Lab ID:                   | L2112852-06         | D        |            |              | Date Col  | lected:    | 03/15/21 08:40  |  |
| Client ID:                | MW-5I               | -        |            |              | Date Red  |            | 03/15/21        |  |
| Sample Location:          | BRONXVILLE, NY      |          |            |              | Field Pre | ep:        | Not Specified   |  |
| Sample Depth:             |                     |          |            |              |           |            |                 |  |
| Parameter                 |                     | Result   | Qualifier  | Units        | RL        | MDL        | Dilution Factor |  |
| Volatile Organics b       | y GC/MS - Westborou | gh Lab   |            |              |           |            |                 |  |
|                           |                     | -        |            |              | 5.0       |            | 40              |  |
| Trichloroethene           |                     | 2.6      | J          | ug/l         | 5.0       | 1.8        | 10              |  |
| 1,2-Dichlorobenzene       |                     | ND<br>ND |            | ug/l         | 25        | 7.0<br>7.0 | 10              |  |
| 1,3-Dichlorobenzene       |                     | ND       |            | ug/l         | 25<br>25  | 7.0        | 10              |  |
| Methyl tert butyl ether   |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| p/m-Xylene                |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| o-Xylene                  |                     | ND       |            | ug/l<br>ug/l | 25        | 7.0        | 10              |  |
| Xylenes, Total            |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| cis-1,2-Dichloroethene    |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| 1,2-Dichloroethene, Total |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Dibromomethane            |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| 1,2,3-Trichloropropane    |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Acrylonitrile             |                     | ND       |            | ug/l         | 50        | 15.        | 10              |  |
| Styrene                   |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Dichlorodifluoromethane   |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| Acetone                   |                     | ND       |            | ug/l         | 50        | 15.        | 10              |  |
| Carbon disulfide          |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| 2-Butanone                |                     | ND       |            | ug/l         | 50        | 19.        | 10              |  |
| Vinyl acetate             |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| 4-Methyl-2-pentanone      |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| 2-Hexanone                |                     | ND       |            | ug/l         | 50        | 10.        | 10              |  |
| Bromochloromethane        |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| 2,2-Dichloropropane       |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| 1,2-Dibromoethane         |                     | ND       |            | ug/l         | 20        | 6.5        | 10              |  |
| 1,3-Dichloropropane       |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| 1,1,1,2-Tetrachloroethane | )                   | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Bromobenzene              |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| n-Butylbenzene            |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| sec-Butylbenzene          |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| tert-Butylbenzene         |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| o-Chlorotoluene           |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| p-Chlorotoluene           |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| 1,2-Dibromo-3-chloroprop  | ane                 | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Hexachlorobutadiene       |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Isopropylbenzene          |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| p-Isopropyltoluene        |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |
| Naphthalene               |                     | ND       |            | ug/l         | 25        | 7.0        | 10              |  |



|                        |                     | Serial_No:03222114:58 |           |       |                 |         |                 |  |  |
|------------------------|---------------------|-----------------------|-----------|-------|-----------------|---------|-----------------|--|--|
| Project Name:          | 79 PONDFIELD RD     |                       |           |       | Lab Nu          | umber:  | L2112852        |  |  |
| Project Number:        | 11663               |                       |           |       | Report          | Date:   | 03/22/21        |  |  |
| SAMPLE RESULTS         |                     |                       |           |       |                 |         |                 |  |  |
| Lab ID:                | L2112852-06         | D                     |           |       | Date Collected: |         | 03/15/21 08:40  |  |  |
| Client ID:             | MW-5I               |                       |           |       | Date Re         | ceived: | 03/15/21        |  |  |
| Sample Location:       | BRONXVILLE, NY      |                       |           |       | Field Pre       | ep:     | Not Specified   |  |  |
| Sample Depth:          |                     |                       |           |       |                 |         |                 |  |  |
| Parameter              |                     | Result                | Qualifier | Units | RL              | MDL     | Dilution Factor |  |  |
| Volatile Organics b    | y GC/MS - Westborou | gh Lab                |           |       |                 |         |                 |  |  |
| n-Propylbenzene        |                     | ND                    |           | ug/l  | 25              | 7.0     | 10              |  |  |
| 1,2,3-Trichlorobenzene |                     | ND                    |           | ug/l  | 25              | 7.0     | 10              |  |  |
| 1,2,4-Trichlorobenzene |                     | ND                    |           | ug/l  | 25              | 7.0     | 10              |  |  |

25

25

2500

20

20

20

25

25

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

7.0

7.0

610

7.0

7.0

5.4

7.0

7.0

10

10

10

10

10

10

10

10

ND

ND

ND

ND

ND

ND

ND

ND

## Tentatively Identified Compounds

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

| o Tentatively Identified Compounds | ed Compounds ND |            |           | ug/l                   |  |  |
|------------------------------------|-----------------|------------|-----------|------------------------|--|--|
| Surrogate                          |                 | % Recovery | Qualifier | Acceptance<br>Criteria |  |  |
| 1,2-Dichloroethane-d4              |                 | 108        |           | 70-130                 |  |  |
| Toluene-d8                         |                 | 100        |           | 70-130                 |  |  |
| 4-Bromofluorobenzene               |                 | 101        |           | 70-130                 |  |  |
| Dibromofluoromethane               |                 | 99         |           | 70-130                 |  |  |



|                    |                 |                | Serial_N        | 0:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-07     |                | Date Collected: | 03/15/21 11:05 |
| Client ID:         | MW-6            |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 20:19  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                       | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | estborough Lab |           |       |      |      |                 |
| Methylene chloride              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                      | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride            | ND             |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane             | ND             |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane            | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND             |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene               | 200            |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane          | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane              | ND             |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane           | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane            | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene         | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total      | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                       | ND             |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane       | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                         | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                  | ND             |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene              | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |



|                            |                      |        |           |       | ;         | Serial_No | :03222114:58    |  |
|----------------------------|----------------------|--------|-----------|-------|-----------|-----------|-----------------|--|
| Project Name:              | 79 PONDFIELD RD      |        |           |       | Lab Nu    | mber:     | L2112852        |  |
| Project Number:            | 11663                |        |           |       | Report    | Date:     | 03/22/21        |  |
| •                          |                      | SAMP   |           | 5     | •         |           |                 |  |
| Lab ID:                    | L2112852-07          |        |           |       | Date Col  | lected:   | 03/15/21 11:05  |  |
| Client ID:                 | MW-6                 |        |           |       | Date Red  |           | 03/15/21        |  |
| Sample Location:           | BRONXVILLE, NY       |        |           |       | Field Pre | ep:       | Not Specified   |  |
| Sampla Dopth:              |                      |        |           |       |           |           |                 |  |
| Sample Depth:<br>Parameter |                      | Result | Qualifier | Units | RL        | MDL       | Dilution Factor |  |
|                            | y GC/MS - Westboroug |        | Quanner   | Units |           | MDE       |                 |  |
| volatile Organics b        |                      | II Lab |           |       |           |           |                 |  |
| Trichloroethene            |                      | 0.52   |           | ug/l  | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,3-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether    |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                 |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Xylene                   |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Xylenes, Total             |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene     |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total  | l                    | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dibromomethane             |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane     |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Acrylonitrile              |                      | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Styrene                    |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane    |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Acetone                    |                      | ND     |           | ug/l  | 5.0       | 1.5       | 1               |  |
| Carbon disulfide           |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Butanone                 |                      | ND     |           | ug/l  | 5.0       | 1.9       | 1               |  |
| Vinyl acetate              |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone       |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                 |                      | ND     |           | ug/l  | 5.0       | 1.0       | 1               |  |
| Bromochloromethane         |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane          |                      | ND     |           | ug/l  | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane  | 9                    | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Bromobenzene               |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene             |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene           |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene          |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene            |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene            |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop   | bane                 | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene        |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Isopropylbenzene           |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| p-lsopropyltoluene         |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
| Naphthalene                |                      | ND     |           | ug/l  | 2.5       | 0.70      | 1               |  |
|                            |                      |        |           |       |           |           |                 |  |



|                     |                       | Serial_No:03222114:58 |           |       |           |         |                 |
|---------------------|-----------------------|-----------------------|-----------|-------|-----------|---------|-----------------|
| Project Name:       | 79 PONDFIELD RD       |                       |           |       | Lab Nu    | mber:   | L2112852        |
| Project Number:     | 11663                 |                       |           |       | Report    | Date:   | 03/22/21        |
|                     |                       | SAMP                  |           | 5     |           |         |                 |
| Lab ID:             | L2112852-07           |                       |           |       | Date Col  | lected: | 03/15/21 11:05  |
| Client ID:          | MW-6                  |                       |           |       | Date Red  | ceived: | 03/15/21        |
| Sample Location:    | BRONXVILLE, NY        |                       |           |       | Field Pre | ep:     | Not Specified   |
| Sample Depth:       |                       |                       |           |       |           |         |                 |
| Parameter           |                       | Result                | Qualifier | Units | RL        | MDL     | Dilution Factor |
| Volatile Organics b | y GC/MS - Westborough | Lab                   |           |       |           |         |                 |
| n-Propylbenzene     |                       | ND                    |           | ug/l  | 2.5       | 0.70    | 1               |

ug/l

2.5

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

0.70

0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

1

1

ND

## Tentatively Identified Compounds

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

| No Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|-------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                           |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |    | 113        |           | 70-130                 |   |
| Toluene-d8                          |    | 99         |           | 70-130                 |   |
| 4-Bromofluorobenzene                |    | 100        |           | 70-130                 |   |
| Dibromofluoromethane                |    | 104        |           | 70-130                 |   |



|                    |                 |                | Serial_N        | o:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-08     |                | Date Collected: | 03/15/21 12:00 |
| Client ID:         | DUP-1           |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 19:58  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                                    | Result | Qualifier | Units | RL   | MDL  | Dilution Factor |  |  |
|----------------------------------------------|--------|-----------|-------|------|------|-----------------|--|--|
| Volatile Organics by GC/MS - Westborough Lab |        |           |       |      |      |                 |  |  |
| Methylene chloride                           | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| 1,1-Dichloroethane                           | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Chloroform                                   | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Carbon tetrachloride                         | ND     |           | ug/l  | 0.50 | 0.13 | 1               |  |  |
| 1,2-Dichloropropane                          | ND     |           | ug/l  | 1.0  | 0.14 | 1               |  |  |
| Dibromochloromethane                         | ND     |           | ug/l  | 0.50 | 0.15 | 1               |  |  |
| 1,1,2-Trichloroethane                        | ND     |           | ug/l  | 1.5  | 0.50 | 1               |  |  |
| Tetrachloroethene                            | 170    |           | ug/l  | 0.50 | 0.18 | 1               |  |  |
| Chlorobenzene                                | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Trichlorofluoromethane                       | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| 1,2-Dichloroethane                           | ND     |           | ug/l  | 0.50 | 0.13 | 1               |  |  |
| 1,1,1-Trichloroethane                        | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Bromodichloromethane                         | ND     |           | ug/l  | 0.50 | 0.19 | 1               |  |  |
| trans-1,3-Dichloropropene                    | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |
| cis-1,3-Dichloropropene                      | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |
| 1,3-Dichloropropene, Total                   | ND     |           | ug/l  | 0.50 | 0.14 | 1               |  |  |
| 1,1-Dichloropropene                          | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Bromoform                                    | ND     |           | ug/l  | 2.0  | 0.65 | 1               |  |  |
| 1,1,2,2-Tetrachloroethane                    | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |
| Benzene                                      | ND     |           | ug/l  | 0.50 | 0.16 | 1               |  |  |
| Toluene                                      | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Ethylbenzene                                 | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Chloromethane                                | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Bromomethane                                 | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| Vinyl chloride                               | ND     |           | ug/l  | 1.0  | 0.07 | 1               |  |  |
| Chloroethane                                 | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |
| 1,1-Dichloroethene                           | ND     |           | ug/l  | 0.50 | 0.17 | 1               |  |  |
| trans-1,2-Dichloroethene                     | ND     |           | ug/l  | 2.5  | 0.70 | 1               |  |  |



|                            |                      |        |           |       | ç         | Serial_No           | :03222114:58    |  |
|----------------------------|----------------------|--------|-----------|-------|-----------|---------------------|-----------------|--|
| Project Name:              | 79 PONDFIELD RD      |        |           |       | Lab Nu    |                     | L2112852        |  |
| Project Number:            | 11663                |        |           |       | Report    | Date:               | 03/22/21        |  |
|                            |                      | SAMP   |           | 6     |           |                     | 00,22,21        |  |
| Lab ID:                    | L2112852-08          |        |           |       | Date Col  | lected <sup>.</sup> | 03/15/21 12:00  |  |
| Client ID:                 | DUP-1                |        |           |       | Date Red  |                     | 03/15/21        |  |
| Sample Location:           | BRONXVILLE, NY       |        |           |       | Field Pre |                     | Not Specified   |  |
| Comple Donth               |                      |        |           |       |           | -                   |                 |  |
| Sample Depth:<br>Parameter |                      | Result | Qualifier | Units | RL        | MDL                 | Dilution Factor |  |
|                            | y GC/MS - Westboroug |        | Quanter   | Units |           |                     |                 |  |
| Volatile Organics b        |                      | II Lab |           |       |           |                     |                 |  |
| Trichloroethene            |                      | 0.36   | J         | ug/l  | 0.50      | 0.18                | 1               |  |
| 1,2-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,3-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,4-Dichlorobenzene        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Methyl tert butyl ether    |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| p/m-Xylene                 |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| o-Xylene                   |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Xylenes, Total             |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| cis-1,2-Dichloroethene     |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,2-Dichloroethene, Total  |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Dibromomethane             |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| 1,2,3-Trichloropropane     |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Acrylonitrile              |                      | ND     |           | ug/l  | 5.0       | 1.5                 | 1               |  |
| Styrene                    |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Dichlorodifluoromethane    |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| Acetone                    |                      | ND     |           | ug/l  | 5.0       | 1.5                 | 1               |  |
| Carbon disulfide           |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| 2-Butanone                 |                      | ND     |           | ug/l  | 5.0       | 1.9                 | 1               |  |
| Vinyl acetate              |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| 4-Methyl-2-pentanone       |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| 2-Hexanone                 |                      | ND     |           | ug/l  | 5.0       | 1.0                 | 1               |  |
| Bromochloromethane         |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 2,2-Dichloropropane        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,2-Dibromoethane          |                      | ND     |           | ug/l  | 2.0       | 0.65                | 1               |  |
| 1,3-Dichloropropane        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,1,1,2-Tetrachloroethane  | Э                    | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Bromobenzene               |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| n-Butylbenzene             |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| sec-Butylbenzene           |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| tert-Butylbenzene          |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| o-Chlorotoluene            |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| p-Chlorotoluene            |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| 1,2-Dibromo-3-chloroprop   | bane                 | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Hexachlorobutadiene        |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Isopropylbenzene           |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| p-Isopropyltoluene         |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
| Naphthalene                |                      | ND     |           | ug/l  | 2.5       | 0.70                | 1               |  |
|                            |                      |        |           |       |           |                     |                 |  |



|                     |                       |        |            |              | :         | Serial_No | 0:03222114:58   |
|---------------------|-----------------------|--------|------------|--------------|-----------|-----------|-----------------|
| Project Name:       | 79 PONDFIELD RD       |        |            |              | Lab Nu    | mber:     | L2112852        |
| Project Number:     | 11663                 |        |            |              | Report    | Date:     | 03/22/21        |
|                     |                       | SAMP   | LE RESULTS | 6            |           |           |                 |
| Lab ID:             | L2112852-08           |        |            |              | Date Co   | llected:  | 03/15/21 12:00  |
| Client ID:          | DUP-1                 |        |            |              | Date Re   | ceived:   | 03/15/21        |
| Sample Location:    | BRONXVILLE, NY        |        |            |              | Field Pre | ep:       | Not Specified   |
| Sample Depth:       |                       |        |            |              |           |           |                 |
| Parameter           |                       | Result | Qualifier  | Units        | RL        | MDL       | Dilution Factor |
|                     |                       |        | -4         | onits        |           |           | Bildion Factor  |
|                     | y GC/MS - Westborough |        |            | Units        |           |           |                 |
|                     | y GC/MS - Westborough |        |            |              | 2.5       | 0.70      | 1               |
| Volatile Organics b | y GC/MS - Westborough | Lab    |            | ug/l<br>ug/l |           |           |                 |
| Volatile Organics b | y GC/MS - Westborough | Lab    |            | ug/l         | 2.5       | 0.70      | 1               |

2.5

250

2.0

2.0

2.0

2.5

2.5

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

ND

### Tentatively Identified Compounds

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

| No Tentatively Identified Compounds | ND     | ug/l |           |                        | 1 |
|-------------------------------------|--------|------|-----------|------------------------|---|
| Surrogate                           | rogate |      | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |        | 106  |           | 70-130                 |   |
| Toluene-d8                          |        | 98   |           | 70-130                 |   |
| 4-Bromofluorobenzene                |        | 103  |           | 70-130                 |   |
| Dibromofluoromethane                |        | 101  |           | 70-130                 |   |



|                                                               |                                              |                | Serial_No                                        | 0:03222114:58                               |
|---------------------------------------------------------------|----------------------------------------------|----------------|--------------------------------------------------|---------------------------------------------|
| Project Name:                                                 | 79 PONDFIELD RD                              |                | Lab Number:                                      | L2112852                                    |
| Project Number:                                               | 11663                                        |                | Report Date:                                     | 03/22/21                                    |
|                                                               |                                              | SAMPLE RESULTS |                                                  |                                             |
| Lab ID:<br>Client ID:<br>Sample Location:<br>Sample Depth:    | L2112852-09<br>FIELD BLANK<br>BRONXVILLE, NY |                | Date Collected:<br>Date Received:<br>Field Prep: | 03/15/21 13:30<br>03/15/21<br>Not Specified |
| Matrix:<br>Analytical Method:<br>Analytical Date:<br>Analyst: | Water<br>1,8260C<br>03/19/21 19:36<br>NLK    |                |                                                  |                                             |

| Parameter                       | Result         | Qualifier | Units | RL   | MDL  | Dilution Factor |
|---------------------------------|----------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - We | estborough Lab |           |       |      |      |                 |
| Methylene chloride              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane              | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                      | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride            | ND             |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane             | ND             |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane            | ND             |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane           | ND             |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene               | ND             |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane          | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane              | ND             |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane           | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane            | ND             |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene       | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene         | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total      | ND             |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene             | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                       | ND             |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane       | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                         | ND             |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                         | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                   | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                  | ND             |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                    | ND             |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene              | ND             |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene        | ND             |           | ug/l  | 2.5  | 0.70 | 1               |



|                           |                       |        |           |              | ç         | Serial_No | :03222114:58    |  |
|---------------------------|-----------------------|--------|-----------|--------------|-----------|-----------|-----------------|--|
| Project Name:             | 79 PONDFIELD RD       |        |           |              | Lab Nu    | mber:     | L2112852        |  |
| Project Number:           | 11663                 |        |           |              | Report    | Date:     | 03/22/21        |  |
| •                         |                       | SAMP   |           | 6            | •         |           | 00,22,21        |  |
| Lab ID:                   | L2112852-09           |        |           |              | Date Col  | lected:   | 03/15/21 13:30  |  |
| Client ID:                | FIELD BLANK           |        |           |              | Date Red  |           | 03/15/21        |  |
| Sample Location:          | BRONXVILLE, NY        |        |           |              | Field Pre | p:        | Not Specified   |  |
| Sample Depth:             |                       |        |           |              |           |           |                 |  |
| Parameter                 |                       | Result | Qualifier | Units        | RL        | MDL       | Dilution Factor |  |
| Volatile Organics b       | y GC/MS - Westborougl | n Lab  |           |              |           |           |                 |  |
| Trichloroethene           |                       | ND     |           |              | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene       |                       | ND     |           | ug/l         | 2.5       | 0.18      | 1               |  |
| 1,3-Dichlorobenzene       |                       | ND     |           | ug/l<br>ug/l | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether   |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| o-Xylene                  |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Xylenes, Total            |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene    |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Dibromomethane            |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane    |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Acrylonitrile             |                       | ND     |           | ug/l         | 5.0       | 1.5       | 1               |  |
| Styrene                   |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane   |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| Acetone                   |                       | ND     |           | ug/l         | 5.0       | 1.5       | 1               |  |
| Carbon disulfide          |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 2-Butanone                |                       | ND     |           | ug/l         | 5.0       | 1.9       | 1               |  |
| Vinyl acetate             |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone      |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| Bromochloromethane        |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane         |                       | ND     |           | ug/l         | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane | 9                     | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Bromobenzene              |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene            |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene          |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene         |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene           |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene           |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop  | Dane                  | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
|                           |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p-Isopropyltoluene        |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Naphthalene               |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |



|                        |                       |        |           |       |           | Serial_No | 0:03222114:58   |
|------------------------|-----------------------|--------|-----------|-------|-----------|-----------|-----------------|
| Project Name:          | 79 PONDFIELD RD       |        |           |       | Lab Nu    | ımber:    | L2112852        |
| Project Number:        | 11663                 |        |           |       | Report    | Date:     | 03/22/21        |
|                        |                       | SAMP   |           | 5     |           |           |                 |
| Lab ID:                | L2112852-09           |        |           |       | Date Co   | llected:  | 03/15/21 13:30  |
| Client ID:             | FIELD BLANK           |        |           |       | Date Re   | ceived:   | 03/15/21        |
| Sample Location:       | BRONXVILLE, NY        |        |           |       | Field Pre | ep:       | Not Specified   |
| Sample Depth:          |                       |        |           |       |           |           |                 |
| Parameter              |                       | Result | Qualifier | Units | RL        | MDL       | Dilution Factor |
| Volatile Organics b    | y GC/MS - Westborough | Lab    |           |       |           |           |                 |
| n-Propylbenzene        |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |
| 1,2,3-Trichlorobenzene |                       | ND     |           | ug/l  | 2.5       | 0.70      | 1               |

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

ND

ND

ND

### Tentatively Identified Compounds

1,2,4-Trichlorobenzene

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

1,4-Dioxane

p-Diethylbenzene

p-Ethyltoluene

Ethyl ether

| No Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|-------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                           |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4               |    | 107        |           | 70-130                 |   |
| Toluene-d8                          |    | 101        |           | 70-130                 |   |
| 4-Bromofluorobenzene                |    | 103        |           | 70-130                 |   |
| Dibromofluoromethane                |    | 103        |           | 70-130                 |   |



0.70

0.70

0.70

61.

0.70

0.70

0.54

0.70

0.70

1

1

1

1

1

1

1

1

1

2.5

2.5

2.5

250

2.0

2.0

2.0

2.5

2.5

|                    |                 |                | Serial_N        | 0:03222114:58  |
|--------------------|-----------------|----------------|-----------------|----------------|
| Project Name:      | 79 PONDFIELD RD |                | Lab Number:     | L2112852       |
| Project Number:    | 11663           |                | Report Date:    | 03/22/21       |
|                    |                 | SAMPLE RESULTS |                 |                |
| Lab ID:            | L2112852-10     |                | Date Collected: | 03/10/21 00:00 |
| Client ID:         | TRIP BLANK      |                | Date Received:  | 03/15/21       |
| Sample Location:   | BRONXVILLE, NY  |                | Field Prep:     | Not Specified  |
| Sample Depth:      |                 |                |                 |                |
| Matrix:            | Water           |                |                 |                |
| Analytical Method: | 1,8260C         |                |                 |                |
| Analytical Date:   | 03/19/21 19:15  |                |                 |                |
| Analyst:           | NLK             |                |                 |                |
|                    |                 |                |                 |                |
|                    |                 |                |                 |                |

| Parameter                        | Result       | Qualifier | Units | RL   | MDL  | Dilution Factor |
|----------------------------------|--------------|-----------|-------|------|------|-----------------|
| Volatile Organics by GC/MS - Wes | tborough Lab |           |       |      |      |                 |
| Methylene chloride               | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethane               | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloroform                       | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Carbon tetrachloride             | ND           |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,2-Dichloropropane              | ND           |           | ug/l  | 1.0  | 0.14 | 1               |
| Dibromochloromethane             | ND           |           | ug/l  | 0.50 | 0.15 | 1               |
| 1,1,2-Trichloroethane            | ND           |           | ug/l  | 1.5  | 0.50 | 1               |
| Tetrachloroethene                | ND           |           | ug/l  | 0.50 | 0.18 | 1               |
| Chlorobenzene                    | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Trichlorofluoromethane           | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,2-Dichloroethane               | ND           |           | ug/l  | 0.50 | 0.13 | 1               |
| 1,1,1-Trichloroethane            | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromodichloromethane             | ND           |           | ug/l  | 0.50 | 0.19 | 1               |
| trans-1,3-Dichloropropene        | ND           |           | ug/l  | 0.50 | 0.16 | 1               |
| cis-1,3-Dichloropropene          | ND           |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,3-Dichloropropene, Total       | ND           |           | ug/l  | 0.50 | 0.14 | 1               |
| 1,1-Dichloropropene              | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromoform                        | ND           |           | ug/l  | 2.0  | 0.65 | 1               |
| 1,1,2,2-Tetrachloroethane        | ND           |           | ug/l  | 0.50 | 0.17 | 1               |
| Benzene                          | ND           |           | ug/l  | 0.50 | 0.16 | 1               |
| Toluene                          | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Ethylbenzene                     | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Chloromethane                    | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Bromomethane                     | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| Vinyl chloride                   | ND           |           | ug/l  | 1.0  | 0.07 | 1               |
| Chloroethane                     | ND           |           | ug/l  | 2.5  | 0.70 | 1               |
| 1,1-Dichloroethene               | ND           |           | ug/l  | 0.50 | 0.17 | 1               |
| trans-1,2-Dichloroethene         | ND           |           | ug/l  | 2.5  | 0.70 | 1               |



|                           |                       |        |           |              | ç         | Serial_No | :03222114:58    |  |
|---------------------------|-----------------------|--------|-----------|--------------|-----------|-----------|-----------------|--|
| Project Name:             | 79 PONDFIELD RD       |        |           |              | Lab Nu    | mber:     | L2112852        |  |
| Project Number:           | 11663                 |        |           |              | Report    | Date:     | 03/22/21        |  |
| •                         |                       | SAMP   |           | 6            | •         |           | 00,22,21        |  |
| Lab ID:                   | L2112852-10           |        |           |              | Date Col  | lected:   | 03/10/21 00:00  |  |
| Client ID:                | TRIP BLANK            |        |           |              | Date Red  |           | 03/15/21        |  |
| Sample Location:          | BRONXVILLE, NY        |        |           |              | Field Pre | p:        | Not Specified   |  |
| Sample Depth:             |                       |        |           |              |           |           |                 |  |
| Parameter                 |                       | Result | Qualifier | Units        | RL        | MDL       | Dilution Factor |  |
| Volatile Organics b       | y GC/MS - Westborougl | n Lab  |           |              |           |           |                 |  |
| Trichloroethene           |                       | ND     |           |              | 0.50      | 0.18      | 1               |  |
| 1,2-Dichlorobenzene       |                       | ND     |           | ug/l         | 2.5       | 0.18      | 1               |  |
| 1,3-Dichlorobenzene       |                       | ND     |           | ug/l<br>ug/l | 2.5       | 0.70      | 1               |  |
| 1,4-Dichlorobenzene       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Methyl tert butyl ether   |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p/m-Xylene                |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| o-Xylene                  |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Xylenes, Total            |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| cis-1,2-Dichloroethene    |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dichloroethene, Total |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Dibromomethane            |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 1,2,3-Trichloropropane    |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Acrylonitrile             |                       | ND     |           | ug/l         | 5.0       | 1.5       | 1               |  |
| Styrene                   |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Dichlorodifluoromethane   |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| Acetone                   |                       | ND     |           | ug/l         | 5.0       | 1.5       | 1               |  |
| Carbon disulfide          |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 2-Butanone                |                       | ND     |           | ug/l         | 5.0       | 1.9       | 1               |  |
| Vinyl acetate             |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 4-Methyl-2-pentanone      |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| 2-Hexanone                |                       | ND     |           | ug/l         | 5.0       | 1.0       | 1               |  |
| Bromochloromethane        |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 2,2-Dichloropropane       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromoethane         |                       | ND     |           | ug/l         | 2.0       | 0.65      | 1               |  |
| 1,3-Dichloropropane       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,1,1,2-Tetrachloroethane | 9                     | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Bromobenzene              |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| n-Butylbenzene            |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| sec-Butylbenzene          |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| tert-Butylbenzene         |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| o-Chlorotoluene           |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p-Chlorotoluene           |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| 1,2-Dibromo-3-chloroprop  | bane                  | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Hexachlorobutadiene       |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Isopropylbenzene          |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| p-Isopropyltoluene        |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |
| Naphthalene               |                       | ND     |           | ug/l         | 2.5       | 0.70      | 1               |  |



|                                                                               |                       |                 |           |              |                  | Serial_No          | 03222114:58     |
|-------------------------------------------------------------------------------|-----------------------|-----------------|-----------|--------------|------------------|--------------------|-----------------|
| Project Name:                                                                 | 79 PONDFIELD RD       |                 |           |              | Lab Nu           | mber:              | L2112852        |
| Project Number:                                                               | 11663                 |                 |           |              | Report           | Date:              | 03/22/21        |
|                                                                               |                       | SAMP            |           | 6            |                  |                    |                 |
| Lab ID:                                                                       | L2112852-10           |                 |           |              | Date Co          | llected:           | 03/10/21 00:00  |
| Client ID:                                                                    | TRIP BLANK            |                 |           |              | Date Re          | ceived:            | 03/15/21        |
| Sample Location:                                                              | BRONXVILLE, NY        |                 |           |              | Field Pre        | ep:                | Not Specified   |
| Sample Depth:                                                                 |                       |                 |           |              |                  |                    |                 |
| Cumpic Deptil.                                                                |                       |                 |           |              |                  |                    |                 |
| Parameter                                                                     |                       | Result          | Qualifier | Units        | RL               | MDL                | Dilution Factor |
| Parameter                                                                     | y GC/MS - Westborough |                 | Qualifier | Units        | RL               | MDL                | Dilution Factor |
| Parameter<br>Volatile Organics b                                              | y GC/MS - Westborough |                 | Qualifier |              | <b>RL</b><br>2.5 | <b>MDL</b><br>0.70 | Dilution Factor |
| Parameter                                                                     | y GC/MS - Westborough | Lab             | Qualifier | ug/l         |                  |                    |                 |
| Parameter<br>Volatile Organics b<br>n-Propylbenzene                           | y GC/MS - Westborough | Lab             | Qualifier |              | 2.5              | 0.70               | 1               |
| Parameter<br>Volatile Organics b<br>n-Propylbenzene<br>1,2,3-Trichlorobenzene | y GC/MS - Westborough | Lab<br>ND<br>ND | Qualifier | ug/l<br>ug/l | 2.5<br>2.5       | 0.70<br>0.70       | 1<br>1          |

250

2.0

2.0

2.0

2.5

2.5

61.

0.70

0.70

0.54

0.70

0.70

ug/l

ug/l

ug/l

ug/l

ug/l

ug/l

ND

ND

ND

ND

ND

ND

### Tentatively Identified Compounds

1,4-Dioxane

p-Diethylbenzene

1,2,4,5-Tetramethylbenzene

trans-1,4-Dichloro-2-butene

p-Ethyltoluene

Ethyl ether

| o Tentatively Identified Compounds | ND | ug/l       |           |                        | 1 |
|------------------------------------|----|------------|-----------|------------------------|---|
| Surrogate                          |    | % Recovery | Qualifier | Acceptance<br>Criteria |   |
| 1,2-Dichloroethane-d4              |    | 111        |           | 70-130                 |   |
| Toluene-d8                         |    | 100        |           | 70-130                 |   |
| 4-Bromofluorobenzene               |    | 99         |           | 70-130                 |   |
| Dibromofluoromethane               |    | 103        |           | 70-130                 |   |



1

1

1

1

1

1

Project Number: 116

11663

 Lab Number:
 L2112852

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/19/21 18:32Analyst:LAC

| arameter                    | Result          | Qualifier Units | RL           | MDL         |
|-----------------------------|-----------------|-----------------|--------------|-------------|
| olatile Organics by GC/MS - | Westborough Lab | for sample(s):  | 01-10 Batch: | WG1476941-5 |
| Methylene chloride          | ND              | ug/l            | 2.5          | 0.70        |
| 1,1-Dichloroethane          | ND              | ug/l            | 2.5          | 0.70        |
| Chloroform                  | ND              | ug/l            | 2.5          | 0.70        |
| Carbon tetrachloride        | ND              | ug/l            | 0.50         | 0.13        |
| 1,2-Dichloropropane         | ND              | ug/l            | 1.0          | 0.14        |
| Dibromochloromethane        | ND              | ug/l            | 0.50         | 0.15        |
| 1,1,2-Trichloroethane       | ND              | ug/l            | 1.5          | 0.50        |
| Tetrachloroethene           | ND              | ug/l            | 0.50         | 0.18        |
| Chlorobenzene               | ND              | ug/l            | 2.5          | 0.70        |
| Trichlorofluoromethane      | ND              | ug/l            | 2.5          | 0.70        |
| 1,2-Dichloroethane          | ND              | ug/l            | 0.50         | 0.13        |
| 1,1,1-Trichloroethane       | ND              | ug/l            | 2.5          | 0.70        |
| Bromodichloromethane        | ND              | ug/l            | 0.50         | 0.19        |
| trans-1,3-Dichloropropene   | ND              | ug/l            | 0.50         | 0.16        |
| cis-1,3-Dichloropropene     | ND              | ug/l            | 0.50         | 0.14        |
| 1,3-Dichloropropene, Total  | ND              | ug/l            | 0.50         | 0.14        |
| 1,1-Dichloropropene         | ND              | ug/l            | 2.5          | 0.70        |
| Bromoform                   | ND              | ug/l            | 2.0          | 0.65        |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/l            | 0.50         | 0.17        |
| Benzene                     | ND              | ug/l            | 0.50         | 0.16        |
| Toluene                     | ND              | ug/l            | 2.5          | 0.70        |
| Ethylbenzene                | ND              | ug/l            | 2.5          | 0.70        |
| Chloromethane               | ND              | ug/l            | 2.5          | 0.70        |
| Bromomethane                | ND              | ug/l            | 2.5          | 0.70        |
| Vinyl chloride              | ND              | ug/l            | 1.0          | 0.07        |
| Chloroethane                | ND              | ug/l            | 2.5          | 0.70        |
| 1,1-Dichloroethene          | ND              | ug/l            | 0.50         | 0.17        |
| trans-1,2-Dichloroethene    | ND              | ug/l            | 2.5          | 0.70        |
| Trichloroethene             | ND              | ug/l            | 0.50         | 0.18        |



Project Number: 116

11663

 Lab Number:
 L2112852

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/19/21 18:32Analyst:LAC

| arameter                    | Result          | Qualifier Units   | RL         | MDL         |
|-----------------------------|-----------------|-------------------|------------|-------------|
| olatile Organics by GC/MS - | Westborough Lab | for sample(s): 01 | -10 Batch: | WG1476941-5 |
| 1,2-Dichlorobenzene         | ND              | ug/l              | 2.5        | 0.70        |
| 1,3-Dichlorobenzene         | ND              | ug/l              | 2.5        | 0.70        |
| 1,4-Dichlorobenzene         | ND              | ug/l              | 2.5        | 0.70        |
| Methyl tert butyl ether     | ND              | ug/l              | 2.5        | 0.70        |
| p/m-Xylene                  | ND              | ug/l              | 2.5        | 0.70        |
| o-Xylene                    | ND              | ug/l              | 2.5        | 0.70        |
| Xylenes, Total              | ND              | ug/l              | 2.5        | 0.70        |
| cis-1,2-Dichloroethene      | ND              | ug/l              | 2.5        | 0.70        |
| 1,2-Dichloroethene, Total   | ND              | ug/l              | 2.5        | 0.70        |
| Dibromomethane              | ND              | ug/l              | 5.0        | 1.0         |
| 1,2,3-Trichloropropane      | ND              | ug/l              | 2.5        | 0.70        |
| Acrylonitrile               | ND              | ug/l              | 5.0        | 1.5         |
| Styrene                     | ND              | ug/l              | 2.5        | 0.70        |
| Dichlorodifluoromethane     | ND              | ug/l              | 5.0        | 1.0         |
| Acetone                     | ND              | ug/l              | 5.0        | 1.5         |
| Carbon disulfide            | ND              | ug/l              | 5.0        | 1.0         |
| 2-Butanone                  | ND              | ug/l              | 5.0        | 1.9         |
| Vinyl acetate               | ND              | ug/l              | 5.0        | 1.0         |
| 4-Methyl-2-pentanone        | ND              | ug/l              | 5.0        | 1.0         |
| 2-Hexanone                  | ND              | ug/l              | 5.0        | 1.0         |
| Bromochloromethane          | ND              | ug/l              | 2.5        | 0.70        |
| 2,2-Dichloropropane         | ND              | ug/l              | 2.5        | 0.70        |
| 1,2-Dibromoethane           | ND              | ug/l              | 2.0        | 0.65        |
| 1,3-Dichloropropane         | ND              | ug/l              | 2.5        | 0.70        |
| 1,1,1,2-Tetrachloroethane   | ND              | ug/l              | 2.5        | 0.70        |
| Bromobenzene                | ND              | ug/l              | 2.5        | 0.70        |
| n-Butylbenzene              | ND              | ug/l              | 2.5        | 0.70        |
| sec-Butylbenzene            | ND              | ug/l              | 2.5        | 0.70        |
| tert-Butylbenzene           | ND              | ug/l              | 2.5        | 0.70        |



Project Number: 11663

3

 Lab Number:
 L2112852

 Report Date:
 03/22/21

# Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/19/21 18:32Analyst:LAC

| arameter                      | Result          | Qualifier Units      | RL     | MDL         |
|-------------------------------|-----------------|----------------------|--------|-------------|
| olatile Organics by GC/MS - \ | Nestborough Lab | for sample(s): 01-10 | Batch: | WG1476941-5 |
| o-Chlorotoluene               | ND              | ug/l                 | 2.5    | 0.70        |
| p-Chlorotoluene               | ND              | ug/l                 | 2.5    | 0.70        |
| 1,2-Dibromo-3-chloropropane   | ND              | ug/l                 | 2.5    | 0.70        |
| Hexachlorobutadiene           | ND              | ug/l                 | 2.5    | 0.70        |
| Isopropylbenzene              | ND              | ug/l                 | 2.5    | 0.70        |
| p-Isopropyltoluene            | ND              | ug/l                 | 2.5    | 0.70        |
| Naphthalene                   | ND              | ug/l                 | 2.5    | 0.70        |
| n-Propylbenzene               | ND              | ug/l                 | 2.5    | 0.70        |
| 1,2,3-Trichlorobenzene        | ND              | ug/l                 | 2.5    | 0.70        |
| 1,2,4-Trichlorobenzene        | ND              | ug/l                 | 2.5    | 0.70        |
| 1,3,5-Trimethylbenzene        | ND              | ug/l                 | 2.5    | 0.70        |
| 1,2,4-Trimethylbenzene        | ND              | ug/l                 | 2.5    | 0.70        |
| 1,4-Dioxane                   | ND              | ug/l                 | 250    | 61.         |
| p-Diethylbenzene              | ND              | ug/l                 | 2.0    | 0.70        |
| p-Ethyltoluene                | ND              | ug/l                 | 2.0    | 0.70        |
| 1,2,4,5-Tetramethylbenzene    | ND              | ug/l                 | 2.0    | 0.54        |
| Ethyl ether                   | ND              | ug/l                 | 2.5    | 0.70        |
| trans-1,4-Dichloro-2-butene   | ND              | ug/l                 | 2.5    | 0.70        |

### Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l



| Project Name:   | 79 PONDFIELD RD | Lab Number:  | L2112852 |
|-----------------|-----------------|--------------|----------|
| Project Number: | 11663           | Report Date: | 03/22/21 |

# Method Blank Analysis Batch Quality Control

Analytical Method:1,8260CAnalytical Date:03/19/21 18:32Analyst:LAC

| Parameter                      | Result        | Qualifier     | Units       | RL     | MDL         |  |
|--------------------------------|---------------|---------------|-------------|--------|-------------|--|
| Volatile Organics by GC/MS - W | estborough La | ab for sample | e(s): 01-10 | Batch: | WG1476941-5 |  |

| Surrogate             | %Recovery | Qualifier | Criteria |  |  |
|-----------------------|-----------|-----------|----------|--|--|
| 1,2-Dichloroethane-d4 | 104       |           | 70-130   |  |  |
| Toluene-d8            | 100       |           | 70-130   |  |  |
| 4-Bromofluorobenzene  | 101       |           | 70-130   |  |  |
| Dibromofluoromethane  | 99        |           | 70-130   |  |  |



Project Number: 11663

Lab Number: L2112852

Report Date: 03/22/21

| arameter                                  | LCS<br>%Recovery | Qual       |       | LCSD<br>Recovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-------------------------------------------|------------------|------------|-------|------------------|-------------|---------------------|-----|------|---------------|
| olatile Organics by GC/MS - Westborough I | Lab Associated   | sample(s): | 01-10 | Batch:           | WG1476941-3 | WG1476941-4         |     |      |               |
| Methylene chloride                        | 94               |            |       | 98               |             | 70-130              | 4   |      | 20            |
| 1,1-Dichloroethane                        | 98               |            |       | 100              |             | 70-130              | 2   |      | 20            |
| Chloroform                                | 91               |            |       | 93               |             | 70-130              | 2   |      | 20            |
| Carbon tetrachloride                      | 98               |            |       | 95               |             | 63-132              | 3   |      | 20            |
| 1,2-Dichloropropane                       | 94               |            |       | 93               |             | 70-130              | 1   |      | 20            |
| Dibromochloromethane                      | 82               |            |       | 86               |             | 63-130              | 5   |      | 20            |
| 1,1,2-Trichloroethane                     | 82               |            |       | 91               |             | 70-130              | 10  |      | 20            |
| Tetrachloroethene                         | 100              |            |       | 96               |             | 70-130              | 4   |      | 20            |
| Chlorobenzene                             | 88               |            |       | 90               |             | 75-130              | 2   |      | 20            |
| Trichlorofluoromethane                    | 100              |            |       | 100              |             | 62-150              | 0   |      | 20            |
| 1,2-Dichloroethane                        | 92               |            |       | 98               |             | 70-130              | 6   |      | 20            |
| 1,1,1-Trichloroethane                     | 97               |            |       | 98               |             | 67-130              | 1   |      | 20            |
| Bromodichloromethane                      | 86               |            |       | 88               |             | 67-130              | 2   |      | 20            |
| trans-1,3-Dichloropropene                 | 84               |            |       | 89               |             | 70-130              | 6   |      | 20            |
| cis-1,3-Dichloropropene                   | 89               |            |       | 93               |             | 70-130              | 4   |      | 20            |
| 1,1-Dichloropropene                       | 100              |            |       | 100              |             | 70-130              | 0   |      | 20            |
| Bromoform                                 | 74               |            |       | 82               |             | 54-136              | 10  |      | 20            |
| 1,1,2,2-Tetrachloroethane                 | 76               |            |       | 86               |             | 67-130              | 12  |      | 20            |
| Benzene                                   | 96               |            |       | 98               |             | 70-130              | 2   |      | 20            |
| Toluene                                   | 94               |            |       | 94               |             | 70-130              | 0   |      | 20            |
| Ethylbenzene                              | 91               |            |       | 92               |             | 70-130              | 1   |      | 20            |
| Chloromethane                             | 110              |            |       | 100              |             | 64-130              | 10  |      | 20            |
| Bromomethane                              | 110              |            |       | 100              |             | 39-139              | 10  |      | 20            |



Project Number: 11663

Lab Number: L2112852

Report Date: 03/22/21

| Parameter                                  | LCS<br>%Recovery | Qual       |       | LCSD<br>ecovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |  |
|--------------------------------------------|------------------|------------|-------|-----------------|-------------|---------------------|-----|------|---------------|--|
| volatile Organics by GC/MS - Westborough L | ab Associated    | sample(s): | 01-10 | Batch:          | WG1476941-3 | WG1476941-4         |     |      |               |  |
| Vinyl chloride                             | 98               |            |       | 98              |             | 55-140              | 0   |      | 20            |  |
| Chloroethane                               | 90               |            |       | 84              |             | 55-138              | 7   |      | 20            |  |
| 1,1-Dichloroethene                         | 110              |            |       | 98              |             | 61-145              | 12  |      | 20            |  |
| trans-1,2-Dichloroethene                   | 87               |            |       | 93              |             | 70-130              | 7   |      | 20            |  |
| Trichloroethene                            | 97               |            |       | 97              |             | 70-130              | 0   |      | 20            |  |
| 1,2-Dichlorobenzene                        | 85               |            |       | 90              |             | 70-130              | 6   |      | 20            |  |
| 1,3-Dichlorobenzene                        | 88               |            |       | 87              |             | 70-130              | 1   |      | 20            |  |
| 1,4-Dichlorobenzene                        | 88               |            |       | 89              |             | 70-130              | 1   |      | 20            |  |
| Methyl tert butyl ether                    | 81               |            |       | 91              |             | 63-130              | 12  |      | 20            |  |
| p/m-Xylene                                 | 90               |            |       | 90              |             | 70-130              | 0   |      | 20            |  |
| o-Xylene                                   | 90               |            |       | 90              |             | 70-130              | 0   |      | 20            |  |
| cis-1,2-Dichloroethene                     | 93               |            |       | 88              |             | 70-130              | 6   |      | 20            |  |
| Dibromomethane                             | 88               |            |       | 95              |             | 70-130              | 8   |      | 20            |  |
| 1,2,3-Trichloropropane                     | 75               |            |       | 85              |             | 64-130              | 13  |      | 20            |  |
| Acrylonitrile                              | 93               |            |       | 100             |             | 70-130              | 7   |      | 20            |  |
| Styrene                                    | 90               |            |       | 90              |             | 70-130              | 0   |      | 20            |  |
| Dichlorodifluoromethane                    | 97               |            |       | 94              |             | 36-147              | 3   |      | 20            |  |
| Acetone                                    | 94               |            |       | 110             |             | 58-148              | 16  |      | 20            |  |
| Carbon disulfide                           | 99               |            |       | 97              |             | 51-130              | 2   |      | 20            |  |
| 2-Butanone                                 | 84               |            |       | 80              |             | 63-138              | 5   |      | 20            |  |
| Vinyl acetate                              | 88               |            |       | 95              |             | 70-130              | 8   |      | 20            |  |
| 4-Methyl-2-pentanone                       | 77               |            |       | 80              |             | 59-130              | 4   |      | 20            |  |
| 2-Hexanone                                 | 78               |            |       | 83              |             | 57-130              | 6   |      | 20            |  |



Project Number: 11663

Lab Number: L2112852

Report Date: 03/22/21

| arameter                                | LCS<br>%Recovery | Qual       |       | LCSD<br>ecovery | Qual        | %Recovery<br>Limits | RPD | Qual | RPD<br>Limits |
|-----------------------------------------|------------------|------------|-------|-----------------|-------------|---------------------|-----|------|---------------|
| /olatile Organics by GC/MS - Westboroug | h Lab Associated | sample(s): | 01-10 | Batch:          | WG1476941-3 | WG1476941-4         |     |      |               |
| Bromochloromethane                      | 89               |            |       | 100             |             | 70-130              | 12  |      | 20            |
| 2,2-Dichloropropane                     | 94               |            |       | 95              |             | 63-133              | 1   |      | 20            |
| 1,2-Dibromoethane                       | 84               |            |       | 90              |             | 70-130              | 7   |      | 20            |
| 1,3-Dichloropropane                     | 87               |            |       | 94              |             | 70-130              | 8   |      | 20            |
| 1,1,1,2-Tetrachloroethane               | 80               |            |       | 85              |             | 64-130              | 6   |      | 20            |
| Bromobenzene                            | 90               |            |       | 88              |             | 70-130              | 2   |      | 20            |
| n-Butylbenzene                          | 89               |            |       | 93              |             | 53-136              | 4   |      | 20            |
| sec-Butylbenzene                        | 92               |            |       | 92              |             | 70-130              | 0   |      | 20            |
| tert-Butylbenzene                       | 90               |            |       | 91              |             | 70-130              | 1   |      | 20            |
| o-Chlorotoluene                         | 89               |            |       | 89              |             | 70-130              | 0   |      | 20            |
| p-Chlorotoluene                         | 87               |            |       | 90              |             | 70-130              | 3   |      | 20            |
| 1,2-Dibromo-3-chloropropane             | 69               |            |       | 81              |             | 41-144              | 16  |      | 20            |
| Hexachlorobutadiene                     | 89               |            |       | 100             |             | 63-130              | 12  |      | 20            |
| Isopropylbenzene                        | 92               |            |       | 91              |             | 70-130              | 1   |      | 20            |
| p-Isopropyltoluene                      | 90               |            |       | 93              |             | 70-130              | 3   |      | 20            |
| Naphthalene                             | 75               |            |       | 80              |             | 70-130              | 6   |      | 20            |
| n-Propylbenzene                         | 93               |            |       | 93              |             | 69-130              | 0   |      | 20            |
| 1,2,3-Trichlorobenzene                  | 85               |            |       | 91              |             | 70-130              | 7   |      | 20            |
| 1,2,4-Trichlorobenzene                  | 84               |            |       | 90              |             | 70-130              | 7   |      | 20            |
| 1,3,5-Trimethylbenzene                  | 90               |            |       | 91              |             | 64-130              | 1   |      | 20            |
| 1,2,4-Trimethylbenzene                  | 87               |            |       | 88              |             | 70-130              | 1   |      | 20            |
| 1,4-Dioxane                             | 84               |            |       | 92              |             | 56-162              | 9   |      | 20            |
| p-Diethylbenzene                        | 86               |            |       | 88              |             | 70-130              | 2   |      | 20            |



Project Name: 79 PONDFIELD RD

Project Number: 11663

 Lab Number:
 L2112852

 Report Date:
 03/22/21

| - /                                      | LCS            | <b>.</b> . | LCSD         |             | %Recovery   |     | •    | RPD    |  |
|------------------------------------------|----------------|------------|--------------|-------------|-------------|-----|------|--------|--|
| Parameter                                | %Recovery      | Qual       | %Recovery    | Qual        | Limits      | RPD | Qual | Limits |  |
| Volatile Organics by GC/MS - Westborough | Lab Associated | sample(s): | 01-10 Batch: | WG1476941-3 | WG1476941-4 |     |      |        |  |
| p-Ethyltoluene                           | 90             |            | 92           |             | 70-130      | 2   |      | 20     |  |
| 1,2,4,5-Tetramethylbenzene               | 82             |            | 89           |             | 70-130      | 8   |      | 20     |  |
| Ethyl ether                              | 89             |            | 100          |             | 59-134      | 12  |      | 20     |  |
| trans-1,4-Dichloro-2-butene              | 98             |            | 86           |             | 70-130      | 13  |      | 20     |  |

| Surrogate             | LCS<br>%Recovery Qual | LCSD<br>%Recovery Qual | Acceptance<br>Criteria |
|-----------------------|-----------------------|------------------------|------------------------|
| 1,2-Dichloroethane-d4 | 106                   | 102                    | 70-130                 |
| Toluene-d8            | 102                   | 98                     | 70-130                 |
| 4-Bromofluorobenzene  | 101                   | 101                    | 70-130                 |
| Dibromofluoromethane  | 103                   | 101                    | 70-130                 |



# Project Name: 79 PONDFIELD RDProject Number: 11663

Serial\_No:03222114:58 *Lab Number:* L2112852 *Report Date:* 03/22/21

## Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

## **Cooler Information**

| Cooler | Custody Seal |  |  |  |  |  |
|--------|--------------|--|--|--|--|--|
| Α      | Absent       |  |  |  |  |  |

| Container Information |                    |        | Initial | Final | Temp  |      |        | Frozen    |                |  |
|-----------------------|--------------------|--------|---------|-------|-------|------|--------|-----------|----------------|--|
| Container ID          | Container Type     | Cooler | рН      | pН    | deg C | Pres | Seal   | Date/Time | Analysis(*)    |  |
| L2112852-01A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-01B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-01C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-02A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-02B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-02C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-03A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-03B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-03C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-04A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-04B          | Vial HCI preserved | А      | NA      |       | 3.1   | Υ    | Absent |           | NYTCL-8260(14) |  |
| L2112852-04C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-05A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-05B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-05C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-06A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-06B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-06C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-07A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-07B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-07C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-08A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-08B          | Vial HCl preserved | А      | NA      |       | 3.1   | Υ    | Absent |           | NYTCL-8260(14) |  |



# Project Name: 79 PONDFIELD RDProject Number: 11663

Serial\_No:03222114:58 *Lab Number:* L2112852 *Report Date:* 03/22/21

| Container Information |                    |        | Initial | Final | Temp  |      |        | Frozen    |                |  |
|-----------------------|--------------------|--------|---------|-------|-------|------|--------|-----------|----------------|--|
| Container             | ID Container Type  | Cooler | рН      | рН    | deg C | Pres | Seal   | Date/Time | Analysis(*)    |  |
| L2112852-08C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-09A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-09B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-09C          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-10A          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |
| L2112852-10B          | Vial HCI preserved | А      | NA      |       | 3.1   | Y    | Absent |           | NYTCL-8260(14) |  |



Project Number: 11663

# Lab Number: L2112852

## Report Date: 03/22/21

## GLOSSARY

## Acronyms

| Acronyms |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DL       | - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                               |
| EDL      | - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).                        |
| EMPC     | <ul> <li>Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an<br/>analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case<br/>estimate of the concentration.</li> </ul>                                                                                                                                    |
| EPA      | - Environmental Protection Agency.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| LCS      | - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                         |
| LCSD     | - Laboratory Control Sample Duplicate: Refer to LCS.                                                                                                                                                                                                                                                                                                                                                                                                      |
| LFB      | - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.                                                                                                                                                                                                                                                        |
| LOD      | - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                              |
| LOQ      | - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                |
|          | Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)                                                                                                                                                                                                  |
| MDL      | - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                         |
| MS       | <ul> <li>Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for<br/>which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated<br/>using the native concentration, including estimated values.</li> </ul>                                                                                                         |
| MSD      | - Matrix Spike Sample Duplicate: Refer to MS.                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA       | - Not Applicable.                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| NC       | - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.                                                                                                                                                                                                                                                                                                          |
| NDPA/DPA | - N-Nitrosodiphenylamine/Diphenylamine.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| NI       | - Not Ignitable.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| NP       | - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.                                                                                                                                                                                                                                                                                                                                                                             |
| NR       | - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.                                                                                                                                                                                                                                                                                                   |
| RL       | - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.                                                                                                                                                                                                                                  |
| RPD      | - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report. |
| SRM      | - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.                                                                                                                                                                                                                                                                                                    |
| STLP     | - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.                                                                                                                                                                                                                                                                                                                                                                                               |
| TEF      | - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.                                                                                                                                                                                                                                                                                                                            |
| TEQ      | - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.                                                                                                                                                                                                                                                                                       |
| TIC      | - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.                                                                                                                                                                                                     |

Report Format: DU Report with 'J' Qualifiers



Project Number: 11663

# Lab Number: L2112852

Report Date: 03/22/21

#### Footnotes

1

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

#### Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Waterpreserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'. Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(a)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. (Note: 'PFAS, Total (6)' is applicable to MassDEP DW compliance analysis only.). If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

#### Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- B The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- **D** Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- **F** The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers



## Serial\_No:03222114:58

## Project Name: 79 PONDFIELD RD

Project Number: 11663

Lab Number: L2112852 Report Date: 03/22/21

#### Data Qualifiers

- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.





Project Name: 79 PONDFIELD RD Project Number: 11663 
 Lab Number:
 L2112852

 Report Date:
 03/22/21

## REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

## LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.



# **Certification Information**

#### The following analytes are not included in our Primary NELAP Scope of Accreditation:

#### Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

**EPA 8260C/8260D:** <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

**EPA** 8270D/8270E: <u>NPW</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine; <u>SCM</u>: Dimethylnaphthalene,1,4-Diphenylhydrazine. **SM4500**: <u>NPW</u>: Amenable Cyanide; <u>SCM</u>: Total Phosphorus, TKN, NO2, NO3.

#### Mansfield Facility

SM 2540D: TSS

**EPA 8082A:** <u>NPW:</u> PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187. **EPA TO-15:** Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene, 3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene. **Biological Tissue Matrix:** EPA 3050B

#### The following analytes are included in our Massachusetts DEP Scope of Accreditation

#### Westborough Facility:

#### **Drinking Water**

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP. Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

#### Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

**EPA 608.3**: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan I, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

#### Mansfield Facility:

#### **Drinking Water**

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

#### Non-Potable Water

**EPA 200.7**: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn. **EPA 200.8**: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn. **EPA 245.1** Hg. **SM2340B** 

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NEW YORK<br>CHAIN OF<br>CUSTODY      | Service Centers<br>Mahwah, NJ 07430: 35 Whitney<br>Albany, NY 12205: 14 Walker V<br>Tonawanda, NY 14150: 275 Co | 5                                                                                                              | Page<br>/ of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1         | Date Rec'd<br>in Lab 3/16/21 |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALPHA JOB #<br>L2112852                                                                                          |                                                 |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|---------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------|
| Westborough, MA 01581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Mansfield, MA 02048                  | Project Information                                                                                             |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | Deliverables        | -            | THE OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1 1                                                                                                            | Billing Information                             |         |
| 8 Walkup Dr.<br>TEL: 508-898-9220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 320 Forbes Blvd<br>TEL: 508-822-9300 | Project Name: 79                                                                                                | on the                                                                                                         | Id Rd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |                              | ASP-A               |              | ASP-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | В                                                                                                                | Same as Client Info                             |         |
| FAX: 508-698-9193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FAX: 508-822-3288                    | Project Location: Ro                                                                                            | nxville,                                                                                                       | AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                              | EQuIS               | 1 File)      | EQul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S (4 File)                                                                                                       | PO# 11/10                                       |         |
| Olivert Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | the second second second             |                                                                                                                 |                                                                                                                | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                              | Other               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | 1663                                            |         |
| Client Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second second                | Project # 1166                                                                                                  |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              |                     |              | A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                 |         |
| Client: SESZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . / .                                | (Use Project name as Pr                                                                                         | the second s | 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                              | Regulatory R        |              | An other states of the state of | Disposal Site Information                                                                                        |                                                 |         |
| Address: 12 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lade Are                             | Project Manager: Pd                                                                                             | tricte                                                                                                         | Petrini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D         |                              | NY TOG              | S            | NY Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Please identify below location of                                                                                | of .                                            |         |
| Pine B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rook NJ                              | ALPHAQuote #:                                                                                                   |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | AWQ St              | andards      | NY CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -51                                                                                                              | applicable disposal facilities.                 |         |
| Phone: 973-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 808-9050                             | Turn-Around Time                                                                                                |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | NY Rest             | ricted Use   | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                  | Disposal Facility:                              |         |
| Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | Standard                                                                                                        |                                                                                                                | Due Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1         |                              |                     | stricted Use | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  |                                                 |         |
| Email: Octubra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nation of Ser                        | Rush (only if pre approved                                                                                      |                                                                                                                | # of Days:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           | ek                           |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Other:                                          |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                 |                                                                                                                | in or Days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                              | NYC Sewer Discharge |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Sample Filtration                               | 1.7     |
| These samples have b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              |                     | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Sample r Intation                               | - 0     |
| Other project specific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c requirements/comm                  | nents:                                                                                                          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 50                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Done                                            | t       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 20                  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Lab to do                                       | a       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 3                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Preservation                                    |         |
| Please specify Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or TAL.                              |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 1                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | в       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 131                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | (Please Specify below)                          | •       |
| WILLIAM AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                                                                                                 | Calla                                                                                                          | afte a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | -                            | -                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | (ricese openny scient)                          | 1       |
| ALPHA Lab ID Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | Collection                                                                                                      |                                                                                                                | Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sampler's | $\geq$                       |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | - 10                                            |         |
| (Lab Use Only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 2024-0211/20                                                                                                    | Date                                                                                                           | Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matrix    | Initials                     | 2                   | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Sample Specific Comments                        | e.      |
| 12852-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MW-15                                |                                                                                                                 | 3/15/21                                                                                                        | 1345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GW        | フレ                           | -                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | 3       |
| 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-25                                |                                                                                                                 | 1 í                                                                                                            | 1145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         | フレ                           | ſ                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | Ĩ       |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-45                                |                                                                                                                 |                                                                                                                | 1320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 305                          |                     | 1 1 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | T       |
| 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-Yi                                |                                                                                                                 | + +                                                                                                            | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 71                           |                     | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | ++      |
| and the second se |                                      | 2                                                                                                               |                                                                                                                | and the second se |           | ラレ                           |                     | -            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | ++      |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MW-5                                 |                                                                                                                 | +                                                                                                              | 850                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                              |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |         |
| 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | hw-5                                 |                                                                                                                 |                                                                                                                | 840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           | 745                          |                     | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |         |
| 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17W-6                                |                                                                                                                 |                                                                                                                | (105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 205                          |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |         |
| 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dull                                 |                                                                                                                 |                                                                                                                | 1200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V         | 705                          |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |         |
| 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field Blani                          | t.                                                                                                              |                                                                                                                | 1330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FB        | Tes                          |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | V       |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Trip Blom                            |                                                                                                                 | 3/10/21                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TIS       | 101                          |                     | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 | 2       |
| Preservative Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Container Code                       |                                                                                                                 | 1 411-1                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 112       |                              |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                 |         |
| A = None                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P = Plastic                          | Westboro: Certification I                                                                                       |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Con       | tainer Type                  | KJ I                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | Please print clearly, legi                      |         |
| B = HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A = Amber Glass                      | Mansfield: Certification I                                                                                      | No: MA015                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 2010/07/2010/2010            |                     | _            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | and completely. Sample                          | is can  |
| C = HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V = Vial<br>G = Glass                |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              |                     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | not be logged in and<br>turnaround time clock w | ill not |
| $D = H_2SO_4$<br>E = NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B = Bacteria Cup                     |                                                                                                                 |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | reservative                  | B                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | start until any ambiguitie                      |         |
| F = MeOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C = Cube                             | Relinquished By: Date/Time                                                                                      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           | 1 - 7                        | Received By:        | Date         | /Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | resolved. BY EXECUTIN                                                                                            | 22.227                                          |         |
| G = NaHSO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | O = Other                            | 21111                                                                                                           | 1 Jak-                                                                                                         | VISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 1000                         | Received By: Date/  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hlan                                                                                                             | THIS COC, THE CLIENT                            |         |
| $H = Na_2S_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E = Encore<br>D = BOD Bottle         | Jetry Lanhur for                                                                                                | and a second                                                                                                   | Y0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 1800    | N/KP                         | TUNESUN TOTAL       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALANR=                                                                                                           | HAS READ AND AGRE                               | ES      |
| K/E = Zn Ac/NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 - DOD DOMO                         | War Matsel - 2/11/10000 Alle                                                                                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | A46 315/21 21:30    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and the second | TO BE BOUND BY ALP                              |         |
| O = Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | ALL 3116/21 01:20 MM                                                                                            |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | mannin              | 1            | 3/16/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 01:20                                                                                                            | TERMS & CONDITIONS                              | S.      |
| Form No: 01-25 HC (rev. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 80-Sept-2013)                        | V                                                                                                               |                                                                                                                | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | 1                            | 1                   | )            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - storagent                                                                                                      | (See reverse side.)                             |         |