TABLE 1Rock Outcrop Surface Soil Sampling Results - VOCs

Phoenix Environmental Labs 587 East Middle Turnpike									
P.O. Box 370 Manchester, CT 06040	Lab Sample Id Collection Date			BF458 9/25/2		BF458 9/25/2		BF458 9/25/20	
(860) 645-1102	Client Id Matrix	Track 2	Track 1	RC- Soi		RC- Soi		RC- Soil	
Project Id : LARCHMONT	Units	Residential Use	Unrestricted Use	Result	RL	Result	RL	Result	RL
Volatiles By SW8260									
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	ug/Kg ug/Kg	100,000	680	ND ND	12 12	ND ND	20 20	ND ND	11 11
1,1,2,2-Tetrachloroethane	ug/Kg	100,000	000	ND	7.1	ND	20 12	ND	6.9
1,1,2-Trichloroethane	ug/Kg			ND	12	ND	20	ND	11
1,1-Dichloroethane	ug/Kg	19,000	270	ND	12	ND	20	ND	11
1,1-Dichloroethene	ug/Kg	100,000	330		12	ND	20		11
1,1-Dichloropropene 1,2,3-Trichlorobenzene	ug/Kg ug/Kg			ND ND	12 12	ND ND	20 20	ND ND	11 11
1,2,3-Trichloropropane	ug/Kg			ND	12	ND	20	ND	11
1,2,4-Trichlorobenzene	ug/Kg			ND	12	ND	20	ND	11
1,2,4-Trimethylbenzene	ug/Kg	47,000	3,600	ND	12	ND	20	ND	11
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	ug/Kg ug/Kg			ND ND	12 12	ND ND	20 20	ND ND	11 11
1,2-Dichlorobenzene	ug/Kg	100,000	1,100	ND	12		20	ND	11
1,2-Dichloroethane	ug/Kg	2,300	20	ND	12		20	ND	11
1,2-Dichloropropane	ug/Kg			ND	12		20	ND	11
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	ug/Kg	47,000 17,000	8,400 2,400	ND ND	12 12		20 20	ND ND	11 11
1,3-Dichloropropane	ug/Kg ug/Kg	17,000	2,400	ND ND	12		20 20	ND ND	11
1,4-Dichlorobenzene	ug/Kg	9,800	1,800	ND	12	ND	20	ND	11
2,2-Dichloropropane	ug/Kg	,		ND	12		20	ND	11
2-Chlorotoluene	ug/Kg			ND	12		20	ND	11
2-Hexanone 2-Isopropyltoluene	ug/Kg ug/Kg			ND ND	60 12	ND ND	98 20	ND ND	57 11
4-Chlorotoluene	ug/Kg			ND	12		20		11
4-Methyl-2-pentanone	ug/Kg			ND	60		98		57
Acetone	ug/Kg	100,000	50	ND	71	ND	120	ND	69
Acrylonitrile	ug/Kg	0.000	<u> </u>	ND	12	ND	20	ND	11
Benzene Bromobenzene	ug/Kg ug/Kg	2,900	60	ND ND	12 12	ND ND	20 20	ND ND	11 11
Bromochloromethane	ug/Kg			ND	12		20	ND	11
Bromodichloromethane	ug/Kg			ND	12	ND	20	ND	11
Bromoform	ug/Kg			ND	12		20		11
Bromomethane Carbon Disulfide	ug/Kg ug/Kg			ND ND	12 12		20 20	ND ND	11 11
Carbon tetrachloride	ug/Kg	1,400	760	ND	12	ND	20	ND	11
Chlorobenzene	ug/Kg	100,000	1,100	ND	12		20	ND	11
Chloroethane	ug/Kg			ND	12	ND	20	ND	11
Chloroform	ug/Kg	10,000	370		12	ND	20	ND	11
Chloromethane cis-1,2-Dichloroethene	ug/Kg ug/Kg	59,000	250	ND ND	12 12	ND ND	20 20	ND ND	11 11
cis-1,3-Dichloropropene	ug/Kg	00,000	200	ND	12	ND	20	ND	11
Dibromochloromethane	ug/Kg			ND	7.1	ND	12	ND	6.9
Dibromomethane	ug/Kg			ND	12	ND	20	ND	11
Dichlorodifluoromethane Ethylbenzene	ug/Kg	30,000	1,000	ND ND	12 12	ND ND	20 20	ND ND	11 11
Hexachlorobutadiene	ug/Kg ug/Kg	30,000	1,000	ND	12	ND	20	ND	11
Isopropylbenzene	ug/Kg			ND	12		20	ND	11
m&p-Xylene	ug/Kg			ND	12		20		11
Methyl Ethyl Ketone	ug/Kg	100,000	120 930	ND ND	71 24		120 39		69 23
Methyl t-butyl ether (MTBE) Methylene chloride	ug/Kg ug/Kg	62,000 51,000	930 50	ND ND	24 12	ND ND	39 20	ND ND	23 11
Naphthalene	ug/Kg	,000		ND	12	ND	20	ND	11
n-Butylbenzene	ug/Kg	100,000	12,000	ND	12	ND	20	ND	11
n-Propylbenzene	ug/Kg	100,000	3,900	ND	12		20	ND	11
o-Xylene p-Isopropyltoluene	ug/Kg ug/Kg			ND ND	12 12	ND ND	20 20	ND ND	11 11
sec-Butylbenzene	ug/Kg	100,000	11,000	ND	12	ND	20	ND	11
Styrene	ug/Kg			ND	12	ND	20	ND	11
tert-Butylbenzene	ug/Kg	100,000	5,900	ND	12	ND	20	ND	11
Tetrachloroethene Tetrabydrofurap (THE)	ug/Kg	5,500	1,300	ND ND	12 24	ND ND	20 39	ND ND	11 23
Tetrahydrofuran (THF) Toluene	ug/Kg ug/Kg	100,000	700	ND ND	24 12		39 20		23 11
Total Xylenes	ug/Kg	,	260	ND	12		20		11
trans-1,2-Dichloroethene	ug/Kg	100,000	190	ND	12	ND	20	ND	11
trans-1,3-Dichloropropene	ug/Kg				12		20		11
trans-1,4-dichloro-2-butene Trichloroethene	ug/Kg ug/Kg	10,000	470	ND ND	24 12		39 20		23 11
Trichlorofluoromethane	ug/Kg	10,000	017	ND	12		20		11
Trichlorotrifluoroethane	ug/Kg			ND	12	ND	20	ND	11
Vinyl chloride	ug/Kg	210	20	ND	12	ND	20	ND	11

RL Exceeds Criteria

587 East Middle Turnpike P.O. Box 370 Manchester, CT 06040 (860) 645-1102

Lab Sample Id BF45890

BF45891

BF45892

BF45893

BF45894

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was reported.

**Poor surrogate recovery was observed for volatiles due to matrix interference. Sample was analyzed twice with Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

P.O. Box 370	Lab Sample Id Collection Date			BF458		BF458		BF458	
Manchester, CT 06040 (860) 645-1102	Collection Date Client Id			9/25/2 RC -		9/25/2 RC-		9/25/2 RC -	
	Matrix	Track 2	Track 1	Soi		Soi		Soi	
Project Id : LARCHMONT	Units	Residential Use	Unrestricted Use	Result	RL	Result	RL	Result	RL
Semivolatiles By SW 8270									
,2,4,5-Tetrachlorobenzene	ug/Kg			ND	340	ND	300	ND	3
,2,4-Trichlorobenzene	ug/Kg			ND	340	ND	300		3
,2-Dichlorobenzene	ug/Kg			ND	340	ND	300		3
,2-Diphenylhydrazine	ug/Kg			ND	490	ND	430		4
,3-Dichlorobenzene	ug/Kg			ND	340	ND	300		З
,4-Dichlorobenzene	ug/Kg			ND	340	ND	300		3
,4,5-Trichlorophenol	ug/Kg			ND	340	ND	300		3
,4,6-Trichlorophenol	ug/Kg			ND	340	ND	300		3
,4-Dichlorophenol	ug/Kg			ND	340	ND	300		3
2,4-Dimethylphenol	ug/Kg			ND	340	ND	300		3
,4-Dinitrophenol	ug/Kg			ND	780	ND	680		6
2,4-Dinitrotoluene	ug/Kg			ND	340	ND	300		3
,6-Dinitrotoluene	ug/Kg			ND	340	ND	300		3
-Chloronaphthalene	ug/Kg			ND	340	ND	300		3
-Chlorophenol	ug/Kg			ND	340	ND	300		3
-Methylnaphthalene	ug/Kg		_	ND	340	ND	300		:
-Methylphenol (o-cresol)	ug/Kg	100,000	330	ND	340	ND	300		:
-Nitroaniline	ug/Kg			ND	780	ND	680		(
2-Nitrophenol	ug/Kg			ND	340	ND	300		:
&4-Methylphenol (m&p-cresol)	ug/Kg			ND	490	ND	430		4
3,3'-Dichlorobenzidine	ug/Kg			ND	340	ND	300		:
-Nitroaniline	ug/Kg			ND	780	ND	680		(
l,6-Dinitro-2-methylphenol	ug/Kg			ND	1,400	ND	1,200		1,:
I-Bromophenyl phenyl ether	ug/Kg			ND	490		430		4
l-Chloro-3-methylphenol	ug/Kg			ND	340	ND	300		3
l-Chloroaniline	ug/Kg			ND	340	ND	300		3
-Chlorophenyl phenyl ether	ug/Kg			ND	340	ND	300	ND	3
I-Nitroaniline	ug/Kg			ND	780	ND	680		6
I-Nitrophenol	ug/Kg			ND	1,400	ND	1,200		1,3
Acenaphthene	ug/Kg	100,000	20,000	ND	340	ND	300		3
Acenaphthylene	ug/Kg	100,000	100,000	ND	340	ND	300		3
Acetophenone	ug/Kg			ND	340	ND	300		3
Aniline	ug/Kg			ND	1,400	ND	1,200		1,3
Anthracene	ug/Kg	100,000	100,000	ND	340	ND	300	ND	3
Benz(a)anthracene	ug/Kg	1,000	1,000	760	340	810	300		3
Benzidine	ug/Kg			ND	590	ND	510		5
Benzo(a)pyrene	ug/Kg	1,000	1,000	780	340	930	300		3
Benzo(b)fluoranthene	ug/Kg	1,000	1,000	1,400	340	2,200	300		3
Benzo(ghi)perylene	ug/Kg	100,000	100,000	440	340	ND	300		3
Benzo(k)fluoranthene	ug/Kg	1,000	800	470	340	690	300		3
Benzoic acid	ug/Kg			ND	1,400	ND	1,200		1,3
Benzyl butyl phthalate	ug/Kg			ND	340	ND	300	ND	3
Bis(2-chloroethoxy)methane	ug/Kg			ND	340	ND	300	ND	3
Bis(2-chloroethyl)ether	ug/Kg			ND	490	ND	430		4
Bis(2-chloroisopropyl)ether	ug/Kg			ND	340	ND	300		3
Bis(2-ethylhexyl)phthalate	ug/Kg			ND	340	ND	300		3
Carbazole	ug/Kg			ND	730	ND	640		6
Chrysene	ug/Kg	1,000	1,000	1,000	340	1,200	300		3
Dibenz(a,h)anthracene	ug/Kg	330	330	ND	340	ND	300	ND	3
Dibenzofuran	ug/Kg		7,000	ND	340	ND	300	ND	3
Diethyl phthalate	ug/Kg			ND	340	ND	300		:
Dimethylphthalate	ug/Kg			ND	340	ND	300		:
Di-n-butylphthalate	ug/Kg			ND	340	ND	300		3
Di-n-octylphthalate	ug/Kg			ND	340	ND	300		3
luoranthene	ug/Kg	100,000	100,000	1,600	340	1,500	300		:
luorene	ug/Kg	100,000	30,000	ND	340	ND	300		3
lexachlorobenzene	ug/Kg			ND	340	ND	300		3
lexachlorobutadiene	ug/Kg			ND	340	ND	300		3
lexachlorocyclopentadiene	ug/Kg			ND	340		300		3
lexachloroethane	ug/Kg			ND	340		300		3
ndeno(1,2,3-cd)pyrene	ug/Kg	500	500	370	340	ND	300		3
sophorone	ug/Kg			ND	340	ND	300		3
laphthalene	ug/Kg	100,000	12,000	ND	340	ND	300		3
litrobenzene	ug/Kg			ND	340	ND	300		3
I-Nitrosodimethylamine	ug/Kg			ND	490	ND	430	ND	4
I-Nitrosodi-n-propylamine	ug/Kg			ND	340	ND	300		:
I-Nitrosodiphenylamine	ug/Kg			ND	490	ND	430		4
Pentachloronitrobenzene	ug/Kg			ND	490	ND	430		4
Pentachlorophenol	ug/Kg	2,400	800	ND	490	ND	430		2
Phenanthrene	ug/Kg	100,000	100,000	810	340	820	300		:
Phenol	ug/Kg	100,000	330	ND	340	ND	300		3
² yrene	ug/Kg	100,000	100,000	1,200	340	1,200	300		
-	ug/Kg	1 ,	, -	ND	490		430		

TABLE 2Surface Soil Sampling Results - SVOCs

RL Exceeds Criteria

587 East Middle Turnpike P.O. Box 370 Manchester, CT 06040 (860) 645-1102

Lab Sample Id BF45890

BF45891

BF45892

BF45893

BF45894

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was reported.

**Poor surrogate recovery was observed for volatiles due to matrix interference. Sample was analyzed twice with Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

						-			
Phoenix Environmental Labs									
587 East Middle Turnpike									
P.O. Box 370	Lab Sample Id			BF458	393	BF458	894	BF458	895
Manchester, CT 06040	Collection Date			9/25/2	013	9/25/2	013	9/25/2	013
(860) 645-1102	Client Id			RC-	1	RC-	2	RC-	-3
	Matrix	Track 2	Track 1	So	1	Soi	I	Soi	il
Project Id : LARCHMONT		Residential	Unrestricted						
,	Units	Use	Use	Result	RL	Result	RL	Result	RL
Metals, Total									
Aluminum	mg/Kg			23,400	72	24,200	68	20,500	70
Antimony	mg/Kg			BRL	4.8		4.5		4.7
Arsenic	mg/Kg	16	13	8.3	1	10.5	0.9	13	0.9
Barium	mg/Kg	350	350	182	0.48	221	0.45	156	0.47
Beryllium	mg/Kg	14	7.2	0.88	0.38	1	0.36	0.71	0.38
Cadmium	mg/Kg	2.5	2.5	2.67	0.48	2.65	0.45	1.93	0.47
Calcium	mg/Kg			8,340	72	4,100	6.8	2,690	70
Chromium	mg/Kg		1	37.3	0.48	36.8	0.45	30.1	0.47
Cobalt	mg/Kg			20.8	0.48	20.5	0.45	11.3	0.47
Copper	mg/kg	270	50	109	4.8	123	4.5	82.2	0.47
Iron	mg/Kg			34,200	72	30,000	68	25,700	70
Lead	mg/Kg	400	63	311	4.8	403	4.5	223	4.7
Magnesium	mg/Kg			11,000	72	8,780	68	5,400	70
Manganese	mg/Kg	2,000	1,600	560	4.8	1,450	4.5	786	4.7
Mercury	mg/Kg	0.81	0.18	0.27	0.1	0.47	0.1	0.22	0.09
Nickel	mg/Kg	140	30	36	0.48	32.8	0.45	24.4	0.47
Potassium	mg/Kg			5,360	72	2,250	68	1,460	70
Selenium	mg/Kg	36	3.9	BRL	2	BRL	2	BRL	1.9
Silver	mg/Kg	36	2	BRL	0.48	BRL	0.45	BRL	0.47
Sodium	mg/Kg			299	7.2	359	6.8		7
Thallium	mg/Kg			BRL	4.3	BRL	4.1		4.2
Vanadium	mg/Kg			123	4.8		4.5		0.47
Zinc	mg/Kg	2,200	109	261	4.8	247	4.5	161	4.7
PCBs By SW 8082									
PCB-1016	ug/Kg	1,000	100	ND	97	ND	83	ND	87
PCB-1221	ug/Kg	1,000	100	ND	97	ND	83		87
PCB-1232	ug/Kg	1,000	100	ND	97	ND	83		87
PCB-1242	ug/Kg	1,000	100	ND	97	ND	83		87
PCB-1248	ug/Kg	1,000	100	ND	97	ND	83		87
PCB-1254	ug/Kg	1,000	100	ND	97	ND	83		87
PCB-1260	ug/Kg	1,000	100	110	97	84	83		87
PCB-1262	ug/Kg			ND	97	ND	83		87
PCB-1268	ug/Kg			ND	97	ND	83	ND	87

TABLE 3Rock Outcrop Surface Soil Sampling Results - Metals and PCBs

RL Exceeds Criteria

587 East Middle Turnpike P.O. Box 370 Manchester, CT 06040 (860) 645-1102

Lab Sample Id BF45890

BF45891

BF45892

BF45893

BF45894

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was reported.

**Poor surrogate recovery was observed for volatiles due to matrix interference. Sample was analyzed twice with Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

TABLE 4 Surface Soil Sampling Results - Pesticides and Herbicides

Phoenix Environmental Labs									
587 East Middle Turnpike									
P.O. Box 370	Lab Sample Id			BF458	202	BF45	804	BF458	805
Manchester, CT 06040	Collection Date			9/25/2		9/25/2		9/25/2	
-						RC-			
(860) 645-1102	Client Id								
	Matrix	Track 2	Track 1	Soi	I	So	I	Soi	I
Project Id : LARCHMONT		Residential	Unrestricted			.			
	Units	Use	Use	Result	RL	Result	RL	Result	RL
Pesticides By SW8081									
4,4' -DDD	ug/Kg	2,600	3.3	ND	2.9	8.6	8	ND*	4.4
4,4' -DDE	ug/Kg	1,800	3.3	13	2.9	16	8	14	8.4
4,4' -DDT	ug/Kg	1,700	3.3	63	2.9	32	8		8.4
a-BHC	ug/Kg	97	20	ND	4.7	ND	4		4.2
Alachlor	ug/Kg			ND	4.7	ND	4	ND	4.2
Aldrin	ug/Kg	19	5	ND	1.4	ND	1.2	ND	1.3
b-BHC	ug/Kg	72	36	ND	4.7	ND	4		4.2
Chlordane	ug/Kg			ND	14	ND	12	ND	13
d-BHC	ug/Kg	100,000	40	ND	4.7	ND	4		7.9
Dieldrin	ug/Kg	39	5	ND*	6.8	ND	4		3.9
Endosulfan I	ug/Kg	4,800	2,400	ND	4.7	ND	4		4.2
Endosulfan II	ug/Kg	4,800	2,400	ND	9.3	ND	8		8.4
Endosulfan sulfate	ug/Kg	4,800	2,400	ND	9.3	ND	16		8.7
Endrin	ug/Kg	2,200	14	ND	9.3	ND	8		8.4
Endrin aldehyde	ug/Kg	,		ND	9.3	ND	8		8.4
Endrin ketone	ug/Kg			ND	9.3		8		8.4
g-BHC	ug/Kg	280	100	ND	1.4	ND	1.2	ND	1.3
Heptachlor	ug/Kg	420	42	ND	5.3	ND	2.5		3.5
Heptachlor epoxide	ug/Kg			ND	4.7	ND	4		4.2
Methoxychlor	ug/Kg			ND	47	ND	40		42
Toxaphene	ug/Kg			ND	47	ND	40		42
Chlorinated Herbicides By SW8151									
2,4,5-T	ug/Kg			ND	61	ND	53	ND	54
2,4,5-TP (Silvex)	ug/Kg	58,000	3.800	ND	61	ND	53	ND	54
2,4-D	ug/Kg	00,000	0,000	ND	61	ND	53		54
2,4-DB	ug/Kg			ND	610		530		540
Dalapon	ug/Kg			ND	61	ND	53	ND	54
Dicamba	ug/Kg			ND	120	ND	100		110
Dichloroprop	ug/Kg			ND	61	ND	53		54
Dinoseb	ug/Kg			ND	120		100		110
	uy/Ny			שא	120	שא	100		110

RL Exceeds Criteria

587 East Middle Turnpike P.O. Box 370 Manchester, CT 06040 (860) 645-1102

Lab Sample Id BF45890

BF45891

BF45892

BF45893

BF45894

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* Due to a matrix interference and/or the presence of a large amount of non-target material in the sample, an elevated RL was reported for the semivolatile analysis.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was reported.

**Poor surrogate recovery was observed for volatiles due to matrix interference. Sample was analyzed twice with Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

* For Pesticides, due to matrix interference from non target compounds in the sample an elevated RL was Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Scale in Feet Scale in Feet Scale in Feet DOCUMENTS BEARING THE SEAL OF A TION 7209, SUBAL ENGINEER IS A VIOLATION TO TOUCATION LAW. DUCATION LAW. TERATION TO THIS DOCUMENT MUST BE TSION OF A LICENSED PROFESSIONAL IN ANCE WITH THE STATE EDUCATION LAW. OF THIS DOCUMENT NOT MARKED WITH AN OF THIS DOCUMENT NOT MARKED WITH AN OF THIS EMBOSSED SEAL SHALL NOT BE TRED TO BE VALID TRUE COPIES.	Legend Soil Boring Rock Outcrop Soil Sample		S GE=527 S S S S S S S S S S S S S S S S S S S	$\mathbf{x}_{34.3} \times \frac{\mathbf{x}_{34.4}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{34.7}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{34.7}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{34.7}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{34.7}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{34.7}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{35.3}}{\mathbf{x}_{35.3}} \times \frac{\mathbf{x}_{35.3}}{\mathbf{x}_$
RP. DATE DESCRIPTION JOB NO. OPERT-OOI-OO2 PROPOSED PINEBR DRAWN AXC PALMER AVE., LAR OHECKED MG SAMPLING L APPROVED RDG SAMPLING L SEAL DATE GOLÍ I DATE DATE Inter ID/O2/13 Inter Inter		PALMER S S R ©	NOW OR FORMERLY CONSTANTINE MONZIDELIS 1927 GE=54.5 GE=54.5 SSS	VIEW WRE URPER WRE VIEW IN A 200 KG WALTER MANN NG CONSTANTINE MONZIDELIS
Inon BY Ispace BY BY BY Ispace				