August 2018 (Revised December 2018)

NYS Brownfield Cleanup Program

Remedial Action Work Plan

Cottage Place Gardens
Phase 4 Parcel Site
8 Cottage Place and
170, 172 & 174 Warburton Avenue
City of Yonkers
Westchester County, New York
BCP Site No. C360160

Prepared for:

170-174 WARBURTON LIMITED PARTNERSHIP 90 State Street, Suite 602 Albany, New York 12207

Prepared by:

C.T. MALE ASSOCIATES ENGINEERING, SURVEYING, ARCHITECTURE, LANDSCAPE ARCHITECTURE & GEOLOGY, D.P.C. 50 Century Hill Drive Latham, New York 12110 (518) 786-7400 FAX (518) 786-7299

C.T. Male Associates Project No: 16.6664

CERTIFICATIONS Cottage Place Gardens Phase 4 Parcel Site (BCP Site No. C360160) 8 Cottage Place and 170, 172 & 174 Warburton Avenue City of Yonkers, Westchester County

I, Rosaura Andújar-McNeil, P.E., certify that I am a NYS registered professional engineer and that this Remedial Action Work Plan was prepared in accordance with applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10) dated May 3, 2010.

097844 12/05/201

NYS Professional Engineer # Date Sig

REMEDIAL ACTION WORK PLAN COTTAGE PLACE GARDENS PHASE 4 PARCEL SITE CITY OF YONKERS, WESTCHESTER COUNTY

TABLE OF CONTENTS

			<u>Page</u>	
1.0	INTRODUCTION & PURPOSE			
	1.1	Introduction	1	
	1.2	Purpose and Goal	1	
	1.3	Nature and Extent of Contamination	2	
	1.4	Remedial Action Approach		
		1.4.1 Tank Discovery Contingency	5	
	1.5	Remedial Treatment Units	7	
	1.6	Applicable NYS Standards, Criteria and Guidance (SCGs)	7	
	1.7	Remedial Action Schedule	7	
	1.8	Miscellaneous General Requirements	9	
	1.9	Citizen Participation	10	
2.0	TEMPORARY CONSTRUCTION FACILITIES		11	
	2.1	Site Security	11	
	2.2	Trailers/Office Space	11	
	2.3	Equipment Decontamination		
	2.4	Groundwater Dewatering System During Construction		
	2.5	Impacted Soil Handling	13	
	2.6	Utility Disconnects	16	
	2.7	Construction Entrance	16	
	2.8	Excavation Shoring/Sheeting	16	
	2.9	Monitoring Well Abandonment	17	
3.0	SITE	SITE CONTROLS DURING REMEDIAL ACTION		
	3.1	Stormwater Management	18	
	3.2	Air Monitoring	19	
		3.2.1 Particulate Air Monitoring		
		3.2.2 Volatile Organic Compound Air Monitoring	20	
	3.3	Noise and Vibration	22	
	3.4	Dust Control	22	
	3.5	Construction Observation and Certification	23	
	3.6	Odor Control	23	

C.T. MALE ASSOCIATES

4.0 HEALTH AND SAFETY PLAN (HASP)		TH AND SAFETY PLAN (HASP)2	25			
5.0	CONFIRMATION AND DOCUMENTATION SAMPLING		26			
	5.1	Post-Remediation Confirmation Sampling2	26			
	5.2	Groundwater Treatment Documentation Sampling2	27			
	5.3	Imported Fill Testing	27			
6.0	APPL	ICABLE PERMITS AND RELATED2	<u>1</u> 9			
	6.1	ACM Abatement/Building Demolition Work	29			
	6.2	Groundwater Discharge2	<u>'</u> 9			
7.0	SITE F	RESTORATION3	31			
	7.1	General	31			
8.0	REPO	RTING AND CERTIFICATE OF COMPLETION3	32			
	8.1	Weekly Progress Updates	32			
	8.2	Monthly Progress Reports	32			
	8.3	Final Engineering Report	3			
	8.4	Certificate of Completion	4			
<u>APPE</u>	NDICE	<u>es</u>				
Appe	ndix A	Figures				
Figu	ıre 1:	Site Location Map				
Figu	ıre 2:	Remedial Action Implementation Plan and Details				
Figu	ıre 3:	Analytes in Fill/Soil Exceeding SCGs				
Figu	ıre 4:	Analytes in Groundwater Exceeding SCGs				
Appe	ndix B:	Tables				
Tabl	le 1:	Soil Sampling Analytical Summary (2015 C.T. Male Phase II ESA Report)				
Table 2:		Soil Sampling Analytical Summary (2017 C.T. Male Phase II ESA Report)				
Table 3:		Soil Sampling Analytical Summary (2017 C.T. Male Phase II ESA Report)				
Table 4:		Remedial Investigation Soil Sampling Analytical Results Summary				
Table 5:		Groundwater Analytical Results Summary (2015 C.T. Male Phase II ESA)				
Table 6:		Groundwater Analytical Results Summary (2017 C.T. Male Phase II ESA)				
Table 7:		Groundwater Analytical Results Summary (2017 C.T. Male Phase II ESA)				
Table 375-6		.8(a): Unrestricted Use Soil Cleanup Objectives				
Tabl	le 375-6	.8(b): Restricted Use Soil Cleanup Objectives				
Appe	ndix C:	CAMP and Special Requirements CAMP				
Appe	Appendix D: Approved Imported Fill Material					

1.0 INTRODUCTION & PURPOSE

1.1 Introduction

On behalf of 170-174 Warburton Limited Partnership, C.T. Male Associates Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C. (C.T. Male) has prepared this Remedial Action Work Plan (RAWP) pursuant to the New York State Department of Environmental Conservation (DEC) Brownfield Cleanup Program (BCP). The RAWP is in relationship to the property known as the Cottage Place Gardens Phase 4 Parcel Site (Site No. C360160) located at 8 Cottage Place and 170, 172 & 174 Warburton Avenue in the City of Yonkers, Westchester County, New York (herein the "Site"). A Site Location Map is presented as Figure 1.

170-174 Warburton Limited Partnership entered into a Brownfield Cleanup Agreement (BCA) with the DEC in December 2017 (BCA Index No.: C360160-09-17), to remediate an approximate 1.51 acre property to Unrestricted Use as defined in 6 NYCRR Part 375. 170-174 Warburton Limited Partnership is a Volunteer in the BCP. When construction is completed, the Site will contain multi-family residential housing with associated parking and green spaces.

1.2 Purpose and Goal

The purpose of the RAWP is to provide a conceptual plan for the selected remedy of the Site. With concurrence from DEC, the preparation of a formal remedial design work plan is not planned considering that the remedial action (generally excavate and properly dispose) is a presumptive remedy, as defined at DER-10-1.3(b)46 and 6 NYCRR Part 375-1.2(ai).

The goal of this RAWP is to provide guidance to 170-174 Warburton Limited Partnership's design and construction team to supplement the project's technical specifications, and bidding and construction documents. This guidance is required to incorporate the remedial action requirements into the overall Site development project to be in compliance with the BCP. It is the responsibility of the Volunteer to provide this RAWP to the general contractor in order to coordinate and integrate remedial and Site development activities and ensure adherence by the contractor to this RAWP. Prior

to the start of site development activities the Contractor shall indicate in writing their receipt and review of the RAWP.

1.3 Nature and Extent of Contamination

The nature and extent of Site contaminants were identified through the completion of a DEC-approved Remedial Investigation (RI) of the Site in April 2018. Contaminants in media characterized by the RI were supplemented with analytical data of fill/soil and groundwater sampled in 2014, 2016 and 2017 as part of Phase II Environmental Site Assessment (ESA) investigations of the Site completed by C.T. Male. The tasks completed as part of the RI and Phase II ESA investigations included the following.

Remedial Investigation

Five (5) soil borings were advanced to facilitate the collection of subsurface native soil samples for subjective and laboratory analysis. At each boring, one (1) sample was collected of native soil underlying fill material mantling the Site, the top of glacial till, and five (5) feet into the glacial till (three [3] samples per soil boring). The samples were analyzed for the Target Compound List (TCL) volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides and PCBs, and the Target Analyte List (TAL) metals, including cyanide and hexavalent chromium (TCL/TAL parameters). Groundwater samples were not collected for laboratory analysis during the RI.

Phase II ESA Investigations

Fourteen (14) soil borings were advanced to facilitate the collection of fill/soil samples for subjective and laboratory analysis and for installation of monitoring wells to aid in the collection of groundwater samples for laboratory analysis. The fill/soil and groundwater samples were analyzed for all TCL/TAL parameters with the exception of hexavalent chromium.

Tables 1 to 4 in Appendix B provide a summary of the analytical results for the fill/soil and native soil samples collected during the Phase II ESA investigations and RI of the Site in comparison to the Unrestricted Use soil cleanup objectives (SCOs), which are the project standards, criteria and guidance (SCGs). Figure 3 in Appendix A depicts the

overall sampling locations and depicts those sampling locations where analytes were detected in fill/soil and native soil at concentrations exceeding SCGs.

Tables 5 to 7 in Appendix B provides a summary of the analytical results for the groundwater samples collected as a function of the Phase II ESA investigations of the Site in comparison to NYS Department of Environmental Conservation (DEC) Division of Water TOGS 1.1.1 regulatory standards and guidance values, which are the project SCGs. Figure 4 in Appendix A depicts the groundwater sampling locations and depicts those sampling locations where analytes were detected at concentrations exceeding SCGs. The general groundwater flow direction is inferred to be from the east to the west, similar to the ground surface topography.

Figure 2 identifies the estimated horizontal and vertical extent of fill/soil and native soil that will require removal and proper disposal as the remedial action.

Based on the findings and results of the RI, remedial action objectives (RAOs) have been identified for the Site as presented in the following table.

Affected Media	Remedial Action Objectives
	RAOs for Public Health Protection
	Prevent ingestion/direct contact with contaminated fill/soil and
	impacted native soil.
Fill/Soil and	Prevent inhalation of, or exposure to, contaminants volatilizing from
Native Soil	contaminated fill/soil and impacted native soil.
1144110 3011	RAOs for Environmental Protection
	Prevent migration of contaminants that would result in groundwater
	contamination
	RAOs for Public Health Protection
	Prevent ingestion of groundwater containing contaminant levels
	exceeding drinking water standards.
	Prevent contact with, or inhalation of, volatiles emanating from
Groundwater ⁽¹⁾	contaminated groundwater.
	RAOs for Environmental Protection
	Restore groundwater aquifer, to the extent practicable, to pre-
	disposal/pre-release conditions.

Affected Media	Remedial Action Objectives
	Remove the source of groundwater contamination.
Surface Water	Not Applicable
Sediment	Not Applicable
Soil Vapor	Not Applicable

1.4 Remedial Action Approach

The remedial action for the Site is generalized as "fill/soil excavation and off-site disposal". The remedial action may also include temporary groundwater evacuation and treatment if the remedial excavation extends into groundwater. The depth to groundwater beneath the Site is estimated at 9.5 to 12 feet beneath the ground surface (bgs).

The specific elements of the selected remedy are as follows:

 Excavation and off-site disposal of fill/soil mixtures mantling the Site from the ground surface generally to the top of native soils, with select excavations extending beyond the bottom of the fill/soil mixtures to include native soils containing contaminants at concentrations exceeding SCGs. The remedial excavation may also include the additional excavation of native soils that do not meet SCGs based on analytical results of confirmatory post-excavation sampling and analysis. The remedial excavation will extend horizontally to the Site boundaries or to the extent feasible without compromising the integrity of structures on adjacent properties and/or as limited by access restrictions from adjacent property owners. In the event of not being able to extend excavations to the property boundaries, the limits of the BCA would be adjusted accordingly via a BCA amendment. The proposed horizontal and vertical limits of the remedial excavation are depicted on Figure 2 in Appendix A. As depicted on the Figure, The majority of the Site will be excavated to a depth of five (5) feet bgs with four (4) 900 square foot excavations extending to eight (8) feet bgs and one (1) 900 foot excavation extending to 10 feet bgs. The confirmatory postexcavation samples will be analyzed for the TCL/TAL parameters.

Grossly impacted fill/soil (as defined at DER-10, Section 1.3, Item 23) encountered in the excavation floor at the depth limits of the proposed excavations will be further excavated and staged on-site pending waste characterization and subsequent off-site disposal. The extent of the grossly impacted fill/soil will be subjectively assessed using PID headspace analysis and organoleptic (sight and smell) perception. Confirmatory post-excavation end-point samples will be collected for laboratory analysis to confirm removal of the material to the prescribed SCGs.

• Groundwater at the Site is impacted by VOCs, SVOCs and metals at concentrations exceeding SCGs. Groundwater entering the excavations during fill/soil remediation may be evacuated and transferred into a temporary holding tank to the extent necessary to remove impacted soils. The groundwater will be treated (if impacted above applicable discharge limits) and discharged to the closest connection to the municipality's sanitary collection system (i.e. sanitary lines along Warburton Avenue, Irving Place or Bishop WM. Walls Place). If this is implemented, pre- and post-treatment sampling will be performed of the water treatment system to confirm that the discharge meets the limits established by the Westchester County Department of Environmental Facilities (DEF). The sampling will be conducted prior to system startup and during on-going system discharges at sampling frequencies required by the Westchester County DEF. In lieu of treating the groundwater on-site, groundwater may be evacuated from the holding tank and transported for off-site disposal at an approved treatment, storage and/or disposal facility (TSDF).

Municipal water is available to the public in and around the Site eliminating the potential for the public to come into contact with contaminated groundwater. The approach to remediate groundwater that may enter the remediation excavations will enhance protection of public health by reducing the volume of presumably impacted groundwater beneath the Site.

1.4.1 Tank Discovery Contingency

This contingency applies to the procedures to be employed in the event that underground storage tanks (USTs) need to be removed from the Site, if encountered. General procedures for the removal of any USTs that may be encountered within the Site will include the following.

- Closure of the USTs and associated appurtenances (product, fill and vent piping, underground electric, concrete pump island, etc.) will conform to applicable sections of DER-10, NYSDEC Petroleum Bulk Storage regulations 6 NYCRR Part 613-2.6, Out-of-service UST Systems and Closure, and the Westchester County Department of Health.
- Any soils, fill, concrete and/or asphalt overlying and/or surrounding the tank will be removed to allow access to the tank. The contents of the UST will be removed and transported to a disposal facility permitted to accept this waste. If in small quantities, the liquids may be temporarily stored in labeled DOT approved 55-gallon drums for disposal at an approved TSDF. Any oil soaked personal protective equipment, clothing and polyethylene (i.e., PPE) will also be placed in a labeled DOT approved 55-gallon drum for off-site disposal.
- The UST will be accessed either through tank manholes (if present) or a hole will be cut in the tank to allow access for removal of the tank contents and cleaning while the UST remains in-place. Polyethylene will be placed on the ground adjacent to the tank openings to mitigate contamination of the ground surface when cleaning the tank's interior. Prior to entering the tanks for cleaning, the atmosphere inside the tanks will be assessed by the Contractor completing the work and deemed safe to enter. Confined space entry procedures will be performed in accordance with per 29 CFR Part 1910.146 for tank cleaning.
- The USTs will be cleaned and purged of any vapors in accordance with applicable regulations. The USTs will be rendered unusable on-site by cutting a hole in them after removal from the ground. The tank, distribution and vent piping, and associated equipment will be properly disposed of off-site at a steel recycling facility. Records of disposal/recycling will be provided to the Remediation Engineer in a timely manner.
- The waste contents of the tanks and associated piping and equipment, and cleaning wastes will be properly managed and disposed of off-site at an approved TSDF. The wastes will be transported by a 6 NYCRR Part 364 transporter permitted to transport these wastes, and disposed of at a facility permitted to accept the waste being disposed of. The disposal facility and general type of waste will be specifically listed on the transporter's permit.

• Registration of the tanks as "closed-removed" in accordance with NYSDEC Petroleum Bulk Storage regulations and the Westchester County Department of Health.

1.5 Remedial Treatment Units

The entire Site, the limits of which are shown on Figure 2, is to be considered as one (1) remedial treatment unit or area of concern.

The sampling locations, sampling depths and concentrations of contaminants in fill/soil and native soil exceeding SCGs are summarized in Figure 3 in Appendix A and Tables 1 to 4 in Appendix B.

1.6 Applicable NYS Standards, Criteria and Guidance (SCGs)

The applicable SCGs for each media type to be remediated during the remedial action are summarized as follows:

Media	Regulation	SCGs	
Fill/Soil and Native Soil	6 NYCRR Part 375 (December 14, 2007)	Table 375-6.8(a) Unrestricted Use Soil Cleanup Objectives	
Groundwater	NYSDEC Division of Water TOGS 1.1.1	Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations (June 1998)	

A copy of the December 14, 2007 6 NYCRR Part 375 Table 375-6.8(a) is included in Appendix B for reference. The NYSDEC Division of Water TOGS 1.1.1 document is not included, but the standards or guidance values for the remedial action will be the ambient groundwater (GA class) values.

1.7 Remedial Action Schedule

It is expected that the remedial action will be completed in two (2) phases as follows:

Phase I: Asbestos Abatement and Building Demolition

Phase I is anticipated to be completed during the Winter and Spring of 2019, and will include the following tasks.

-Asbestos abatement and demolition of Buildings 5, 9 and 13 within the CPG complex portion of the Site and the building within the 172 Warburton Avenue portion of the Site. Abatement of asbestos containing materials (ACM) will be in accordance with the New York State Department of Labor (NYSDOL) Industrial Code Rule (ICR) 56. The ACM abatement work activities will be managed under the requirements of the NYSDOL rather than the DEC Division of Environmental Remediation.

-Building foundation concrete (footers, walls and slabs) in contact with Site soils will either be addressed as part of the building demolition or will be left in place and addressed as part of the remedial excavation. If removed as part of the building demolition, methods will be employed to remove any soils adhering to the concrete prior to the concrete leaving the Site for off-site disposal.

Phase II: Remedial Action

Phase II is anticipated to be completed during the Spring and Summer of 2019, and will include the following tasks.

-Excavation and off-site disposal of all fill/soil mixtures and select native soils mantling the Site (see Figure 2 for proposed excavation depths), and the possible additional excavation of native soils that do not meet SCGs based on analytical results of confirmatory post-excavation sampling. The remedial excavation will extend to the boundaries of the Site.

-If building foundation concrete is encountered during the remedial action, the concrete may be disposed of as a separate waste stream provided that any soils adhering to the concrete are removed prior to the concrete leaving the Site for off-site disposal. The disposal location will be required to the submitted to the certifying remedial engineer prior to removal from the Site.

-Other appurtenances that may be in contact with contaminated Site soils include, but are not limited to, asphalt access-ways and parking lots; concrete walkways, stairways,

retaining walls, bollards and curbing; subsurface portions of handrails, light posts and signage, and underground utilities. These appurtenances, and any other appurtenances encountered within the remedial excavation, may be disposed of as a separate waste stream provided that any soils adhering to the appurtenances are removed prior to the appurtenances leaving the Site for off-site disposal. The disposal location will be required to the submitted to the certifying remedial engineer prior to removal from the site.

- -Provide groundwater evacuation, characterization, treatment and/or off-site disposal as necessary during the remedial excavation.
- -Prior to beginning the remedial excavation, monitoring wells within the Site containing groundwater will be abandoned in accordance with DEC Policy CP-43: Groundwater Monitoring Well Decommissioning Policy, dated November 3, 2009. The monitoring wells that are within the boundaries of the Site are depicted on Figure 2 as MW-L, MW-M, MW-N, MW2016-2, MW2016-5, MW2016-10, MW2016-12 and MWGP01.
- -Characterization and off-site disposal of drummed investigation derived wastes generated during the Phase II ESA investigations and RI of the Site. These include 55-gallon drums containing drill cuttings from the soil borings and decontamination water and plastic used for the decontamination pad.
- -Preparation and submission of the Final Engineering Report (FER), which is anticipated to be completed during the Fall of 2019. The time lapse for submission of the FER takes into account the time required for receipt of analytical results of remedial excavation end-point sampling, data validation of the analytical results, and review by the Volunteer. A more detailed remedial action schedule will be provided to the Department after completion of field work associated with the remedial activities.

1.8 Miscellaneous General Requirements

Prior to beginning construction of the remedial action (excluding the asbestos abatement and building demolition phase), a pre-construction meeting will be held with the Department, the Volunteer, the remedial engineer (C.T. Male), the construction manager and the contractor/subcontractors designated to complete the remedial action related work.

The hours of operation of the remedial construction work will conform to the City of Yonkers construction codes. The Department will be notified by the Volunteer of any variances issued by the City of Yonkers.

1.9 Citizen Participation

Citizen participation will continue on this project as follows:

- Placement of the draft RAWP in the document repositories prior to the public comment period. A cursory review of the draft RAWP will be conducted by DEC for general acceptance before being submitted to the repositories, and then reviewed in more detail by DEC during the comment period.
- Issue a notice for the start of a 45 day public comment period for the draft RAWP.
- Comments issued by DEC at the end of the 45 day public comment period will be addressed as necessary to finalize the RAWP.
- Once the RAWP has been finalized, a public notice fact sheet will be released by the Department before the start of the remedial construction work. The Decision Document will be issued after the RAWP is finalized.

DEC approval of the RAWP will follow the public comment period unless a public meeting is requested and deemed necessary by DEC. If necessary, a public meeting can be held towards the end of the 45 day comment period to explain the project in further detail, and address public questions and comments.

2.0 TEMPORARY CONSTRUCTION FACILITIES

2.1 Site Security

The Site is an approximate 1.51 acre single lot that makes up the southern portion of the Cottage Place Gardens public housing complex and 170, 172 and 174 Warburton Avenue. The Site consists of four (4) multi-story residential apartment buildings with associated asphalt paved access-ways and parking areas, concrete sidewalks, and landscaped areas. Currently, the Site is easily accessible to residents of surrounding apartment buildings within the Cottage Place Gardens complex and to the public from Warburton Avenue, Irving Place and Bishop WM. Walls Place; which are public streets.

Because the Site is easily accessible to the public, construction fencing with a lockable gate(s) will be installed and maintained around the entire perimeter of the Site prior to the start of the building asbestos abatement and demolition activities, and remain in-place throughout the remedial action and subsequent new construction phases of the project.

2.2 Trailers/Office Space

A construction office trailer(s) or office space will be provided by the contractor for use by the environmental consultant and DEC personnel. The space shall include a desk or table to work on and power to daily charge field monitoring equipment. A minimum area, generally 6 feet by 6 feet, should be sufficient.

2.3 Equipment Decontamination

Construction equipment that comes into contact with the Site's contaminated fill and soil, and potentially impacted groundwater, will be considered contaminated. Prior to the equipment being demobilized from the Site or prior to entering an area deemed clean by meeting applicable SCGs, the equipment will be decontaminated in a manner that removes adhered soils and residues, and washes/rinses the equipment in a controlled manner thereby capturing the soils and wash/rinse water for proper off-site disposal. The waste soils and wash/rinse water will be captured using a stationary or movable decontamination pad. The accumulated soils from the decontamination effort

will be staged with the remediated contaminated soils and ultimately disposed of offsite. The decontamination water will be transferred into 55 gallon drums or directly to the on-site groundwater treatment system (if used) on an as needed basis.

Any wastes (soils or water) created at the Site will either be sampled first, or assumed to be impacted, and then disposed of accordingly.

Trucks entering and exiting the Site will be subject to the requirements of the Site specific erosion and sediment control measures outlined in this RAWP and site specific Stormwater Pollution Prevention Plan (SWPPP), which shall include the requirements of a stabilized construction entrance to mitigate fill/soil from being tracked off-site and onto roadways (see Section 2.7). Trucks, while being loaded with contaminated fill/soil for transport to the disposal facility, will be situated in a manner that limits the potential for transporting the Site's surface fill/soil off-site (i.e., the trucks will be staged atop the construction entrance and/or on plastic). If necessary, truck tires and exterior surfaces subject to being soiled by falling impacted fill/soil during loading, will be broom swept prior to leaving the Site to reduce tracking of fill/soil onto surrounding public roadways. The public roadway(s) where trucks exit the Site will be monitored by the remediation engineer field representative. If fill/soil tracking is apparent, improvements to the erosion and sediment controls and fill/soil loading procedures will be required and implemented. Trucks entering and exiting the Site will also conform to the Site's State Pollutant Discharge Elimination System (SPDES) General Permit for Stormwater Discharges from Construction Activity.

2.4 Groundwater Dewatering System During Construction

The remedial action and subsequent new construction may require groundwater dewatering and treatment. If requested, DEC will be provided the opportunity to review the dewatering and treatment system design prior to its implementation.

It is the Volunteer's intention to treat groundwater and discharge it to the closest connection to the municipality's sanitary collection system (i.e. sanitary lines along Warburton Avenue, Irving Place and/or Bishop WM. Walls Place). If this is implemented, pre- and post-treatment sampling will be performed of the water treatment system to confirm that the discharge meets the limits established by the Westchester County Department of Environmental Facilities (DEF). The sampling will

be conducted prior to system startup and during on-going system discharges at sampling frequencies required by the Westchester County DEF.

For the purpose of tracking the volume of treated groundwater that is discharged to the sanitary collection system, a water meter will be installed in line with the groundwater treatment system. The groundwater treatment system will be equipped with equipment to reduce suspended sediment, pre-and post-treatment sampling ports, and treatment media such as granular activated carbon.

In lieu of on-site groundwater treatment, the groundwater may be evacuated employing from temporary holding tanks and transported off-site for disposal at an approved TSDF facility.

2.5 Impacted Soil Handling

Fill/soil within the Site boundaries commencing at the ground surface and extending vertically downwards to the upper horizons of native soil, and select deeper native soil excavations, will be considered as contaminated and will require special handling. The remedial excavation will extend to an average depth of five (5) feet below existing Site grades across the Site. Select excavations will extend beyond the average five (5) foot depth limit, as follows.

-Soils will be excavated to a depth of eight (8) feet bgs around boring locations RICPG4-001 and -002. Metals were detected above SCGs in soil samples collected from the six (6) to eight (8) foot sampling depth intervals at these locations. The soil samples were representative of native soil immediately underlying fill material. The horizontal extent of each excavation will measure approximately 30 feet by 30 feet. See Figure 3 and Table 4.

-Soils will be excavated to a depth of eight (8) feet bgs around boring locations SB2016-7 and SB2016-12 and 10 feet bgs around boring location SB2016-11. Fill material was observed to extend to these depths during completion of the soil borings. The horizontal extent of each excavation will measure approximately 30 feet by 30 feet. See Figure 3.

-Total chromium was detected at a concentration of 32.6 ppm versus its SCG of 30 ppm at the 16 to 18 foot sampling depth interval at test boring location RICPG4-004 (see

Figure 3 and Table 4). Total chromium was detected at concentrations below its SCG in soil samples collected of native soil from the six (6) to eight (8) foot and 12 to 14 foot depth intervals at this same boring location. The sample collected from the 16 to 18 foot depth interval is representative of glacial till that is approximately 12 to 14 feet deeper in depth than the bottom of the fill material mantling the Site, which was measured at approximately four (4) feet bgs at this boring location. Additionally, analytical results for hexavalent chromium in the soil sample collected at the 16 to 18 foot depth interval was reported as non-detect. For the above reasons, the excavation depth in and around RICPG4-004 is shown on Figure 2 to extend to an approximate depth of five (5) feet bgs and not 18 feet bgs.

In areas where the Site buildings have been demolished and the elevation of the former buildings' footprint is at a lower elevation than surrounding grades, the excavation will still extend to a total depth of five (5) feet below the original surface grades that surrounded the building (i.e., if, after demolition, the building footprint elevation is three feet (3) below surrounding grades, the building footprint area will be excavated to a vertical depth of two (2) feet below the bottom of the building footprint).

It will be the responsibility of the Contractor to provide survey control to determine whether the appropriate excavation depths for remediation purposes, as indicated in Figure 2, have been achieved.

Approximately 12,750 cubic yards (or 21,675 tons; tonnage to vary depending on material density) of in-place contaminated fill/soil is anticipated to be removed and disposed of off-site for remediation purposes (additional excavation might be needed for site development purposes). The overall excavation depths may be adjusted based on organic vapor screening with a photo-ionization detector and visual observations. Confirmatory end-point soil samples will be collected and analyzed to confirm the fill/soil that remains in-place meets applicable SCGs.

Should boulders be encountered during excavation activities, these will be segregated and stockpiled on-site and assessed by C.T. Male's construction observer to determine whether the boulders exhibit field evidence of contamination (odors, sheen, and/or discoloration). Boulders exhibiting field evidence of contamination (FEC) will not be reused on-site. Boulders with no FEC could be reused on-site, following a determination by the project's structural engineer that the reuse of this material is

suitable from a structural standpoint. Boulders to be reused as backfill will need to be free from excessive soil/fill prior to processing in order to prevent cross contamination.

Upon completion of the remedial action, excavation of additional native soil may be necessary to facilitate construction of deeper building foundations. If the confirmatory endpoint floor samples from the remedial excavation indicate that the native soils are not impacted above SCGs, then these soils will be considered as clean soil and the reuse and/or disposition of these soils will no longer be regulated.

The handling of the contaminated fill/soil will involve direct loading into dump trucks or trailers, and if not directly loaded, stockpiled on-Site. For soil stockpiling, the fill/soil will be staged on a minimum of 12-mil plastic and covered with the same to mitigate washout by rainwater. For directly loaded fill/soil, the trailers will be covered during transport with solid covers (not mesh), and if high in moisture content where free-standing water will be released, the truck gates will be sealed and/or lined with plastic. Mesh tarps or covers will not be allowed for trucks hauling impacted fill/soil from the Site.

In order to dispose of the contaminated fill/soil at an off-site disposal facility (and to be able to directly load the material into dump trucks and/or trailers), waste characterization samples will be collected before the remedial action begins. This will be accomplished by advancing exploratory test pits and/or soil borings for collection of representative fill/soil samples for laboratory analysis. The number of samples and analytical requirements shall be in accordance with the target disposal facility's disposal permit requirements, and if unspecified, shall be at a minimum for the full Toxicity Characteristic Leaching Procedure (TCLP) parameters and RCRA characteristics.

Disposal facility approval letters and other related documentation will be submitted to C.T. Male and NYSDEC for review and approval prior to the exportation of contaminated fill/soil.

All Investigation Derived Wastes (IDW) from the Remedial Investigation (RI) will be characterized and disposed of off-site.

2.6 Utility Disconnects

The Site is serviced with electricity and natural gas from Con Edison. Potable water is provided by the City of Yonkers Water Bureau. The Westchester County DEF is responsible for sanitary sewer service to the Site. Additionally, several private utilities installed as part of the construction of the Cottage Place Gardens complex are present beneath the Site. These include steam lines, drainage and storm water piping, and fiber optic and cable lines. All of the active utilities shall be located and temporarily disconnected per City, County and Cottage Place Gardens requirements, and properly rerouted or protected during excavation in cooperation with applicable utility companies.

2.7 Construction Entrance

A stabilized construction entrance(s) will be installed to mitigate the tracking of potentially contaminated fill/soil onto public rights-of-way from vehicle traffic exiting the Site. The construction entrance(s) will be constructed of No. 2-inch stone, not less than six (6) inches in depth, placed over filter fabric. The construction entrance(s) shall be a minimum 50 feet in length by 20 feet in width. The construction entrance(s) will be amended with new stone on an as needed basis as determined by the Remediation Engineer or field representative. Details and the potential location(s) for a construction entrance(s) are presented on Figure 2 in Appendix A. The locations of the construction entrances on Figure 2 are for illustrative purposes only. The Contractor, after obtaining approval from the Remediation Engineer, will construct and relocate (if needed) the construction entrances as necessary to effectuate the efficient direct loading of the remediated fill/soil into the trucks for off-site disposal.

2.8 Excavation Shoring/Sheeting

Due to the anticipated horizontal and vertical remedial excavation depths and the estimated vertical depths for foundation construction after completion of the remedial action, shoring and/or sheeting may be required to effectuate stable and safe excavation conditions. The need for and design of the shoring/sheeting systems will be the responsibility of the earthwork contractor, and shall be designed by a licensed professional engineer. Prior to commencement of the remedial action, excavation shoring/sheeting plans will be submitted to DEC for their information. Excavation

shoring/sheeting plans for non-remedial needs are not required to be submitted to DEC.

2.9 Monitoring Well Abandonment

Prior to beginning the remedial excavation, monitoring wells within the Site containing groundwater will be abandoned in accordance with DEC Policy CP-43: Groundwater Monitoring Well Decommissioning Policy, dated November 3, 2009. Monitoring wells to be abandoned will be tremi-grouted from the bottom of the monitoring well to the anticipated bottom of the remedial excavation. Monitoring wells that do not contain groundwater will be removed and disposed of with the fill/soil from the remedial excavation. The monitoring wells that are within the boundaries of the Site are depicted on Figure 2 as MW-L, MW-M, MW-N, MW2016-2, MW2016-5, MW2016-10, MW2016-12 and MWGP01.

3.0 SITE CONTROLS DURING REMEDIAL ACTION

3.1 Stormwater Management

The cumulative area of fill/soil disturbance for this project is greater than one (1) acre requiring 170-174 Warburton Limited Partnership to obtain coverage under the SPDES General Permit for Stormwater Discharges from Construction Activity before commencing construction activity.

In accordance with the New York Guidelines for Urban Erosion and Sediment Control and the New York State Stormwater Management Design Manual, erosion and sediment control measures, pollution prevention measures, and if applicable, post-construction water quality treatment, shall be designed by 170-174 Warburton Limited Partnership and presented in the form of a Stormwater Pollution Prevention Plan (SWPPP).

The following forms are needed to be completed and submitted to comply with the requirements of the General Permit for Stormwater Discharges from Construction Activity - GP-0-15-002:

- Notice of Intent (NOI) to DEC, which is a request for coverage under the General Construction Stormwater Permit;
- SWPPP Acceptance Form, which is required along with the NOI because the Site is located within the boundaries of an MS4. The SWPPP must be reviewed and accepted by the MS4 prior to submitting the NOI to the DEC; and
- Notice of Termination (NOT) to DEC, which is a notification that the construction project is complete and has met the requirements of the construction permit.

A copy of the blank Notice of Intent, Notice of Termination and SWPPP Acceptance forms are available through DEC's website. The SWPPP, NOI and SWPPP Acceptance forms will be provided to DEC under separate cover after approval from the City of Yonkers Engineering Department, but prior to the start of construction. The NOT will be provided to DEC upon completion of the Site disturbance portion of the project. Periodic SWPPP inspection reports will be provided to C.T. Male for review and inclusion in the FER.

3.2 Air Monitoring

A Community Air Monitoring Plan (CAMP) will be followed during ground intrusive remedial activities (i.e., excavation, disturbance and handling of site fill/soil). The intent of the CAMP is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of remedial work activities. The CAMP is not intended for use in establishing action levels for worker respiratory protection. The CAMP will monitor the air for dust (particulate air monitoring, see Section 3.2.1) and volatile organic compound vapors (VOC air monitoring, see Section 3.2.2) at the downwind perimeter of the work area and/or at occupied buildings within 20 feet of the work area. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown.

Remedial actions will not take place within occupied Site buildings. In areas where remedial actions will take place within 20 feet of occupied buildings, VOC and particulate monitoring will be conducted in accordance with the Special Requirements CAMP. The CAMP and Special Requirements CAMP are included in Appendix C.

3.2.1 Particulate Air Monitoring

Three (3) real-time particulate monitors capable of continuously measuring concentrations of particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) will be utilized. The instruments will be placed inside environmental enclosures at temporary monitoring stations based on the prevailing wind direction each work day, one upwind and two downwind of the designated work areas. If the remedial action is taking place within 20 feet of occupied structures, monitoring will be conducted opposite the walls of the occupied structures or next to the structures' air intake vents.

Each particulate monitor will be equipped with a telemetry unit capable of transmitting real-time particulate data to the Remediation Engineer and/or field representative. The particulate monitoring instruments will be capable of displaying and transmitting the short term exposure limit (STEL) or 15 minute averaging period, which will be compared to the NYSDOH Generic and Special Requirements Community Air

Monitoring Plan action levels for particulates, as listed below. The instruments are programmed to alarm at preset action levels. At the end of each day, the readings for each instrument will be downloaded to a PC and retained for future reference and reporting.

- If the downwind and/or occupied structures PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that the downwind and/or occupied structures PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, the downwind and/or occupied structures PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind and/or occupied structures PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.

In the event of poor weather such as heavy rain, particulate monitoring will not be performed for protection of instrumentation. These weather conditions would limit the effectiveness of the sensitive monitoring equipment and likely suppress particulate generation. Work activities will be halted if fugitive dust migration is visually observed for a sustained period of time during poor weather conditions.

3.2.2 Volatile Organic Compound Air Monitoring

C.T. Male will continuously monitor for volatile organic compounds (VOCs) at the downwind perimeter of the immediate work areas and/or occupied structures with a MiniRAE 3000 VOC monitor or equal. The VOC monitor will be placed in the downwind and/or occupied structures environmental enclosures containing a particulate monitor. The downwind VOC monitor will be equipped with a telemetry unit capable of transmitting real-time VOC data to the Remediation Engineer and/or field representative. The VOC monitoring instrument will be capable of displaying and

transmitting the short term exposure limit (STEL) or 15 minute averaging period, which will be compared to the NYSDOH Generic and Special Requirements Community Air Monitoring Plan action levels for VOCs, as listed below. The downwind and/or occupied structures VOC STEL readings will be downloaded to a PC and retained for future reference and reporting.

Upwind VOC STEL concentrations will be measured at the start of the work day and periodically thereafter employing a handheld MiniRae 3000 VOC monitor to evaluate the Site's background conditions. Background VOC readings will be obtained in the occupied structures prior to commencement of the planned work. Any unusual background readings will be discussed with NYSDOH prior to commencement of the work. The upwind VOC STEL readings will be manually recorded for future reference and reporting.

- If the ambient air concentration of total organic vapors opposite the walls of occupied structures exceeds 1 ppm above background for the 15-minute average, work activities will be temporarily halted and monitoring will be conducted within the occupied structure.
- If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone (not including the occupied structures) exceeds 5 parts per million (ppm) above background for the 15minute average, work activities will be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone (not including the occupied structures) persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities will be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.

 If the organic vapor level is above 25 ppm at the perimeter of the work area, activities will be shutdown. Work activities will then be evaluated to determine the source of the organic vapors and the engineering controls required to reduce/eliminate the organic vapors.

3.3 Noise and Vibration

There is potential for noise and vibration to be an issue depending on the means and methods selected by the construction contractor to excavate and load the Site fill/soil during the remedial action. If sheet piling is used to facilitate the excavation of Site fill/soil during the remedial excavation, the project plans and specifications will require the contractor to plan for and provide, as necessary, controls to mitigate noise and vibration from adversely affecting the community.

3.4 Dust Control

Dust suppression techniques will be required, as necessary, to control fugitive dust to the extent practical during the remedial action. Such techniques must be employed, at a minimum, if the community air monitoring results indicate that particulate levels are above action levels. All reasonable attempts will be made to inhibit visible and/or fugitive dusts. Techniques to be utilized by the contractor may include one or more of the following:

- Applying water to haul roads.
- Wetting equipment and excavation faces.
- Spraying water on buckets during excavation and dumping.
- Hauling materials in containers or vehicles with solid tarp covers.
- Restricting vehicle speeds on-site.
- Covering excavated areas and materials after excavation immediately after activity ceases.

The contractor will be required to perform dust control measure in a manner consistent with the applicable portions of the "New York Guidelines for Urban Erosion and Sediment Control" and the "New York State Stormwater Management Design Manual".

3.5 Construction Observation and Certification

Phase I (site preparation) work includes asbestos abatement followed by demolition of the Site buildings. A licensed asbestos project monitor will be retained during the ACM abatement work, as required by ICR-56. The asbestos project monitor will be responsible for collecting daily air samples in accordance with ICR-56. As air monitoring will be conducted per DOL requirements during the ACM abatement work, CAMP related air monitoring will not be performed during this portion of the work. Once the ACM has been abated, C.T. Male will provide a full-time construction observer to monitor the building demolition aspect of the project and conduct CAMP monitoring.

Phase II (remedial action) work includes excavation (disturbance) of existing fill/soil and native soil; possible groundwater evacuation, characterization, treatment and disposal; possible abandonment of monitoring wells; and possible installation of sheeting and shoring within the remedial excavation. C.T. Male will provide full-time observation during the remedial action. At the point in construction when the environmental related issues have been fully addressed (i.e., impacted fill/soil and native soil removed and off-site, groundwater treatment is stabilized or completed and CAMP monitoring is no longer required, etc.), C.T. Male will no longer provide construction observation.

Periodic observation of the remedial action will be made by a C.T. Male registered professional engineer in order to provide the required certification of the FER. The engineer will supervise the construction observer during the remedial action to document that the project is implemented in accordance with the DEC approved RAWP. The Project Engineer will provide engineering review of remedial related contractor submittals and field changes for the remedial related work.

3.6 Odor Control

If nuisance odors are identified to extend beyond the perimeter of the work area during the fill/soil remedial excavation, measures that may be implemented to abate the nuisance odors include limiting the area of open excavations, limiting the size of soil stockpiles, shrouding open excavations with tarps and other covers, direct load-out of soils to trucks for off-site disposal, use of chemical odorants via spray or misting systems, and use of staff to monitor odors in surrounding neighborhoods.

4.0 HEALTH AND SAFETY PLAN (HASP)

Health and safety procedures to be followed by C.T. Male will be conducted in accordance with a site-specific Health and Safety Plan (HASP). The HASP will be developed prior to the commencement of the remedial action and will be available at the Site during the remedial action.

The contractor completing the remedial work will be required to provide a site specific HASP that is certified by a Certified Industrial Hygienist or equivalent safety professional. The contractor's employees will be required to have read and understood their company's site specific HASP prior to completing the work.

5.0 CONFIRMATION AND DOCUMENTATION SAMPLING

5.1 Post-Remediation Confirmation Sampling

Post-remediation confirmation soil samples will be collected for laboratory analysis after removal of impacted fill/soil and native soil to document that SCGs have been met. The samples will be analyzed for the TCL/TAL Parameters.

Post-remediation verification soil samples will be collected at a frequency of one (1) grab sample per each 900 square feet of excavation floor and one (1) sample from the bottom of each sidewall for every 30 linear feet of sidewall, pursuant to DEC DER-10. The excavation is anticipated to extend to the Site's property boundaries, therefore, verification samples from the remedial excavation sidewalls is necessary to document the level of Site contamination, if any, at the property boundaries. Additionally, one (1) grab sample of native soils will be collected from the bottom, and one (1) grab sample will be collected from the bottom (or from depths that correspond to areas where previous soil impacts were detected) of each sidewall for every 30 linear feet of sidewall, from each excavation that is proposed to extend deeper into native soils (see Figure 2). Each of these excavations is approximately 900 square feet. The bottom and sidewall samples will be collected to verify the successful remediation of contaminants within these deeper excavations.

Quality Assurance/Quality Control (QA/QC) samples at a ratio of 1 set of QA/QC samples per 20 media samples will be collected and analyzed. The QA/QC samples for soils will include a blind duplicate, matrix spike, matrix spike duplicate and equipment (field) blank sample.

The laboratory will provide the analytical results in DEC ASP Category B Data Deliverable format for subsequent third party data validation. Data validation will be performed in accordance with the USEPA National and Regional Validation Guidelines/Procedures to determine the applicable qualifications of the data. The validator will then prepare a Data Usability Summary Report (DUSR) in accordance with DEC guidance.

5.2 Groundwater Treatment Documentation Sampling

Groundwater treatment may be necessary during the remedial action and subsequent new subgrade construction. The documentation and sampling necessary for the groundwater treatment system will be dependent on the requirement of the applicable City and/or County permit for such treatment system. Documentation will likely include influent (prior to treatment) and effluent (post treatment) sampling which will be used to gauge groundwater contaminant levels, document conformance to applicable permit discharge limits, and set forth the frequency of change-out of groundwater treatment media. The proposed sampling frequency and analysis will be presented to DEC for concurrence prior to its implementation.

In lieu of a groundwater treatment system, groundwater staged in temporary holding tanks may be removed and transported for off-site disposal at a permitted TSDF facility.

5.3 Imported Fill Testing

The source of the fill and the analytical data will be provided to the DEC for review and approval prior to importing the fill to the Site. The sampling and analysis requirements for fill imported to the Site are set forth in 5.4(e)10 of DEC DER-10. The following requirements must also be met:

- All materials proposed for import onto the Site will be approved by the certifying remedial engineer, and the DEC, and will be in compliance with provisions in 6 NYCRR Part 375 and DER-10 prior to delivery to the Site.
- Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site.
- All imported soils will meet the backfill quality standards established in 6 NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are listed in Table 375-6.8(a) in Appendix B. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill objectives for this Site, will not be imported onto the Site without prior approval by DEC. Solid waste will not be imported onto the Site.

- Trucks entering the Site with imported soils will be securely covered with tight fitting solid covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.
- Imported fill meeting the backfill quality standards established in 6 NYCRR 375-6.7(d) is currently being imported onto the Cottage Place Gardens (CPG) Phase 3 BCP Site (C360150) as part of this Site's remedy. Pre-approved fill that is not needed for importation onto the CPG Phase 3 Site may be used as backfill for the CPG Phase 4 Parcel Site. Documentation for fill material that is currently approved by the Department for importation onto the CPG Phase 3 Site is included in Appendix D.

6.0 APPLICABLE PERMITS AND RELATED

6.1 ACM Abatement/Building Demolition Work

Prior to starting asbestos abatement, there are two (2) required notifications, one (1) on the State level and one (1) on the Federal level (USEPA). There is a minimum 10 calendar day notification of the ACM abatement activity from the NYSDOL (State), which will be sought by the asbestos abatement contractor. There is a 19 working day notification of demolition and renovation from USEPA, which will be solicited by the asbestos abatement contractor. Each building shall be considered a separate project for the NYSDOL notification requirements.

A Building Permit will be sought from the City of Yonkers by the Owner (or the contractor, as applicable) prior to the initiation of the demolition activities and construction activities.

A Demolition Permit shall be applied for by the General Contractor and obtained from the City of Yonkers. As part of the application, the applicant is required to engage a licensed firm to inspect the structure for the presence of asbestos, which has been completed by C.T. Male. A copy of C.T. Male's Asbestos Survey will be made available to the General Contractor. The applicant shall file a certificate of finding with the Department of Housing and Buildings (DHB) prior to the issuance of a Demolition permit. It shall be unlawful to engage in an asbestos removal project unless and until satisfactory proof of compliance with Article 30 of Labor Law of the State of New York is filed with the DHB and a permit has been obtained from DHB for any asbestos removal.

Copies of, or evidence of the DOL notification, the approved building permit, and the approved demolition permit will be made part of the Final Engineering Report.

6.2 Groundwater Discharge

A dewatering system may be necessary during the remedial action and subsequent new subgrade construction to mitigate groundwater infiltration. Groundwater extracted from the subsurface may require treatment prior to discharge to the closest MS4 combined sewer manhole, which will require a sewer discharge permit. The

requirements of a sewer discharge permit will be sought from the Westchester County DEF; the entity that operates the local sewage treatment plant. DEC will be provided a copy of the approval to discharge to the sewer, when applied for and received from DEF. If the volume of groundwater requiring treatment is anticipated to be low, the impacted groundwater may be pumped to temporary tank(s) and periodically removed from the Site in tanker trucks. The tank liquids will be properly managed and disposed of off-site at an approved TSDF. The wastes will be transported by a 6 NYCRR Part 364 transporter permitted to transport these types of wastes, and disposed of at a facility permitted to accept the waste being disposed of.

7.0 SITE RESTORATION

7.1 General

The Site will be restored upon completion of work in accordance with the plans and specifications for new construction. Imported backfill will be tested in accordance with Section 5.3. Once the Site is backfilled to final grade or at some point prior to when existing Site soils are no longer being disturbed, CAMP monitoring will be discontinued with pre-approval from DEC.

8.0 REPORTING AND CERTIFICATE OF COMPLETION

8.1 Weekly Progress Updates

Progress meeting minutes will be submitted to the DEC Project Manager via email during the remedial action (Phase II only). The progress report will briefly summarize the remedial activities completed at the Site for the previous week. The progress report will be submitted at the beginning of the following week. The format will be in a bulleted style generally highlighting the major items accomplished during the previous week.

8.2 Monthly Progress Reports

Monthly progress reports will report on the progress of the remedial actions accomplished during the reporting period. The reports will be submitted to DEC, with a copy to the NYS Department of Health project manager and pertinent personnel representing the Volunteer. The progress reports will be submitted on or about the 10th day of each month. The progress reports will generally include the following information, where applicable

- Any request for modifications to the approved RAWP, and the status of previously requested modifications.
- A discussion of project progress and significant activities during the reporting period, including the status of any requisite permits.
- A discussion of pending/planned significant project activities during the next two months, unless another time frame is authorized by the Department.
- The approved remedial action schedule and proposed modifications to the remedial action schedule, resulting from new information and/or unforeseen conditions.
- A discussion of any problems or delays in the implementation of the remedial action relative to the work and/or remedial action schedule.

- Proposed actions to correct any identified problems, including how to mitigate any adverse schedule impacts.
- Any additional, pertinent documentation that is available (e.g., photographs) that helps communicate progress/issues facing the project.
- A tabulation of sample results received during the reporting period and submission of a report summarizing the data and presenting conclusions.
- A tabulation of waste classification and/or characterization samples collected including the physical state of the material (solid, liquid, sludge), the volume of material, number of samples collected, analyses performed and results.
- A listing of the types and quantities of contamination generated by the remedial
 action during the reporting period and to date, as well as the name of the
 disposal facilities, transporters' dates of disposal and, if appropriate, the manifest
 numbers of each waste load.

8.3 Final Engineering Report

Upon completion of the remedial action, a Final Engineering Report (FER) will be prepared that summarizes the work completed and results of the confirmation and documentation sampling. Any deviations from the RAWP will also be discussed in the FER. The FER will be prepared in general accordance with the FER requirements promulgated in Section 5.8 of DER-10, as summarized below.

- The final FER submitted to DEC for approval will be prepared, stamped, certified and signed by an individual licensed or otherwise authorized in accordance with article 145 of the Education Law to practice the profession of engineering using the appropriate certification provided in Table 1.5 of DER-10.
- A description of the remedy, as constructed, pursuant to the DEC-approved RAWP.
- A summary of the remedial actions completed, including description of problems encountered and resolved, summary of changes to the RAWP, listing

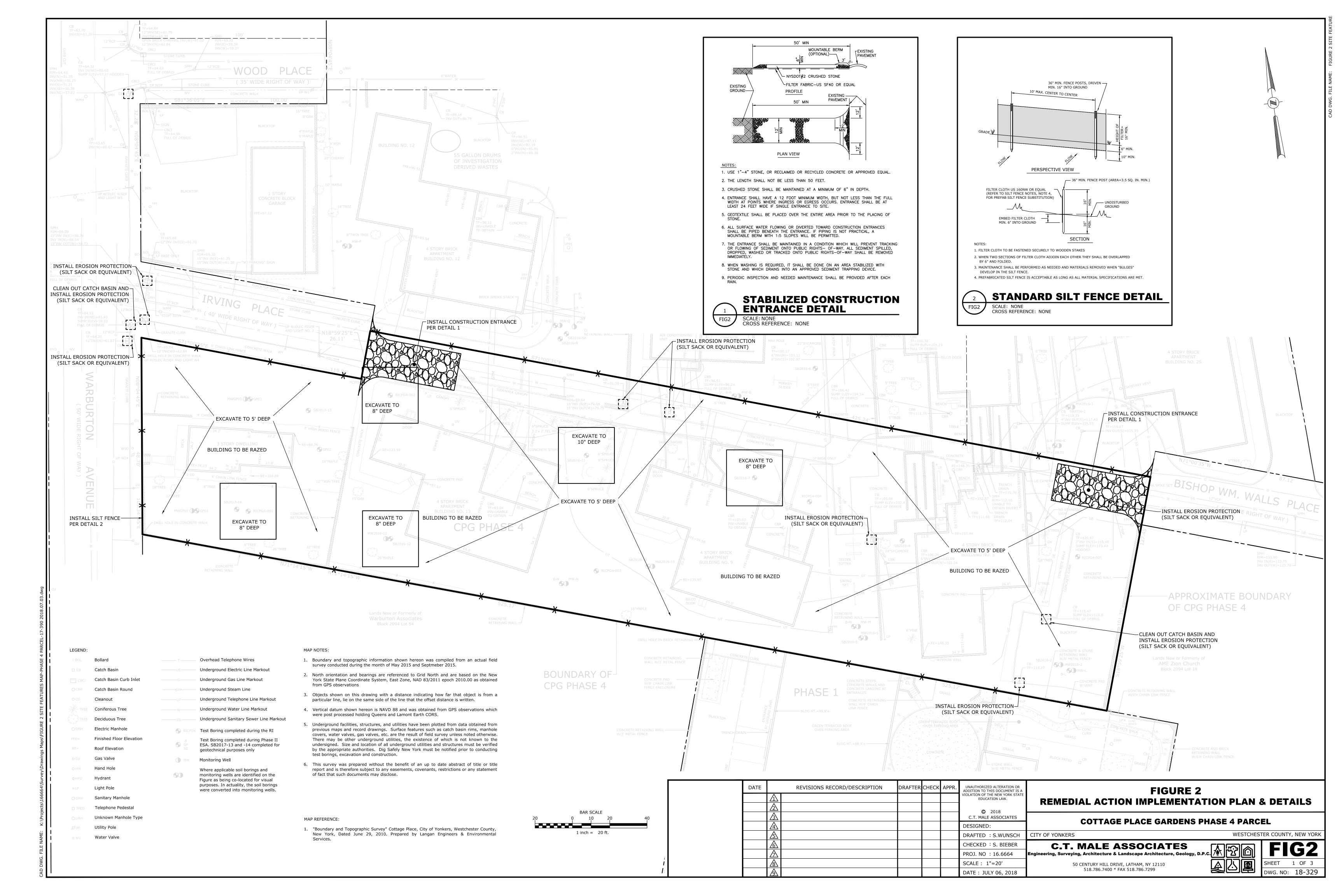
of the waste streams, the quantity of each waste stream, and the disposal location(s) for each waste stream.

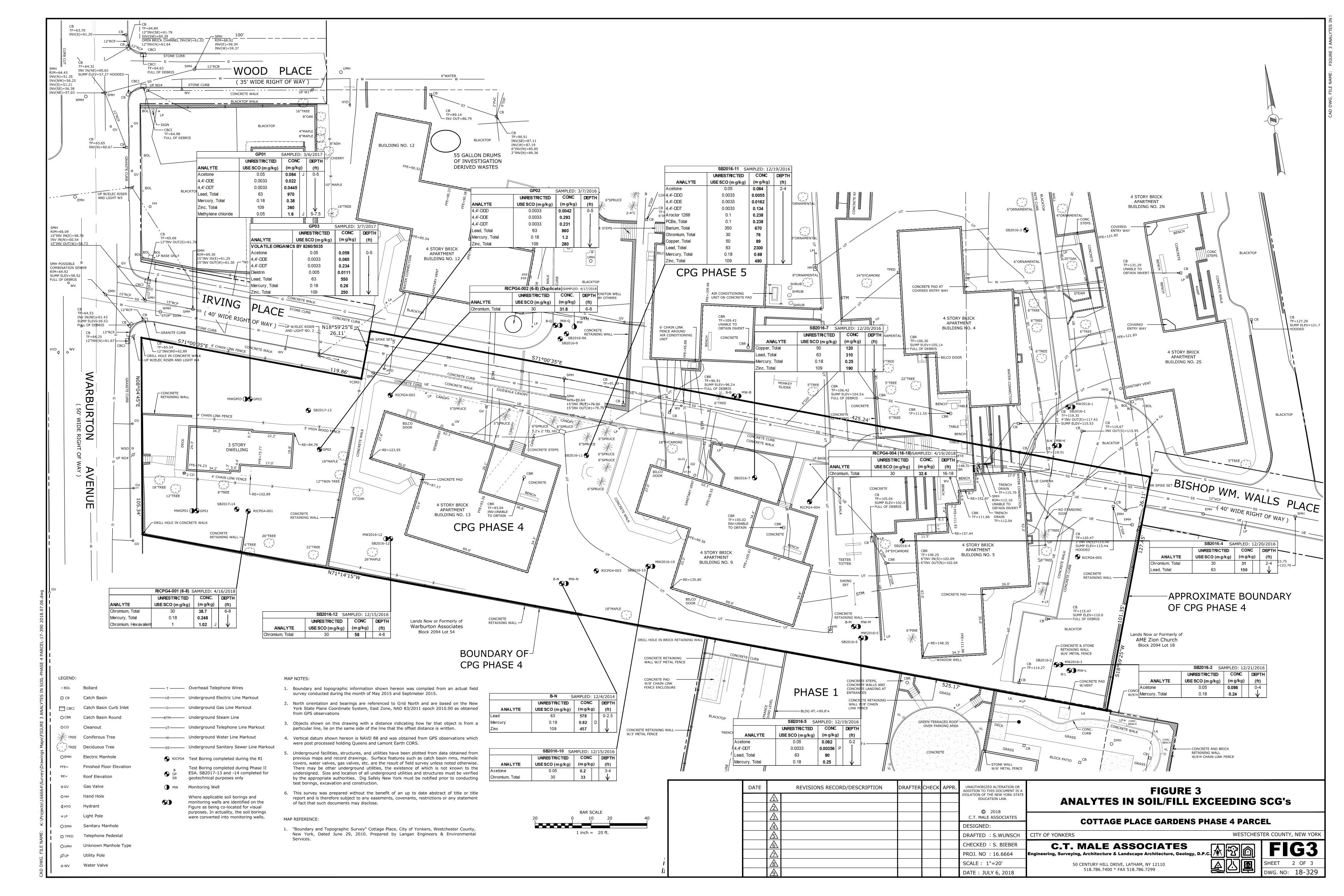
- A list of the remedial action objectives applied to the remedial action.
- Tables and figures containing pre- and post-remedial data keyed appropriately so that completion of the remedial action is documented.
- A detailed description of the applicable areas of remedial action compliance.
- Drawings showing the excavation limits and the excavation end-point soil sampling locations.
- Fully executed manifests documenting off-site transport of the waste materials.
- Analytical results of the excavation end-point soil samples, including laboratory data sheets and the required laboratory data deliverables.

8.4 Certificate of Completion

The Volunteer will be seeking a Certificate of Completion (COC) from DEC upon completion of the remedial action and DEC approval of the FER. It is anticipated that completion of the remedial action and the Volunteer's receipt of the COC will likely occur prior to completion of the entire construction project at the Site. The Volunteer anticipates obtaining a COC by the end of 2019 or early 2020.

APPENDIX A FIGURES


Image Provided By ESRI Street Map



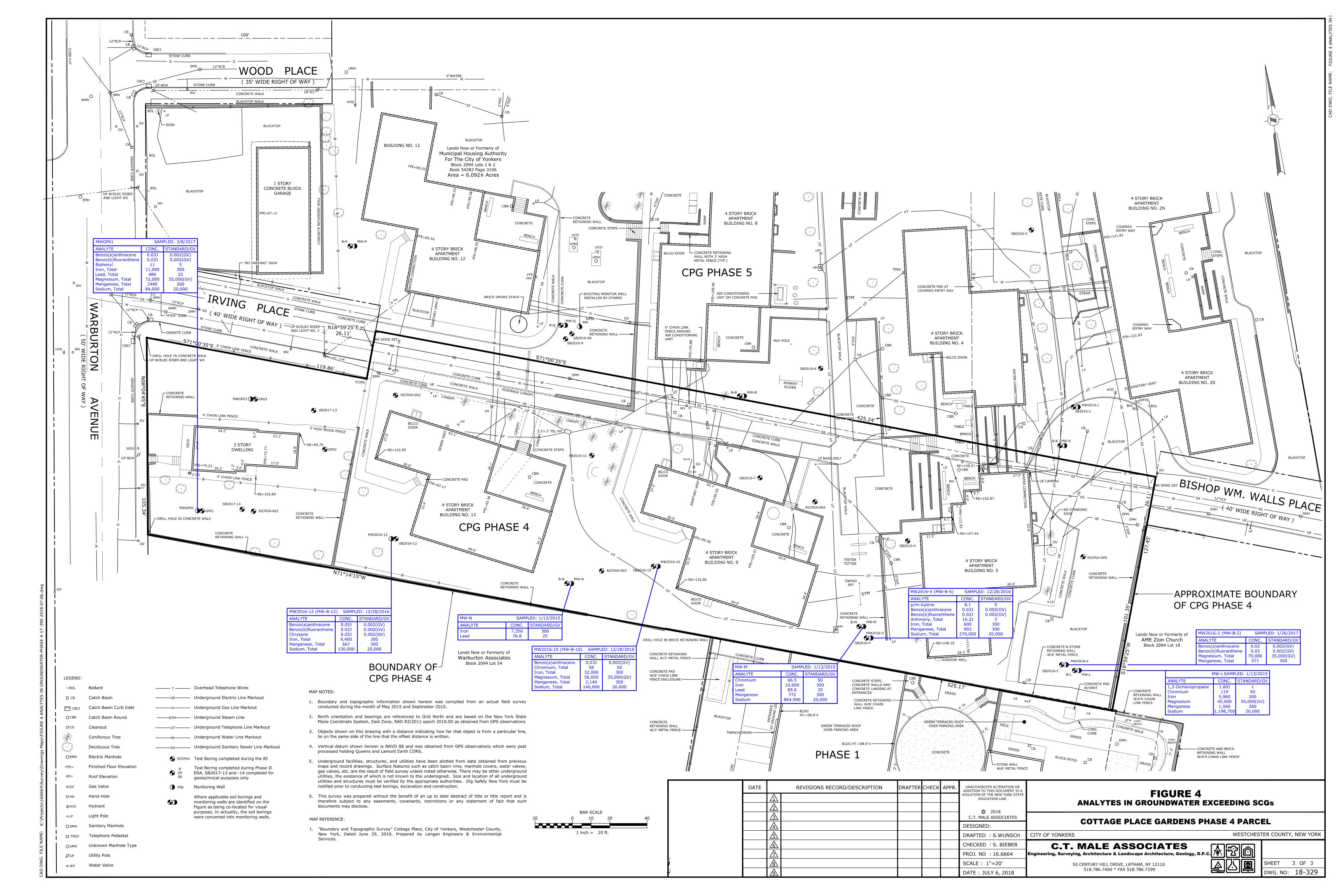


Figure 1

SITE LOCATION MAP COTTAGE PLACE GARDENS PHASE 4 PARCEL SITE CITY OF YONKERS, NEW YORK

APPENDIX B TABLES

TABLE 1: SOIL SAMPLING ANALYTICAL RESULTS SUMMARY 2015 C.T. MALE PHASE II ESA

COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

Sample ID				B-L (0-2.5')	B-M (5'-7.5')	B-N (0-2.5')
Lab Sample Number		6 NYCRR 375	6 NYCRR	F4984-10	F4984-11	F4984-12
Sampling Date		UNRESTRICTED	RESTRICTED RESIDENTIAL	12/4/2014	12/4/2014	12/4/2014
Units	CAS#	USE SCOc ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	mg/kg	mg/kg	mg/kg
Volatile Organic Comp	ounds					
Acetone	67-64-1	0.05	100	0.0131 J	0.0491	0.0242 U
Methylene Chloride	75-09-2	0.05	100	0.0028 J	0.0055	0.0014 J
Semi-Volatile Organic	Compounds					
Anthracene	120-12-7	100	100	2.00 U	0.360 U	0.0990 J
Benzo(a)anthracene	56-55-3	1	1	2.00 U	0.360 U	0.300 J
Benzo(a)pyrene	50-32-8	1	1	2.00 U	0.360 U	0.270 J
Benzo(b)fluoranthene	205-99-2	1	1	2.00 U	0.360 U	0.340 J
Benzo(g,h,i)perylene	191-24-2	100	100	2.00 U	0.360 U	0.170 J
Benzo(k)fluoranthene	207-08-9	0.8	3.9	2.00 U	0.360 U	0.100 J
Chrysene	218-01-9	1	3.9	2.00 U	0.360 U	0.310 J
Dimethylphthalate	131-11-3	NS	NS	2.00 U	0.180 J	0.250 J
Fluoranthene	206-44-0	100	100	2.00 U	0.360 U	0.6
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	2.00 U	0.360 U	0.140 J
Phenanthrene	85-01-8	100	100	2.00 U	0.360 U	0.42
Phenol	108-95-2	0.33	100	2.00 U	0.0840 J	0.110 J
Pyrene	129-00-0	100	100	2.00 U	0.360 U	0.55
PESTICIDES						
4,4-DDE	72-55-9	0.0033	8.9	0.0020 U	0.0019 U	0.0017 J
4,4-DDT	50-29-3	0.0033	7.9	0.0020 U	0.0019 U	0.0016 J
PCBs (None Detected A	Above The Labora	atory's Method Detection	on Limits)			
METALS & CYANIDE						
Aluminum	7429-90-5	NS	NS	12200	7010	7350
Arsenic	7440-38-2	13	16	2	1.54	4.1
Barium	7440-39-3	350	400	57.7	38.8	229
Beryllium	7440-41-7	7.2	72	0.455	0.277 J	0.413
Calcium	7440-70-2	NS	NS	1550	1740	16400

TABLE 1: SOIL SAMPLING ANALYTICAL RESULTS SUMMARY 2015 C.T. MALE PHASE II ESA

COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

Sample ID				B-L (0-2.5')	B-M (5'-7.5')	B-N (0-2.5')
Lab Sample Number		6 NYCRR 375	6 NYCRR	F4984-10	F4984-11	F4984-12
Sampling Date		UNRESTRICTED	RESTRICTED RESIDENTIAL	12/4/2014	12/4/2014	12/4/2014
Units	CAS#	USE SCOc ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	mg/kg	mg/kg	mg/kg
Chromium	7440-47-3	30	180	21.4	22.6	20.8
Cobalt	7440-48-4	NS	NS	9.96	8.73	7.32
Copper	7440-50-8	50	270	9.18	24.5	33.8
Iron	7439-89-6	NS	NS	19500	12600	14700
Lead	7439-92-1	63	400	9.96	3.42	578
Magnesium	7439-95-4	NS	NS	3110	2280	3630
Manganese	7439-96-5	1600	2000	585	375	431
Mercury	7439-97-6	0.18	0.81	0.123	0.0080 J	0.820 D
Nickel	7440-02-0	30	310	17.6	19.9	15.7
Potassium	7440-09-7	NS	NS	602	739	524
Selenium	7782-49-2	3.9	180	0.815 J	0.584 J	0.638 J
Sodium	7440-23-5	NS	NS	289	4070	138
Vanadium	7440-62-2	NS	NS	20	22.2	20
Zinc	7440-66-6	109	10,000	42.6	19.4	457
Cyanide	57-12-5	27	27	0.131 J	0.0750 J	0.402

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375.

NS denotes No Standard.

U indicates the analyte was analyzed for, but not detected.

J indicates the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL), but greater than or equal to the Instrument Detection Limit (IDL).

D indicates the reported value is from a secondary analysis with a dilution factor. The original analysis exceeded the calibration range.

P indicates there is >25% difference for detected concentrations between the two GC columns. The lower of the two values is reported.

⁽²⁾ FD12514 is a replicate (duplicate) of B-P (7.5'-9.2').

<u> </u>						<u> </u>	HESIEK (_				T							
			SAMPLE ID:			32016-2 (B-2	,)16-4 (B-4, S2			SB20)16-5 (B-5, S ²				16-7 (B-7, S	
			LAB ID:			L1641295-10)			L1641295-07				L1641295-02				L1641295-05	5
			COLLECTION DATE:			12/21/2016				12/20/2016				12/19/2016				12/20/2016	
			SAMPLE DEPTH:			0-4'				2'-4'				0-2'				4'-6'	
		6 NYCRR 375	6 NYCRR																
		UNRESTRICTED	RESTRICTED RESIDENTIAL																
ANALYTE	CAS	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	Conc	Q	RL	MDL	Conc	ρ	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Volatile Organic Compounds											•								
2-Butanone	78-93-3	0.12	100	ND		0.0085	0.00023	ND		0.011	0.0003	ND		0.0078	0.00021	ND		0.01	0.00028
Acetone	67-64-1	0.05	100	0.086	П	0.0085	0.00088	ND		0.011	0.0011	0.082		0.0078	0.0008	ND		0.01	0.0011
Benzene	71-43-2	0.06	4.8	0.00025	J	0.00085	0.0001	0.00052	J	0.0011	0.00013	0.00035	J	0.00078	0.00009	0.00036	J	0.001	0.00012
Cyclohexane	110-82-7	NS	NS	ND	П	0.017	0.00012	0.001	J	0.022	0.00016	ND		0.016	0.00011	0.00052	J	0.021	0.00015
Ethylbenzene	100-41-4	1	41	0.00011	J	0.00085	0.00011	0.00036	J	0.0011	0.00014	ND		0.00078	0.0001	0.00021	J	0.001	0.00013
Methyl cyclohexane	108-87-2	NS	NS	ND	П	0.0034	0.00013	0.00085	J	0.0044	0.00017	0.00058	J	0.0031	0.00012	0.00038	J	0.0042	0.00016
o-Xylene	95-47-6	0.26	100	ND		0.0017	0.00029	0.00047	J	0.0022	0.00037	ND		0.0016	0.00026	ND		0.0021	0.00035
p/m-Xylene	179601-23-1	0.26	100	0.00033	J	0.0017	0.0003	0.0012	J	0.0022	0.00039	0.00069	J	0.0016	0.00027	0.00068	J	0.0021	0.00037
Tetrachloroethene	127-18-4	1.3	19	0.00014	J	0.00085	0.00012	0.00024	J	0.0011	0.00015	ND		0.00078	0.00011	ND		0.001	0.00015
Toluene	108-88-3	0.7	100	0.00065	J	0.0013	0.00016	0.0024		0.0016	0.00021	0.0018		0.0012	0.00015	0.0015	J	0.0016	0.0002
Total VOCs				0.08748	-	-	-	0.00704	-	-	-	0.08542	-	-	-	0.00365	-	-	-
Semi-Volatile Organic Compounds	·				• •			1	•				•	!	•		•		•
Acenaphthene	83-32-9	20	100	ND		0.15	0.019	ND		0.16	0.02	ND		0.15	0.02	0.045	J	0.15	0.019
Acenaphthylene	208-96-8	100	100	ND	П	0.15	0.028	ND		0.16	0.03	ND		0.15	0.03	ND		0.15	0.029
Anthracene	120-12-7	100	100	ND		0.11	0.036	ND		0.12	0.038	ND		0.11	0.037	0.091	J	0.11	0.036
Benzo(a)anthracene	56-55-3	1	1	0.064	J	0.11	0.021	ND		0.12	0.022	0.048	J	0.11	0.022	0.24		0.11	0.021
Benzo(a)pyrene	50-32-8	1	1	0.076	J	0.15	0.045	ND		0.16	0.047	0.054	J	0.15	0.047	0.23		0.15	0.045
Benzo(b)fluoranthene	205-99-2	1	1	0.08	J	0.11	0.031	ND		0.12	0.033	0.065	J	0.11	0.032	0.28		0.11	0.031
Benzo(ghi)perylene	191-24-2	100	100	0.051	J	0.15	0.022	ND		0.16	0.023	0.033	J	0.15	0.022	0.14	J	0.15	0.022
Benzo(k)fluoranthene	207-08-9	0.8	3.9	0.035	J	0.11	0.029	ND		0.12	0.031	ND		0.11	0.031	0.1	J	0.11	0.03
Chrysene	218-01-9	1	3.9	0.061	J	0.11	0.019	ND		0.12	0.02	0.049	J	0.11	0.02	0.27		0.11	0.019
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	ND		0.11	0.021	ND		0.12	0.022	ND		0.11	0.022	0.039	J	0.11	0.022
Dibenzofuran	132-64-9	7	59	ND	П	0.18	0.017	ND		0.19	0.018	ND		0.19	0.018	0.024	J	0.19	0.018
Fluoranthene	206-44-0	100	100	0.12		0.11	0.021	ND		0.12	0.022	0.094	J	0.11	0.022	0.53		0.11	0.021
Fluorene	86-73-7	30	100	ND		0.18	0.018	ND		0.19	0.019	ND		0.19	0.019	0.038	J	0.19	0.018
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	0.046	J	0.15	0.026	ND		0.16	0.027	0.037	J	0.15	0.027	0.16		0.15	0.026
Naphthalene	91-20-3	12	100	ND		0.18	0.022	ND		0.19	0.024	ND		0.19	0.023	0.039	J	0.19	0.023
Phenanthrene	85-01-8	100	100	0.06	J	0.11	0.022	ND		0.12	0.024	0.055	J	0.11	0.023	0.5		0.11	0.023
Pyrene	129-00-0	100	100	0.12		0.11	0.018	ND		0.12	0.019	0.082	J	0.11	0.019	0.51		0.11	0.018
Total SVOCs				0.713	-	-	-	-	-	-	-	0.517	-	-	-	3.236	-	-	-
Pesticides																			
4,4'-DDD	72-54-8	0.0033	13	ND		0.00178	0.000634	ND		0.00184	0.000657	ND		0.00185	0.00066	ND		0.00183	0.000654
4,4'-DDE	72-55-9	0.0033	8.9	ND		0.00178	0.000411	ND		0.00184	0.000426	0.0015	J	0.00185	0.000428	ND		0.00183	0.000424
4,4'-DDT	50-29-3	0.0033	7.9	ND		0.00333	0.00143	ND		0.00346	0.00148	0.00356	Р	0.00347	0.00149	0.00266	J	0.00344	0.00147
Dieldrin	60-57-1	0.005	0.2	ND		0.00111	0.000556	ND		0.00115	0.000576	0.00101	J	0.00116	0.000578	ND		0.00114	0.000573
PCBs		-	-				-			-			-	-		_			
Aroclor 1260	11096-82-5	0.1	1	ND		0.037	0.00282	ND		0.0387	0.00295	ND		0.0374	0.00285	0.0164	J	0.0376	0.00286
Aroclor 1268	11100-14-4	0.1	1	ND	П	0.037	0.00536	ND		0.0387	0.00562	ND		0.0374	0.00542	ND		0.0376	0.00545
PCBs, Total	1336-36-3	0.1	1	ND	М	0.037	0.00184	ND		0.0387	0.00192	ND	1	0.0374	0.00185	0.0164	J	0.0376	0.00186

			SAMPLE ID:		S	B2016-2 (B-	2)		SB201	6-4 (B-4, S2	, 2-4')		SB20	16-5 (B-5, S1	1, 0-2')		SB20	16-7 (B-7, S3	, 4-6')
			LAB ID:			L1641295-10)		L	1641295-07	•			L1641295-02	2			L1641295-05	,
			COLLECTION DATE:			12/21/2016				12/20/2016				12/19/2016				12/20/2016	
			SAMPLE DEPTH:			0-4'				2'-4'				0-2'				4'-6'	
		6 NYCRR 375	6 NYCRR																
		UNRESTRICTED	RESTRICTED RESIDENTIAL																
ANALYTE	040	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	0		DI.	MDI	0	Q	D.	MDI	0	O	DI.	MDI	C			MDI
ANALYTE	CAS	USE SCOS (IIIg/kg)	OSE SCOS (Hig/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Metals & Cyanide																			
Aluminum, Total	7429-90-5	NS	NS	7400		8.9	2.4	9800		9	2.4	8100		9.1	2.5	8000		9	2.4
Antimony, Total	7440-36-0	NS	NS	ND	_	4.4	0.34	ND		4.5	0.34	0.73	J	4.6	0.35	ND		4.5	0.34
Arsenic, Total	7440-38-2	13	16	2.4		0.89	0.18	4.2		0.9	0.19	2.4		0.91	0.19	4.8		0.9	0.19
Barium, Total	7440-39-3	350	400	47		0.89	0.15	45		0.9	0.16	60		0.91	0.16	150		0.9	0.16
Beryllium, Total	7440-41-7	7.2	72	0.1	J	0.44	0.03	0.32	J	0.45	0.03	0.31	J	0.46	0.03	0.29	J	0.45	0.03
Cadmium, Total	7440-43-9	2.5	4.3	ND		0.89	0.09	ND		0.9	0.09	0.49	J	0.91	0.09	0.1	J	0.9	0.09
Calcium, Total	7440-70-2	NS	NS	3800	П	8.9	3.1	1900		9	3.2	1300		9.1	3.2	12000		9	3.2
Chromium, Total	7440-47-3	30	180	24		0.89	0.09	31		0.9	0.09	20		0.91	0.09	25		0.9	0.09
Cobalt, Total	7440-48-4	NS	NS	6.6		1.8	0.15	7.5		1.8	0.15	5.4		1.8	0.15	5.5		1.8	0.15
Copper, Total	7440-50-8	50	270	29		0.89	0.23	26		0.9	0.23	38		0.91	0.24	120		0.9	0.23
Iron, Total	7439-89-6	NS	NS	12000		4.4	0.8	15000		4.5	0.81	13000		4.6	0.82	13000		4.5	0.82
Lead, Total	7439-92-1	63	400	47		4.4	0.24	150		4.5	0.24	90		4.6	0.24	310		4.5	0.24
Magnesium, Total	7439-95-4	NS	NS	3500		8.9	1.4	2800		9	1.4	1800		9.1	1.4	2600		9	1.4
Manganese, Total	7439-96-5	1600	2000	360		0.89	0.14	230		0.9	0.14	250		0.91	0.14	280		0.9	0.14
Mercury, Total	7439-97-6	0.18	0.81	0.24		0.07	0.02	0.14		0.09	0.02	0.25		0.08	0.02	0.25		0.09	0.02
Nickel, Total	7440-02-0	30	310	14		2.2	0.22	17	oxdot	2.2	0.22	12		2.3	0.22	16		2.3	0.22
Potassium, Total	7440-09-7	NS	NS	630		220	13	590	\sqcup	220	13	450		230	13	480		230	13
Selenium, Total	7782-49-2	3.9	180	ND	Щ	1.8	0.23	0.23	J	1.8	0.23	ND		1.8	0.24	ND	igsquare	1.8	0.23
Silver, Total	7440-22-4	2	180	ND	\sqcup	0.89	0.25	ND	\sqcup	0.9	0.25	ND		0.91	0.26	ND	\sqcup	0.9	0.26
Sodium, Total	7440-23-5	NS	NS	460	\sqcup	180	2.8	120	J	180	2.8	75	J	180	2.9	160	J	180	2.8
Vanadium, Total	7440-62-2	NS	NS	25		0.89	0.18	30	\sqcup	0.9	0.18	23		0.91	0.18	24	igspace	0.9	0.18
Zinc, Total	7440-66-6	109	10,000	49	Щ	4.4	0.26	43	$oldsymbol{\sqcup}$	4.5	0.26	65		4.6	0.27	190	Щ	4.5	0.26
Cyanide, Total	57-12-5	27	27	ND	1 1	1.1	0.18	ND	1 1	1.1	0.18	ND		1.1	0.19	ND		1.1	0.18

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375.(2) Soil Cleanup Objectives (SCOs) for Restricted Residential Use Sites promulgated at 6 NYCRR Part 375.

⁽³⁾ SB2016-1 identifies the boring location. (B-1, S2, 2-4') is the identification assigned to the sample when collected in the field and reported in the laboratory report. This is the same for all samples listed in this table.

NS denotes No Standard.

ND denotes Non Detect.

Q denotes the laboratory's data qualifier.

RL denotes the laboratory's Reporting Limit.

MDL denotes the laboratory's Method Detection Limit.

J denotes an estimated value. The target analyte concentration is below the RL, but above the MDL.

			SAMPLE ID:		SB	2016-10 (B-	10 S2 3-4')	9	SR201	6-11 (B-11, S	S2 2-4')	9	SR201	6-12 (B-12, \$	33 4-6')
			LAB ID:			L1640986-02	,			L1641295-0	• •	`		L1640986-0	
			COLLECTION DATE:			12/15/2016				12/19/2016				12/15/2016	
			SAMPLE DEPTH:			3'-4'				2'-4'				4'-6'	
	1	6 NYCRR 375	6 NYCRR			J- 4				<u> </u>				7-0	
		UNRESTRICTED	RESTRICTED RESIDENTIAL												
ANALYTE	CAS	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Volatile Organic Compounds	CAS		(g/g/	COLIC	ų į	ILL	INIDL	COIIC	ų ų	IVE.	INIDE	COIIC	· ·	I\L	INDL
2-Butanone	78-93-3	0.12	100	0.0064	ı	0.011	0.00029	ND	T	0.013	0.00036	ND	1	0.0086	0.00023
Acetone	67-64-1	0.05	100	0.0004	H	0.011	0.00023	0.084		0.013	0.00030	0.0063	 	0.0086	0.00023
Benzene	71-43-2	0.06	4.8	0.00041	١,	0.0011	0.00011	0.00061	1	0.0013	0.00014	0.00058	1	0.00086	0.00003
Cyclohexane	110-82-7	NS	NS	ND	۲	0.0011	0.00013	ND	٦	0.026	0.00010	0.0012	ī	0.017	0.0001
Ethylbenzene	100-41-4	1	41	ND	Н	0.0011	0.00010	ND	+	0.0013	0.00017	0.00017	1	0.00086	0.00012
Methyl cyclohexane	108-87-2	NS	NS	0.00093	١,	0.0043	0.00017	0.00072	١,	0.0013	0.00017	0.00017	1	0.0034	0.00011
o-Xylene	95-47-6	0.26	100	0.00093 ND	۲	0.0043	0.00017	0.00072 ND	۲	0.0033	0.0002	0.00099 ND	۲	0.0034	0.00013
p/m-Xylene	179601-23-1	0.26	100	ND	\vdash	0.0022	0.00037	0.0011	-	0.0026	0.00043	0.00051	-	0.0017	0.00029
Tetrachloroethene	127-18-4	1.3	19	ND	\vdash	0.0022	0.00036	ND	1	0.0028	0.00047	0.00031	1	0.0017	0.0003
Toluene	108-88-3	0.7	100	0.0013	١,	0.0011	0.00013	0.0028	+	0.0013	0.00019	0.00018	1	0.0003	0.00012
Total VOCs	100-00-3	0.7	100	0.20904	٦	0.0010	0.00021	0.0020	+	0.002	0.00020	0.0019	1	0.0013	0.00017
Semi-Volatile Organic Compounds				0.20904	-			0.00923	ļ -		<u> </u>	0.01103	ļ -		
Acenaphthene	83-32-9	20	100	ND	П	0.15	0.02	0.03	J	0.18	0.023	ND	ı	0.15	0.02
Acenaphthylene	208-96-8	100	100	ND	Н	0.15	0.02	0.057	J	0.18	0.023	ND ND	\vdash	0.15	0.02
Anthracene	120-12-7	100	100	ND	Н	0.15	0.029	0.057	J	0.18	0.034	ND ND	\vdash	0.15	0.029
Benzo(a)anthracene	56-55-3	1	1	ND	\vdash	0.11	0.037	0.1	-	0.13	0.044	ND ND	1	0.11	0.037
Benzo(a)pyrene	50-32-8	1	1	ND	Н	0.11	0.021	0.33	+	0.13	0.023	ND ND	\vdash	0.11	0.021
Benzo(b)fluoranthene	205-99-2	<u> </u>	1	ND	Н	0.13	0.040	0.33	+	0.13	0.034	ND ND	+	0.13	0.040
Benzo(ghi)perylene	191-24-2	100	100	ND	Н	0.11	0.032	0.32	+	0.13	0.026	ND	+	0.11	0.032
Benzo(k)fluoranthene	207-08-9	0.8	3.9	ND	Н	0.13	0.022	0.13		0.13	0.026	ND	1	0.13	0.022
Chrysene	218-01-9	1	3.9	ND	Н	0.11	0.02	0.33		0.13	0.023	0.02	1.1	0.11	0.02
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	ND	\vdash	0.11	0.022	0.064	.I	0.13	0.026	ND	Ť	0.11	0.022
Dibenzofuran	132-64-9	7	59	ND		0.19	0.018	ND	Ť	0.22	0.021	ND	1	0.19	0.018
Fluoranthene	206-44-0	100	100	ND	Н	0.11	0.022	0.57		0.13	0.026	0.038	1.1	0.11	0.022
Fluorene	86-73-7	30	100	ND	Н	0.19	0.018	0.048		0.22	0.022	0.019	J	0.19	0.018
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	ND		0.15	0.026	0.26	Ť	0.18	0.022	ND	ا ٽ	0.15	0.026
Naphthalene	91-20-3	12	100	ND		0.19	0.023	ND	1	0.22	0.027	ND	1	0.19	0.023
Phenanthrene	85-01-8	100	100	ND	\vdash	0.13	0.023	0.41		0.13	0.027	0.1	.l	0.13	0.023
Pyrene	129-00-0	100	100	ND	\vdash	0.11	0.023	0.52		0.13	0.027	0.046	J	0.11	0.023
Total SVOCs	3 00 0			-		-	-	3.909	1 -	-	-	0.223	<u>-</u>	-	-
Pesticides	1		ı				1	0.000	1	1	1	J.220	1		-
4,4'-DDD	72-54-8	0.0033	13	ND	П	0.00185	0.000659	0.0055		0.0018	0.000643	ND	T T	0.00185	0.000659
4,4'-DDE	72-55-9	0.0033	8.9	ND	\vdash	0.00185	0.000428	0.0162		0.0018	0.00047	ND	1	0.00185	0.000428
4,4'-DDT	50-29-3	0.0033	7.9	ND	\Box	0.00347	0.00149	0.134		0.00338	0.00145	ND	1	0.00347	0.00149
Dieldrin	60-57-1	0.005	0.2	ND	\vdash	0.00116	0.000578	ND		0.00113	0.000563	ND	t	0.00116	0.000578
PCBs	1 00 01 1	0.000	1 3.2	. 15		0.00110	0.000070	.,,,	1	1 0.00110	3.00000	.15	1	0.00110	3.555070
Aroclor 1260	11096-82-5	0.1	1	ND	П	0.0381	0.0029	ND		0.0375	0.00286	ND	1	0.0382	0.00291
Aroclor 1268	11100-14-4	0.1	1	ND	\vdash	0.0381	0.00553	0.238		0.0375	0.00543	ND	t	0.0382	0.00554
PCBs, Total	1336-36-3	0.1	1	ND	\vdash	0.0381	0.00189	0.238		0.0375	0.00543	ND	1	0.0382	0.0009

			SAMPLE ID:	9	B201	6-10 (B-10, S	S2. 3-4')	s	B201	6-11 (B-11, S	2. 2-4')	S	B201	6-12 (B-12, S	33. 4-6')
			LAB ID:			L1640986-02	. ,			L1641295-01	. ,				. ,
			COLLECTION DATE:			12/15/2016	_		'	12/19/2016				12/15/2016	_
			SAMPLE DEPTH:			3'-4'				2'-4'				4'-6'	
		6 NYCRR 375	6 NYCRR												
		UNRESTRICTED	RESTRICTED RESIDENTIAL												
ANALYTE	CAS	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Metals & Cyanide												•			
Aluminum, Total	7429-90-5	NS	NS	8300		8.9	2.4	6400		8.9	2.4	9500		9.3	2.5
Antimony, Total	7440-36-0	NS	NS	ND		4.4	0.34	0.98	J	4.4	0.34	ND		4.6	0.35
Arsenic, Total	7440-38-2	13	16	2.5		0.89	0.18	6.9		0.89	0.18	1.7		0.93	0.19
Barium, Total	7440-39-3	350	400	46		0.89	0.15	670		0.89	0.15	38		0.93	0.16
Beryllium, Total	7440-41-7	7.2	72	0.53		0.44	0.03	0.3	J	0.44	0.03	0.31	J	0.46	0.03
Cadmium, Total	7440-43-9	2.5	4.3	ND		0.89	0.09	0.73	J	0.89	0.09	ND		0.93	0.09
Calcium, Total	7440-70-2	NS	NS	1400		8.9	3.1	34000		8.9	3.1	2200		9.3	3.2
Chromium, Total	7440-47-3	30	180	33		0.89	0.09	76		0.89	0.09	58		0.93	0.09
Cobalt, Total	7440-48-4	NS	NS	8.9		1.8	0.15	2.7		1.8	0.15	5.9		1.9	0.15
Copper, Total	7440-50-8	50	270	8.9		0.89	0.23	89		0.89	0.23	13		0.93	0.24
Iron, Total	7439-89-6	NS	NS	18000		4.4	0.8	14000		4.4	0.8	16000		4.6	0.84
Lead, Total	7439-92-1	63	400	17		4.4	0.24	2300		4.4	0.24	32		4.6	0.25
Magnesium, Total	7439-95-4	NS	NS	1700		8.9	1.4	8700		8.9	1.4	2900		9.3	1.4
Manganese, Total	7439-96-5	1600	2000	550		0.89	0.14	260		0.89	0.14	180		0.93	0.15
Mercury, Total	7439-97-6	0.18	0.81	0.05	J	0.07	0.02	0.68		0.09	0.02	0.04	J	0.07	0.02
Nickel, Total	7440-02-0	30	310	9.6		2.2	0.21	5.8		2.2	0.22	11		2.3	0.22
Potassium, Total	7440-09-7	NS	NS	540		220	13	560		220	13	270		230	13
Selenium, Total	7782-49-2	3.9	180	ND		1.8	0.23	ND		1.8	0.23	ND		1.9	0.24
Silver, Total	7440-22-4	2	180	ND		0.89	0.25	0.25	J	0.89	0.25	ND		0.93	0.26
Sodium, Total	7440-23-5	NS	NS	54	J	180	2.8	230		180	2.8	140	J	190	2.9
Vanadium, Total	7440-62-2	NS	NS	26		0.89	0.18	28	Ш	0.89	0.18	37	Щ	0.93	0.19
Zinc, Total	7440-66-6	109	10,000	27		4.4	0.26	480	Ш	4.4	0.26	36		4.6	0.27
Cyanide, Total	57-12-5	27	27	ND		1.1	0.19	0.34	J	1.1	0.18	ND		1.1	0.18

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375.(2) Soil Cleanup Objectives (SCOs) for Restricted Residential Use Sites promulgated at 6 NYCRR Part 375.

⁽³⁾ SB2016-1 identifies the boring location. (B-1, S2, 2-4') is the identification assigned to the sample when collected in the field and reported in the laboratory report. This is the same for all samples listed in this table.

NS denotes No Standard.

ND denotes Non Detect.

Q denotes the laboratory's data qualifier.

RL denotes the laboratory's Reporting Limit.

MDL denotes the laboratory's Method Detection Limit.

J denotes an estimated value. The target analyte concentration is below the RL, but above the MDL. \square

			SAMPLE ID:			GP01 0-5				GP01 5-7.5		1		GP02 0-5		1		GP03_0-5	
			LAB ID:			L1706909-01	1			L1706909-02				L1706909-03	3			L1706909-04	
			COLLECTION DATE:			3/6/2017	1			3/6/2017	•			3/7/2017	<u>, </u>			3/7/2017	
			SAMPLE DEPTH (FT.):			0-5				5-7.5				0-5				0-5	
		6 NYCRR 375	6 NYCRR			0-3				3-7.3				0-3				0-3	
		UNRESTRICTED	RESTRICTED RESIDENTIAL			SOIL				SOIL				SOIL				SOIL	
ANALYTE	CAS	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	Como	Q	RL	MDL	Como	Q	RL	MDL	Como	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY 8260/5035	CAS	USE SCOS (Ilig/kg)	USE SCOS (Hig/kg)	Conc	Q	KL .	MIDL	Conc	Q	KL	IVIDL	Conc	Q	KL	MDL	Conc	Q	KL	IVIDL
Acetone	67-64-1	0.05	100	0.084	Li	0.37	0.038	ND		12	1.2	0.0024	.1	0.0083	0.00086	0.059		0.0096	0.001
Ethylbenzene	100-41-4	1	41	ND	Ť	0.037	0.0047	0.26	.1	1.2	0.15	ND		0.00083	0.0001	ND		0.00096	0.00012
Isopropylbenzene	98-82-8	No Standard	No Standard	ND		0.037	0.0038	0.44	.1	1.2	0.12	ND		0.00083	0.00009	ND		0.00096	0.00012
Methyl Acetate	79-20-9	No Standard	No Standard	0.96		0.74	0.01	ND		23	0.31	ND		0.017	0.00022	ND		0.019	0.00026
Methylene chloride	75-09-2	0.05	100	ND		0.37	0.041	1.6		12	1.3	ND		0.0083	0.00092	ND		0.0096	0.0011
Total VOCs	13-03-2	0.00	100	1.044	1_	0.57	0.041	2.3	-	- 12	1.0	0.0024		0.0000	0.00032	0.059	-	-	0.0011
SEMIVOLATILE ORGANICS BY GC/MS				1.044				2.0				0.0024			<u>I</u>	0.000			
2-Methylnaphthalene	91-57-6	No Standard	No Standard	0.06	J	0.24	0.024	17		5.4	0.55	ND		0.23	0.023	ND		0.22	0.022
Acenaphthylene	208-96-8	100	100	0.05	J	0.16	0.03	ND		3.6	0.7	ND		0.15	0.03	ND		0.15	0.028
Acetophenone	98-86-2	No Standard	No Standard	0.027	J	0.2	0.024	ND		4.5	0.56	ND		0.19	0.024	ND		0.18	0.023
Anthracene	120-12-7	100	100	0.044	J	0.12	0.038	1	J	2.7	0.88	0.039	J	0.12	0.038	ND		0.11	0.036
Benzaldehyde	100-52-7	No Standard	No Standard	0.11	J	0.26	0.053	ND	Ť	6	1.2	ND	_	0.26	0.052	ND		0.24	0.05
Benzo(a)anthracene	56-55-3	1	1	0.19	Ť	0.12	0.022	ND	\dagger	2.7	0.51	0.11	J.	0.12	0.022	0.053	J	0.11	0.021
Benzo(a)pyrene	50-32-8	1	1	0.21		0.16	0.048	ND		3.6	1.1	0.1	J	0.15	0.047	0.056	J	0.15	0.045
Benzo(b)fluoranthene	205-99-2	1	1	0.35	1	0.12	0.033	ND	\dagger	2.7	0.76	0.13		0.12	0.033	0.082	J	0.11	0.031
Benzo(ghi)perylene	191-24-2	100	100	0.17	1	0.16	0.023	ND	\dagger	3.6	0.53	0.06	J.	0.15	0.023	0.046	J	0.15	0.022
Benzo(k)fluoranthene	207-08-9	0.8	3.9	0.11	J	0.12	0.032	ND		2.7	0.73	0.048	J	0.12	0.031	ND	Ť	0.11	0.03
Biphenyl	92-52-4	No Standard	No Standard	ND	Ť	0.45	0.046	7	J	10	1	ND	_	0.44	0.045	ND		0.42	0.043
Bis(2-ethylhexyl)phthalate	117-81-7	No Standard	No Standard	0.2		0.2	0.068	ND	Ť	4.5	1.6	0.1	J	0.19	0.067	0.19		0.18	0.064
Butyl benzyl phthalate	85-68-7	No Standard	No Standard	0.13	J	0.2	0.05	ND		4.5	1.1	ND	_	0.19	0.049	ND		0.18	0.046
Carbazole	86-74-8	No Standard	No Standard	0.022	J	0.2	0.019	ND	\dagger	4.5	0.44	ND		0.19	0.019	ND		0.18	0.018
Chrysene	218-01-9	1	3.9	0.22	Ť	0.12	0.02	ND		2.7	0.47	0.098	J.	0.12	0.02	0.059	J	0.11	0.019
Dibenzo(a,h)anthracene	53-70-3	0.33	0.33	0.042	J	0.12	0.023	ND	\dagger	2.7	0.52	ND	Ŭ	0.12	0.022	ND	Ť	0.11	0.021
Fluoranthene	206-44-0	100	100	0.4	Ť	0.12	0.023	ND	\dagger	2.7	0.52	0.21		0.12	0.022	0.081	J	0.11	0.021
Fluorene	86-73-7	30	100	0.021	J.	0.2	0.019	ND		4.5	0.44	ND		0.19	0.019	ND	Ť	0.18	0.018
Indeno(1,2,3-cd)pyrene	193-39-5	0.5	0.5	0.17	Ť	0.16	0.027	ND		3.6	0.63	0.066	.1	0.15	0.027	0.045	.I	0.15	0.026
Phenanthrene	85-01-8	100	100	0.16		0.12	0.024	14		2.7	0.55	0.15	Ť	0.12	0.024	0.035	J.J	0.11	0.022
Pyrene	129-00-0	100	100	0.37	1	0.12	0.02	0.62	J	2.7	0.45	0.18		0.12	0.019	0.081	J	0.11	0.018
Total SVOCs	120 00 0	100	100	3.056	 		-	39.62	-	-	-	1.291	-	-	-	0.728	-	-	-
ORGANOCHLORINE PESTICIDES BY GC			L	0.000	1			00.02				1.201				0.720			
4,4'-DDD	72-54-8	0.0033	13	0.000927	J	0.00186	0.000664	NA		-	-	0.00415		0.00182	0.000647	0.00203		0.00177	0.000631
4,4'-DDE	72-55-9	0.0033	8.9	0.022		0.00186	0.000431	NA		_	-	0.293		0.00908	0.0021	0.065		0.00177	0.000409
4,4'-DDT	50-29-3	0.0033	7.9	0.0445		0.00349	0.0015	NA		_	-	0.231		0.017	0.0073	0.234		0.0166	0.00711
Chlordane	57-74-9	No Standard	No Standard	ND		0.0151	0.00617	NA		-	-	0.037	Р	0.0148	0.00601	0.105	Р	0.0144	0.00586
cis-Chlordane	5103-71-9	0.094	4.2	ND	1	0.00233	0.000649	NA		-	-	0.00192	J	0.00227	0.000632	0.00677	PI	0.00221	0.000616
Dieldrin	60-57-1	0.005	0.2	ND	1	0.00116	0.000582	NA		-	-	ND		0.00113	0.000567	0.0111		0.0011	0.000553
Heptachlor epoxide	1024-57-3	No Standard	No Standard	ND		0.00349	0.00105	NA		-	-	0.00293	J	0.0034	0.00102	ND		0.00332	0.000995
trans-Chlordane	5103-74-2	No Standard	No Standard	0.00176	J	0.00233	0.000615	NA		-	-	0.00248	PI	0.00227	0.000599	0.00896	PI	0.00221	0.000584
POLYCHLORINATED BIPHENYLS BY GC																			
Aroclor 1254	11097-69-1	0.1	1	0.0338	J	0.0399	0.00328	NA		-	-	ND		0.0386	0.00317	ND		0.0375	0.00309
Aroclor 1260	11096-82-5	0.1	1	0.0445		0.0399	0.00304	NA		-	-	ND		0.0386	0.00294	0.0289	J	0.0375	0.00286
PCBs, Total	1336-36-3	0.1	1	0.0783	J	0.0399	0.00198	NA		-	-	ND		0.0386	0.00191	0.0289	J	0.0375	0.00186

			SAMPLE ID:			GP01_0-5				GP01_5-7.5				GP02_0-5				GP03_0-5	
			LAB ID:			L1706909-01			L	L1706909-02				L1706909-03	3			_1706909-04	Į.
			COLLECTION DATE:			3/6/2017				3/6/2017				3/7/2017				3/7/2017	
			SAMPLE DEPTH (FT.):			0-5				5-7.5				0-5				0-5	
		6 NYCRR 375	6 NYCRR																
		UNRESTRICTED	RESTRICTED RESIDENTIAL			SOIL				SOIL				SOIL				SOIL	
ANALYTE	CAS	USE SCOs ⁽¹⁾ (mg/kg)	USE SCOs ⁽²⁾ (mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
TOTAL METALS																			
Aluminum, Total	7429-90-5	No Standard	No Standard	5200		9.3	2.5	NA		-	-	6400		9.1	2.5	5400		8.7	2.4
Antimony, Total	7440-36-0	No Standard	No Standard	0.89	J	4.6	0.35	NA		-	-	1.5	J	4.6	0.35	1.8	J	4.4	0.33
Arsenic, Total	7440-38-2	13	16	7.2		0.93	0.19	NA		-	-	7.4		0.91	0.19	3.8		0.87	0.18
Barium, Total	7440-39-3	350	400	220		0.93	0.16	NA		-	-	250		0.91	0.16	200		0.87	0.15
Beryllium, Total	7440-41-7	7.2	72	0.17	J	0.46	0.03	NA		-	-	0.31	J	0.46	0.03	0.2	J	0.44	0.03
Cadmium, Total	7440-43-9	2.5	4.3	0.56	J	0.93	0.09	NA		-	-	0.5	J	0.91	0.09	0.44	J	0.87	0.09
Calcium, Total	7440-70-2	No Standard	No Standard	12,000		9.3	3.2	NA		-	-	1600		9.1	3.2	56,000		8.7	3
Chromium, Total	7440-47-3	30	180	18		0.93	0.09	NA		-	-	25		0.91	0.09	13		0.87	0.08
Cobalt, Total	7440-48-4	No Standard	No Standard	4.1		1.8	0.15	NA		-	-	4.6		1.8	0.15	2.6		1.7	0.14
Copper, Total	7440-50-8	50	270	27		0.93	0.24	NA		-	•	39		0.91	0.24	16		0.87	0.22
Cyanide, Total	57-12-5	27	27	0.54	J	1.1	0.19	NA		-		0.2	J	1.1	0.18	0.3	J	1.1	0.18
Iron, Total	7439-89-6	No Standard	No Standard	11000		4.6	0.84	NA		-	-	11,000		4.6	0.82	10,000		4.4	0.79
Lead, Total	7439-92-1	63	400	970		4.6	0.25	NA		-	ı	860		4.6	0.24	550		4.4	0.23
Magnesium, Total	7439-95-4	No Standard	No Standard	2800		9.3	1.4	NA		-	-	1600		9.1	1.4	14000		8.7	1.3
Manganese, Total	7439-96-5	1600	2000	230		0.93	0.15	NA		-	•	310		0.91	0.14	180		0.87	0.14
Mercury, Total	7439-97-6	0.18	0.81	0.38		0.08	0.02	NA		-	-	1.2		0.07	0.02	0.26		0.07	0.02
Nickel, Total	7440-02-0	30	310	11		2.3	0.22	NA		-	-	11		2.3	0.22	6.7		2.2	0.21
Potassium, Total	7440-09-7	No Standard	No Standard	580		230	13	NA		-	-	440		230	13	650		220	12
Selenium, Total	7782-49-2	3.9	180	0.68	J	1.8	0.24	NA		-	-	0.51	J	1.8	0.24	0.71	J	1.7	0.22
Sodium, Total	7440-23-5	No Standard	No Standard	200		180	2.9	NA		-	-	76	J	180	2.9	310		170	2.7
Vanadium, Total	7440-62-2	No Standard	No Standard	20		0.93	0.19	NA		-	-	23		0.91	0.18	15		0.87	0.18
Zinc, Total	7440-66-6	109	10,000	360		4.6	0.27	NA		-	-	280		4.6	0.27	250		4.4	0.26

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375.

⁽²⁾ Soil Cleanup Objectives (SCOs) for Restricted Residential Use Sites promulgated at 6 NYCRR Part 375.

NS denotes No Standard.

ND denotes Non Detect.

NA denotes that the analyte was not requested to be analyzed by the laboratory

Q denotes the laboratory's data qualifier.

RL denotes the laboratory's Reporting Limit.

MDL denotes the laboratory's Method Detection Limit.

J denotes an estimated value. The target analyte concentration is below the RL, but above the MDL.□

P denotes that the relative percent difference (RPD) between the results of the two columns exceeds the method-specific criteria.

PI denotes that the lower value for the two columns has been reported due to obvious interference.

TABLE 4: RI SOIL SAMPLING ANALYTICAL RESULTS SUMMARY COTTAGE PLACE GARDENS PHASE 4 PARCEL SITE CITY OF YONKERS, WESTCHESTER COUNTY

							CITTOF	IONE	NEKO, WE	ESTCHEST	EK COUI	VII										
		SAMPLE ID:		RICI	PG4-001 (6	6-8)		RICP	G4-001 (16	-18)		RICP	G4-001 (18	-20)		RIC	PG4-002 (6	6-8)	RICPG4-I	D01 (D	up. of RICP	G4-002 (6-8)
		LAB ID:		L1	1813196-01	1		L	1813196-02	2		L	1813196-03	3		L	1813196-0	4		L	.1813196-07	1
	COLLE	ECTION DATE:			4/16/2018				4/17/2018				4/17/2018				4/17/2018				4/17/2018	
	SAMPLE	E DEPTH (FT.):			6-8				16-18				18-20				6-8				6-8	
	SAN	MPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾																				
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY 8260/	5035						•												•			
Acetone	67-64-1	0.05	ND		0.0088	0.002	ND		0.0076	0.0017	0.0017	J	0.0075	0.0017	ND		0.0091	0.0021	ND		0.0083	0.0019
Ethylbenzene	100-41-4	1	ND		0.00088	0.00015	ND		0.00076	0.00013	ND		0.00075	0.00013	ND		0.00091	0.00015	ND		0.00083	0.00014
p/m-Xylene Total VOCs	179601-23-1	0.26 NA	ND -		0.0018	0.00031	ND -		0.0015	0.00026	ND 0.0017		0.0015	0.00026	ND -		0.0018	0.00032	ND -		0.0017	0.00029
VOLATILE ORGANICS BY 8260/	5035-TIC	INA					<u> </u>				0.0017											
Propene	000115-07-1	NA	-		-	-			-	- 1	-		-	-	-		-	-	· -	-	-	-
Unknown		NA	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-
Total TIC Compounds		NA	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY																						
Benzo(a)anthracene	56-55-3	1	0.026	J	0.12	0.022	ND		0.11	0.021	ND		0.11	0.02	ND		0.11	0.021	ND		0.11	0.02
Benzo(b)fluoranthene	205-99-2 117-81-7	1 NA	0.039 ND	J	0.12	0.034	ND ND		0.11	0.031 0.063	ND ND		0.11	0.03 0.062	ND ND		0.11	0.031	ND ND		0.11	0.031
Bis(2-ethylhexyl)phthalate Caprolactam	105-60-2	NA NA	ND ND		0.2	0.069	ND ND		0.18	0.063	ND ND		0.18	0.062	ND ND		0.18	0.056	ND ND		0.18	0.056
Chrysene	218-01-9	1	0.025	J	0.12	0.021	ND		0.11	0.019	ND		0.11	0.019	ND		0.11	0.019	ND		0.11	0.019
Fluoranthene	206-44-0	100	0.033	J	0.12	0.023	ND		0.11	0.021	ND		0.11	0.021	ND		0.11	0.021	ND		0.11	0.021
Pyrene	129-00-0	100	0.031	J	0.12	0.02	ND		0.11	0.018	ND		0.11	0.018	ND		0.11	0.018	ND		0.11	0.018
Total SVOCs	00/40 710	NA	0.154	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY	GC/MS-TIC	NIA	1																			
Aldol Condensates Unknown		NA NA	-		-	-	-		-		-		-	-	-		-		-	-	-	-
Unknown		NA NA					-							-					-			
Unknown		NA	-	-	-	-	-		-	-	0.249	J	0	0	-	-	-	-	-	-	-	-
Unknown		NA	-		-	-	-		-	-	-		-	-	-		-	-	-	-	-	-
Unknown		NA	-		-	-	-		-	-	-		-	-	-		-	-	-		-	-
Unknown Amide Unknown Phenol		NA NA	0.816	J	0	-	-		-	-	-		-	-	0.153	J	0	0	0.314	J	0	-
Total TIC Compounds		NA NA	0.816	.I	0	0	-			-	0.249	.I	0	0	0.153	.1	0	0	0.314	- J	0	0
ORGANOCHLORINE PESTICIDE	S BY GC (Non			aborato	rv's Meto		Limit)				0.2.0			-	01100				0.0			
POLYCHLORINATED BIPHENYL		l			,																	
Aroclor 1254	11097-69-1	0.1	0.00759	J	0.0385	0.00314	ND		0.0351	0.00286	ND		0.0355	0.0029	ND		0.0368	0.003	ND		0.037	0.00302
Aroclor 1260	11096-82-5	0.1	0.00748	J	0.0385	0.00402	ND		0.0351	0.00366	ND		0.0355	0.0037	ND		0.0368	0.00384	ND		0.037	0.00386
PCBs, Total	1336-36-3	0.1	0.0151	J	0.0385	0.00273	ND		0.0351	0.00248	ND		0.0355	0.00251	ND		0.0368	0.00261	ND		0.037	0.00262
TOTAL METALS	7400 00 5		05.40		0.44	0.55	0040		0.00	0.00	10.10		0.00	0.00	100		0.00	0.40	0070		0.50	0.00
Aluminum, Total Antimony, Total	7429-90-5 7440-36-0	NA NA	6540 ND		9.44 4.72	2.55 0.359	3610 ND		8.62 4.31	2.33 0.328	4040 ND		8.62 4.31	2.33 0.328	128 ND		8.99 4.5	2.43 0.342	8670 ND		8.58 4.29	2.32 0.326
Arsenic, Total	7440-38-2	13	1.7		0.944	0.339	1.16		0.862	0.326	0.871		0.862	0.326	0.863	J	0.899	0.342	1.48		0.858	0.326
Barium, Total	7440-39-3	350	54.1		0.944	0.164	27.6		0.862	0.15	31.4		0.862	0.15	0.8	J	0.899	0.156	42.2		0.858	0.149
Beryllium, Total	7440-41-7	7.2	ND		0.472	0.031	0.043	J	0.431	0.029	0.06	J	0.431	0.028	ND		0.45	0.03	0.129	J	0.429	0.028
Cadmium, Total	7440-43-9	2.5	0.416	J	0.944	0.093	ND		0.862	0.085	ND		0.862	0.085	ND		0.899	0.088	ND		0.858	0.084
Calcium, Total	7440-70-2	NA 20	1410		9.44	3.3	10200		8.62	3.02	9640		8.62	3.02	35.1		8.99	3.15	1420		8.58	3
Chromium, Total	7440-47-3 7440-48-4	30 NA	38.7 5.75		0.944 1.89	0.091 0.157	9.25		0.862	0.083	11.9		0.862 1.72	0.083	1.44 ND		0.899 1.8	0.086	31.8 7.69		0.858	0.082
Cobalt, Total Copper, Total	7440-48-4	NA 50	22.4		0.944	0.157	3.63 14.8		1.72 0.862	0.143 0.222	4.4 18.8		0.862	0.143 0.222	0.459	,I	0.899	0.149 0.232	26.1		1.72 0.858	0.142 0.221
Iron, Total	7439-89-6	NA	10400		4.72	0.853	6390		4.31	0.779	7170		4.31	0.778	1110	3	4.5	0.812	12200		4.29	0.775
Lead, Total	7439-92-1	63	34.4		4.72	0.253	2.16	J	4.31	0.231	2.2	J	4.31	0.231	0.827	J	4.5	0.241	3	J	4.29	0.23
Magnesium, Total	7439-95-4	NA	1910		9.44	1.45	4030		8.62	1.33	3500		8.62	1.33	23.7		8.99	1.38	3340		8.58	1.32
Manganese, Total	7439-96-5	1600	288		0.944	0.15	162		0.862	0.137	192 ND		0.862	0.137	3.11		0.899	0.143	287 ND		0.858	0.136
Mercury, Total Nickel, Total	7439-97-6 7440-02-0	0.18 30	0.248 15.5		0.076 2.36	0.016 0.228	ND 9.15		0.07 2.16	0.015 0.209	ND 11.7		0.07 2.16	0.015 0.209	ND ND		0.071 2.25	0.015 0.218	ND 21.1		0.071 2.14	0.015 0.208
Potassium, Total	7440-02-0	NA	455		2.36	13.6	356		216	12.4	476		2.16	12.4	ND ND		2.25	13	622		2.14	12.4
Selenium, Total	7782-49-2	3.9	0.368	J	1.89	0.244	ND		1.72	0.222	ND		1.72	0.222	ND		1.8	0.232	ND		1.72	0.221
Sodium, Total	7440-23-5	NA	121	J	189	2.98	316		172	2.72	331		172	2.72	3.09	J	180	2.83	205		172	2.7
Vanadium, Total	7440-62-2	NA	20.8		0.944	0.192	13.3		0.862	0.175	16.7		0.862	0.175	0.782	J	0.899	0.182	27.2		0.858	0.174
Zinc, Total	7440-66-6	109	33.5		4.72	0.277	10.5		4.31	0.253	12		4.31	0.253	1.5	J	4.5	0.264	19.2		4.29	0.251
GENERAL CHEMISTRY	10540.00.0	<u> </u>	4.55			0.5-0	115		0.00=	0.7-0	115		0.00	0.450			0.000	0.10			0.000	0.150
Chromium, Hexavalent	18540-29-9	1	1.02	J	4.87	0.973	ND 00.4		0.895	0.179	ND		0.88	0.176	0.745	J	0.903	0.18	0.748	J	0.893	0.178
Solids, Total (1) Soil Cleanup Objectives (SCOs) fo	NONE	NA Citas promulas	82.2	ODD D	0.1	NA	89.4		0.1	NA	90.9		0.1	NA	88.6		0.1	NA	89.6		0.1	NA

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375 NA denotes Not Applicable

TABLE 4: RI SOIL SAMPLING ANALYTICAL RESULTS SUMMARY COTTAGE PLACE GARDENS PHASE 4 PARCEL SITE CITY OF YONKERS, WESTCHESTER COUNTY

							I OIII	VLIVO, VVI	ESTCHEST	LIK COOI	•••										
		SAMPLE ID:		RICPG4-002 (15	i-17)		RICP	G4-002 (19	-21)		RIC	PG4-003 (8-	-10)		RICP	PG4-003 (14	l-16)		RICP	G4-003 (21	-23)
		LAB ID:		L1813196-05	5		L	1813196-06	3		L	.1813196-08	3		L	.1813196-09	9		L	1813196-10	,
	COLLE	ECTION DATE:		4/17/2018				4/17/2018				4/18/2018				4/18/2018				4/18/2018	
	SAMPLE	E DEPTH (FT.):		15-17				19-21				8-10				14-16				21-23	
	SAN	MPLE MATRIX:		SOIL				SOIL				SOIL				SOIL				SOIL	-
	1	NY-UNRES ⁽¹⁾																			
ANALYTE	CAS	(mg/kg)	Conc	Q RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY 8260		(9/1.9/	00110	4 112		00110				Conc		11.2		Conc		11.2		000			
Acetone	67-64-1	0.05	ND	0.0089	0.002	ND		0.0078	0.0018	ND		0.0075	0.0017	ND		0.0076	0.0017	ND		0.0078	0.0018
Ethylbenzene	100-41-4	1	ND	0.00089	0.00015	ND		0.00078	0.00013	0.00013	J	0.00075	0.00013	0.00019	J	0.00076	0.00013	0.00015	J	0.00078	0.00013
p/m-Xylene	179601-23-1	0.26	ND	0.0018	0.00031	ND		0.0016	0.00028	0.00038	J	0.0015	0.00026	0.00058	J	0.0015	0.00027	0.0004	J	0.0016	0.00027
Total VOCs	EDDE TIC	NA	-		-	-	-	-	-	0.00051	-	-	-	0.00077	-	-	-	0.00055	-	-	-
VOLATILE ORGANICS BY 8260/ Propene	000115-07-1	NA	-			Г.						-	-	-		-					-
Unknown	000113-07-1	NA NA	-	<u>-</u>							-		-	0.00244	.J	0	0	-	_		-
Total TIC Compounds		NA NA	-	-	-	-		-	-	-		-	-	0.00244	J	0	0	-		-	-
SEMIVOLATILE ORGANICS BY	GC/MS																				
Benzo(a)anthracene	56-55-3	1	ND	0.11	0.021	ND		0.11	0.02	ND		0.11	0.021	ND		0.11	0.02	ND		0.11	0.02
Benzo(b)fluoranthene	205-99-2	1	ND	0.11	0.031	ND 0.004		0.11	0.03	ND		0.11	0.031	ND		0.11	0.03	ND		0.11	0.03
Bis(2-ethylhexyl)phthalate Caprolactam	117-81-7 105-60-2	NA NA	ND ND	0.18 0.18	0.064 0.056	0.094 ND	J	0.18	0.062 0.054	ND ND		0.18 0.18	0.064 0.056	ND ND		0.18 0.18	0.062 0.055	ND ND		0.18 0.18	0.062 0.054
Chrysene	218-01-9	1	ND	0.10	0.030	ND		0.10	0.034	ND		0.10	0.030	ND		0.10	0.033	ND ND		0.10	0.034
Fluoranthene	206-44-0	100	ND	0.11	0.021	ND		0.11	0.02	ND		0.11	0.021	ND		0.11	0.021	ND		0.11	0.02
Pyrene	129-00-0	100	ND	0.11	0.018	ND		0.11	0.018	ND		0.11	0.018	ND		0.11	0.018	ND		0.11	0.018
Total SVOCs	OC/MO TIO	NA	-		-	0.094	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY	GC/MS-TIC	NA	-			-						_	-	-		_		-			
Aldol Condensates Unknown		NA NA	-	-		-							-	-				-			-
Unknown		NA	-	-	-	-		-	-	-		-	-	-		-	-	-		-	-
Unknown		NA	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Unknown		NA	-	-	-	-		-	-	-		-	-	-		-	-	-		-	-
Unknown Unknown Amide		NA NA	0.415	J 0	0	0.684		0	- 0	0.296		0	0	0.871		0	0	0.632		0	0
Unknown Phenol		NA NA	- 0.413	J 0	-	0.004	J	-	-	-	J	-	-	- 0.07 1	J	-	-	0.032	J	-	-
Total TIC Compounds		NA	0.415	J 0	0	0.684	J	0	0	0.296	J	0	0	0.871	J	0	0	0.632	J	0	0
ORGANOCHLORINE PESTICIDE	S BY GC (Non	e Detected Ab	ove the La	aboratory's Meto	d Detection	n Limit)															
POLYCHLORINATED BIPHENYI																					
Aroclor 1254	11097-69-1	0.1	ND	0.0373	0.00304	ND		0.0343	0.0028	ND		0.0359	0.00293	ND		0.0355	0.0029	ND		0.0356	0.0029
Aroclor 1260 PCBs, Total	11096-82-5 1336-36-3	0.1 0.1	ND ND	0.0373 0.0373	0.00389 0.00264	ND ND		0.0343	0.00358 0.00243	ND ND		0.0359 0.0359	0.00375 0.00254	ND ND		0.0355 0.0355	0.00371 0.00252	ND ND		0.0356 0.0356	0.00372 0.00252
TOTAL METALS	1330-30-3	0.1	ND	0.0373	0.00204	ND		0.0545	0.00243	ND		0.0000	0.00234	ND		0.0000	0.00232	ND		0.0550	0.00232
Aluminum, Total	7429-90-5	NA	4510	8.91	2.41	4550		8.32	2.25	7940		8.9	2.4	5190		8.33	2.25	4220		8.66	2.34
Antimony, Total	7440-36-0	NA	ND	4.46	0.339	ND		4.16	0.316	ND		4.45	0.338	ND		4.16	0.316	ND		4.33	0.329
Arsenic, Total	7440-38-2	13	1.66	0.891	0.185	1.01		0.832	0.173	0.899		0.89	0.185	1.24		0.833	0.173	0.797	J	0.866	0.18
Barium, Total Beryllium, Total	7440-39-3 7440-41-7	350 7.2	37.4 0.08	0.891 J 0.446	0.155 0.029	36.9 0.116	-	0.832 0.416	0.145 0.027	31.9 0.116	-	0.89 0.445	0.155 0.029	30.2 0.092	-	0.833 0.416	0.145 0.028	44.4 0.052	J	0.866 0.433	0.151 0.029
Cadmium, Total	7440-41-7	2.5	0.08 ND	0.446 0.891	0.029	0.116 ND	J	0.416	0.027	0.116 ND	J	0.445	0.029	0.092 ND	J	0.416	0.028	0.052 ND	J	0.433	0.029
Calcium, Total	7440-70-2	NA	2350	8.91	3.12	7430		8.32	2.91	1160		8.9	3.11	2100		8.33	2.91	8130		8.66	3.03
Chromium, Total	7440-47-3	30	14.9	0.891	0.086	12.9		0.832	0.08	25.1		0.89	0.085	13.3		0.833	0.08	15.8		0.866	0.083
Cobalt, Total	7440-48-4	NA	5.38	1.78	0.148	5.17		1.66	0.138	8.49		1.78	0.148	5.48		1.66	0.138	7.56		1.73	0.144
Copper, Total	7440-50-8	50	20.3	0.891	0.23	16.1		0.832	0.215	21		0.89	0.23	23.6		0.833	0.215	19.7		0.866	0.224
Iron, Total Lead, Total	7439-89-6 7439-92-1	NA 63	9700 2.8	4.46 J 4.46	0.805 0.239	8400 2.54	J	4.16 4.16	0.751 0.223	10400 3.02	-	4.45 4.45	0.803 0.238	9010 3.1	J	4.16 4.16	0.752 0.223	7860 3.8	J	4.33 4.33	0.782 0.232
Magnesium, Total	7439-95-4	NA	2240	8.91	1.37	3540		8.32	1.28	2950		8.9	1.37	2190		8.33	1.28	4410	-	8.66	1.33
Manganese, Total	7439-96-5	1600	323	0.891	0.142	213		0.832	0.132	206		0.89	0.141	218		0.833	0.132	151		0.866	0.138
Mercury, Total	7439-97-6	0.18	ND	0.071	0.015	ND		0.068	0.014	ND		0.07	0.015	ND		0.07	0.015	ND		0.069	0.015
Nickel, Total	7440-02-0	30 NA	13.9	2.23	0.216	15.3		2.08	0.201	22.6		2.22	0.215	14		2.08	0.201	18.6		2.17	0.21
Potassium, Total Selenium, Total	7440-09-7 7782-49-2	NA 3.9	460 ND	223 1.78	12.8 0.23	671 ND		208 1.66	12 0.215	663 0.294	.1	1.78	12.8 0.23	589 ND		208 1.66	12 0.215	546 0.329	.I	217 1.73	12.5 0.224
Sodium, Total	7440-23-5	NA	307	1.78	2.81	293		166	2.62	128	J	1.78	2.8	312		166	2.62	352	J	173	2.73
Vanadium, Total	7440-62-2	NA	21.8	0.891	0.181	14.5		0.832	0.169	21.4		0.89	0.181	16.2		0.833	0.169	15.5		0.866	0.176
Zinc, Total	7440-66-6	109	14.2	4.46	0.261	14.7		4.16	0.244	16.3		4.45	0.261	16.6		4.16	0.244	14.7		4.33	0.254
GENERAL CHEMISTRY			_														_				
Chromium, Hexavalent	18540-29-9	1	0.381	J 0.897	0.179	ND 00.4		0.866	0.173	ND 00.0		0.897	0.179	ND 00.4		0.888	0.178	ND 00.0		0.881	0.176
Solids, Total (1) Soil Cleanup Objectives (SCOs) for	NONE	NA Sitos promulas	89.2	0.1	NA	92.4		0.1	NA	89.2		0.1	NA	90.1		0.1	NA	90.8		0.1	NA

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375 NA denotes Not Applicable

TABLE 4: RI SOIL SAMPLING ANALYTICAL RESULTS SUMMARY COTTAGE PLACE GARDENS PHASE 4 PARCEL SITE CITY OF YONKERS, WESTCHESTER COUNTY

									JF TUNKE											_		
		SAMPLE ID:		RICPG4-0	` ,			34-004 (12				G4-004 (16	,		RICPG4-005	• •		RICPG4-005	` '		RICPG4-005	· ,
		LAB ID:		L18131	96-11		L1	813196-12	2		L1	1813196-13	3		L1814453	-01		L1814453	-02		L181445	3-03
	COLLI	ECTION DATE:		4/19/2	018		4	1/19/2018			4	4/19/2018			4/24/201	8		4/24/201	8		4/24/20	18
	SAMPLE	E DEPTH (FT.):		6-	3			12-14				16-18			8-10			14-16			16-18	
		MPLE MATRIX:		so	L			SOIL				SOIL			SOIL		1	SOIL			SOIL	
	1	NY-UNRES ⁽¹⁾			· -																	
ANALYTE	CAS	(mg/kg)	Conc	Q RI	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL	Conc	Q RL	MDL
VOLATILE ORGANICS BY 826		(IIIg/kg)	Conc	Q N	. MDL	Conc	ų	ΝL	WIDL	COIIC	ų	ΝL	MIDL	Conc	Q KL	WIDL	COIIC	Q NL	MIDL	Conc	Q NL	WIDL
Acetone	67-64-1	0.05	ND	0.00	79 0.0018	ND		0.008	0.0018	0.0033		0.0076	0.0017	ND	0.0082	0.0019	ND	0.0082	0.0019	ND	0.007	2 0.0016
Ethylbenzene	100-41-4	0.05	ND	0.00		ND ND		0.0008	0.0018	ND	_	0.0076	0.0017	ND	0.00082		ND	0.0008		ND	0.007	
p/m-Xylene	179601-23-1	0.26	ND	0.00		ND		0.0016	0.00028	ND		0.0015	0.00026	ND	0.0016	0.00029	ND	0.0016	0.00029	ND	0.001	
Total VOCs		NA	-		-	-	-	-	-	0.0033	-	-	-	-		-	-		-	-		-
VOLATILE ORGANICS BY 826	60/5035-TIC					-																
Propene	000115-07-1	NA	-		-	-		-	-	0.00421	NJ	0	0	-		-	-		-	-		-
Unknown		NA	-		-	-	-	-	-	-	-	-	-	-		-	-		-	-		-
Total TIC Compounds	\	NA	-		-	-		-	-	0.00421	J	0	0	-		-	-		-	-		-
SEMIVOLATILE ORGANICS B			1:5					0.4.	0.00	1.00		0.4.	0.001							1		
Benzo(a)anthracene	56-55-3	1	ND ND	0.1		ND		0.11	0.02	ND		0.11	0.021	ND	0.11	0.02	ND	0.1	0.02	ND	0.1	0.02
Benzo(b)fluoranthene Bis(2-ethylhexyl)phthalate	205-99-2 117-81-7	NA	0.072	0.1 J 0.1		ND ND		0.11	0.031	ND 0.17	- 1	0.11	0.031 0.064	ND ND	0.11 0.18	0.03 0.062	ND ND	0.1 0.18	0.03	ND 0.08	0.1 J 0.18	0.03 0.061
Caprolactam	105-60-2	NA NA	0.072 ND	J 0.1		ND ND		0.18	0.063	0.17	J	0.18	0.056	ND ND	0.18	0.062	ND ND	0.18	0.054	ND	0.18	0.053
Chrysene	218-01-9	1	ND	0.1		ND		0.11	0.019	ND		0.11	0.019	ND	0.11	0.019	ND	0.1	0.018	ND	0.1	0.018
Fluoranthene	206-44-0	100	ND	0.1		ND		0.11	0.021	ND		0.11	0.021	ND	0.11	0.021	ND	0.1	0.02	ND	0.1	0.02
Pyrene	129-00-0	100	ND	0.1		ND		0.11	0.018	ND		0.11	0.018	ND	0.11	0.018	ND	0.1	0.018	ND	0.1	0.017
Total SVOCs		NA	0.072		-	-	-	-	-	0.6	-	-	-	-		-	-		-	0.08		-
SEMIVOLATILE ORGANICS B	Y GC/MS-TIC																					
Aldol Condensates		NA	-	-	-	-		-	-	-		-	-	0.84	J 0	0	-	-	-	-	-	-
Unknown		NA	-	-	-	-		-	-	-		-	-	0.336	J 0	0	-	-	-	-	-	-
Unknown		NA				-		-	-	-		-	-	0.266	J 0	0	-	-	-	-	-	-
Unknown		NA NA	-			-	-	-	-	-	-	-	-	0.297	J 0	0	-		-	-		-
Unknown Unknown		NA NA				+				-		-	-	0.297	J 0	0	-			 		
Unknown Amide		NA NA	0.342	J 0	0	0.345	J	0	0	1.25	J	0	0	-	-	-	1.28	J 0	0	1.02	J 0	0
Unknown Phenol		NA	-			-		-	-	-		-	-	0.314	J 0	0	-	-	-	0.224	J 0	0
Total TIC Compounds		NA	0.342	J 0		0.345	J	0	0	1.25	J	0	0	2.77	J 0	0	1.28	J 0	0	1.24	J 0	0
ORGANOCHLORINE PESTICII	DES BY GC (Non	e Detected Ab	ove the La	boratory's	Metod Detection	on Limit)																
POLYCHLORINATED BIPHEN	YLS BY GC																					
Aroclor 1254	11097-69-1	0.1	ND	0.03		ND		0.0353	0.00288	ND		0.0369	0.00301	ND	0.0356	0.0029	ND	0.0348		ND	0.035	
Aroclor 1260	11096-82-5	0.1	ND	0.03		ND		0.0353	0.00368	ND		0.0369	0.00385	ND	0.0356	0.00371	ND	0.0348	0.00363	ND	0.035	0.00367
PCBs, Total	1336-36-3	0.1	ND	0.03	58 0.00254	ND		0.0353	0.0025	ND		0.0369	0.00261	ND	0.0356	0.00252	ND	0.0348	0.00246	ND	0.035	0.00249
TOTAL METALS	7400 00 5	NIA	0750	0.0	0 000	4000		0.44	2.27	0000		0.50	2.22	0400	0.54	0.04	0700	0.04	2.22	1740	0.0	2.24
Aluminum, Total	7429-90-5 7440-36-0	NA NA	9750 1.47	8.3 J 4.1		4990 0.908	J	8.41 4.21	2.27 0.32	6620 1.22		8.58 4.29	2.32 0.326	6180 ND	8.54 4.27	2.31 0.324	3780 ND	8.24 4.12	2.22 0.313	4740 ND	8.2 4.1	2.21 0.311
Antimony, Total Arsenic, Total	7440-38-2	13	1.44	0.8		0.906	J	0.841	0.32	0.506	J	0.858	0.326	1.56	0.854	0.324	1.18	0.824	0.313	1.16	0.82	0.17
Barium, Total	7440-39-3	350	44.6	0.8		27.3		0.841	0.176	43.4		0.858	0.170	29	0.854	0.149	23.7	0.824	0.143	23.9	0.82	0.143
Beryllium, Total	7440-41-7	7.2	ND	0.4		ND		0.421	0.028	ND		0.429	0.028	0.068	J 0.427	0.028	0.074	J 0.412	0.027	0.049	J 0.41	0.027
Cadmium, Total	7440-43-9	2.5	ND	0.8		ND		0.841	0.082	ND		0.858	0.084	0.427	J 0.854	0.084	0.338	J 0.824	0.081	0.352	J 0.82	0.08
Calcium, Total	7440-70-2	NA	960	8.3		1970	-	8.41	2.94	8060		8.58	3	2090	8.54	2.99	1720	8.24	2.88	2620	8.2	2.87
Chromium, Total	7440-47-3	30	28.3	0.8		11.9		0.841	0.081	32.6		0.858	0.082	18.8	0.854	0.082	9.03	0.824	0.079	18.2	0.82	0.079
Cobalt, Total	7440-48-4	NA 50	6.5	1.6		5.49		1.68	0.14	6.42		1.72	0.142	5.7	1.71	0.142	3.77	1.65	0.137	4.17	1.64	0.136
Copper, Total Iron, Total	7440-50-8 7439-89-6	50 NA	19.3 14800	0.8 4.1		20.8 9090		0.841 4.21	0.217 0.76	25.8 11200		0.858 4.29	0.221 0.774	20.8 9460	0.854 4.27	0.22 0.771	12.4 7470	0.824 4.12	0.212 0.744	17.1 7640	0.82 4.1	0.211 0.74
Lead, Total	7439-89-6	63	6.08	4.1		7.96		4.21	0.76	11.2		4.29	0.774	3.31	J 4.27	0.771	2.81	J 4.12	0.744	1.98	J 4.1	0.74
Magnesium, Total	7439-95-4	NA	1990	8.3		2020		8.41	1.3	4850		8.58	1.32	2770	8.54	1.32	2040	8.24	1.27	2460	8.2	1.26
Manganese, Total	7439-96-5	1600	214	0.8		216		0.841	0.134	195		0.858	0.136	218	0.854	0.136	179	0.824	0.131	161	0.82	0.13
Mercury, Total	7439-97-6	0.18	0.019	J 0.0		ND		0.071	0.015	ND		0.071	0.015	ND	0.069	0.015	ND	0.068	0.014	ND	0.068	0.014
Nickel, Total	7440-02-0	30	14.8	2.		15.8		2.1	0.204	21.6		2.14	0.208	15.2	2.14	0.207	10.3	2.06	0.199	11.4	2.05	0.198
Potassium, Total	7440-09-7	NA	581	21		408		210	12.1	924		214	12.4	486	214	12.3	375	206	11.8	457	205	11.8
Selenium, Total	7782-49-2	3.9	ND 440	1.6		ND		1.68	0.217	ND		1.72	0.221	0.384	J 1.71	0.22	0.296	J 1.65	0.212	ND 450	1.64	0.211
Sodium, Total	7440-23-5	NA NA	119	J 16		386		168	2.65	685		172	2.7	423	171	2.69	256	165	2.59	453	164	2.58
Vanadium, Total Zinc, Total	7440-62-2 7440-66-6	NA 109	27.7 20	0.8 4.1		18.1 15		0.841 4.21	0.171 0.246	18.3 17.2		0.858 4.29	0.174 0.251	19.2 14.7	0.854 4.27	0.173 0.25	12.6 12.5	0.824 4.12	0.167 0.241	14.8 11.2	0.82 4.1	0.166 0.24
GENERAL CHEMISTRY	7 770-00-0	109	20	4.1	0.240	1 10		7.41	0.240	11.2		7.43	0.201	14.7	4.21	0.20	12.0	4.12	0.241	11.4	4.1	0.24
Chromium, Hexavalent	18540-29-9	1	0.765	J 0.8	37 0.177	ND		0.883	0.177	ND		0.895	0.179	ND	0.88	0.176	ND	0.861	0.172	ND	0.865	0.173
Solids, Total	NONE	NA	90.2	0.0		90.6		0.003	NA	89.4		0.033	NA	90.9	0.1	NA	92.9	0.001	NA	92.5	0.000	NA
		e Sites promulga				30.0		0.1	14/7	03.4		U. I	14/\	30.3	V. I	INA	32.3	0.1	INA	JZ.J	0.1	INA

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375
NA denotes Not Applicable

TABLE 5: GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY 2015 C.T. MALE PHASE II ESA COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

		NYSDEC GROUNDWATER	MW-L	FDGW01 ⁽²⁾	MW-M	MW-N
		STANDARD OR GUIDANCE	Water	Water	Water	Water
ANALYTE	CAS#	VALUE ⁽¹⁾ (ug/l)	ug/L	ug/L	ug/L	ug/L
Volatile Organic Conpounds						
1,2-Dichloropropane	78-87-5	1	1.60 J	0.500 U	0.500 U	0.500 U
Semi-Volatile Organic Compounds						
Dimethylphthalate	131-11-3	50 (GV)	Not Analyzed	Not Analyzed	Not Analyzed	4.50 J
Pesticides (None Detected)						
PCBs (None Detected)						
Metals & Cyanide						
Aluminum	7429-90-5	No Standard	8,700	Not Analyzed	8,590	6,770
Arsenic	7440-38-2	25	2.50 U	Not Analyzed	4.91 J	2.50 U
Barium	7440-39-3	1,000	782	Not Analyzed	302	130
Calcium	7440-70-2	No Standard	284,100	Not Analyzed	146,600	97,500
Chromium	7440-47-3	50	119	Not Analyzed	66.5	35.9
Cobalt	7440-48-4	No Standard	6.92 J	Not Analyzed	9.21 J	5.87 J
Copper	7440-50-8	200	19.9	Not Analyzed	46.5	24.2
Iron	7439-89-6	300	5,960	Not Analyzed	10,600	7,350
Lead	7439-92-1	25	16.5	Not Analyzed	85.6	76.8
Magnesium	7439-95-4	35,000 (GV)	45,000	Not Analyzed	30,500	14,900
Manganese	7439-96-5	300	1,560	Not Analyzed	772	250
Mercury	7439-97-6	0.7	0.100 U	Not Analyzed	0.674	0.162 J
Nickel	7440-02-0	100	87.4	Not Analyzed	69.7	22.9
Potassium	7440-09-7	No Standard	15,400	Not Analyzed	12,400	7,980
Selenium	7782-49-2	10	5.00 U	Not Analyzed	5.00 U	5.35 J
Sodium	7440-23-5	20,000	1,198,700	Not Analyzed	864,900	18000
Vanadium	7440-62-2	No Standard	12.3 J	Not Analyzed	15.6 J	12.9 J
Zinc	7440-66-6	2,000 (GV)	34.3	Not Analyzed	75.9	62.2
Cyanide	57-12-5	200	Not Analyzed	Not Analyzed	Not Analyzed	0.0020 J

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York State Department of Water, June 1998 and Addendums April 2000 and June 2004.

Due to insufficient volume of groundwater in the monitoring wells when they were sampled, monitoring wells MW-L and MW-M were analyzed for VOCs and metals only. MW-N was analyzed for the full TCL/TAL parameters and cyanide.

⁽²⁾ FDGW01 is a replicate (duplicate) of MW-L.

U indicates that the analyte was analyzed for, but not detected.

J indicates that the reported value was obtained from a reading that was less than the Contract Required Quantitation Limit, but greater than or equal to the Instrument Detection Limit (IDL).

TABLE 6: GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY DECEMBER 2016 AND JANUARY 2017 GROUNDWATER SAMPLING COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

						-	ESTUREST											
SAMPLE ID:				SB	2016-2 (MW-B	-2)(-)		MV	V2016-5 (MW-I	B-5)		MW2	2016-10 (MW-E	3-10)			016-12 (MW-	-
LAB ID:					L1702743-01				L1642351-01				L1642351-02				L1642351-03	
COLLECTION DATE:		NYSDEC GROUNDWATER			1/26/2017				12/28/2016				12/28/2016				12/28/2016	
SAMPLE MATRIX:		STANDARD OR GUIDANCE			WATER				WATER				WATER				WATER	
ANALYTE	CAS#	VALUE ⁽¹⁾ (ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Volatile Organic Compounds							-								_			_
Acetone	67-64-1	50	3.2	J	5	1.5	16		5	1.5	ND		5	1.5	ND		5	1.5
Chloroform	67-66-3	7	ND		2.5	0.7	ND		2.5	0.7	3.3		2.5	0.7	3.8		2.5	0.7
Chloromethane	74-87-3	No Standard	0.82	J	2.5	0.7	ND		2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
Cyclohexane	110-82-7	No Standard	ND		10	0.27	25		10	0.27	ND		10	0.27	ND		10	0.27
Ethylbenzene	100-41-4	5	ND		2.5	0.7	1	J	2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
Isopropylbenzene	98-82-8	5	ND		2.5	0.7	1.6	J	2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
Methyl cyclohexane	108-87-2	No Standard	ND		10	0.4	28		10	0.4	ND		10	0.4	ND		10	0.4
Tetrachloroethene	127-18-4	5	0.22	J	0.5	0.18	ND		0.5	0.18	0.31	J	0.5	0.18	0.33	J	0.5	0.18
o-Xylene	95-47-6	5	ND		2.5	0.7	3.2		2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
p/m-Xylene	179601-23-1	5	ND		2.5	0.7	8.1		2.5	0.7	ND		2.5	0.7	ND		2.5	0.7
Total VOCs	NA	No Standard	4.24				82.9	-	-	-	3.61	-	=	-	4.13	-	=	-
Total TIC Compounds	NA	No Standard					234.84	J	0	0	14.85	J	0	0	10.88	J	0	0
Semi-Volatile Organic Compounds																		
2-Methylnaphthalene	91-57-6	No Standard	0.06	J	0.2	0.05	1.4		0.2	0.05	ND		0.2	0.05	ND		0.2	0.05
Acenaphthene	83-32-9	20 (GV)	ND		0.1	0.04	ND		0.1	0.04	ND		0.1	0.04	0.05	J	0.1	0.04
Acenaphthylene	208-96-8	No Standard	ND		0.2	0.04	ND		0.2	0.04	ND		0.2	0.04	0.04	J	0.2	0.04
Anthracene	120-12-7	50 (GV)	ND		0.2	0.04	0.04	J	0.2	0.04	ND		0.2	0.04	0.07	J	0.2	0.04
Benzo(a)anthracene	56-55-3	0.002 (GV)	0.02	J	0.2	0.02	0.03	J	0.2	0.02	0.03	J	0.2	0.02	0.05	J	0.2	0.02
Benzo(b)fluoranthene	205-99-2	0.002 (GV)	0.03	J	0.2	0.02	0.02	J	0.2	0.02	ND		0.2	0.02	0.02	J	0.2	0.02
Bis(2-ethylhexyl)phthalate	117-81-7	5	ND		3	0.91	ND		3	0.91	ND		3	0.91	1.7	J	3	0.91
Chrysene	218-01-9	0.002 (GV)	ND		0.2	0.04	ND		0.2	0.04	ND		0.2	0.04	0.05	J	0.2	0.04
Fluoranthene	206-44-0	50 (GV)	0.06	J	0.2	0.04	0.1	J	0.2	0.04	0.13	J	0.2	0.04	0.29	1 1	0.2	0.04
Fluorene	86-73-7	50 (GV)	ND		0.2	0.04	0.05	J	0.2	0.04	ND		0.2	0.04	0.09	J	0.2	0.04
Naphthalene	91-20-3	10 (GV)	0.34		0.2	0.04	1.2		0.2	0.04	0.06	J	0.2	0.04	0.09	J	0.2	0.04
Phenanthrene	85-01-8	50 (GV)	0.07	J	0.2	0.02	0.19	J	0.2	0.02	0.27		0.2	0.02	0.29		0.2	0.02
Pyrene	129-00-0	50 (GV)	0.08	J	0.2	0.04	0.1	J	0.2	0.04	0.14	J	0.2	0.04	0.32		0.2	0.04
Total SVOCs	NA	No Standard	0.66				3.13	-	-	-	0.63	- 1	-	-	1.36	1 - 1	-	-
Total TIC Compounds	NA	No Standard	ND				281.16	-	-	-	ND	- 1	-	-	ND	1 - 1	-	-
Pesticides (None Detected)	•					•	-		•		•				•			•
PCBs (None Detected)																		
Metals & Cyanide																		
Aluminum, Total	7429-90-5	No Standard	ND		100	32	260		100	32	25,000		100	32	7,700		100	32
Antimony, Total	7440-36-0	3	ND		50	7.1	16.2	J	50	7.1	ND		50	7.1	ND		50	7.1
Arsenic, Total	7440-38-2	25	7.7		5	1.9	5.1		5	1.9	7.8		5	1.9	6		5	1.9
Barium, Total	7440-39-3	1,000	340		10	2	165		10	2.1	329		10	2.1	165		10	2.1
Calcium, Total	7440-70-2	No Standard	290,000		100	35	98,000		100	35	140,000		100	35	120,000		100	35
Chromium, Total	7440-47-3	50	2.3	J	10	2.1	3.2	J	10	2.1	58		10	2.1	24		10	2.1
Cobalt, Total	7440-48-4	No Standard	1.7	J	20	1.7	ND	Ì	20	1.7	23.6		20	1.7	6.6	J	20	1.7
Copper, Total	7440-50-8	200	3.4	J	10	2.2	4.6	J	10	2.2	107		10	2.2	32.1		10	2.2
Iron, Total	7439-89-6	300	92		50	9	600		50	9	32,000		50	9	9,400		50	9
Lead, Total	7439-92-1	25	ND		10	2.7	6.1	J	10	2.7	10.9	М	10	2.7	5.6	J	10	2.7
Magnesium, Total	7439-95-4	35,000 (GV)	70,000		100	15	31,000	İ	100	15	56,000	М	100	15	33,000	T	100	15
		/																
Manganese, Total	7439-96-5	300	571		10	1.6	903		10	1.6	2,140		10	1.6	667		10	1.6

TABLE 6: GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY DECEMBER 2016 AND JANUARY 2017 GROUNDWATER SAMPLING COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

SAMPLE ID:				SB	2016-2 (MW-B-	·2) ⁽²⁾		MV	V2016-5 (MW-	B-5)		MW2	016-10 (MW-I	B-10)		MW2	016-12 (MW-E	3-12)
LAB ID:					L1702743-01				L1642351-01				L1642351-02				L1642351-03	
COLLECTION DATE:		NYSDEC GROUNDWATER			1/26/2017				12/28/2016				12/28/2016				12/28/2016	
SAMPLE MATRIX:		STANDARD OR GUIDANCE			WATER				WATER				WATER				WATER	
ANALYTE	CAS#	VALUE ⁽¹⁾ (ug/l)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Nickel, Total	7440-02-0	100	3.6	J	25	2.4	2.5	J	25	2.4	56.7		25	2.4	19	J	25	2.4
Potassium, Total	7440-09-7	No Standard	8,100		2,500	240	6,700		2500	240	7,500		2500	240	8,000		2500	240
Sodium, Total	7440-23-5	20,000	640,000		2,000	120	270,000		2000	120	140,000		2000	120	130,000		2000	120
Vanadium, Total	7440-62-2	No Standard	2.1	J	10	2	3.1	J	10	2	29.6		10	2	12.9		10	2
Zinc, Total	7440-66-6	2,000 (GV)	ND		50	2.1	5.3	J	50	2.1	51.6		50	2.1	19.8	J	50	2.1
Cyanide, Total	57-12-5	200	3	J	5	1	ND		5	1	3	J	5	1	2	J	5	1

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York State Department of Environmental Conservation, June 1998 and Addendum April 2000.

GV indicates a Guidance Value.

J indicates that the reported value was obtained from a reading that was less than the Contract Required Quantitation Limit, but greater than or equal to the Instrument Detection Limit (IDL).

ND denotes Non Detect.

Q denotes the laboratory's data qualifier.

RL denotes the laboratory's Reporting Limit.

MDL denotes the laboratory's Method Detection Limit.

NA denotes Not Applicable

⁽²⁾ MW2016-2 identifies the monitoring well location. (MW-B-2) is the identification assigned to the sample when collected in the field and reported in the laboratory report. This is the same for all samples listed in this table.

TABLE 7: GROUNDWATER SAMPLING ANALYTICAL RESULTS SUMMARY MARCH 2017 GROUNDWATER SAMPLING COTTAGE PLACE GARDENS PHASE 4 PARCEL CITY OF YONKERS, WESTCHESTER COUNTY

Data Not Validated

		SAMPLE ID:			MWGP01	
		LAB ID:			L1707302-05	
		COLLECTION DATE:			3/8/2017	
		NYSDEC GROUNDWATER				
		STANDARD OR GUIDANCE				
ANALYTE	CAS	VALUE ⁽¹⁾ (ug/l)	Conc	Q	RL	MDL
Volatile Organic Compounds	•					
2-Butanone	78-93-3	50 (GV)	5.7		5	1.9
Acetone	67-64-1	50 (GV)	26		5	1.5
Ethylbenzene	100-41-4	5	1.2	J	2.5	0.7
Isopropylbenzene	98-82-8	5	0.86	J	2.5	0.7
o-Xylene	95-47-6	5	0.76	J	2.5	0.7
Semi-Volatile Organic Compounds						
2-Methylnaphthalene	91-57-6	No Standard	5.2		0.2	0.05
Acenaphthene	83-32-9	20 (GV)	1.3		0.1	0.04
Acenaphthylene	208-96-8	No Standard	0.24		0.2	0.04
Anthracene	120-12-7	50 (GV)	0.21		0.2	0.04
Benzo(a)anthracene	56-55-3	0.002 (GV)	0.03	J	0.2	0.02
Benzo(b)fluoranthene	205-99-2	0.002 (GV)	0.03	J	0.2	0.02
Biphenyl	92-52-4	5	11		2	0.75
Fluoranthene	206-44-0	50 (GV)	0.05	J	0.2	0.04
Fluorene	86-73-7	50 (GV)	1.8		0.2	0.04
Naphthalene	91-20-3	10 (GV)	1.5		0.2	0.04
Phenanthrene	85-01-8	50 (GV)	2.3		0.2	0.02
Pyrene	129-00-0	50 (GV)	0.09	J	0.2	0.04
Pesticides and PCBs (None Detected Above	The Laboratory's	Method Detection Limits)				
Metals and Cyanide		-				
Aluminum, Total	7429-90-5	No Standard	9200		100	30
Barium, Total	7440-39-3	1000	327		10	2
Calcium, Total	7440-70-2	No Standard	160,000		100	40
Chromium, Total	7440-47-3	50	30		10	2
Cobalt, Total	7440-48-4	No Standard	11	J	20	2
Copper, Total	7440-50-8	200	49		10	2
Iron, Total	7439-89-6	300	11,000		50	10
Lead, Total	7439-92-1	25	486		10	3
Magnesium, Total	7439-95-4	35,000 (GV)	72,000		100	20
Manganese, Total	7439-96-5	300	2480		10	2
Mercury, Total	7439-97-6	0.7	0.16	J	0.2	0.06
Nickel, Total	7440-02-0	100	23	J	25	2
Potassium, Total	7440-09-7	No Standard	8600		2500	240
Selenium, Total	7782-49-2	10	4	J	10	4
Sodium, Total	7440-23-5	20,000	84,000		2000	120
Vanadium, Total	7440-62-2	No Standard	22		10	2
Zinc, Total	7440-66-6	2000 (GV)	197		50	2

⁽¹⁾ TOGS 1.1.1, Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. New York State Department of Water, June 1998 and Addendums April 2000 and June 2004.

MDL denotes the laboratory's Method Detection Limit

RL denotes the laboratory's Reporting Limit

J indicates that the reported value was obtained from a reading that was less than the RL, but greater than the MDL

375-6.8

Soil cleanup objective tables.Unrestricted use soil cleanup objectives. (a)

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
	Metals	
Arsenic	7440-38-2	13 °
Barium	7440-39-3	350 °
Beryllium	7440-41-7	7.2
Cadmium	7440-43-9	2.5 °
Chromium, hexavalent e	18540-29-9	1 ^b
Chromium, trivalent °	16065-83-1	30 °
Copper	7440-50-8	50
Total Cyanide e, f		27
Lead	7439-92-1	63 °
Manganese	7439-96-5	1600 °
Total Mercury		0.18 °
Nickel	7440-02-0	30
Selenium	7782-49-2	3.9°
Silver	7440-22-4	2
Zinc	7440-66-6	109 °
	PCBs/Pesticides	
2,4,5-TP Acid (Silvex) ^f	93-72-1	3.8
4,4'-DDE	72-55-9	0.0033 ^b
4,4'-DDT	50-29-3	0.0033 ^b
4,4'-DDD	72-54-8	0.0033 ^b
Aldrin	309-00-2	0.005 °
alpha-BHC	319-84-6	0.02
beta-BHC	319-85-7	0.036
Chlordane (alpha)	5103-71-9	0.094

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
delta-BHC ^g	319-86-8	0.04
Dibenzofuran f	132-64-9	7
Dieldrin	60-57-1	0.005°
Endosulfan I d, f	959-98-8	2.4
Endosulfan II ^{d, f}	33213-65-9	2.4
Endosulfan sulfate d, f	1031-07-8	2.4
Endrin	72-20-8	0.014
Heptachlor	76-44-8	0.042
Lindane	58-89-9	0.1
Polychlorinated biphenyls	1336-36-3	0.1
Semivolat	tile organic compo	ounds
Acenaphthene	83-32-9	20
Acenapthylene f	208-96-8	100 ^a
Anthracene f	120-12-7	100 ^a
Benz(a)anthracene f	56-55-3	1°
Benzo(a)pyrene	50-32-8	1°
Benzo(b)fluoranthene f	205-99-2	1°
Benzo(g,h,i)perylene f	191-24-2	100
Benzo(k)fluoranthene f	207-08-9	0.8 °
Chrysene ^f	218-01-9	1°
Dibenz(a,h)anthracene f	53-70-3	0.33 ^b
Fluoranthene ^f	206-44-0	100 a
Fluorene	86-73-7	30
Indeno(1,2,3-cd)pyrene ^f	193-39-5	0.5 °
m-Cresol ^f	108-39-4	0.33 ^b
Naphthalene ^f	91-20-3	12
o-Cresol ^f	95-48-7	0.33 b

Table 375-6.8(a):Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
p-Cresol ^f	106-44-5	0.33 b
Pentachlorophenol	87-86-5	0.8 b
Phenanthrene ^f	85-01-8	100
Phenol	108-95-2	0.33 ^b
Pyrene ^f	129-00-0	100
Volatile	e organic compour	nds
1,1,1-Trichloroethane ^f	71-55-6	0.68
1,1-Dichloroethane ^f	75-34-3	0.27
1,1-Dichloroethene ^f	75-35-4	0.33
1,2-Dichlorobenzene ^f	95-50-1	1.1
1,2-Dichloroethane	107-06-2	0.02°
cis -1,2-Dichloroethene ^f	156-59-2	0.25
trans-1,2-Dichloroethene ^f	156-60-5	0.19
1,3-Dichlorobenzene ^f	541-73-1	2.4
1,4-Dichlorobenzene	106-46-7	1.8
1,4-Dioxane	123-91-1	0.1 ^b
Acetone	67-64-1	0.05
Benzene	71-43-2	0.06
n-Butylbenzene ^f	104-51-8	12
Carbon tetrachloride f	56-23-5	0.76
Chlorobenzene	108-90-7	1.1
Chloroform	67-66-3	0.37
Ethylbenzene ^f	100-41-4	1
Hexachlorobenzene ^f	118-74-1	0.33 ^b
Methyl ethyl ketone	78-93-3	0.12
Methyl tert-butyl ether ^f	1634-04-4	0.93
Methylene chloride	75-09-2	0.05

Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives

Contaminant	CAS Number	Unrestricted Use
n - Propylbenzene ^f	103-65-1	3.9
sec-Butylbenzene f	135-98-8	11
tert-Butylbenzene f	98-06-6	5.9
Tetrachloroethene	127-18-4	1.3
Toluene	108-88-3	0.7
Trichloroethene	79-01-6	0.47
1,2,4-Trimethylbenzene ^f	95-63-6	3.6
1,3,5-Trimethylbenzene ^f	108-67-8	8.4
Vinyl chloride ^f	75-01-4	0.02
Xylene (mixed)	1330-20-7	0.26

All soil cleanup objectives (SCOs) are in parts per million (ppm).

Footnotes

^a The SCOs for unrestricted use were capped at a maximum value of 100 ppm. See Technical Support Document (TSD), section 9.3.

^b For constituents where the calculated SCO was lower than the contract required quantitation limit (CRQL), the CRQL is used as the Track 1 SCO value.

^c For constituents where the calculated SCO was lower than the rural soil background concentration, as determined by the Department and Department of Health rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

^d SCO is the sum of endosulfan I, endosulfan II and endosulfan sulfate.

^e The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

^f Protection of ecological resources SCOs were not developed for contaminants identified in Table 375-6.8(b) with "NS". Where such contaminants appear in Table 375-6.8(a), the applicant may be required by the Department to calculate a protection of ecological resources SCO according to the TSD.

APPENDIX C GENERIC AND SPECIAL REQUIREMENTS CAMP

Appendix 1A **New York State Department of Health Generic Community Air Monitoring Plan**

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical-specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all ground intrusive activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during non-intrusive activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. APeriodic@monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226 May 2010 overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less - but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226 May 2010

- If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226 May 2010

SPECIAL REQUIREMENTS COMMUNITY AIR MONITORING PROGRAM

Special Requirements for Work within 20 feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are likely to be lower, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring should occur within the occupied structure(s). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m3, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 mcg/m3 or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be predetermined, as necessary for each site.

Special Requirements for Indoor Work with Co-Located Residences or Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential

vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evening) when building occupancy is at a minimum.

APPENDIX D APPROVED IMPORTED FILL MATERIAL

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.
SECTION 4 – SOURCE OF FILL
Name of person providing fill and relationship to the source:
Location where fill was obtained:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source: If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:

The information provided on this form is accu	arate and complete.
Signature	Date
Print Name	
Firm	

October, 1 2013

Aggregates from Thalle Industries Facility located 1 Warehouse lane Elmsford NY. 10523 are manufactured from a virgin source transported direct to the facility. Supervised by DEC, County of Westchester Solid Waste Commission Westchester Health Department and Town of Greenburg. DEC ID# 3-5526-00325

Thalle Industries only produces aggregate material to within NYDOT spec. this process is monitored, tested and inspected by Advance Testing 3348 Route 208 Campbell Hall NY 10916, 845-496-1600

We specialize in the supply of approved fill material for Brownfield. Our fill material is laboratory tested and documented By Quay engineering 6NYCRR PART375 material also meets TAGM guidelines

Additional information is available on Thalle Industries Web site, thalleindustries.com

Joseph D. Pertone

Elmsford Wanager

jperrone@thatteindustries.com

919-201-1111

ANALYTICAL REPORT

Lab Number: L1842314

Client: C.T. Male Associates

50 Century Hill Drive Latham, NY 12210

ATTN: Kirk Moline
Phone: (518) 786-7400

Project Name: CPG III
Project Number: 15.5268
Report Date: 10/24/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314 **Report Date:** 10/24/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1842314-01	02B-IMPORTED-FILL-01	SOIL	YONKERS, NY	10/17/18 10:05	10/17/18
L1842314-02	02B-IMPORTED-FILL-02	SOIL	YONKERS, NY	10/17/18 10:10	10/17/18
L1842314-03	02B-IMPORTED-FILL-03	SOIL	YONKERS, NY	10/17/18 10:20	10/17/18
L1842314-04	02B-IMPORTED-FILL-04	SOIL	YONKERS, NY	10/17/18 10:25	10/17/18
L1842314-05	02B-IMPORTED-FILL-05	SOIL	YONKERS, NY	10/17/18 10:30	10/17/18
L1842314-06	02B-IMPORTED-FILL-06	SOIL	YONKERS, NY	10/17/18 10:35	10/17/18

Project Name:CPG IIILab Number:L1842314Project Number:15.5268Report Date:10/24/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client	Services at 800-624-9220	with any questions.
-----------------------	--------------------------	---------------------

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Semivolatile Organics

L1842314-02: One or more surrogates failed to meet the DKQP recovery limits. Please refer to the sample results and/or QC section of the report for specific details.

WG1170292-2/-3: One or more compounds failed to meet the DKQP recovery and/or RPD limits. Difficult analytes may recover at less than 10% recovery, where applicable. Please refer to the QC section of the report for specific details.

Pesticides

L1842314-02: One or more dual column RPDs are above the acceptance criteria. For results above the reporting limit that yield RPDs greater than 100%, re-analysis on dilution will also be reported. For any target hits greater than 100% that have co-eluting analytes on one column, a further dilution is not required and the lower value is reported. Please refer to the sample results and/or QC section of the report for specific details.

Total Metals

L1842314-01 and -02: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

Cyanide, Total

The WG1169742-2/-3 LCS/LCSD recoveries (67%/51%), associated with L1842314-01 and -02, are outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analyses are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative

Date: 10/24/18

ORGANICS

VOLATILES

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-03 Date Collected: 10/17/18 10:20

Client ID: 02B-IMPORTED-FILL-03 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/22/18 17:00

Analyst: MV Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - Westborough Lab							
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0032	0.0011	1	
1,4-Dioxane	ND		mg/kg	0.11	0.038	1	
1,2-Dibromoethane	ND		mg/kg	0.0011	0.00030	1	
Methylene chloride	ND		mg/kg	0.0054	0.0025	1	
1,1-Dichloroethane	ND		mg/kg	0.0011	0.00016	1	
Chloroform	0.00023	J	mg/kg	0.0016	0.00015	1	
Carbon tetrachloride	ND		mg/kg	0.0011	0.00025	1	
1,2-Dichloropropane	ND		mg/kg	0.0011	0.00014	1	
Dibromochloromethane	ND		mg/kg	0.0011	0.00015	1	
1,1,2-Trichloroethane	ND		mg/kg	0.0011	0.00029	1	
Tetrachloroethene	ND		mg/kg	0.00054	0.00021	1	
Chlorobenzene	ND		mg/kg	0.00054	0.00014	1	
Trichlorofluoromethane	ND		mg/kg	0.0043	0.00075	1	
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00028	1	
1,1,1-Trichloroethane	ND		mg/kg	0.00054	0.00018	1	
Bromodichloromethane	ND		mg/kg	0.00054	0.00012	1	
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00030	1	
cis-1,3-Dichloropropene	ND		mg/kg	0.00054	0.00017	1	
1,3-Dichloropropene, Total	ND		mg/kg	0.00054	0.00017	1	
Bromoform	ND		mg/kg	0.0043	0.00027	1	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00054	0.00018	1	
Benzene	ND		mg/kg	0.00054	0.00018	1	
Toluene	ND		mg/kg	0.0011	0.00059	1	
Ethylbenzene	ND		mg/kg	0.0011	0.00015	1	
Chloromethane	ND		mg/kg	0.0043	0.0010	1	
Bromomethane	ND		mg/kg	0.0022	0.00063	1	
Vinyl chloride	ND		mg/kg	0.0011	0.00036	1	
Chloroethane	ND		mg/kg	0.0022	0.00049	1	

MDL

Dilution Factor

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L1842314-03 Date Collected: 10/17/18 10:20

Client ID: 02B-IMPORTED-FILL-03 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailletei	Result	Qualifie	Ullita	IN.L	MIDL	Dilution i actor	
Volatile Organics by GC/MS-5035 - \	Westborough Lab						
1,1-Dichloroethene	ND		mg/kg	0.0011	0.00026	1	
trans-1,2-Dichloroethene	ND		mg/kg	0.0016	0.00015	1	
Trichloroethene	ND		mg/kg	0.00054	0.00015	1	
1,2-Dichlorobenzene	ND		mg/kg	0.0022	0.00016	1	
1,3-Dichlorobenzene	ND		mg/kg	0.0022	0.00016	1	
1,4-Dichlorobenzene	ND		mg/kg	0.0022	0.00018	1	
Methyl tert butyl ether	ND		mg/kg	0.0022	0.00022	1	
p/m-Xylene	ND		mg/kg	0.0022	0.00061	1	
o-Xylene	ND		mg/kg	0.0011	0.00032	1	
Xylene (Total)	ND		mg/kg	0.0011	0.00032	1	
cis-1,2-Dichloroethene	ND		mg/kg	0.0011	0.00019	1	
1,2-Dichloroethene (total)	ND		mg/kg	0.0011	0.00015	1	
Styrene	ND		mg/kg	0.0011	0.00021	1	
Dichlorodifluoromethane	ND		mg/kg	0.011	0.00099	1	
Acetone	0.019		mg/kg	0.011	0.0052	1	
Carbon disulfide	ND		mg/kg	0.011	0.0049	1	
2-Butanone	ND		mg/kg	0.011	0.0024	1	
4-Methyl-2-pentanone	ND		mg/kg	0.011	0.0014	1	
2-Hexanone	ND		mg/kg	0.011	0.0013	1	
Bromochloromethane	ND		mg/kg	0.0022	0.00022	1	
Isopropylbenzene	ND		mg/kg	0.0011	0.00012	1	
1,2,3-Trichlorobenzene	ND		mg/kg	0.0022	0.00035	1	
1,2,4-Trichlorobenzene	ND		mg/kg	0.0022	0.00029	1	
Methyl Acetate	0.0057		mg/kg	0.0043	0.0010	1	
Cyclohexane	ND		mg/kg	0.011	0.00059	1	
Methyl cyclohexane	ND		mg/kg	0.0043	0.00065	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		mg/kg	0.0043	0.00075	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.005	J	mg/kg	1
Cyclopentane	0.005	NJ	mg/kg	1

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-03 Date Collected: 10/17/18 10:20

Client ID: 02B-IMPORTED-FILL-03 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	87	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	93	70-130	

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-04 Date Collected: 10/17/18 10:25

Client ID: 02B-IMPORTED-FILL-04 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/22/18 17:27

Analyst: MV Percent Solids: 91%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035	- Westborough Lab					
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0032	0.0011	1
1,4-Dioxane	ND		mg/kg	0.11	0.038	1
1,2-Dibromoethane	ND		mg/kg	0.0011	0.00030	1
Methylene chloride	ND		mg/kg	0.0054	0.0025	1
1,1-Dichloroethane	ND		mg/kg	0.0011	0.00016	1
Chloroform	0.00051	J	mg/kg	0.0016	0.00015	1
Carbon tetrachloride	ND		mg/kg	0.0011	0.00025	1
1,2-Dichloropropane	ND		mg/kg	0.0011	0.00013	1
Dibromochloromethane	ND		mg/kg	0.0011	0.00015	1
1,1,2-Trichloroethane	ND		mg/kg	0.0011	0.00029	1
Tetrachloroethene	ND		mg/kg	0.00054	0.00021	1
Chlorobenzene	ND		mg/kg	0.00054	0.00014	1
Trichlorofluoromethane	ND		mg/kg	0.0043	0.00075	1
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00028	1
1,1,1-Trichloroethane	ND		mg/kg	0.00054	0.00018	1
Bromodichloromethane	ND		mg/kg	0.00054	0.00012	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00029	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00054	0.00017	1
1,3-Dichloropropene, Total	ND		mg/kg	0.00054	0.00017	1
Bromoform	ND		mg/kg	0.0043	0.00026	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00054	0.00018	1
Benzene	ND		mg/kg	0.00054	0.00018	1
Toluene	ND		mg/kg	0.0011	0.00059	1
Ethylbenzene	ND		mg/kg	0.0011	0.00015	1
Chloromethane	ND		mg/kg	0.0043	0.0010	1
Bromomethane	ND		mg/kg	0.0022	0.00063	1
Vinyl chloride	ND		mg/kg	0.0011	0.00036	1
Chloroethane	ND		mg/kg	0.0022	0.00049	1

MDL

Dilution Factor

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-04 Date Collected: 10/17/18 10:25

Client ID: 02B-IMPORTED-FILL-04 Date Received: 10/17/18

Result

Sample Location: YONKERS, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailletei	itesuit Qualii	iei Oilita	IVE.	IIIDL	Dilution ractor	
Volatile Organics by GC/MS-5035 -	Westborough Lab					
1,1-Dichloroethene	ND	mg/kg	0.0011	0.00026	1	
trans-1,2-Dichloroethene	ND	mg/kg	0.0016	0.00015	1	
Trichloroethene	ND	mg/kg	0.00054	0.00015	1	
1,2-Dichlorobenzene	ND	mg/kg	0.0022	0.00016	1	
1,3-Dichlorobenzene	ND	mg/kg	0.0022	0.00016	1	
1,4-Dichlorobenzene	ND	mg/kg	0.0022	0.00018	1	
Methyl tert butyl ether	ND	mg/kg	0.0022	0.00022	1	
p/m-Xylene	ND	mg/kg	0.0022	0.00060	1	
o-Xylene	ND	mg/kg	0.0011	0.00031	1	
Xylene (Total)	ND	mg/kg	0.0011	0.00031	1	
cis-1,2-Dichloroethene	ND	mg/kg	0.0011	0.00019	1	
1,2-Dichloroethene (total)	ND	mg/kg	0.0011	0.00015	1	
Styrene	ND	mg/kg	0.0011	0.00021	1	
Dichlorodifluoromethane	ND	mg/kg	0.011	0.00099	1	
Acetone	0.018	mg/kg	0.011	0.0052	1	
Carbon disulfide	ND	mg/kg	0.011	0.0049	1	
2-Butanone	ND	mg/kg	0.011	0.0024	1	
4-Methyl-2-pentanone	ND	mg/kg	0.011	0.0014	1	
2-Hexanone	ND	mg/kg	0.011	0.0013	1	
Bromochloromethane	ND	mg/kg	0.0022	0.00022	1	
Isopropylbenzene	ND	mg/kg	0.0011	0.00012	1	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0022	0.00035	1	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0022	0.00029	1	
Methyl Acetate	ND	mg/kg	0.0043	0.0010	1	
Cyclohexane	ND	mg/kg	0.011	0.00059	1	
Methyl cyclohexane	ND	mg/kg	0.0043	0.00065	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	mg/kg	0.0043	0.00075	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.005	J	mg/kg	1
Cyclopentane	0.005	NJ	mg/kg	1

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-04 Date Collected: 10/17/18 10:25

Client ID: 02B-IMPORTED-FILL-04 Date Received: 10/17/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	94	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-05 Date Collected: 10/17/18 10:30

Client ID: 02B-IMPORTED-FILL-05 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/22/18 17:54

Analyst: MV Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS-5035 - Westborough Lab							
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0046	0.0015	1	
1,4-Dioxane	ND		mg/kg	0.15	0.053	1	
1,2-Dibromoethane	ND		mg/kg	0.0015	0.00042	1	
Methylene chloride	ND		mg/kg	0.0076	0.0035	1	
1,1-Dichloroethane	ND		mg/kg	0.0015	0.00022	1	
Chloroform	0.00032	J	mg/kg	0.0023	0.00021	1	
Carbon tetrachloride	ND		mg/kg	0.0015	0.00035	1	
1,2-Dichloropropane	ND		mg/kg	0.0015	0.00019	1	
Dibromochloromethane	ND		mg/kg	0.0015	0.00021	1	
1,1,2-Trichloroethane	ND		mg/kg	0.0015	0.00040	1	
Tetrachloroethene	ND		mg/kg	0.00076	0.00030	1	
Chlorobenzene	ND		mg/kg	0.00076	0.00019	1	
Trichlorofluoromethane	ND		mg/kg	0.0061	0.0010	1	
1,2-Dichloroethane	ND		mg/kg	0.0015	0.00039	1	
1,1,1-Trichloroethane	ND		mg/kg	0.00076	0.00025	1	
Bromodichloromethane	ND		mg/kg	0.00076	0.00016	1	
trans-1,3-Dichloropropene	ND		mg/kg	0.0015	0.00041	1	
cis-1,3-Dichloropropene	ND		mg/kg	0.00076	0.00024	1	
1,3-Dichloropropene, Total	ND		mg/kg	0.00076	0.00024	1	
Bromoform	ND		mg/kg	0.0061	0.00037	1	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00076	0.00025	1	
Benzene	ND		mg/kg	0.00076	0.00025	1	
Toluene	ND		mg/kg	0.0015	0.00082	1	
Ethylbenzene	ND		mg/kg	0.0015	0.00021	1	
Chloromethane	ND		mg/kg	0.0061	0.0014	1	
Bromomethane	ND		mg/kg	0.0030	0.00088	1	
Vinyl chloride	ND		mg/kg	0.0015	0.00051	1	
Chloroethane	ND		mg/kg	0.0030	0.00068	1	

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-05 Date Collected: 10/17/18 10:30

Client ID: 02B-IMPORTED-FILL-05 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 -	Westborough Lab					
1,1-Dichloroethene	ND		mg/kg	0.0015	0.00036	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0023	0.00021	1
Trichloroethene	ND		mg/kg	0.00076	0.00021	1
1,2-Dichlorobenzene	ND		mg/kg	0.0030	0.00022	1
1,3-Dichlorobenzene	ND		mg/kg	0.0030	0.00022	1
1,4-Dichlorobenzene	ND		mg/kg	0.0030	0.00026	1
Methyl tert butyl ether	ND		mg/kg	0.0030	0.00030	1
p/m-Xylene	ND		mg/kg	0.0030	0.00085	1
o-Xylene	ND		mg/kg	0.0015	0.00044	1
Xylene (Total)	ND		mg/kg	0.0015	0.00044	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0015	0.00026	1
1,2-Dichloroethene (total)	ND		mg/kg	0.0015	0.00021	1
Styrene	ND		mg/kg	0.0015	0.00030	1
Dichlorodifluoromethane	ND		mg/kg	0.015	0.0014	1
Acetone	0.043		mg/kg	0.015	0.0073	1
Carbon disulfide	ND		mg/kg	0.015	0.0069	1
2-Butanone	ND		mg/kg	0.015	0.0034	1
4-Methyl-2-pentanone	ND		mg/kg	0.015	0.0019	1
2-Hexanone	ND		mg/kg	0.015	0.0018	1
Bromochloromethane	ND		mg/kg	0.0030	0.00031	1
Isopropylbenzene	ND		mg/kg	0.0015	0.00016	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0030	0.00049	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0030	0.00041	1
Methyl Acetate	ND		mg/kg	0.0061	0.0014	1
Cyclohexane	ND		mg/kg	0.015	0.00082	1
Methyl cyclohexane	ND		mg/kg	0.0061	0.00091	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		mg/kg	0.0061	0.0010	1

Tentatively Identified Compounds				
Total TIC Compounds	0.026	J	mg/kg	1
Cyclopentane	0.007	NJ	mg/kg	1
Naphthalene	0.019	NJ	mg/kg	1

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-05 Date Collected: 10/17/18 10:30

Client ID: 02B-IMPORTED-FILL-05 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	88	70-130	
Toluene-d8	95	70-130	
4-Bromofluorobenzene	96	70-130	
Dibromofluoromethane	86	70-130	

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-06 Date Collected: 10/17/18 10:35

Client ID: 02B-IMPORTED-FILL-06 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/22/18 18:22

Analyst: MV Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - V	Vestborough Lab					
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0039	0.0013	1
1,4-Dioxane	ND		mg/kg	0.13	0.046	1
1,2-Dibromoethane	ND		mg/kg	0.0013	0.00036	1
Methylene chloride	ND		mg/kg	0.0065	0.0030	1
1,1-Dichloroethane	ND		mg/kg	0.0013	0.00019	1
Chloroform	ND		mg/kg	0.0020	0.00018	1
Carbon tetrachloride	ND		mg/kg	0.0013	0.00030	1
1,2-Dichloropropane	ND		mg/kg	0.0013	0.00016	1
Dibromochloromethane	ND		mg/kg	0.0013	0.00018	1
1,1,2-Trichloroethane	ND		mg/kg	0.0013	0.00035	1
Tetrachloroethene	ND		mg/kg	0.00065	0.00026	1
Chlorobenzene	ND		mg/kg	0.00065	0.00017	1
Trichlorofluoromethane	ND		mg/kg	0.0052	0.00091	1
1,2-Dichloroethane	ND		mg/kg	0.0013	0.00034	1
1,1,1-Trichloroethane	ND		mg/kg	0.00065	0.00022	1
Bromodichloromethane	ND		mg/kg	0.00065	0.00014	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0013	0.00036	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00065	0.00021	1
1,3-Dichloropropene, Total	ND		mg/kg	0.00065	0.00021	1
Bromoform	ND		mg/kg	0.0052	0.00032	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00065	0.00022	1
Benzene	ND		mg/kg	0.00065	0.00022	1
Toluene	ND		mg/kg	0.0013	0.00071	1
Ethylbenzene	ND		mg/kg	0.0013	0.00018	1
Chloromethane	ND		mg/kg	0.0052	0.0012	1
Bromomethane	ND		mg/kg	0.0026	0.00076	1
Vinyl chloride	ND		mg/kg	0.0013	0.00044	1
Chloroethane	ND		mg/kg	0.0026	0.00059	1

Project Name: Lab Number: **CPG III** L1842314

Project Number: Report Date: 15.5268 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-06 Date Collected: 10/17/18 10:35

Date Received: 10/17/18 Client ID: 02B-IMPORTED-FILL-06 Not Specified

Sample Location: Field Prep: YONKERS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - V	Westborough Lab					
1,1-Dichloroethene	ND		mg/kg	0.0013	0.00031	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0020	0.00018	1
Trichloroethene	ND		mg/kg	0.00065	0.00018	1
1,2-Dichlorobenzene	ND		mg/kg	0.0026	0.00019	1
1,3-Dichlorobenzene	ND		mg/kg	0.0026	0.00019	1
1,4-Dichlorobenzene	ND		mg/kg	0.0026	0.00022	1
Methyl tert butyl ether	ND		mg/kg	0.0026	0.00026	1
p/m-Xylene	ND		mg/kg	0.0026	0.00073	1
o-Xylene	ND		mg/kg	0.0013	0.00038	1
Xylene (Total)	ND		mg/kg	0.0013	0.00038	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0013	0.00023	1
1,2-Dichloroethene (total)	ND		mg/kg	0.0013	0.00018	1
Styrene	ND		mg/kg	0.0013	0.00026	1
Dichlorodifluoromethane	ND		mg/kg	0.013	0.0012	1
Acetone	0.074		mg/kg	0.013	0.0063	1
Carbon disulfide	ND		mg/kg	0.013	0.0060	1
2-Butanone	0.0043	J	mg/kg	0.013	0.0029	1
4-Methyl-2-pentanone	ND		mg/kg	0.013	0.0017	1
2-Hexanone	ND		mg/kg	0.013	0.0015	1
Bromochloromethane	ND		mg/kg	0.0026	0.00027	1
Isopropylbenzene	ND		mg/kg	0.0013	0.00014	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0026	0.00042	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0026	0.00036	1
Methyl Acetate	ND		mg/kg	0.0052	0.0012	1
Cyclohexane	ND		mg/kg	0.013	0.00071	1
Methyl cyclohexane	ND		mg/kg	0.0052	0.00079	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		mg/kg	0.0052	0.00091	1

Tentatively Identified Compounds				
Total TIC Compounds	0.011	J	mg/kg	1
1-Pentene	0.011	NJ	mg/kg	1

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-06 Date Collected: 10/17/18 10:35

Client ID: 02B-IMPORTED-FILL-06 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	89	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	89	70-130	

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/22/18 09:18

Analyst: MV

	Parameter	Result	Qualifier	Units	3	RL	MDL
1,4-Dioxane ND mg/kg 0.10 0.035 1,2-Dibromoethane ND mg/kg 0.0010 0.00028 Methylene chloride ND mg/kg 0.0050 0.0023 1,1-Dichloroethane ND mg/kg 0.0010 0.00014 Chloroform ND mg/kg 0.0015 0.00014 Carbon tetrachloride ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.0020 0.0016 Tetrachloroethene ND mg/kg 0.0050 0.00020 Chlorobenzene ND mg/kg 0.0040 0.00020 Trichlorofluoromethane ND mg/kg 0.00040 0.00070 <	Volatile Organics by GC/MS	- Westborough Lab	for sample	e(s):	03-06	Batch:	WG1171103-5
1,2-Dibromoethane	1,2-Dibromo-3-chloropropane	ND		mg/k	g	0.0030	0.0010
Methylene chloride ND mg/kg 0.0050 0.0023 1,1-Dichloroethane ND mg/kg 0.0010 0.00014 Chloroform ND mg/kg 0.0015 0.00014 Carbon tetrachloride ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00014 1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.00050 0.00016 Tetrachloroethane ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.00050 0.00013 1,1-1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050	1,4-Dioxane	ND		mg/k	g	0.10	0.035
1,1-Dichloroethane ND mg/kg 0.0010 0.00014 Chloroform ND mg/kg 0.0015 0.00014 Carbon tetrachloride ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00014 1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.0020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.00040 0.00070 1,2-Dichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050	1,2-Dibromoethane	ND		mg/k	g	0.0010	0.00028
Chloroform ND mg/kg 0.0015 0.00014 Carbon tetrachloride ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00014 1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.0020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00017 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.000	Methylene chloride	ND		mg/k	g	0.0050	0.0023
Carbon tetrachloride ND mg/kg 0.0010 0.00023 1,2-Dichloropropane ND mg/kg 0.0010 0.00012 Dibromochloromethane ND mg/kg 0.0010 0.00014 1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.0020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg	1,1-Dichloroethane	ND		mg/k	g	0.0010	0.00014
1,2-Dichloropropane ND	Chloroform	ND		mg/k	g	0.0015	0.00014
Dibromochloromethane ND mg/kg 0.0010 0.00014 1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg <td< td=""><td>Carbon tetrachloride</td><td>ND</td><td></td><td>mg/k</td><td>g</td><td>0.0010</td><td>0.00023</td></td<>	Carbon tetrachloride	ND		mg/k	g	0.0010	0.00023
1,1,2-Trichloroethane ND mg/kg 0.0010 0.00027 2-Chloroethylvinyl ether ND mg/kg 0.020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,1-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050	1,2-Dichloropropane	ND		mg/k	g	0.0010	0.00012
2-Chloroethylvinyl ether ND mg/kg 0.020 0.0016 Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,1-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.00050 0.00016 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050	Dibromochloromethane	ND		mg/k	g	0.0010	0.00014
Tetrachloroethene ND mg/kg 0.00050 0.00020 Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 <td>1,1,2-Trichloroethane</td> <td>ND</td> <td></td> <td>mg/k</td> <td>g</td> <td>0.0010</td> <td>0.00027</td>	1,1,2-Trichloroethane	ND		mg/k	g	0.0010	0.00027
Chlorobenzene ND mg/kg 0.00050 0.00013 Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0040 0.0009	2-Chloroethylvinyl ether	ND		mg/k	g	0.020	0.0016
Trichlorofluoromethane ND mg/kg 0.0040 0.00070 1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.0050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00093 Bromomethane ND mg/kg 0.0020 0.00058 </td <td>Tetrachloroethene</td> <td>ND</td> <td></td> <td>mg/k</td> <td>g</td> <td>0.00050</td> <td>0.00020</td>	Tetrachloroethene	ND		mg/k	g	0.00050	0.00020
1,2-Dichloroethane ND mg/kg 0.0010 0.00026 1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0040 0.00093	Chlorobenzene	ND		mg/k	g	0.00050	0.00013
1,1,1-Trichloroethane ND mg/kg 0.00050 0.00017 Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	Trichlorofluoromethane	ND		mg/k	g	0.0040	0.00070
Bromodichloromethane ND mg/kg 0.00050 0.00011 trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	1,2-Dichloroethane	ND		mg/k	g	0.0010	0.00026
trans-1,3-Dichloropropene ND mg/kg 0.0010 0.00027 cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	1,1,1-Trichloroethane	ND		mg/k	g	0.00050	0.00017
cis-1,3-Dichloropropene ND mg/kg 0.00050 0.00016 1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0040 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	Bromodichloromethane	ND		mg/k	g	0.00050	0.00011
1,3-Dichloropropene, Total ND mg/kg 0.00050 0.00016 1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.0010 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	trans-1,3-Dichloropropene	ND		mg/k	g	0.0010	0.00027
1,1-Dichloropropene ND mg/kg 0.00050 0.00016 Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	cis-1,3-Dichloropropene	ND		mg/k	g	0.00050	0.00016
Bromoform ND mg/kg 0.0040 0.00025 1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	1,3-Dichloropropene, Total	ND		mg/k	g	0.00050	0.00016
1,1,2,2-Tetrachloroethane ND mg/kg 0.00050 0.00017 Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	1,1-Dichloropropene	ND		mg/k	g	0.00050	0.00016
Benzene ND mg/kg 0.00050 0.00017 Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	Bromoform	ND		mg/k	g	0.0040	0.00025
Toluene ND mg/kg 0.0010 0.00054 Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	1,1,2,2-Tetrachloroethane	ND		mg/k	g	0.00050	0.00017
Ethylbenzene ND mg/kg 0.0010 0.00014 Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	Benzene	ND		mg/k	g	0.00050	0.00017
Chloromethane ND mg/kg 0.0040 0.00093 Bromomethane ND mg/kg 0.0020 0.00058	Toluene	ND		mg/k	g	0.0010	0.00054
Bromomethane ND mg/kg 0.0020 0.00058	Ethylbenzene	ND		mg/k	g	0.0010	0.00014
	Chloromethane	ND		mg/k	g	0.0040	0.00093
Vinyl chloride ND mg/kg 0.0010 0.00034	Bromomethane	ND		mg/k	g	0.0020	0.00058
	Vinyl chloride	ND		mg/k	g	0.0010	0.00034

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/22/18 09:18

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS -	Westborough La	b for sampl	e(s): 03-	-06 Batch:	WG1171103-5	
Chloroethane	ND		mg/kg	0.0020	0.00045	
1,1-Dichloroethene	ND		mg/kg	0.0010	0.00024	
trans-1,2-Dichloroethene	ND		mg/kg	0.0015	0.00014	
Trichloroethene	ND		mg/kg	0.00050	0.00014	
1,2-Dichlorobenzene	ND		mg/kg	0.0020	0.00014	
1,3-Dichlorobenzene	ND		mg/kg	0.0020	0.00015	
1,4-Dichlorobenzene	ND		mg/kg	0.0020	0.00017	
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	
p/m-Xylene	ND		mg/kg	0.0020	0.00056	
o-Xylene	ND		mg/kg	0.0010	0.00029	
Xylene (Total)	ND		mg/kg	0.0010	0.00029	
cis-1,2-Dichloroethene	ND		mg/kg	0.0010	0.00018	
1,2-Dichloroethene (total)	ND		mg/kg	0.0010	0.00014	
Dibromomethane	ND		mg/kg	0.0020	0.00024	
1,4-Dichlorobutane	ND		mg/kg	0.010	0.00023	
1,2,3-Trichloropropane	ND		mg/kg	0.0020	0.00013	
Styrene	ND		mg/kg	0.0010	0.00020	
Dichlorodifluoromethane	ND		mg/kg	0.010	0.00092	
Acetone	ND		mg/kg	0.010	0.0048	
Carbon disulfide	ND		mg/kg	0.010	0.0046	
2-Butanone	ND		mg/kg	0.010	0.0022	
Vinyl acetate	ND		mg/kg	0.010	0.0022	
4-Methyl-2-pentanone	ND		mg/kg	0.010	0.0013	
2-Hexanone	ND		mg/kg	0.010	0.0012	
Ethyl methacrylate	ND		mg/kg	0.010	0.0016	
Acrolein	ND		mg/kg	0.025	0.0056	
Acrylonitrile	ND		mg/kg	0.0040	0.0012	
Bromochloromethane	ND		mg/kg	0.0020	0.00020	
Tetrahydrofuran	ND		mg/kg	0.0040	0.0016	

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/22/18 09:18

Analyst: MV

arameter	Result	Qualifier	Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lal	o for sampl	e(s): 03-0	6 Batch:	WG1171103-5
2,2-Dichloropropane	ND		mg/kg	0.0020	0.00020
1,3-Dichloropropane	ND		mg/kg	0.0020	0.00017
1,1,1,2-Tetrachloroethane	ND		mg/kg	0.00050	0.00013
Bromobenzene	ND		mg/kg	0.0020	0.00014
n-Butylbenzene	ND		mg/kg	0.0010	0.00017
sec-Butylbenzene	ND		mg/kg	0.0010	0.00015
tert-Butylbenzene	ND		mg/kg	0.0020	0.00012
o-Chlorotoluene	ND		mg/kg	0.0020	0.00019
p-Chlorotoluene	ND		mg/kg	0.0020	0.00011
Hexachlorobutadiene	ND		mg/kg	0.0040	0.00017
Isopropylbenzene	ND		mg/kg	0.0010	0.00011
p-Isopropyltoluene	ND		mg/kg	0.0010	0.00011
Naphthalene	ND		mg/kg	0.0040	0.00065
n-Propylbenzene	ND		mg/kg	0.0010	0.00017
1,2,3-Trichlorobenzene	ND		mg/kg	0.0020	0.00032
1,2,4-Trichlorobenzene	ND		mg/kg	0.0020	0.00027
1,3,5-Trimethylbenzene	ND		mg/kg	0.0020	0.00019
1,2,4-Trimethylbenzene	ND		mg/kg	0.0020	0.00033
trans-1,4-Dichloro-2-butene	ND		mg/kg	0.0050	0.0014
Ethyl ether	ND		mg/kg	0.0020	0.00034
Methyl Acetate	ND		mg/kg	0.0040	0.00095
Ethyl Acetate	ND		mg/kg	0.010	0.0012
Isopropyl Ether	ND		mg/kg	0.0020	0.00021
Cyclohexane	ND		mg/kg	0.010	0.00054
tert-Butyl Alcohol	ND		mg/kg	0.020	0.0051
Ethyl-Tert-Butyl-Ether	ND		mg/kg	0.0020	0.00013
Tertiary-Amyl Methyl Ether	ND		mg/kg	0.0020	0.00018
Methyl cyclohexane	ND		mg/kg	0.0040	0.00060
1,1,2-Trichloro-1,2,2-Trifluoroetha	ne ND		mg/kg	0.0040	0.00069

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 10/22/18 09:18

Analyst: MV

Parameter	Result	Qualifier Uni	ts	RL	MDL	
Volatile Organics by GC/MS -	Westborough Lab	for sample(s):	03-06	Batch:	WG1171103-5	
1,2,4,5-Tetramethylbenzene	ND	mg,	′kg	0.0020	0.00019	
1,4-Diethylbenzene	ND	mg,	′kg	0.0020	0.00018	
4-Ethyltoluene	ND	mg,	′kg	0.0020	0.00038	

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND mg/kg

		Acceptance	
Surrogate	%Recovery Qualif	ier Criteria	
1,2-Dichloroethane-d4	86	70-130	
Toluene-d8	96	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	92	70-130	

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Report Date: 10/24/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery		%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS - Westborough	gh Lab Associated	sample(s):	03-06 Batch:	WG1171103-3	WG1171103-4			
1,2-Dibromo-3-chloropropane	91		92		40-160	1	30	
1,4-Dioxane	101		106		40-160	5	30	
1,2-Dibromoethane	102		104		70-130	2	30	
Methylene chloride	89		88		70-130	1	30	
1,1-Dichloroethane	94		94		70-130	0	30	
Chloroform	96		96		70-130	0	30	
Carbon tetrachloride	96		94		70-130	2	30	
1,2-Dichloropropane	97		97		70-130	0	30	
Dibromochloromethane	97		99		70-130	2	30	
1,1,2-Trichloroethane	100		101		70-130	1	30	
2-Chloroethylvinyl ether	95		95		40-160	0	30	
Tetrachloroethene	102		102		70-130	0	30	
Chlorobenzene	97		97		70-130	0	30	
Trichlorofluoromethane	93		93		40-160	0	30	
1,2-Dichloroethane	88		89		70-130	1	30	
1,1,1-Trichloroethane	97		96		70-130	1	30	
Bromodichloromethane	99		100		70-130	1	30	
trans-1,3-Dichloropropene	100		101		70-130	1	30	
cis-1,3-Dichloropropene	104		104		40-160	0	30	
1,1-Dichloropropene	99		97		70-130	2	30	
Bromoform	99		102		40-160	3	30	
1,1,2,2-Tetrachloroethane	97		100		40-160	3	30	
Benzene	99		99		70-130	0	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Report Date: 10/24/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics by GC/MS - We	estborough Lab Associated	sample(s):	03-06 Batch: V	VG1171103-3	WG1171103-4			
Toluene	97		97		70-130	0		30
Ethylbenzene	97		97		70-130	0		30
Chloromethane	97		95		40-160	2		30
Bromomethane	94		89		40-160	5		30
Vinyl chloride	99		97		70-130	2		30
Chloroethane	88		87		40-160	1		30
1,1-Dichloroethene	96		95		70-130	1		30
trans-1,2-Dichloroethene	100		100		70-130	0		30
Trichloroethene	101		99		70-130	2		30
1,2-Dichlorobenzene	99		99		70-130	0		30
1,3-Dichlorobenzene	98		98		70-130	0		30
1,4-Dichlorobenzene	95		96		70-130	1		30
Methyl tert butyl ether	98		99		70-130	1		30
p/m-Xylene	100		99		70-130	1		30
o-Xylene	100		100		70-130	0		30
cis-1,2-Dichloroethene	101		100		70-130	1		30
Dibromomethane	96		97		70-130	1		30
1,4-Dichlorobutane	92		94		70-130	2		30
1,2,3-Trichloropropane	95		95		70-130	0		30
Styrene	101		102		40-160	1		30
Dichlorodifluoromethane	96		94		40-160	2		30
Acetone	91		98		40-160	7		30
Carbon disulfide	83		82		40-160	1		30

10/24/18

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
olatile Organics by GC/MS -	- Westborough Lab Associated	sample(s): 03-0	06 Batch: W	VG1171103-3	WG1171103-4			
2-Butanone	76		96		40-160	23	30	
Vinyl acetate	90		95		70-130	5	30	
4-Methyl-2-pentanone	95		97		40-160	2	30	
2-Hexanone	99		100		40-160	1	30	
Ethyl methacrylate	101		103		70-130	2	30	
Acrolein	86		91		40-160	6	30	
Acrylonitrile	88		97		70-130	10	30	
Bromochloromethane	100		100		70-130	0	30	
Tetrahydrofuran	94		99		70-130	5	30	
2,2-Dichloropropane	96		95		40-160	1	30	
1,3-Dichloropropane	98		98		70-130	0	30	
1,1,1,2-Tetrachloroethane	98		99		70-130	1	30	
Bromobenzene	98		98		70-130	0	30	
n-Butylbenzene	97		96		70-130	1	30	
sec-Butylbenzene	96		96		70-130	0	30	
tert-Butylbenzene	97		96		70-130	1	30	
o-Chlorotoluene	97		97		70-130	0	30	
p-Chlorotoluene	94		93		70-130	1	30	
Hexachlorobutadiene	96		97		70-130	1	30	
Isopropylbenzene	95		96		70-130	1	30	
p-Isopropyltoluene	97		97		70-130	0	30	
Naphthalene	98		100		40-160	2	30	
n-Propylbenzene	95		95		70-130	0	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Report Date: 10/24/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	03-06 Batch: V	VG1171103-3 WG1171103-4		
1,2,3-Trichlorobenzene	100		102	70-130	2	30
1,2,4-Trichlorobenzene	103		105	70-130	2	30
1,3,5-Trimethylbenzene	96		96	70-130	0	30
1,2,4-Trimethylbenzene	97		97	70-130	0	30
trans-1,4-Dichloro-2-butene	87		88	70-130	1	30
Ethyl ether	95		96	70-130	1	30
Methyl Acetate	87		90	70-130	3	30
Ethyl Acetate	95		98	70-130	3	30
Isopropyl Ether	95		95	70-130	0	30
Cyclohexane	98		97	70-130	1	30
tert-Butyl Alcohol	93		99	40-160	6	30
Ethyl-Tert-Butyl-Ether	96		96	70-130	0	30
Tertiary-Amyl Methyl Ether	99		100	70-130	1	30
Methyl cyclohexane	100		100	70-130	0	30
1,1,2-Trichloro-1,2,2-Trifluoroethane	90		88	70-130	2	30
1,2,4,5-Tetramethylbenzene	99		100	70-130	1	30
1,4-Diethylbenzene	99		99	70-130	0	30
4-Ethyltoluene	97		97	70-130	0	30

Lab Control Sample Analysis

Batch Quality Control Project Name: CPG III

Lab Number:

L1842314

Project Number: 15.5268

Report Date:

10/24/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits Parameter Qual Qual RPD Qual

Volatile Organics by GC/MS - Westborough Lab Associated sample(s): 03-06 Batch: WG1171103-3 WG1171103-4

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	85	87	70-130
Toluene-d8	95	96	70-130
4-Bromofluorobenzene	96	96	70-130
Dibromofluoromethane	94	94	70-130

SEMIVOLATILES

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 10/19/18 19:33

Analyst: CB Percent Solids: 93%

10/23/18 05:56

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Wes	stborough Lab					
Acenaphthene	ND		mg/kg	0.14	0.015	1
2-Chloronaphthalene	ND		mg/kg	0.18	0.017	1
Hexachlorobenzene	ND		mg/kg	0.051	0.017	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.064	0.021	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.14	0.045	1
2,4-Dinitrotoluene	ND		mg/kg	0.088	0.029	1
2,6-Dinitrotoluene	ND		mg/kg	0.070	0.023	1
Fluoranthene	0.19		mg/kg	0.11	0.020	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.18	0.015	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.21	0.020	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.19	0.017	1
Hexachlorobutadiene	ND		mg/kg	0.066	0.022	1
Hexachlorocyclopentadiene	ND		mg/kg	0.51	0.11	1
Hexachloroethane	ND		mg/kg	0.086	0.029	1
Isophorone	ND		mg/kg	0.060	0.020	1
Naphthalene	ND		mg/kg	0.18	0.022	1
Nitrobenzene	ND		mg/kg	0.079	0.026	1
NDPA/DPA	ND		mg/kg	0.044	0.014	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.045	0.015	1
Bis(2-ethylhexyl)phthalate	0.028	J	mg/kg	0.18	0.018	1
Butyl benzyl phthalate	ND		mg/kg	0.18	0.024	1
Di-n-butylphthalate	ND		mg/kg	0.18	0.016	1
Di-n-octylphthalate	ND		mg/kg	0.18	0.055	1
Diethyl phthalate	ND		mg/kg	0.18	0.016	1
Dimethyl phthalate	ND		mg/kg	0.18	0.017	1
Benzo(a)anthracene	0.096		mg/kg	0.060	0.020	1
Benzo(a)pyrene	0.075	J	mg/kg	0.13	0.043	1
Benzo(b)fluoranthene	0.11		mg/kg	0.045	0.015	1

Project Name: Lab Number: **CPG III** L1842314

Project Number: Report Date: 15.5268 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: Date Received: 10/17/18 02B-IMPORTED-FILL-01 Sample Location: Field Prep: Not Specified YONKERS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	Westborough Lab					
Benzo(k)fluoranthene	0.036	,		0.027	0.012	1
	0.036	J	mg/kg	0.037		
Chrysene	0.096	J	mg/kg	0.11	0.018	1
Acenaphthylene	0.020	J	mg/kg	0.14	0.020	1
Anthracene	0.034	J	mg/kg	0.11	0.016	1
Benzo(ghi)perylene	0.041	J	mg/kg	0.14	0.021	1
Fluorene	0.022	J	mg/kg	0.18	0.017	1
Phenanthrene	0.13		mg/kg	0.11	0.013	1
Dibenzo(a,h)anthracene	ND		mg/kg	0.062	0.020	1
Indeno(1,2,3-cd)pyrene	0.045	J	mg/kg	0.074	0.025	1
Pyrene	0.16		mg/kg	0.11	0.015	1
4-Chloroaniline	ND		mg/kg	0.18	0.020	1
2-Nitroaniline	ND		mg/kg	0.18	0.032	1
3-Nitroaniline	ND		mg/kg	0.18	0.033	1
4-Nitroaniline	ND		mg/kg	0.18	0.073	1
Dibenzofuran	ND		mg/kg	0.18	0.016	1
2-Methylnaphthalene	ND		mg/kg	0.21	0.019	1
2,4,6-Trichlorophenol	ND		mg/kg	0.10	0.034	1
p-Chloro-m-cresol	ND		mg/kg	0.18	0.026	1
2-Chlorophenol	ND		mg/kg	0.058	0.019	1
2,4-Dichlorophenol	ND		mg/kg	0.085	0.028	1
2,4-Dimethylphenol	ND		mg/kg	0.17	0.056	1
2-Nitrophenol	ND		mg/kg	0.38	0.029	1
2,4-Dinitrophenol	ND		mg/kg	0.26	0.082	1
4,6-Dinitro-o-cresol	ND		mg/kg	0.26	0.085	1
Pentachlorophenol	ND		mg/kg	0.12	0.039	1
Phenol	ND		mg/kg	0.18	0.021	1
2-Methylphenol	ND		mg/kg	0.18	0.027	1
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.26	0.026	1
2,4,5-Trichlorophenol	ND		mg/kg	0.18	0.034	1
Carbazole	0.021	J	mg/kg	0.18	0.011	1
4-Nitrophenol	ND		mg/kg	0.25	0.049	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.18	0.020	1
Benzaldehyde	ND		mg/kg	0.23	0.028	1
Caprolactam	ND		mg/kg	0.18	0.038	1
Acetophenone	ND		mg/kg	0.18	0.018	1
Biphenyl	ND		mg/kg	0.40	0.041	1
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.18	0.018	1
* * * * * * * * * * * * * * * * * * * *			שיי שיי			

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Cample Location: Tortice (14)

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor		
Semivolatile Organics by GC/MS - Westborough Lab								
Atrazine	ND		mg/kg	0.14	0.062	1		
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.18	0.036	1		

Tentatively Identified Compounds				
Total TIC Compounds	0.706	J	mg/kg	1
Unknown Amide	0.480	J	mg/kg	1
Unknown	0.226	J	mg/kg	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	48	30-130
Phenol-d6	71	30-130
Nitrobenzene-d5	75	30-130
2-Fluorobiphenyl	78	30-130
2,4,6-Tribromophenol	44	30-130
4-Terphenyl-d14	66	30-130

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 10/19/18 19:33

Analyst: CB Percent Solids: 93%

10/23/18 06:22

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	0.017	J	mg/kg	0.14	0.014	1
2-Chloronaphthalene	ND		mg/kg	0.17	0.017	1
Hexachlorobenzene	ND		mg/kg	0.050	0.017	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.063	0.021	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.13	0.045	1
2,4-Dinitrotoluene	ND		mg/kg	0.087	0.029	1
2,6-Dinitrotoluene	ND		mg/kg	0.069	0.023	1
Fluoranthene	0.17		mg/kg	0.10	0.020	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.17	0.015	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.21	0.020	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.19	0.016	1
Hexachlorobutadiene	ND		mg/kg	0.065	0.022	1
Hexachlorocyclopentadiene	ND		mg/kg	0.50	0.11	1
Hexachloroethane	ND		mg/kg	0.085	0.028	1
Isophorone	ND		mg/kg	0.059	0.020	1
Naphthalene	ND		mg/kg	0.17	0.021	1
Nitrobenzene	ND		mg/kg	0.077	0.026	1
NDPA/DPA	ND		mg/kg	0.043	0.014	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.044	0.014	1
Bis(2-ethylhexyl)phthalate	0.027	J	mg/kg	0.17	0.018	1
Butyl benzyl phthalate	ND		mg/kg	0.17	0.023	1
Di-n-butylphthalate	ND		mg/kg	0.17	0.015	1
Di-n-octylphthalate	ND		mg/kg	0.17	0.054	1
Diethyl phthalate	ND		mg/kg	0.17	0.016	1
Dimethyl phthalate	ND		mg/kg	0.17	0.017	1
Benzo(a)anthracene	0.091		mg/kg	0.059	0.020	1
Benzo(a)pyrene	0.078	J	mg/kg	0.13	0.042	1
Benzo(b)fluoranthene	0.11		mg/kg	0.044	0.014	1

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	· Westborough Lab					
Benzo(k)fluoranthene	0.040		mg/kg	0.037	0.012	1
Chrysene	0.091	J	mg/kg	0.10	0.018	1
Acenaphthylene	ND		mg/kg	0.14	0.020	1
Anthracene	0.034	J	mg/kg	0.10	0.016	1
Benzo(ghi)perylene	0.049	J	mg/kg	0.14	0.020	1
Fluorene	0.024	J	mg/kg	0.17	0.017	1
Phenanthrene	0.12		mg/kg	0.10	0.012	1
Dibenzo(a,h)anthracene	ND		mg/kg	0.061	0.020	1
Indeno(1,2,3-cd)pyrene	0.050	J	mg/kg	0.073	0.024	1
Pyrene	0.15		mg/kg	0.10	0.015	1
4-Chloroaniline	ND		mg/kg	0.17	0.020	1
2-Nitroaniline	ND		mg/kg	0.17	0.032	1
3-Nitroaniline	ND		mg/kg	0.17	0.033	1
4-Nitroaniline	ND		mg/kg	0.17	0.072	1
Dibenzofuran	ND		mg/kg	0.17	0.015	1
2-Methylnaphthalene	ND		mg/kg	0.21	0.018	1
2,4,6-Trichlorophenol	ND		mg/kg	0.099	0.033	1
p-Chloro-m-cresol	ND		mg/kg	0.17	0.026	1
2-Chlorophenol	ND		mg/kg	0.058	0.019	1
2,4-Dichlorophenol	ND		mg/kg	0.084	0.028	1
2,4-Dimethylphenol	ND		mg/kg	0.17	0.055	1
2-Nitrophenol	ND		mg/kg	0.38	0.029	1
2,4-Dinitrophenol	ND		mg/kg	0.25	0.081	1
4,6-Dinitro-o-cresol	ND		mg/kg	0.25	0.084	1
Pentachlorophenol	ND		mg/kg	0.12	0.038	1
Phenol	ND		mg/kg	0.17	0.021	1
2-Methylphenol	ND		mg/kg	0.17	0.027	1
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.25	0.025	1
2,4,5-Trichlorophenol	ND		mg/kg	0.17	0.033	1
Carbazole	0.014	J	mg/kg	0.17	0.011	1
4-Nitrophenol	ND		mg/kg	0.24	0.048	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.17	0.019	1
Benzaldehyde	ND		mg/kg	0.23	0.027	1
Caprolactam	ND		mg/kg	0.17	0.037	1
Acetophenone	ND		mg/kg	0.17	0.018	1
Biphenyl	ND		mg/kg	0.40	0.040	1
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.17	0.018	1

Project Name: Lab Number: **CPG III** L1842314

Project Number: Report Date: 15.5268 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18 Sample Location: Field Prep: Not Specified YONKERS, NY

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS	- Westborough Lab						
Atrazine	ND		mg/kg	0.14	0.061	1	
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.17	0.035	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.830	J	mg/kg	1
Unknown Amide	0.672	J	mg/kg	1
Unknown	0.158	J	mg/kg	1

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
2-Fluorophenol	40		30-130	
Phenol-d6	72		30-130	
Nitrobenzene-d5	76		30-130	
2-Fluorobiphenyl	80		30-130	
2,4,6-Tribromophenol	27	Q	30-130	
4-Terphenyl-d14	60		30-130	

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 1,8270D 10/24/18 09:52

Analyst: RC

Extraction Method: EPA 3546
Extraction Date: 10/19/18 19:33

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1170292-1
Acenaphthene	ND		mg/kg	0.13		0.014
2-Chloronaphthalene	ND		mg/kg	0.16		0.015
Hexachlorobenzene	ND		mg/kg	0.047		0.015
Bis(2-chloroethyl)ether	ND		mg/kg	0.058		0.020
3,3'-Dichlorobenzidine	ND		mg/kg	0.12		0.042
2,4-Dinitrotoluene	ND		mg/kg	0.081		0.027
2,6-Dinitrotoluene	ND		mg/kg	0.064		0.021
Fluoranthene	ND		mg/kg	0.097		0.019
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16		0.014
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.19		0.019
Bis(2-chloroethoxy)methane	ND		mg/kg	0.18		0.015
Hexachlorobutadiene	ND		mg/kg	0.060		0.020
Hexachlorocyclopentadiene	ND		mg/kg	0.46		0.10
Hexachloroethane	ND		mg/kg	0.079		0.026
Isophorone	ND		mg/kg	0.054		0.018
Naphthalene	ND		mg/kg	0.16		0.020
Nitrobenzene	ND		mg/kg	0.072		0.024
NDPA/DPA	ND		mg/kg	0.040		0.013
n-Nitrosodi-n-propylamine	ND		mg/kg	0.041		0.014
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16		0.017
Butyl benzyl phthalate	ND		mg/kg	0.16		0.022
Di-n-butylphthalate	ND		mg/kg	0.16		0.014
Di-n-octylphthalate	ND		mg/kg	0.16		0.051
Diethyl phthalate	ND		mg/kg	0.16		0.015
Dimethyl phthalate	ND		mg/kg	0.16		0.016
Benzo(a)anthracene	ND		mg/kg	0.054		0.018
Benzo(a)pyrene	ND		mg/kg	0.12		0.040
Benzo(b)fluoranthene	ND		mg/kg	0.041		0.014
Benzo(k)fluoranthene	ND		mg/kg	0.034		0.011

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 1,8270D 10/24/18 09:52

Analyst: RC

Extraction Method: EPA 3546
Extraction Date: 10/19/18 19:33

arameter	Result	Qualifier	Units	RL		MDL
semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1170292-1
Chrysene	ND		mg/kg	0.097		0.017
Acenaphthylene	ND		mg/kg	0.13		0.018
Anthracene	ND		mg/kg	0.097		0.014
Benzo(ghi)perylene	ND		mg/kg	0.13		0.019
Fluorene	ND		mg/kg	0.16		0.016
Phenanthrene	ND		mg/kg	0.097		0.012
Dibenzo(a,h)anthracene	ND		mg/kg	0.056		0.019
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.068		0.023
Pyrene	ND		mg/kg	0.097		0.014
4-Chloroaniline	ND		mg/kg	0.16		0.019
2-Nitroaniline	ND		mg/kg	0.16		0.030
3-Nitroaniline	ND		mg/kg	0.16		0.031
4-Nitroaniline	ND		mg/kg	0.16		0.067
Dibenzofuran	ND		mg/kg	0.16		0.014
2-Methylnaphthalene	ND		mg/kg	0.19		0.017
2,4,6-Trichlorophenol	ND		mg/kg	0.092		0.031
p-Chloro-m-cresol	ND		mg/kg	0.16		0.024
2-Chlorophenol	ND		mg/kg	0.054		0.018
2,4-Dichlorophenol	ND		mg/kg	0.078		0.026
2,4-Dimethylphenol	ND		mg/kg	0.15		0.052
2-Nitrophenol	ND		mg/kg	0.35		0.027
2,4-Dinitrophenol	ND		mg/kg	0.23		0.076
4,6-Dinitro-o-cresol	ND		mg/kg	0.23		0.078
Pentachlorophenol	ND		mg/kg	0.11		0.036
Phenol	ND		mg/kg	0.16		0.019
2-Methylphenol	ND		mg/kg	0.16		0.025
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.23		0.023
2,4,5-Trichlorophenol	ND		mg/kg	0.16		0.031
Carbazole	ND		mg/kg	0.16		0.010

Project Name: Lab Number: CPG III L1842314 **Project Number:** 15.5268

Report Date: 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: Extraction Method: EPA 3546 1,8270D Analytical Date: 10/24/18 09:52 10/19/18 19:33 Extraction Date:

Analyst: RC

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01-02	Batch:	WG1170292-1	
4-Nitrophenol	ND		mg/kg	0.23		0.045	
4-Bromophenyl phenyl ether	ND		mg/kg	0.16		0.018	
Benzaldehyde	ND		mg/kg	0.21		0.025	
Caprolactam	ND		mg/kg	0.16		0.035	
Acetophenone	ND		mg/kg	0.16		0.017	
Biphenyl	ND		mg/kg	0.37		0.038	
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.16		0.017	
Atrazine	ND		mg/kg	0.13		0.057	
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.16		0.033	

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	mg/kg

Surrogate	%Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	87	30-130
Phenol-d6	91	30-130
Nitrobenzene-d5	86	30-130
2-Fluorobiphenyl	84	30-130
2,4,6-Tribromophenol	58	30-130
4-Terphenyl-d14	72	30-130

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

arameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	RPD imits
Semivolatile Organics by GC/MS	- Westborough Lab Asso	ciated sample(s)	: 01-02	Batch:	WG117	70292-2 WG11702	292-3	
Acenaphthene	98		76			70-130	25	30
2-Chloronaphthalene	95		78			70-130	20	30
Hexachlorobenzene	78		62		Q	70-130	23	30
Bis(2-chloroethyl)ether	82		65		Q	70-130	23	30
3,3'-Dichlorobenzidine	75		61		Q	70-130	21	30
2,4-Dinitrotoluene	106		84			70-130	23	30
2,6-Dinitrotoluene	101		83			70-130	20	30
Fluoranthene	99		75			70-130	28	30
4-Chlorophenyl phenyl ether	93		72			70-130	25	30
Bis(2-chloroisopropyl)ether	146	Q	114			70-130	25	30
Bis(2-chloroethoxy)methane	96		78			70-130	21	30
Hexachlorobutadiene	72		54		Q	70-130	29	30
Hexachlorocyclopentadiene	82		61			20-160	29	30
Hexachloroethane	71		59			20-160	18	30
Isophorone	97		80			70-130	19	30
Naphthalene	90		71			70-130	24	30
Nitrobenzene	89		71			70-130	23	30
NDPA/DPA	103		82			70-130	23	30
n-Nitrosodi-n-propylamine	96		79			70-130	19	30
Bis(2-ethylhexyl)phthalate	114		87			70-130	27	30
Butyl benzyl phthalate	108		82			70-130	27	30
Di-n-butylphthalate	103		79			70-130	26	30
Di-n-octylphthalate	117		90			70-130	26	30

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Parameter	LCS %Recovery	Qual	LCSD %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS -	Westborough Lab Assoc	iated sample(s):	01-02	Batch:	WG117029	92-2 WG11702	292-3			
Diethyl phthalate	100		79			70-130	23		30	
Dimethyl phthalate	99		81			70-130	20		30	
Benzo(a)anthracene	93		73			70-130	24		30	
Benzo(a)pyrene	96		75			70-130	25		30	
Benzo(b)fluoranthene	96		77			70-130	22		30	
Benzo(k)fluoranthene	90		71			70-130	24		30	
Chrysene	94		72			70-130	27		30	
Acenaphthylene	100		83			70-130	19		30	
Anthracene	100		77			70-130	26		30	
Benzo(ghi)perylene	88		69		Q	70-130	24		30	
Fluorene	100		78			70-130	25		30	
Phenanthrene	97		74			70-130	27		30	
Dibenzo(a,h)anthracene	91		72			70-130	23		30	
Indeno(1,2,3-cd)pyrene	92		73			70-130	23		30	
Pyrene	97		74			70-130	27		30	
4-Chloroaniline	93		75			20-160	21		30	
2-Nitroaniline	114		92			70-130	21		30	
3-Nitroaniline	92		76			70-130	19		30	
4-Nitroaniline	111		89			70-130	22		30	
Dibenzofuran	95		75			70-130	24		30	
2-Methylnaphthalene	94		77			70-130	20		30	
2,4,6-Trichlorophenol	100		79			70-130	23		30	
p-Chloro-m-cresol	109		89			70-130	20		30	

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits	
Semivolatile Organics by GC/MS - Westbord	ugh Lab Assoc	iated sample(s):	01-02 Bat	ch: WG1170292-2 WG117	70292-3		
2-Chlorophenol	91		70	70-130	26	30	
2,4-Dichlorophenol	101		81	70-130	22	30	
2,4-Dimethylphenol	110		90	70-130	20	30	
2-Nitrophenol	100		79	70-130	23	30	
2,4-Dinitrophenol	96		72	20-160	29	30	
4,6-Dinitro-o-cresol	100		78	70-130	25	30	
Pentachlorophenol	79		62	20-160	24	30	
Phenol	102		82	20-160	22	30	
2-Methylphenol	98		79	70-130	21	30	
3-Methylphenol/4-Methylphenol	102		82	20-160	22	30	
2,4,5-Trichlorophenol	98		80	70-130	20	30	
Carbazole	102		78	70-130	27	30	
4-Nitrophenol	122		95	20-160	25	30	
4-Bromophenyl phenyl ether	90		71	70-130	24	30	
Benzaldehyde	69		56	20-160	21	30	
Caprolactam	160		131	20-160	20	30	
Acetophenone	98		78	70-130	23	30	
Biphenyl	102		83	70-130	21	30	
1,2,4,5-Tetrachlorobenzene	88		71	70-130	21	30	
Atrazine	117		91	70-130	25	30	
2,3,4,6-Tetrachlorophenol	92		71	70-130	26	30	

Lab Control Sample Analysis

Project Name: CPG III

Batch Quality Control

Lab Number: L1842314

Report Date:

10/24/18

Project Number: 15.5268

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01-02 Batch: WG1170292-2 WG1170292-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	92	71	30-130
Phenol-d6	98	78	30-130
Nitrobenzene-d5	91	72	30-130
2-Fluorobiphenyl	92	75	30-130
2,4,6-Tribromophenol	85	64	30-130
4-Terphenyl-d14	81	62	30-130

PCBS

10/20/18

Cleanup Date:

Project Name: CPG III Lab Number: L1842314

Project Number: Report Date: 15.5268 10/24/18

SAMPLE RESULTS

Date Collected: Lab ID: L1842314-01 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18 Sample Location: Field Prep: YONKERS, NY Not Specified

Sample Depth:

Aroclor 1262

Aroclor 1268

PCBs, Total

Extraction Method: EPA 3546 Matrix: Soil **Extraction Date:** 10/19/18 22:41 Analytical Method: 1,8082A

Cleanup Method: EPA 3665A Analytical Date: 10/22/18 16:56 Cleanup Date: 10/20/18 ΚB Analyst: Cleanup Method: EPA 3660B 93% Percent Solids:

Qualifier RL MDL Result Units **Dilution Factor** Column **Parameter** Polychlorinated Biphenyls by GC - Westborough Lab Aroclor 1016 ND mg/kg 0.0343 0.00304 1 Α Aroclor 1221 ND mg/kg 0.0343 0.00343 Α Aroclor 1232 ND mg/kg 0.0343 0.00726 1 Α ND 1 Aroclor 1242 mg/kg 0.0343 0.00462 Α Aroclor 1248 ND mg/kg 0.0343 0.00514 1 Α ND Aroclor 1254 mg/kg 0.0343 0.00375 1 Α Aroclor 1260 ND 0.0343 0.00633 1 Α

ND

ND

ND

mg/kg

mg/kg

mg/kg

mg/kg

0.0343

0.0343

0.0343

0.00435

0.00355

0.00304

1

1

1

Α

Α

Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	71		30-150	Α
Decachlorobiphenyl	35		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	77		30-150	В
Decachlorobiphenyl	55		30-150	В

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 10/19/18 22:41
Analytical Date: 10/22/18 17:09 Cleanup Method: EPA 3665A

Analyst: KB Cleanup Date: 10/20/18
Percent Solids: 93% Cleanup Method: EPA 3660B
Cleanup Date: 10/20/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by	GC - Westborough Lab						
Aroclor 1016	ND		mg/kg	0.0350	0.00311	1	А
Aroclor 1221	ND		mg/kg	0.0350	0.00351	1	Α
Aroclor 1232	ND		mg/kg	0.0350	0.00742	1	Α
Aroclor 1242	ND		mg/kg	0.0350	0.00472	1	Α
Aroclor 1248	ND		mg/kg	0.0350	0.00525	1	Α
Aroclor 1254	ND		mg/kg	0.0350	0.00383	1	А
Aroclor 1260	ND		mg/kg	0.0350	0.00647	1	А
Aroclor 1262	ND		mg/kg	0.0350	0.00445	1	Α
Aroclor 1268	ND		mg/kg	0.0350	0.00363	1	Α
PCBs, Total	ND		mg/kg	0.0350	0.00311	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
	// Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	Α
Decachlorobiphenyl	41		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	76		30-150	В
Decachlorobiphenyl	59		30-150	В

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 1,8082A 10/22/18 15:04

Analyst: KB

Extraction Method: EPA 3546
Extraction Date: 10/19/18 22:41
Cleanup Method: EPA 3665A
Cleanup Date: 10/20/18
Cleanup Date: EPA 3660B
Cleanup Date: 10/20/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC - V	Vestboroug	h Lab for s	ample(s):	01-02 B	atch: WG11703	318-1
Aroclor 1016	ND		mg/kg	0.0315	0.00280	Α
Aroclor 1221	ND		mg/kg	0.0315	0.00316	Α
Aroclor 1232	ND		mg/kg	0.0315	0.00668	Α
Aroclor 1242	ND		mg/kg	0.0315	0.00425	Α
Aroclor 1248	ND		mg/kg	0.0315	0.00472	Α
Aroclor 1254	ND		mg/kg	0.0315	0.00345	Α
Aroclor 1260	ND		mg/kg	0.0315	0.00582	Α
Aroclor 1262	ND		mg/kg	0.0315	0.00400	Α
Aroclor 1268	ND		mg/kg	0.0315	0.00326	Α
PCBs, Total	ND		mg/kg	0.0315	0.00280	Α

		Acceptance			
Surrogate	%Recovery Qualifie	er Criteria	Column		
2,4,5,6-Tetrachloro-m-xylene	64	30-150	Α		
Decachlorobiphenyl	40	30-150	Α		
2,4,5,6-Tetrachloro-m-xylene	67	30-150	В		
Decachlorobiphenyl	53	30-150	В		

Project Name: CPG III **Project Number:** 15.5268

Lab Number:

L1842314

Report Date:

10/24/18

	LCS		LCSD		%Recovery			RPD	
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits	Column
Polychlorinated Biphenyls by GC - Westbor	ough Lab Associa	ated sample(s)	: 01-02 Batch:	WG1170	0318-2 WG11703	18-3			
Aroclor 1016	73		72		40-140	1		30	Α
Aroclor 1260	54		53		40-140	2		30	Α

Surrogate	LCS %Recovery	LCSD Qual %Recovery Qua	Acceptance al Criteria Column
2,4,5,6-Tetrachloro-m-xylene	71	73	30-150 A
Decachlorobiphenyl	40	38	30-150 A
2,4,5,6-Tetrachloro-m-xylene	73	77	30-150 B
Decachlorobiphenyl	55	57	30-150 B

PESTICIDES

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/19/18 20:39

Analyst: SL Cleanup Method: EPA 3620B

Cleanup Method: EPA 3620B

Cleanup Date: 10/21/18

Analyst: SL Cleanup Date:
Percent Solids: 93%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		mg/kg	0.00169	0.00033	1	Α
Lindane	ND		mg/kg	0.00070	0.00031	1	Α
Alpha-BHC	ND		mg/kg	0.00070	0.00020	1	Α
Beta-BHC	ND		mg/kg	0.00169	0.00064	1	Α
Heptachlor	ND		mg/kg	0.00084	0.00037	1	Α
Aldrin	0.00372		mg/kg	0.00169	0.00059	1	В
Heptachlor epoxide	ND		mg/kg	0.00316	0.00094	1	Α
Endrin	ND		mg/kg	0.00070	0.00028	1	Α
Endrin aldehyde	ND		mg/kg	0.00211	0.00073	1	Α
Endrin ketone	ND		mg/kg	0.00169	0.00043	1	Α
Dieldrin	0.00138		mg/kg	0.00105	0.00052	1	В
4,4'-DDE	0.00079	J	mg/kg	0.00169	0.00039	1	В
4,4'-DDD	ND		mg/kg	0.00169	0.00060	1	Α
4,4'-DDT	0.00295	J	mg/kg	0.00316	0.00136	1	В
Endosulfan I	ND		mg/kg	0.00169	0.00039	1	Α
Endosulfan II	ND		mg/kg	0.00169	0.00056	1	Α
Endosulfan sulfate	ND		mg/kg	0.00070	0.00033	1	Α
Methoxychlor	ND		mg/kg	0.00316	0.00098	1	Α
Toxaphene	ND		mg/kg	0.0316	0.00886	1	Α
Chlordane	ND		mg/kg	0.0137	0.00559	1	Α
cis-Chlordane	0.00063	J	mg/kg	0.00211	0.00058	1	Α
trans-Chlordane	ND		mg/kg	0.00211	0.00055	1	Α

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	82		30-150	В
Decachlorobiphenyl	92		30-150	В
2,4,5,6-Tetrachloro-m-xylene	85		30-150	Α
Decachlorobiphenyl	87		30-150	Α

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/19/18 20:39

Analytical Date: 10/22/18 17:20 Cleanup Method: EPA 3620B
Analyst: SL Cleanup Date: 10/21/18

Analyst: SL Clear Percent Solids: 93%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		mg/kg	0.00169	0.00033	1	Α
Lindane	ND		mg/kg	0.00070	0.00031	1	Α
Alpha-BHC	ND		mg/kg	0.00070	0.00020	1	A
Beta-BHC	ND		mg/kg	0.00169	0.00064	1	Α
Heptachlor	ND		mg/kg	0.00084	0.00038	1	Α
Aldrin	0.00361		mg/kg	0.00169	0.00059	1	В
Heptachlor epoxide	0.00108	J	mg/kg	0.00318	0.00095	1	Α
Endrin	ND		mg/kg	0.00070	0.00029	1	Α
Endrin aldehyde	ND		mg/kg	0.00212	0.00074	1	А
Endrin ketone	ND		mg/kg	0.00169	0.00043	1	А
Dieldrin	0.00249		mg/kg	0.00106	0.00053	1	В
4,4'-DDE	0.00325		mg/kg	0.00169	0.00039	1	В
4,4'-DDD	ND		mg/kg	0.00169	0.00060	1	Α
4,4'-DDT	0.00567		mg/kg	0.00318	0.00136	1	В
Endosulfan I	ND		mg/kg	0.00169	0.00040	1	Α
Endosulfan II	ND		mg/kg	0.00169	0.00056	1	Α
Endosulfan sulfate	ND		mg/kg	0.00070	0.00033	1	Α
Methoxychlor	ND		mg/kg	0.00318	0.00098	1	Α
Toxaphene	ND		mg/kg	0.0318	0.00890	1	Α
Chlordane	0.0143		mg/kg	0.0138	0.00561	1	В
cis-Chlordane	0.00236		mg/kg	0.00212	0.00059	1	Α
trans-Chlordane	0.00166	JPI	mg/kg	0.00212	0.00055	1	Α

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	78		30-150	В
Decachlorobiphenyl	83		30-150	В
2,4,5,6-Tetrachloro-m-xylene	82		30-150	Α
Decachlorobiphenyl	85		30-150	Α

Project Name: Lab Number: CPG III L1842314

Project Number: 15.5268 Report Date: 10/24/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/22/18 15:11

Analyst: SL

Extraction Method: EPA 3546 Extraction Date: 10/19/18 20:39 EPA 3620B Cleanup Method: Cleanup Date: 10/21/18

arameter	Result	Qualifier	Units	RL	MDL	Column
esticides by GC - Westbor	ough Lab for sample(s): 01-0	2 Batch:	WG11703	311-1	
Delta-BHC	ND		mg/kg	0.00153	0.00029	Α
Lindane	ND		mg/kg	0.00063	0.00028	А
Alpha-BHC	ND		mg/kg	0.00063	0.00018	А
Beta-BHC	ND		mg/kg	0.00153	0.00058	А
Heptachlor	ND		mg/kg	0.00076	0.00034	А
Aldrin	ND		mg/kg	0.00153	0.00053	А
Heptachlor epoxide	ND		mg/kg	0.00287	0.00086	А
Endrin	ND		mg/kg	0.00063	0.00026	Α
Endrin aldehyde	ND		mg/kg	0.00191	0.00066	Α
Endrin ketone	ND		mg/kg	0.00153	0.00039	Α
Dieldrin	ND		mg/kg	0.00095	0.00047	Α
4,4'-DDE	ND		mg/kg	0.00153	0.00035	Α
4,4'-DDD	ND		mg/kg	0.00153	0.00054	Α
4,4'-DDT	ND		mg/kg	0.00287	0.00123	А
Endosulfan I	ND		mg/kg	0.00153	0.00036	Α
Endosulfan II	ND		mg/kg	0.00153	0.00051	Α
Endosulfan sulfate	ND		mg/kg	0.00063	0.00030	Α
Methoxychlor	ND		mg/kg	0.00287	0.00089	А
Toxaphene	ND		mg/kg	0.0287	0.00802	Α
Chlordane	ND		mg/kg	0.0124	0.00506	Α
cis-Chlordane	ND		mg/kg	0.00191	0.00053	Α
trans-Chlordane	ND		mg/kg	0.00191	0.00050	Α

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 **Report Date:** 10/24/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3546

 Analytical Date:
 10/22/18 15:11
 Extraction Date:
 10/19/18 20:39

 Analyst:
 SL
 Cleanup Method:
 EPA 3620B

Cleanup Date: 10/21/18

ParameterResultQualifierUnitsRLMDLColumnPesticides by GC - Westborough Lab for sample(s):01-02Batch:WG1170311-1

		Acceptano	ce
Surrogate	%Recovery Qualific	er Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67	30-150	В
Decachlorobiphenyl	86	30-150	В
2,4,5,6-Tetrachloro-m-xylene	63	30-150	Α
Decachlorobiphenyl	99	30-150	Α

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Pesticides by GC - Westborough Lab As	sociated sample(s):	01-02 E	Batch: WG1170311-	-2 WG1170)311-3				
Delta-BHC	71		70		40-140	1		30	Α
Lindane	72		70		40-140	3		30	Α
Alpha-BHC	74		73		40-140	1		30	Α
Beta-BHC	74		73		40-140	1		30	Α
Heptachlor	80		79		40-140	1		30	А
Aldrin	71		68		40-140	4		30	Α
Heptachlor epoxide	89		86		40-140	3		30	Α
Endrin	87		86		40-140	1		30	А
Endrin aldehyde	74		72		40-140	3		30	Α
Endrin ketone	94		91		40-140	3		30	Α
Dieldrin	84		81		40-140	4		30	Α
4,4'-DDE	70		66		40-140	6		30	А
4,4'-DDD	78		76		40-140	3		30	А
4,4'-DDT	79		77		40-140	3		30	А
Endosulfan I	74		70		40-140	6		30	Α
Endosulfan II	85		82		40-140	4		30	Α
Endosulfan sulfate	80		80		40-140	0		30	Α
Methoxychlor	87		84		40-140	4		30	Α
cis-Chlordane	60		56		40-140	7		30	Α
trans-Chlordane	58		57		40-140	2		30	А

Lab Control Sample Analysis

Project Name: CPG III

Batch Quality Control

Lab Number: L1842314

Report Date:

10/24/18

Project Number: 15.5268

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Pesticides by GC - Westborough Lab Associated sample(s): 01-02 Batch: WG1170311-2 WG1170311-3

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	74	81	30-150 B
Decachlorobiphenyl	92	101	30-150 B
2,4,5,6-Tetrachloro-m-xylene	76	76	30-150 A
Decachlorobiphenyl	114	107	30-150 A

METALS

10/17/18 10:05

Date Collected:

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 93%

Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units RL MDL Analyst Total Metals - Mansfield Lab Aluminum, Total 10400 mg/kg 8.28 2.23 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ J 2 1,6010D Antimony, Total 0.488 mg/kg 4.14 0.314 10/22/18 15:28 10/23/18 22:15 EPA 3050B AB Arsenic, Total 1.74 mg/kg 0.828 0.172 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ 2 Barium, Total 184 0.828 0.144 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D ΑB mg/kg 0.058 J 0.027 2 1,6010D Beryllium, Total mg/kg 0.414 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ 2 ND 0.081 1,6010D Cadmium, Total mg/kg 0.828 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ 10/22/18 15:28 10/23/18 22:15 EPA 3050B Calcium, Total 5330 8.28 2.90 2 1,6010D mg/kg AΒ 2 1,6010D Chromium, Total 39.5 0.828 0.080 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ mg/kg 2 1,6010D Cobalt, Total 11.3 mg/kg 1.66 0.137 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ 2 1,6010D Copper, Total 24.4 0.828 0.214 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ mg/kg 2 1,6010D Iron, Total 17900 4.14 0.747 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ mg/kg 2 1,6010D Lead, Total 6.71 mg/kg 4.14 0.222 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ Magnesium, Total 7710 8.28 1.27 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AB mg/kg 247 0.828 2 1,6010D Manganese, Total mg/kg 0.132 10/22/18 15:28 10/23/18 22:15 EPA 3050B AΒ Mercury, Total ND mg/kg 0.067 0.014 1 10/20/18 06:30 10/23/18 14:50 EPA 7471B 1,7471B MG Nickel, Total 22.6 2.07 0.200 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AB mg/kg 7790 2 1,6010D Potassium, Total mg/kg 207 11.9 10/22/18 15:28 10/23/18 22:15 EPA 3050B AB Selenium, Total ND mg/kg 1.66 0.214 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AB Silver, Total ND mg/kg 0.828 0.234 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ J Sodium, Total 163 mg/kg 166 2.61 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ Thallium, Total ND mg/kg 1.66 0.261 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ Vanadium, Total 35.4 0.828 2 10/22/18 15:28 10/23/18 22:15 EPA 3050B 1,6010D AΒ mg/kg 0.168 2 1,6010D 44.6 0.242 AΒ Zinc, Total mg/kg 4.14 10/22/18 15:28 10/23/18 22:15 EPA 3050B

10/17/18 10:10

Not Specified

Date Collected:

Field Prep:

 Project Name:
 CPG III
 Lab Number:
 L1842314

 Project Number:
 15.5268
 Report Date:
 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18

Sample Location: YONKERS, NY

50.6

Sample Depth:

Matrix: Soil
Percent Solids: 93%

Percent Solids: Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 11500 mg/kg 8.41 2.27 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ J 2 1,6010D Antimony, Total 0.496 mg/kg 4.21 0.320 10/22/18 15:28 10/23/18 22:19 EPA 3050B AB Arsenic, Total 1.17 mg/kg 0.841 0.175 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ 2 Barium, Total 194 0.841 0.146 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D ΑB mg/kg J 0.028 2 1,6010D Beryllium, Total 0.109 mg/kg 0.421 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ ND 0.082 2 1,6010D Cadmium, Total mg/kg 0.841 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ 10/22/18 15:28 10/23/18 22:19 EPA 3050B Calcium, Total 10100 8.41 2.94 2 1,6010D mg/kg AΒ 2 1,6010D Chromium, Total 28.8 0.841 0.081 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ mg/kg 2 1,6010D Cobalt, Total 11.3 mg/kg 1.68 0.140 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ 2 1,6010D Copper, Total 22.0 0.841 0.217 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ mg/kg 0.760 2 1,6010D Iron, Total 18800 4.21 10/22/18 15:28 10/23/18 22:19 EPA 3050B AΒ mg/kg 7.18 2 Lead, Total mg/kg 4.21 0.225 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ Magnesium, Total 8610 8.41 1.30 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AB mg/kg 2 1,6010D Manganese, Total 266 mg/kg 0.841 0.134 10/22/18 15:28 10/23/18 22:19 EPA 3050B AB Mercury, Total ND mg/kg 0.068 0.014 1 10/20/18 06:30 10/23/18 14:52 EPA 7471B 1,7471B MG Nickel, Total 18.1 2.10 0.204 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AB mg/kg 2 1,6010D Potassium, Total 7870 mg/kg 210 12.1 10/22/18 15:28 10/23/18 22:19 EPA 3050B AB Selenium, Total ND mg/kg 1.68 0.217 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AB Silver, Total ND mg/kg 0.841 0.238 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ Sodium, Total 207 mg/kg 168 2.65 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ Thallium, Total ND mg/kg 1.68 0.265 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ Vanadium, Total 35.0 0.841 2 10/22/18 15:28 10/23/18 22:19 EPA 3050B 1,6010D AΒ mg/kg 0.171

2

10/22/18 15:28 10/23/18 22:19 EPA 3050B

0.246

4.21

mg/kg

1,6010D

AΒ

Zinc, Total

Project Name: Lab Number: CPG III L1842314 Project Number: 15.5268 **Report Date:** 10/24/18

Method Blank Analysis

Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytica Method	l Analyst
Total Metals - Mans	field Lab for sample(s):	01-02 B	atch: W	G11703	77-1				
Mercury, Total	ND	mg/kg	0.083	0.018	1	10/20/18 06:30	10/23/18 14:23	1,7471B	MG

Prep Information

Digestion Method: EPA 7471B

Parameter	Result 0	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	
Total Metals - Mansfield	Lab for sa	ample(s):	01-02 E	Batch: W	G117086	66-1				
Aluminum, Total	ND		mg/kg	4.00	1.08	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Antimony, Total	0.276	J	mg/kg	2.00	0.152	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Arsenic, Total	ND		mg/kg	0.400	0.083	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Barium, Total	ND		mg/kg	0.400	0.070	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Beryllium, Total	ND		mg/kg	0.200	0.013	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Cadmium, Total	ND		mg/kg	0.400	0.039	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Calcium, Total	ND		mg/kg	4.00	1.40	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Chromium, Total	0.104	J	mg/kg	0.400	0.038	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Cobalt, Total	ND		mg/kg	0.800	0.066	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Copper, Total	ND		mg/kg	0.400	0.103	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Iron, Total	ND		mg/kg	2.00	0.361	1	10/22/18 15:28	10/23/18 23:26	1,6010D	AB
Lead, Total	ND		mg/kg	2.00	0.107	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Magnesium, Total	ND		mg/kg	4.00	0.616	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Manganese, Total	0.088	J	mg/kg	0.400	0.064	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Nickel, Total	0.120	J	mg/kg	1.00	0.097	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Potassium, Total	ND		mg/kg	100	5.76	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Selenium, Total	ND		mg/kg	0.800	0.103	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Silver, Total	ND		mg/kg	0.400	0.113	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Sodium, Total	2.94	J	mg/kg	80.0	1.26	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Thallium, Total	ND		mg/kg	0.800	0.126	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Vanadium, Total	ND		mg/kg	0.400	0.081	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB
Zinc, Total	ND		mg/kg	2.00	0.117	1	10/22/18 15:28	10/23/18 20:20	1,6010D	AB

Project Name: Lab Number: CPG III L1842314 Project Number: 15.5268

Report Date: 10/24/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 3050B

Project Name: CPG III Batch Qua

Lab Number: L1842314

Report Date: 10/24/18

Parameter	LCS %Recovery	Qual %	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Total Metals - Mansfield Lab Associated sample	e(s): 01-02 Bato	ch: WG11703	77-2 SRM Lo	t Number:	D102-540				
Mercury, Total	89		-		65-134	-			

Project Number:

15.5268

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Parameter	LCS %Recov		CSD %	Recovery Limits	RPD	RPD Limits
Fotal Metals - Mansfield Lab Associated	sample(s): 01-02	Batch: WG1170866-2	SRM Lot Number: D102	2-540		
Aluminum, Total	66		-	49-150	-	
Antimony, Total	140		-	1-199	-	
Arsenic, Total	87		•	83-117	-	
Barium, Total	87		-	83-118	-	
Beryllium, Total	87		•	83-116	-	
Cadmium, Total	87		•	83-118	-	
Calcium, Total	82		-	82-118	-	
Chromium, Total	86		-	83-117	-	
Cobalt, Total	85		-	84-116	-	
Copper, Total	85		-	84-116	-	
Iron, Total	82		-	61-139	-	
Lead, Total	94		-	82-118	-	
Magnesium, Total	79		-	76-124	-	
Manganese, Total	83		-	82-118	-	
Nickel, Total	85		-	83-117	-	
Potassium, Total	80		-	70-130	-	
Selenium, Total	85		-	79-121	-	
Silver, Total	86		-	80-120	-	
Sodium, Total	100		-	74-126	-	
Thallium, Total	86		-	81-119	-	
Vanadium, Total	81		-	80-120	-	

Project Name: CPG III **Project Number:** 15.5268

Lab Number: L1842314

Parameter	LCS %Recovery	LCSD %Recovery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab Associated	d sample(s): 01-02 Batch: WG	1170866-2 SRM Lot Numb	oer: D102-540		
Zinc, Total	83	-	81-118	-	

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1842314

Report Date:

10/24/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD Q	RPD ual Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-02	QC Bat	tch ID: WG117	0377-3	WG117037	7-4 QC Sam	ple: L1842178-01	Client ID	: MS Sample
Mercury, Total	ND	0.133	0.143	107		0.146	108	80-120	2	20

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1842314

Parameter	Native Sample	MS Added	MS Found	MS %Recovery		MSD Found	MSD %Recovery		Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated san	nple(s): 01-02	QC Bat	tch ID: WG1170	866-3	WG1170866	-4 QC Sam	ole: L1	842284-05	Client	ID: MS Sample
Aluminum, Total	6320	182	7450	620	Q	7050	414	Q	75-125	6	20
Antimony, Total	0.450J	45.6	41.5	91		42.0	95		75-125	1	20
Arsenic, Total	4.50	10.9	15.8	103		14.2	92		75-125	11	20
Barium, Total	65.7	182	230	90		235	96		75-125	2	20
Beryllium, Total	0.229J	4.56	4.06	89		4.02	91		75-125	1	20
Cadmium, Total	ND	4.65	3.73	80		3.67	82		75-125	2	20
Calcium, Total	50800	911	61100	1130	Q	50000	0	Q	75-125	20	20
Chromium, Total	37.5	18.2	58.3	114		43.0	31	Q	75-125	30	Q 20
Cobalt, Total	4.77	45.6	40.7	79		41.1	82		75-125	1	20
Copper, Total	28.0	22.8	51.6	104		49.4	97		75-125	4	20
Iron, Total	9620	91.1	11600	2170	Q	10800	1340	Q	75-125	7	20
Lead, Total	55.3	46.5	94.4	84		100	99		75-125	6	20
Magnesium, Total	5220	911	7740	276	Q	8740	399	Q	75-125	12	20
Manganese, Total	230.	45.6	301	156	Q	281	116		75-125	7	20
Nickel, Total	15.2	45.6	52.6	82		49.4	78		75-125	6	20
Potassium, Total	969.	911	1880	100		2110	129	Q	75-125	12	20
Selenium, Total	ND	10.9	10.0	91		10.1	96		75-125	1	20
Silver, Total	ND	27.3	26.1	95		25.8	98		75-125	1	20
Sodium, Total	182.	911	1060	96		1120	106		75-125	6	20
Thallium, Total	ND	10.9	7.93	72	Q	8.02	76		75-125	1	20
Vanadium, Total	29.3	45.6	72.6	95		65.2	81		75-125	11	20

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1842314

Report Date:

10/24/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - N	Mansfield Lab Associated s	ample(s): 01-02	QC Ba	tch ID: WG1170866-3	WG1170866	-4 QC Samp	le: L1842284-05	Client ID): MS Sample
Zinc, Total	93.4	45.6	131	82	127	76	75-125	3	20

INORGANICS & MISCELLANEOUS

Project Name: CPG III Lab Number: L1842314 Project Number: 15.5268

Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-01 Date Collected: 10/17/18 10:05

Client ID: 02B-IMPORTED-FILL-01 Date Received: 10/17/18 Not Specified Sample Location: YONKERS, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - \	Westborough Lab)								
Solids, Total	93.0		%	0.100	NA	1	-	10/18/18 10:14	121,2540G	RI
Cyanide, Total	ND		mg/kg	1.0	0.21	1	10/18/18 19:56	10/19/18 12:34	1,9010C/9012B	LH

Project Name: CPG ||| Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-02 Date Collected: 10/17/18 10:10

Client ID: 02B-IMPORTED-FILL-02 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - '	Westborough Lab)								
Solids, Total	92.5		%	0.100	NA	1	-	10/18/18 10:14	121,2540G	RI
Cyanide, Total	ND		mg/kg	1.1	0.23	1	10/18/18 19:56	10/19/18 12:37	1,9010C/9012B	LH

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-03 Date Collected: 10/17/18 10:20

Client ID: 02B-IMPORTED-FILL-03 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	94.3		%	0.100	NA	1	-	10/18/18 05:01	121,2540G	FN

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-04 Date Collected: 10/17/18 10:25

Client ID: 02B-IMPORTED-FILL-04 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	90.6		%	0.100	NA	1	-	10/18/18 05:01	121,2540G	FN

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-05 Date Collected: 10/17/18 10:30

Client ID: 02B-IMPORTED-FILL-05 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	93.9		%	0.100	NA	1	-	10/18/18 05:01	121,2540G	FN

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

SAMPLE RESULTS

Lab ID: L1842314-06 Date Collected: 10/17/18 10:35

Client ID: 02B-IMPORTED-FILL-06 Date Received: 10/17/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	94.1		%	0.100	NA	1	-	10/18/18 05:01	121,2540G	FN

Project Name: CPG III Lab Number: L1842314

Project Number: 15.5268 Report Date: 10/24/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	· Westborough Lab for sam	ple(s): 01	-02 Ba	tch: W0	G1169742-1	l			
Cyanide, Total	ND	mg/kg	0.90	0.19	1	10/18/18 19:56	10/19/18 12:25	1,9010C/901	2B LH

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III Project Number: 15.5268

Lab Number: L1842314

Report Date:

10/24/18

Parameter	LCS %Recovery C	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 0	01-02	Batch: WG11697	42-2 W	G1169742-3			
Cyanide, Total	67	Q	51	Q	80-120	35	35	

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III **Project Number:** 15.5268

L1842314

Lab Number: Report Date:

10/24/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery	Recovery Qual Limits	RPD G	RPD Qual Limits
General Chemistry - Westborou 02B-IMPORTED-FILL-01	gh Lab Asso	ociated samp	le(s): 01-02	QC Batch II	D: WG1	169742-4	WG1169742-5	QC Sample: L18	42314-01	Client ID:
Cyanide, Total	ND	10	9.6	91		8.7	83	75-125	10	35

L1842314

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Quality Control Lab Number:

Report Date: 10/24/18

Parameter	Native Sample	Duplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated	I sample(s): 03-06 QC Ba	atch ID: WG1169447-1	QC Sample:	L1842288-01	Client ID:	DUP Sample
Solids, Total	89.9	88.8	%	1		20
General Chemistry - Westborough Lab Associated	sample(s): 01-02 QC Ba	atch ID: WG1169545-1	QC Sample:	L1842227-01	Client ID:	DUP Sample
Solids, Total	82.6	87.3	%	6		20

Project Name: **CPG III Lab Number:** L1842314 Project Number: 15.5268

Report Date: 10/24/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler		pН	deg C	Pres	Seal	Date/Time	Analysis(*)
L1842314-01A	Glass 60ml unpreserved split	Α	NA		3.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1842314-01B	Glass 250ml/8oz unpreserved	Α	NA		3.1	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ- 8270(14),TS(7),NJ-8081(14)
L1842314-01C	Glass 250ml/8oz unpreserved	Α	NA		3.1	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ-8270(14),TS(7),NJ-8081(14)
L1842314-02A	Glass 60ml unpreserved split	Α	NA		3.1	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG- TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL- TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE- TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE- TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA- TI(180),CD-TI(180),K-TI(180),NA-TI(180)
L1842314-02B	Glass 250ml/8oz unpreserved	Α	NA		3.1	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ-8270(14),TS(7),NJ-8081(14)
L1842314-02C	Glass 250ml/8oz unpreserved	Α	NA		3.1	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ-8270(14),TS(7),NJ-8081(14)
L1842314-03A	Vial MeOH preserved	Α	NA		3.1	Υ	Absent		NJ-8260HLW(14)
L1842314-03B	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)
L1842314-03C	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)
L1842314-03D	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		TS(7)
L1842314-04A	Vial MeOH preserved	Α	NA		3.1	Υ	Absent		NJ-8260HLW(14)
L1842314-04B	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)
L1842314-04C	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)
L1842314-04D	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		TS(7)
L1842314-05A	Vial MeOH preserved	Α	NA		3.1	Υ	Absent		NJ-8260HLW(14)
L1842314-05B	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)
L1842314-05C	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)

Lab Number: L1842314

Report Date: 10/24/18

Project Name:CPG IIIProject Number:15.5268

Container Info	Container Information			Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1842314-05D	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		TS(7)	
L1842314-06A	Vial MeOH preserved	Α	NA		3.1	Υ	Absent		NJ-8260HLW(14)	
L1842314-06B	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)	
L1842314-06C	Vial water preserved	Α	NA		3.1	Υ	Absent	18-OCT-18 08:07	NJ-8260HLW(14)	
L1842314-06D	Plastic 2oz unpreserved for TS	Α	NA		3.1	Υ	Absent		TS(7)	

Project Name: CPG III Lab Number: L1842314
Project Number: 15.5268 Report Date: 10/24/18

GLOSSARY

Acronyms

MS

MSD

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

- Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1842314
Project Number: 15.5268 Report Date: 10/24/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1842314
Project Number: 15.5268 Report Date: 10/24/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:10241821:24

ID No.:17873 Revision 12

Page 1 of 1

Published Date: 10/9/2018 4:58:19 PM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

	12110 7400 QCHMale Co	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo Project Information Project Location: Vo. Project Location: Vo. Project # 15, 5 2 6 6 (Use Project name as Project Manager: Carry ALPHAQuote #: Turn-Around Time Standard Rush (only if pre approved	III Kers , N oject#)	νY		-	Date Rec'd in Lab Deliverables ASP-A EQUIS (1 File) Other Regulatory Requireme NY TOGS AWQ Standards NY Restricted Use NY Unrestricted Use NYC Sewer Discha					ASP-I	3 3 (4 File) rt 375	ALPHA Job # 1842314 Billing Information Same as Client Information Please identify below location applicable disposal facilities. Disposal Facility: NJ NY Other: Sample Filtration	
These samples have be Other project specific Please specify Metals	requirements/comm						Voc	Svec	· Pest.		Metals + Hp	Cyanide		Done Lab to do Preservation Lab to do (Please Specify below)	o t a l B o t .
ALPHA Lab ID (Lab Use Only)	Sa	ample ID	Date	Time	Sample Matrix	Sampler's Initials	TCL	72	121	757	TAL	cy		Sample Specific Comment	s e
42314 -01	02B-Importe	d-F:11-01	10/17/18	1005	51	CB		×	×	×	×	×		5 Parint Compacte	_ 2
-03	OZB-Imrorte	d-F:11-02	1	1010	1	İ		×	X	×	X	×		5 Point Composite	
-03	OZB - Importa	1-F:11-03		1020			×							Voc	4
	02B-Importe			1025			×							Voc	4
	02B-Imported			1030			X							VoC	4
	02B-1-40-6		·V	1035	V	U	×							VaC	4
TO GUID STATE															
Bollie and land															
WE'S STATE OF									\vdash						
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification N Mansfield: Certification N			Con	tainer Type	V	Α	A	Α	Α	Α		Please print clearly, le and completely. Samp not be logged in and	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup				· E	reservative		A	A	Α	Α	A		turnaround time clock start until any ambigui	ties are
F = MeOH $G = NaHSO_4$ $H = Na_2S_2O_3$ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 3)	C = Cube O = Other E = Encore D = BOD Bottle 0-Sept-2013)	Relinquished CIM Bend To	By:	Date:	1015 915 005	Paul	Received	O C		Sa.	10/	7/18 7/18 148	Time 10/5	resolved, BY EXECUTHIS COC, THE CLIE HAS READ AND AGE TO BE BOUND BY A FERMS & CONDITIO (See reverse side.)	NT REES LPHA'S

From: Devette, Scott (DEC) To: Andujar-McNeil, Rosaura Cc: Moline, Kirk; Bieber, Steve

Subject: RE: Thalle Industries - Material Importation Request - CPG 3

Date: Tuesday, November 13, 2018 7:48:02 AM

Attachments: image001.gif

image002.gif

Rosaura-

Based on the results for the additional pesticide sampling performed on the Thalle Industries backfill material, the additional 4,00 cubic yards of material is approved to be imported to the site. Let me know if you have any questions.

R. Scott Deyette

Chief, Inspection Unit, Remedial Bureau C, Environmental Remediation

New York State Department of Environmental Conservation 625 Broadway, Albany, NY 12233-7014 P: 518-402-9794 | C: 518-461-3721 | scott.deyette@dec.ny.gov

From: Andujar-McNeil, Rosaura [mailto:r.andujar-mcneil@ctmale.com]

Sent: Monday, November 05, 2018 1:34 PM

To: Deyette, Scott (DEC) <scott.deyette@dec.ny.gov>

Cc: Moline, Kirk <k.moline@ctmale.com>; Bieber, Steve <s.bieber@ctmale.com>

Subject: RE: Thalle Industries - Material Importation Request - CPG 3

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown

Scott,

Good afternoon,. Attached please find the laboratory results for the 2 below-referenced samples from Thalle Industries analyzed for pesticides. All results for 4,4'-DDT are below the Unrestricted Use SCO (0.0033 mg/kg). Based on these results please confirm the approval of an additional 4,000 cubic yards from Thalle Industries.

Thank you,

Rosaura

From: Deyette, Scott (DEC) [mailto:scott.deyette@dec.ny.gov]

Sent: Wednesday, October 31, 2018 4:20 PM

To: Andujar-McNeil, Rosaura **Cc:** Moline, Kirk; Bieber, Steve

Subject: Re: Thalle Industries - Material Importation Request - CPG 3

Rosaura-

After review of the data presented for the additional 4,000 cubic yards of soil from the Thalle Industries backfill source, an additional 2 samples must be taken for pesticides/herbicides only before the full quantity of backfill is brought on site. Please let me know if you have any questions.

R. Scott Deyette
Chief, Inspection Unit
Remedial Bureau C
Division of Environmental Remediation
(518) 402-9794

From: Andujar-McNeil, Rosaura < <u>r.andujar-mcneil@ctmale.com</u>>

Sent: Friday, October 26, 2018 12:58:18 PM

To: Deyette, Scott (DEC) **Cc:** Moline, Kirk; Bieber, Steve

Subject: Thalle Industries - Material Importation Request - CPG 3

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknowl senders or unexpected emails.

Scott,

Good afternoon. Attached please a material importation form, photos and data related to the importation of an additional 4,000 cubic yards from Thalle Industries in Elmsford NY. As you review this information please notice the following:

- 1) Material from Thalle (2,500 cubic yards) was previously approved on March 8, 2018 with exceedances of chromium and nickel.
- 2) Thalle representative indicated that the proposed fill originates from a virgin source and consists of Items 4 created from the crushing of bedrock.
- 3) Two (2) composite and four (4) VOCs samples were collected for the approval of 4,000 cubic yards as approved by the Department on 10/17.
- 4) Analytical data for this material report exceedances of the following compounds:
 - a. Sample ID 02B-IMPORTED-FILL-02: 4,4'-DDT 0.00567 mg/kg (Unrestricted Use SCO 0.0033 mg/kg)
 - b. Sample ID 02B-IMPORTED-FILL-06: Acetone 0.074 mg/kg (Unrestricted Use SCO

0.05 mg/kg)

No other exceedances were reported.

Please review this information and should you have any questions do not hesitate to contact us.

Rosaura

Rosaura Andújar-McNeil, P.E. | Project Environmental Engineer

C.T. MALE ASSOCIATES

Engineering, Surveying, Architecture, Landscape Architecture & Geology, D.P.C. 652 Route 299, Suite 204B, Highland, New York 12528 www.ctmale.com
O - 845.883.0964

ANALYTICAL REPORT

Lab Number: L1844957

Client: C.T. Male Associates

50 Century Hill Drive Latham, NY 12210

ATTN: Kirk Moline
Phone: (518) 786-7400

Project Name: CPG III
Project Number: 15.5268
Report Date: 11/05/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: CPG III Project Number: 15.5268 Lab Number: L1844957

Report Date: 11/05/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1844957-01	02C-IMPORTED-FILL-01	SOIL	YONKERS, NY	11/02/18 05:55	11/02/18
L1844957-02	02C-IMPORTED-FILL-02	SOIL	YONKERS, NY	11/02/18 06:05	11/02/18

Project Name:CPG IIILab Number:L1844957Project Number:15.5268Report Date:11/05/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	e contact	Client Ser	vices at 8	00-624-9220) with any	questions.	

 Project Name:
 CPG III
 Lab Number:
 L1844957

 Project Number:
 15.5268
 Report Date:
 11/05/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative Date: 11/05/18

elisy

ORGANICS

PESTICIDES

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 **Report Date:** 11/05/18

SAMPLE RESULTS

Lab ID: L1844957-01 Date Collected: 11/02/18 05:55

Client ID: 02C-IMPORTED-FILL-01 Date Received: 11/02/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 11/03/18 00:12

Analyst: La Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 11/03/18

Analyst: KB Clear Percent Solids: 85%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		mg/kg	0.00184	0.00036	1	Α
Lindane	ND		mg/kg	0.00076	0.00034	1	Α
Alpha-BHC	ND		mg/kg	0.00076	0.00021	1	Α
Beta-BHC	ND		mg/kg	0.00184	0.00069	1	Α
Heptachlor	ND		mg/kg	0.00091	0.00041	1	Α
Aldrin	ND		mg/kg	0.00184	0.00064	1	А
Heptachlor epoxide	ND		mg/kg	0.00344	0.00103	1	А
Endrin	ND		mg/kg	0.00076	0.00031	1	Α
Endrin aldehyde	ND		mg/kg	0.00229	0.00080	1	Α
Endrin ketone	ND		mg/kg	0.00184	0.00047	1	Α
Dieldrin	ND		mg/kg	0.00115	0.00057	1	Α
4,4'-DDE	0.00103	J	mg/kg	0.00184	0.00042	1	В
4,4'-DDD	ND		mg/kg	0.00184	0.00065	1	Α
4,4'-DDT	0.00201	J	mg/kg	0.00344	0.00148	1	Α
Endosulfan I	ND		mg/kg	0.00184	0.00043	1	Α
Endosulfan II	ND		mg/kg	0.00184	0.00061	1	Α
Endosulfan sulfate	ND		mg/kg	0.00076	0.00036	1	Α
Methoxychlor	ND		mg/kg	0.00344	0.00107	1	Α
Toxaphene	ND		mg/kg	0.0344	0.00964	1	Α
Chlordane	0.0254		mg/kg	0.0149	0.00608	1	Α
cis-Chlordane	0.00230		mg/kg	0.00229	0.00063	1	Α
trans-Chlordane	0.00158	JPI	mg/kg	0.00229	0.00060	1	Α

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 **Report Date:** 11/05/18

SAMPLE RESULTS

Lab ID: L1844957-01 Date Collected: 11/02/18 05:55

Client ID: 02C-IMPORTED-FILL-01 Date Received: 11/02/18
Sample Location: YONKERS, NY Field Prep: Not Specified

·

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	91		30-150	В
Decachlorobiphenyl	65		30-150	В
2,4,5,6-Tetrachloro-m-xylene	108		30-150	Α
Decachlorobiphenyl	72		30-150	Α

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 Report Date: 11/05/18

SAMPLE RESULTS

Lab ID: L1844957-02 Date Collected: 11/02/18 06:05

Client ID: 02C-IMPORTED-FILL-02 Date Received: 11/02/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Percent Solids:

88%

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 11/03/18 00:12

Analytical Date: 11/03/18 12:59 Cleanup Method: EPA 3620B
Analyst: KB Cleanup Date: 11/03/18

Result Qualifier Units RL MDL **Dilution Factor** Column **Parameter** Pesticides by GC - Westborough Lab Delta-BHC ND mg/kg 0.00178 0.00034 1 Α Lindane ND 0.00074 0.00033 Α mg/kg Alpha-BHC ND mg/kg 0.00074 0.00021 1 Α Beta-BHC ND mg/kg 0.00178 0.00067 1 Α Heptachlor ND mg/kg 0.00089 0.00039 1 Α Aldrin ND mg/kg 0.00178 0.00062 1 Α ND 0.00334 0.00100 Heptachlor epoxide mg/kg 1 Α Endrin ND 0.00074 0.00030 1 Α mg/kg ND 1 Endrin aldehyde mg/kg 0.00223 0.00077 Α ND Endrin ketone 0.00178 0.00045 1 Α mg/kg Dieldrin ND 0.00111 0.00055 1 В mg/kg 4,4'-DDE 0.00082 J 0.00041 0.00178 1 В mg/kg 4,4'-DDD ND 0.00178 0.00063 Α 1 mg/kg 4,4'-DDT ND mg/kg 0.00334 0.00143 1 В Endosulfan I ND 0.00178 0.00042 1 mg/kg Α Endosulfan II ND 0.00178 0.00059 1 Α mg/kg Endosulfan sulfate ND 0.00074 mg/kg 0.00035 1 Α ND 0.00334 0.00104 1 Methoxychlor Α mg/kg Toxaphene ND 0.0334 0.00935 1 Α mg/kg Chlordane 0.0268 0.0145 0.00590 1 В mg/kg cis-Chlordane 0.00222 J 0.00223 0.00062 В mg/kg 1 0.00182 JPI trans-Chlordane mg/kg 0.00223 0.00058 1 Α

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 **Report Date:** 11/05/18

SAMPLE RESULTS

Lab ID: L1844957-02 Date Collected: 11/02/18 06:05

Client ID: 02C-IMPORTED-FILL-02 Date Received: 11/02/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	93		30-150	В
Decachlorobiphenyl	62		30-150	В
2,4,5,6-Tetrachloro-m-xylene	85		30-150	Α
Decachlorobiphenyl	55		30-150	Α

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 **Report Date:** 11/05/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 11/03/18 12:08

Analyst: KB

Extraction Method: EPA 3546
Extraction Date: 11/03/18 00:12
Cleanup Method: EPA 3620B
Cleanup Date: 11/03/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Pesticides by GC - Westborough	Lab for sample	(s): 01-0	2 Batch:	WG117554	14-1	
Delta-BHC	ND		mg/kg	0.00152	0.00029	Α
Lindane	ND		mg/kg	0.00063	0.00028	А
Alpha-BHC	ND		mg/kg	0.00063	0.00018	А
Beta-BHC	ND		mg/kg	0.00152	0.00057	Α
Heptachlor	ND		mg/kg	0.00076	0.00034	А
Aldrin	ND		mg/kg	0.00152	0.00053	Α
Heptachlor epoxide	ND		mg/kg	0.00285	0.00085	А
Endrin	ND		mg/kg	0.00063	0.00026	Α
Endrin aldehyde	ND		mg/kg	0.00190	0.00066	Α
Endrin ketone	ND		mg/kg	0.00152	0.00039	Α
Dieldrin	ND		mg/kg	0.00095	0.00047	Α
4,4'-DDE	ND		mg/kg	0.00152	0.00035	Α
4,4'-DDD	ND		mg/kg	0.00152	0.00054	Α
4,4'-DDT	ND		mg/kg	0.00285	0.00122	Α
Endosulfan I	ND		mg/kg	0.00152	0.00035	Α
Endosulfan II	ND		mg/kg	0.00152	0.00050	Α
Endosulfan sulfate	ND		mg/kg	0.00063	0.00030	Α
Methoxychlor	ND		mg/kg	0.00285	0.00088	Α
Toxaphene	ND		mg/kg	0.0285	0.00798	Α
Chlordane	ND		mg/kg	0.0124	0.00504	А
cis-Chlordane	ND		mg/kg	0.00190	0.00053	Α
trans-Chlordane	ND		mg/kg	0.00190	0.00050	Α

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 **Report Date:** 11/05/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3546

 Analytical Date:
 11/03/18 12:08
 Extraction Date:
 11/03/18 00:12

 Analyst:
 KB
 Cleanup Method:
 EPA 3620B

Cleanup Date: 11/03/18

ParameterResultQualifierUnitsRLMDLColumnPesticides by GC - Westborough Lab for sample(s):01-02Batch:WG1175544-1

	Acceptance							
Surrogate	%Recovery Qualifie	er Criteria	Column					
2,4,5,6-Tetrachloro-m-xylene	88	30-150	В					
Decachlorobiphenyl	73	30-150	В					
2,4,5,6-Tetrachloro-m-xylene	97	30-150	Α					
Decachlorobiphenyl	84	30-150	Α					

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1844957

Report Date: 11/05/18

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Pesticides by GC - Westborough Lab As	sociated sample(s):	01-02	Batch: WG1175544-2	WG11755	44-3				
Delta-BHC	93		85		40-140	9		30	Α
Lindane	90		81		40-140	11		30	А
Alpha-BHC	92		83		40-140	10		30	Α
Beta-BHC	92		95		40-140	3		30	Α
Heptachlor	102		92		40-140	10		30	Α
Aldrin	85		77		40-140	10		30	Α
Heptachlor epoxide	96		90		40-140	6		30	Α
Endrin	101		94		40-140	7		30	А
Endrin aldehyde	88		82		40-140	7		30	Α
Endrin ketone	101		94		40-140	7		30	А
Dieldrin	96		86		40-140	11		30	А
4,4'-DDE	79		74		40-140	7		30	А
4,4'-DDD	93		86		40-140	8		30	А
4,4'-DDT	93		88		40-140	6		30	А
Endosulfan I	83		76		40-140	9		30	А
Endosulfan II	95		89		40-140	7		30	А
Endosulfan sulfate	98		94		40-140	4		30	Α
Methoxychlor	102		98		40-140	4		30	Α
cis-Chlordane	72		66		40-140	9		30	Α
trans-Chlordane	87		80		40-140	8		30	Α

11/05/18

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III

Lab Number: L1844957

Project Number: 15.5268 Report Date:

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits **Parameter** Qual Qual RPD Qual

Pesticides by GC - Westborough Lab Associated sample(s): 01-02 Batch: WG1175544-2 WG1175544-3

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	92	87	30-150 B
Decachlorobiphenyl	90	79	30-150 B
2,4,5,6-Tetrachloro-m-xylene	97	87	30-150 A
Decachlorobiphenyl	85	80	30-150 A

INORGANICS & MISCELLANEOUS

Project Name: CPG III Lab Number: L1844957 Report Date: **Project Number:** 11/05/18 15.5268

SAMPLE RESULTS

Lab ID: L1844957-01

Client ID: 02C-IMPORTED-FILL-01

Sample Location: YONKERS, NY

Date Collected:

11/02/18 05:55

Date Received: Field Prep:

11/02/18 Not Specified

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab									
Solids, Total	85.0		%	0.100	NA	1	-	11/03/18 10:16	121,2540G	RI

Project Name: CPG III Lab Number: L1844957 **Project Number:** 11/05/18 15.5268

Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: L1844957-02 11/02/18 06:05

02C-IMPORTED-FILL-02 11/02/18 Client ID: Date Received: Not Specified Sample Location: YONKERS, NY Field Prep:

Sample Depth:

Matrix: Soil

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Solids, Total	88.4		%	0.100	NA	1	-	11/03/18 10:16	121,2540G	RI

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1844957

Report Date:

11/05/18

Parameter	Native Sam	ple D	Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-02	QC Batch ID:	WG1175607-1	QC Sample:	L1844936-01	Client ID:	DUP Sample
Solids, Total	83.6		83.7	%	0		20

Project Name:

Project Number: 15.5268

CPG III

Lab Number: L1844957

Report Date: 11/05/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Project Name:

Project Number: 15.5268

Cooler Custody Seal

CPG III

A Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L1844957-01A	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NJ-8081(14)	
L1844957-01B	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NJ-8081(14)	
L1844957-02A	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NJ-8081(14)	
L1844957-02B	Glass 250ml/8oz unpreserved	Α	NA		2.9	Υ	Absent		TS(7),NJ-8081(14)	

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 Report Date: 11/05/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

adjustments from dilutions, concentrations of moisture content, where applicable

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 Report Date: 11/05/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1844957

Project Number: 15.5268 Report Date: 11/05/18

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance
Title: Certificate/Approval Program Summary

_ ID No.:**17873**

Revision 12

Published Date: 10/9/2018 4:58:19 PM Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan III, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form Pre-Qualtrax Document ID: 08-113

Westborough, MA 01581 8 Walkup Dr.	NEW YORK CHAIN OF CUSTODY Mansfield, MA 02048 320 Forbes Blvd	Service Centers Mahwah, NJ 07430: 35 Whitney Albany, NY 12205: 14 Walker W Tonawanda, NY 14150: 275 Coo	ay oper Ave, Suite 10	5	Page	- /	Delive	ate Rec in Lab	'd	12	118	A	ALPHA Job # LI 8449 Billing Information	3 (pm)
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288		nkers,	NY				ASP-A EQuIS (1 Other	File)	-	ASP-B EQuIS	(4 File)	Same as Client Int	0
Client Information	155 0210	Project # 15.5					THE REAL PROPERTY.	-	uiromor	*	02 30	J. 10	Disposal Site Information	20
Address: 50 CC	Associates	(Use Project name as Pr					The same of	atory Req	ullemei		NY Part	275		
Latham NY		Project Manager: K.Y ALPHAQuote #:	ic maline	ATTURN.	100.10	active both		AWQ Stand	dards		NY CP-		Please identify below locat applicable disposal facilitie	
	6-7400	Turn-Around Time	Tool 1	NI WILLIAM	Total a	2-16-1		NY Restrict	ed Use		Other		Disposal Facility:	
Fax:			W.Co.	Due Date	24/	10		NY Unrestr					UN UN	t
When the second	and the second s		W)	# of Days	01/	.1	ANAL		Discrial	9e			Other:	la d
These samples have be Other project specific	The state of the s	Marine Control of the					-	1313	1			-1	Sample Filtration	- i
Please specify Metals	t _e =	iento.				٥	Pesticides						☐ Done ☐ Lab to do Preservation ☐ Lab to do (Please Specify below	t a l B o t
ALPHA Lab ID		l- ID	Colle	ection	Sample	Sampler's	72							1
(Lab Use Only)	- 58	imple ID	Date	Time	Matrix	Initials	F						Sample Specific Comme	nts e
44957-01	OZC-IM	16-16-01 16-16-01	11/2/18	0555	Soil	CA	V	/					5- Point Compas	+ 2
02	OZC-Impo	1ed-Fill-02	11/2/18	0605	Soil	CO.	V						5- Point compo	sit 2
								_	-	\vdash	_	-		
								_	+	\vdash	\rightarrow			_
							\vdash	_	+	\vdash		_		+
							\vdash	_	+-	\vdash	\dashv	_		
The Reserve of the second										\vdash				
Control was														
Preservative Code: A = None B = HCl C = HNO ₃ D = H ₂ SO ₄ E = NaOH	Container Code P = Plastic A = Amber Glass V = Vial G = Glass B = Bacteria Cup	Westboro: Certification N Mansfield: Certification N				ntainer Type Preservative	A						Please print clearly, and completely. San not be logged in and turnaround time cloo start until any ambig	nples can k will not
F = MeOH G = NaHSO ₄ H = Na ₂ S ₂ O ₃ K/E = Zn Ac/NaOH O = Other Form No: 01-25 HC (rev. 30	C = Cube O = Other E = Encore D = BOD Bottle	Relinquished A Sonto S	By: AAL	Date:	Time 8 1350 8 105 7250	By Sur	Receive	ed By:	AAC 1	11/2	Date/1 //8 //8	1380 183 2250	resolved. BY EXECUTION THIS COC, THE CLINES READ AND AGO TO BE BOUND BY	JTING IENT SREES ALPHA'S

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Request to Import/Reuse Fill or Soil

This form is based on the information required by DER-10, Section 5.4(e). Use of this form is not a substitute for reading the applicable Technical Guidance document.

SECTION 1 – SITE BACKGROUND

The allowable site use is:

Have Ecological Resources been identified?

Is this soil originating from the site?

How many cubic yards of soil will be imported/reused?

If greater than 1000 cubic yards will be imported, enter volume to be imported:

SECTION 2 – MATERIAL OTHER THAN SOIL

Is the material to be imported gravel, rock or stone?

Does it contain less than 10%, by weight, material that would pass a size 80 sieve?

Is this virgin material from a permitted mine or quarry?

Is this material recycled concrete or brick from a DEC registered processing facility?

SECTION 3 - SAMPLING

Provide a brief description of the number and type of samples collected in the space below:

Example Text: 5 discrete samples were collected and analyzed for VOCs. 2 composite samples were collected and analyzed for SVOCs, Inorganics & PCBs/Pesticides.

If the material meets requirements of DER-10 section 5.5 (other material), no chemical testing needed.

SECTION 3 CONT'D - SAMPLING
Provide a brief written summary of the sampling results or attach evaluation tables (compare to DER-10, Appendix 5):
Example Text: Arsenic was detected up to 17 ppm in 1 (of 5) samples; the allowable level is 16 ppm.
If Ecological Resources have been identified use the "If Ecological Resources are Present" column in Appendix 5.
SECTION 4 – SOURCE OF FILL
Name of person providing fill and relationship to the source:
Location where fill was obtained:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source:
Identification of any state or local approvals as a fill source: If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:
If no approvals are available, provide a brief history of the use of the property that is the fill source:

IMPORTED FILL ANALYTICAL RESULTS SUMMARY (TILCON SOURCE) COTTAGE PLACE GARDENS PHASE 3 SITE CITY OF YONKERS, WESTCHESTER COUNTY

		SAMPLE ID:		04B-IMF	PORTED-FI	LL-01		04B-IN	IPORTED-FI	LL-02		04B-IM	/IPORTED-F	ILL-03		04B-IM	PORTED-F	ILL-04		04B-IM	IPORTED-F	ILL-05		04B-IM	PORTED-F	ILL-06
		LAB ID:		L1	1843634-01			I	L1843634-02			L	L1843634-03	3		L	.1843634-04	4		L	1843634-0	5		L	.1843634-06	<u></u>
	COLL	ECTION DATE:		1	10/25/2018				10/25/2018				10/25/2018				10/25/2018				10/25/2018				10/25/2018	
	SA	MPLE MATRIX:			SOIL				SOIL				SOIL				SOIL				SOIL				SOIL	
		NY-UNRES ⁽¹⁾																					1			
ANALYTE	CAS	(mg/kg)	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
VOLATILE ORGANICS BY	GC/MS-5035	, σ σ,									•															
Acetone	67-64-1	0.05	-		-	-	0.036		0.017	0.008	0.043		0.011	0.0054	-		-	-	0.0084	J	0.01	0.0049	0.0082	J	0.011	0.0054
Total VOCs		NA	-	-	-	-	0.036	-	-	-	0.043	-	-	-	-	-	-	-	0.0084	-	-	-	0.0082	-	-	-
VOLATILE ORGANICS BY	GC/MS-5035-	TIC	•								•												•			
Silanol, Trimethyl-	001066-40-6	NA	-		-	-	-		-	-	-		-	-	-		-	-	0.014	NJ	0	0	-	-	-	-
Unknown		NA	-		-	-	0.009	J	0	0	0.016	J	0	0	-		-	-	-		-	-	0.017	J	0	0
Unknown Alkane		NA	-		-	-	-		-	-	-		-		-		-	-	-		-	-	0.005	J	0	0
Total TIC Compounds		NA	-		-	-	0.009	J	0	0	0.016	J	0	0	-		-	-	0.014	J	0	0	0.022	J	0	0
SEMIVOLATILE ORGANIC	S BY GC/MS																									
SEMIVOLATILE ORGANIC	S BY GC/MS-	TIC																								
Unknown		NA	-		-	-	-		-	-	-		-	-	0.15	J	0	0	-	-	-	-	-	-	-	
Unknown Amide		NA	0.506	J	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total TIC Compounds		NA	0.506	J	0	0	-		-	-	-		-	-	0.15	J	0	0	-	-	-	-	-	-	-	-
PESTICIDES BY GC			•								•												•			
Endosulfan II	33213-65-9	2.4	ND		0.0016	0.00053	-		-	-	-		-	-	0.00066	J	0.0017	0.00056	-	-	-	-	-	-	-	-
POLYCHLORINATED BIP	HENYLS BY G	C	•								•												•			
TOTAL METALS																										
Aluminum, Total	7429-90-5	NA	7690		8.3	2.24	-		-	-	-		-	-	6970		8.32	2.24	-	-	-	-	-	-	-	-
Arsenic, Total	7440-38-2	13	0.972		0.83	0.173	-		-	-	-		-	-	0.89		0.832	0.173	-	-	-	-	-	-	-	-
Barium, Total	7440-39-3	350	100		0.83	0.144	-		-	-	-		-	-	95		0.832	0.145	-	-	-	-	-	-	-	-
Cadmium, Total	7440-43-9	2.5	0.432	J	0.83	0.081	-		-	-	-		-	-	0.524	J	0.832	0.082	-	-	-	-	-	-	-	-
Calcium, Total	7440-70-2	NA	12500		8.3	2.91	-		-	-	-		-	-	12400		8.32	2.91	-	-	-	-	-	-	-	-
Cobalt, Total	7440-48-4	NA	18.9		1.66	0.138	-		-	-	-		-	-	17.9		1.66	0.138	-	-	-	-	-	-	-	-
Copper, Total	7440-50-8	50	169		0.83	0.214	-		-	-	-		-	-	169		0.832	0.214	-	-	-	-	-	-	-	-
Iron, Total	7439-89-6	NA	37600		4.15	0.75	-		-	-	-		-	-	36500		4.16	0.751	-	-	-	-	-	-	-	-
Lead, Total	7439-92-1	63	3.89	J	4.15	0.222			-	-	-		-	-	3.76	J	4.16	0.223	-	-	-	-	-	-	-	-
Magnesium, Total	7439-95-4	NA	7260		8.3	1.28	-	-	-	-	-		-	-	6040		8.32	1.28	-	-	-	-	-	-	-	-
Manganese, Total	7439-96-5	1600	497		0.83	0.132	-		-	-	-		-	-	573		0.832	0.132	-	-	-	-	-	-	-	-
Nickel, Total	7440-02-0	30	6.83		2.08	0.201	-		-	-	-		-	-	5.91		2.08	0.201	-	-	-	-	-	-	-	-
Potassium, Total	7440-09-7	NA	1100		208	12	-		-	-	-		-	-	1080		208	12	-	-	-	-	-	-	•	-
Selenium, Total	7782-49-2	3.9	ND		1.66	0.214	-		-	-	-		-	-	0.432	J	1.66	0.214	-	-	-	-	-	-	-	-
Sodium, Total	7440-23-5	NA	891		166	2.62	-		-	-	-		-	-	802		166	2.62	-	-	-	-	-	-	-	-
Vanadium, Total	7440-62-2	NA	128		0.83	0.168	-		-	-	-		-	-	128		0.832	0.169	-	-	-	-	-	-	-	-
Zinc, Total	7440-66-6	109	58		4.15	0.243	-		-	-	-		-	-	55.8		4.16	0.244	-	-	-	-	-	-	-	
GENERAL CHEMISTRY																							•			
Solids, Total	NONE	NA	94		0.1	NA	95.2		0.1	NA	95.8		0.1	NA	93.2		0.1	NA	94.2		0.1	NA	94.2		0.1	NA

⁽¹⁾ Soil Cleanup Objectives (SCOs) for Unrestricted Use Sites promulgated at 6 NYCRR Part 375 NA denotes Not Applicable

ANALYTICAL REPORT

Lab Number: L1843634

Client: C.T. Male Associates

50 Century Hill Drive Latham, NY 12210

ATTN: Kirk Moline
Phone: (518) 786-7400

Project Name: CPG III
Project Number: 15.5268
Report Date: 11/01/18

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-17-00196).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:CPG IIILater or control of the con

Lab Number: L1843634 **Report Date:** 11/01/18

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1843634-01	04B-IMPORTED-FILL-01	SOIL	YONKERS, NY	10/25/18 10:15	10/25/18
L1843634-02	04B-IMPORTED-FILL-02	SOIL	YONKERS, NY	10/25/18 10:20	10/25/18
L1843634-03	04B-IMPORTED-FILL-03	SOIL	YONKERS, NY	10/25/18 10:25	10/25/18
L1843634-04	04B-IMPORTED-FILL-04	SOIL	YONKERS, NY	10/25/18 10:30	10/25/18
L1843634-05	04B-IMPORTED-FILL-05	SOIL	YONKERS, NY	10/25/18 10:32	10/25/18
L1843634-06	04B-IMPORTED-FILL-06	SOIL	YONKERS, NY	10/25/18 10:35	10/25/18
L1843634-07	04B-IMPORTED-FILL-07	SOIL	YONKERS, NY	10/25/18 10:40	10/25/18
L1843634-08	04B-IMPORTED-FILL-08	SOIL	YONKERS, NY	10/25/18 10:42	10/25/18
L1843634-09	04B-IMPORTED-FILL-09	SOIL	YONKERS, NY	10/25/18 10:44	10/25/18
L1843634-10	04B-IMPORTED-FILL-10	SOIL	YONKERS, NY	10/25/18 10:45	10/25/18
L1843634-11	04B-IMPORTED-FILL-11	SOIL	YONKERS, NY	10/25/18 10:47	10/25/18
L1843634-12	04B-IMPORTED-FILL-12	SOIL	YONKERS, NY	10/25/18 10:49	10/25/18
L1843634-13	04B-IMPORTED-FILL-13	SOIL	YONKERS, NY	10/25/18 10:55	10/25/18
L1843634-14	04B-IMPORTED-FILL-14	SOIL	YONKERS, NY	10/25/18 10:57	10/25/18
L1843634-15	04B-IMPORTED-FILL-15	SOIL	YONKERS, NY	10/25/18 11:00	10/25/18

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

۲	'lease	contact	Client	Services	at	800-	624-9	9220	with	any	questic	ns.

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Volatile Organics

WG1174342-3/-4: One or more compounds failed to meet the DKQP recovery and/or RPD limits. Please refer to the QC section of the report for specific details.

Semivolatile Organics

WG1173027-4: One or more compounds failed to meet the DKQP recovery and/or RPD limits. Difficult analytes may recover at less than 10% recovery, where applicable. Please refer to the QC section of the report for specific details.

Pesticides

WG1172715-3: One or more compounds failed to meet the DKQP recovery and/or RPD limits. Please refer to the QC section of the report for specific details.

Total Metals

L1843634-01 and -04: The sample has elevated detection limits for all elements, with the exception of mercury, due to the dilution required by matrix interferences encountered during analysis.

Cyanide, Total

The WG1173185-2 LCS recovery (76%), associated with L1843634-01 and -04, is outside our in-house acceptance criteria, but within the vendor-certified acceptance limits. The results of the original analysis are reported.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Amita Naik

Authorized Signature:

Title: Technical Director/Representative

Nails

ALPHA

Date: 11/01/18

ORGANICS

VOLATILES

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-02 Date Collected: 10/25/18 10:20

Client ID: 04B-IMPORTED-FILL-02 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C

Analytical Date: 10/31/18 13:36

Analyst: MKS Percent Solids: 95%

Volatile Organics by GC/MS-5035 - Westborough Lab 1,2-Dibromo-3-chloropropane ND mg/kg 1,4-Dioxane ND mg/kg 1,2-Dibromoethane ND mg/kg Methylene chloride ND mg/kg 1,1-Dichloroethane ND mg/kg Chloroform ND mg/kg Carbon tetrachloride ND mg/kg 1,2-Dichloropropane ND mg/kg Dibromochloromethane ND mg/kg 1,1,2-Trichloroethane ND mg/kg Tetrachloroethene ND mg/kg Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0050	0.0017	
1,4-DioxaneNDmg/kg1,2-DibromoethaneNDmg/kgMethylene chlorideNDmg/kg1,1-DichloroethaneNDmg/kgChloroformNDmg/kgCarbon tetrachlorideNDmg/kg1,2-DichloropropaneNDmg/kgDibromochloromethaneNDmg/kg1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1-TrichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg		0.0017	
1,4-DioxaneNDmg/kg1,2-DibromoethaneNDmg/kgMethylene chlorideNDmg/kg1,1-DichloroethaneNDmg/kgChloroformNDmg/kgCarbon tetrachlorideNDmg/kg1,2-DichloropropaneNDmg/kgDibromochloromethaneNDmg/kg1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.47		1
1,2-DibromoethaneNDmg/kgMethylene chlorideNDmg/kg1,1-DichloroethaneNDmg/kgChloroformNDmg/kgCarbon tetrachlorideNDmg/kg1,2-DichloropropaneNDmg/kgDibromochloromethaneNDmg/kg1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.17	0.059	1
1,1-DichloroethaneNDmg/kgChloroformNDmg/kgCarbon tetrachlorideNDmg/kg1,2-DichloropropaneNDmg/kgDibromochloromethaneNDmg/kg1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.0017	0.00047	1
Chloroform ND mg/kg Carbon tetrachloride ND mg/kg 1,2-Dichloropropane ND mg/kg Dibromochloromethane ND mg/kg 1,1,2-Trichloroethane ND mg/kg Tetrachloroethene ND mg/kg Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0084	0.0038	1
Carbon tetrachlorideNDmg/kg1,2-DichloropropaneNDmg/kgDibromochloromethaneNDmg/kg1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.0017	0.00024	1
1,2-Dichloropropane ND mg/kg Dibromochloromethane ND mg/kg 1,1,2-Trichloroethane ND mg/kg Tetrachloroethene ND mg/kg Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0025	0.00023	1
Dibromochloromethane ND mg/kg 1,1,2-Trichloroethane ND mg/kg Tetrachloroethene ND mg/kg Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0017	0.00038	1
1,1,2-TrichloroethaneNDmg/kgTetrachloroetheneNDmg/kgChlorobenzeneNDmg/kgTrichlorofluoromethaneNDmg/kg1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.0017	0.00021	1
Tetrachloroethene ND mg/kg Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0017	0.00023	1
Chlorobenzene ND mg/kg Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.0017	0.00045	1
Trichlorofluoromethane ND mg/kg 1,2-Dichloroethane ND mg/kg 1,1,1-Trichloroethane ND mg/kg	0.00084	0.00033	1
1,2-DichloroethaneNDmg/kg1,1,1-TrichloroethaneNDmg/kg	0.00084	0.00021	1
1,1,1-Trichloroethane ND mg/kg	0.0067	0.0012	1
	0.0017	0.00043	1
	0.00084	0.00028	1
Bromodichloromethane ND mg/kg	0.00084	0.00018	1
trans-1,3-Dichloropropene ND mg/kg	0.0017	0.00046	1
cis-1,3-Dichloropropene ND mg/kg	0.00084	0.00026	1
1,3-Dichloropropene, Total ND mg/kg	0.00084	0.00026	1
Bromoform ND mg/kg	0.0067	0.00041	1
1,1,2,2-Tetrachloroethane ND mg/kg	0.00084	0.00028	1
Benzene ND mg/kg	0.00084	0.00028	1
Toluene ND mg/kg	0.0017	0.00091	1
Ethylbenzene ND mg/kg	0.0017	0.00024	1
Chloromethane ND mg/kg	0.0067	0.0016	1
Bromomethane ND mg/kg	0.0033	0.00097	1
Vinyl chloride ND mg/kg	0.0017	0.00056	1
Chloroethane ND mg/kg	0.0033	0.00076	1

MDL

Dilution Factor

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Qualifier

Units

RL

Lab ID: L1843634-02 Date Collected: 10/25/18 10:20

Client ID: 04B-IMPORTED-FILL-02 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Result

Sample Depth:

Parameter

raiailielei	ivesuit Quali	ilei Ollita	IV.	MDL	Dilution Lactor	
Volatile Organics by GC/MS-5035 -	Westborough Lab					
1,1-Dichloroethene	ND	mg/kg	0.0017	0.00040	1	
trans-1,2-Dichloroethene	ND	mg/kg	0.0025	0.00023	1	
Trichloroethene	ND	mg/kg	0.00084	0.00023	1	
1,2-Dichlorobenzene	ND	mg/kg	0.0033	0.00024	1	
1,3-Dichlorobenzene	ND	mg/kg	0.0033	0.00025	1	
1,4-Dichlorobenzene	ND	mg/kg	0.0033	0.00029	1	
Methyl tert butyl ether	ND	mg/kg	0.0033	0.00034	1	
p/m-Xylene	ND	mg/kg	0.0033	0.00094	1	
o-Xylene	ND	mg/kg	0.0017	0.00049	1	
Xylene (Total)	ND	mg/kg	0.0017	0.00049	1	
cis-1,2-Dichloroethene	ND	mg/kg	0.0017	0.00029	1	
1,2-Dichloroethene (total)	ND	mg/kg	0.0017	0.00023	1	
Styrene	ND	mg/kg	0.0017	0.00033	1	
Dichlorodifluoromethane	ND	mg/kg	0.017	0.0015	1	
Acetone	0.036	mg/kg	0.017	0.0080	1	
Carbon disulfide	ND	mg/kg	0.017	0.0076	1	
2-Butanone	ND	mg/kg	0.017	0.0037	1	
4-Methyl-2-pentanone	ND	mg/kg	0.017	0.0021	1	
2-Hexanone	ND	mg/kg	0.017	0.0020	1	
Bromochloromethane	ND	mg/kg	0.0033	0.00034	1	
Isopropylbenzene	ND	mg/kg	0.0017	0.00018	1	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0033	0.00054	1	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0033	0.00045	1	
Methyl Acetate	ND	mg/kg	0.0067	0.0016	1	
Cyclohexane	ND	mg/kg	0.017	0.00091	1	
Methyl cyclohexane	ND	mg/kg	0.0067	0.0010	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	mg/kg	0.0067	0.0012	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.009	J	mg/kg	1
Unknown	0.009	J	mg/kg	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-02 Date Collected: 10/25/18 10:20

Client ID: 04B-IMPORTED-FILL-02 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	118	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	95	70-130	

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-03 Date Collected: 10/25/18 10:25

Client ID: 04B-IMPORTED-FILL-03 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/31/18 14:01

Analyst: MKS Percent Solids: 96%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - 1	Westborough Lab					
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0034	0.0011	1
1,4-Dioxane	ND		mg/kg	0.11	0.040	1
1,2-Dibromoethane	ND		mg/kg	0.0011	0.00032	1
Methylene chloride	ND		mg/kg	0.0057	0.0026	1
1,1-Dichloroethane	ND		mg/kg	0.0011	0.00016	1
Chloroform	ND		mg/kg	0.0017	0.00016	1
Carbon tetrachloride	ND		mg/kg	0.0011	0.00026	1
1,2-Dichloropropane	ND		mg/kg	0.0011	0.00014	1
Dibromochloromethane	ND		mg/kg	0.0011	0.00016	1
1,1,2-Trichloroethane	ND		mg/kg	0.0011	0.00030	1
Tetrachloroethene	ND		mg/kg	0.00057	0.00022	1
Chlorobenzene	ND		mg/kg	0.00057	0.00014	1
Trichlorofluoromethane	ND		mg/kg	0.0045	0.00079	1
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00029	1
1,1,1-Trichloroethane	ND		mg/kg	0.00057	0.00019	1
Bromodichloromethane	ND		mg/kg	0.00057	0.00012	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00031	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00057	0.00018	1
1,3-Dichloropropene, Total	ND		mg/kg	0.00057	0.00018	1
Bromoform	ND		mg/kg	0.0045	0.00028	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00057	0.00019	1
Benzene	ND		mg/kg	0.00057	0.00019	1
Toluene	ND		mg/kg	0.0011	0.00062	1
Ethylbenzene	ND		mg/kg	0.0011	0.00016	1
Chloromethane	ND		mg/kg	0.0045	0.0010	1
Bromomethane	ND		mg/kg	0.0023	0.00066	1
Vinyl chloride	ND		mg/kg	0.0011	0.00038	1
Chloroethane	ND		mg/kg	0.0023	0.00051	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-03 Date Collected: 10/25/18 10:25

Client ID: 04B-IMPORTED-FILL-03 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - Y	Westborough Lab					
1,1-Dichloroethene	ND		mg/kg	0.0011	0.00027	1
trans-1,2-Dichloroethene	ND		mg/kg	0.0017	0.00016	1
Trichloroethene	ND		mg/kg	0.00057	0.00016	1
1,2-Dichlorobenzene	ND		mg/kg	0.0023	0.00016	1
1,3-Dichlorobenzene	ND		mg/kg	0.0023	0.00017	1
1,4-Dichlorobenzene	ND		mg/kg	0.0023	0.00019	1
Methyl tert butyl ether	ND		mg/kg	0.0023	0.00023	1
p/m-Xylene	ND		mg/kg	0.0023	0.00064	1
o-Xylene	ND		mg/kg	0.0011	0.00033	1
Xylene (Total)	ND		mg/kg	0.0011	0.00033	1
cis-1,2-Dichloroethene	ND		mg/kg	0.0011	0.00020	1
1,2-Dichloroethene (total)	ND		mg/kg	0.0011	0.00016	1
Styrene	ND		mg/kg	0.0011	0.00022	1
Dichlorodifluoromethane	ND		mg/kg	0.011	0.0010	1
Acetone	0.043		mg/kg	0.011	0.0054	1
Carbon disulfide	ND		mg/kg	0.011	0.0052	1
2-Butanone	ND		mg/kg	0.011	0.0025	1
4-Methyl-2-pentanone	ND		mg/kg	0.011	0.0014	1
2-Hexanone	ND		mg/kg	0.011	0.0013	1
Bromochloromethane	ND		mg/kg	0.0023	0.00023	1
Isopropylbenzene	ND		mg/kg	0.0011	0.00012	1
1,2,3-Trichlorobenzene	ND		mg/kg	0.0023	0.00036	1
1,2,4-Trichlorobenzene	ND		mg/kg	0.0023	0.00031	1
Methyl Acetate	ND		mg/kg	0.0045	0.0011	1
Cyclohexane	ND		mg/kg	0.011	0.00062	1
Methyl cyclohexane	ND		mg/kg	0.0045	0.00068	1
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		mg/kg	0.0045	0.00079	1

Tentatively Identified Compounds				
Total TIC Compounds	0.016	J	mg/kg	1
Unknown	0.016	J	mg/kg	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-03 Date Collected: 10/25/18 10:25

Client ID: 04B-IMPORTED-FILL-03 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	115	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	96	70-130	

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-05 Date Collected: 10/25/18 10:32

Client ID: 04B-IMPORTED-FILL-05 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/31/18 14:27

Analyst: MKS Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 -	Westborough Lab					
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0031	0.0010	1
1,4-Dioxane	ND		mg/kg	0.10	0.036	1
1,2-Dibromoethane	ND		mg/kg	0.0010	0.00028	1
Methylene chloride	ND		mg/kg	0.0051	0.0023	1
1,1-Dichloroethane	ND		mg/kg	0.0010	0.00015	1
Chloroform	ND		mg/kg	0.0015	0.00014	1
Carbon tetrachloride	ND		mg/kg	0.0010	0.00023	1
1,2-Dichloropropane	ND		mg/kg	0.0010	0.00013	1
Dibromochloromethane	ND		mg/kg	0.0010	0.00014	1
1,1,2-Trichloroethane	ND		mg/kg	0.0010	0.00027	1
Tetrachloroethene	ND		mg/kg	0.00051	0.00020	1
Chlorobenzene	ND		mg/kg	0.00051	0.00013	1
Trichlorofluoromethane	ND		mg/kg	0.0041	0.00071	1
1,2-Dichloroethane	ND		mg/kg	0.0010	0.00026	1
1,1,1-Trichloroethane	ND		mg/kg	0.00051	0.00017	1
Bromodichloromethane	ND		mg/kg	0.00051	0.00011	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0010	0.00028	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00051	0.00016	1
1,3-Dichloropropene, Total	ND		mg/kg	0.00051	0.00016	1
Bromoform	ND		mg/kg	0.0041	0.00025	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00051	0.00017	1
Benzene	ND		mg/kg	0.00051	0.00017	1
Toluene	ND		mg/kg	0.0010	0.00055	1
Ethylbenzene	ND		mg/kg	0.0010	0.00014	1
Chloromethane	ND		mg/kg	0.0041	0.00095	1
Bromomethane	ND		mg/kg	0.0020	0.00059	1
Vinyl chloride	ND		mg/kg	0.0010	0.00034	1
Chloroethane	ND		mg/kg	0.0020	0.00046	1

MDL

Dilution Factor

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-05 Date Collected: 10/25/18 10:32

Client ID: 04B-IMPORTED-FILL-05 Date Received: 10/25/18

Result

Sample Location: YONKERS, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailielei	Nesuit	Qualifici	Office	112	IIIDL	Dilution i actor	
Volatile Organics by GC/MS-5035 -	Westborough Lab						
1,1-Dichloroethene	ND		mg/kg	0.0010	0.00024	1	
trans-1,2-Dichloroethene	ND		mg/kg	0.0015	0.00014	1	
Trichloroethene	ND		mg/kg	0.00051	0.00014	1	
1,2-Dichlorobenzene	ND		mg/kg	0.0020	0.00015	1	
1,3-Dichlorobenzene	ND		mg/kg	0.0020	0.00015	1	
1,4-Dichlorobenzene	ND		mg/kg	0.0020	0.00017	1	
Methyl tert butyl ether	ND		mg/kg	0.0020	0.00020	1	
p/m-Xylene	ND		mg/kg	0.0020	0.00057	1	
o-Xylene	ND		mg/kg	0.0010	0.00030	1	
Xylene (Total)	ND		mg/kg	0.0010	0.00030	1	
cis-1,2-Dichloroethene	ND		mg/kg	0.0010	0.00018	1	
1,2-Dichloroethene (total)	ND		mg/kg	0.0010	0.00014	1	
Styrene	ND		mg/kg	0.0010	0.00020	1	
Dichlorodifluoromethane	ND		mg/kg	0.010	0.00093	1	
Acetone	0.0084	J	mg/kg	0.010	0.0049	1	
Carbon disulfide	ND		mg/kg	0.010	0.0046	1	
2-Butanone	ND		mg/kg	0.010	0.0023	1	
4-Methyl-2-pentanone	ND		mg/kg	0.010	0.0013	1	
2-Hexanone	ND		mg/kg	0.010	0.0012	1	
Bromochloromethane	ND		mg/kg	0.0020	0.00021	1	
Isopropylbenzene	ND		mg/kg	0.0010	0.00011	1	
1,2,3-Trichlorobenzene	ND		mg/kg	0.0020	0.00033	1	
1,2,4-Trichlorobenzene	ND		mg/kg	0.0020	0.00028	1	
Methyl Acetate	ND		mg/kg	0.0041	0.00097	1	
Cyclohexane	ND		mg/kg	0.010	0.00056	1	
Methyl cyclohexane	ND		mg/kg	0.0041	0.00062	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND		mg/kg	0.0041	0.00071	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.014	J	mg/kg	1
Silanol, Trimethyl-	0.014	NJ	mg/kg	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-05 Date Collected: 10/25/18 10:32

Client ID: 04B-IMPORTED-FILL-05 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	113	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	104	70-130	
Dibromofluoromethane	94	70-130	

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-06 Date Collected: 10/25/18 10:35

Client ID: 04B-IMPORTED-FILL-06 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil
Analytical Method: 1,8260C
Analytical Date: 10/31/18 14:52

Analyst: MKS Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS-5035 - \	Westborough Lab					
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0033	0.0011	1
1,4-Dioxane	ND		mg/kg	0.11	0.039	1
1,2-Dibromoethane	ND		mg/kg	0.0011	0.00031	1
Methylene chloride	ND		mg/kg	0.0056	0.0026	1
1,1-Dichloroethane	ND		mg/kg	0.0011	0.00016	1
Chloroform	ND		mg/kg	0.0017	0.00016	1
Carbon tetrachloride	ND		mg/kg	0.0011	0.00026	1
1,2-Dichloropropane	ND		mg/kg	0.0011	0.00014	1
Dibromochloromethane	ND		mg/kg	0.0011	0.00016	1
1,1,2-Trichloroethane	ND		mg/kg	0.0011	0.00030	1
Tetrachloroethene	ND		mg/kg	0.00056	0.00022	1
Chlorobenzene	ND		mg/kg	0.00056	0.00014	1
Trichlorofluoromethane	ND		mg/kg	0.0045	0.00077	1
1,2-Dichloroethane	ND		mg/kg	0.0011	0.00029	1
1,1,1-Trichloroethane	ND		mg/kg	0.00056	0.00019	1
Bromodichloromethane	ND		mg/kg	0.00056	0.00012	1
trans-1,3-Dichloropropene	ND		mg/kg	0.0011	0.00030	1
cis-1,3-Dichloropropene	ND		mg/kg	0.00056	0.00018	1
1,3-Dichloropropene, Total	ND		mg/kg	0.00056	0.00018	1
Bromoform	ND		mg/kg	0.0045	0.00027	1
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00056	0.00018	1
Benzene	ND		mg/kg	0.00056	0.00018	1
Toluene	ND		mg/kg	0.0011	0.00060	1
Ethylbenzene	ND		mg/kg	0.0011	0.00016	1
Chloromethane	ND		mg/kg	0.0045	0.0010	1
Bromomethane	ND		mg/kg	0.0022	0.00065	1
Vinyl chloride	ND		mg/kg	0.0011	0.00037	1
Chloroethane	ND		mg/kg	0.0022	0.00050	1

MDL

Dilution Factor

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-06 Date Collected: 10/25/18 10:35

Client ID: 04B-IMPORTED-FILL-06 Date Received: 10/25/18

Result

Sample Location: YONKERS, NY Field Prep: Not Specified

Qualifier

Units

RL

Sample Depth:

Parameter

raiailletei	itesuit Q	uanner Onits	IVE.	MDL	Dilution ractor	
Volatile Organics by GC/MS-5035 -	Westborough Lab					
1,1-Dichloroethene	ND	mg/kg	0.0011	0.00026	1	
trans-1,2-Dichloroethene	ND	mg/kg	0.0017	0.00015	1	
Trichloroethene	ND	mg/kg	0.00056	0.00015	1	
1,2-Dichlorobenzene	ND	mg/kg	0.0022	0.00016	1	
1,3-Dichlorobenzene	ND	mg/kg	0.0022	0.00016	1	
1,4-Dichlorobenzene	ND	mg/kg	0.0022	0.00019	1	
Methyl tert butyl ether	ND	mg/kg	0.0022	0.00022	1	
p/m-Xylene	ND	mg/kg	0.0022	0.00062	1	
o-Xylene	ND	mg/kg	0.0011	0.00032	1	
Xylene (Total)	ND	mg/kg	0.0011	0.00032	1	
cis-1,2-Dichloroethene	ND	mg/kg	0.0011	0.00020	1	
1,2-Dichloroethene (total)	ND	mg/kg	0.0011	0.00015	1	
Styrene	ND	mg/kg	0.0011	0.00022	1	
Dichlorodifluoromethane	ND	mg/kg	0.011	0.0010	1	
Acetone	0.0082	J mg/kg	0.011	0.0054	1	
Carbon disulfide	ND	mg/kg	0.011	0.0051	1	
2-Butanone	ND	mg/kg	0.011	0.0025	1	
4-Methyl-2-pentanone	ND	mg/kg	0.011	0.0014	1	
2-Hexanone	ND	mg/kg	0.011	0.0013	1	
Bromochloromethane	ND	mg/kg	0.0022	0.00023	1	
Isopropylbenzene	ND	mg/kg	0.0011	0.00012	1	
1,2,3-Trichlorobenzene	ND	mg/kg	0.0022	0.00036	1	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0022	0.00030	1	
Methyl Acetate	ND	mg/kg	0.0045	0.0010	1	
Cyclohexane	ND	mg/kg	0.011	0.00061	1	
Methyl cyclohexane	ND	mg/kg	0.0045	0.00067	1	
1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	mg/kg	0.0045	0.00077	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.022	J	mg/kg	1
Unknown	0.017	J	mg/kg	1
Unknown Alkane	0.005	J	mg/kg	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-06 Date Collected: 10/25/18 10:35

Client ID: 04B-IMPORTED-FILL-06 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Volatile Organics by GC/MS-5035 - Westborough Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	111	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	105	70-130	
Dibromofluoromethane	96	70-130	

 Project Name:
 CPG III
 Lab Number:
 L1843634

 Project Number:
 15.5268
 Report Date:
 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/31/18 09:22

Analyst: MV

Parameter	Result	Qualifier	Units	RL	MDL	
olatile Organics by GC/MS	- Westborough Lal	b for sampl	e(s): (02-03,05-06	Batch: WG1174	342-5
1,2-Dibromo-3-chloropropane	ND		mg/kg	0.0030	0.0010	
1,4-Dioxane	ND		mg/kg	0.10	0.035	
1,2-Dibromoethane	ND		mg/kg	0.0010	0.00028	
Methylene chloride	ND		mg/kg	0.0050	0.0023	
1,1-Dichloroethane	ND		mg/kg	0.0010	0.00014	
Chloroform	ND		mg/kg	0.0015	0.00014	
Carbon tetrachloride	ND		mg/kg	0.0010	0.00023	
1,2-Dichloropropane	ND		mg/kg	0.0010	0.00012	
Dibromochloromethane	ND		mg/kg	0.0010	0.00014	
1,1,2-Trichloroethane	ND		mg/kg	0.0010	0.00027	
Tetrachloroethene	ND		mg/kg	0.00050	0.00020	
Chlorobenzene	ND		mg/kg	0.00050	0.00013	
Trichlorofluoromethane	ND		mg/kg	0.0040	0.00070	
1,2-Dichloroethane	ND		mg/kg	0.0010	0.00026	
1,1,1-Trichloroethane	ND		mg/kg	0.00050	0.00017	
Bromodichloromethane	ND		mg/kg	0.00050	0.00011	
trans-1,3-Dichloropropene	ND		mg/kg	0.0010	0.00027	
cis-1,3-Dichloropropene	ND		mg/kg	0.00050	0.00016	
1,3-Dichloropropene, Total	ND		mg/kg	0.00050	0.00016	
Bromoform	ND		mg/kg	0.0040	0.00025	
1,1,2,2-Tetrachloroethane	ND		mg/kg	0.00050	0.00017	
Benzene	ND		mg/kg	0.00050	0.00017	
Toluene	ND		mg/kg	0.0010	0.00054	
Ethylbenzene	ND		mg/kg	0.0010	0.00014	
Chloromethane	ND		mg/kg	0.0040	0.00093	
Bromomethane	ND		mg/kg	0.0020	0.00058	
Vinyl chloride	ND		mg/kg	0.0010	0.00034	
Chloroethane	ND		mg/kg	0.0020	0.00045	
1,1-Dichloroethene	ND		mg/kg	0.0010	0.00024	

 Project Name:
 CPG III
 Lab Number:
 L1843634

 Project Number:
 15.5268
 Report Date:
 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/31/18 09:22

Analyst: MV

Parameter	Result	Qualifier U	Inits	RL	ı	IDL
/olatile Organics by GC/MS -	Westborough Lab	for sample(s	s):	02-03,05-06	Batch:	WG1174342-5
trans-1,2-Dichloroethene	ND	n	ng/kg	0.0015	0	00014
Trichloroethene	ND	n	ng/kg	0.00050	0	00014
1,2-Dichlorobenzene	ND	n	ng/kg	0.0020	0	00014
1,3-Dichlorobenzene	ND	n	ng/kg	0.0020	0	00015
1,4-Dichlorobenzene	ND	n	ng/kg	0.0020	0	00017
Methyl tert butyl ether	ND	n	ng/kg	0.0020	0	00020
p/m-Xylene	ND	n	ng/kg	0.0020	0	00056
o-Xylene	ND	n	ng/kg	0.0010	0	00029
Xylene (Total)	ND	n	ng/kg	0.0010	0	00029
cis-1,2-Dichloroethene	ND	n	ng/kg	0.0010	0	00018
1,2-Dichloroethene (total)	ND	n	ng/kg	0.0010	0	00014
Styrene	ND	n	ng/kg	0.0010	0	00020
Dichlorodifluoromethane	ND	n	ng/kg	0.010	0	00092
Acetone	ND	n	ng/kg	0.010	C	.0048
Carbon disulfide	ND	n	ng/kg	0.010	C	.0046
2-Butanone	ND	n	ng/kg	0.010	C	.0022
4-Methyl-2-pentanone	ND	n	ng/kg	0.010	C	.0013
2-Hexanone	ND	n	ng/kg	0.010	C	.0012
Bromochloromethane	ND	n	ng/kg	0.0020	0	00020
Isopropylbenzene	ND	n	ng/kg	0.0010	0	00011
1,2,3-Trichlorobenzene	ND	n	ng/kg	0.0020	0	00032
1,2,4-Trichlorobenzene	ND	n	ng/kg	0.0020	0	00027
Methyl Acetate	ND	n	ng/kg	0.0040	0	00095
Cyclohexane	ND	n	ng/kg	0.010	0	00054
tert-Butyl Alcohol	ND	n	ng/kg	0.020	C	.0051
Methyl cyclohexane	ND	n	ng/kg	0.0040	0	00060
1,1,2-Trichloro-1,2,2-Trifluoroethai	ne ND	n	ng/kg	0.0040	0	00069

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260C Analytical Date: 1,8260C 10/31/18 09:22

Analyst: MV

Parameter	Result	Qualifier	Units	RL RL	N	MDL
Volatile Organics by GC/MS - West	borough Lab	for sample	e(s):	02-03,05-06	Batch:	WG1174342-5

Tentatively Identified Compounds			
Total TIC Compounds	0.003	J	mg/kg
Unknown	0.003	J	mg/kg

		Acceptance
Surrogate	%Recovery Qual	ifier Criteria
1,2-Dichloroethane-d4	109	70-130
Toluene-d8	101	70-130
4-Bromofluorobenzene	103	70-130
Dibromofluoromethane	92	70-130

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date:

11/01/18

ırameter	LCS %Recovery	Qual %	LCSD Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits	
platile Organics by GC/MS - Westbo	orough Lab Associated s	ample(s): 02-03	,05-06 Bat	ch: WG117	4342-3 WG1174	342-4		
1,2-Dibromo-3-chloropropane	111		102		40-160	8	30	
1,4-Dioxane	92		86		40-160	7	30	
1,2-Dibromoethane	109		104		70-130	5	30	
Methylene chloride	98		94		70-130	4	30	
1,1-Dichloroethane	112		107		70-130	5	30	
Chloroform	101		98		70-130	3	30	
Carbon tetrachloride	99		96		70-130	3	30	
1,2-Dichloropropane	114		108		70-130	5	30	
Dibromochloromethane	108		104		70-130	4	30	
1,1,2-Trichloroethane	105		103		70-130	2	30	
Tetrachloroethene	99		90		70-130	10	30	
Chlorobenzene	108		103		70-130	5	30	
Trichlorofluoromethane	94		89		40-160	5	30	
1,2-Dichloroethane	111		109		70-130	2	30	
1,1,1-Trichloroethane	102		96		70-130	6	30	
Bromodichloromethane	98		96		70-130	2	30	
trans-1,3-Dichloropropene	106		101		70-130	5	30	
cis-1,3-Dichloropropene	96		94		40-160	2	30	
Bromoform	105		100		40-160	5	30	
1,1,2,2-Tetrachloroethane	119		113		40-160	5	30	
Benzene	95		90		70-130	5	30	
Toluene	102		96		70-130	6	30	
Ethylbenzene	106		99		70-130	7	30	

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

11/01/18

rameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	RPD Qual Limits
latile Organics by GC/MS - Westbord	ough Lab Associated s	ample(s): 02	2-03,05-06 Bate	ch: WG1174	1342-3 WG1174	342-4	
Chloromethane	140		131		40-160	7	30
Bromomethane	100		90		40-160	11	30
Vinyl chloride	91		86		70-130	6	30
Chloroethane	76		71		40-160	7	30
1,1-Dichloroethene	101		94		70-130	7	30
trans-1,2-Dichloroethene	102		96		70-130	6	30
Trichloroethene	101		93		70-130	8	30
1,2-Dichlorobenzene	117		111		70-130	5	30
1,3-Dichlorobenzene	116		108		70-130	7	30
1,4-Dichlorobenzene	119		111		70-130	7	30
Methyl tert butyl ether	94		92		70-130	2	30
p/m-Xylene	107		100		70-130	7	30
o-Xylene	104		99		70-130	5	30
cis-1,2-Dichloroethene	101		96		70-130	5	30
Styrene	106		101		40-160	5	30
Dichlorodifluoromethane	86		81		40-160	6	30
Acetone	136		143		40-160	5	30
Carbon disulfide	88		82		40-160	7	30
2-Butanone	148		142		40-160	4	30
4-Methyl-2-pentanone	132		124		40-160	6	30
2-Hexanone	146		140		40-160	4	30
Bromochloromethane	106		102		70-130	4	30
Isopropylbenzene	123		113		70-130	8	30

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III

Lab Number:

L1843634

Project Number: 15.5268

Report Date:

11/01/18

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough L	ab Associated	sample(s):	02-03,05-06 Bate	ch: WG11	74342-3 WG117	1342-4			
1,2,3-Trichlorobenzene	106		100		70-130	6		30	
1,2,4-Trichlorobenzene	107		100		70-130	7		30	
Methyl Acetate	158	Q	153	Q	70-130	3		30	
Cyclohexane	121		113		70-130	7		30	
tert-Butyl Alcohol	110		103		40-160	7		30	
Methyl cyclohexane	88		82		70-130	7		30	
1,1,2-Trichloro-1,2,2-Trifluoroethane	96		90		70-130	6		30	

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	107	107	70-130
Toluene-d8	101	100	70-130
4-Bromofluorobenzene	105	105	70-130
Dibromofluoromethane	95	95	70-130

SEMIVOLATILES

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01 Date Collected: 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8270D Extraction Date: 10/27/18 12:56

Analyst: SZ
Percent Solids: 94%

11/01/18 01:34

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	stborough Lab					
Acenaphthene	ND		mg/kg	0.14	0.014	1
2-Chloronaphthalene	ND		mg/kg	0.17	0.016	1
Hexachlorobenzene	ND		mg/kg	0.050	0.016	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.062	0.021	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.13	0.044	1
2,4-Dinitrotoluene	ND		mg/kg	0.086	0.029	1
2,6-Dinitrotoluene	ND		mg/kg	0.068	0.023	1
Fluoranthene	ND		mg/kg	0.10	0.020	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.17	0.014	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.21	0.020	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.19	0.016	1
Hexachlorobutadiene	ND		mg/kg	0.064	0.021	1
Hexachlorocyclopentadiene	ND		mg/kg	0.49	0.11	1
Hexachloroethane	ND		mg/kg	0.084	0.028	1
Isophorone	ND		mg/kg	0.058	0.019	1
Naphthalene	ND		mg/kg	0.17	0.021	1
Nitrobenzene	ND		mg/kg	0.077	0.026	1
NDPA/DPA	ND		mg/kg	0.042	0.014	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.044	0.014	1
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.17	0.018	1
Butyl benzyl phthalate	ND		mg/kg	0.17	0.023	1
Di-n-butylphthalate	ND		mg/kg	0.17	0.015	1
Di-n-octylphthalate	ND		mg/kg	0.17	0.054	1
Diethyl phthalate	ND		mg/kg	0.17	0.016	1
Dimethyl phthalate	ND		mg/kg	0.17	0.016	1
Benzo(a)anthracene	ND		mg/kg	0.058	0.019	1
Benzo(a)pyrene	ND		mg/kg	0.13	0.042	1
Benzo(b)fluoranthene	ND		mg/kg	0.044	0.014	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01 Date Collected: 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS -	· Westborough Lab					
Benzo(k)fluoranthene	ND		mg/kg	0.036	0.012	1
Chrysene	ND		mg/kg	0.10	0.018	1
Acenaphthylene	ND		mg/kg	0.14	0.019	1
Anthracene	ND		mg/kg	0.10	0.015	1
Benzo(ghi)perylene	ND		mg/kg	0.14	0.020	1
Fluorene	ND		mg/kg	0.17	0.017	1
Phenanthrene	ND		mg/kg	0.10	0.012	1
Dibenzo(a,h)anthracene	ND		mg/kg	0.060	0.020	1
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.073	0.024	1
Pyrene	ND		mg/kg	0.10	0.015	1
4-Chloroaniline	ND		mg/kg	0.17	0.020	1
2-Nitroaniline	ND		mg/kg	0.17	0.032	1
3-Nitroaniline	ND		mg/kg	0.17	0.033	1
4-Nitroaniline	ND		mg/kg	0.17	0.072	1
Dibenzofuran	ND		mg/kg	0.17	0.015	1
2-Methylnaphthalene	ND		mg/kg	0.21	0.018	1
2,4,6-Trichlorophenol	ND		mg/kg	0.099	0.033	1
p-Chloro-m-cresol	ND		mg/kg	0.17	0.026	1
2-Chlorophenol	ND		mg/kg	0.057	0.019	1
2,4-Dichlorophenol	ND		mg/kg	0.083	0.028	1
2,4-Dimethylphenol	ND		mg/kg	0.16	0.055	1
2-Nitrophenol	ND		mg/kg	0.37	0.028	1
2,4-Dinitrophenol	ND		mg/kg	0.25	0.081	1
4,6-Dinitro-o-cresol	ND		mg/kg	0.25	0.083	1
Pentachlorophenol	ND		mg/kg	0.11	0.038	1
Phenol	ND		mg/kg	0.17	0.020	1
2-Methylphenol	ND		mg/kg	0.17	0.027	1
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.25	0.025	1
2,4,5-Trichlorophenol	ND		mg/kg	0.17	0.033	1
Carbazole	ND		mg/kg	0.17	0.011	1
4-Nitrophenol	ND		mg/kg	0.24	0.048	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.17	0.019	1
Benzaldehyde	ND		mg/kg	0.23	0.027	1
Caprolactam	ND		mg/kg	0.17	0.037	1
Acetophenone	ND		mg/kg	0.17	0.018	1
Biphenyl	ND		mg/kg	0.39	0.040	1
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.17	0.018	1

10/25/18 10:15

Date Collected:

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Semivolatile Organics by GC/MS - Westborough Lab							
Atrazine	ND		mg/kg	0.14	0.060	1	
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.17	0.035	1	

Tentatively Identified Compounds				
Total TIC Compounds	0.506	J	mg/kg	1
Unknown Amide	0.506	J	mg/kg	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	106	30-130
Phenol-d6	110	30-130
Nitrobenzene-d5	112	30-130
2-Fluorobiphenyl	116	30-130
2,4,6-Tribromophenol	124	30-130
4-Terphenyl-d14	116	30-130

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546

Analytical Method: 1,8270D Extraction Date: 10/27/18 12:56

Analyst: SZ Percent Solids: 93%

11/01/18 01:10

Analytical Date:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - We	estborough Lab					
Acenaphthene	ND		mg/kg	0.14	0.015	1
2-Chloronaphthalene	ND		mg/kg	0.18	0.017	1
Hexachlorobenzene	ND		mg/kg	0.051	0.017	1
Bis(2-chloroethyl)ether	ND		mg/kg	0.064	0.021	1
3,3'-Dichlorobenzidine	ND		mg/kg	0.14	0.045	1
2,4-Dinitrotoluene	ND		mg/kg	0.088	0.029	1
2,6-Dinitrotoluene	ND		mg/kg	0.070	0.023	1
Fluoranthene	ND		mg/kg	0.11	0.020	1
4-Chlorophenyl phenyl ether	ND		mg/kg	0.18	0.015	1
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.21	0.020	1
Bis(2-chloroethoxy)methane	ND		mg/kg	0.19	0.017	1
Hexachlorobutadiene	ND		mg/kg	0.066	0.022	1
Hexachlorocyclopentadiene	ND		mg/kg	0.51	0.11	1
Hexachloroethane	ND		mg/kg	0.086	0.029	1
Isophorone	ND		mg/kg	0.060	0.020	1
Naphthalene	ND		mg/kg	0.18	0.022	1
Nitrobenzene	ND		mg/kg	0.079	0.026	1
NDPA/DPA	ND		mg/kg	0.044	0.014	1
n-Nitrosodi-n-propylamine	ND		mg/kg	0.045	0.015	1
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.18	0.018	1
Butyl benzyl phthalate	ND		mg/kg	0.18	0.024	1
Di-n-butylphthalate	ND		mg/kg	0.18	0.016	1
Di-n-octylphthalate	ND		mg/kg	0.18	0.055	1
Diethyl phthalate	ND		mg/kg	0.18	0.016	1
Dimethyl phthalate	ND		mg/kg	0.18	0.017	1
Benzo(a)anthracene	ND		mg/kg	0.060	0.020	1
Benzo(a)pyrene	ND		mg/kg	0.13	0.043	1
Benzo(b)fluoranthene	ND		mg/kg	0.045	0.015	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS - Westb	orough Lab					
Benzo(k)fluoranthene	ND		mg/kg	0.037	0.012	1
Chrysene	ND		mg/kg	0.11	0.018	1
Acenaphthylene	ND		mg/kg	0.14	0.020	1
Anthracene	ND		mg/kg	0.11	0.016	1
Benzo(ghi)perylene	ND		mg/kg	0.14	0.021	1
Fluorene	ND		mg/kg	0.18	0.017	1
Phenanthrene	ND		mg/kg	0.11	0.013	1
Dibenzo(a,h)anthracene	ND		mg/kg	0.062	0.020	1
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.074	0.025	1
Pyrene	ND		mg/kg	0.11	0.015	1
4-Chloroaniline	ND		mg/kg	0.18	0.020	1
2-Nitroaniline	ND		mg/kg	0.18	0.032	1
3-Nitroaniline	ND		mg/kg	0.18	0.033	1
4-Nitroaniline	ND		mg/kg	0.18	0.073	1
Dibenzofuran	ND		mg/kg	0.18	0.016	1
2-Methylnaphthalene	ND		mg/kg	0.21	0.019	1
2,4,6-Trichlorophenol	ND		mg/kg	0.10	0.034	1
p-Chloro-m-cresol	ND		mg/kg	0.18	0.026	1
2-Chlorophenol	ND		mg/kg	0.058	0.019	1
2,4-Dichlorophenol	ND		mg/kg	0.085	0.028	1
2,4-Dimethylphenol	ND		mg/kg	0.17	0.056	1
2-Nitrophenol	ND		mg/kg	0.38	0.029	1
2,4-Dinitrophenol	ND		mg/kg	0.26	0.082	1
4,6-Dinitro-o-cresol	ND		mg/kg	0.26	0.085	1
Pentachlorophenol	ND		mg/kg	0.12	0.039	1
Phenol	ND		mg/kg	0.18	0.021	1
2-Methylphenol	ND		mg/kg	0.18	0.027	1
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.26	0.026	1
2,4,5-Trichlorophenol	ND		mg/kg	0.18	0.034	1
Carbazole	ND		mg/kg	0.18	0.011	1
4-Nitrophenol	ND		mg/kg	0.25	0.049	1
4-Bromophenyl phenyl ether	ND		mg/kg	0.18	0.020	1
Benzaldehyde	ND		mg/kg	0.23	0.028	1
Caprolactam	ND		mg/kg	0.18	0.038	1
Acetophenone	ND		mg/kg	0.18	0.018	1
Biphenyl	ND		mg/kg	0.40	0.041	1
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.18	0.018	1

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Semivolatile Organics by GC/MS	- Westborough Lab					
Atrazine	ND		mg/kg	0.14	0.062	1
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.18	0.036	1

Tentatively Identified Compounds				
Total TIC Compounds	0.150	J	mg/kg	1
Unknown	0.150	J	mg/kg	1

Surrogate	% Recovery	Acceptance Qualifier Criteria
2-Fluorophenol	105	30-130
Phenol-d6	109	30-130
Nitrobenzene-d5	111	30-130
2-Fluorobiphenyl	114	30-130
2,4,6-Tribromophenol	117	30-130
4-Terphenyl-d14	110	30-130

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/29/18 09:28

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 10/27/18 12:56

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS -	Westborough	Lab for s	ample(s):	01,04	Batch:	WG1173027-1	
Acenaphthene	ND		mg/kg	0.13		0.014	
2-Chloronaphthalene	ND		mg/kg	0.16		0.015	_
Hexachlorobenzene	ND		mg/kg	0.047		0.016	_
Bis(2-chloroethyl)ether	ND		mg/kg	0.058		0.020	
3,3'-Dichlorobenzidine	ND		mg/kg	0.12		0.042	
2,4-Dinitrotoluene	ND		mg/kg	0.081		0.027	
2,6-Dinitrotoluene	ND		mg/kg	0.064		0.021	
Fluoranthene	ND		mg/kg	0.098		0.019	
4-Chlorophenyl phenyl ether	ND		mg/kg	0.16		0.014	
Bis(2-chloroisopropyl)ether	ND		mg/kg	0.20		0.019	
Bis(2-chloroethoxy)methane	ND		mg/kg	0.18		0.015	
Hexachlorobutadiene	ND		mg/kg	0.060		0.020	
Hexachlorocyclopentadiene	ND		mg/kg	0.46		0.10	
Hexachloroethane	ND		mg/kg	0.079		0.026	
Isophorone	ND		mg/kg	0.055		0.018	
Naphthalene	ND		mg/kg	0.16		0.020	
Nitrobenzene	ND		mg/kg	0.072		0.024	
NDPA/DPA	ND		mg/kg	0.040		0.013	
n-Nitrosodi-n-propylamine	ND		mg/kg	0.041		0.014	_
Bis(2-ethylhexyl)phthalate	ND		mg/kg	0.16		0.017	
Butyl benzyl phthalate	ND		mg/kg	0.16		0.022	
Di-n-butylphthalate	ND		mg/kg	0.16		0.014	
Di-n-octylphthalate	ND		mg/kg	0.16		0.051	
Diethyl phthalate	ND		mg/kg	0.16		0.015	
Dimethyl phthalate	ND		mg/kg	0.16		0.016	
Benzo(a)anthracene	ND		mg/kg	0.055		0.018	
Benzo(a)pyrene	ND		mg/kg	0.12		0.040	
Benzo(b)fluoranthene	ND		mg/kg	0.041		0.014	
Benzo(k)fluoranthene	ND		mg/kg	0.034		0.011	

 Project Name:
 CPG III
 Lab Number:
 L1843634

 Project Number:
 15.5268
 Report Date:
 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Analytical Date: 10/29/18 09:28

Analyst: EK

Extraction Method: EPA 3546
Extraction Date: 10/27/18 12:56

Parameter	Result	Qualifier	Units	RL		MDL
Semivolatile Organics by GC/MS	- Westborough	Lab for s	ample(s):	01,04	Batch:	WG1173027-1
Chrysene	ND		mg/kg	0.098		0.017
Acenaphthylene	ND		mg/kg	0.13		0.018
Anthracene	ND		mg/kg	0.098		0.014
Benzo(ghi)perylene	ND		mg/kg	0.13		0.019
Fluorene	ND		mg/kg	0.16		0.016
Phenanthrene	ND		mg/kg	0.098		0.012
Dibenzo(a,h)anthracene	ND		mg/kg	0.056		0.019
Indeno(1,2,3-cd)pyrene	ND		mg/kg	0.068		0.023
Pyrene	ND		mg/kg	0.098		0.014
4-Chloroaniline	ND		mg/kg	0.16		0.019
2-Nitroaniline	ND		mg/kg	0.16		0.030
3-Nitroaniline	ND		mg/kg	0.16		0.031
4-Nitroaniline	ND		mg/kg	0.16		0.067
Dibenzofuran	ND		mg/kg	0.16		0.014
2-Methylnaphthalene	ND		mg/kg	0.20		0.017
2,4,6-Trichlorophenol	ND		mg/kg	0.093		0.031
p-Chloro-m-cresol	ND		mg/kg	0.16		0.024
2-Chlorophenol	ND		mg/kg	0.054		0.018
2,4-Dichlorophenol	ND		mg/kg	0.078		0.026
2,4-Dimethylphenol	ND		mg/kg	0.16		0.052
2-Nitrophenol	ND		mg/kg	0.35		0.027
2,4-Dinitrophenol	ND		mg/kg	0.23		0.076
4,6-Dinitro-o-cresol	ND		mg/kg	0.23		0.078
Pentachlorophenol	ND		mg/kg	0.11		0.036
Phenol	ND		mg/kg	0.16		0.019
2-Methylphenol	ND		mg/kg	0.16		0.025
3-Methylphenol/4-Methylphenol	ND		mg/kg	0.23		0.023
2,4,5-Trichlorophenol	ND		mg/kg	0.16		0.031
Carbazole	ND		mg/kg	0.16		0.010

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8270D Extraction Method: EPA 3546
Analytical Date: 10/29/18 09:28 Extraction Date: 10/27/18 12:56

Analyst: EK

Parameter	Result	Qualifier	Units	RL		MDL	
Semivolatile Organics by GC/MS	S - Westborough	h Lab for s	ample(s):	01,04	Batch:	WG1173027-1	
4-Nitrophenol	ND		mg/kg	0.23		0.045	
4-Bromophenyl phenyl ether	ND		mg/kg	0.16		0.018	
Benzaldehyde	ND		mg/kg	0.21		0.025	
Caprolactam	ND		mg/kg	0.16		0.035	
Acetophenone	ND		mg/kg	0.16		0.017	
Biphenyl	ND		mg/kg	0.37		0.038	
1,2,4,5-Tetrachlorobenzene	ND		mg/kg	0.16		0.017	
Atrazine	ND		mg/kg	0.13		0.057	
2,3,4,6-Tetrachlorophenol	ND		mg/kg	0.16		0.033	

Tentatively Identified Compounds		
No Tentatively Identified Compounds	ND	mg/kg

%Recovery Q	Acceptance ualifier Criteria
94	30-130
95	30-130
90	30-130
94	30-130
106	30-130
102	30-130
	94 95 90 94 106

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date:

Parameter	LCS %Recovery	Qual	LCSI %Recov		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Semivolatile Organics by GC/MS - Westbord	ough Lab Assoc	iated sample(s):	01,04	Batch:	WG117302	7-2 WG11730	27-3			
Acenaphthene	102		85			70-130	18		30	
2-Chloronaphthalene	103		85			70-130	19		30	
Hexachlorobenzene	102		86			70-130	17		30	
Bis(2-chloroethyl)ether	88		74			70-130	17		30	
3,3'-Dichlorobenzidine	91		73			70-130	22		30	
2,4-Dinitrotoluene	117		99			70-130	17		30	
2,6-Dinitrotoluene	118		98			70-130	19		30	
Fluoranthene	112		94			70-130	17		30	
4-Chlorophenyl phenyl ether	101		85			70-130	17		30	
Bis(2-chloroisopropyl)ether	95		78			70-130	20		30	
Bis(2-chloroethoxy)methane	93		77			70-130	19		30	
Hexachlorobutadiene	91		78			70-130	15		30	
Hexachlorocyclopentadiene	105		87			20-160	19		30	
Hexachloroethane	87		74			20-160	16		30	
Isophorone	97		80			70-130	19		30	
Naphthalene	94		79			70-130	17		30	
Nitrobenzene	94		77			70-130	20		30	
NDPA/DPA	108		90			70-130	18		30	
n-Nitrosodi-n-propylamine	96		78			70-130	21		30	
Bis(2-ethylhexyl)phthalate	99		81			70-130	20		30	
Butyl benzyl phthalate	124		105			70-130	17		30	
Di-n-butylphthalate	115		95			70-130	19		30	
Di-n-octylphthalate	106		87			70-130	20		30	

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date:

arameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery y Qual Limits	RPD	RPD Qual Limits
emivolatile Organics by GC/MS - West	borough Lab Associate	d sample(s): 01,04 Ba	atch: WG1173027-2 WG11	73027-3	
Diethyl phthalate	107	89	70-130	18	30
Dimethyl phthalate	108	89	70-130	19	30
Benzo(a)anthracene	104	86	70-130	19	30
Benzo(a)pyrene	125	103	70-130	19	30
Benzo(b)fluoranthene	117	98	70-130	18	30
Benzo(k)fluoranthene	114	93	70-130	20	30
Chrysene	102	84	70-130	19	30
Acenaphthylene	109	90	70-130	19	30
Anthracene	106	88	70-130	19	30
Benzo(ghi)perylene	112	94	70-130	17	30
Fluorene	108	90	70-130	18	30
Phenanthrene	100	83	70-130	19	30
Dibenzo(a,h)anthracene	112	93	70-130	19	30
Indeno(1,2,3-cd)pyrene	117	96	70-130	20	30
Pyrene	109	91	70-130	18	30
4-Chloroaniline	79	66	20-160	18	30
2-Nitroaniline	120	100	70-130	18	30
3-Nitroaniline	94	80	70-130	16	30
4-Nitroaniline	117	97	70-130	19	30
Dibenzofuran	104	86	70-130	19	30
2-Methylnaphthalene	100	84	70-130	17	30
2,4,6-Trichlorophenol	114	94	70-130	19	30
p-Chloro-m-cresol	108	89	70-130	19	30

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date:

arameter	LCS %Recovery	LCSI Qual %Reco	,	ecovery imits RPD	-	RPD imits
Semivolatile Organics by GC/MS - We	estborough Lab Associ	ated sample(s): 01,04	Batch: WG1173027-2	WG1173027-3		
2-Chlorophenol	100	82	70	0-130 20		30
2,4-Dichlorophenol	111	90	70	0-130 21		30
2,4-Dimethylphenol	106	87	70	0-130 20		30
2-Nitrophenol	111	91	70	0-130 20		30
2,4-Dinitrophenol	111	90	20	0-160 21		30
4,6-Dinitro-o-cresol	108	92	70	0-130 16		30
Pentachlorophenol	109	91	20	0-160 18		30
Phenol	90	74	20	0-160 20		30
2-Methylphenol	101	84	70	0-130 18		30
3-Methylphenol/4-Methylphenol	105	85	20	0-160 21		30
2,4,5-Trichlorophenol	117	95	70	0-130 21		30
Carbazole	109	91	70	0-130 18		30
4-Nitrophenol	126	107	20	0-160 16		30
4-Bromophenyl phenyl ether	107	89	70	0-130 18		30
Benzaldehyde	88	76	20	0-160 15		30
Caprolactam	132	108	20	0-160 20		30
Acetophenone	106	87	70	0-130 20		30
Biphenyl	109	91	70	0-130 18		30
1,2,4,5-Tetrachlorobenzene	105	89	70	0-130 16		30
Atrazine	116	96	70	0-130 19		30
2,3,4,6-Tetrachlorophenol	116	95	70	0-130 20		30

Project Name: CPG III

Lab Number:

L1843634

Project Number:

15.5268

Report Date:

11/01/18

	LCS		LCSD		%Recovery			RPD
Parameter	%Recovery	Qual	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,04 Batch: WG1173027-2 WG1173027-3

Surrogate	LCS %Recovery Qual	LCSD %Recovery Qual	Acceptance Criteria
2-Fluorophenol	90	73	30-130
Phenol-d6	90	74	30-130
Nitrobenzene-d5	87	71	30-130
2-Fluorobiphenyl	92	76	30-130
2,4,6-Tribromophenol	105	84	30-130
4-Terphenyl-d14	96	81	30-130

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		covery imits	RPD	Qual	RPD Limits
Semivolatile Organics by GIMPORTED-FILL-01	GC/MS - Westbor	ough Lab	Associated sa	mple(s): 01,04	QC Batch	n ID: WG1	173027-4 C	C Sample:	L184363	34-01	Client ID	: 04B-
Acenaphthene	ND	1.4	1.8	130		-	-	7	0-130	-		30
2-Chloronaphthalene	ND	1.4	1.7	120		-	-	7	0-130	-		30
Hexachlorobenzene	ND	1.4	1.8	130		-	-	7	0-130	-		30
Bis(2-chloroethyl)ether	ND	1.4	1.6	110		-	-	7	0-130	-		30
3,3'-Dichlorobenzidine	ND	1.4	1.4	100		-	-	7	0-130	-		30
2,4-Dinitrotoluene	ND	1.4	1.8	130		-	-	7	0-130	-		30
2,6-Dinitrotoluene	ND	1.4	1.8	130		-	-	7	0-130	-		30
Fluoranthene	ND	1.4	1.7	120		-	-	7	0-130	-		30
1-Chlorophenyl phenyl ether	ND	1.4	1.8	130		-	-	7	0-130	-		30
Bis(2-chloroisopropyl)ether	ND	1.4	1.6	110		-	-	7	0-130	-		30
Bis(2-chloroethoxy)methane	ND	1.4	1.6	110		-	-	7	0-130	-		30
Hexachlorobutadiene	ND	1.4	1.6	110		-	-	7	0-130	-		30
Hexachlorocyclopentadiene	ND	1.4	1.1	78		-	-	2	0-160	-		30
Hexachloroethane	ND	1.4	1.4	100		-	-	2	0-160	-		30
sophorone	ND	1.4	1.6	110		-	-	7	0-130	-		30
Naphthalene	ND	1.4	1.6	110		-	-	7	0-130	-		30
Nitrobenzene	ND	1.4	1.6	110		-	-	7	0-130	-		30
NDPA/DPA	ND	1.4	1.8	130		-	-	7	0-130	-		30
n-Nitrosodi-n-propylamine	ND	1.4	1.7	120		-	-	7	0-130	-		30
Bis(2-ethylhexyl)phthalate	ND	1.4	1.8	130		-	-	7	0-130	-		30
Butyl benzyl phthalate	ND	1.4	1.8	130		-	-	7	0-130	-		30
Di-n-butylphthalate	ND	1.4	1.8	130		-	-	7	0-130	-		30
Di-n-octylphthalate	ND	1.4	1.8	130		-	-	7	0-130	-		30

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery	Recover / Qual Limits	y RPD	RPD Qual Limits
Semivolatile Organics by IMPORTED-FILL-01	GC/MS - Westbor	ough Lab	Associated sa	ample(s): 01,04	QC Batch ID: WG	1173027-4	QC Sample: L1843	634-01	Client ID: 04B-
Diethyl phthalate	ND	1.4	1.8	130	-	-	70-130	-	30
Dimethyl phthalate	ND	1.4	1.7	120	-	-	70-130	-	30
Benzo(a)anthracene	ND	1.4	1.6	110	-	-	70-130	-	30
Benzo(a)pyrene	ND	1.4	1.7	120	-	-	70-130	-	30
Benzo(b)fluoranthene	ND	1.4	1.6	110	-	-	70-130	-	30
Benzo(k)fluoranthene	ND	1.4	1.7	120	-	-	70-130	-	30
Chrysene	ND	1.4	1.7	120	-	-	70-130	-	30
Acenaphthylene	ND	1.4	1.7	120	-	-	70-130	-	30
Anthracene	ND	1.4	1.8	130	-	-	70-130	-	30
Benzo(ghi)perylene	ND	1.4	1.8	130	-	-	70-130	-	30
Fluorene	ND	1.4	1.8	130	-	-	70-130	-	30
Phenanthrene	ND	1.4	1.7	120	-	-	70-130	-	30
Dibenzo(a,h)anthracene	ND	1.4	1.7	120	-	-	70-130	-	30
ndeno(1,2,3-cd)pyrene	ND	1.4	1.8	130	-	-	70-130	-	30
Pyrene	ND	1.4	1.7	120	-	-	70-130	-	30
4-Chloroaniline	ND	1.4	1.5	110	-	-	20-160	-	30
2-Nitroaniline	ND	1.4	1.8	130	-	-	70-130	-	30
3-Nitroaniline	ND	1.4	1.5	110	-	-	70-130	-	30
4-Nitroaniline	ND	1.4	1.8	130	-	-	70-130	-	30
Dibenzofuran	ND	1.4	1.8	130	-	-	70-130	-	30
2-Methylnaphthalene	ND	1.4	1.7	120	-	-	70-130	-	30
2,4,6-Trichlorophenol	ND	1.4	1.8	130	-	-	70-130	-	30
o-Chloro-m-cresol	ND	1.4	1.8	130	-	-	70-130	-	30

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date:

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery		Recovery Limits	RPD	Qual	RPD Limits
Semivolatile Organics by GC IMPORTED-FILL-01	C/MS - Westbor	ough Lab	Associated sa	ample(s): 01,04	QC Bate	ch ID: WG1	173027-4 C)C Samp	ole: L184363	4-01	Client ID	: 04B-
2-Chlorophenol	ND	1.4	1.6	110		-	-		70-130	-		30
2,4-Dichlorophenol	ND	1.4	1.8	130		-	-		70-130	-		30
2,4-Dimethylphenol	ND	1.4	1.8	130		-	-		70-130	-		30
2-Nitrophenol	ND	1.4	1.6	110		-	-		70-130	-		30
2,4-Dinitrophenol	ND	1.4	0.21J	15	Q	-	-		20-160	-		30
4,6-Dinitro-o-cresol	ND	1.4	0.92	66	Q	-	-		70-130	-		30
Pentachlorophenol	ND	1.4	1.8	130		-	-		20-160	-		30
Phenol	ND	1.4	1.7	120		-	-		20-160	-		30
2-Methylphenol	ND	1.4	1.7	120		-	-		70-130	-		30
3-Methylphenol/4-Methylphenol	ND	1.4	1.8	130		-	-		20-160	-		30
2,4,5-Trichlorophenol	ND	1.4	1.7	120		-	-		70-130	-		30
Carbazole	ND	1.4	1.8	130		-	-		70-130	-		30
4-Nitrophenol	ND	1.4	1.8	130		-	-		20-160	-		30
4-Bromophenyl phenyl ether	ND	1.4	1.8	130		-	-		70-130	-		30
Benzaldehyde	ND	1.4	1.3	93		-	-		20-160	-		30
Caprolactam	ND	1.4	1.6	110		-	-		20-160	-		30
Acetophenone	ND	1.4	1.7	120		-	-		70-130	-		30
Biphenyl	ND	1.4	1.8	130		-	-		70-130	-		30
1,2,4,5-Tetrachlorobenzene	ND	1.4	1.8	130		-	-		70-130	-		30
Atrazine	ND	1.4	1.8	130		-	-		70-130	-		30
2,3,4,6-Tetrachlorophenol	ND	1.4	1.8	130		-	-		70-130	-		30

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

11/01/18

	Native	MS	MS	MS		MSD	MSD		Recovery	•		RPD
Parameter	Sample	Added	Found	%Recovery	Qual	Found	%Recovery	Qual	Limits	RPD	Qual	Limits

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,04 QC Batch ID: WG1173027-4 QC Sample: L1843634-01 Client ID: 04B-IMPORTED-FILL-01

	MS	MSD	Acceptance
Surrogate	% Recovery Qualifier	% Recovery Qualifier	Criteria
2,4,6-Tribromophenol	121		30-130
2-Fluorobiphenyl	111		30-130
2-Fluorophenol	104		30-130
4-Terphenyl-d14	108		30-130
Nitrobenzene-d5	103		30-130
Phenol-d6	108		30-130

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborough Lab IMPORTED-FILL-01			WG1173027-5		L1843634-01 Client ID: 04B-
Acenaphthene	ND	ND	mg/kg	NC	30
2-Chloronaphthalene	ND	ND	mg/kg	NC	30
Hexachlorobenzene	ND	ND	mg/kg	NC	30
Bis(2-chloroethyl)ether	ND	ND	mg/kg	NC	30
3,3'-Dichlorobenzidine	ND	ND	mg/kg	NC	30
2,4-Dinitrotoluene	ND	ND	mg/kg	NC	30
2,6-Dinitrotoluene	ND	ND	mg/kg	NC	30
Fluoranthene	ND	ND	mg/kg	NC	30
4-Chlorophenyl phenyl ether	ND	ND	mg/kg	NC	30
Bis(2-chloroisopropyl)ether	ND	ND	mg/kg	NC	30
Bis(2-chloroethoxy)methane	ND	ND	mg/kg	NC	30
Hexachlorobutadiene	ND	ND	mg/kg	NC	30
Hexachlorocyclopentadiene	ND	ND	mg/kg	NC	30
Hexachloroethane	ND	ND	mg/kg	NC	30
Isophorone	ND	ND	mg/kg	NC	30
Naphthalene	ND	ND	mg/kg	NC	30
Nitrobenzene	ND	ND	mg/kg	NC	30
NDPA/DPA	ND	ND	mg/kg	NC	30
n-Nitrosodi-n-propylamine	ND	ND	mg/kg	NC	30
Bis(2-ethylhexyl)phthalate	ND	ND	mg/kg	NC	30
Butyl benzyl phthalate	ND	ND	mg/kg	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborough Lab IMPORTED-FILL-01	Associated sample(s):	01,04 QC Batch ID:	WG1173027-5	QC Sample:	L1843634-01 Client ID: 04B-
Di-n-butylphthalate	ND	ND	mg/kg	NC	30
Di-n-octylphthalate	ND	ND	mg/kg	NC	30
Diethyl phthalate	ND	ND	mg/kg	NC	30
Dimethyl phthalate	ND	ND	mg/kg	NC	30
Benzo(a)anthracene	ND	ND	mg/kg	NC	30
Benzo(a)pyrene	ND	ND	mg/kg	NC	30
Benzo(b)fluoranthene	ND	ND	mg/kg	NC	30
Benzo(k)fluoranthene	ND	ND	mg/kg	NC	30
Chrysene	ND	ND	mg/kg	NC	30
Acenaphthylene	ND	ND	mg/kg	NC	30
Anthracene	ND	ND	mg/kg	NC	30
Benzo(ghi)perylene	ND	ND	mg/kg	NC	30
Fluorene	ND	ND	mg/kg	NC	30
Phenanthrene	ND	ND	mg/kg	NC	30
Dibenzo(a,h)anthracene	ND	ND	mg/kg	NC	30
Indeno(1,2,3-cd)pyrene	ND	ND	mg/kg	NC	30
Pyrene	ND	ND	mg/kg	NC	30
4-Chloroaniline	ND	ND	mg/kg	NC	30
2-Nitroaniline	ND	ND	mg/kg	NC	30
3-Nitroaniline	ND	ND	mg/kg	NC	30
4-Nitroaniline	ND	ND	mg/kg	NC	30

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Parameter	Native Sample	Duplicate Sample	Units	RPD	RPD Qual Limits
Semivolatile Organics by GC/MS - Westborough Lab IMPORTED-FILL-01	Associated sample(s):	01,04 QC Batch ID:	WG1173027-5	QC Sample:	L1843634-01 Client ID: 04B-
Dibenzofuran	ND	ND	mg/kg	NC	30
2-Methylnaphthalene	ND	ND	mg/kg	NC	30
2,4,6-Trichlorophenol	ND	ND	mg/kg	NC	30
p-Chloro-m-cresol	ND	ND	mg/kg	NC	30
2-Chlorophenol	ND	ND	mg/kg	NC	30
2,4-Dichlorophenol	ND	ND	mg/kg	NC	30
2,4-Dimethylphenol	ND	ND	mg/kg	NC	30
2-Nitrophenol	ND	ND	mg/kg	NC	30
2,4-Dinitrophenol	ND	ND	mg/kg	NC	30
4,6-Dinitro-o-cresol	ND	ND	mg/kg	NC	30
Pentachlorophenol	ND	ND	mg/kg	NC	30
Phenol	ND	ND	mg/kg	NC	30
2-Methylphenol	ND	ND	mg/kg	NC	30
3-Methylphenol/4-Methylphenol	ND	ND	mg/kg	NC	30
2,4,5-Trichlorophenol	ND	ND	mg/kg	NC	30
Carbazole	ND	ND	mg/kg	NC	30
4-Nitrophenol	ND	ND	mg/kg	NC	30
4-Bromophenyl phenyl ether	ND	ND	mg/kg	NC	30
Benzaldehyde	ND	ND	mg/kg	NC	30
Caprolactam	ND	ND	mg/kg	NC	30
Acetophenone	ND	ND	mg/kg	NC	30

L1843634

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III **Project Number:** 15.5268

11/01/18 Report Date:

חמם

Lab Number:

Semivolatile Organics by GC/MS - Westborough Lab Associated sample(s): 01,04 QC Batch ID: WG1173027-5 QC Sample: L1843634-01	Client ID: 04P
IMPORTED-FILL-01	Ciletit ID. 046-
Biphenyl ND ND mg/kg NC	30
1,2,4,5-Tetrachlorobenzene ND ND mg/kg NC	30
Atrazine ND ND mg/kg NC	30
2,3,4,6-Tetrachlorophenol ND ND mg/kg NC	30

			Acceptance	
Surrogate	%Recovery Qualifie	r %Recovery Qualif	fier Criteria	
2-Fluorophenol	106	90	30-130	
Phenol-d6	110	94	30-130	
Nitrobenzene-d5	112	93	30-130	
2-Fluorobiphenyl	116	100	30-130	
2,4,6-Tribromophenol	124	105	30-130	
4-Terphenyl-d14	116	98	30-130	

PCBS

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01 Date Collected: 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 10/27/18 12:03

Analytical Date: 10/31/18 18:54

Analyst: HT

Cleanup Method: EPA 3665A

Cleanup Date: 10/28/18

Percent Solids: 94%

Cleanup Method: EPA 3660B

Percent Solids: 94% Cleanup Method: EPA 3660 Cleanup Date: 10/28/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column	
Polychlorinated Biphenyls by GC - Westborough Lab								
Aroclor 1016	ND		mg/kg	0.0342	0.00304	1	Α	
Aroclor 1221	ND		mg/kg	0.0342	0.00343	1	Α	
Aroclor 1232	ND		mg/kg	0.0342	0.00726	1	Α	
Aroclor 1242	ND		mg/kg	0.0342	0.00461	1	Α	
Aroclor 1248	ND		mg/kg	0.0342	0.00513	1	А	
Aroclor 1254	ND		mg/kg	0.0342	0.00374	1	А	
Aroclor 1260	ND		mg/kg	0.0342	0.00632	1	Α	
Aroclor 1262	ND		mg/kg	0.0342	0.00435	1	Α	
Aroclor 1268	ND		mg/kg	0.0342	0.00355	1	Α	
PCBs, Total	ND		mg/kg	0.0342	0.00304	1	Α	

			Acceptance	
Surrogate	% Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	65		30-150	Α
Decachlorobiphenyl	66		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	70		30-150	В
Decachlorobiphenyl	67		30-150	В

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8082A Extraction Date: 10/27/18 12:03
Analytical Date: 10/31/18 19:07 Cleanup Method: EPA 3665A

Analyst: HT Cleanup Date: 10/28/18
Percent Solids: 93% Cleanup Method: EPA 3660B
Cleanup Date: 10/28/18

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Polychlorinated Biphenyls by G	C - Westborough Lab						
Aroclor 1016	ND		mg/kg	0.0342	0.00304	1	Α
Aroclor 1221	ND		mg/kg	0.0342	0.00343	1	Α
Aroclor 1232	ND		mg/kg	0.0342	0.00726	1	Α
Aroclor 1242	ND		mg/kg	0.0342	0.00462	1	Α
Aroclor 1248	ND		mg/kg	0.0342	0.00514	1	Α
Aroclor 1254	ND		mg/kg	0.0342	0.00374	1	Α
Aroclor 1260	ND		mg/kg	0.0342	0.00633	1	Α
Aroclor 1262	ND		mg/kg	0.0342	0.00435	1	А
Aroclor 1268	ND		mg/kg	0.0342	0.00355	1	Α
PCBs, Total	ND		mg/kg	0.0342	0.00304	1	Α

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	68		30-150	Α
Decachlorobiphenyl	67		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	68		30-150	В

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8082A Analytical Date: 10/31/18 19:33

Analyst: HT

Extraction Method: EPA 3546
Extraction Date: 10/27/18 12:03
Cleanup Method: EPA 3665A
Cleanup Date: 10/28/18
Cleanup Method: EPA 3660B
Cleanup Date: 10/28/18

Parameter	Result	Qualifier	Units	RL	MDL	Column
Polychlorinated Biphenyls by GC -	Westboroug	h Lab for s	ample(s):	01,04	Batch: WG1173	3013-1
Aroclor 1016	ND		mg/kg	0.0329	0.00292	Α
Aroclor 1221	ND		mg/kg	0.0329	0.00330	Α
Aroclor 1232	ND		mg/kg	0.0329	0.00698	А
Aroclor 1242	ND		mg/kg	0.0329	0.00444	А
Aroclor 1248	ND		mg/kg	0.0329	0.00494	Α
Aroclor 1254	ND		mg/kg	0.0329	0.00360	Α
Aroclor 1260	ND		mg/kg	0.0329	0.00608	Α
Aroclor 1262	ND		mg/kg	0.0329	0.00418	Α
Aroclor 1268	ND		mg/kg	0.0329	0.00341	Α
PCBs, Total	ND		mg/kg	0.0329	0.00292	А

			Acceptanc	e
Surrogate	%Recovery	Qualifier	Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	67		30-150	Α
Decachlorobiphenyl	66		30-150	Α
2,4,5,6-Tetrachloro-m-xylene	72		30-150	В
Decachlorobiphenyl	67		30-150	В

Project Name: CPG III **Project Number:** 15.5268

Lab Number:

L1843634

Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Polychlorinated Biphenyls by GC - Westbo	rough Lab Associa	ited sample(s)	: 01,04 Batch	WG117	3013-2 WG117301	3-3			
Aroclor 1016	54		56		40-140	4		30	Α
Aroclor 1260	46		48		40-140	4		30	Α

Surrogate	LCS %Recovery Qu	LCSD ual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	52	55	30-150 A
Decachlorobiphenyl	50	55	30-150 A
2,4,5,6-Tetrachloro-m-xylene	54	58	30-150 B
Decachlorobiphenyl	50	55	30-150 B

PESTICIDES

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01 Date Collected: 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/27/18 11:12
Cleanup Method: EPA 3620B

Analyst: SL Cleanup Method: EPA 3620B

Cleanup Method: EPA 3620B

Cleanup Date: 10/28/18

Analyst: SL Cleanup Da
Percent Solids: 94%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough La	ab						
Delta-BHC	ND		mg/kg	0.00160	0.00031	1	Α
Lindane	ND		mg/kg	0.00066	0.00029	1	А
Alpha-BHC	ND		mg/kg	0.00066	0.00019	1	Α
Beta-BHC	ND		mg/kg	0.00160	0.00060	1	Α
Heptachlor	ND		mg/kg	0.00080	0.00035	1	Α
Aldrin	ND		mg/kg	0.00160	0.00056	1	Α
Heptachlor epoxide	ND		mg/kg	0.00300	0.00090	1	Α
Endrin	ND		mg/kg	0.00066	0.00027	1	Α
Endrin aldehyde	ND		mg/kg	0.00200	0.00070	1	Α
Endrin ketone	ND		mg/kg	0.00160	0.00041	1	Α
Dieldrin	ND		mg/kg	0.00100	0.00050	1	Α
4,4'-DDE	ND		mg/kg	0.00160	0.00037	1	Α
4,4'-DDD	ND		mg/kg	0.00160	0.00057	1	Α
4,4'-DDT	ND		mg/kg	0.00300	0.00129	1	Α
Endosulfan I	ND		mg/kg	0.00160	0.00037	1	Α
Endosulfan II	ND		mg/kg	0.00160	0.00053	1	Α
Endosulfan sulfate	ND		mg/kg	0.00066	0.00031	1	Α
Methoxychlor	ND		mg/kg	0.00300	0.00093	1	Α
Toxaphene	ND		mg/kg	0.0300	0.00841	1	Α
Chlordane	ND		mg/kg	0.0130	0.00531	1	Α
cis-Chlordane	ND		mg/kg	0.00200	0.00055	1	Α
trans-Chlordane	ND		mg/kg	0.00200	0.00052	1	Α

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01 Date Collected: 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	61		30-150	В
Decachlorobiphenyl	55		30-150	В
2,4,5,6-Tetrachloro-m-xylene	73		30-150	Α
Decachlorobiphenyl	52		30-150	Α

10/28/18

Cleanup Date:

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Extraction Method: EPA 3546
Analytical Method: 1,8081B Extraction Date: 10/27/18 11:12
Analytical Date: 10/31/18 00:28 Cleanup Method: EPA 3620B

Analyst: SL Percent Solids: 93%

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Column
Pesticides by GC - Westborough Lab							
Delta-BHC	ND		mg/kg	0.00170	0.00033	1	Α
Lindane	ND		mg/kg	0.00070	0.00031	1	Α
Alpha-BHC	ND		mg/kg	0.00070	0.00020	1	Α
Beta-BHC	ND		mg/kg	0.00170	0.00064	1	Α
Heptachlor	ND		mg/kg	0.00084	0.00038	1	Α
Aldrin	ND		mg/kg	0.00170	0.00059	1	Α
Heptachlor epoxide	ND		mg/kg	0.00318	0.00095	1	Α
Endrin	ND		mg/kg	0.00070	0.00029	1	Α
Endrin aldehyde	ND		mg/kg	0.00212	0.00074	1	Α
Endrin ketone	ND		mg/kg	0.00170	0.00043	1	Α
Dieldrin	ND		mg/kg	0.00106	0.00053	1	Α
4,4'-DDE	ND		mg/kg	0.00170	0.00039	1	Α
4,4'-DDD	ND		mg/kg	0.00170	0.00060	1	Α
4,4'-DDT	ND		mg/kg	0.00318	0.00136	1	Α
Endosulfan I	ND		mg/kg	0.00170	0.00040	1	Α
Endosulfan II	0.00066	J	mg/kg	0.00170	0.00056	1	В
Endosulfan sulfate	ND		mg/kg	0.00070	0.00033	1	Α
Methoxychlor	ND		mg/kg	0.00318	0.00099	1	Α
Toxaphene	ND		mg/kg	0.0318	0.00891	1	Α
Chlordane	ND		mg/kg	0.0138	0.00562	1	Α
cis-Chlordane	ND		mg/kg	0.00212	0.00059	1	Α
trans-Chlordane	ND		mg/kg	0.00212	0.00056	1	Α

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 **Report Date:** 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor Column

Pesticides by GC - Westborough Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	Column
2,4,5,6-Tetrachloro-m-xylene	74		30-150	В
Decachlorobiphenyl	65		30-150	В
2,4,5,6-Tetrachloro-m-xylene	90		30-150	Α
Decachlorobiphenyl	65		30-150	Α

 Project Name:
 CPG III
 Lab Number:
 L1843634

 Project Number:
 15.5268
 Report Date:
 11/01/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Analytical Date: 10/29/18 22:42

Analyst: KB

Extraction Method: EPA 3546
Extraction Date: 10/26/18 11:45
Cleanup Method: EPA 3620B
Cleanup Date: 10/28/18

arameter	Result	Qualifier	Units	RL	MDL	Column
esticides by GC - Westborou	ugh Lab for sample(s): 01,04	Batch:	WG11727	15-1	
Delta-BHC	ND		mg/kg	0.00159	0.00031	Α
Lindane	ND		mg/kg	0.00066	0.00029	Α
Alpha-BHC	ND		mg/kg	0.00066	0.00018	А
Beta-BHC	ND		mg/kg	0.00159	0.00060	А
Heptachlor	ND		mg/kg	0.00079	0.00035	Α
Aldrin	ND		mg/kg	0.00159	0.00056	Α
Heptachlor epoxide	ND		mg/kg	0.00298	0.00089	Α
Endrin	ND		mg/kg	0.00066	0.00027	Α
Endrin aldehyde	ND		mg/kg	0.00199	0.00069	Α
Endrin ketone	ND		mg/kg	0.00159	0.00040	Α
Dieldrin	ND		mg/kg	0.00099	0.00049	Α
4,4'-DDE	ND		mg/kg	0.00159	0.00036	Α
4,4'-DDD	ND		mg/kg	0.00159	0.00056	Α
4,4'-DDT	ND		mg/kg	0.00298	0.00128	Α
Endosulfan I	ND		mg/kg	0.00159	0.00037	Α
Endosulfan II	ND		mg/kg	0.00159	0.00053	Α
Endosulfan sulfate	ND		mg/kg	0.00066	0.00031	А
Methoxychlor	ND		mg/kg	0.00298	0.00092	Α
Toxaphene	ND		mg/kg	0.0298	0.00834	Α
Chlordane	ND		mg/kg	0.0129	0.00526	Α
cis-Chlordane	ND		mg/kg	0.00199	0.00055	Α
trans-Chlordane	ND		mg/kg	0.00199	0.00052	Α

Column

MDL

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8081B Extraction Method: EPA 3546

 Analytical Date:
 10/29/18 22:42
 Extraction Date:
 10/26/18 11:45

 Analyst:
 KB
 Cleanup Method:
 EPA 3620B

 Cleanup Date:
 10/28/18

Qualifier

Units

RL

Pesticides by GC - Westborough Lab for sample(s): 01,04 Batch: WG1172715-1

Result

Parameter

Acceptance Criteria Column **Surrogate** %Recovery Qualifier 2,4,5,6-Tetrachloro-m-xylene 81 30-150 В 30-150 Decachlorobiphenyl 96 В 2,4,5,6-Tetrachloro-m-xylene 86 30-150 Α Decachlorobiphenyl 91 30-150 Α

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	Column
Pesticides by GC - Westborough Lab Associ	ated sample(s):	01,04	Batch: WG1172715-2	WG1172	2715-3				
Delta-BHC	76		82		40-140	8		30	Α
Lindane	76		82		40-140	8		30	А
Alpha-BHC	78		84		40-140	7		30	Α
Beta-BHC	80		84		40-140	5		30	Α
Heptachlor	88		93		40-140	6		30	Α
Aldrin	73		77		40-140	5		30	Α
Heptachlor epoxide	86		91		40-140	6		30	Α
Endrin	98		100		40-140	2		30	Α
Endrin aldehyde	71		79		40-140	11		30	Α
Endrin ketone	88		96		40-140	9		30	Α
Dieldrin	89		93		40-140	4		30	Α
4,4'-DDE	71		76		40-140	7		30	Α
4,4'-DDD	82		84		40-140	2		30	А
4,4'-DDT	88		89		40-140	1		30	Α
Endosulfan I	75		80		40-140	6		30	Α
Endosulfan II	87		92		40-140	6		30	А
Endosulfan sulfate	74		84		40-140	13		30	А
Methoxychlor	91		100		40-140	9		30	А
cis-Chlordane	58		62		40-140	7		30	А
trans-Chlordane	51		72		40-140	34	Q	30	А

Project Name: CPG III

15.5268

Project Number:

Lab Number: L1843634

Report Date:

11/01/18

LCSD LCS %Recovery RPD %Recovery %Recovery Limits Limits **Parameter** Qual Qual RPD Qual

Pesticides by GC - Westborough Lab Associated sample(s): 01,04 Batch: WG1172715-2 WG1172715-3

Surrogate	LCS %Recovery Q	LCSD Qual %Recovery Qual	Acceptance Criteria Column
2,4,5,6-Tetrachloro-m-xylene	79	80	30-150 B
Decachlorobiphenyl	105	101	30-150 B
2,4,5,6-Tetrachloro-m-xylene	80	83	30-150 A
Decachlorobiphenyl	112	92	30-150 A

METALS

10/25/18 10:15

Not Specified

Date Collected:

Project Name: CPG III Lab Number: L1843634 **Project Number: Report Date:** 15.5268 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-01

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18 Field Prep:

Sample Location: YONKERS, NY

Sample Depth:

Matrix: Soil 94% Percent Solids:

Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 7690 mg/kg 8.30 2.24 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ ND 2 1,6010D PΕ Antimony, Total mg/kg 4.15 0.316 10/27/18 06:50 10/29/18 14:04 EPA 3050B Arsenic, Total 0.972 mg/kg 0.830 0.173 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Barium, Total 100 0.830 0.144 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ mg/kg ND 0.027 2 1,6010D Beryllium, Total mg/kg 0.415 10/27/18 06:50 10/29/18 14:04 EPA 3050B PΕ J PΕ 2 1,6010D Cadmium, Total 0.432 mg/kg 0.830 0.081 10/27/18 06:50 10/29/18 14:04 EPA 3050B 10/27/18 06:50 10/29/18 14:04 EPA 3050B Calcium, Total 12500 8.30 2.91 2 1,6010D mg/kg PΕ ND 2 1,6010D Chromium, Total 0.830 0.080 10/27/18 06:50 10/29/18 14:04 EPA 3050B PΕ mg/kg 2 1,6010D PΕ Cobalt, Total 18.9 mg/kg 1.66 0.138 10/27/18 06:50 10/29/18 14:04 EPA 3050B 2 1,6010D Copper, Total 169 0.830 0.214 10/27/18 06:50 10/29/18 14:04 EPA 3050B PΕ mg/kg 2 1,6010D PΕ Iron, Total 37600 0.750 10/27/18 06:50 10/29/18 14:04 EPA 3050B mg/kg 4.15 J 2 Lead, Total 3.89 mg/kg 4.15 0.222 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Magnesium, Total 7260 8.30 1.28 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ mg/kg 0.830 0.132 2 1,6010D PΕ Manganese, Total 497 mg/kg 10/27/18 06:50 10/29/18 14:04 EPA 3050B Mercury, Total ND mg/kg 0.067 0.014 1 10/27/18 08:30 10/29/18 15:29 EPA 7471B 1,7471B MG Nickel, Total 6.83 2.08 0.201 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ mg/kg 208 12.0 2 1,6010D PΕ Potassium, Total 1100 mg/kg 10/27/18 06:50 10/29/18 14:04 EPA 3050B Selenium, Total ND mg/kg 1.66 0.214 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Silver, Total ND mg/kg 0.830 0.235 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Sodium, Total 891 mg/kg 166 2.62 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Thallium, Total ND mg/kg 1.66 0.262 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ Vanadium, Total 128 0.830 2 10/27/18 06:50 10/29/18 14:04 EPA 3050B 1,6010D PΕ mg/kg 0.168 2 1,6010D PΕ 58.0 0.243 Zinc, Total mg/kg 4.15 10/27/18 06:50 10/29/18 14:04 EPA 3050B

10/25/18 10:30

Date Collected:

 Project Name:
 CPG |||
 Lab Number:
 L1843634

 Project Number:
 15.5268
 Report Date:
 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18

Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Matrix: Soil Percent Solids: 93%

Dilution Date Date Prep Analytical Method Qualifier Factor **Prepared** Analyzed Method **Parameter** Result Units MDL RL Analyst Total Metals - Mansfield Lab Aluminum, Total 6970 mg/kg 8.32 2.24 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ ND 2 1,6010D PΕ Antimony, Total mg/kg 4.16 0.316 10/27/18 06:50 10/29/18 14:08 EPA 3050B Arsenic, Total 0.890 mg/kg 0.832 0.173 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Barium, Total 95.0 0.832 0.145 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ mg/kg ND 0.027 2 1,6010D Beryllium, Total mg/kg 0.416 10/27/18 06:50 10/29/18 14:08 EPA 3050B PΕ J PΕ 0.524 0.082 2 1,6010D Cadmium, Total mg/kg 0.832 10/27/18 06:50 10/29/18 14:08 EPA 3050B 10/27/18 06:50 10/29/18 14:08 EPA 3050B Calcium, Total 12400 8.32 2.91 2 1,6010D mg/kg PΕ ND 2 1,6010D Chromium, Total 0.832 0.080 10/27/18 06:50 10/29/18 14:08 EPA 3050B PΕ mg/kg 2 1,6010D PΕ Cobalt, Total 17.9 mg/kg 1.66 0.138 10/27/18 06:50 10/29/18 14:08 EPA 3050B 2 Copper, Total 169 0.832 0.214 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ mg/kg 2 1,6010D PΕ Iron, Total 36500 4.16 0.751 10/27/18 06:50 10/29/18 14:08 EPA 3050B mg/kg J 2 Lead, Total 3.76 mg/kg 4.16 0.223 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Magnesium, Total 6040 8.32 1.28 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ mg/kg 0.832 0.132 2 1,6010D PΕ Manganese, Total 573 mg/kg 10/27/18 06:50 10/29/18 14:08 EPA 3050B Mercury, Total ND mg/kg 0.067 0.014 1 10/27/18 08:30 10/29/18 15:31 EPA 7471B 1,7471B MG Nickel, Total 5.91 2.08 0.201 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ mg/kg 1080 208 12.0 2 1,6010D PΕ Potassium, Total mg/kg 10/27/18 06:50 10/29/18 14:08 EPA 3050B Selenium, Total 0.432 J mg/kg 1.66 0.214 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Silver, Total ND mg/kg 0.832 0.235 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Sodium, Total 802 mg/kg 166 2.62 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Thallium, Total ND mg/kg 1.66 0.262 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ Vanadium, Total 128 0.832 2 10/27/18 06:50 10/29/18 14:08 EPA 3050B 1,6010D PΕ mg/kg 0.169 2 1,6010D PΕ 55.8 0.244 Zinc, Total mg/kg 4.16 10/27/18 06:50 10/29/18 14:08 EPA 3050B

Project Name: Lab Number: **CPG III** L1843634 Project Number: 15.5268

Report Date: 11/01/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifi	ier Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield	Lab for sample	(s): 01,04 E	Batch: W	G11729	14-1				
Aluminum, Total	ND	mg/kg	4.00	1.08	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Antimony, Total	ND	mg/kg	2.00	0.152	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Arsenic, Total	ND	mg/kg	0.400	0.083	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Barium, Total	ND	mg/kg	0.400	0.070	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Beryllium, Total	ND	mg/kg	0.200	0.013	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Cadmium, Total	ND	mg/kg	0.400	0.039	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Calcium, Total	ND	mg/kg	4.00	1.40	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Chromium, Total	0.112 J	mg/kg	0.400	0.038	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Cobalt, Total	ND	mg/kg	0.800	0.066	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Copper, Total	ND	mg/kg	0.400	0.103	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Iron, Total	0.496 J	mg/kg	2.00	0.361	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Lead, Total	ND	mg/kg	2.00	0.107	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Magnesium, Total	ND	mg/kg	4.00	0.616	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Manganese, Total	ND	mg/kg	0.400	0.064	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Nickel, Total	ND	mg/kg	1.00	0.097	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Potassium, Total	ND	mg/kg	100	5.76	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Selenium, Total	ND	mg/kg	0.800	0.103	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Silver, Total	ND	mg/kg	0.400	0.113	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Sodium, Total	3.57 J	mg/kg	80.0	1.26	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Thallium, Total	ND	mg/kg	0.800	0.126	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Vanadium, Total	ND	mg/kg	0.400	0.081	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE
Zinc, Total	ND	mg/kg	2.00	0.117	1	10/27/18 06:50	10/29/18 09:42	1,6010D	PE

Prep Information

Digestion Method: EPA 3050B

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
Total Metals - Mansfield Lab for sample(s): 01,04 Batch: WG1172948-1									
Mercury, Total	ND	mg/kg	0.083	0.018	1	10/27/18 08:30	10/29/18 13:21	1,7471B	MG

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

Method Blank Analysis Batch Quality Control

Prep Information

Digestion Method: EPA 7471B

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date: 11/01/18

Parameter	LCS %Recovery		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab Associated sampl	e(s): 01,04 Ba	atch: WG1172944-2	SRM Lo	t Number:	D102-540			
Aluminum, Total	74		-		49-150	-		
Antimony, Total	148		-		1-199	-		
Arsenic, Total	102		-		83-117	-		
Barium, Total	100		-		83-118	-		
Beryllium, Total	100		-		83-116	-		
Cadmium, Total	94		-		83-118	-		
Calcium, Total	90		-		82-118	-		
Chromium, Total	98		-		83-117	-		
Cobalt, Total	97		-		84-116	-		
Copper, Total	99		-		84-116	-		
Iron, Total	99		-		61-139	-		
Lead, Total	99		-		82-118	-		
Magnesium, Total	84		-		76-124	-		
Manganese, Total	99		-		82-118	-		
Nickel, Total	95		-		83-117	-		
Potassium, Total	88		-		70-130	-		
Selenium, Total	105		-		79-121	-		
Silver, Total	104		-		80-120	-		
Sodium, Total	98		-		74-126	-		
Thallium, Total	96		-		81-119	-		
Vanadium, Total	96		-		80-120	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III **Project Number:** 15.5268

Lab Number:

L1843634

Report Date:

11/01/18

Parameter	LCS %Recov		SD covery	%Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab A	Associated sample(s): 01,04	Batch: WG1172944-2	SRM Lot Number: D1	02-540		
Zinc, Total	97		-	81-118	-	
Total Metals - Mansfield Lab	Associated sample(s): 01,04	Batch: WG1172948-2	SRM Lot Number: D1	02-540		
Mercury, Total	92		-	65-134	-	

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number: L1843634

Report Date: 11/01/18

arameter	Native Sample	MS Added	MS Found	MS %Recovery	Qual	MSD Found	MSD %Recovery Qu	Recovery ial Limits	RPD Qual	RPD Limits
Total Metals - Mansfield Lal	b Associated sar	nple(s): 01,04	QC Ba	tch ID: WG117	2944-3	QC Sam	nple: L1843756-01	Client ID: MS	Sample	
Aluminum, Total	2390	190	5310	1540	Q	-	-	75-125	-	20
Antimony, Total	4.33	47.5	44.9	85		-	-	75-125	-	20
Arsenic, Total	2.88	11.4	17.9	132	Q	-	-	75-125	-	20
Barium, Total	39.5	190	326	151	Q	-	-	75-125	-	20
Beryllium, Total	0.099J	4.75	4.43	93		-	-	75-125	-	20
Cadmium, Total	1.19	4.84	56.2	1140	Q	-	-	75-125	-	20
Calcium, Total	1440	950	2360	97		-	-	75-125	-	20
Chromium, Total	15.3	19	44.8	155	Q	-	-	75-125	-	20
Cobalt, Total	2.88	47.5	47.1	93		-	-	75-125	-	20
Copper, Total	162.	23.7	161	0	Q	-	-	75-125	-	20
Iron, Total	6900	95	12300	5680	Q	-	-	75-125	-	20
Lead, Total	29.4	48.4	80.4	105		-	-	75-125	-	20
Magnesium, Total	1130	950	3020	199	Q	-	-	75-125	-	20
Manganese, Total	102.	47.5	199	204	Q	-	-	75-125	-	20
Nickel, Total	24.4	47.5	75.3	107		-	-	75-125	-	20
Potassium, Total	330.	950	1400	113		-	-	75-125	-	20
Selenium, Total	0.254J	11.4	11.1	97		-	-	75-125	-	20
Silver, Total	0.184J	28.5	26.3	92		-	-	75-125	-	20
Sodium, Total	103.	950	968	91		-	-	75-125	-	20
Thallium, Total	ND	11.4	6.04	53	Q	-	-	75-125	-	20
Vanadium, Total	67.8	47.5	122	114		-	-	75-125	-	20

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

11/01/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Found	MSD %Recovery	Recovery Limits	RPD	RPD Limits
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,04	QC Ba	tch ID: WG1172944-	QC San	nple: L1843756-01	Client ID: MS	Sample	
Zinc, Total	865.	47.5	1730	1820 Q	-	-	75-125	-	20
Total Metals - Mansfield Lab	Associated sam	ple(s): 01,04	QC Ba	tch ID: WG1172948-	QC San	nple: L1843756-01	Client ID: MS	Sample	
Mercury, Total	0.054J	0.15	0.208	138 Q	-	-	80-120	-	20

Lab Duplicate Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

 Lab Number:
 L1843634

 Report Date:
 11/01/18

Parameter	N	lative Sample	Duplica	te Sample	Units	RPD	Qual	RPD Limits
Total Metals - Mansfield Lab As	ssociated sample(s): 01,04	QC Batch ID:	WG1172944-4	QC Sample:	L1843756-01	Client ID:	DUP Samp	le
Arsenic, Total		2.88		5.38	mg/kg	61	Q	20
Barium, Total		39.5		81.6	mg/kg	70	Q	20
Cadmium, Total		1.19		2.76	mg/kg	79	Q	20
Chromium, Total		15.3		20.3	mg/kg	28	Q	20
Lead, Total		29.4		25.2	mg/kg	15		20
Selenium, Total		0.254J	0	.260J	mg/kg	NC		20
Silver, Total		0.184J		ND	mg/kg	NC		20
otal Metals - Mansfield Lab As	ssociated sample(s): 01,04	QC Batch ID:	WG1172948-4	QC Sample:	L1843756-01	Client ID:	DUP Samp	le
Mercury, Total		0.054J		ND	mg/kg	NC		20

INORGANICS & MISCELLANEOUS

Project Name: CPG III Lab Number: L1843634 **Project Number:**

Report Date: 11/01/18 15.5268

SAMPLE RESULTS

Lab ID: Date Collected: L1843634-01 10/25/18 10:15

Client ID: 04B-IMPORTED-FILL-01 Date Received: 10/25/18 Not Specified Sample Location: YONKERS, NY Field Prep:

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lal)								
Solids, Total	94.0		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI
Cyanide, Total	ND		mg/kg	0.97	0.21	1	10/28/18 17:20	10/29/18 14:26	1,9010C/9012B	LH

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-02 Date Collected: 10/25/18 10:20

Client ID: 04B-IMPORTED-FILL-02 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	95.2		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-03 Date Collected: 10/25/18 10:25

Client ID: 04B-IMPORTED-FILL-03 Date Received: 10/25/18
Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	95.8		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-04 Date Collected: 10/25/18 10:30

Client ID: 04B-IMPORTED-FILL-04 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Westborough Lab									
Solids, Total	93.2		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI
Cyanide, Total	ND		mg/kg	0.98	0.21	1	10/28/18 17:20	10/29/18 14:31	1,9010C/9012B	LH

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-05 Date Collected: 10/25/18 10:32

Client ID: 04B-IMPORTED-FILL-05 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab)								
Solids, Total	94.2		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

SAMPLE RESULTS

Lab ID: L1843634-06 Date Collected: 10/25/18 10:35

Client ID: 04B-IMPORTED-FILL-06 Date Received: 10/25/18 Sample Location: YONKERS, NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Solids, Total	94.2		%	0.100	NA	1	-	10/26/18 12:23	121,2540G	RI

Project Name: CPG III Lab Number: L1843634

Project Number: 15.5268 Report Date: 11/01/18

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry -	Westborough Lab for sam	ple(s): 01	,04 Bat	tch: WC	G1173185-1				
Cyanide, Total	ND	mg/kg	0.88	0.19	1	10/28/18 17:20	10/29/18 14:17	1,9010C/901	2B LH

Lab Control Sample Analysis Batch Quality Control

Project Name: CPG III **Project Number:** 15.5268

Lab Number: L1843634

Report Date:

11/01/18

Parameter	LCS %Recovery Qual	LCSD %Recovery Qu	%Recovery ual Limits	RPD	Qual RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01,04	Batch: WG1173185-2	WG1173185-3		
Cyanide, Total	76 Q	93	80-120	8	35

Matrix Spike Analysis Batch Quality Control

Project Name: CPG III
Project Number: 15.5268

Lab Number:

L1843634

Report Date:

11/01/18

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MS Qual Fou	111.00		covery imits RPD	RPD Qual Limits
General Chemistry - Westboroug 04B-IMPORTED-FILL-01	gh Lab Asso	ciated samp	le(s): 01,04	QC Batch II	D: WG117318	5-4 WG117318	35-5 QC Samp	le: L1843634-	01 Client ID:
Cyanide, Total	ND	10	9.9	97	!	99	75	5-125 2	35

Lab Duplicate Analysis

Batch Quality Control

Lab Number:

L1843634

Report Date:

11/01/18

Parameter	Native Sam	nple [Ouplicate Sample	Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp FILL-01	ole(s): 01-06	QC Batch ID:	WG1172614-1	QC Sample:	L1843634-01	Client ID:	04B-IMPORTED-
Solids, Total	94.0		94.0	%	0		20

Project Name:

Project Number: 15.5268

CPG III

Project Name: **CPG III Lab Number:** L1843634 Project Number: 15.5268

Report Date: 11/01/18

Sample Receipt and Container Information

Were project specific reporting limits specified?

YES

Cooler Information

Custody Seal Cooler

Α Absent

Container Information			Initial Final Temp Frozen					Frozen							
	Container ID	Container Type	Cooler	рН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)					
	L1843634-01A	Glass 250ml/8oz unpreserved	Α	NA		4.6	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)					
	L1843634-01B	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ-8270(14),TS(7),NJ-8081(14)					
	L1843634-02A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		NJ-8260HLW(14)					
	L1843634-02B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-02C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-02D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		TS(7)					
	L1843634-03A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		NJ-8260HLW(14)					
	L1843634-03B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-03C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-03D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		TS(7)					
	L1843634-04A	Glass 250ml/8oz unpreserved	Α	NA		4.6	Y	Absent		BE-TI(180),AS-TI(180),BA-TI(180),AG-TI(180),AL-TI(180),CR-TI(180),NI-TI(180),TL-TI(180),CU-TI(180),PB-TI(180),SB-TI(180),SE-TI(180),ZN-TI(180),CO-TI(180),V-TI(180),FE-TI(180),HG-T(28),MG-TI(180),MN-TI(180),CA-TI(180),CD-TI(180),K-TI(180),NA-TI(180)					
	L1843634-04B	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		TCN-9010(14),NJ-8082(14),NJ-8270(14),TS(7),NJ-8081(14)					
	L1843634-05A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		NJ-8260HLW(14)					
	L1843634-05B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-05C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)					
	L1843634-05D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		TS(7)					
	L1843634-06A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		NJ-8260HLW(14)					

Serial_No:11011820:01 *Lab Number:* L1843634

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

Container Info	ormation		Initial	Final	Temp			Frozen	
Container ID	Container Type	Cooler	рН	рН	-			Date/Time	Analysis(*)
L1843634-06B	Vial water preserved	Α	A NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)
L1843634-06C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	NJ-8260HLW(14)
L1843634-06D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		TS(7)
L1843634-07A	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-METAL(180)
L1843634-07B	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-CONTINGENCY(14)
L1843634-08A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		HOLD-8260HLW(14)
L1843634-08B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-08C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-08D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		HOLD-WETCHEM()
L1843634-09A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		HOLD-8260HLW(14)
L1843634-09B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-09C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-09D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		HOLD-WETCHEM()
L1843634-10A	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-METAL(180)
L1843634-10B	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-CONTINGENCY(14)
L1843634-11A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		HOLD-8260HLW(14)
L1843634-11B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-11C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-11D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		HOLD-WETCHEM()
L1843634-12A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		HOLD-8260HLW(14)
L1843634-12B	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-12C	Vial water preserved	Α	NA		4.6	Υ	Absent	26-OCT-18 14:03	HOLD-8260HLW(14)
L1843634-12D	Plastic 2oz unpreserved for TS	Α	NA		4.6	Υ	Absent		HOLD-WETCHEM()
L1843634-13A	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-METAL(180)
L1843634-13B	Glass 250ml/8oz unpreserved	Α	NA		4.6	Υ	Absent		HOLD-CONTINGENCY(14)
L1843634-14A	Vial MeOH preserved	Α	NA		4.6	Υ	Absent		HOLD-8260HLW(14)

Α

NA

NA

4.6

4.6

Absent

Absent

26-OCT-18 14:03

26-OCT-18 14:03

HOLD-8260HLW(14)

HOLD-8260HLW(14)

L1843634-14B

L1843634-14C

Vial water preserved

Vial water preserved

Lab Number: L1843634

Report Date: 11/01/18

Container Information Final Temp Initial Frozen pН Date/Time Cooler pH deg C Pres Seal Container Type Container ID Analysis(*) L1843634-14D Plastic 2oz unpreserved for TS NA 4.6 Υ HOLD-WETCHEM() Absent L1843634-15A Vial MeOH preserved NA 4.6 Υ HOLD-8260HLW(14) Absent 26-OCT-18 14:03 L1843634-15B Vial water preserved Α NA 4.6 Υ Absent HOLD-8260HLW(14) L1843634-15C Vial water preserved Α NA 26-OCT-18 14:03 HOLD-8260HLW(14) 4.6 Υ Absent Plastic 2oz unpreserved for TS Α HOLD-WETCHEM() L1843634-15D NA 4.6 Υ Absent

Project Name:

Project Number: 15.5268

CPG III

Project Name:CPG IIILab Number:L1843634Project Number:15.5268Report Date:11/01/18

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an

analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample is toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1843634
Project Number: 15.5268 Report Date: 11/01/18

Data Qualifiers

- A Spectra identified as "Aldol Condensation Product".
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

Project Name: CPG III Lab Number: L1843634
Project Number: 15.5268 Report Date: 11/01/18

REFERENCES

1 Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - IV, 2007.

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Published Date: 10/9/2018 4:58:19 PM Department: Quality Assurance Title: Certificate/Approval Program Summary

Page 1 of 1

ID No.:17873

Revision 12

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene: 4-Ethyltoluene

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 6860: SCM: Perchlorate

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg. SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Διрна	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitney Rd, Suite 5 Albany, NY 12205: 14 Walker Way Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Page Date Rec'd in Lab							5/18	Ś	ALPHA JOB# [1843/034					
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information					Deliverables							Billing Information		
TEL: 508-898-9220	TEL: 508-822-9300	Project Name: CPG	- 111					ASP-A	4		X	ASP-B		Same as Client Info		
FAX: 508-898-9193	FAX: 508-822-3288		Kers, 1	N				EQuis	(1 File	e)		EQuIS (4	File)	PO#	-	
Client Information		Project # 15,526P						Other							-	
Client: CT Male	Associates	(Use Project name as Pro					Regulatory Requirement						7437	Disposal Site Information		
Address: 50 Cent		Project Manager: K:	K Mol:	~ {				NY TO	GS			NY Part 37	5	Please identify below location of		
Lathen NY		ALPHAQuote #:						AWQ S	Standard	is		NY CP-51		applicable disposal facilities.		
Phone: (5/8) 786.	Turn-Around Time	THE NAME OF	STORES.	an Street	Bar on	NY Restricted Use Other							Disposal Facility:			
Fax: Standard X Due Date:								NY Unrestricted Use NJ NY								
Email: K. mol: neCtmelecon Rush (only if pre approved) # of Days:								NYC S	ewer Di	scharg	e			Other:		
These samples have be				ANAL	YSIS						Sample Filtration	T				
Other project specific	The state of the s										\neg		\top	Done	0	
Please specify Metals	thro-06 only, I hale I'bs are "04	B-1-P014								Lab to do Preservation Lab to do (Please Specify below)						
ALPHA Lab ID (Lab Use Only)	Sa	mple ID	Collection			Sampler's	5	7	7	12	F	8			i	
Anna Santa S	797		Date	Time	Matrix	Initials	1=		F	-	-	0.00	_	Sample Specific Comments	6	
43634 -0104	B-Imforte	d-F:11-01	10/25/18	1015	Soil	CB		×	×	×	×	X	_	Land Dat of the	2	
-00 04	B-Importe	d-F:11-02		1020			×				_		_		4	
-03 04	8- Imported	1-F11-03		1025			X								4	
-04 04	B- Imrorte	d-F:11-04		1030				X	X	×	×	×			Z	
-05 64	B- Importes	1-F:11-05		1032			×								4	
-060 04	\$3-Import	ed-Fill-06		1035			×							VOC B	4	
-07 04	\$B-1-worked	1-F:11-07		1040				X	×	×	X	×		Composite (#HOLD)	2	
-05 04	電B-Import	6d-F11-08		1042			×							VOC C *HOLD	4	
-09 04	BB - largerk	2- F:11-09		1544			×							VOC C *HOLD	4	
-10 04		1-FIL-10	V	1045	V			×	×	X	×	×		Camposte D *HOW	2	
Preservative Code: A = None B = HCI C = HNO ₃	Container Code P = Plastic A = Amber Glass V = Vial	Westboro: Certification No Mansfield: Certification No	and the second		Cor	tainer Type	V %	Α		Α	A	200		Please print clearly, legibly and completely. Samples ca not be logged in and	an	
D = H ₂ SO ₄ E = NaOH	G = Glass B = Bacteria Cup		1					A	A	A	A	A		turnaround time clock will no start until any ambiguities a		
F = MeOH	C = Cube	Relinquished E	3v'	Date	Time ,		Receiv	ed By	-		_	Date/Tin	ne .	resolved. BY EXECUTING	.0	
	O = Other E = Encore	1 M 72 1-	9.	10/25/11		e12	-	_	ner		10/23		1/5	THIS COC, THE CLIENT		
11 - 14020203	D = BOD Bottle	Merry Way	de V	ph cle	1645	6				-	in	20/10	1020	HAS READ AND AGREES		
O = Other		D. Santos	AAI	10/25/18	2230	100	Santos Atl				10%	5/18	220	TO BE BOUND BY ALPHA'S TERMS & CONDITIONS.		
Form No: 01-25 HC (rev. 30-Sept-2013)											- 10	-110		(See reverse side.)		

Westborough, MA 01581 8 Walkup Dr. TEL: 508-898-9220 FAX: 508-898-9193 Client Information Client: CT Male Assoc Address: 50 (entuly H Lathan NY Phone: (518) 786-7400 Fax: Email: K. wol: re@ctm	CUSTODY Tonawanda, NY 14150: 275 Cooper Ave, Suite 105 Project Information Project Name: CPG III Project Location: Youkers MY Project Location: Youkers MY Project Location: Youkers MY Project Manager: K: (C Moline ALPHAQuote #: Turn-Around Time Standard M Due Date Rush (only if pre approved) Project Ave, Suite 105 Project Information Project Information Project Name: CPG III Project Location: Youkers MY Project Manager: K: (C Moline Standard M Due Date Rush (only if pre approved) # of Days Project Information Project Name: CPG III Project Name: CPG III Project Manager: K: (C Moline Standard M Due Date Rush (only if pre approved) # of Days						Delive	in L rables ASP-/ EQuis Other atory NY TO AWQ S NY Re- NY Uni NYC S	s (1 File Require	e) ement is Use d Use		9)	Billing Information Same as Client Info Po# Disposal Site Information Please identify below location of applicable disposal facilities. Disposal Facility: NJ NY Other:					
			ANAL	YSIS					-		Sample Filt	ration		0				
Run "OYB - Imforti Please specify Metals or TA	"thru-oc only,	Y, Hold all others 3-Imported-Fill"				VOC		Pest.	PCB	Metals+49	Cyanide			□ Done □ Lab to d Preservatio □ Lab to d (Please Spe	io	low)	t a l B o t .	
ALPHA Lab ID (Lab Use Only)	Sam	ple ID	A - 7 (2,0)	ection	Sample Sampler's Matrix Initials		721	751	7	5	AL	5			Sample Spec	ific Com	mente	1
43634 -11 04 AB	-Imperted	-Fi11-11	Date Time 10/25/12 1047		Su:1	CB	×	_		,_	[-				VOC D	- 5	*HOLD	4
-12 04 8 6 -13 04 8 6 -14 04 8 6	?-Imported ?-Imported ?-Imported	- F.11-12 F.11-17 -F.11-14	V	1049 1055 1057 1100	J		×	×	×	×	×	×				RE	*HOLD *HOLD *HOLD *HOLD	2
A = None P = Pla B = HCl A = Arr	stic ber Glass N	Vestboro: Certification No Mansfield: Certification No	Cont	tainer Type	V	Α	Α	A	A	Α			Please pr and comp not be log	oletely. S	Samples			
D = H ₂ SO ₄ G = Gis E = NaOH B = Ba F = MeOH C = Cu G = NaHSO ₄ O = Ot H = Na ₂ S ₂ O ₃ E = En	A = Amber Glass V = Vial G = Glass B = Bacteria Cup C = Cube O = Other E = Encore Ac/NaOH A = Amber Glass Mansfield: Certification No: MA015 Relinquished By: Cuff Button Suppose Action No: MA015 Relinquished B							Received By: Santos AA				Date/	Time /4/5	7.0	turnaround time clock will not start until any ambiguities are resolved. BY EXECUTING THIS COC, THE CLIENT HAS READ AND AGREES TO BE BOUND BY ALPHA'S TERMS & CONDITIONS. (See reverse side.)			