REMEDIAL INVESTIGATION REPORT

for

Former Design for Leisure **NYSDEC BCP Site No. C360163**

41 Kensico Drive Mount Kisco, New York

Prepared for:

NY Luxury Motors of Mt. Kisco, Inc. 200 SW 1st Avenue Fort Lauderdale, Florida 33301

Prepared by:

Langan Engineering, Environmental, Surveying, Landscape Architecture, and Geology D.P.C. 21 Penn Plaza 360 West 31st Street, 8th Floor New York, New York 10001

History D. Brake

Michael Burke, PG, CHMM **Principal/Vice President** NYS Professional Geologist No. 000784 Certified Hazardous Material Manager Credential No. 15998

> November 1, 2019 Langan Project No. 190046301

TABLE OF CONTENTS

1.0		INTRO	DDUCTION	1
2.0		SITE I	BACKGROUND	2
	2.1		Site Description	2
		2.1.1	Surrounding Property Land Use	2
		2.1.2	Topography	
		2.1.3	Surface Water and Drainage	
		2.1.4	Wetlands	
	2.2		Geology and Hydrogeology	
		2.2.1	Regional Geology	
		2.2.2	Regional Hydrogeology	
3.0		SITE	HISTORY	
	3.1		Historical Site Usage	
	3.2		Summary of Previous Environmental Investigations	
	3.3		Summary of Potential Areas of Concern (AOC)	
4.0		REME	DIAL INVESTIGATION	
	4.1		Geophysical Survey	
	4.2		Soil Investigation	
		4.2.1	Investigation Methodology	
		4.2.2	Sampling Methodology	
	4.3		Groundwater Investigation	
		4.3.1 4.3.2	Monitoring Well Installation and Development Methodology Groundwater Sampling	
	4.4		Soil Vapor and Sub-slab Vapor Investigation	17
		4.4.1	Sub-slab Vapor Point Installation	17
	4.5		Off-Site Surface Water and Sediment Investigation	18
		4.5.1	Investigation Methodology	18
		4.5.2	Sampling Methodology	18
	4.6	Qualit	y Assurance and Quality Control Sampling	19
	4.7		Data Validation	21
		4.7.1	Data Usability Summary Report Preparation	21
	4.8		Field Equipment Decontamination	23
	4.9		Investigation-Derived Waste Management	23
5.0		FIELD	OBSERVATIONS AND ANALYTICAL RESULTS	24
	5.1		Geophysical Investigation Findings	25
	5.2		Geology and Hydrogeology	25
		5.2.1	Site Geology	25
		5.2.2	Site Hydrogeology	
	5.3		Soil Findings	26
		5.3.1	Field Observations	26

		5.3.2	Analytical Results	28
	5.4		Groundwater Findings	31
		5.4.1	Field Observations	31
		5.4.2	Analytical Data	31
	5.5		Sub-Slab Vapor Findings	34
	5.6		Off-Site Surface Water and Sediment Sampling Results	35
	5.7		Quality Control Results	37
	5.8		Data Usability	38
	5.9		Evaluation of Areas of Concern	38
		5.9.1	AOC 1: Former Tank Area	38
		5.9.2	AOC 2: Historic Fill Material	
		5.9.3	AOC 3: Chlorinated Solvents in Soil, Groundwater, and Soil Vapor from Off-	
			esAOC 4: Hazardous Lead Soil	
		5.9.4 5.9.5	AOC 4. Hazardous Lead Soil	
6.0			ITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT	
0.0	6.1	COAL	Current Conditions	
	6.2		Proposed Conditions	
	6.3		Summary of Environmental Conditions	
	6.4		Conceptual Site Model	
	•	6.4.1	Potential Sources of Contamination	
		6.4.2	Exposure Media	
		6.4.3	Receptor Populations	46
	6.5		Potential Exposure Pathways – On-Site	46
		6.5.1	Current Conditions	46
		6.5.2	Construction/Remediation Conditions	
		6.5.3	Proposed Future Conditions	
	6.6		Potential Exposure Pathways – Off-Site	
	6.7		Evaluation of Human Health Exposure	
7.0		NATU	RE AND EXTENT OF CONTAMINATION	
	7.1		Soil Contamination	
		7.1.1	Historic Fill	
		7.1.2	CVOC-Impacted Soil	
	7.2		Groundwater Contamination	
		7.2.1	Residual Petroleum Contamination	
		7.2.2 7.2.3	CVOC-Contamination	
	7.3	1.2.3	Soil Vapor Contamination	
	7.3 7.4		Off-Site Surface Water and Sediment Contamination	
8.0	7.4	CONC	LUSIONS	
9.0			RENCES	
J. J				

TABLES

Table 1A	Sample Summary (2018 Remedial Investigation)
Table 1B	Sample Summary (2019 Supplemental Remedial Investigation)
Table 2	Groundwater Elevation Summary
Table 3A	Soil Sample Analytical Results Summary – VOCs and SVOCs
Table 3B	Soil Sample Analytical Results Summary – Pesticides, PCBs, Metals
Table 3C	Soil Sample Analytical Results Summary – PFAS
Table 3D	Soil Sample Analytical Results Summary – Total and TCLP Lead Delineation
Table 4A	Groundwater Sample Analytical Results Summary – VOCs and SVOCs
Table 4B	Groundwater Sample Analytical Results Summary - Pesticides, PCB, and Metals
Table 4C	Groundwater Sample Analytical Results Summary - PFAS
Table 5	Soil Vapor Sample Analytical Results Summary
Table 6A	Off-Site Surface Water Sample Analytical Results Summary
Table 6B	Off-Site Sediment Sample Analytical Results Summary
Table 7	QA/QC Sample Analytical Results Summary

FIGURES

Figure 1	Site Location Map
Figure 2A	Site Plan – Current Conditions
Figure 2B	Site Plan – Proposed Development
Figure 3	Surrounding Land Uses and Sensitive Receptors Map
Figure 4	Areas of Concern (Pre-RI and SRI) and Sample Location Map
Figure 5A	Groundwater Contour Map - 2018
Figure 5B	Groundwater Contour Map - 2019
Figure 6A	Soil Sample Analytical Results Map
Figure 6B	Hazardous Lead in Soil Delineation Analytical Results Map
Figure 7	Groundwater Sample Analytical Results Map
Figure 8	Sub-Slab Soil Vapor Sample Analytical Results Map
Figure 9	Off-Site Surface Water and Sediment Sample Analytical Results Map
Figure 10	Areas of Concern (Post-RI and SRI)

APPENDICES

Appendix A Appendix B	Previous Environmental Reports Geophysical Survey Reports
Appendix C	Soil Boring Logs
Appendix D	Well Construction Logs
Appendix E	Groundwater Sampling Logs
Appendix F	Sub-Slab Soil Vapor Sampling Logs
Appendix G	Data Usability Summary Reports
Appendix H	Laboratory Analytical Data Reports
Appendix I	Zone of Transitional Permeability - Conceptual Site Model

Appendix J Fish and Wildlife Resources Impact Analysis **LIST OF ACRONYMS**

Acronym	Definition
AOC	Area of Concern
AWQS	Ambient Water Quality Standards and Guidance Values
BCA	Brownfield Cleanup Agreement
BCP	Brownfield Cleanup Program
bgs	Below Grade Surface
CAMP	Community Air Monitoring Program
CU	Restricted Use – Commercial
CVOC	Chlorinated Volatile Organic Compound
DER	Division of Environmental Remediation
DNAPL	Dense Non-Aqueous Phase Liquid
DOT	Department of Transportation
DUSR	Data Usability Summary Report
el	Elevation
ELAP	Environmental Laboratory Approval Program
ESA	Environmental Site Assessment
ESI	Environmental Site Investigation
eV	Electron Volt
FEMA	Federal Emergency Management Agency
FWRIA	Fish and Wildlife Resources Impact Analysis
GPR	Ground Penetrating Radar
HASP	Health and Safety Plan
IDW	Investigation-Derived Waste
L/min	Liters per Minute
μg/m³	Micrograms per Cubic Meter
μg/L	Micrograms per Liter
mg/kg	Milligrams per Kilogram
MS/MSD	Matrix Spike/Matrix Spike Duplicate
MTBE	Methyl tert butyl ether
NAVD88	North American Vertical Datum of 1988
NTU	Nephelometric Turbidity Units
NYCRR	New York City Rules and Regulations
NYSDOH	New York State Department of Health
NYSDEC	New York State Department of Environmental Conservation
PCB	Polychlorinated Biphenyls
PCE	Tetrachloroethylene
PFAS	Polyfluoroalkyl Substances
PID	Photoionization Detector

Acronym	Definition
PPE	Personal Protective Equipment
ppm	Parts per million
PVC	Polyvinyl Chloride
QA/QC	Quality Assurance/Quality Control
RAWP	Remedial Action Work Plan
RCRA	Resource Conservation and Recovery Act
RI	Remedial Investigation
SCO	Soil Cleanup Objective
SVOC	Semivolatile Organic Compound
TAL	Target Analyte List
TCE	Trichloroethylene
TCL	Target Compound List
TCLP	Toxicity Characteristic Leaching Procedure
TOGS	Technical and Operational Guidance Series
UN/DOT	United Nations/Department of Transportation
USEPA	United Stated Environmental Protection Agency
USGS	United States Geological Survey
UST	Underground Storage Tank
UU	Unrestricted Use
VOC	Volatile Organic Compound

CERTIFICATION

I, Michael Burke, certify that I am currently a Qualified Environmental Professional as defined in 6 New York Codes, Rules, and Regulations (NYCRR) Part 375 and that this Remedial Investigation Report was prepared in accordance with applicable statutes and regulations and in substantial conformance with the Division of Environmental Remediation (DER) Technical Guidance for Site Investigation and Remediation (DER-10).

Michael D. Burke, PG, CHMM

1.0 INTRODUCTION

This Remedial Investigation Report (RIR) was prepared on behalf of NY Luxury Motors of Mt. Kisco, Inc. (the Volunteer) for the property at 41 Kensico Drive in Mount Kisco, New York (the site). The Volunteer was accepted into the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) to remediate the site in accordance with the June 20, 2018, BCP acceptance letter. A Brownfield Cleanup Agreement was executed on November 13, 2018.

This RIR presents environmental data and findings from the Remedial Investigation (RI) conducted between August 7 and September 7, 2018 and a Supplemental RI (SRI) conducted between May 2 and May 9, 2019. This RIR also incorporates previous environmental data obtained during a Phase II Environmental Site Investigation (ESI) completed by URS Corporation (URS) in October and November 2016, a Limited Site Assessment completed by AECOM in May 2017, and a geotechnical report completed by Carlin Simpson & Associates (Carlin Simpson) in May 2018. The RI was conducted in accordance with Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 375-3.8, NYSDEC DER-10, and applicable New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006. The objectives and goals of this RIR are to:

- Define the nature and extent of contamination in all media at or emanating from the site
- Generate sufficient data to evaluate remedial action alternatives
- Generate sufficient data to evaluate the actual and potential threats to human health and the environment

The remainder of this report is organized as follows:

- Section 2.0 describes the site setting and physical characteristics
- Section 3.0 describes the site background including results of previous investigations and identified areas of concern (AOC)
- Section 4.0 presents the investigation field procedures
- Section 5.0 describes the field observations and analytical results
- Section 6.0 presents an assessment of the exposure risks of site contaminants to human, fish, and wildlife receptors
- Section 7.0 presents the nature and extent of contamination in all site media as determined through the field investigation and analysis of environmental samples
- Section 8.0 summarizes the results of the investigation and presents conclusions based on field observations and analytical results

2.0 SITE BACKGROUND

2.1 Site Description

The site, owned by NY Luxury Motors of Mt. Kisco, Inc., is a 1.73-acre lot with a 13,000-square-foot vacant commercial building with a slab-on-grade foundation, an asphalt-paved parking lot, landscaped areas around the building and parking lot and a wooded area along Branch Brook, a surface water body. The site is located in the Village/Town of Mount Kisco, New York and is identified as Westchester County Tax Map No. 17258 Section 69.50, Block 1, Lot 2 (69.50-1-2). The site is located in a commercial office park and is bound by a 2-story commercial office building with multiple tenants (45 Kensico Drive) to the north; Branch Brook and a raised, railway embankment with stone ballast utilized by Metro-North Railroad to the east; a propane supplier (Suburban Propane, 25 Kensico Drive) to the south; and, a hotel (Holiday Inn, 1 Holiday Inn Drive) and a car dealership (Lexus of Mt. Kisco, 265-281 Kisco Avenue) to the west. Site topography slopes to the east towards a wooded area along Branch Brook. A raised, railway embankment with stone ballast is located on the opposite side of Branch Brook and roughly parallels the course of the brook and the site's eastern property boundary. The railway embankment includes northbound and southbound tracks and is utilized by the Metro North Railroad. A site location map and site plan illustrating current conditions are included as Figures 1 and 2A, respectively.

The proposed development includes construction of a parking lot and vehicle storage area with impervious pavement for the Land Rover Mt. Kisco dealership located to the west of the site at 299 Kisco Avenue, Mount Kisco, NY. The development will include demolition of the existing building and installation of paved surfaces across most of the site footprint. A 10-foot minimum landscaped buffer will be constructed along the entire perimeter of the site. The proposed development plan is illustrated in Figure 2B.

2.1.1 Surrounding Property Land Use

The site is in a suburban area characterized by residential, commercial and industrial buildings. Surrounding property usage is summarized in the following table:

		A	Surrounding				
Direction	Section	Block No.	Lot No.	Description	Properties		
North	69.50	1	1	Westchester EMS Ambulance Service (45 Kensico Drive)	Commercial buildings, parking lots,		
		1	1	Commercial Buildings (43 Kensico Drive)	warehouses, shopping center, automobile		
East	Part of 69.58	1	1	Railway embankment / Metro-North Railroad	dealerships		

		A	Surrounding		
Direction	Section	Block No.	Lot No.	Description	Properties
	n/a n/a		n/a	Branch Brook	
South	69.50	1	3	Suburban Propane (25 Kensico Drive)	
\\/oot	69.42	1	1	Holiday Inn (1 Holiday Inn Drive)	
West	69.49	3	1	Lexus dealership (265-281 Kisco Avenue)	

Land use within a half mile of the site is suburban and characterized by mixed-use buildings, retail, preservation and conservation areas with associated infrastructure, including underground utility lines, storm drains, and sewers. A railroad corridor utilized by the MetroNorth Railroad adjoins the site to the east. A map of surrounding land use is included as Figure 3.

The nearest ecological receptor is the Branch Brook, which adjoins the site to the east and is a tributary to the Kisco River, which feeds the New Croton Reservoir, a part of New York City's drinking water supply system. There are no sensitive human receptors (e.g., schools and/or daycare centers) within a half mile of the site.

2.1.2 Topography

According to a November 20, 2017, survey by JMC Planning, Engineering, Landscape Architecture & Land Surveying, PLLC, the site grade ranges from about elevation (el) 292 feet in the southwest to el 286 feet in the east. Elevations presented in the survey are measured in feet and referenced to the North American Vertical Datum of 1988 (NAVD88). The surrounding local topography also generally slopes east toward Branch Brook with properties southwest of the site generally at a higher elevation than the site.

2.1.3 Surface Water and Drainage

The property is partially covered with vegetation subject to rainwater infiltration during precipitation events and partially covered with impervious surfaces, including a vacant slab-ongrade building and an asphalt-paved parking lot. Stormwater on the building roof is collected and directed by roof leaders and underground piping to a storm sewer in Kensico Drive and a storm sewer that runs west to east across the site just south of the northern property boundary. This storm sewer empties in Branch Brook at an outfall near the northeastern corner of the site. Stormwater from the parking lot flows overland from the southwest to the northeast where a curb cut directs stormwater to a graded, runoff channel that directs flow in the direction of Branch Brook. A site visit completed on June 21, 2019 found evidence of soil erosion in the runoff

channel and deposits of eroded soil along the stormwater flow path in the direction of Branch Brook. This condition was not observed during the RI and SRI and appears to be a new condition, a result of heavy precipitation events the week of June 17-21, 2019. Stormwater runoff from the surrounding area also drains via overland flow to the east-northeast and through catch basins into the village/town sewer system.

According to the Westchester County Department of Information Technology Geographic Information Systems May 2014 "Mount Kisco FEMA Flood Zones," the site is within the 100-and 500-year floodplains.

2.1.4 Wetlands

According to a review of the November 6, 2017, Wetland Delineation Report, prepared by Ecological Solutions LLC, no NYSDEC-regulated wetlands exist on the site or adjoining properties. A copy of the Wetland Delineation Report is included in Appendix A.

2.2 Geology and Hydrogeology

2.2.1 Regional Geology

Predominant geological surface features were not observed at the site. Soil and bedrock stratigraphy throughout Mount Kisco typically consists of a layer of historic fill overlying till, decomposed unconsolidated bedrock, and bedrock. The USGS "Surficial Geologic Map of New York Lower Hudson Sheet" indicates the surficial geology is comprised of outwash sand and gravel. This soil unit is characterized as coarse to fine gravel with sand of proglacial fluvial deposition, with well-rounded and stratified grains that are generally finer in texture away from the ice border with unit thickness varying between 2 to 20 meters. The USGS "Geologic Map of New York Lower Hudson Sheet" indicates the bedrock underlying the site is part of the Inwood Marble Formation. The Inwood Marble Formation is comprised of dolomite marble, calc-schist, granulite, and quartzite, overlain by calcite marble. Continental glaciation at the end of the Pleistocene and beginning of the Holocene epochs likely caused this distinctive stratigraphy identified beneath the fill layer. Melting of the Wisconsin glacier contributed glacial outwash deposits to the region. Bedrock was encountered during the RI at depths of about 24 to 71 feet below ground surface (bgs).

2.2.2 Regional Hydrogeology

Groundwater flow is typically topographically influenced because shallow groundwater tends to originate in areas of topographic highs and then flows toward areas of topographic lows, such as rivers, stream valleys, ponds, and wetlands. A broader, interconnected hydrogeologic network often governs groundwater flow at depth or in the bedrock aquifer. Groundwater depth and flow

direction are also subject to hydrogeologic and anthropogenic variables such as precipitation, evaporation, extent of vegetation cover, subsurface utilities, and coverage by impervious surfaces. Other factors influencing groundwater include depth to bedrock, the presence of artificial fill, and variability in local geology and groundwater sources or sinks. Infiltration of precipitation to the water table at the site is primarily within landscaped and unpaved areas. The asphalt-paved parking lot and building are impermeable cover systems. Regional groundwater is expected to flow towards Branch Brook, a tributary to the Kisco River that feeds New Croton Reservoir.

Groundwater elevation data recorded during the RI is summarized in Table 2. According to the 2017 Annual Drinking Water Quality Report for Mount Kisco, drinking water in the village/town of Mount Kisco is sourced from the Byram Lake Reservoir and supplemented by the Leonard Park Well Field since 2001.¹ The Byram Lake Reservoir is located about 3.5 miles southeast of the site and the Leonard Park Well Fields are located about 2 miles south of the site. Water is pumped from the Byram Lake Reservoir to the Byram Lake Filtration Plant before entering the distribution system.

_

¹ Source: Village/Town of Mount Kisco Department of Water website: http://www.mountkiscony.gov/departments/water_and_sewer_department/drinking_water_quality_reports.php

3.0 SITE HISTORY

This section describes historical site use, the proposed redevelopment, and provides discussion on the findings from previous environmental investigations. Potential AOCs were developed based on a review of the previous reports and are summarized in Section 3.4.

3.1 Historical Site Usage

The existing building on the site was constructed as a commercial office building in 1976 and was used as a veterinary hospital (1976 to 1982), manufacturing facility for pool tables and bar stools (1982 to 1998), and offices for a commercial and movie production company (1998 to 2017).

The site and northern, southern, and western adjoining properties were undeveloped until about 1955, after which time they were developed into commercial properties. The railroad embankment to the east of the site was constructed circa 1892.

3.2 Summary of Previous Environmental Investigations

Previous environmental reports are summarized below and are included in Appendix A.

Document	Comments
Phase I Environmental Site Assessment, 41 Kensico Drive, Mount Kisco, New York prepared by URS Corporation, dated September 21, 2016	The site appears to have been undeveloped land from 1892 through 1975. The site is in its current configuration in the 1984 aerial photograph. The building was constructed in 1976 and was originally occupied by a veterinary hospital. Between 1982 and 1998, Design for Leisure, a manufacturer of pool tables and bar stools occupied the site, followed by Human Relations Media. The Phase I ESA identified one Recognized Environmental Condition (REC) associated with historical operation of two steel heating-oil underground storage tanks east of the building, which were upgraded in 1998 to one 1,000-gallon fiberglass heating-oil UST, and subsequently removed in 2008 as part of a conversion to natural gas. Following removal of the USTs in 1998, post-excavation end-point soil samples were collected that indicated no constituents of concern above applicable criteria and the NYSDEC granted a No Further Action (NFA) determination on August 26, 1998.
Phase II Environmental Site Assessment (ESA), 41 Kensico Drive, Mount Kisco, New York prepared by URS Corporation	The Phase II included a limited assessment of soil quality from eleven borings in the vicinity of former USTs on November 14, 2016, collection of two subslab soil-vapor samples in the eastern area of the building, and installation of 10 temporary 1-inch-diameter PVC monitoring wells for groundwater sampling. The following is the summary of findings: • Soil consisted of a mix of sand and gravel fill to about 8 feet below grade
(URS), an AECOM Company, dated December 14, 2016	 surface (feet bgs), silty sand with some clay to about 10 feet bgs, and silt to about 15 feet bgs. No soil borings extended beyond 15 feet bgs. URS collected two soil samples from depths of 1 to 2 feet bgs and 4 to 5 feet bgs in the vicinity of the former USTs, for laboratory analysis of Volatile Organic Compounds (VOC). Soil results indicated no concentrations of volatile organic halocarbons (VOH) above the New York State Department of Environmental Conservation (NYSDEC) Unrestricted Use Soil Cleanup Objectives (UU SCO). Sub-slab soil-vapor results identified the chlorinated solvent trichloroethene (TCE) above the NYSDOH Air Guideline Value (AGV) (2
	 micrograms per cubic meter [μg/m³]). Two of the 10 temporary wells were installed on October 13, 2016 to 15 feet bgs, and the remaining eight temporary wells were installed on November 14, 2016 to 12 feet bgs. Two groundwater samples collected on October 13, 2016, were analyzed for volatile organic compounds (VOC) by EPA Method 8260 and Polycyclic Aromatic Hydrocarbons (PAH) by EPA Method 8270. The eight groundwater samples collected on November 14, 2016, were analyzed for VOHs by EPA Method 8260. The sample results showed chlorinated solvent-related contaminants (primarily cis-1,2-dichloroethene [cis-1,2-DCE] and TCE) at concentrations exceeding Ambient Water Quality Standards (AWQS) in nine locations (maximum cis-1,2-DCE = 333 micrograms per liter [μg/L], maximum TCE = 683 μg/L). One sample near the southeastern perimeter did not have VOHs above the AWQS.

Document	Comments
Limited Site Assessment, Commercial Property, 41 Kensico Drive, Mount Kisco, Westchester County, New York prepared by AECOM, dated May 8, 2017	The Limited Site Assessment was conducted to further evaluate shallow groundwater conditions through the installation of permanent groundwater monitoring wells. The Limited Site Assessment was implemented in March 2017 and consisted of the installation of six, permanent shallow monitoring wells across the site. Additionally, one groundwater probe was completed within the former UST area to 50 feet bgs. Two groundwater probe grab samples were collected at 30 and 50 feet bgs in this boring. The following is a summary of findings: • Shallow groundwater generally flows from the west-southwest to the east-northeast. • Soil consisted of brown, fine to coarse sand, and fill with brick fragments and gravel to 5 feet bgs, followed by fine-grained sand to about 10 feet
	 bgs, and gray silt to the end of the boring at 50 feet bgs. One-inch-thick interbedded lenses of clay were noted at 42 and 44 feet bgs. Groundwater samples were analyzed for VOHs by EPA Method 8260. VOH concentrations in the deep groundwater probe and four monitoring wells exceeded the NYSDEC AWQS, with the highest concentration of TCE detected at 2,940 μg/L. The highest concentration of chlorinated solvent-related compounds (cis-1,2-DCE, 1,1-dichloroethane [1,1-DCA], and 1,1-dichloroethene [1,1-DCE]) were detected within the western part of the site. VOC concentrations were generally higher than in previous sampling events. Groundwater impacts extend deeper than 50 feet bgs and appear to be increasing with depth.
	AECOM concluded that shallow groundwater flows from west to east and that VOH groundwater impacts are migrating onto the site from an off-site source to the west-southwest.
Report on Subsurface Soil and Foundation Investigation, Proposed AutoNation Mt. Kisco, 41 Kensico Drive, Mt. Kisco, NY prepared by Carlin Simpson & Associates, dated May 3, 2018	The investigation was conducted to determine the nature and engineering properties of soil and groundwater conditions for the new construction. Existing fill was encountered from 5 to 10 feet bgs followed by native layers of sand, silt and clay lenses. Soft-/loose and/or organic soil was identified extending from the ground surface to 7 to 30 feet bgs. The report recommendations include the following: existing fill and soft, loose, and organic soil layers are not suitable for support of the proposed building foundations or floor slab; placement of 2 to 4 feet of new fill could cause settlement on the order of 2 to 5 inches in the next 2 to 3 years following construction with additional settlement observed over the next 20 years; new building shall be supported on a pile foundation system; and special subgrade preparation procedures will be required for the retaining wall, utility pipes, and utility structures.

3.3 Summary of Potential Areas of Concern (AOC)

Based on site observations, historical site uses, and the findings of the previous environmental reports, the AOCs investigated during this RI are described in detail below. An AOC map is included as Figure 4.

AOC 1: Former Tank Area

AOC 1 includes the former on-site tank area, which historically contained three heating oil USTs and petroleum-impacted soil. Two steel heating oil USTs were removed from the property in 1998 along with an unspecified volume of contaminated soil. Endpoint samples were collected, no constituents of concern were detected above applicable cleanup criteria, and the NYSDEC issued a No Further Action (NFA) determination in August 1998. The steel USTs were replaced with a 1,000-gallon fiberglass heating oil UST, which was removed in 2008 during a natural gas conversion.

AOC 2: Historic Fill

A layer of historic fill material from surface grade to about 8 feet bgs was identified during previous subsurface investigations. Historic fill material is typically sourced from an unknown origin and may potentially contain contaminants above applicable standards.

AOC 3: Chlorinated Volatile Organic Compounds (CVOC) in Groundwater

The chlorinated volatile organic compound (CVOC), TCE and its breakdown products including trans-1,2-dichloroethene (trans-1,2-DCE), cis-1,2-DCE, and vinyl chloride were detected in groundwater samples collected during previous subsurface investigations. In addition, 1,1,1-trichloroethane (1,1,1-TCA) and its breakdown products including 1,1-dichloroethane (1,1-DCE), and chloroethane were detected in groundwater samples collected during previous subsurface investigations.

AOC 4: CVOCs in Soil Vapor

Previous studies reported the detection of TCE in two soil vapor samples at concentrations ranging from 20 $\mu g/m^3$ to 28 $\mu g/m^3$.

AOC 5: Floor Drains

Previous studies identified six floor drains in the existing building that are believed to discharge to the sanitary-sewer system. The floor drains may serve as conduits and preferential pathways for contaminant migration into the subsurface.

AOC 6: Chlorinated Solvents from Off-Site Sources

Previous studies indicated that the CVOCs identified in groundwater originated from an off-site source. One potential offsite source may be an upgradient historical Large Quantity Generator (Toyota North at 255 Kisco Avenue, Mount Kisco, NY) of spent halogenated solvents (F001 and F002) as identified in URS's September 2016 Phase I ESA.

4.0 REMEDIAL INVESTIGATION

The RI was completed between August 7 and September 7, 2018 to investigate and characterize the nature and extent of contamination at the site. A SRI was completed in May 2019 at the request of the NYSDEC to evaluate data gaps identified by the agency and supplement the RI data set. A bulleted summary of the RI and SRI is provided below. A sampling summary and rationale (in relation to the AOCs) is provided in Tables 1A and 1B. Sample locations are presented on Figure 4.

The RI and SRI consisted of the following:

- Geophysical survey to identify potential USTs, underground structures, and subsurface utilities.
- Advancement of 30 soil borings to between 8 and 71 feet bgs and collection and laboratory analysis of 95 soil samples (including quality assurance/quality control [QA/QC] samples, including five field duplicate samples, nine equipment blank samples, one matrix spike [MS] sample, and one matrix spike duplicate [MSD] sample).
- Collection and laboratory analysis of 19 surface soil samples (including QA/QC samples, including one field duplicate sample, two equipment blank samples, one MS sample, and one MSD sample) at from 0 to 2-inch bgs and 10 to 12-inch bgs at seven locations throughout the site.
- Installation of 14 groundwater monitoring wells, including shallow and deep couplets, and collection and laboratory analysis of 29 groundwater samples (including QA/QC samples, including one field duplicate sample, two field blank samples, four trip blank samples, one MS sample, and one MSD sample) from new and existing monitoring wells at the site.
- Collection and laboratory analysis of three co-located off-site stream sediment and surface
 water samples from Branch Brook as well as QA/QC samples for surface water (one field
 duplicate sample, one field blank sample, one trip blank samples, one MS sample, and
 one MSD sample).
- Surveying and gauging of monitoring wells to evaluate groundwater elevation and flow direction.
- Installation of one temporary sub-slab vapor point and collection and laboratory analysis
 of one sub-slab vapor sample.

The RI and SRI were conducted in accordance with the Remedial Investigation Scope Letter, prepared by Langan and dated August 6, 2018; the Supplemental Remedial Investigation Work Plan (SRIWP) prepared by Langan, dated April 11, 2019: NYCRR Part 375-3.8; NYSDEC DER-10 Technical Guidance for site Investigation and Remediation (May 2010); the NYSDEC Draft

Brownfield Cleanup Program Guide (May 2004); and NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York (October 2006) and subsequent updates (May 2017). Site work also complied with the safety guidelines outlined in the HASP.

4.1 Geophysical Survey

On August 2, 2018, NOVA Geophysical & Environmental, Inc. of Douglaston, New York completed a geophysical survey under the supervision of a Langan field geologist. NOVA used ground-penetrating radar (GPR) to identify potential USTs and locate subsurface utilities in the vicinity of each boring location. Borings were relocated as necessary to avoid subsurface utilities and anomalies. Findings of the geophysical survey are discussed in Section 5.1 below. A copy of the geophysical survey report presenting these findings is included in Appendix B.

4.2 Soil Investigation

4.2.1 Investigation Methodology

In August 2018, twenty soil borings (LB01, LB07 through LB17, and LB19 through LB26) were completed during the RI by AARCO Environmental Services (AARCO) of Lindenhurst, New York. In May 2019, ten soil borings (LB18, LB23, LB27, and LB28 and five delineation borings around LB23) were completed during the SRI by Eastern Environmental Solutions, Inc. (Eastern) of Manorville, New York. Two soil borings (LB18 and LB22) were advanced using a Geoprobe® 420M direct-push drilling rig; two soil borings (LB10 and LB20) were advanced using a Geoprobe® 8140LC rotary sonic drilling rig; eleven soil borings (LB12, LB15, LB19, LB23 (SRI), LB23_E1, LB23_N1, LB23_N2, LB23_S1, LB23_S2, LB27, and LB28) were advanced using a Geoprobe® 6610DT direct-push drilling rig; and the remaining borings (LB01, LB07 through LB09, LB11, LB13, LB14, LB16, LB17, LB21 and LB23 [RI] through LB26) were advanced using a Geoprobe® 7822DT direct-push drilling rig. The soil borings were advanced to between 8 and 71 feet bgs. A map showing the boring locations is included as Figure 4.

Discrete soil samples were collected from various depth intervals at each boring and were visually classified for soil type, grain size, texture, and moisture content. Samples were collected in 3-foot and 4-foot long Macro-Core® (open and closed point) and dual-tube sample barrels with dedicated acetate liners. Soil was screened for visual, olfactory, and instrumental evidence of a chemical or petroleum release. Instrument screening for the presence of VOCs was performed with a photoionization detector (PID) equipped with a 10.6 electron volt (eV) lamp. In addition, soil samples exhibiting the highest PID readings or where NAPL was suspected were subject to hydrophobic dye testing (using pre-packaged Sudan Red III dye test kits) during the RI to evaluate the presence of sorbed NAPL.

During the May 2019 SRI, Eastern used a hand auger to collect surface soil samples at seven locations (SS1 through SS7) throughout the site. Soil samples were screened for visual, olfactory, and instrumental evidence of a chemical or petroleum release.

Soil boring logs are included in Appendix C. Boring logs from previous studies are also included in Appendix C for reference.

4.2.2 Sampling Methodology

During the RI, soil samples (at least one sample per boring) were collected for laboratory analysis to investigate AOCs and to vertically delineate identified VOC impacts. The soil samples were collected from the historic fill layer, groundwater interface, intervals of observable impacts (i.e., staining, odor, maximum PID reading), and the sand-silt interface which was generally observed at approximately 10 to 23 feet bgs.

During the SRI, soil samples were collected from borings LB18, LB27, and LB28 to investigate a potential source of residual petroleum impacts near monitoring well LMW19S. Soil samples from boring LB23 (re-drilled) and the five step-out borings were collected to delineate the elevated concentrations of total lead found in this area during the RI. Soil samples were collected from the 0 to 2-inch bgs and 10 to 12-inch bgs intervals at each sampling locations SS1 through SS7 to evaluate cover soil quality.

Samples submitted for VOC analysis were collected directly from the acetate sleeve or hand auger pit via laboratory-supplied Terra Core® soil samplers. The remaining sample volume was homogenized and placed in appropriate laboratory-supplied containers for additional analyses. The sample containers were labeled, placed in a laboratory-supplied cooler and packed on ice (to maintain a temperature of 4°C). The sample coolers were picked up and delivered via courier under standard chain-of-custody protocol to York Analytical Laboratories, Inc. (York) in Stratford, Connecticut, a NYSDOH Environmental Laboratory Approval Program (ELAP)-certified analytical laboratory.

Shallow soil samples collected from all borings during the RI were analyzed for Part 375/Target Compound List (TCL) VOCs, semivolatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, and Part 375/Target Analyte List (TAL) metals/inorganics. Deep soil samples collected during the RI were analyzed for VOCs and SVOCs only, per field discussions and verbal approval with the NYSDEC Project Manager on August 14, 2018. In addition, 12 soil samples from borings LB01 and LB12 from 18 to 54 feet bgs were collected during the RI and analyzed for total organic carbon (TOC), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) to evaluate in-situ groundwater remediation alternatives.

Soil samples collected from borings LB18, LB27, and LB28 during the SRI were analyzed for Part 375/TCL VOCs, SVOCs, and the emerging contaminant, 1,4-dioxane. Soil samples from LB27 and LB28 were also analyzed for the NYSDEC's list of twenty-one per- and polyfluoroalkyl substances (PFAS), a class of emerging contaminants.

Surface soil samples collected from locations SS1 through SS7 and sediment samples collected from locations SED1 through SED3 were analyzed for Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and TAL metals/inorganics, including hexavalent and trivalent chromium; soil and sediment samples from locations SS1, SS3, SS5, SS7, SED1, and SED3 were also analyzed for 1,4-dioxane.

Soil samples from boring LB23 (re-drilled) and the five delineation borings were analyzed for total lead and lead via the Toxicity Characteristic Leaching Procedure (TLCP); one sample from boring LB23 was also analyzed for PFAS.

4.3 Groundwater Investigation

Eleven soil borings advanced during the RI were converted to groundwater monitoring wells, including wells LMW01D, LMW08S, LMW08D, LMW11, LMW12S, LMW12D, LMW15, LMW19S, LMW19D, LMW20S, and LMW20D. Monitoring wells with an "S" or "D" suffix denote shallow and deep monitoring well screens, respectively. The newly installed monitoring wells and six of the existing monitoring wells (MW-1 through MW-6) were sampled to investigate potential impacts to groundwater associated with the AOCs. During the SRI, three additional groundwater monitoring wells (GWG01 through GWG03) were installed and sampled along the northern property boundary to assess potential off-site petroleum-related contaminant migration.

4.3.1 Monitoring Well Installation and Development Methodology

A summary of the groundwater monitoring well construction details is included in the following table:

	Groundwater Monitoring Well Construction Summary													
WELL ID	LMW01D	LMW08S	LMW08D	LMW11	LMW12S	LMW12D	LMW15	LMW19S	LMW19D	LMW20S	LMW20D	GWG01	GWG02	GWG03
Drilling equipment used to install well	Geoprobe® 7822 DT	Geoprobe® 7822 DT	Geoprobe® 7822 DT	Geoprobe® 7822 DT	Geoprobe® 8140LC Sonic Drill rig	Geoprobe® 8140LC Sonic Drill rig	Geoprobe® 8140LC Sonic Drill rig	Geoprobe® 6610 DT	Geoprobe® 6610 DT	Geoprobe® 8140LC Sonic Drill rig	Geoprobe® 8140LC Sonic Drill rig	Geoprobe® 6610 DT	Geoprobe® 6610 DT	Geoprobe® 6610 DT
Well- screen diameter	2-inch PVC													
Well screen type	0.02-inch/ 20-slot	0.02-inch/ 20-slot	0.02-inch/ 20-slot	0.02-inch/ 20-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.02-inch/ 20-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot	0.01-inch/ 10-slot
Screened Interval (feet bgs)	44 to 54	2 to 15	42 to 47	4 to 24 ²	17 to 22	37 to 42	31 to 36	2 to 15	32 to 37	30 to 35	42 to 47	2 to 15	2 to 15	2 to 12
2-foot sump (Y/N)	Y	N	N	N	Y	Y	Y	N	Y	Y	Y	N	N	N
Filter Material	No. 2 filtration sand	No. 2 filtration sand	No. 2 filtration sand	No. 2 filtration sand	No. 1 filtration sand	No. 1 filtration sand	No. 1 filtration sand	No. 2 filtration sand	No. 2 filtration sand	No. 1 filtration sand	No. 1 filtration sand	No. 1 filtration sand	No. 1 filtration sand	No. 1 filtration sand

² A 20-foot well screen was used to construct LMW11. This well was originally planned to be a deep monitoring well; however, refusal at rock was encountered at about 24 feet bgs during installation. Groundwater was observed at about 5 feet bgs and the highest photoionization detector (PID) readings were found at about 12 to 15 feet bgs; therefore, a longer screen was used to capture the groundwater surface and the impacted zone.

Following installation, monitoring wells were developed by surging with a surge block attached to a 1-inch PVC pipe and pumping the well using a submersible whale pump. Development water was placed in labeled 55-gallon UN/DOT drums pending off-site disposal.

Groundwater monitoring well locations are presented on Figure 4. Well construction logs are included in Appendix D. The top of well casings were surveyed by Langan on September 7, 2018 and May 14, 2019. A Langan field engineer completed a synoptic groundwater gauging of all RI wells on September 5, 2018. Monitoring wells installed as part of the SRI were gauged on May 9, 2019. Well gauging data and information, including depth to groundwater measurements and groundwater elevations, are presented in Table 2.

4.3.2 Groundwater Sampling

Monitoring wells were sampled one to two weeks after installation and development during the RI and SRI as required by NYSDEC and in general accordance with NYSDEC DER-10 and USEPA's Low Flow Purging and Sampling Procedures for the Collection of Groundwater Samples from Monitoring Wells. Before sampling, the headspace of existing and new monitoring wells were monitored with a PID and the wells were gauged with an interface probe to determine the depth to groundwater and thickness of any NAPL (LNAPL or DNAPL). Before the groundwater samples were collected, the wells were continuously purged until groundwater quality parameters (pH, conductivity, turbidity, dissolved oxygen, temperature, and oxidation-reduction potential) stabilized, to the extent practical, in accordance with the USEPA low-flow guidance. A multiparameter water quality system was used to monitor the groundwater quality parameters during sampling. Samples were collected with a peristaltic pump and dedicated high density polyethylene (HDPE) tubing. Purge water was containerized into labeled 55-gallon UN/DOT drums pending off-site disposal. Groundwater sampling logs are included in Appendix E.

Groundwater samples were collected in laboratory-supplied glassware, packed with ice to maintain a temperature of 4°C, and transported via courier service to York under chain-of-custody protocol. Groundwater samples were analyzed by York for one or more of the following parameters:

- Part 375/TCL VOCs
- Part 375/TCL SVOCs
- Part 375/TCL PCBs
- Part 375/TCL pesticides
- Part 375/TAL metals/inorganics (field-filtered and unfiltered)
- Emerging contaminants, including 1,4-dioxane and PFAS

Select groundwater samples from wells MW-1, LMW08S, and LMW12S were also analyzed for the following parameters to evaluate in-situ groundwater remediation alternatives: nitrite, nitrate, methane, ethane, ethene, sulfate, TOC, COD, BOD, alkalinity, iron and manganese (total and dissolved), and *Dehalococcoides* (DHC).

4.4 Soil Vapor and Sub-slab Vapor Investigation

NYSDEC DER-10 requires an assessment of soil vapor quality at contaminated sites to evaluate the health risk associated with potential exposure to VOCs through vapor intrusion into occupied structures. After discussions with the NYSDEC Project Manager on August 14, 2018, one subslab soil vapor point (LSV22) was installed at a point centrally located within the existing building slab and sampled during the RI. The sub-slab vapor sampling location is presented on Figure 4. No additional sub-slab or soil vapor samples were collected during the SRI.

4.4.1 Sub-slab Vapor Point Installation

The sub-slab vapor point was installed using a hammer drill to 2 inches below the bottom of existing building slab in general accordance with the NYSDOH's *Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York* (October 2006) (hereafter referred to as NYSDOH Guidance). The vapor collection point consisted of a 3/8-inch diameter and 6-inch log polyethylene implant and inert, Teflon-lined polyethylene sample tubing. The annulus (i.e., the sampling zone) around the probes were filled with a clean, course sand pack followed by a hydrated bentonite seal to the top of the slab. The sub-slab soil vapor-point construction and sampling log is provided in Appendix F.

Samples were collected in general accordance with NYSDOH guidance. Before collecting vapor samples, a minimum of three implant volumes (i.e., the volume of the sample probe and tubing) were purged from each sample port at a rate of less than 0.2 liters per minute using a RAE Systems MultiRAE® meter. The purged soil vapor was monitored for VOCs and methane with the MultiRAE® during purging.

A helium tracer gas was used in accordance with the NYSDOH protocols to serve as a quality assurance/quality control (QA/QC) technique to document the integrity of each soil vapor sampling point seal before and after sampling. The tracer gas was introduced into an overturned container, sealed at the ground surface with bentonite, which acted as a shroud for the vapor point and seal. Helium was measured from the sampling tube and inside the container. If the sample tubing contained more than 10% of the tracer gas concentration that was introduced into the container, then the seal was considered compromised and was enhanced or reconstructed to reduce outdoor air infiltration.

After each seal was confirmed, the sub-slab vapor sample was collected into laboratory-supplied batch-certified clean 6-liter Summa[®] canisters calibrated with flow controllers. A log sheet for the sub-slab vapor sample was completed to record the following:

- Sample identification name;
- Date and time of sample collection;
- Sampling depth;
- Name of the field engineer responsible for sampling;
- Sampling methods and equipment;
- Soil vapor purge volumes;
- Volume of soil vapor extracted;
- Flow rate; and
- Vacuum of canisters before and after sample collection.

The sub-slab vapor sample was collected over an approximately 2-hour sampling period. The Summa® canister was transported via courier service to York under chain-of-custody protocol and analyzed for VOCs by USEPA Method TO-15 by York.

4.5 Off-Site Surface Water and Sediment Investigation

4.5.1 Investigation Methodology

During the SRI, three co-located, off-site surface water samples (SW1 through SW3) and sediment samples (SED1 through SED3) were collected from Branch Brook at three locations, including near the storm sewer outfall, downstream of the stormwater runoff channel proximate to the existing parking lot, and near the southern site boundary. The surface water and sediment sampling locations are presented on Figure 4.

4.5.2 Sampling Methodology

Three off-site surface water samples (SW1 through SW3) were collected from Branch Brook starting downstream and working upstream. Surface water samples were collected directly into laboratory-supplied glassware.

Three off-site sediment samples (SED1 through SED3) were collected from the top 6 inches of sediment from the bed of Branch Brook and were co-located with each of the surface water samples. Sediment samples were collected starting at the most downstream location and progressed sequentially upstream. The samples were placed into laboratory-supplied glassware using a stainless steel shovel that was decontaminated between sampling locations using Alconox® and deionized (DI) water rinse. Sediment samples submitted for VOC analysis were

collected directly from the shovel using laboratory-supplied Terra Core® soil samplers. The remaining sample volume was homogenized and placed in appropriate laboratory-supplied containers for additional analyses.

Surface water and sediment samples were packed in coolers with ice to maintain a temperature of 4°C, and transported via courier service to York under chain-of-custody protocol. Surface water and sediment samples were analyzed by York for one or more of the following parameters:

- Part 375/TCL VOCs
- Part 375/TCL SVOCs
- Part 375/TCL PCBs
- Part 375/TCL pesticides
- Part 375/TAL metals/inorganics (field-filtered and unfiltered)
- Emerging contaminants, including 1,4-dioxane and PFAS

4.6 Quality Assurance and Quality Control Sampling

The following QA/QC samples were collected for laboratory analysis by media during the RI and SRI in accordance with the Quality Assurance Project Plan (QAPP). QA/QC samples are summarized below and detailed in Table 1.

Soil/sediment samples

- Six field duplicate samples
- Eleven equipment blanks
- Two MS/MSD sample sets

Groundwater samples

- One field duplicate sample
- One MS/MSD sample set
- Two field blanks
- Three trip blanks

Surface water samples

- One field duplicate sample
- One MS/MSD sample set
- One field blank
- One trip blank

Soil vapor samples

None

The coded soil, sediment, groundwater, and surface water field duplicates were collected to determine the accuracy of the analytical methods. Duplicates were collected from the same material as the parent samples by splitting the volume of sample collected in the field into two sample containers. The samples are termed "coded" because they were labeled in such a manner that the laboratory would not be able to determine the identity of each duplicate's parent sample. This serves to eliminate possible bias that could arise during analysis. Field duplicates were analyzed for the same parameters as the primary sample.

The MS/MSD samples were also collected to determine the accuracy of the analytical methods. The MS/MSD samples were collected from the same material as the primary sample by splitting the volume of sample collected in the field into three sample containers (one for the parent sample, one for the matrix spike and one for the matrix spike duplicate). Laboratory accuracy is assessed by evaluating the percent recoveries of MS/MSD samples. MS/MSD percent recoveries were compared to either method-specific control limits or laboratory-derived control limits.

Equipment blanks were collected to determine the effectiveness of decontamination procedures for the sampling equipment used to collect soil samples and groundwater samples, the cleanliness of unused nitrile gloves and acetate liners used to collect soil samples, and to confirm that laboratory-supplied DI water used for decontamination procedures is PFAS-free.

Equipment blank samples were collected by pouring deionized, distilled water provided by the laboratory over the decontaminated sampling apparatus and other equipment into laboratory-supplied containers. Equipment blank samples were analyzed for the following parameters:

- Part 375/TCL VOCs
- Part 375/TCL SVOCs
- Part 375/TCL PCBs
- Part 375/TCL pesticides
- Part 375/TAL metals/inorganics
- Emerging contaminants, including 1,4-dioxane and PFAS

Trip blank samples were collected to assess the potential for contamination of the sample containers and samples during the trip from the laboratory to the field and from the field back to the laboratory for analysis. Trip blanks contained about 40 milliliters of acidic water (doped with hydrochloric acid) in vials sealed by the laboratory when the empty sample containers were

shipped to the field, and were unsealed and analyzed by the laboratory when a sample shipment was received from the field. The trip blank samples were analyzed for VOCs only.

4.7 Data Validation

Laboratory analyses of soil, groundwater, and soil vapor samples were conducted by a NYSDOH ELAP-approved laboratory in accordance with USEPA SW-846 methods and analytical data was reported consistent with the NYSDEC Analytical Services Protocol (ASP) Category B deliverable format. Environmental data was reported electronically using the database software application EQuIS as part of NYSDEC's Environmental Information Management System (EIMS).

QA/QC procedures required by the NYSDEC ASP and SW-846 methods, including initial and continuing instrument calibrations, standard compound spikes, surrogate compound spikes, and analysis of other samples (blanks, laboratory control samples, and matrix spikes/matrix spike duplicates) were followed. The laboratory provided sample bottles were pre-cleaned and preserved in accordance with the SW-846 methods. Where there were differences in the SW-846 and NYSDEC ASP requirements, the NYSDEC ASP took precedence.

Data validation was performed in accordance with the USEPA validation guidelines for organic and inorganic data review. Validation included the following:

- Verification of QC sample results (both qualitative and quantitative).
- Verification of sample results (both positive hits and non-detects).
- Recalculation of 10 percent of all investigative sample results.
- Preparation of Data Usability Summary Reports (DUSRs).

Laboratory analytical results from the RI and SRI were reported in NYSDEC ASP Category B deliverable format and validated by the Data Validator identified in the QAPP. Appropriate QA/QC samples were also collected as part of those investigations.

4.7.1 Data Usability Summary Report Preparation

A data usability summary report (DUSR) was prepared for each laboratory delivery group following data validation. DUSRs and the data validator's credentials are provided in Appendix G. Each DUSR presents the results of data validation, including a summary assessment of laboratory data packages, sample preservation and chain of custody procedures, and a summary assessment of analytical and sampling deficiencies for each analytical method.

For the soil/sediment and aqueous samples, the following items were assessed:

Holding times

Mount Kisco, New York Langan Project No. 190046301

- Sample preservation
- Sample extraction and digestion
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- Matrix spike (MS) and matrix spike duplicate (MSD) recoveries
- Initial and continuing calibrations
- Target compound identification and qualification
- Instrument tune
- Internal standard area counts
- Dual column imprecision
- Contract-required detection limit standards
- ICP serial dilutions
- Field duplicate, trip blanks, and field blanks sample results
- Overall method performance

For the air samples, the following items were assessed:

- Holding times
- Clean canister certification
- Initial and final canister pressurization
- Laboratory blanks
- Laboratory control samples
- System monitoring compounds
- Initial and continuing calibrations
- Internal standard area counts
- Target compound identification and qualification
- Field duplicate sample results

Based on the results of data validation, the following qualifiers may be assigned to the data in accordance with the USEPA guidelines and best professional judgment:

- "U" The analyte was analyzed for, but was not detected at a level greater than or equal to the reporting limit (RL), or the sample concentration results were impacted by blank contamination.
- "UJ" The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.

- "J" The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- "NJ" The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- "R" The sample results are not useable due to quality of the data generated because certain criteria were not met. The analyte may and may not be present in the sample.

Based on the data validation, the data was determined to be usable. No major deficiencies were identified. Minor deficiencies, including anomalies that directly impact data quality and necessitate qualification but do not result in unusable data, are described in detail in the DUSRs.

4.8 Field Equipment Decontamination

Macro-Core® barrels, dual-tube samplers, down-hole rods, hand augers, and stainless steel shovel used during the RI and/or SRI were cleaned with Alconox® and rinsed at the start of work, between sampling locations, and at the completion of the work. The back of the drill rig and associated tools were decontaminated at the completion of the work before leaving the site. Groundwater sampling equipment, including interface probe and water quality meters, were also cleaned with Alconox® and rinsed with water at the start of work, between sampling locations during groundwater sample collection, and at the completion of work. Dedicated sampling equipment (e.g., acetate sleeves and tubing) was disposed of after single use. Decontamination occurred at the sampling locations or at the decontamination tub and liquids were contained in 55 gallon drums for disposal. Between rinses, equipment was placed on polyethylene sheets, avoiding contact with the ground.

4.9 Investigation-Derived Waste Management

Following sample collection, borings were backfilled with clean sand and/or non-contaminated soil cuttings. Contaminated soil cuttings and purged groundwater (hereafter referred to as investigation-derived waste [IDW]) were containerized into labeled 55-gallon UN/DOT drums and characterized for disposal. The drums are staged in secured areas on-site pending transport by a licensed waste hauler for disposal at an approved facility.

5.0 FIELD OBSERVATIONS AND ANALYTICAL RESULTS

This section summarizes the field observations and laboratory analytical results from the RI and SRI. Soil analytical results are compared to the Part 375-6.8(a) Track 1 Unrestricted Use (UU) and Restricted Use – Commercial Use (CU) SCOs. Groundwater analytical results are compared to the 6 NYCRR Part 703.5 Water Quality Standards for Class GA waters and the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class GA water (collectively referred to as SGVs). Surface water analytical results are compared to 6 NYCRR Part 703.5 Water Quality Standards for Class GA waters and the NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (SGVs) for Class C water. Sediment analytical results were compared to the Class A, B and C guidance values for freshwater sediment as described in Table 5 of the NYSDEC guidance document *Screening and Assessment of Contaminated Sediment (SACS)* dated June 24, 2014. Sub-slab soil vapor results were not compared to any regulatory criteria (no standard for direct comparison of soil vapor samples exists in New York State). The nature and extent of contamination are discussed separately in Section 7.0.

A complete list of samples (soil, groundwater, sub-slab soil vapor, surface water, sediment, QA/QC) collected during the RI and SRI is provided in Tables 1A and 1B. Copies of the laboratory analytical data reports for data generated during the RI and SRI are provided in Appendix H. Summaries of soil, groundwater, sub-slab soil vapor, surface water, sediment, and QA/QC sample analytical result detections for samples collected during the RI and SRI are provided in the following tables:

- Table 3A: Soil Sample Analytical Results Summary VOCs and SVOCs
- Table 3B: Soil Sample Analytical Results Summary Pesticides, PCBs, and Metals
- Table 3C: Soil Sample Analytical Results Summary PFAS
- Table 3D: Soil Sample Analytical Results Summary Total and TCLP Lead Delineation
- Table 4A: Groundwater Sample Analytical Results Summary VOCs and SVOCs
- Table 4B: Groundwater Sample Analytical Results Summary Pesticides, PCBs, and Metals
- Table 4C: Groundwater Sample Analytical Results Summary PFAS
- Table 5: Sub-Slab Soil Vapor Sample Analytical Results Summary
- Table 6A: Off-Site Surface Water Sample Analytical Results Summary

- Table 6B: Off-Site Sediment Sample Analytical Results Summary
- Table 7: QA/QC Sample Analytical Results Summary

5.1 Geophysical Investigation Findings

No anomalies indicating the presence of USTs were identified during the geophysical survey. Multiple utilities including electric, gas, sanitary and storm sewers, water, telecommunication lines, and street lighting were identified along the west property boundary. A storm sewer line was also identified along the northern property boundary and east of the building with an outfall terminating at Branch Brook. A copy of the August 2018 Geophysical Engineering Survey Report is included in Appendix B.

5.2 Geology and Hydrogeology

A description of the geologic and hydrogeological observations made during the RI and SRI is provided in this section. Boring logs from the RI are provided in Appendix C.

5.2.1 Site Geology

The site's stratigraphy comprises a historic fill layer of variable thickness underlain by native soil and bedrock. The historic fill consists of brown, fine-grained sand with varying amounts of fine gravel, medium and coarse sand, silt, clay, brick, concrete, asphalt, timber, rubber, plastic, and glass and generally extends from ground surface to about 9 feet bgs. The historic fill is present at most boring locations across the site (including around the existing building and in the northern and eastern areas of the site), but was not observed in borings completed in the southern-central and southwestern parts of the site. Native soil underlying the historic fill included an organic clay layer consisting of soft to medium-dense silt and clay or by a fine-grained sand layer with varying amounts of silt and clay. Continental glaciation at the end of the Pleistocene and beginning of the Holocene epochs and the melting of the Wisconsin ice sheets resulted in the deposition of glacial outwash materials to the region and likely caused the distinctive stratigraphy identified beneath the historic fill. The organic clay layer was observed in boring LB07 (with a thickness of about 4 feet from about 7 to 11 feet bgs) and boring LB08 (with a thickness of 1.5 feet, from about 6 to 7.5 feet bgs); the organic clay layer was not present in any other boring at the site. The fine-grained sand layer is present below surface cover (where historic fill was not identified) or the historic fill layer to the top of bedrock; thickness of this unit ranges from about 25 feet to 65 feet. Intermittent clay lenses (about 0.5 to 5 feet thick) were observed in this unit at depths ranging from between 2 and 50 feet bgs. Bedrock was encountered at depths ranging from 24 feet bgs at boring LB11 near the southwest corner of the site to 71 feet bgs at boring LB08 near the east-central part of the site. The bedrock is metamorphic in nature, consistent with the USGS reference map, and appears to slope from west to east.

5.2.2 Site Hydrogeology

Synoptic groundwater-level measurements were collected on September 5, 2018 from all monitoring wells completed during the RI. Depth to groundwater was measured between 0.05 feet (LMW08D) to 5.48 feet (MW-1) below top of well casing with corresponding groundwater elevations from about el. 284.31 to 288.21 feet NAVD88. The groundwater elevations indicate the site has two distinct groundwater systems with a zone of transitional permeability that trends north-south located in the central part of the site. The shallow monitoring wells cluster about a head elevation of el. 285 feet NAVD88 on the eastern half of the site and about el. 287 and 288 feet NAVD88 on the western half of the site. The groundwater elevation is highest in the southwestern part of the site and groundwater appears to flow from the southwest to the northeast toward Branch Brook with a hydraulic gradient of about 0.002 feet per foot (ft/ft). Underground utilities and other subsurface structures or previously disturbed areas (i.e., previous UST excavation and the foundation for the existing building) may locally influence the direction of groundwater flow. Groundwater elevations are summarized in Table 2 and a groundwater contour map with the 2018 data is included as Figure 5A. Synoptic groundwater-level measurements were also collected on May 9, 2019 during the SRI, and a groundwater contour map with 2019 data is included as Figure 5B. A detailed discussion of the zone of transitional permeability is presented in Appendix I.

5.3 Soil Findings

5.3.1 Field Observations

Evidence of solvent-like impacts, evidenced only by PID readings above background levels, were apparent in 16 of the 29 borings from 2.5 to 51.5 feet bgs. No staining or odors were identified in soil borings. The following table presents, for each boring, the boring completion depth, depth of maximum PID reading, maximum PID reading, and the result of a hydrophobic dye test screening.

Boring ID	Boring Completion Depth (feet bgs)	Depth of Maximum PID Reading (feet bgs)	Maximum PID Reading (ppm)	Dye Test Screening Result
LB01	60	49	3.5	Negative
LB07	20		0.0	NT
LB08	71	51.5	6.4	Negative
LB09	20		0.0	NT

Boring ID	Boring Completion Depth (feet bgs)	Depth of Maximum PID Reading (feet bgs)	Maximum PID Reading (ppm)	Dye Test Screening Result
LB10	47	31.5	535.3	Negative
LB11	24	11.5	38.9	Negative
LB12	44	20	414	Negative
LB13	30	23.5	6.4	Negative
LB14	30	14	75.0	Negative
LB15	56	33	105	Negative
LB16	20		0.0	NT
LB17	50	44	4.7	Negative
LB18	12	11.5	15.3	NT
LB19	45	34.5	156	Negative
LB20	49	33	115.8	Negative
LB21	20	19	4.4	Negative
LB22	15		0.0	NT
LB23 (RI)	20		0.0	NT
LB23 (SRI)	10		0.0	NT
LB23_N1	8		0.0	NT
LB23_N2	8		0.0	NT
LB23_E1	8		0.0	NT
LB23_S1	8		0.0	NT
LB23_S2	8		0.0	NT
LB24	20	14	2.7	Negative
LB25	20		0.0	NT
LB26	20		0.0	NT
LB27	12	11.5	22.0	NT
LB28	12	12	113.6	NT

Notes:

ppm = parts per million

Boring ID	Boring Completion Depth (feet bgs)	Depth of Maximum PID Reading (feet bgs)	Maximum PID Reading (ppm)	Dye Test Screening Result
-----------	---	--	---------------------------------	---------------------------------

^{-- =} reading was not collected or zero

NT = not tested

5.3.2 Analytical Results

This section summarizes the soil results generated during the RI and SRI. The soil analytical results are discussed below by analyte class (VOCs, SVOCs, PCBs, pesticides, metals, and emerging contaminants [1,4-dioxane and PFAS]). The lists below summarize the compounds detected above the Part 375 UU and CU SCOs. The soil analytical results are presented in Tables 3A, 3B, 3C and 3D and Figures 6A and 6B. The full laboratory soil analytical data reports are provided in Appendix H.

VOCs

Two VOCs were detected at concentrations exceeding the UU SCOs in 32 soil samples collected from borings LB01, LB07, LB08, LB10, LB11, LB12, LB13, LB14, LB15, LB17, LB19, LB20, LB21, LB24, and LB28 at depths up to 70 feet bgs. No VOCs were detected above the CU SCOs. The following table lists the minimum and maximum concentrations (by sample) of VOCs detected above the UU SCOs.

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU and CU SCOs	Frequency of Detection above SCO
Acetone ¹	0.051 mg/kg in LB19_44-45	0.15 mg/kg in LB25_7-8	UU: 0.05 mg/kg CU: 500 mg/kg	7 of 76
TCE	0.57 mg/kg in LB08_62-63	13 mg/kg in LB14_13-14	UU: 0.47 mg/kg CU: 200 mg/kg	24 of 76

Notes:

- 1. mg/kg milligram per kilogram
- 2. Acetone is a common lab contaminant and it was detected in laboratory QA/QC blanks its presence in soil is not likely representative of site conditions.

SVOCs

Seven SVOCs were detected in one soil sample (LB28_3-4) at concentrations exceeding the UU and/or CU SCOs from boring LB28. The following table lists the minimum and maximum

concentrations of SVOCs detected above the UU and/or CU SCOs. Concentrations above the CU SCO are in bold.

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU and CU SCOs	Frequency of Detection above SCO
Benzo(a)anthracene	3.29 mg/kg		UU: 1 mg/kg CU: 5.6 mg/kg	1 of 76
Benzo(a)pyrene	3.06 mg/kg		UU: 1 mg/kg CU: 1 mg/kg	1 of 76
Benzo(b)fluoranthene	2.81 m	ng/kg	UU: 1 mg/kg CU: 5.6 mg/kg	1 of 76
Benzo(k)fluoranthene	2.13 mg/kg		UU: 0.8 mg/kg CU: 56 mg/kg	1 of 76
Chrysene	2.88 mg/kg		UU: 1 mg/kg CU: 56 mg/kg	1 of 76
Dibenzo(a,h)anthracene	0.466 mg/kg		UU: 0.33 mg/kg CU: 0.56 mg/kg	1 of 76
Indeno(1,2,3-cd)pyrene	2.15 mg/kg		UU: 0.5 mg/kg CU: 5.6 mg/kg	1 of 76

PCBs

PCBs were not detected in any soil samples at concentrations exceeding the UU and/or CU SCOs.

Pesticides

Three pesticides were detected at concentrations exceeding the UU SCOs in four soil samples collected from borings LB12, LB20, and LB21, and from surface sample SS7 at depths ranging from 0 to 6 feet bgs. No pesticides exceeded the CU SCOs. The following table lists the minimum and maximum concentrations of pesticides detected above the UU SCOs.

Parameter	Minimum Detected Concentration above SCO	Maximum Detected Concentration above SCO	UU and CU SCOs	Frequency of Detection above SCO
4-4'-DDD	0.0066 mg/kg	in LB21_5-6	UU: 0.0033 mg/kg CU: 92 mg/kg	1 of 44
4-4'-DDE	0.0049 mg/kg	in LB21_5-6	UU: 0.0033 mg/kg CU: 62 mg/kg	1 of 44
4-4'-DDT	0.00408 mg/kg in SS7_0-2in	0.0058 mg/kg in LB21_5-6	UU: 0.0033 mg/kg CU: 47 mg/kg	4 of 44

Metals

Six metals were detected at concentrations exceeding the UU and/or CU SCOs in 22 samples collected from borings LB01, LB07, LB08, LB12, LB19, LB20, LB21, LB23, and LB25, and from surface samples SS1, SS2, SS3, SS4, SS5, SS6, and SS7 at depths ranging from 0 to 16 feet bgs. The following table lists the minimum and maximum concentrations of metals detected above the UU and/or CU SCOs. Concentrations above the CU SCO are in bold.

Parameter	Minimum Detected Concentration above SCO	UU and CU SCOs	Frequency of Detection above SCO		
Copper	83.2 mg/kg in LB19_5-6	132 mg/kg In LB08_4-5	UU: 50 mg/kg CU: 270 mg/kg	3 of 44	
Lead	Lead 63.9 mg/kg 3,69 in SS5_10-12in in L		UU: 63 mg/kg CU: 1000 mg/kg	19 of 44	
Nickel	34.1 mg/kg	in LB08_4-5	UU: 30 mg/kg CU: 310 mg/kg	1 of 44	
Mercury	0.181 mg/kg in LB25_7-8	0.355 mg/kg in SS2_10-12in	UU: 0.18 mg/kg CU: 2.8 mg/kg	3 of 44	
Trivalent Chromium	30.4 mg/kg in SS7_0-2in	47.6 mg/kg in LB25_7-8	UU: 30 mg/kg CU: 1,500 mg/kg	5 of 44	
Zinc	116 mg/kg in LB08_4-5 and LB25_7-8	477mg/kg in SS7_0-2in	UU: 109 mg/kg CU: 10,000 mg/kg	3 of 44	

Total Lead/Hazardous Lead Delineation

A total and hazardous lead delineation sampling program was performed as part of the May 2019 SRI in response to the high lead concentration found in sample LB23_4-5 during the RI. The delineation program started by re-drilling at the original location of boring LB23, advancing one step-out delineation boring 5 feet to the east of LB23, and advancing two step-out delineation borings to the north and south of boring LB23 (one 5 feet away and one 10 feet away). was detected above the CU SCO in 2 of 22 delineation samples collected during the SRI. Characteristic hazardous lead concentrations (TCLP lead result above 5 milligrams per liter [mg/L]) were detected in 7 of 22 delineation samples. Hazardous lead was found in boring LB23 from 6 to 8 feet bgs, in LB23_N1 from 0 to 6 feet bgs, in LB23_S1 from 2 to 6 feet bgs, and in LB23_S2 from 2 to 4 feet bgs. The investigation successfully identified a clean interval beneath each hazardous lead concentration. Therefore, the vertical extents of hazardous lead impacts has been delineated. Based on the hazardous lead impacts identified at LB23_S2, the horizontal extent of the lead contamination was not fully delineated to the south of the original location of boring LB23. The additional delineation will be completed during the future waste characterization study as part of the implementation of the RAWP. The locations of and results for the total and hazardous lead delineation borings are presented on Figure 6B.

Emerging Contaminants

No standards for 1,4-dioxane and PFAS in soil currently exists in New York State. 1,4-dioxane was not detected in any soil samples. Two PFAS compounds were detected in 6 of 9 soil samples collected from surface soil sampling locations SS1, SS3, SS5, and SS7 at depths ranging from 0 to 12 inches bgs. PFAS were not detected in soil samples collected from LB23, LB27, and LB28. The detected PFAS compounds include the following:

- Perfluorobutanoic acid (PFBA) (non-detect to 0.00125 mg/kg, or 1.25 microgram per kilogram [µg/kg])
- Perfluorooctanesulfonic acid (PFOS) (non-detect to 0.00208 mg/kg, or 2.08 μg/kg)

5.4 Groundwater Findings

5.4.1 Field Observations

The existing and newly installed monitoring wells were gauged for LNAPL and DNAPL using an oil-water interface probe. No LNAPL or DNAPL was identified. Well headspace PID readings ranged from 0.0 to 3,139 ppm (highest reading in monitoring well LMW11) during groundwater sampling and/or well gauging activities. In addition, no sheen or odors were observed during groundwater sampling and/or well gauging activities.

5.4.2 Analytical Data

This section summarizes the groundwater results generated during the RI and SRI. The groundwater analytical results are discussed below by analyte class (VOCs, SVOCs, PCBs, pesticides, metals, and emerging contaminants). The groundwater analytical results were compared to the NYSDEC SGVs for Class GA water. The lists below summarize the analytes detected above the NYSDEC Class GA SGVs. The groundwater analytical results are presented in Tables 4A, 4B, and 4C and Figure 7. The full laboratory groundwater analytical data reports are provided in Appendix H.

VOCs

Groundwater samples collected from all monitoring wells exhibited concentrations of petroleum-related VOCs and CVOCs. The following table lists the minimum and maximum concentrations of VOCs detected above the NYSDEC Class GA SGVs.

Parameter	Minimum Detected Concentration above SGV	Maximum Detected Concentration above SGV	NYSDEC Class GA SGV	Frequency of Detection above SGV	
1,1,1-Trichloroethane	8.23 μg/L in LMW19D_090718	13.1 μg/L in LMW19S_090718	5 μg/L	3 of 21	
1,1-Dichloroethane	5.62 μg/L in LMW19S_090718	27.4 μg/L in LMW01D_090518	5 μg/L	10 of 21	
1,1-Dichloroethylene	7.52 µg/L in GWDUP01_090518 (MW-1)	17.2 μg/L in LMW12S_090718	1W12S_090718		
1,2-Dichloropropane	2.9 μg/L in LM\	N12D_090618	1 μg/L	1 of 21	
2-Butanone	68.10 μg/L in LN	/W19S_090718	50 μg/L	1 of 21	
Benzene	2.88 μg/L in LMW19S_090718	7.17 µg/L in MW-2_090518	1 μg/L	2 of 21	
Chloroethane	23.10 μg/L in LN	/W19S_090718	5 μg/L	1 of 21	
cis-1,2- Dichloroethylene	7.9 µg/L in MW-4_090618	1,100 µg/L in LMW01D_090518	5 μg/L	19 of 21	
p/m-xylene	6.24 μg/L in LM	W19S_090718	5 μg/L	1 of 21	
Tetrachloroethylene (PCE)	5.17 μg/L in LMW20S_090618	14.2 μg/L in LMW19S_090718	5 μg/L	6 of 21	
Trans-1,2- dichloroethylene	5.5 µg/L in GWG03_050919	10.8 μg/L in LMW01D_090518	5 μg/L	2 of 21	
TCE	15.1 μg/L in MW-6_090718	15,800 μg/L in LMW12S_090618	5 μg/L	17 of 21	
Vinyl Chloride	2.35 μg/L in MW-4_090618	45.5 μg/L in LMW19S_090718	2 μg/L	17 of 21	
Total xylenes	8.58 μg/L in LM		5 μg/L	1 of 21	
Notes: 1. μg/L – microgra	ms per liter				

SVOCs

A groundwater sample collected from MW-4 exhibited one SVOC exceeding the NYSDEC Class GA SGV. The following table lists the minimum and maximum concentrations (by sample) of SVOCs detected above the NYSDEC Class GA SGVs.

Parameter	Minimum Detected	Maximum Detected	NYSDEC	Frequency of	
	Concentration	Concentration	Class GA	Detection	
	above SGV	above SGV	SGV	above SGV	
Bis (2-ethylhexyl) phthalate	5.07 μg/L in N	//VV-4_090618	5 μg/L	1 of 21	

Pesticides

Pesticides were not detected in any groundwater sample at concentrations exceeding the NYSDEC Class GA SGV.

PCBs

PCBs were not detected in any groundwater sample at concentrations exceeding the NYSDEC Class GA SGV.

Total Metals

Groundwater samples collected from the 12 monitoring wells, including MW-1, LMW01D, LMW08S, LMW08D, LMW11, LMW12S, LMW12D, LMW15, LMW19S, LMW19D, LMW20S, and LMW20D, exhibited total concentrations of metals above the NYSDEC Class GA SGV. The following table lists the minimum and maximum concentrations (by sample) of total metals detected above the NYSDEC Class GA SGVs.

Parameter	Minimum Detected Concentration above SGV	NYSDEC Class GA SGV	Frequency of Detection above SGV	
Barium	1,450 µg/L in LMW12S_090618	3,260 µg/L in LMW19S_090618	1,000 μg/L	2 of 13
Iron	322 μg/L in MW-1_090518	15,800 µg/L in LMW15_090618	300 µg/L	12 of 13
Lead	33.3 μg/L in LM	W19S_090718	25 μg/L	1 of 13
Magnesium	36,000 µg/L in LMW20D_090618	164,000 μg/L in LMW19S_090718	35,000 µg/L	6 of 13
Manganese	308 μg/L in LMW19D_090718	19,600 µg/L in LMW19S_090718	300 μg/L	10 of 13
Selenium	12.5 μg/L in LMW11_090718	42 μg/L in LMW19S_090718	10 μg/L	4 of 13
Sodium	22,900 μg/L in LMW08S_090518	70,800 µg/L in LMW11_090718	20,000 μg/L	11 of 13
Thallium	1.83 μg/L in LM	W12D_090618	0.5 μg/L	1 of 13

Dissolved Metals

Groundwater samples collected from 9 wells, including MW-1, LMW08S, LMW11, LMW12D, LMW15, LMW19S, LMW19D, LMW20S, and LMW20D exhibited dissolved concentrations of metals above the NYSDEC Class GA SGV. The following table lists the minimum and maximum concentrations (by sample) of dissolved metals detected above the NYSDEC Class GA SGVs.

Parameter	Minimum Detected Concentration above SGV	Maximum Detected Concentration above SGV	NYSDEC Class GA SGV	Frequency of Detection above NYSDEC Class GA SGV	
Iron	345 μg/L in Iron GWDUP01_090518 (MW-1)		300 μg/L	3 of 13	
Magnesium	38,000 μg/L in LM	W19S_090718	35,000 µg/L	1 of 13	
Manganese	305 µg/L in		300 μg/L	7 of 13	
Sodium	22,000 μg/L in LMW08S_090518	69,700 µg/L in LMW11_090718	20,000 μg/L	10 of 13	

Emerging Contaminants

No standards for 1,4-dioxane and PFAS compounds currently exist in New York State. The emerging contaminant 1,4-dioxane was detected in six monitoring wells, including wells MW-1, LMW08S, LMW12S, GWG01, GWG02, and GWG03, at concentrations ranging from 0.26 μ g/L to 29 μ g/L.

PFAS compounds were detected in two monitoring wells (LMW08S and MW-1). The following PFAS compounds were detected:

- Perfluoroheptanoic acid (PFHpA) (non-detect to 2.6 nanograms per liter [ng/L])
- Perfluorohexanoic Acid (PFHxA) (non-detect to 5.4 ng/L)
- Perfluorooctanesulfonic acid (PFOS) (non-detect to 4.8 ng/L)
- Perfluorooctanoic Acid (PFOA) (non-detect to 11 ng/L)
- Perfluoropentanoic Acid (PFPeA) (non-detect to 2.2 ng/L)

5.5 Sub-Slab Vapor Findings

The sub-slab soil vapor results from LSV22 were not compared to regulatory criteria, as no standard for direct comparison of soil vapor samples currently exists in New York State. Sub-slab soil vapor sample results are presented in Table 5 and Figure 8. The full laboratory groundwater analytical data reports are provided in Appendix H.

Alcohol, ketone, petroleum, and solvent-related compounds (including chlorinated volatile organic compounds [CVOCs]) were detected in the sub-slab soil vapor sample:

- Alcohol compounds included isopropanol.
- Ketone compounds included acetone, methyl ethyl ketone, 2-hexanone, and methyl isobutyl ketone.

- Petroleum compounds included benzene, toluene, ethyl benzene and xylenes (BTEX) and other petroleum-related compounds (including 1,2,4-trimethylbenzene, 1,3,5trimethylbenzene, 4-ethyltoluene, n-heptane, and n-hexane).
- Solvent-related compounds included, but were not limited to, carbon disulfide, chloroform, cyclohexane, methylene chloride, PCE, tetrahydrofuran, TCE, and trichlorofluoromethane.

The total detected VOCs in sample LSV22 was $633.592 \, \mu g/m^3$. TCE was detected at $3.7 \, \mu g/m^3$, PCE was detected at $14 \, \mu g/m^3$ and dichlorofluoromethane (Freon-12) was detected at $310 \, \mu g/m^3$. Considering the CVOC concentrations in groundwater, the vapor results appear to be biased low, likely a result of a shallow groundwater table. Moist soil within the capillary fringe is known to affect vapor concentration profiles because of partitioning from the vapor to the liquid phase.³

5.6 Off-Site Surface Water and Sediment Sampling Results

This section summarizes the off-site surface water and sediment analytical results generated during the SRI. The analytical results are discussed below by analyte class (VOCs, SVOCs, PCBs, pesticides, metals, and emerging contaminants). The surface water analytical results were compared to the NYSDEC SGVs for Class C water, while the sediment analytical results were compared to the Class A, B and C guidance values for freshwater sediment as described in Table 5 of the NYSDEC guidance document *Screening and Assessment of Contaminated Sediment (SACS)* dated June 24, 2014. Class A sediments are considered low risk to aquatic life, Class B sediments are considered slightly-to-moderately contaminated, and Class C sediments are considered highly-contaminated and likely pose a risk to aquatic life. The off-site surface water and sediment analytical results are presented in Tables 6A and 6B (respectively) and Figure 9. The full laboratory groundwater analytical data reports are provided in Appendix H.

VOCs

No VOCs were detected at concentrations exceeding the NYSDEC Class C SGVs in surface water. No VOCs were detected in sediment above the Class A guidance values.

SVOCs

One SVOC, bis(2-ethylhexyl) phthalate, was detected at a concentration of 1.91 μ g/L exceeding the NYSDEC TOGS Class C SGV in surface water of 0.6 μ g/L for Type A(C) water (Fish Propagation – Fresh Water). No SVOCs were detected in sediment above the Class A guidance values.

³ USEPA. User's Guide for Evaluating Subsurface Vapor Intrusion into Buildings (2004). http://www.epa.gov/oswer/riskassessment/airmodel/pdf/2004_0222_3phase_users_guide.pdf

PCBs

PCBs were not detected in any surface water or sediment samples.

Pesticides

Pesticides were not detected in any surface water or sediment samples.

Metals

Two surface water samples exhibited total or dissolved concentrations of metals above the NYSDEC Class C SGV. The following table lists the minimum and maximum concentrations (by sample) of metals detected above the NYSDEC Class C SGVs.

Parameter	Minimum Detected Concentration above SGV	Maximum Detected Concentration above SGV	Type A(C) Class C SGV	Frequency of Detection above SGV		
Aluminum (dissolved)	143 μg/L in SWDI (SW-3	100 μg/L	1 of 4			
Iron	955 μg/L in SWDUP01_050219 (SW-3)	1,180 μg/L in SW3_050219	300 μg/L	4 of 4		

Six metals were detected at concentrations exceeding the Class A guidance values in one or more of the three sediment samples. The following table lists the minimum and maximum concentrations (by sample) of metals detected above the Class A guidance values. Concentrations above the Class B guidance value and Class C guidance value are in italics and bold, respectively.

Parameter	Minimum Detected Concentration above Class A	Maximum Detected Concentration above Class A	Class A, B and C concentration ranges	Frequency of Detection above Class A
Cadmium		mg/kg 3_0-0.5	Class A: < 1 mg/kg Class B: 1 – 5 mg/kg Class C: > 5 mg/kg	1/3
Total Chromium		mg/kg 2_0-0.5	Class A: < 43 mg/kg Class B: 43 – 110 mg/kg Class C: > 110 mg/kg	1/3
Copper		mg/kg 03_0-0.5	Class A: < 32 mg/kg Class B: 32 – 150 mg/kg Class C: > 150 mg/kg	1/3
Lead	38.4 mg/kg in SED1_0-0.5	201 mg/kg in SED3_0-0.5	Class A: < 36 mg/kg Class B: 36 – 130 mg/kg Class C: > 130 mg/kg	3/3
Nickel		mg/kg 03_0-0.5	Class A: < 23 mg/kg Class B: 23 – 49 mg/kg Class C: > 49 mg/kg	1/3
Zinc	134 mg/kg in SED2_0-0.5	244 mg/kg in SED3_0-0.5	Class A: < 120 mg/kg Class B: 120 – 460 mg/kg Class C: > 460 mg/kg	3/3

Emerging Contaminants

No standards for 1,4-dioxane and PFAS compounds currently exist in New York State. 1,4-dioxane was not detected in any of the surface water or sediment samples.

PFAS compounds were not detected in sediment samples. PFAS compounds were detected in two surface water samples. The following PFAS compounds were detected in surface water:

- Perfluorobutanesulfonic Acid (PFBS) 5.4 to 5.75 ng/L
- Perfluorobutanoic Acid (PFBA) 4.06 to 4.31 ng/L
- Perfluoroheptanoic Acid (PFHpA) 2.49 to 2.71 ng/L
- Perfluorohexanesulfonic Acid (PFHxs) 2.34 to 2.43 ng/L
- Perfluorohexanoic Acid (PFNA) 6.99 to 7.64 ng/L
- Perfluorooctanesulfonic acid (PFOS) 7.96 to 11.8 ng/L
- Perfluorooctanoic Acid (PFOA) 7.08 to 8.76 ng/L
- Perfluoropentanoic Acid (PFPeA) 6.62 to 7.51 ng/L

5.7 Quality Control Results

Field duplicates, MS/MSDs, field equipment blanks, and trip blanks collected during the RI and SRI are listed in Table 1. Field duplicate sample results are presented in Table 3A through Table 6B alongside their parent samples and the analytical results for equipment blanks and trip blank

samples are summarized in Table 7. The field duplicate results closely matched the results from their parent samples thereby demonstrating the accuracy of the analytical methods. The equipment and trip blank results indicated field decontamination procedures were effective and highlighted no cross-contamination issues during sample transport, respectively.

5.8 Data Usability

ASP Category B data deliverables for soil, groundwater, soil vapor, surface water, and sediment samples were provided by York and reviewed by Langan's data validator. DUSRs are provided in Appendix G. The results of the data validation review are summarized below.

Based on the data validation, the data was determined to be usable. No major deficiencies were identified. Minor deficiencies, including anomalies that directly impact data quality and necessitate qualification but do not result in unusable data, are described in detail in the DUSRs.

5.9 Evaluation of Areas of Concern

This section discusses the results of the RI and SRI with respect to the AOCs identified before the start of the RI and SRI (described in Section 3.4) and any new AOCs identified during the RI and SRI. Based on the results of the data from both investigations, the AOCs were re-numbered to combine AOC 3 (CVOCs in groundwater), AOC 4 (CVOCs in soil vapor), and AOC 6 (Chlorinated solvents from off-site sources) into a single AOC (AOC-3) as they all are related to a single source. The occurrence of hazardous lead in soil in the northwest corner of the site was classified as its own AOC (AOC 4). Because the floor drains do not constitute a source area for any on-site contamination, no further action is required for AOC 5. The pre-RI and SRI AOCs are shown on Figure 4. The post-RI and SRI AOCs are shown on Figure 10.

5.9.1 AOC 1: Former Tank Area

AOC 1 represented the location of former USTs, immediately east of the existing building. Potential subsurface impacts related to the former tanks were investigated during the RI and SRI. Contaminants of concern (COC) for this AOC included petroleum-related VOCs. Sampling locations associated with AOC 1 delineation include soil borings LB01, LB16, LB17, LB18, LB19, LB21, LB25, LB27 and LB28, and monitoring wells MW-1, LMW01D, LMW19S, LMW19D, MW20S, MW20D, GWG01, GWG02, and GWG03. A summary of findings and conclusions associated with AOC 1 are presented below.

AOC-1 Findings

• The geophysical survey did not identify anomalies consistent with USTs within AOC 1 or any other area at the site.

- Petroleum-like impacts, evidenced by odors, staining, or PID readings above background levels, were not observed in soil borings or monitoring wells.
- Petroleum-related VOCs were not detected in any of the soil or groundwater samples, except for LMW19S. Three petroleum-related VOCs, including benzene, m/p xylene and total xylenes exceeded the NYSDEC Class GA SGVs in groundwater in well LMW19S. No potential source area around LMW19S was identified during the SRI. No petroleum-related VOCs were detected in the wells installed along the northern site boundary. The petroleum-related VOCs in LMW19S may be attributed to incidental historical onsite releases.

AOC-1 Conclusions

- No petroleum source area was identified on-site during the RI and SRI and no petroleum-related contaminants appear to be are migrating off-site.
- The detected concentrations of petroleum-related VOCs identified in LMW19S are considered residual in nature. No further action associated with the former USTs and AOC 1 is warranted.

5.9.2 AOC 2: Historic Fill Material

AOC 2 represents the near ubiquitous historic fill layer below the existing site cover systems. AOC 2 is a site-wide AOC and investigation locations include all borings, surface soil sampling locations, and monitoring wells. Constituents of concern for this AOC include SVOCs and metals (including characteristic hazardous lead). Historic fill is present at most boring locations across the site (including around the existing building and in the northern and eastern areas of the site), but was not observed in borings completed in the southern-central and southwestern parts of the site (LB10, LB11, LB12, LB14, LB15, LB24, and LB26). A summary of findings and conclusions associated with AOC 2 are presented below.

AOC-2 Findings

- Historic fill was identified through field observations and review of analytical data from surface grade to depths up to 9 feet bgs. The vertical extent of historic fill was documented by field observations of the historic fill/native soil contact and one or more samples collected from the native soil interval in borings at the site.
- Field observations determined the historic fill generally consists of brown, fine-grained sand with varying amounts of fine gravel, medium and coarse sand, silt, clay, brick, concrete, asphalt, timber, rubber, plastic, and glass.

- Several SVOCs, pesticides, and metals exceeded the UU SCOs in one or more soil samples collected within the historic fill layer. Benzo(a)pyrene and lead were the only contaminants that exceeded the CU SCOs. Benzo(a)pyrene exceeded the CU SCO in boring LB28 (at 3-4 feet bgs) and lead exceeded the CU SCO in boring LB23 and one of the delineation borings (LB23_N1) at depths up to 6 feet bgs. Seven delineation samples contained characteristic hazardous lead concentrations from 0 to 8 feet bgs.
- No SVOCs were detected in groundwater above the NYSDEC Class GA SGV with the
 exception of bis (2-ethylhexyl) phthalate at one monitoring well, MW-4. No source of bis
 (2-ethylhexyl) phthalate was identified on-site; the detection is likely related to impurities
 present in groundwater sampling equipment and tubing.
- Barium, iron, magnesium, manganese, selenium, sodium, and thallium were detected in total and/or dissolved concentrations above the NYSDEC Class GA SGV in most of the groundwater samples. These metals are characteristic of naturally-occurring groundwater conditions.
- Lead was detected in total concentrations above the NYSDEC Class GA SGV in one groundwater sample (LMW19S). This concentration in groundwater at LMW19S is likely attributed to the presence of suspended solids/particles derived from historic fill.

AOC-2 Conclusions

- Historic fill was identified below surface cover to depths up to 9 feet bgs and nearly ubiquitous across the site. SVOCs and metals present in historic fill were detected at isolated concentrations above the CU SCOs. The RI and SRI characterized the historic fill layer and also defined the native soil horizon through visual observation and analytical data. Surface soil surrounding the existing building and parking lot (with the exception of area of characteristic hazardous lead) meets the CU SCOs and is suitable for cover soil. Hazardous lead soil will be addressed as its own AOC (see AOC-4).
- The presence of metals in groundwater appears to be related to natural occurrence (barium, iron, magnesium, manganese, selenium, sodium, and thallium) or historic fill (lead). Characteristic hazardous concentrations of lead in the vicinity of LB23 do not appear to be have impacted groundwater quality.

5.9.3 AOC 3: Chlorinated Solvents in Soil, Groundwater, and Soil Vapor from Off-Site Sources

AOC 3 represents CVOCs identified in groundwater during previous investigations, the RI and SRI. AOC 3 is a site-wide AOC and investigation locations include all borings, monitoring wells, and sub-slab vapor sampling locations. Constituents of concern for this AOC include PCE and

TCE and their breakdown products (trans-1,2-DCE, cis-1,2-DCE, and vinyl chloride), and 1,1,1-TCA and its breakdown products (1,1-DCA, 1,1-DCE and chloroethane). A summary of findings and conclusions associated with AOC 3 are presented below.

AOC-3 Findings

- TCE was detected at concentrations above the UU SCO in soil samples from 13 borings, including LB01, LB08, LB10, LB11, LB12, LB13, LB14, LB15, LB17, LB19, LB20, LB21, and LB24 at depths ranging from about 11 feet to 63 feet bgs. Although present in these borings, no on-site source of TCE was identified. The presence of TCE in these soil samples is explained by the presence of TCE in water molecules entrained in soil pore space and/or adsorbed to soil particles. No other CVOC was detected in soil above the UU SCO.
- CVOCs, including PCE, TCE, 1,1,1-TCA and/or their breakdown products, were detected in all on-site monitoring wells above the NYSDEC Class GA SGVs. The maximum concentrations of PCE, TCE and 1,1,1 TCA were 14.2 μg/L (LMW19S), 15,800 μg/L (LMW12S), and 13.1 μg/L (LMW19S), respectively.
- PCE and TCE were detected in the sub-slab vapor at concentrations 14 μg/m³ and 3.7 μg/m³, respectively.
- An evaluation of the groundwater elevations indicate the site has two distinct groundwater systems with a zone of transitional permeability located in the central part of the site trending north-south. The groundwater elevation is highest in the southwestern part of the site and groundwater flows from the southwest to the northeast toward Branch Brook. A detailed discussion of the zone of transitional permeability is presented in Appendix I.
- The maximum concentration of TCE was detected in the southwestern (hydraulically upgradient) part of the site. CVOC concentrations to the west of the zone of transitional permeability are generally one to two orders of magnitude higher than CVOC concentrations east of the boundary.

AOC-3 Conclusions

- No on-site source of CVOCs was identified.
- The analytical results, groundwater system, and conceptual site model indicate the suspected source of the CVOCs is off-site and is may be attributed to a known larger quantity generator (1986 to 1999) of spent halogenated solvent waste. This facility, Toyota North, is located hydraulically upgradient of the site at 255 Kisco Avenue, Mount Kisco, NY).

5.9.4 AOC 4: Hazardous Lead Soil

AOC 4 represents an area identified to contain RCRA characteristic hazardous lead in soil. AOC 4 is a localized AOC and investigation and delineation locations include borings LB23, LB23_N1, LB23_N2, LB23_E1, LB23_S1, and LB23_S2. Constituents of concern for this AOC include lead. A summary of findings and conclusions associated with AOC 2 are presented below.

AOC-4 Findings

- Total lead was detected above CU SCOs in a sample collected at 4 to 5 feet bgs from LB23 during the RI. The concentrations indicated the possibility of RCRA characteristic hazardous lead and prompted a delineation during the SRI.
- Total lead was detected above CU SCOs during the SRI delineation in two borings at depths between 0 and 6 feet bgs.
- TCLP lead concentrations exceeded the RCRA Maximum Concentration for the Toxicity Characteristic (5 mg/L) in 7 samples during the SRI delineation at depths between 0 and 8 feet bgs.

AOC-4 Conclusions

- Characteristic hazardous lead in soil was identified in a localized area near the northwest corner of the site between 0 and 8 feet bgs. The extent of hazardous soil has been vertically delineated and does not extend beyond 8 feet bgs. Additional sampling is needed to fully delineate the southern extent of hazardous lead in soil; the remaining delineation will be completed during waste characterization at a later date.
- Characteristic hazardous concentrations of lead in the vicinity of LB23 are localized and do not appear to have impacted groundwater quality.

5.9.5 AOC 5: Floor Drains

AOC 5 represented floor drains observed in the east-central part of the building. AOC 5 was a localized AOC and investigation and delineation locations included borings LB18, LB19, LB27, LB28 and groundwater monitoring wells LMW19S and LMW19D. COCs associated with this AOC included VOCs, SVOCs and metals. A summary of findings and conclusions associated with AOC 5 are presented below.

AOC-5 Findings

- According to the Phase I ESA (September 2016) prepared by URS September 2016, the drains discharge to the sanitary sewer system. The floor drains appeared to have been filled with concrete before the start of the RI.
- No VOCs were detected above the UU SCOs in shallow soil samples within AOC 5. TCE
 was detected in boring LB19 in one deep sample (34.5 to 35.5 feet bgs); this detection is
 representative of groundwater quality and not indicative of an on-site source area.
- While petroleum-related VOCs, including benzene, m/p-xylene and total xylenes, exceeded the NYSDEC Class GA SGV in well LMW19S, no petroleum source area was identified around LMW19S in borings LB18, LB27 or LB28. The petroleum-related VOCs in LMW19S may be attributed to incidental historical onsite releases.
- The SVOCs detected in boring LB28 and metals detected in boring LB19 above the UU SCOs are attributed to historic fill.
- The CVOCs detected in groundwater in wells LMW19S and LMW19D are attributed to a
 hydraulically upgradient off-site source (see AOC 3). The metals detected in groundwater
 at these two wells are attributed to naturally-occurring groundwater conditions and/or
 historic fill.

AOC-5 Conclusions

• The floor drains do not contribute to the subsurface contamination and do not constitute a source area and preferential pathway for contaminant migration. No further action is warranted in association with the floor drains and AOC 5.

6.0 QUALITATIVE HUMAN AND FISH/WILDLIFE EXPOSURE ASSESSMENT

Human health exposure risk was evaluated for both current and future site and off-site conditions in accordance with the NYSDEC DER-10. The assessment included an evaluation of potential sources and migration pathways of site contamination, potential receptors, exposure media, and receptor intake routes and exposure pathways.

In addition to the human health exposure assessment, NYSDEC DER-10 requires an on-site and off-site Fish and Wildlife Resources Impact Analysis (FWRIA) if certain criteria are met. Based on the requirements stipulated in Section 3.10 and Appendix 3C of DER-10, an FWRIA was completed for the site and is included in Appendix J.

6.1 Current Conditions

The site is a 1.73-acre lot with a 13,000-square-foot vacant commercial building with a slab-on-grade foundation, an asphalt-paved parking lot, landscaped areas around the building and parking lot and a wooded area along Branch Book.

6.2 Proposed Conditions

The proposed commercial development includes construction of a parking lot and vehicle storage area with impervious surfaces for the Land Rover Mt. Kisco dealership located to the west of the site at 299 Kisco Avenue, Mount Kisco, NY. The development will include demolition of the existing building and installation of paved surfaces across most of the site footprint. A 10-foot minimum landscaped buffer will be constructed along the entire perimeter of the site. The contemplated use for purposes of the BCP would be commercial.

6.3 Summary of Environmental Conditions

Soil sampling results identified VOCs, SVOCs, pesticides, metals (including hazardous levels of lead) at concentrations exceeding the UU and/or CU SCOs. The suspected source of the VOCs in soil is related to a hydraulically upgradient, off-site source as identified in Section 3.3. The source of the SVOCs and metals is historic fill. The source of the pesticides may also be related to historic fill.

Groundwater samples exhibited concentrations of VOCs, SVOCs, and metals exceeding the NYSDEC Class GA SGVs. The CVOCs detected in groundwater are attributed to a suspected hydraulically upgradient, off-site source as identified in Section 3.3. The isolated occurrence of petroleum-related VOCs in groundwater is likely attributed to an incidental historical onsite release. The metals detected in groundwater are attributed to either naturally-occurring conditions, historic fill and/or an off-site source.

The CVOCs detected in sub-slab soil vapor are attributed to CVOC-impacted groundwater, which originates from the same suspected hydraulically upgradient, off-site source as identified in Section 3.3.

Surface water samples exhibited concentrations of one SVOC and two metals exceeding the NYSDEC Class C SGVs; these detections are considered background and/or related to naturally-occurring conditions.

Sediment samples from Branch Brook exhibited concentrations of metals (including cadmium, total chromium, copper, lead, nickel, and zinc) exceeding the NYSDEC Class A guidance values. All six metals exceeded the minimum NYSDEC Class B guidance value. Lead exceeded the NYSDEC Class C guidance value in the two downstream sediment samples, SED2 and SED3. The analytical data and the spatial distribution of exceedances shows that the concentrations of metals are generally increasing in a downstream direction. In general, the highest metal concentrations appeared in the downstream sample, SED3, with the exception of a few outliers. The source of metals in the sediments is likely attributed to off-site sources, either the settlement/deposition of suspended particles from stormwater runoff entering Branch Brook at the outfall near the northeastern corner of the site and/or erosion of fill material from the raised, railway embankment along the course of the waterway.

6.4 Conceptual Site Model

A conceptual site model (CSM) was developed based on the findings of the previous investigations, the RI and SRI to produce a simplified framework for understanding the distribution of impacted materials, potential migration pathways, and potentially complete exposure pathways, as discussed below.

6.4.1 Potential Sources of Contamination

Potential sources of contamination were identified as 1) suspected hydraulically upgradient offsite sources of CVOCs (including a Large Quantity Generator of spent halogenated solvents identified in Section 3.3) and incidental historical on-site petroleum releases; 2) historic fill with SVOCs, pesticides and metals at concentrations greater than the applicable SCOs; and 3) metals in sediment from stormwater runoff entering Branch Brook at the outfall near the northeastern corner of the site and/or erosion of fill material from the raised, railway embankment along the course of the waterway.

This conclusion for the hydraulically upgradient off-site source of CVOCs is based on the evaluation of groundwater head elevation, site stratigraphy, and TCE concentrations in groundwater. The site has two groundwater systems, both flowing to the northeast.

Groundwater elevations within the western part of the site are about el. 287 to 288 feet NAVD88. In contrast, groundwater elevations in the eastern part of the site are defined by a lower elevation of about el. 285 feet NAVD88. A nominal north-south trending zone of transitional permeability that appears to bisect the site separates the two groundwater systems.

According to site-specific stratigraphy information obtained during the RI, there appears to be a remnant wall of a historical alluvial channel backfilled with alluvium sands inscribed into the western part of the deeper interbedded clay, silt and fine sands, which creates the groundwater separation. The zone of transitional permeability appears to be "leaky", which is evident by the asymmetric groundwater head and iso-contours of TCE.

The groundwater contour map (Figures 5) shows groundwater head contours for the eastern and western shallow groundwater zones, indicating a northeast flow direction on both sides of the boundary. The gradients for both groundwater zones are about 0.002 feet per feet (ft/ft). In contrast, in evaluating the groundwater head differential across the boundary, the gradient is an order of magnitude higher (0.02 ft/ft). This, coupled with the asymmetric iso-contours, can only exist if the zone of transitional permeability restricts flow between both groundwater zones. A detailed discussion of the zone of transitional permeability is presented in Appendix I.

6.4.2 Exposure Media

The contaminated media include soil, groundwater, soil vapor and sediment. The contaminants in the media include: 1) CVOCs in soil, groundwater and soil vapor; 2) petroleum-related VOCs in groundwater; 3) metals in soil, groundwater, and sediment; and 4) pesticides in soil.

6.4.3 Receptor Populations

The site is vacant and unsecured. The building is vacant, but secured and locked. No potential receptors exist except for occasional visitors to the site. During site development, human receptors will be limited to construction and remediation workers, authorized guests visiting the site and the public adjacent to the site. Under future conditions, receptors will include the new property workers and visitors.

6.5 Potential Exposure Pathways – On-Site

6.5.1 Current Conditions

The site is covered in part with impervious surfaces, including an asphalt-paved parking lot and the concrete slab of the existing building; however, the site includes landscaped and vegetated areas with isolated occurrence of exposed soil/fill material, though most exterior areas are

covered with lawn grass. Since there are no access restrictions to the site, human exposure to contaminated soil through ingestion or direct contact is possible, but limited.

On-site groundwater is contaminated with CVOCs, SVOCs, and metals. Groundwater at the site in this area of Mount Kisco is not used as a potable water source. Potable water is derived from the Byram Lake Filtration Plant, which is fed by the Byram Lake Reservoir (located about 3.5 miles southeast of the site) and the Leonard Park Well Field (located about 2 miles south of the site) located in Bedford, New York. Because groundwater is not used as a potable water source, no complete exposure pathway to contaminated groundwater through ingestion or direct contact exists under current site conditions.

CVOCs are present in soil vapor below the building. Vapor intrusion is possible through preferential pathways through the foundation; however, because the building is secured and locked, no complete exposure pathway to contaminated soil vapor through inhalation exists under current site conditions.

Metals are present in sediment samples of Branch Brook at concentrations that are considered contaminated and likely to pose a risk to aquatic life. Since there are no access restrictions to the site, human exposure through ingestion of or direct contact with contaminated sediment or through ingestion of aquatic life (i.e., fish) is possible, but limited. To the best of our knowledge, Branch Brook is not used for contact recreational activities, including swimming and fishing.

In localized areas where human exposure to contaminated soil, groundwater and soil vapor is possible (i.e., during soil, soil vapor and groundwater sampling associated with site investigations when the ground surface is penetrated), the potential exposure pathways for dermal absorption, inhalation and ingestion are controlled through implementation of a HASP.

6.5.2 Construction/Remediation Conditions

Potential exposure pathways exist for dermal absorption, ingestion, and/or inhalation during construction/remediation. These exposure pathways will be avoided through the implementation of a construction health and safety plan (CHASP), community air monitoring plan (CAMP), and use of vapor and dust suppression techniques.

6.5.3 Proposed Future Conditions

Near-term future conditions include the existence of a vacant, commercial property. Without the use of engineering and institutional controls (ECs and ICs), exposures to future tenants, visitors and workers to residual contaminants are possible.

The site will be developed with the use of ECs and ICs as necessary, to control exposure to future tenants, visitors and workers to residual contamination. The following ECs and ICs are planned for the proposed development:

- 1. Composite cover system, including impervious surfaces
- 2. The site and surrounding areas will continue to obtain drinking water from existing sources, including surface water reservoirs and/or well fields, and not from groundwater, thereby preventing the risk of ingesting contaminants in groundwater.
- 3. Deed restrictions on use of groundwater, allowable uses of the site, and vegetable farming will be placed on the property as part of remediation.

6.6 Potential Exposure Pathways – Off-Site

Currently, no exposure pathways to on-site contamination for the public adjacent to the site exists because the site is capped with impervious surfaces and/or protective surface cover (i.e., maintained landscaped areas), groundwater is not potable, and site investigation work is performed under a HASP with required CAMP implementation.

Implementation of a CHASP and CAMP under future remediation/construction conditions will prevent the public from being exposed to soil, dust and vapors generated during construction. The following procedures will be followed:

- Air monitoring will be conducted for particulates (i.e., dust) and VOCs during all intrusive activities as part of a CAMP. Dust and/or vapor suppression techniques will be employed to limit potential for off-site migration of soil and vapors.
- Groundwater extracted during construction dewatering, if required will be treated before
 it is discharged to the municipal sewer system or Branch Brook under a State Pollutant
 Discharge Elimination System (SPDES) permit.
- Vehicle tires and undercarriages will be washed as necessary before trucks leave the site to prevent tracking material off-site.
- A soil erosion/sediment control plan will be implemented during construction to control
 off-site migration of soil.

CVOCs in groundwater are suspected to originate from a hydraulically upgradient, off-site source as described in Section 3.3. An evaluation of the off-site source is beyond the scope of the remedial investigation completed by the Volunteer and a determination of whether a complete exposure pathway exists for the migration of site contaminants to off-site human receptors for

current, construction phase, or future conditions was not performed. Under future conditions, the site will be remediated and on-site exposure pathways will be controlled, but the source of CVOCs in groundwater will not be addressed. Complete off-site exposure pathways to human receptors may exist and, if necessary, engineering controls should be implemented by others to prevent complete exposure pathways.

6.7 Evaluation of Human Health Exposure

Based upon the CSM and the exposure evaluation above, complete exposure pathways to subsurface contamination to both on- and off-site receptors:

- Are present under current use conditions, but limited (i.e., site access is not completely restricted);
- Would be avoided under construction/remediation use conditions through implementation of a CHASP and CAMP and other construction measures (dust suppression, soil/erosion sediment control plan, etc.); and
- Would be mitigated for on-site human receptors through the use of planned IC/ECs under future use conditions.
- May exist for off-site human receptors upon completion of the on-site remedy if the offsite source of CVOCs in groundwater is not controlled and/or remediated

7.0 NATURE AND EXTENT OF CONTAMINATION

This section evaluates the nature and extent of soil, groundwater and soil vapor contamination. The nature and extent of the contamination is derived from a combination of field observations and analytical data from previous studies, the RI and SRI.

7.1 Soil Contamination

The RI and SRI characterized the historic fill layer and also defined the native soil horizon below the historic fill. The historic fill layer extends from surface grade to depths up to about 9 feet bgs and contains varying levels of SVOCs, pesticides, and metals, which are described in further detail in this section. CVOCs, including TCE, were detected in native soil at depths ranging from about 11 feet to 63 feet bgs. This section is divided into the following categories:

- 1. Historic fill
- 2. CVOC-impacted soil

7.1.1 Historic Fill

Historic fill was identified through field observations and review of analytical data indicating the presence of SVOCs, pesticides and metals from surface grade to depths up to 9 feet bgs. Historic fill is present at most boring locations across the site (including around the existing building and in the northern and eastern areas of the site), but was not observed in borings completed in the southern-central and southwestern parts of the site (LB10, LB11, LB12, LB14, LB15, LB24, and LB26). The vertical extent of historic fill was documented by field observations of the historic fill/native soil contact and one or more samples collected from the native soil interval in borings at the site.

SVOCs (including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, and indeno(1,2,3-cd)pyrene), pesticides (including 4,4-DDT, 4,4-DDE, and 4,4-DDT), and metals (including trivalent chromium, copper, lead, mercury, nickel and zinc) exceeded the UU SCOs in one or more soil samples collected within the historic fill layer. Benzo(a)pyrene and lead were the only contaminants that exceeded the CU SCOs. Benzo(a)pyrene exceeded the CU SCO in boring LB28 (at 3-4 feet bgs) and lead exceeded the CU SCO in boring LB23 and one of the delineation borings (LB23_N1) at depths up to 6 feet bgs. Seven delineation samples around LB23 contained characteristic hazardous lead concentrations from 0 to 8 feet bgs.

Pesticides are not considered a COC as no pesticides exceeded the CU SCOs and no pesticides were detected in groundwater.

7.1.2 CVOC-Impacted Soil

TCE was detected at concentrations above the UU SCO in soil samples from 13 borings, including LB01, LB08, LB10, LB11, LB12, LB13, LB14, LB15, LB17, LB19, LB20, LB21, and LB24 at depths ranging from about 11 feet to 63 feet bgs. TCE concentrations ranged from 0.57 mg/kg to 13 mg/kg. Although present in these borings, no on-site source of TCE was identified. The presence of TCE in these soil samples is explained by the presence of TCE in water molecules entrained in soil pore space and/or adsorbed to soil particles. No other CVOC was detected in soil above the UU SCO. TCE did not exceed the CU SCO in any soil sample.

7.2 Groundwater Contamination

The RI and SRI characterized groundwater quality at the site and identified petroleum-related VOC, CVOC, SVOC and metals contamination. This section is divided into the following categories:

- 1. Residual Petroleum Contamination
- 2. CVOC Contamination
- 3. SVOC and Metals Contamination

7.2.1 Residual Petroleum Contamination

Two petroleum-related VOCs, including benzene and total xylenes, marginally exceeded the NYSDEC Class GA SGVs in one groundwater sample collected from well LMW19S. No potential source area around LMW19S was identified during the SRI. No petroleum-related VOCs were detected in the three wells installed along the northern site boundary during the SRI indicating dissolved-phase petroleum constituents are not migrating off-site. The petroleum-related VOCs in LMW19S may be attributed to incidental historical onsite releases.

7.2.2 CVOC-Contamination

CVOCs, including PCE, TCE, 1,1,1-TCA and/or their breakdown products, were detected above the NYSDEC Class GA SGVs in all 21 on-site monitoring wells. The maximum concentrations of PCE, TCE and 1,1,1 TCA were 14.2 μ g/L (LMW19S), 15,800 μ g/L (LMW12S), and 13.1 μ g/L (LMW19S), respectively.

No on-site source of CVOCs was identified by the RI and SRI. The site has two distinct groundwater systems with a zone of transitional permeability located in the central part of the site trending north-south. The groundwater at the site generally flows from southwest to

northeast. The maximum concentration of TCE was detected in the southwestern (hydraulically upgradient) part of the site. CVOC concentrations to the west of the zone of transitional permeability are generally one to two orders of magnitude higher than CVOC concentrations east of the boundary. The analytical results and conceptual site model indicate the suspected source of the CVOCs is off-site and is attributed most likely to a known large quantity generator (1986 to 1999) of spent halogenated solvent waste. This facility, Toyota North, is located hydraulically upgradient of the site at 255 Kisco Avenue, Mount Kisco, NY.

7.2.3 Metals Contamination

Barium, iron, magnesium, manganese, selenium, sodium, and thallium were detected in total and/or dissolved concentrations above the NYSDEC Class GA SGV in most of the groundwater samples. These metals are characteristic of naturally-occurring groundwater conditions.

Lead was detected in total concentrations above the NYSDEC Class GA SGV in one groundwater sample (LMW19S). This concentration in groundwater at LMW19S is likely attributed to the presence of suspended solids/particles derived from historic fill.

The characteristic hazardous concentrations of lead in the vicinity of LB23 do not appear to be have impacted groundwater quality at the site.

7.3 Soil Vapor Contamination

Alcohol, ketone, petroleum, solvent-related compounds (including the PCE and TCE), and refrigerant/propellants (Freon-12) were detected in the sub-slab soil vapor sample (LSV22). The presence of TCE and TCE in soil vapor is related to the presence of these CVOCs in groundwater from an off-site source. The sub-slab soil vapor results from LSV22 were not compared to any regulatory criteria, as no standard for direct comparison of soil vapor samples currently exists in New York State. The vapor results appear to be biased low, likely a result of a shallow groundwater table.

7.4 Off-Site Surface Water and Sediment Contamination

Off-site surface water samples exhibited concentrations of one SVOC (bis[2-ethylhexyl] phthalate) and two metals (dissolved aluminum and iron) exceeding the NYSDEC Class C SGVs. The SVOC is considered a lab or sampling contaminant. The two metals are characteristic of naturally-occurring conditions. The surface water data indicates that groundwater contaminants of concern (TCE and other metals) are not migrating into Branch Brook.

Off-site sediment samples from Branch Brook exhibited concentrations of metals (including cadmium, chromium, copper, lead, nickel, and zinc) exceeding the NYSDEC Class A guidance values. All six metals exceeded the minimum NYSDEC Class B guidance value. Lead exceeded the NYSDEC Class C guidance value in the two downstream sediment samples, SED2 and SED3.

The analytical data and the spatial distribution of exceedances show that the concentrations of most metals exhibited a generaln increasing trend upstream to downstream. The highest metal concentrations appeared in the downstream sample (SED3). Potential sources of lead in sediment include, but are not limited to, the following:

- 1. Deposition of solids/particles from upstream point and non-point sources;
- 2. Deposition of solids/particles from stormwater runoff entering Branch Brook at the outfall near the northeastern corner of the site;
- 3. Erosion and deposition of solids/particles derived from fill material along the raised, railway embankment; and
- 4. Stormwater runoff from the parking lot and solids/particles from site surface soil disturbed and transported by runoff through the drainage channel east of the parking lot.

The railway corridor and embankment along the eastern bank of Branch Brook was constructed before 1890 using fill material of unknown quality/origin. The erosion, transport, and deposition of solids/particles derived from the fill material into the waterway for over 120 years is a potential, long-standing source. The outfall near the northeastern part of the site discharges stormwater collected from Kensico Drive and other, unquantified impervious and/or pervious areas surrounding the site. Solids/particles from vehicle traffic, atmospheric deposition, or other areas of exposed soil entrained in the stormwater, upon entering Branch Brook, are expected to be transported downstream by water flow and settle with increasing distance from the outfall by gravity forces and changes in water flow/velocity. An evaluation of the watershed area for Branch Brook was beyond the scope of the RI/SRI and upstream point and non-point sources could also be potential contributing sources, including additional stormwater outfalls.

No evidence of erosion in the stormwater drainage channel at the site was observed during the RI and SRI. The recent erosion observed in the drainage channel was noted after the collection of the sediment samples and appears to be a new condition, a result of heavy precipitation events during the week of June 17-21, 2019. However, the wooded area (about 40 feet wide) between the runoff channel and Branch Brook is heavily vegetated and is expected to act as a buffer zone, thwarting the migration of solids/particles in stormwater runoff from entering Branch Brook. The concentrations of metals (i.e., lead and zinc) found in both surface soil samples closest to Branch Brook and sediment samples from the stream are generally higher in sediment than surface soil suggesting other sources of metals are likely impacting the sediment of Branch Brook.

8.0 CONCLUSIONS

1. <u>Stratigraphy</u>: The site's stratigraphy comprises a historic fill layer of variable thickness underlain by native soil and bedrock. The historic fill consists of brown, fine-grained sand with varying amounts of fine gravel, medium and coarse sand, silt, clay, brick, concrete,

Langan Project No. 190046301

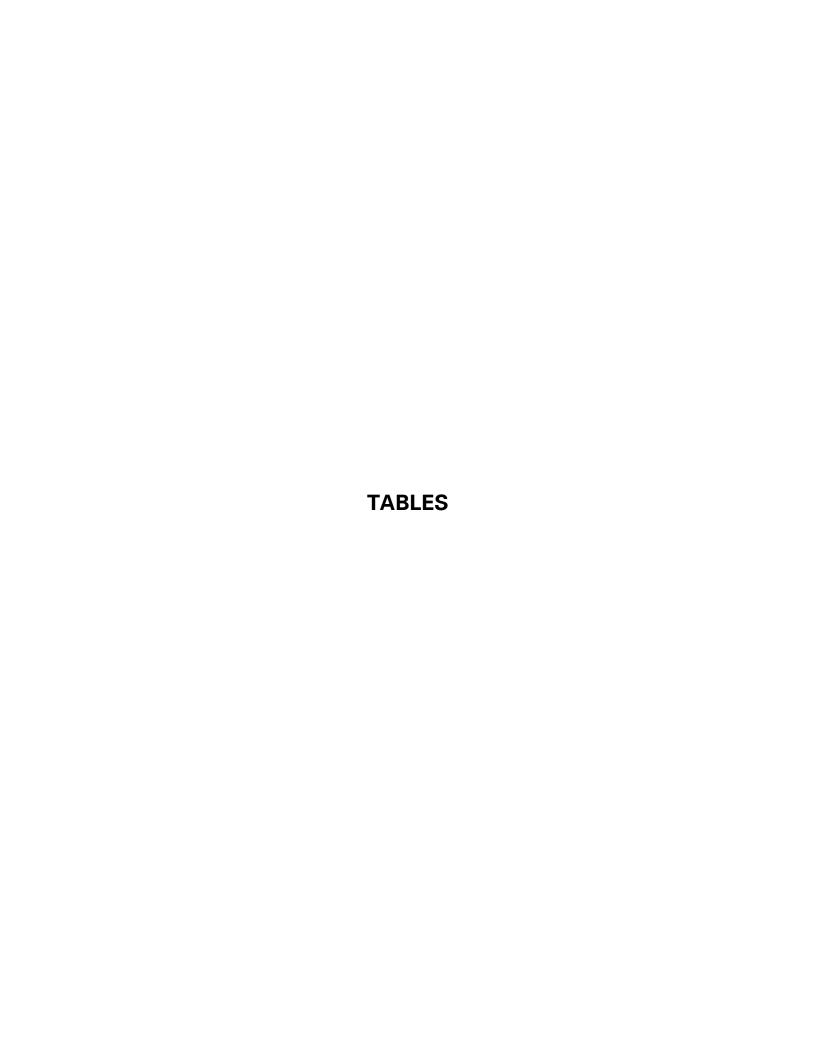
asphalt, timber, rubber, plastic, and glass and generally extends from ground surface to about 9 feet bgs. The historic fill is present at most boring locations across the site, but was not observed in borings completed in the southern-central and southwestern parts of the site. Native soil underlying the historic fill consists of an organic clay layer consisting of soft to medium-dense silt and clay or by a fine-grained sand layer with varying amounts of silt and clay. The organic clay layer (about 1.5 to 4 feet thick) was observed in only two borings. The fine-grained sand layer is present below surface cover (where historic fill was not identified) or the historic fill layer to the top of bedrock; thickness of this unit ranges from about 25 feet to 65 feet. Intermittent clay lenses (about 0.5 to 5 feet thick) were observed in this unit at depths ranging from between 2 and 50 feet bgs. Bedrock was encountered at depths ranging from 24 feet bgs at boring LB11 near the southwest corner of the site to 71 feet bgs at boring LB08 near the east-central part of the site. The bedrock is metamorphic in nature, consistent with the USGS reference map, and appears to slope from west to east.

- 2. <u>Hydrogeology:</u> Depth to groundwater was measured between about 0.05 feet to 5.48 feet below top of well casing with corresponding groundwater elevations from about el. 284.31 to 288.21 feet NAVD88. The groundwater elevations indicate the site has two distinct groundwater systems with a zone of transitional permeability located in the central part of the site that trends north-south. The shallow monitoring wells cluster about a head elevation of el. 285 feet NAVD88 on the eastern half of the site and about el. 287 and 288 feet NAVD88 on the western half of the site. The groundwater elevation is highest in the southwestern part of the site and groundwater flows from the southwest to the northeast toward Branch Brook.
- 3. <u>Historic Fill:</u> Historic fill was identified through field observations and review of analytical data indicating the presence of SVOCs, pesticides and metals from surface grade to depths up to 9 feet bgs. SVOCs, pesticides, and metals exceeded the UU SCOs in one or more soil samples collected within the historic fill layer. Benzo(a)pyrene and lead were the only contaminants that exceeded the CU SCOs. Characteristic hazardous levels of lead were identified in historic fill in one of area of the site (near boring LB23).
- 4. CVOC-Impacted Soil, Groundwater, and Soil Vapor: The CVOCs, including PCE, TCE, 1,1,1-TCA and/or their breakdown products, were detected in soil, groundwater, and soil vapor at the site and are attribute to a suspected hydraulically, upgradient off-site source. TCE was detected at concentrations (ranging from 0.57 mg/kg to 13 mg/kg) above the UU SCO in soil samples from 12 borings, at depths ranging from about 11 feet to 63 feet bgs. The presence of TCE in soil samples is attributed to the presence of TCE in water molecules entrained in soil pore space and/or adsorbed to soil particles. CVOCs, including PCE, TCE, 1,1,1-TCA and/or their breakdown products, were detected in all 21 on-site

Langan Project No. 190046301

November 1, 2019 Page 55

monitoring wells above the NYSDEC Class GA SGVs. The maximum concentrations of PCE, TCE and 1,1,1 TCA were 14.2 μ g/L (LMW19S), 15,800 μ g/L (LMW12S), and 13.1 μ g/L (LMW19S), respectively. PCE and TCE were also detected in soil vapor at low-level concentrations in the only soil vapor sample collected at the site (LSV22).


- 5. Residual Petroleum Impacts in Groundwater: Three petroleum-related VOCs marginally exceeded the NYSDEC Class GA SGVs in one groundwater sample collected from well LMW19S. No potential source area around LMW19S was identified. No petroleum-related VOCs were detected in the monitoring wells installed along the northern site boundary indicating dissolved-phase petroleum constituents are not migrating off-site. The petroleum-related VOCs in LMW19S may be attributed to incidental historical onsite releases.
- 6. Off-Site Surface Water Quality of Branch Brook: Surface water samples exhibited concentrations of one SVOC (bis[2-ethylhexyl] phthalate) and two metals (dissolved aluminum and iron) exceeding the NYSDEC Class C SGV. The SVOC is considered a lab or sampling contaminant. The two metals are characteristic of naturally-occurring conditions. The surface water data indicates that groundwater contaminants of concern (TCE and other metals) are not migrating into Branch Brook. The obligation of the Volunteer with respect to off-site investigations per DER-10 has been met and no further action is warranted.
- 7. Off-Site Sediment Quality in Branch Brook: Sediment samples exhibited concentrations of metals (including cadmium, chromium, copper, lead, nickel, and zinc) exceeding the minimum NYSDEC Class B guidance values. Lead exceeded the NYSDEC Class C guidance value in the two downstream sediment samples, SED2 and SED3. The analytical data and the spatial distribution of exceedances show that the concentrations of metals exhibited an increasing trend upstream to downstream. The highest metal concentrations appeared in the downstream sample (SED3). The concentrations of metals (i.e., lead and zinc) found in both surface soil samples closest to Branch Brook and sediment samples from the stream are generally higher in sediment than surface soil suggesting other sources of metals are likely impacting the sediment of Branch Brook.
- 8. The obligation of the Volunteer with respect to off-site investigations per DER-10 has been met and no further action is warranted, including further ecological impact assessment of sediment and biota associated with Branch Brook. The FWRIA highlighted that other sources of materials (fill material from the adjoining railroad embankment, stormwater discharges from outfalls servicing nearby commercial and industrial properties, and unidentified upstream sources) are probable sources of sediment contamination within Branch Brook sediment. A potential onsite source, along with a pathway to the Branch Brook was identified, but the source and pathway will be

eliminated as part of the proposed remedy. The Volunteer will implement a forthcoming RAWP, which will achieve relevant remedial action objectives (RAOs), including (1) preventing migration of contaminants that would result in groundwater contamination, and (2) preventing the discharge of contaminants to the adjoining watercourse. The Volunteer has fulfilled their obligations to characterize on-site impacts and completed a qualitative off-site exposure assessment and has no responsibility to implement a remedy to address off-site exposures and remediate off-site media. Furthermore, the current development plan and the Volunteer's remedy for the site will remain the same regardless of the outcome of any further offsite ecological impact assessments.

9. Sufficient analytical data were gathered during the RI and SRI to establish site-specific soil cleanup levels and to develop a remedy for the site. The remedy will be described and evaluated in the RAWP prepared in accordance with NYS BCP guidelines.

9.0 REFERENCES

- 1. Phase I Environmental Site Assessment, prepared by URS (September 21, 2016).
- 2. Phase II Environmental Site Assessment, prepared by URS (December 14, 2016).
- 3. Letter from Michael Emilio of URS to Michael Archey of AutoNation, Inc (December 14, 2016)
- 4. Limited Site Assessment, prepared by AECOM (May 8, 2017)
- 5. Report on Subsurface Soil and Foundation Investigation, prepared by Carlin Simpson & Associates (May 3, 2018).
- 6. Mount Kisco 2017 Annual Drink Water Quality Report, prepared by the Village of Mount Kisco (2018).
- 7. Letter from NYSDEC to NY Luxury Motors of Mt. Kisco, Inc, acceptance into the BCP (June 20, 2018).
- 8. New York State Department of Health, Final Guidance for the Evaluation of Soil Vapor Intrusion in the State of New York, October 2006.
- 9. New York State Department of Environmental Conservation, Division of Environmental Remediation, Draft Brownfield Cleanup Program Guide, May 2004.
- 10. New York State Department of Environmental Conservation, DER-10 Technical Guidance for Site Investigation and Remediation, issued May 3, 2010; effective June 18, 2010
- 11. New York State Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) June 1998.
- 12. New York State Department of Environmental Conservation, Division of Fish, Wildlife, and Marine Resources, Bureau of Habitat, Screening and Assessment of Contaminated Sediment, June 24, 2014.
- 13. United States Environmental Protection Agency, Low Flow Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells, EQASOP-GW 001, January 19, 2010.
- 14. New York State Department of Environmental Conservation, Part 375 of Title 6 of the New York Compilation of Codes, Rules, and Regulations, Effective December 14, 2006.
- 15. Uchupi, E., Driscoll, N. W., Ballard, R. D., & Bolmer, S. T. (2001). Drainage of late Wisconsin glacial lakes and the morphology and late quaternary stratigraphy of the New Jersey southern New England continental shelf and slope. Marine Geology, 172, 117–145.
- 16. United States Geological Survey. "Quaternary Geology of the New York City Region," accessed October 5, 2018

Table 1A Sample Summary Remedial Investigation Report 41 Kensico Drive, Mount Kisco, NY Langan Project No. 190046301 BCP ID No. C360163

No.	Location	Sample Name	Sample Depth (feet bgs) or location	Date	Sampling Rationale/AOCs Investigated	Analyses							
1		LB01_4-5	4-5		SOIL	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
2		LB01_29-30	29-30			metals/inorganics							
3	LB01	LB01_35-37	35-37	8/9/2018	AOC1, AOC2, AOC3								
4		LB01_48.5-49.5	48.5-49.5	3/3/2010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NYSDEC Part 375/TCL VOCs and SVOCs							
5		LB01_54-55	54-55										
6		LB07_7-8	7-8										
7	LB07	LB07_18-19	18-19	8/8/2018	AOC2, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
8		LB08_4-5	4-5			NUMBER OF STREET							
9		LB08_15.5-16.5	15.5-16.5	8/7/2018		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
10	LB08	LB08_51-52	51-52		AOC2, AOC3								
11		LB08_62-63	62-63		,	NYSDEC Part 375/TCL VOCs and SVOCs							
12		LB08_69-70	69-70	8/8/2018									
13	LB09	LB09_6-7	6-7	8/10/2018	AOC2, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
14		LB10_2-3	2-3	3, 13, 23 13		metals/inorganics NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
15	LB10	LB10_31-32	31-32	8/20/2018	AOC2, AOC3	metals/inorganics							
16		LB10_45-46	45-46		,	NYSDEC Part 375/TCL VOCs and SVOCs							
17		LB11_4.5-5.5	4.5-5.5		<u> </u>	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
18	LB11	LB11_11-12	11-12	8/13/2018	AOC2, AOC3	metals/inorganics							
19	1	LB11_23-24	23-24			NYSDEC Part 375/TCL VOCs and SVOCs							
20		LB12_0.5-2	0.5-2	8/15/2018									
21		LB12_2-3	2-3	., .,									
22	LB12	LB12_19-20	19-20		AOC2, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
23		LB12_29-30	29-30	8/14/2018		metals/inorganics							
24		LB12_42-43	42-43										
25		LB13_5-6	5-6			NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
26	LB13	LB13_23-24	23-24	8/13/2018	AOC2, AOC3	metals/inorganics							
27		LB13_29-30	29-30			NYSDEC Part 375/TCL VOCs and SVOCs							
28		LB14_4-5	4-5			NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
29	LB14	LB14_13-14	13-14	8/13/2018	AOC2								
30	-	LB14_29-30	29-30			NYSDEC Part 375/TCL VOCs and SVOCs							
31		LB15_5-6	5-6			NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
32	-	LB15_33-34	33-34			metals/morganics							
33	LB15	LB15_44-45	44-45	8/14/2018	AOC2, AOC3, AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
34	-	LB15_53-54	53-54										
35	LB16	LB16_5-6	5-6	8/10/2018	AOC1, AOC2, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
36		LB17_22-24	22-24			metals/morganics							
37	LB17	LB17_43-44	43-44	8/10/2018	AOC1, AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
38		LB17_49-50	49-50										
39		LB19_5-6	5-6			NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals							
40	LB19	LB19_34.5-35.5	34.5-35.5	8/14/2018	AOC2, AOC3, AOC5								
41		LB19_44-45	44-45			NYSDEC Part 375/TCL VOCs and SVOCs							
42		LB20_5-6	5-6			NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
43	LB20	LB20_32.5-33.5	32.5-33.5	8/20/2018	AOC2, AOC3								
44	1	LB20_47-48	47-48			NYSDEC Part 375/TCL VOCs and SVOCs							
45	1500	LB21_5-6	5-6		100/	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals							
46	LB21	LB21_18-19	18-19	8/10/2018	AOC1, AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
47	LB22	LB22_11-12	11-12	8/7/2018	AOC1, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
48	LB23	LB23_4-5	4-5	0/10/0010	AOC2, AOC3	metals/inorganics							
49	LB23	LB23_12-13	12-13	8/13/2018	AOC2, AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
50	LB24	LB24_1-2	1-2	8/10/2010	VOC3 VOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
51	LBZ4	LB24_13-14	13-14	8/10/2018	AOC2, AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
52	LB25	LB25_7-8	7-8	8/8/2018	AOC1, AOC2, AOC3								
53	LDZ5	LB25_15-16	15-16	0/0/2010	AUC1, AUC2, AUC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
54	LB26	LB26_6-7	6-7	8/10/2018	AOC2, AOC3								

Table 1A Sample Summary Remedial Investigation Report 41 Kensico Drive, Mount Kisco, NY Langan Project No. 190046301 BCP ID No. C360163

No.	Location	Sample Name	Sample Depth (feet bgs) or location	Date	Sampling Rationale/AOCs Investigated	Analyses							
			bys/ or location		SOIL QA/QC								
55		SBDUP01_080818	LB25_15-16	8/8/2018		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
56	DUPLICATE	SBDUP02_081318	LB23_4-5	8/13/2018		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics							
57		SBDUP03_082018	LB10_2-3	8/20/2018		NYSDEC Part 375/TCL VOCs and SVOCs							
58		SBEB01_080718		8/7/2018									
59		SBEB02_080818		8/8/2018									
60		SBEB03_080918		8/9/2018	QA/QC								
61	EQUIPMENT	SBEB04_081018	N//A	8/10/2018		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL							
62	BLANK	SBEB04_081318	N/A	8/13/2018		metals/inorganics							
63		SBEB05_081418		8/14/2018									
64		SBEB07_081518		8/15/2018									
65		SBEB08_082018		8/20/2018									
					GROUNDWATER								
1	MVV-1	MW-1_090518	2-12	9/5/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved), 1,4-dioxane and PFAS							
2	LMW01D	LMW01D_090518	44-54	9/5/2018	AOC1, AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved)							
3	MW-2	MW-2_090518	2-12	9/5/2018	AOC3								
4	MW-3	MW-3_090618	3-13	9/6/2018	AOC3								
5	MW-4	MW-4_090618	2-12	9/6/2018	AOC3	NYSDEC Part 375/TCL VOCs and SVOCs							
6	MW-5	MW-5_090718	3-13	9/7/2018	AOC3								
7	MW-6	MW-6_090718	4-14	9/7/2018	AOC3								
8	LMW08S	LMW08S_090518	2-15	9/5/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved), 1,4-dioxane and PFAS							
9	LMW08D	LMW08D_090518	42-47	9/5/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved)							
10	LMW11	LMW11_090718	4-24	9/7/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved)							
11	LMW12S	LMW12S_090618	17-22	9/6/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved), 1,4-dioxane and PFAS							
12	LMW12D	LMW12D_090618	37-42	9/6/2018	AOC3	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved)							
13	LMW15	LMW15_090618	31-36	9/6/2018	AOC3	The state of the s							
14	LMW19S	LMW19S_090718	2-15	9/7/2018	AOC3, AOC5								
15	LMW19D	LMW19D_090718	32-37	9/7/2018	AOC3, AOC5	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved)							
16	LMW20S	LMW20S_090618	30-35	9/6/2018									
17	LMW20D	LMW20D_090618	42-47	9/6/2018	AOC3								
					GROUNDWATER QA/QC								
1	DUPLICATE	GWDUP01_090518											
2	MATRIX SPIKE	GWMS01_090518	MW-1_090518	9/5/2018		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals (total and dissolved), 1,4-dioxane and PFAS							
3	MATRIX SPIKE DUPLICATE	GWMSD01_090518											
4	FIELD BLANK	GWFB01_090518	N/A	9/5/2018	QA/QC	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals (total), 1,4-dioxane and PFAS							
5		GWTB01_090518		9/5/2018									
6	TRIP BLANK	GWTB02_090618	N/A	9/6/2018		Part 375/TCL VOCs							
7		GWTB03_090618		9/6/2018									
					SOIL VAPOR								
1	LSV22	LSV22_081418	2 in below slab	8/14/2018	AOC4	VOCs (TO-15)							

- Notes:

 1. Soil and groundwater samples were analyzed for New York State Department of Environmental Conservation (NYSDEC) Part 375 and Target Compound List (TCL) and Target Analyte List (TAL) compounds.

 2. Monitoring wells MW-1 through MW-6 were previously installed by AECOM.

 3. ftbgs = feet below ground surface
 4. OA/OC = Quality Assurance/ Quality Control

 5. VOCs = Voltatile organic compounds
 6. SVOCs = Semivolatile organic compounds
 6. SVOCs = Semivolatile organic compounds

- Noces = Sentivolatile organic control of the C

NYSDEC 21-compound PFAS List

6:2 fluorotelomer sulfonate (6:2 FTS) 8:2 fluorotelomer sulfonate (8:2 FTS) N-ethyl perfluorooctanesulfonamidoacetic acid (N-EtFOSAA).

N-methyl perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)
Perfluorobutanesulfonic acid (PFBS)

Perfluorobutanoic acid (PFBA) Perfluorodecanesulfonic acid (PFDS)

Perfluorodecanoic acid (PFDA) Perfluorododecanoic acid (PFDoA)

Perfluoroheptanesulfonic acid (PFHpS)

Perfluoroheptanoic acid (PFHpA)
Perfluorohexanesulfonic acid (PFHxS)

Perfluorohexanoic acid (PFHxA) Perfluorononanoic acid (PFNA)

Perfluorooctanesulfonamide (FOSA) Perfluorooctanesulfonic acid (PFOS)

Perfluoroccaniesulionic actu (PFOA), Perfluorocchanicia caid (PFDA), Perfluorotetradecanicia caid (PFTA/PFTeDA) Perfluorotetradecanicia caid (PFTTA/PFTrDA), Perfluorotetradecanicia caid (PFTTA/PFTrDA),

Table 1B Sample Summary - 2019 Supplemental Remedial Investigation Remedial Investigation Report 41 Kensico Drive, Mount Kisco, NY Langan Project No. 190046301 BCP ID No. C360163

No.	Location	Sample Name	Sample Depth (feet bgs) or (inches) or location	Sample Date	Sampling Rationale	Analyses			
1	LB18	LB18_5-6	5 to 6	5/3/2019	IIL Investigate soil between LMW19S and MW-1 for petroleum impacts	NYSDEC Part 375/TCL VOCs, SVOCs, and 1,4-dioxane			
2	LB27	LB27_3.5-4.5	3.5 to 4.5	5/2/2019	Investigate soil detween Livivi 133 and Wivi-1 for petroleum impacts	NYSDEC Part 375/TCL VOCs, SVOCs, and 1,4-dioxane: PFAS			
3	LB28	LB28_3-4	3 to 4	5/2/2019	Investigate soil upgradient of LMW19S for petroleum impacts	analysis on samples collected from groundwater interface (2-5 feet below ground surface) at borings LB27 and LB28			
				SURFAC	CE SOIL				
4	SS1	SS1_0-2in	0-2 inches	5/3/2019					
5		SS1_10-12in	10-12 inches	5/3/2019					
6 7	SS2	SS2_0-2in SS2_10-12in	0-2 inches 10-12 inches	5/3/2019					
8		SS3_0-2in	0-2 inches	5/3/2019					
9	SS3	SS3_10-12in	10-12 inches	5/3/2019		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part			
10	SS4	SS4_0-2in	0-2 inches	5/3/2019	Surface soil samples collected at 0-2 inches and 10-12 inches below ground cover	375/TAL metals/inorganics			
11		SS4_10-12in SS5_0-2in	10-12 inches 0-2 inches	5/3/2019	ground cover	In addition, 1,4-dioxane and PFAS analysis on SS1, SS3, SS5, and SS7 boring locations at both 0-2 and 10-12 inch intervals			
13	SS5	SS5_10-12in	10-12 inches	5/3/2019					
14	SS6	SS6_0-2in	0-2 inches	5/3/2019					
15	330	SS6_10-12in	10-12 inches	5/3/2019					
16	SS7	SS7_0-2in	0-2 inches	5/3/2019					
17		SS7_10-12in	10-12 inches	5/3/2019 SOIL - LB23 LEA	D DELINEATION				
18		LB23_0-2	0 to 2	5/6/2019					
19	LB23	LB23_2-4	2 to 4	5/6/2019	Vertical delineation of lead impact at LB23	Total/TCLP Lead; PFAS analysis at 6-8-foot interval only			
20		LB23_6-8 LB23_8-10	6 to 8 8 to 10	5/6/2019					
22		LB23_N1_0-2	0 to 2	5/6/2019					
23	LB23_N1	LB23_N1_2-4	2 to 4	5/6/2019	5-foot step out lead delineation from LB23 to north				
24	LB25_W1	LB23_N1_4-6	4 to 6	5/6/2019	3-100t step out lead delineation from E020 to north				
25 26		LB23_N1_6-8	6 to 8 0 to 2	5/6/2019					
27	LB23_N2	LB23_N2_0-2 LB23_N2_2-4	2 to 4	5/6/2019	10-foot step out lead delineation from LB23 to north				
28	_	LB23_N2_4-6	4 to 6	5/6/2019					
29		LB23_E1_0-2	0 to 2	5/6/2019					
30	LB23_E1	LB23_E1_2-4	2 to 4	5/6/2019	5-foot step out lead delineation from LB23 to east	Total/TCLP Lead			
31		LB23_E1_4-6 LB23_E1_6-8	4 to 6 6 to 8	5/6/2019					
33		LB23_S1_0-2	0 to 2	5/6/2019					
34	LB22 C1	LB23_S1_2-4	2 to 4	5/6/2019	E feet stee out lead delicenties from LD22 to south				
35	LB23_S1	LB23_S1_4-6	4 to 6	5/6/2019	5-foot step out lead delineation from LB23 to south				
36		LB23_S1_6-8	6 to 8	5/6/2019					
37	LB23_S2	LB23_S2_0-2 LB23_S2_2-4	0 to 2 2 to 4	5/6/2019	10-foot step out lead delineation from LB23 to south				
39		LB23_S2_4-6	4 to 6	5/6/2019					
40		SBDUP04_050319	SS1_10-12in	SOIL 0 5/3/2019	A/QC	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics, 1,4-dioxane, and PFAS			
41	DUPLICATE	SBDUP05_3.5-4.5	LB27_3.5 to 4.5	5/2/2019		NYSDEC Part 375/TCL VOCs, SVOCs, 1,4-dioxane, and PFAS			
42		SBDUP06_050619	LB23_0 to 2	5/6/2019		Total Lead			
	A LATRING ORIUS					NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part			
43	MATRIX SPIKE MATRIX SPIKE	SBMS01_SS5_0-2	SS5_0-2in	5/3/2019		375/TAL metals/inorganics, 1,4-dioxane, and PFAS NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part			
44	DUPLICATE	SBMSD01_SS5_0-2	SS5_0-2in	5/3/2019	QA/QC	375/TAL metals/inorganics, 1,4-dioxane, and PFAS			
45	MATRIX SPIKE MATRIX SPIKE	SBMS02_3-4	LB28_3 to 4	5/2/2019	u _A uc	NYSDEC Part 375/TCL VOCs, SVOCs, 1,4-dioxane, and PFAS			
46	DUPLICATE	SBMSD02_3-4	LB28_ 3 to 4	5/2/2019		NYSDEC Part 375/TCL VOCs, SVOCs, 1,4-dioxane, and PFAS			
47		SBEB09_050319	N/A, during sampling of one from SS1 to SS7 set	5/3/2019		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Patrt 375/TAL metals/inorganics, 1,4-dioxane, and PFAS			
48	EQUIPMENT BLANK	SBEB10_050219	N/A, during sampling of LB18, LB27, or LB28	5/2/2019		NYSDEC Part 375/TCL VOCs, SVOCs, 1,4-dioxane, and PFAS			
49		SBEB11_050619	N/A, evaluate purity of DI water	5/6/2019		PFAS			
1	GWG01	GWG01_050919		GROUNE 5/9/2019	DWATER				
2	GWG02	GWG02_050919	middle of water column	5/9/2019	Investigate potential for off-site petroleum-related contaminant migration	NYSDEC Part 375/TCL VOCs, SVOCs, 1,4-dioxane			
3	GWG03	GWG03_050919		5/9/2019					
1	CIA/1	SW1 050310		SURFACE WATER 5/2/2019					
2	SW1 SW2	SW1_050219 SW2_050219	Surface water	5/2/2019	Investigate surface water in stream at north boundary Investigate surface water in stream east of storm water runoff	-			
3	SW3	SW3_050219	Surface Water	5/2/2019	channel Investigate surface water in stream before southern edge of site boundary	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved).			
4	SED1	SED1_0-0.5	0-0.5	5/2/2019		In addition, 1,4-dioxane and PFAS analysis on SW1, SW3, SED1 and SED3 samples.			
5	SED2	SED2_0-0.5	0-0.5	5/2/2019	Stream sediment samples collected at 0-6 inches from stream bed, co-located with surface water samples				
6	SED3	SED3_0-0.5	0-0.5	5/2/2019 GROUNDWATER/SUR	RFACE WATER QA/QC				
1	DUPLICATE	SWDUP01_050219	SW3	5/2/2019					
2	MATRIX SPIKE	SWMS01_050219	SW1	5/2/2019		NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part 375/TAL metals/inorganics (total and dissolved), 1,4-dioxane, PFAS			
3	MATRIX SPIKE DUPLICATE	SWMSD01_050219	SW1	5/2/2019	QA/QC	NYSDEC Part 375/TCL VOCs, SVOCs, PCBs, pesticides, and Part			
4	FIELD BLANK	SWFB01_050219	N/A	5/2/2019		375/TAL metals/inorganics (total), 1,4-dioxane, PFAS			
5	TRIP BLANK	SWTB01_050219	N/A	5/2/2019		NYSDEC Part 375/TCL VOCs			
6	TRIP BLANK	TB01_050919	N/A	5/9/2019					

Notes:

1. ft-bgs = feet below ground surface
2. LB = Langan Boring
3. SS = Soil Sample
4. SED = Sediment Sample
5. LMW = Langan Monitoring Well
6. SW - Surface Water
7. GW = Groundwater
8. N/A = Not Applicable

8. N/A = Not Applicable

16. GWG

NYSDEC 21-compound PFAS List
6:2 fluorotelomer sulfonate (6:2 FTS)
8:2 fluorotelomer sulfonate (6:2 FTS)
8:2 fluorotelomer sulfonate (8:2 FTS)
N-ethyl perfluorocotanesulfonamidoscetic acid (N-EtFOSAA).
N-methyl perfluorocotanesulfonamidoscetic acid (N-MeFOSAA)
Perfluorobutanesulfonic acid (PFBS)
Perfluorobutanoic acid (PFBA)
Perfluorodecanoic said (PFDA)
Perfluorodecanoic acid (PFDA)
Perfluorodeptanesulfonic acid (PFDA)
Perfluoroheptanesulfonic acid (PFHA)
Perfluoroheptanoic acid (PFHA)
Perfluorohexanoic acid (PFNA)
Perfluorocotanoic acid (PFNA)

9. QA/QC = Quality Assurance/ Quality Control
10. NYSDEC = New York State Department of Environmental Conservation
11. VOCs = Volatile organic compounds
12. SVOCs = Semivolatile organic compounds
13. PCBs = Polychlorinated biphenyls
14. TCL = Target Compound List
15. TAL = Target Analyte List
16. GWG = Groundwater Grab

Table 2 Groundwater Elevation Summary Remedial Investigation Report Former Design For Leisure 41 Kensico Drive, Mount Kisco, New York BCP ID No. C360163 Langan Project No. 190046301

Well ID	Date Well Guaged	Well Top of Casing Elevation	Well Screen Interval (ft bgs)	Total Well Depth (ft bgs)	Depth to Water (ft BTOC)	Groundwater Elevation (ft NAVD88)
LMW01D	7/7/2018	290.05	44-54	54.70	1.84	288.21
MW-1	7/7/2018	289.79	2-12	11.55	5.48	284.31
MW-2	7/7/2018	288.24	2-12	11.80	3.35	284.89
MW-3	7/7/2018	290.49	3-13	12.70	5.52	284.97
MW-4	7/7/2018	288.44	4-14	11.85	3.39	285.05
MW-5	7/7/2018	290.69	3-13	11.50	4.18	286.51
MW-6	7/7/2018	290.47	4-14	13.80	4.08	286.39
LMW08S	7/7/2018	286.97	2-15	15.18	2.15	284.82
LMW08D	7/7/2018	286.69	42-47	46.50	0.05	286.64
LMW11	7/7/2018	290.62	4-24	21.25	2.93	287.69
LMW12S	7/7/2018	289.29	17-22	21.70	2.58	286.71
LMW12D	7/7/2018	289.29	37-42	44.00	1.34	287.95
LMW15	7/7/2018	289.65	31-36	34.55	2.78	286.87
LMW19S	7/7/2018	290.30	2-15	11.40	5.20	285.10
LMW19D	7/7/2018	290.15	32-37	36.50	3.55	286.60
LMW20S	7/7/2018	289.72	30-35	36.70	2.65	287.07
LMW20D	7/7/2018	289.72	42-47	47.40	1.78	287.94
GWG01	5/9/2019	289.29	2-15	16.10	3.66	285.63
GWG02	5/9/2019	289.14	2-15	16.10	3.53	285.61
GWG03	5/9/2019	289.67	2-12	12.30	3.80	285.87

Notes:

- 1. Well elevations and depth to water measurements are based on a survey performed by Langan on August 7, 2018 and on May 14, 2019.
- 2. All elevations are in reference to the North American Vertical Datum of 1988 (NAVD88).
- 3. Well elevations and depth to water readings were measured to a marked location at the top of each well casing.
- 4. ft bgs feet below ground surface
- 5. BTOC below top of casing

Table 3A Remedial Investigation Soil Sample Analytical Results Summary - VOCs & SVOCs

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Liboratory Description Descri	Langan Project No.: 190040301																		
11,12 Trice Incoretherne	Phase Location Sample ID Laboratory ID Sample Date Sample Depth	Unrestricted Use	Restricted Use -	LB01 LB01_4- 18H0440- 8/9/2018	01	LB01 LB01_29-3 18H0440-0 8/9/2018	2	LB01 LB01_35-3 18H0440-0 8/9/2018	3	LB01 LB01_48.5-4 18H0440-0 8/9/2018		LB01 LB01_54-5 18H0440-0 8/9/2018	5	LB07 LB07_7-8 18H0372-0 8/8/2018	1	LB07 LB07_18-1 18H0372-0 8/8/2018	2	LB08 LB08_4-! 18H0320- 8/7/2018	02
1,1-Dichloresthene	Volatile Organic Compounds (mg	q/kg)																	
1,1-Deinforcetherne 0,33 500 0,0023 U 0,003 U 0,00	1,1,2-Trichloroethane	~	~	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Acestone 0.05 650 0.016 0.019 0.013 0.014 0.0094 0.053 0.071 0.043 Caston Disulfide	1,1-Dichloroethane	0.27	240	0.0023	U	0.0045	J	0.0032	J	0.0036	J	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Cachon Doublife	1,1-Dichloroethene	0.33	500	0.0023	U	0.003	J	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Clist J-Dichloroethere	Acetone	0.05	500	0.016		0.019		0.013		0.014		0.0094		0.053		0.021		0.043	
Methyle Ethyl Rethyle Ethyl Rethyle Ethyl Rethyl Ethyl Rethyl R	Carbon Disulfide	~	~	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Methyl Ethyl Ketone (2-Butanone) 0.12 500 0.0023 U 0.0023 U 0.0023 U 0.0023 U 0.0021 U 0.012 U 0.0027 U 0.0033 U 1 0.0024 U 0.0036 J 0.0036 J 0.0024 U 0.0036 J 0.0036 J 0.0027 U 0.0033 U 1 0.0026 U 0.0027 U 0.0033 U 1 0.0026 U 0.0027 U 0.0033 U 0.0027 U 0.0023 U 0.0027 U 0.0033 U 0.0027 U 0.0033 U 0.0027 U 0.0023 U 0.0027 U 0.0033 U 0.0027 U 0.0023 U 0	Cis-1,2-Dichloroethene	0.25	500	0.0092		0.036		0.0098		0.022		0.014		0.013		0.0041	J	0.0033	U
Mosthylene Chloride	Methyl Acetate	~	~	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Tetrachforethree (PCE)	Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.012		0.0027	U	0.0033	U
Trollene	Methylene Chloride	0.05	500	0.0089	J	0.0098		0.012		0.015		0.0092		0.0095	J	0.012		0.0088	J
Trans-1_2-Dichloroethene 0.19 500 0.0023 U 0.0024 U 0.0023 U 0.0021 U 0.0026 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 13 0.0023 U 0.0024 U 0.0023 U 0.0023 U 0.0021 U 0.0033 U Vinyl Chloride 0.02 13 0.0023 U 0.0024 U 0.0023 U 0.0023 U 0.0021 U 0.013 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 U 0.0023 U 0.0021 U 0.003 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 U 0.0023 U 0.0021 U 0.013 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 U 0.0025 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 U 0.0027 U 0.0023 U 0.0027 U 0.0033 U Vinyl Chloride 0.02 U 0.0027 U 0.0023 U 0.0027 U 0.0023 U Vinyl Chloride 0.02 U 0.0027 U 0.0023 U 0.0027 U 0.0023 U Vinyl Chloride 0.02 U 0.0027 U 0.0023 U 0.0027 U 0.0023 U Vinyl Chloride 0.02 U 0.0027 U 0.0023 U 0.0027 U 0.0022 U 0.0023 U 0.0028 U 0.0027 U 0.0022 U 0.0023 U 0.0028 U 0.0027 U 0.0023 U 0.0028 U 0.0022 U 0.0023 U 0.0023 U 0.0023 U 0.0022 U 0.0023 U 0.0023 U 0.0022 U	Tetrachloroethene (PCE)	1.3	150	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Trichlorothene (TCE)	Toluene	0.7	500	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Viny Choride	Trans-1,2-Dichloroethene	0.19	500	0.0023	U	0.0024	U	0.0023	U	0.0032	U	0.0021	U	0.0028	U	0.0027	U	0.0033	U
Nimy Chroide	Trichloroethene (TCE)	0.47	200	0.01		8.8	D	4.6	D	2.9	D	1.2	D	0.0028	U	0.0027	U	0.0033	U
2-Methylnaphthelene	Vinyl Chloride	0.02		0.0023	U	0.0024	U	0.0023	U	0.0032	U		U	0.013		0.0027	U	0.0033	U
Acenaphthylene 20 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0560 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0623 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0623 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.05623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U	Semivolatile Organic Compound	s (mg/kg)											•		•		•		
Acenaphthylene 100 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U Anthracene 100 500 0.0561 U 0.0511 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0512 U 0.0513 U 0.0503 U 0.0566 U 0.0512 U 0.0512 U 0.0523 U 0.0453 U 0.0566 U 0.0512 U 0.0512 U 0.0512 U 0.0513 U 0.0565 U 0.0512	2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Anthracene 100 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0566 U 0.0512 U 0.0566 U 0.0512 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0512 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0	Acenaphthene	20	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Benzo(a)Anthracene	Acenaphthylene	100	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Benzola Pyrene	Anthracene	100	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Benzo(b)Fluoranthene	Benzo(a)Anthracene	1	5.6	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Benzo(g,h,i)Perylene 100 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566	Benzo(a)Pyrene	1	1	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0605	JD
Benzo(k)Fluoranthene 0.8 56 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566	Benzo(b)Fluoranthene	1	5.6	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0623	JD
Benzoic Acid Color	Benzo(g,h,i)Perylene	100	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Benzyl Butyl Phthalate	Benzo(k)Fluoranthene	0.8	56	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Bis(2-Ethylhexyl) Phthalate	Benzoic Acid	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole ~ NA <	Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole ~ NA <	Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenz(a,h)Anthracene 0.33 0.56 0.0561 U 0.051 U 0.0503 U 0.056 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U Dibenzofuran 7 350 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U Fluorene 100 500 0.0561 U 0.0511 U 0.0503 U 0.0566 U 0.0512 U 0.0453 U 0.0844 JD Fluorene 30 500 0.0561 U 0.051 U 0.0503 U 0.056 U 0.0623 U 0.0453 U 0.0566 U Indeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0623 U 0.0453 U	Carbazole	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenzofuran 7 350 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U U 0.0566 U U U U U U U U U	Chrysene	1	56	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Fluoranthene 100 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.084 JD Fluorene 30 500 0.0561 U 0.051 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0512 U 0.0512 U 0.0512 U 0.0512 U 0.0566 U 0.0566 U 0.0566 U 0.0512 U 0.0512 U 0.0512 U 0.0512 U 0.0566 U 0.0512 U 0.0566 U 0.0566 U 0.0566 U 0.0566 U 0.0566 U 0.0566 U 0.0512 U 0.0562 U 0.0566 U 0.056	Dibenz(a,h)Anthracene	0.33	0.56	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Fluorene 30 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0560 U 0.0566	Dibenzofuran	7	350	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.0566	U
Fluorene 30 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U 0.0566 U 0.0560 U 0.0566	Fluoranthene	100	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	U	0.084	JD
Indeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0561 U 0.051 U 0.0503 U 0.056 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U Naphthalene 12 500 0.0561 U 0.051 U 0.0503 U 0.056 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U n-Nitrosodi-N-Propylamine ~ NA 0.0566 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U	Fluorene					0.051		0.0503		0.056		0.0512			U	0.0453		0.0566	
Naphthalene 12 500 0.0561 U 0.051 U 0.0503 U 0.0566 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U n-Nitrosodi-N-Propylamine ~ NA	Indeno(1,2,3-c,d)Pyrene				U	0.051	U	0.0503	U	0.056				0.0623	U	0.0453	U		
n-Nitrosodi-N-Propylamine ~ NA	Naphthalene		500	0.0561	U	0.051		0.0503		0.056		0.0512			U	0.0453		0.0566	
Phenanthrene 100 500 0.0561 U 0.051 U 0.0503 U 0.056 U 0.0512 U 0.0623 U 0.0453 U 0.0566 U	n-Nitrosodi-N-Propylamine	~	~					NA								NA			
	Phenanthrene	100	500		U		U		U		U		U		U		U		U
	Pyrene	100	500	0.0561	U	0.051	U	0.0503	U	0.056	U	0.0512	U	0.0623	U	0.0453	Ū	0.0849	JD

Table 3A Remedial Investigation Soil Sample Analytical Results Summary - VOCs & SVOCs

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Leastion Wispec Part 378 Marketited Use Scole L808 L808 L808 L808 L808 L808 L809 L810 L8	Langan Project No.: 190040301																		
1,1,2-Enrichoentheme	Phase Location Sample ID Laboratory ID Sample Date Sample Depth	Unrestricted Use	Restricted Use -	LB08 LB08_15.5-16.5 18H0320-03 8/7/2018		LB08 LB08_51-52 18H0320-04 8/7/2018		LB08 LB08_62-63 18H0372-05 8/8/2018		LB08 LB08_69-70 18H0372-04 8/8/2018		LB09 LB09_6-7 18H0525-01 8/10/2018		LB10 LB10_2-3 18H0937-01 8/20/2018		LB10 SBDUP03_082018 18H0937-08 8/20/2018		LB10 LB10_31-32 18H0937-02 8/20/2018	
1,1-Dichlorosethene	Volatile Organic Compounds (mg	/kg)																	
1,1-Delridroenthene	1,1,2-Trichloroethane	~	~	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Accione 0.05 500 0.0086 U 0.017 0.0083 U 0.016 0.0056 U 0.008 U 0.007	1,1-Dichloroethane	0.27	240	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Carbon Doublide	1,1-Dichloroethene	0.33	500	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Cisil 2, Dichi force thene	Acetone	0.05	500	0.0086	U	0.017		0.0053	U	0.016		0.005	U	0.038		0.1	J	0.0046	U
Methyl Acetate	Carbon Disulfide	~	~	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0029	J
Methyle (Pthyl Ketone (2-Butanone) 0.12 500 0.0022 U 0.0025 U 0.0026 U 0.0025 U 0.0025 U 0.0038 J 0.0022 U 0.0023 U 0.0066 J 0.013 0.0065 U 0.0049 U 0.0064 U 0.0067 U 0.0064 U 0.0067 U 0.0064 U 0.0067 U 0.0064 U 0.0067 U 0.0068	Cis-1,2-Dichloroethene	0.25	500	0.0022	U	0.0092		0.013		0.0061		0.0025	U	0.0024	U	0.0032	UJ	0.082	
Methylene Chloride	Methyl Acetate	~	~	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Terzehloresthene (PCE)	Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0038	J	0.0032	UJ	0.0023	U
Toluene	Methylene Chloride	0.05	500	0.0065	J	0.013		0.0053	U	0.013		0.005	U	0.0049	U	0.0064	UJ	0.0057	J
Trans-1_2-Dichlorosthene	Tetrachloroethene (PCE)	1.3	150	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0079	
Trichloroethene (TCE)	Toluene	0.7	500	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Viriny Chloride	Trans-1,2-Dichloroethene	0.19	500	0.0022	U	0.0022	U	0.0026	U	0.0026	U	0.0025	U	0.0024	U	0.0032	UJ	0.0023	U
Viring Chloride	Trichloroethene (TCE)	0.47	200	0.0022	U	0.82	D	0.57	D	0.15		0.0025	U	0.0024	U	0.0032	UJ	1.7	D
2-Methylnaphthalene	Vinyl Chloride	0.02			U	0.0022	U	0.0026	U	0.0026	U		U	0.0024	U		UJ		U
2-Methylnaphthalene	Semivolatile Organic Compounds	s (mg/kg)	-																
Acenaphthylene 100 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0508 U 0.0535 UJ 0.0815 U 0.0816 U 0.0808 U 0.0835 UJ 0.0815 U 0.0816 U 0.0808 U 0.0835 UJ 0.0815 U 0.0816 U 0.	2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Anthracene 100 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0808 U 0.0835 UJ 0.0815 U 0.0816 U 0.0808 U 0.0835 UJ 0.0815 U 0.0816 U 0.0849 U 0.0849 U 0.0849 U 0.0849 U 0.0835 UJ 0.0815 U 0.0816 U 0.0849 U 0.0849 U 0.0849 U 0.0849 U 0.0835 UJ 0.0815 U 0.0816 U 0.0849	Acenaphthene	20	500	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Benzo(a)Anthracene	Acenaphthylene	100	500	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Benzo(a)Pyrene	Anthracene	100	500	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Benzo(a)Pyrene 1 1 1 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.888 D 0.0535 UJ 0.0815 U 0.0519 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 D 0.0815 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 D 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0816 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0549 U 0.0808 U 0.0549 U 0.0816 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0549 U 0.0555 UJ 0.0815 U 0.0549 U 0.0549 U 0.0549 U 0.0549 U 0.0549 U 0.0555 UJ 0.0815 U 0.0549 U 0.0549 U 0.0549 U 0.0555 UJ 0.05415 U 0.0549 U 0.0549 U 0.0549 U 0.0555 UJ 0.0515 U 0.0549 U 0.0549 U 0.0555 UJ 0.0515 U 0.0549 U 0.0549 U 0.0549 U 0.0555 UJ 0.0515 U 0.0549 U 0.0549 U 0.0555 UJ 0.0515 U 0.0549 U 0.0549 U 0.0555 UJ 0.0515 U 0.0515 U 0.0549 U 0.055	Benzo(a)Anthracene	1	5.6	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Benzo(b)Fluoranthene	Benzo(a)Pyrene	1	1	0.0492	U	0.0509	U	0.0495	U	0.051	U		U	0.0808	U			0.0815	U
Benzolk Fluoranthene 0.8 56 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 U 0.0815	Benzo(b)Fluoranthene	1	5.6	0.0492	U	0.0509	U	0.0495	U	0.051	U			0.0808	U	0.0535	UJ	0.0815	U
Benzolk Fluoranthene 0.8 56 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 U 0.0815	Benzo(g,h,i)Perylene	100	500	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Benzoic Acid	Benzo(k)Fluoranthene	0.8	56	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U		UJ	0.0815	U
Bis(2-Ethylhexyl) Phthalate	Benzoic Acid	~	~					NA		NA									
Bis(2-Ethylhexyl) Phthalate	Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Chrysene 1 56 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0815 U 0.092 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U	Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Chrysene 1 56 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0815 U 0.092 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U	Carbazole	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenz(a,h)Anthracene Dibenz(a,h)Anthracene Dibenz(a,h)Anthracene Dibenz(a,h)Anthracene Dibenz(a,h)Anthracene Dibenzofuran Dibe	Chrysene	1	56	0.0492	U	0.0509	U	0.0495	U	0.051	U	0.0549	U	0.0808	U	0.0535	UJ	0.0815	U
Dibenzofuran 7 350 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0515 U 0.0549 U 0.054	Dibenz(a,h)Anthracene	0.33	0.56	0.0492	U			0.0495	U	0.051				0.0808	U	0.0535		0.0815	U
Fluoranthene 100 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0610 U 0.0535 UJ 0.0815 U 0.0610 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0610 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0610 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0610 U 0.0610 U 0.0549 U 0.0610 U 0.0649 U 0.0808 U 0.0535 UJ 0.0815 U 0.0610	Dibenzofuran		350	0.0492	U	0.0509		0.0495		0.051		0.0549		0.0808	U	0.0535		0.0815	U
Fluorene 30 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0496 U 0.0535 UJ 0.0815 U 0.051 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.051 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0515 U 0.0510 U 0.0549 U 0.0549 U 0.0535 UJ 0.0815 U 0.0515 U 0.0515 U 0.0549 U 0.0535 UJ 0.0815 U 0.0515 U 0.0515 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0515 U 0	Fluoranthene	100		0.0492	U	0.0509		0.0495		0.051		0.0549		0.0808	U	0.0535		0.0815	U
Indeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0490 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0510 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0515 U 0.0549 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U 0.0815 U 0.0815 U 0.0549 U 0.0815 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U	Fluorene																		Ū
Naphthalene 12 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U n-Nitrosodi-N-Propylamine ~ NA NA <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td>Ü</td>					-										-				Ü
n-Nitrosodi-N-Propylamine ~ NA					-										_				U
Phenanthrene 100 500 0.0492 U 0.0509 U 0.0495 U 0.051 U 0.0549 U 0.0808 U 0.0535 UJ 0.0815 U	•	~	~		-				-		-		-		-				
	. ,	100	500		IJ		IJ		IJ		IJ		IJ		IJ		U.J		IJ
	Pyrene	100	500	0.0492	IJ	0.0509	U	0.0495	U	0.051	U	0.0549	Ü	0.0808	IJ	0.0535	UJ	0.0815	U

Table 3A Remedial Investigation Soil Sample Analytical Results Summary - VOCs & SVOCs

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Langan Project No.: 190046301																		
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	RI LB10 LB10_45-46 18H0937-03 8/20/2018 45-46		RI LB11 LB11_4.5-5.5 18H0594-01 8/13/2018 4.5-5.5		RI LB11 LB11_11-12 18H0594-02 8/13/2018 11-12		RI LB11 LB11_23-24 18H0594-03 8/13/2018 23-24		RI LB12 LB12_0.5-2 18H0697-01 8/15/2018 0.5-2		RI LB12 LB12_2-3 18H0655-05 8/14/2018 2-3		RI LB12 LB12_19-20 18H0655-06 8/14/2018 19-20		RI LB12 LB12_29-30 18H0655-07 8/14/2018 29-30	
Volatile Organic Compounds (mg	g/kg)																	
1,1,2-Trichloroethane	~	~	0.0018	U	0.0022	U	0.0039	J	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
1,1-Dichloroethane	0.27	240	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0024	J	0.0024	U
1,1-Dichloroethene	0.33	500	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0034	J	0.0024	U
Acetone	0.05	500	0.0037	U	0.017		0.031		0.044		0.063		0.027		0.042		0.042	
Carbon Disulfide	~	~	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
Cis-1,2-Dichloroethene	0.25	500	0.0061		0.046		0.035		0.0025	U	0.0022	U	0.0025	U	0.042		0.028	
Methyl Acetate	~	~	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	J	0.0025	U	0.0023	U	0.0024	U
Methylene Chloride	0.05	500	0.0065	J	0.0087	U	0.0091	U	0.0077	J	0.0043	U	0.0063	J	0.0046	U	0.0048	U
Tetrachloroethene (PCE)	1.3	150	0.0018	U	0.0022	U	0.0083		0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0048	
Toluene	0.7	500	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
Trans-1,2-Dichloroethene	0.19	500	0.0018	U	0.0022	U	0.0023	U	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
Trichloroethene (TCE)	0.47	200	0.052		0.35	Е	8.3	D	0.18		0.0022	U	0.0025	U	7.6	D	2.8	D
Vinyl Chloride	0.02	13	0.0018	U	0.0022	U	0.0033	J	0.0025	U	0.0022	U	0.0025	U	0.0023	U	0.0024	U
Semivolatile Organic Compound	s (mg/kg)							•						1				
2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Acenaphthene	20	500	0.073	U	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Acenaphthylene	100	500	0.073	U	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Anthracene	100	500	0.073	U	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Benzo(a)Anthracene	1	5.6	0.073	Ū	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Benzo(a)Pyrene	1	1	0.073	Ū	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Benzo(b)Fluoranthene	1	5.6	0.073	Ū	0.051	Ü	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	Ü	0.0497	U
Benzo(g,h,i)Perylene	100	500	0.073	Ū	0.051	Ü	0.0542	U	0.0499	Ü	0.0455	U	0.0512	U	0.0507	Ü	0.0497	U
Benzo(k)Fluoranthene	0.8	56	0.073	Ü	0.051	Ü	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	Ü	0.0497	Ü
Benzoic Acid	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Chrysene	1	56	0.073	U	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Dibenz(a,h)Anthracene	0.33	0.56	0.073	Ü	0.051	Ü	0.0542	Ū	0.0499	U	0.0455	Ū	0.0512	Ü	0.0507	Ü	0.0497	Ü
Dibenzofuran	7	350	0.073	Ü	0.051	Ü	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	Ü	0.0497	Ü
Fluoranthene	100	500	0.073	U	0.051	Ü	0.0542	Ū	0.0499	U	0.0455	Ū	0.0512	Ü	0.0507	Ü	0.0497	Ü
Fluorene	30	500	0.073	Ü	0.051	Ü	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	Ü	0.0497	Ü
Indeno(1,2,3-c,d)Pyrene	0.5	5.6	0.073	Ü	0.051	Ü	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	Ü	0.0497	Ü
Naphthalene	12	500	0.073	U	0.051	U	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	U	0.0497	Ü
n-Nitrosodi-N-Propylamine	~	~	NA	Ĭ	NA		NA	Ĭ	NA	-	NA	_	NA	_	NA		NA	ŭ
Phenanthrene	100	500	0.073	U	0.051	U	0.0542	U	0.0499	U	0.0455	U	0.0512	U	0.0507	U	0.0497	U
Pyrene	100	500	0.073	U	0.051	U	0.0542	Ü	0.0499	Ü	0.0455	Ü	0.0512	Ü	0.0507	U	0.0497	Ü
. ,	.00	550	0.070	U	0.001	J	0.00⊤∠	J	5.5-55	J	0.0∓00	J	0.0012	9	0.0007	U	0.0707	U

Composition NYSDEC Part 378 Ministricted List Section Scote Section Sect						Lung	u,	Ject No., 15004											
Volume V	Phase Location Sample ID Laboratory ID Sample Date Sample Depth	Unrestricted Use	Restricted Use -	LB12 LB12_42-4 18H0655- 8/14/201	08	LB13 LB13_5-6 18H0594-0 8/13/2018	04	LB13 LB13_23-2 18H0594-0 8/13/201	05	LB13 LB13_29-3 18H0594-0 8/13/2018	6	LB14 LB14_4-5 18H0594-0 8/13/2018	7	LB14 LB14_13-1 18H0594-0 8/13/2018	8	LB14 LB14_29-3 18H0594-0 8/13/2018	9	LB15 LB15_5- 18H0655- 8/14/201	-6 -01
1,1-Dichlorosethene	Volatile Organic Compounds (mg	q/kg)																	_
	1,1,2-Trichloroethane	1	~	0.0024	U	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
1,1-Delchrowetherne 0,33 500 0,0024 U 0,0027 U 0,0024 U 0,0024 U 0,0022 U 0,0022 U 0,0015 U	1,1-Dichloroethane	0.27	240	0.0024	U	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
2-ahon Doublide	1,1-Dichloroethene		500		U			0.0025			U		U	0.0028	J		U	0.0015	U
Sin 12_Dichicroethere	Acetone	0.05	500	0.067		0.065		0.021		0.0047	U	0.017		0.012		0.0099		0.013	
Methyl Acetate	Carbon Disulfide	~	~	0.0024	U	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
Methyle (Hyrk Ketone (2-Butanone) 0.12 500 0.0024 U 0.0002 U 0.00024 U 0.00024 U 0.00025 U 0.0015 U	Cis-1,2-Dichloroethene	0.25	500	0.046		0.0027	U	0.027		0.0097		0.002	U	0.029		0.013		0.0015	U
Methylene Chloride	Methyl Acetate	~	~	0.0024	U	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
Methylene Chloride	Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0024	U	0.004	J	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
Taluene	Methylene Chloride	0.05	500	0.0047	U	0.0057	J	0.01	U	0.0047	U	0.0082	U	0.011		0.011		0.003	U
Trans-12-Dichloroethene 0.19 500 0.0024 U 0.0027 U 0.0025 U 0.0024 U 0.0023 U 0.0023 U 0.0023 U 0.0025 U 0.0015 U 0.0026 U 0.0028 U 0.0	Tetrachloroethene (PCE)	1.3	150	0.0035	J	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0066		0.0043	J	0.0015	U
Francis Components Compon	Toluene	0.7	500	0.0024	U	0.0027	U	0.0025	U	0.0024	U	0.002	U	0.0023	U	0.0022	U	0.0015	U
Find Chinoide 0.02 13 0.0024 0 0.0027 0 0.0024 0 0.0024 0 0.0023 0 0.0023 0 0.0023 0 0.0015 U Compounds U Compound	Trans-1,2-Dichloroethene	0.19			U	0.0027	U	0.0025			U			0.0023	U		U	0.0015	
File Chinoide Ch	Trichloroethene (TCE)	0.47	200	0.32		0.0034	J	3.7	D	1	D	0.045		9.8	D	2.6	D	0.0015	U
2-Methylaphthalene	Vinyl Chloride	0.02			U	0.0027	U	0.0025	U	0.0024	U	0.002	U		U	0.0022	U	0.0015	U
Acenaphthylene 20 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0516 V 0.0513 U 0.0492 U 0.0516 V 0.0516 V 0.0513 U 0.0492 U 0.0516 V 0.0516 V 0.0516 V 0.0516 V 0.0516 V 0.0513 U 0.0492 U 0.0516 V	Semivolatile Organic Compound	s (mg/kg)					•		•				•		•				•
Acenaphthylene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0404 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0506 D 0.0494 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 U 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 D 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 D 0.0513 U 0.0492 U 0.0506 D 0.0497 U 0.0506 D 0.0491 U 0.0513 U 0.0492 U 0.0506 D 0.0491 U 0.0506 D 0.0491 U 0.0513 U 0.0492 U 0.0506 D 0.0491 U 0.0506 D 0.0491 U 0.0506 D 0.0491 U 0.0506 D 0.0491 U 0.0513 U 0.0492 U 0.0506 D 0.0491 U 0.0513 U 0.0492 U 0.0506 D 0.0491 U 0.0492 U 0.0506 D 0.0491 U 0	2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Anthracene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 2 denzo(a)Anthracene 1 1 5.6 0.0484 U 0.051 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a)Flyrene 1 1 5.6 0.0484 U 0.051 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 500 0.0484 U 0.051 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 0.8 56 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 100 0.8 56 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 3 denzo(a), h)Perylene 10 0.05 0.054 U 0.0513 U 0.0492 U 0.0514 U 0.0505 U 0.0513 U 0.0492 U 0.0514 U 0.0516 U 0.0513 U 0.0492 U 0.0516	Acenaphthene	20	500	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Senzo(a)Anthracene	Acenaphthylene	100	500	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Benzo(a)Pyrene	Anthracene	100	500	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Senzo(b)Fluoranthene	Benzo(a)Anthracene	1	5.6	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Benzolg,h,i)Perylene	Benzo(a)Pyrene	1	1	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Senzolik Fluoranthene 0.8 56 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U Senzolic Acid NA	Benzo(b)Fluoranthene	1	5.6	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Senzoic Acid	Benzo(g,h,i)Perylene	100	500	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Senzyl Butyl Phthalate	Benzo(k)Fluoranthene	0.8	56	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
NA	Benzoic Acid	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole	Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole	Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenzefuran Dibe	Carbazole	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenzofuran 7 350 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0513 U 0.0513 U 0.0513 U 0.0492 U 0.0513 U 0.0	Chrysene	1	56	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
Fluoranthene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 1.0510 U 0.0513 U 0.0492 U 0.0513 U 0.0513 U 0.0492 U 0.0513 U 0.0513 U 0.0513 U 0.0492 U 0.0513 U 0.0513 U 0.0513 U 0.0492 U 0.0513 U 0	Dibenz(a,h)Anthracene	0.33	0.56	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U		U
Fluorene 30 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U ndeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0505 U 0.0513 U 0.0492 U 0.0506 U 0.0513 U 0.0492 U 0.0513 U 0.0513 U 0.0513 U 0.0492 U 0.0513 U 0.0	Dibenzofuran	7	350	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
ndeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U Naphthalene 12 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0510 NA	Fluoranthene	100	500	0.0484	U	0.051	U	0.0536	U	0.0497	U	0.0524	U	0.0505	U	0.0513	U	0.0492	U
ndeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U Naphthalene 12 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U 0.0510 NA	Fluorene			0.0484		0.051		0.0536		0.0497				0.0505	U	0.0513		0.0492	
Naphthalene 12 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U n-Nitrosodi-N-Propylamine ~ NA	Indeno(1,2,3-c,d)Pyrene				U	0.051	U	0.0536	U		U			0.0505	U		U	0.0492	
n-Nitrosodi-N-Propylamine ~ NA	Naphthalene		500	0.0484	U	0.051		0.0536		0.0497					U	0.0513	U	0.0492	
Phenanthrene 100 500 0.0484 U 0.051 U 0.0536 U 0.0497 U 0.0524 U 0.0505 U 0.0513 U 0.0492 U	n-Nitrosodi-N-Propylamine	~	~					NA											
	Phenanthrene	100	500		U		U		U		U		U		U		U		U
	Pyrene	100	500	0.0484	-	0.051	-	0.0536	-	0.0497	Ü	0.0524	-	0.0505	Ü	0.0513	-	0.0492	

Phase Location NYSDEC Part 375 Unspiritured Use Scope Scop						Lung	u ,	ect No 15004											
1.1 Efficience thane	Location Sample ID Laboratory ID Sample Date	Unrestricted Use	Restricted Use -	LB15 LB15_33-3 18H0655- 8/14/201	02	LB15 LB15_44-4 18H0655-0 8/14/201	03	LB15 LB15_53-5 18H0655-0 8/14/2018)4	LB16 LB16_5-6 18H0525-0 8/10/2018		LB17 LB17_22-2 18H0525-0 8/10/2018	4	LB17 LB17_43-4 18H0525-0 8/10/2018	5	LB17 LB17_49-5 18H0525-0 8/10/2018	6	LB19 LB19_5- 18H0655- 8/14/201	-09
1.1-Eirchioroethane	Volatile Organic Compounds (me	g/kg)																	
1-1-Dichloroetheree		ĭ	~	0.0013	U	0.0012	U	0.00098	U	0.0025	U	0.0023	U	0.0022	U	0.0025	U	0.0024	U
1.1-Dichloroethene	1,1-Dichloroethane	0.27	240	0.0013	U	0.0012	U	0.0018	J	0.0025	U	0.0039	J	0.0027	J	0.0025	U	0.0024	U
Carbon Disurfide	1,1-Dichloroethene		500		U			0.0014			U		U		U			0.0024	U
Cis-1_2_Dichiproethene 0.25 500 0.021 0.012 0.0025 0.0025 0.0026 0.0028 0.013 0.022 0.0024	Acetone	0.05	500	0.027		0.0023	U	0.0096		0.04		0.0092		0.0089	U	0.0099	U	0.047	
Cis-1_2-Dichloreethene	Carbon Disulfide	~	~	0.0013	U	0.0012	U	0.00098	U	0.0025	U	0.0023	U	0.0022	U	0.0025	U	0.0024	U
Methyle Ethyl Ketone (2-Butanone)	Cis-1,2-Dichloroethene	0.25	500	0.021		0.012		0.025			U	0.028		0.013		0.022		0.0024	U
Methylene Chloride	Methyl Acetate	~	~	0.0023	J	0.0012	U	0.00098	U	0.0025	U	0.0023	U	0.0022	U	0.0025	U	0.0024	U
Methylene Chloride	Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0013	U	0.0012	U	0.00098	U	0.0087		0.0023	U	0.0022	U	0.0025	U	0.008	
Tolune		0.05	500	0.0026	U	0.0023	U	0.002	U	0.01		0.011		0.008	J	0.014		0.0047	U
Trans-1,2-Dichloroethene	Tetrachloroethene (PCE)	1.3	150	0.0013	U	0.0012	U	0.00098	U	0.0025	U	0.0023	U	0.0022	U	0.0025	U	0.0024	U
Trans-12-Dichloroethene 0.19 500 0.0013 U 0.0012 U 0.00088 U 0.0025 U 0.0023 U 0.0022 U 0.0022 U 0.0025 U 0.0024 U 0.0024 U 0.0024 U U U U U U U U U	Toluene	0.7	500	0.0013	U	0.0012	U	0.00098	U	0.0025	U	0.0023	U	0.0022	U	0.0025	U	0.0024	U
Viny Chloride	Trans-1,2-Dichloroethene	0.19			U	0.0012	U	0.00098						0.0022	U	0.0025	U	0.0024	U
Nimy Chloride	Trichloroethene (TCE)	0.47	200	3.5	D	0.85	D	13	D	0.0025	U	10	D	5.5	D	0.74	D	0.0024	U
2-Methylnaphthalene	Vinyl Chloride	0.02			U	0.0012	U	0.00098	U		U	0.0023	U		U	0.0025	U	0.0024	U
Acenaphthene 20	Semivolatile Organic Compound	s (mg/kg)	-		•				•		•				•		•		
Acenaphthylene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Anthracene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(a)Anthracene 1 5.6 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(a)Pyrene 1 1 1 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(g)Ryrene 1 1 1 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(g,h;i)Perylene 1 0 0 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(g,h;i)Perylene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 NA	Acenaphthene	20	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzo(a)Anthracene	Acenaphthylene	100	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzo(a)Anthracene	Anthracene	100	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzo(b)Fluoranthene	Benzo(a)Anthracene	1	5.6		U	0.0507	U	0.0511	U	0.0541	U		U	0.052	U	0.0515	U	0.0535	U
Benzo(g,h,i)Perylene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.052 U 0.0515 U 0.0535 Benzoic Acid ~ ~ ~ ~ NA	Benzo(a)Pyrene	1	1	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzo(k)Fluoranthene 0.8 56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Benzo(b)Fluoranthene	1	5.6	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzoic Acid Company	Benzo(g,h,i)Perylene	100	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Benzyl Butyl Phthalate	Benzo(k)Fluoranthene	0.8	56	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Bis(2-Ethylhexyl) Phthalate Carbazole NA NA NA NA NA NA NA N	Benzoic Acid	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole ~ NA <	Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole ~ NA <	Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenz(a,h)Anthracene 0.33 0.56 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Dibenzofuran 7 350 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Fluoranthene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535		~	~	NA		NA		NA		NA		NA		NA		NA		NA	
Dibenzofuran 7 350 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535 Fluoranthene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Chrysene	1	56	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Fluoranthene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Dibenz(a,h)Anthracene	0.33	0.56	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
	Dibenzofuran	7	350	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Fluorene 30 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Fluoranthene	100	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
	Fluorene	30	500		U	0.0507	U	0.0511	U	0.0541	U		U	0.052	U	0.0515	U	0.0535	U
Indeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Indeno(1,2,3-c,d)Pyrene				U		U	0.0511	U	0.0541	U		U		U	0.0515	U		U
Naphthalene 12 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535		12	500	0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
n-Nitrosodi-N-Propylamine ~ NA NA NA NA NA NA NA NA		~	~																
Phenanthrene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Phenanthrene	100	500		U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U
Pyrene 100 500 0.0509 U 0.0507 U 0.0511 U 0.0541 U 0.0525 U 0.052 U 0.0515 U 0.0535	Pyrene			0.0509	U	0.0507	U	0.0511	U	0.0541	U	0.0525	U	0.052	U	0.0515	U	0.0535	U

						_	angan Project	140 1	700-10301											
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	RI LB19 LB19_34.5-3 18H0655-1 8/14/2013 34.5-35.5	10 B	RI LB19 LB19_44-4 18H0655-1 8/14/2018 44-45	1	RI LB20 LB20_5-6 18H0937-0 8/20/201: 5-6)4	RI LB20 LB20_32.5-3 18H0937-0 8/20/2013 32.5-33.5	05 8	RI LB20 LB20_47-4 18H0937-0 8/20/2018 47-48	6	RI LB21 LB21_5-6 18H0525-0 8/10/2018 5-6	7	RI LB21 LB21_18-1 18H0525-0 8/10/201 18-19	8	RI LB22 LB22_11-1 18H0320-0 8/7/2018 11-12)1	RI LB23 LB23_4- 18H0594- 8/13/201 4-5	-10
Volatile Organic Compounds (mg	g/kg)																			
1,1,2-Trichloroethane	~	~	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
1,1-Dichloroethane	0.27	240	0.0021	U	0.0024	U	0.002	U	0.0068		0.0016	U	0.0029	U	0.0035	J	0.0023	J	0.0023	U
1,1-Dichloroethene	0.33	500	0.0021	U	0.0024	U	0.002	U	0.0038	J	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
Acetone	0.05	500	0.026		0.051		0.032		0.025		0.022		0.025		0.0041	U	0.013		0.0045	U
Carbon Disulfide	~	~	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
Cis-1,2-Dichloroethene	0.25	500	0.008		0.015		0.0071		0.047		0.012		0.0083		0.024		0.19	J	0.0023	U
Methyl Acetate	~	~	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.011		0.0021	U	0.0022	U	0.0023	U
Methylene Chloride	0.05	500	0.0041	U	0.0049	U	0.0041	U	0.0052	U	0.0032	U	0.0057	U	0.01		0.012		0.0045	U
Tetrachloroethene (PCE)	1.3	150	0.0021	U	0.0031	J	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
Toluene	0.7	500	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0022	U	0.0023	U
Trans-1,2-Dichloroethene	0.19	500	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.0026	J	0.0023	U
Trichloroethene (TCE)	0.47	200	2	D	0.26		0.0023	J	0.89	D	0.13	J	0.0029	U	2.5	D	0.0025	J	0.0023	U
Vinyl Chloride	0.02	13	0.0021	U	0.0024	U	0.002	U	0.0026	U	0.0016	U	0.0029	U	0.0021	U	0.012	J	0.0023	U
Semivolatile Organic Compound	s (mg/kg)	-																		
2-Methylnaphthalene	~	~	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Acenaphthene	20	500	0.0501	U	0.0507	U	0.074	U	0.0889	U	0.0737	U	0.136	D	0.0513	U	0.0502	U	0.0739	U
Acenaphthylene	100	500	0.0501	U	0.0507	U	0.147	JD	0.0889	U	0.0737	U	0.0535	U	0.0513	U	0.0502	U	0.0739	U
Anthracene	100	500	0.0501	U	0.0507	U	0.181	D	0.0889	U	0.0737	U	0.194	D	0.0513	U	0.0502	U	0.0739	U
Benzo(a)Anthracene	1	5.6	0.0501	U	0.0507	U	0.523	D	0.0889	U	0.0737	U	0.297	D	0.0513	U	0.0502	U	0.121	JD
Benzo(a)Pyrene	1	1	0.0501	U	0.0507	U	0.609	D	0.0889	U	0.0737	U	0.24	D	0.0513	U	0.0502	U	0.126	JD
Benzo(b)Fluoranthene	1	5.6	0.0501	U	0.0507	U	0.618	D	0.0889	U	0.0737	U	0.206	D	0.0513	U	0.0502	U	0.112	JD
Benzo(g,h,i)Perylene	100	500	0.0501	U	0.0507	U	0.399	D	0.0889	U	0.0737	U	0.129	D	0.0513	U	0.0502	U	0.0813	JD
Benzo(k)Fluoranthene	0.8	56	0.0501	U	0.0507	U	0.48	D	0.0889	U	0.0737	U	0.216	D	0.0513	U	0.0502	U	0.086	JD
Benzoic Acid	~	~	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Benzyl Butyl Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Bis(2-Ethylhexyl) Phthalate	~	~	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Carbazole	~	~	NA		NA		NA		NA		NA		NA		NA		NA		NA	
Chrysene	1	56	0.0501	U	0.0507	U	0.51	D	0.0889	U	0.0737	U	0.347	D	0.0513	U	0.0502	U	0.154	D
Dibenz(a,h)Anthracene	0.33	0.56	0.0501	U	0.0507	U	0.0991	JD	0.0889	U	0.0737	U	0.0535	U	0.0513	U	0.0502	U	0.0739	U
Dibenzofuran	7	350	0.0501	U	0.0507	U	0.074	U	0.0889	U	0.0737	U	0.192	D	0.0513	U	0.0502	U	0.0739	U
Fluoranthene	100	500	0.0501	U	0.0507	U	1.04	D	0.0889	U	0.0737	U	0.775	D	0.0513	U	0.0502	U	0.213	D
Fluorene	30	500	0.0501	U	0.0507	U	0.0968	JD	0.0889	U	0.0737	U	0.241	D	0.0513	U	0.0502	U	0.0739	U
Indeno(1,2,3-c,d)Pyrene	0.5	5.6	0.0501	U	0.0507	U	0.379	D	0.0889	U	0.0737	U	0.0938	JD	0.0513	U	0.0502	U	0.0739	Ü
Naphthalene	12	500	0.0501	Ü	0.0507	Ü	0.074	U	0.0889	Ü	0.0737	Ü	0.237	D	0.0513	Ü	0.0502	Ü	0.0739	Ü
n-Nitrosodi-N-Propylamine	~	~	NA	-	NA	-	NA	-	NA	-	NA	-	NA	_	NA	-	NA	-	NA	-
Phenanthrene	100	500	0.0501	U	0.0507	U	0.63	D	0.0889	U	0.0737	U	1.27	D	0.0513	U	0.0502	U	0.166	D
Pyrene	100	500	0.0501	Ü	0.0507	Ü	0.774	D	0.0889	Ü	0.0737	Ü	0.572	D	0.0513	Ü	0.0502	Ü	0.221	D
		000	0.0007	Ü	0.000.)	<u> </u>	-	0.0000	٥	0.0.0.)	0.07.2	-	0.00.0	ŭ	0.0002	٥	5.EE .	

Phase Location NYSDEC Part 375 Sample ID Laboratory	SRI LB18 LB18_5-6 19E0189-15 5/3/2019 5-6 0.0017 U 0.0017 U 0.005 0.0017 U 0.0017 U 0.0017 U 0.0017 U 0.0017 U
Volatile Organic Compounds (mg/kg)	0.0017 U 0.0017 U 0.0017 U 0.05 0.0017 U 0.0017 U 0.0017 U
1,12-Trichloroethane	0.0017 U 0.0017 U 0.05 0.0017 U 0.0017 U 0.004
1.1-Dichloroethene	0.0017 U 0.05 0.0017 U 0.0017 U 0.004
1,1-Dichloroethene	0.0017 U 0.05 0.0017 U 0.0017 U 0.004
Acetone	0.0017 U 0.0017 U 0.004
Cis-1,2-Dichloroethene	0.0017 U 0.004
Methyl Acetate	0.004
Methyl Ethyl Ketone (2-Butanone)	
Methylene Chloride	0.0081
Methylene Chloride	
Toluene 0.7 500 0.0022 U 0.0022 U 0.0022 U 0.0022 U 0.0022 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0023 U 0.0022 U 0.0022 U 0.0022 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0022 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0024 U	0.0046 J
Trans-1,2-Dichloroethene 0.19 500 0.0022 U 0.0022 U 0.0022 U 0.0022 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0024 U 0.0025 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.0022 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.0022 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0024 U 0.0025 U 0.0	0.0017 U
Trans-1,2-Dichloroethene 0.19 500 0.0022 U 0.0022 U 0.0022 U 0.0022 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U 0.0024 U 0.0025 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.0022 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.0022 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0024 U 0.0043 U 0.0019 U 0.0023 U 0.0022 U 0.0024 U 0.0025 U 0.0043 U 0.0019 U 0.0023 U 0.0022 U 0.0024 U 0.0	0.0019 J
Trichloroethene (TCE)	0.0017 U
Vinyl Chloride 0.02 13 0.0022 U 0.0022 U 0.0022 U 0.0022 U 0.0043 U 0.0019 U 0.0023 U 0.0023 U 0.002 U	0.0017 U
2-Methylnaphthalene ~ ~ NA	0.0017 U
Acenaphthene 20 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U Acenaphthylene 100 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U Anthracene 100 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U Benzo(a)Anthracene 1 5.6 0.111 JD 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U	
Acenaphthylene 100 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U Anthracene 100 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U Benzo(a)Anthracene 1 5.6 0.111 JD 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Anthracene 100 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U Benzo(a)Anthracene 1 5.6 0.111 JD 0.0767 U 0.0497 U 0.0511 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Benzo(a)Anthracene 1 5.6 0.111 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
	0.0508 U
Participarts 1 1 0.120 ID 0.0767 II 0.0407 II 0.0661 II 0.0402 II 0.0764 II 0.0764	0.0508 U
Benzo(a)Pyrene 1 1 0.129 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Benzo(b)Fluoranthene 1 5.6 0.0838 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Benzo(g,h,i)Perylene 100 500 0.0931 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Benzo(k)Fluoranthene 0.8 56 0.099 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Benzoic Acid ~ NA NA NA NA NA NA NA NA	0.0508 U
Benzyl Butyl Phthalate ~ NA NA NA NA NA NA NA NA	0.0508 U
Bis(2-Ethylhexyl) Phthalate ~ NA NA NA NA NA NA NA NA	0.0508 U
Carbazole ~ NA NA NA NA NA NA NA NA	0.0508 U
Chrysene 1 56 0.102 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Dibenz(a,h)Anthracene 0.33 0.56 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Dibenzofuran 7 350 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0508 U
Fluoranthene 100 500 0.175 D 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	
Fluorene 30 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0729 JD
Indeno(1,2,3-c,d)Pyrene 0.5 5.6 0.0768 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	
Naphthalene 12 500 0.073 U 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0729 JD
n-Nitrosodi-N-Propylamine ~ NA NA NA NA NA NA NA NA	0.0729 JD 0.0508 U
Phenanthrene 100 500 0.133 JD 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0729 JD 0.0508 U 0.0508 U
Pyrene 100 500 0.161 D 0.0767 U 0.0497 U 0.0511 U 0.0651 U 0.0483 U 0.0512 U 0.0501 U	0.0729 JD 0.0508 U 0.0508 U 0.0508 U

							angan Project i	VO 13	70040301											
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	SRI LB27 LB27_3.5-4.5 19E0157-01 5/2/2019 3.5-4.5	SE	SRI LB27 BDUP05_3.5 19E0157-0 5/2/2019 3.5-4.5		SRI LB28 LB28_3-4 19E0157-0 5/2/2019 3-4	2	SRI SS1 SS1_0-2II 19E0189-0 5/3/2019 0-2)1	SRI SS1 SS1_10-12IN 19E0189-02 5/3/2019 10-12	;	SRI SS1 SBDUP04_05031: 19E0189-20 5/3/2019 10-12	9	SRI SS2 SS2_0-2IN 19E0189-0 5/3/2019 0-2	3	SRI SS2 SS2_10-12 19E0189-0 5/3/2019 10-12	4	SRI SS3 SS3_0-2I 19E0189- 5/3/2019	05
Volatile Organic Compounds (mo	g/kg)																			
1,1,2-Trichloroethane	~	~	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
1,1-Dichloroethane	0.27	240	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
1,1-Dichloroethene	0.33	500	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Acetone	0.05	500	0.016		0.016		0.065		0.01		0.0078	J	0.017		0.0085	J	0.0041	J	0.0045	J
Carbon Disulfide	~	~	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Cis-1,2-Dichloroethene	0.25	500	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Methyl Acetate	~	~	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0021 L	J	0.002	U	0.014		0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Methylene Chloride	0.05	500	0.0043 L	J	0.0041	U	0.0089	J	0.0043	U	0.0072	J	0.0074	J	0.0044	U	0.0026	U	0.0028	U
Tetrachloroethene (PCE)	1.3	150	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Toluene	0.7	500	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Trans-1,2-Dichloroethene	0.19	500	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Trichloroethene (TCE)	0.47	200	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J	0.0019 l	J	0.0022	U	0.0013	U	0.0014	U
Vinyl Chloride	0.02	13	0.0021 L	J	0.002	U	0.0025	U	0.0022	U	0.0031 L	J		J	0.0022	U	0.0013	U	0.0014	U
Semivolatile Organic Compound	s (mg/kg)	•								•						•		•		
2-Methylnaphthalene	~	~	0.0472 L	J	0.0466	U	0.0996	JD	0.0525	U	0.0512 L	J	0.0508 l	J	0.0471	U	0.0498	U	0.0515	U
Acenaphthene	20	500	0.0472 L	J	0.0466	U	0.694	D	0.0525	U	0.0512 L	J	0.0508 l	J	0.0471	U	0.0498	U	0.0515	U
Acenaphthylene	100	500	0.0472 L	J	0.0466	U	0.0692	JD	0.0525	U	0.0512 L	J		J	0.0471	U	0.0498	U	0.0575	JD
Anthracene	100	500	0.079 J[D	0.0466	U	1.37	D	0.0525	U	0.0512 L	ار		J	0.0471	U	0.0498	U	0.112	D
Benzo(a)Anthracene	1	5.6	0.178 D		0.0787	JD	3.29	D	0.0728	JD	0.0512 L	J	0.0508 l	J	0.0931	JD	0.0914	JD	0.461	D
Benzo(a)Pyrene	1	1	0.169 D		0.078	JD	3.06	D	0.0954	JD	0.0512 L			J	0.103	D	0.0929	JD	0.547	D
Benzo(b)Fluoranthene	1	5.6	0.132 D		0.0624	JD	2.81	_ D	0.0988	JD	0.0512 L			J	0.0968	D	0.0842	JD	0.558	D
Benzo(g,h,i)Perylene	100	500	0.103 D		0.0498	JD	1.65	D	0.0628	JD	0.0512 L			J	0.0578	JD	0.0564	JD	0.378	D
Benzo(k)Fluoranthene	0.8	56	0.121 D		0.0557	JD	2.13	D	0.0779	JD	0.0512 L			J	0.0953	D	0.0786	JD	0.483	D
Benzoic Acid	~	~	0.0472 L	ار	0.0466	U	0.0516	U	0.0525	U	0.0512 L			J	0.0471	U	0.0498	U	0.0707	JD
Benzyl Butyl Phthalate	~	~	0.0472 L	ار	0.0466	U	0.0516	U	0.0525	U	0.0512 L			J	0.0471	U	0.0498	U	0.16	D
Bis(2-Ethylhexyl) Phthalate	~	~	0.0472 L		0.0466	Ü	0.0516	U	0.0525	U	0.0512 L			J	0.0471	Ū	0.0498	U	0.135	D
Carbazole	~	~	0.0472 L	ار	0.0466	Ü	0.66	D	0.0525	Ü	0.0512 L			J	0.0471	Ü	0.0498	Ü	0.0515	Ū
Chrysene	1	56	0.145 D		0.0646	JD	2.88	D	0.0846	JD	0.0512 L			J	0.0938	JD	0.0771	JD	0.528	D
Dibenz(a,h)Anthracene	0.33	0.56	0.0472 L		0.0466	U	0.466	D	0.0525	U	0.0512 U			J	0.0471	U	0.0498	U	0.104	D
Dibenzofuran	7	350	0.0472 L		0.0466	Ü	0.259	D	0.0525	Ü	0.0512 L			J	0.0471	Ü	0.0498	Ü	0.0515	Ū
Fluoranthene	100	500	0.334 D		0.147	D	6.76	D	0.152	D	0.0512 U			J	0.214	D	0.16	D	1.19	D
Fluorene	30	500	0.0472 L		0.0466	U	0.569	D	0.0525	U	0.0512 U			J	0.0471	U	0.0498	Ü	0.0515	Ū
Indeno(1,2,3-c,d)Pyrene	0.5	5.6	0.129 D	-	0.0400	JD	2.15	D	0.072	JD	0.0512 U			J	0.0803	JD	0.0739	JD	0.45	D
Naphthalene	12	500	0.0472 L		0.0466	IJ	0.155	D	0.0525	U	0.0512 U			J	0.0471	U	0.0498	U	0.0515	U
n-Nitrosodi-N-Propylamine		6:	0.0472 C		0.0466	U	0.0516	U	0.0525	U	0.0312 C			J	0.0471	IJ	0.0498	Ü	0.0515	U
Phenanthrene	100	~ 500	0.0472 C	-	0.0400	D	4.89	D	0.0525	U	0.0512 L			J	0.0471	D	0.0498	U	0.0313	D
Pyrene	100	500	0.279 E		0.128	ח	4.69 5.46	D	0.0323	D	0.0512 C			J	0.11	D	0.0498	D	0.42	D
i yrene	100	500	U.209 L	,	0.137	U	0.40	U	U. 1UO	U	0.0012	J	U.UUUO (J	U. 148	U	0.107	U	0.773	U

						_	angan Project i	10 15	0040301										
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	SRI SS3 SS3_10-12I 19E0189-0 5/3/2019 10-12		SRI SS4 SS4_0-2IN 19E0189-0 5/3/2019 0-2		SRI SS4 SS4_10-12I 19E0189-0 5/3/2019 10-12		SRI SS5 SS5_0-2II 19E0189-0 5/3/2019 0-2	9	SRI SS5 SS5_10-12II 19E0189-10 5/3/2019 10-12		SRI SS6 SS6_0-2IN 19E0189-1 5/3/2019 0-2	1	SRI SS6 SS6_10-12 19E0189-1 5/3/2019 10-12	12	SRI SS7 SS7_0-211 19E0189-1 5/3/2019 0-2	3	SRI SS7 SS7_10-12IN 19E0189-14 5/3/2019 10-12
Volatile Organic Compounds (mo	1/ka)								V =		10 12		V L		10 12		<u> </u>		10 12
1.1.2-Trichloroethane	~	~	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
1,1-Dichloroethane	0.27	240	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
1,1-Dichloroethene	0.33	500	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Acetone	0.05	500	0.0083	J	0.0051	U	0.013		0.0072	U	0.0091		0.015		0.0049		0.005	U	0.0059 J
Carbon Disulfide	~	~	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Cis-1,2-Dichloroethene	0.25	500	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Methyl Acetate	~	~	0.0025	U	0.0025	U	0.0072		0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Methyl Ethyl Ketone (2-Butanone)	0.12	500	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Methylene Chloride	0.05	500	0.005	U	0.0051	U	0.0044	U	0.0085	J	0.0067	J	0.0056	U	0.0017	U	0.0051	J	0.0046 U
Tetrachloroethene (PCE)	1.3	150	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Toluene	0.7	500	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Trans-1,2-Dichloroethene	0.19	500	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Trichloroethene (TCE)	0.47	200	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Vinyl Chloride	0.02	13	0.0025	U	0.0025	U	0.0022	U	0.0036	U	0.0021	U	0.0028	U	0.00086	U	0.0025	U	0.0023 U
Semivolatile Organic Compound	s (mg/kg)	-		•				•		•		•				•		•	
2-Methylnaphthalene	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Acenaphthene	20	500	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Acenaphthylene	100	500	0.0502	U	0.0471	U	0.0479	JD	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Anthracene	100	500	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Benzo(a)Anthracene	1	5.6	0.126	D	0.104	D	0.0921	D	0.0952	JD	0.0724	JD	0.108	D	0.0463	U	0.194	D	0.0445 U
Benzo(a)Pyrene	1	1	0.13	D	0.128	D	0.136	D	0.151	D	0.0961	JD	0.12	D	0.0463	U	0.238	D	0.0445 U
Benzo(b)Fluoranthene	1	5.6	0.126	D	0.122	D	0.114	D	0.126	D	0.0874	JD	0.0955	JD	0.0463	U	0.247	D	0.0445 U
Benzo(g,h,i)Perylene	100	500	0.092	JD	0.0863	JD	0.0841	JD	0.117	D	0.063	JD	0.074	JD	0.0463	U	0.152	D	0.0445 U
Benzo(k)Fluoranthene	0.8	56	0.12	D	0.107	D	0.112	D	0.112	D	0.089	JD	0.0878	JD	0.0463	U	0.197	D	0.0445 U
Benzoic Acid	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Benzyl Butyl Phthalate	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Bis(2-Ethylhexyl) Phthalate	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.062	JD	0.0445 U
Carbazole	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Chrysene	1	56	0.124	D	0.121	D	0.117	D	0.104	D	0.0937	JD	0.116	D	0.0463	U	0.218	D	0.0445 U
Dibenz(a,h)Anthracene	0.33	0.56	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0571	JD	0.0445 U
Dibenzofuran	7	350	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Fluoranthene	100	500	0.262	D	0.246	D	0.268	D	0.181	D	0.139	D	0.249	D	0.0463	U	0.363	D	0.0445 U
Fluorene	30	500	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Indeno(1,2,3-c,d)Pyrene	0.5	5.6	0.108	D	0.104	D	0.122	D	0.112	D	0.0835	JD	0.0998	JD	0.0463	U	0.149	D	0.0445 U
Naphthalene	12	500	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
n-Nitrosodi-N-Propylamine	~	~	0.0502	U	0.0471	U	0.0455	U	0.0489	U	0.0494	U	0.0539	U	0.0463	U	0.0511	U	0.0445 U
Phenanthrene . ,	100	500	0.118	D	0.0773	JD	0.156	D	0.0687	JD	0.0494	U	0.174	D	0.0463	U	0.105	D	0.0445 U
Pyrene	100	500	0.188	D	0.158	D	0.17	D	0.128	D	0.11	D	0.206	D	0.0463	U	0.343	D	0.0445 U

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCO).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above Unrestricted Use SCOs are bolded.
- 4. Analytes detected with concentrations above Restricted Use Commercial SCOs are shaded.
- 5. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 6. Sample SBDUP01_080818 is a duplicate sample of LB25_15-16; sample SBDUP02_081318 is a duplicate sample of LB23_4-5; sample SBDUP03_082018 is a duplicate sample of LB10_2-3; sample SBDUP04_050319 is a duplicate sample of SS1_10-12IN; and sample SBDUP05_3.5-4.5 is a duplicate sample of LB27_3.5-4.5.
- 7. ~ = Regulatory limit for this analyte does not exist
- 8. bgs = below grade surface
- 9. mg/kg = milligrams per kilogram
- 10. NA = Not analyzed

- D = The concentration reported is a result of a diluted sample.
- E = The result is estimated and cannot be accurately reported due to levels encountered or interferences.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

						_	gu.	i Fioject iv	··· . •													
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	RI LB01 LB01_4-5 18H0440-01 8/9/2018 4-5	RI LB07 LB07_7-8 18H0372-01 8/8/2018 7-8	•	RI LB07 LB07_18-1 18H0372-0 8/8/2018 18-19)2	RI LB08 LB08_4-5 18H0320-0 8/7/2018 4-5	2	RI LB08 LB08_15.5- 18H0320- 8/7/201 15.5-16.	03 3	RI LB08 LB08_51-52 18H0320-04 8/7/2018 51-52		RI LB09 LB09_6-7 18H0525-01 8/10/2018 6-7	RI LB10_2 LB10_2 18H0937 8/20/20	2-3 7-01	RI LB11 LB11_4.5-5 18H0594-0 8/13/2018 4.5-5.5	1	RI LB12 LB12_0.5-2 18H0697-01 8/15/2018 0.5-2		RI LB12 LB12_2-3 18H0655-0 8/14/2018 2-3)5
Pesticides (mg/kg)																						
4,4'-DDD	0.0033	92	0.00164 U	0.00165	U	0.00164	U	0.00165	U	0.00164	U	0.00164	U	0.00165 U	0.00248	U	0.00165	U	0.00165	U	0.00165	U
4,4'-DDE	0.0033	62	0.00164 U	0.00165	U	0.00164	U	0.00165	U	0.00164	U	0.00164	U	0.00165 U	0.00248	U	0.00165	U	0.00165	U	0.00165	U
4,4'-DDT	0.0033	47	0.00164 U	0.00165	U	0.00164	U	0.00165	U	0.00164	U	0.00164	U	0.00165 U	0.00248	U	0.00165	U	0.00413	D	0.00165	U
Alpha Chlordane	0.094	24	0.00164 U	0.00165	U	0.00164	U	0.00165	U	0.00164	U	0.00164	U	0.00165 U	0.00248	U	0.00165	U	0.00165	U	0.00165	U
Polychlorinated Biphenyls (mg/kg)	~	~	ND	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND	
Inorganics (mg/kg)																						
Aluminum	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Arsenic	13	16	9.26 J	5.29		3.39		3.87		5.44		1.22	U	2.33 U	2.94	J	2.27		3.13		2.36	
Barium	350	400	204	217		40.5		275		45.2		100		96.9	48.2		63		73.4		71.8	
Beryllium	7.2	590	0.748 J	0.843		0.108	U	0.135	U	0.118	U	0.122	U	0.132 U	0.129	U	0.122	U	0.109	U	0.123	U
Cadmium	2.5	9.3	0.402 U	0.447	U	0.325	U	0.48		0.354	U	0.365	U	0.396 U	0.387	U	0.366	U	0.328	U	0.368	U
Calcium	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Chromium, Total	~	~	27.9	44.2		10.7		47.4		11.9		22.4		34.5	24.7		17.8		18.6		25.2	
Chromium, Trivalent	30	1,500	27.9	44.2		10.7		47.4		11.9		22.4		26.2	24.7		17.8		18.6		25.2	
Cobalt	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Copper	50	270	5.9	20.1		12.5		132		11.9		18.9		28.2	25.3		22.4		43.7		23.2	
Iron	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Lead	63	1,000	92.1	17.4		1.89		666		2.47	J	2.75	J	9.83	3.34		3.93	J	155		6.16	
Magnesium	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Manganese	1,600	10,000	115	130		160		372		153		241		213	240		334		907		400	
Mercury	0.18	2.8	0.0781	0.251		0.0325	U	0.117		0.0354	U	0.0365	U	0.0396 U	0.0387	U	0.0366	U	0.0642		0.0368	U
Nickel	30	310	17.4 J	18		10.6		34.1		9.95		16.5		24.4	20.2		16.5		22.5		22.2	
Potassium	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Sodium	~	~	NA	NA		NA		NA	l	NA		NA		NA	NA		NA		NA		NA	
Vanadium	~	~	NA	NA		NA		NA		NA		NA		NA	NA		NA		NA		NA	
Zinc	109	10,000	32.6 J	32.6		20		116	l	22.7		31.7		37.9	37.6		38.2		82.4		45.8	

					Langa	i Fioject No i	00040001						
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	RI LB12 LB12_19-20 18H0655-06 8/14/2018 19-20	RI LB12 LB12_29-30 18H0655-07 8/14/2018 29-30	RI LB12 LB12_42-43 18H0655-08 8/14/2018 42-43	RI LB13 LB13_5-6 18H0594-04 8/13/2018 5-6	RI LB14 LB14_4-5 18H0594-07 8/13/2018 4-5	RI LB15 LB15_5-6 18H0655-01 8/14/2018 5-6	RI LB16 LB16_5-6 18H0525-02 8/10/2018 5-6	RI LB19 LB19_5-6 18H0655-09 8/14/2018 5-6	RI LB20 LB20_5-6 18H0937-04 8/20/2018 5-6	RI LB21 LB21_5-6 18H0525-07 8/10/2018 5-6	RI LB22 LB22_11-12 18H0320-01 8/7/2018 11-12
Pesticides (mg/kg)													
4,4'-DDD	0.0033	92	0.00165 U	0.00165 U	0.00165 U	0.00165 U	0.00164 U	0.00165 U	0.00165 U	0.00164 U	0.00248 U	0.00655 J	0.00165 U
4,4'-DDE	0.0033	62	0.00165 U	0.00165 U	0.00165 U	0.00165 U	0.00164 U	0.00165 U	0.00165 U	0.00164 U	0.00248 U	0.00493 J	0.00165 U
4,4'-DDT	0.0033	47	0.00165 U	0.00165 U	0.00165 U	0.00165 U	0.00164 U	0.00165 U	0.00165 U	0.00164 U	0.00555 D	0.00577 J	0.00165 U
Alpha Chlordane	0.094	24	0.00165 U	0.00165 U	0.00165 U	0.00165 U	0.00164 U	0.00165 U	0.00165 U	0.00164 U	0.00982 D	0.00164 UJ	0.00165 U
Polychlorinated Biphenyls (mg/kg)	~	~	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Inorganics (mg/kg)													
Aluminum	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	13	16	1.83	1.19 U	1.16 U	3.87	4.12	2.92	4.6 U	9.7	6.19 J	1.28 UJ	2.21
Barium	350	400	78.4	74.7	78.9	64.1	66.3	47.8	80.1	100	96.6	71	60.7
Beryllium	7.2	590	0.122 U	0.119 U	0.116 U	0.122 U	0.126 U	0.118 U	0.13 U	0.128 U	0.118 U	0.128 U	0.12 U
Cadmium	2.5	9.3	0.365 U	0.358 U	0.348 U	0.367 U	0.377 U	0.353 U	0.389 U	0.384 U	0.354 U	0.384 U	0.361 U
Calcium	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium, Total	~	~	15.6	16.1	16.5	19.6	22.6	17.3	20.6	34.9	16.5	10.2	16.9
Chromium, Trivalent	30	1,500	15.6	16.1	16.5	19.6	22.6	17.3	15.9	34.9	16.5	7.94	16.9
Cobalt	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper	50	270	19.5	17.1	16.9	22.8	26.1	12.2	9.94	83.2	42.1	12.1	21
Iron	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	63	1,000	5.56	4.02	3.56	8.23 J	6.58 J	6.48	9.77	163	710	838	6.12
Magnesium	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	1,600	10,000	335	252	201	232	363	142	205	391	187	64.2	152
Mercury	0.18	2.8	0.0365 U	0.0358 U	0.0348 U	0.0374	0.0377 U	0.0353 U	0.0389 U	0.0384 U	0.204	0.0384 U	0.0361 U
Nickel	30	310	15.7	14.4	13.5	20.1	21.4	17	14.7	24	11.1	9.51	15.1
Potassium	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Sodium	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Vanadium	~	~	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	109	10,000	37.2	29.7	35.1	49.2 J	48.7	33.5	31.9	107	79.3	197	37.2

								ii i ioject iv														
Phase			RI	RI		RI		RI		RI		RI		RI	SRI		SRI		SRI		SRI	
Location	NYSDEC Part 375	NYSDEC Part 375	LB23	LB23		LB24		LB25		LB25		LB25		LB26	SS1		SS1		SS1		SS2	
Sample ID	Unrestricted Use	Restricted Use -	LB23_4-5	SBDUP02_0813	318	LB24_1-2	2	LB25_7-8	:	LB25_15-	16	SBDUP01_080	818	LB26_6-7	SS1_0-2II	N	SS1_10-12I	N	SBDUP04_05	0319	SS2_0-2IN	4
Laboratory ID	SCOs	Commercial SCOs	18H0594-10	18H0594-12	:	18H0525-0	9	18H0372-0	3	18H0372-	07	18H0372-08	3	18H0525-10	19E0189-0	01	19E0189-02	2	19E0189-2	0	19E0189-0	3
Sample Date	3008	Commercial SCOS	8/13/2018	8/13/2018		8/10/2018	В	8/8/2018	:	8/8/2018	3	8/8/2018		8/10/2018	5/3/2019	•	5/3/2019		5/3/2019		5/3/2019	
Sample Depth			4-5	4-5		1-2		7-8		15-16		15-16		6-7	0-2		10-12		10-12		0-2	
Pesticides (mg/kg)																						
4,4'-DDD	0.0033	92	0.00164 U	0.00165	U	0.00165	U	0.00164	UJ	0.00164	С	0.00165	U	0.00248 U	0.00207	U	0.00203	U	0.00201	U	0.00185	U
4,4'-DDE	0.0033	62	0.00164 U	0.00165	U	0.00165	U	0.00164	UJ	0.00164	U	0.00165	U	0.00248 U	0.00207	U	0.00203	U	0.00201	U	0.00185	U
4,4'-DDT	0.0033	47	0.0029 D	0.00165	U	0.00165	U	0.00164	UJ	0.00164	U	0.00165	U	0.00248 U	0.00207	U	0.00203	U	0.00201	U	0.00185	U
Alpha Chlordane	0.094	24	0.00164 U	0.00165	U	0.00165	U	0.00164	UJ	0.00164	U	0.00165	U	0.00248 U	0.00207	U	0.00203	U	0.00201	U	0.00185	U
Polychlorinated Biphenyls (mg/kg)	~	~	ND	ND		ND		ND		ND		ND		ND	ND		ND		ND		ND	
Inorganics (mg/kg)																						
Aluminum	~	~	NA	NA		NA		NA		NA		NA		NA	11200		14000		10600		10500	
Arsenic	13	16	4.49	4.11		2.71	U	5.45		10.8	J	5.9	J	1.2 UJ	4.27		3.63		3.38		4.03	
Barium	350	400	116	79.8		52.3		254		53		87		58.2	78.1		55		63.6		70.2	
Beryllium	7.2	590	0.118 U	0.116	U	0.119	U	0.54		0.116	U	0.123	U	0.12 U	0.063	U	0.062	U	0.061	U	0.056	U
Cadmium	2.5	9.3	0.36	0.349	U	0.358	U	0.496		0.348	U	0.368	U	0.361 U	0.407		0.37	U	0.367	U	0.339	U
Calcium	~	~	NA	NA		NA		NA		NA		NA		NA	2370		3530		4010		6260	
Chromium, Total	~	~	22.9	18		18.6		47.6		31.4	J	18.1	J	11.2	19.5		20.8		17.7		16.5	
Chromium, Trivalent	30	1,500	22.9	18		15.6		47.6		31.4	J	18.1	J	9.31	19.5		20.8		17.7		16.5	
Cobalt	~	~	NA	NA		NA		NA		NA		NA		NA	9.57		11		9.05		9.36	
Copper	50	270	121 J	32.8	J	22.3		13.8		9.79	J	23.5	J	8.43	42.6		25.8		29.3		33.4	
Iron	~	~	NA	NA		NA		NA		NA		NA		NA	19500		22800		17000		18500	
Lead	63	1,000	2880 J	3690	J	4.92		350		0.58	U	4.1		2.11	119		10.3		56.4		113	
Magnesium	~	~	NA	NA		NA		NA		NA		NA		NA	4060		5550		4960		4730	
Manganese	1,600	10,000	385	300		228		177		137		215		87.1	379		274		311		606	
Mercury	0.18	2.8	0.119	0.079		0.0358	U	0.181		0.0348	U	0.0368	U	0.046	0.104		0.037	U	0.0367	U	0.214	
Nickel	30	310	20.9	18.9		17		21.2		15.1		17.7		7.84	18.5		19.7		16.8		16.7	
Potassium	~	~	NA	NA		NA		NA		NA		NA		NA	1380	В	1380	В	1230	В	1260	В
Sodium	~	~	NA	NA		NA		NA		NA		NA		NA	84.4		132		99.7		73.1	
Vanadium	~	~	NA	NA		NA		NA	l	NA		NA		NA	27.7		27.7		24		24.8	
Zinc	109	10,000	107	60.8		36.2		116		19.1	J	36.6	J	25.5	77.1		44		50.7		66.4	

					Langa	i Fioject No is							
Phase Location Sample ID Laboratory ID Sample Date Sample Depth	NYSDEC Part 375 Unrestricted Use SCOs	NYSDEC Part 375 Restricted Use - Commercial SCOs	SRI SS2 SS2_10-12IN 19E0189-04 5/3/2019 10-12	SRI SS3 SS3_0-2IN 19E0189-05 5/3/2019 0-2	SRI SS3 SS3_10-12IN 19E0189-06 5/3/2019 10-12	SRI SS4 SS4_0-2IN 19E0189-07 5/3/2019 0-2	SRI SS4 SS4_10-12IN 19E0189-08 5/3/2019 10-12	SRI SS5 SS5_0-2IN 19E0189-09 5/3/2019 0-2	SRI SS5 SS5_10-12IN 19E0189-10 5/3/2019 10-12	SRI SS6 SS6_0-2IN 19E0189-11 5/3/2019 0-2	SRI SS6 SS6_10-12IN 19E0189-12 5/3/2019 10-12	SRI SS7 SS7_0-2IN 19E0189-13 5/3/2019 0-2	SRI SS7 SS7_10-12IN 19E0189-14 5/3/2019 10-12
Pesticides (mg/kg)	•												
4,4'-DDD	0.0033	92	0.00195 U	0.00203 U	0.00197 U	0.00186 U	0.00181 U	0.00193 U	0.00194 U	0.00214 U	0.00183 U	0.00202 U	0.00176 U
4,4'-DDE	0.0033	62	0.00195 U	0.00203 U	0.00197 U	0.00186 U	0.00181 U	0.00193 U	0.00194 U	0.00214 U	0.00183 U	0.00202 U	0.00176 U
4,4'-DDT	0.0033	47	0.00195 U	0.00203 U	0.00197 U	0.00186 U	0.00181 U	0.00193 U	0.00194 U	0.00214 U	0.00183 U	0.00408 D	0.00176 U
Alpha Chlordane	0.094	24	0.00195 U	0.00203 U	0.00197 U	0.00186 U	0.00181 U	0.00193 U	0.00194 U	0.00214 U	0.00183 U	0.00202 U	0.00176 U
Polychlorinated Biphenyls (mg/kg)	~	~	ND	ND	ND								
Inorganics (mg/kg)	•		•				•						
Aluminum	~	~	12000	11800	13200	11000	11800	10100	8800	12500	15000	14900	8150
Arsenic	13	16	4.25	4.19	3.38	2.91	3.16	6.81	3.72	2.66	4	3.84	2.27
Barium	350	400	74.6	76.4	93.3	79.3	83	86.6	74.4	88	119	120	86.9
Beryllium	7.2	590	0.06 U	0.062 U	0.06 U	0.057 U	0.055 U	0.059 U	0.059 U	0.065 U	0.056 U	0.061 U	0.054 U
Cadmium	2.5	9.3	0.359 U	0.371 U	0.379	0.34 U	0.331 U	0.438	0.356 U	0.411	0.367	0.909	0.323 U
Calcium	~	~	3900	2750	2380	2130	2240	10700	4520	2280	2360	8280	1680
Chromium, Total	~	~	20	25.1	22	19.4	22.5	21.2	18.5	23.9	35.4	30.4	19.4
Chromium, Trivalent	30	1,500	20	25.1	22	19.4	22.5	21.2	18.5	23.9	35.4	30.4	19.4
Cobalt	~	~	10.6	9.82	10.6	9	10.4	9.1	8.13	10.9	12.4	12.4	8.15
Copper	50	270	37.2	37.2	40.2	22.6	21.9	41.8	38.7	35.3	26.1	48	22
Iron	~	~	20300	19000	20500	17000	19200	17200	14700	18500	20900	22400	13100
Lead	63	1,000	102	144	245	65.2	9.51	69.9	63.9	101	35.2	132	5.26
Magnesium	~	~	5170	4700	4730	4590	5420	7710	4350	4590	5250	9960	3490
Manganese	1,600	10,000	400	426	441	321	446	252	228	344	353	361	242
Mercury	0.18	2.8	0.355	0.0906	0.0946	0.0378	0.0331 U	0.217	0.192	0.0716	0.0334 U	0.134	0.0323 U
Nickel	30	310	19.2	19.4	19.8	17.6	20.2	18.1	16	19.5	25.8	23.6	18.3
Potassium	~	~	1410 B	1970 B	1740 B	2250 B	2400 B	2260 B	1810 B	1620 B	2640 B	3430 B	1710 B
Sodium	~	~	88.2	85.2	93	99.7	99.8	90.7	199	87.4	110	142	141
Vanadium	~	~	28.4	29.5	32	26.6	29.6	29.9	24	30.6	39.9	39.6	25.1
Zinc	109	10,000	82	87.8	95.1	54.7	39.5	88	77.6	85.3	45.4	477	31.9

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Unrestricted Use and Restricted Use Commercial Soil Cleanup Objectives (SCO).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above Unrestricted Use SCOs are bolded.
- 4. Analytes detected with concentrations above Restricted Use Commercial SCOs are shaded.
- 5. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 6. Sample SBDUP01_080818 is a duplicate sample of LB25_15-16; sample SBDUP02_081318 is a duplicate sample of LB23_4-5; and sample SBDUP04_050319 is a duplicate sample of SS1 10-12IN.
- 7. ~ = Regulatory limit for this analyte does not exist
- 8. bgs = below grade surface
- 9. mg/kg = milligrams per kilogram
- 10. NA = Not analyzed
- 11. ND = Not detected

- D = The concentration reported is a result of a diluted sample.
- B = The analyte was found in the associated analysis batch blank.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 3C **Remedial Investigation** Soil Sample Analytical Results Summary - PFAS

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase	SRI	SRI	SRI		SRI	SF	RI	SRI		SRI		SRI		SRI		SRI		SRI		SRI		SRI	
Location	LB23	LB27	LB27		LB28	SS	1	SS1		SS1		SS3		SS3		SS5		SS5		SS7		SS7	
Sample ID	LB23_6-8	LB27_3.5-4.	SBDUP05_3.5-	4.5	LB28_3-4	SS1_0)-2IN	SS1_10-12II	V	SBDUP04_0503	319	SS3_0-2IN	SS3	_10-12IN		SS5_0-2IN	ı	SS5_10-12	2IN	SS7_0-2I	N	SS7_10-12	2IN
Laboratory ID	19E0244-03	19E0157-01	19E0157-03		19E0157-02	19E01	89-01	19E0189-02	2	19E0189-20		19E0189-05	191	0189-06		19E0189-0	9	19E0189-	10	19E0189-	13	19E0189-	14
Sample Date	5/6/2019	5/2/2019	5/2/2019		5/2/2019	5/3/2	2019	5/3/2019		5/3/2019		5/3/2019	5/	3/2019		5/3/2019		5/3/2019	9	5/3/201	9	5/3/201	9
Sample Depth	6-8	3.5-4.5	3.5-4.5		3-4	0-	2	10-12		10-12		0-2		10-12		0-2		10-12		0-2		10-12	
Per and Polyfluoroalkyl Substances (µg/kg)																							
N-ethyl perfluorooctane- sulfonamidoacetic acid (NEtFOSAA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
N-methyl perfluorooctane- sulfonamidoacetic acid (NMeFOSAA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorobutanesulfonic Acid (PFBS)	0.488 L	0.563	U 0.523	U	0.535 l	0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorobutanoic acid (PFBA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.666		0.588	U	0.552	U	1.25	0.	758		0.816		0.831		0.817		0.512	U
Perfluorodecanesulfonic acid (PFDS)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorodecanoic acid (PFDA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorododecanoic Acid (PFDoA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluoroheptanesulfonic acid (PFHpS)	0.488 L	0.563	U 0.523	U	0.535 l	0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluoroheptanoic acid (PFHpA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorohexanesulfonic Acid (PFHxS)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorohexanoic Acid (PFHxA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorononanoic Acid (PFNA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorooctanesulfonamide (FOSA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorooctanesulfonic acid (PFOS)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.911		0.588	U	0.552	U	1.33	0.	594 l	J	0.853		0.918		2.08		0.512	U
Perfluorooctanoic Acid (PFOA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluoropentanoic Acid (PFPeA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorotetradecanoic Acid (PFTA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluorotridecanoic Acid (PFTrDA)	0.488 L	0.563	U 0.523	U	0.535 l	J 0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Perfluoroundecanoic Acid (PFUnA)	0.488 L	0.563	U 0.523	U	0.535 l	0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Sodium 1H,1H,2H,2H-Perfluorodecane Sulfonate (8:2) (8:2FTS)	0.488 L	0.563	U 0.523	U	0.535 l	0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Sodium 1H,1H,2H,2H-Perfluorooctane Sulfonate (6:2) (6:2FTS)	0.488 L	0.563	U 0.523	U	0.535 l	0.608	U	0.588	U	0.552	U	0.613 U	0.	594 l	J	0.584	U	0.52	U	0.562	U	0.512	U
Total PEAS	ND	ND	ND		ND	1.6		ND		ND		2.6	۱ ،	8		1 7		1 7		29		ND	

1. Sample SBDUP04_050319 is a duplicate sample of SS1_10-12IN and sample

2. μg/kg = microgram per kilogram ND = Not detected

Qualifiers:
U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 3D

Remedial Investigation

Soil Sample Analytical Results Summary - Total and TCLP Lead Delineation

Sample ID Laboratory ID Sample Date Sample Depth (feet bgs)	NYSDEC Part 375 Restricted Use - Commercial SCOs	Characteristics of	SRI LB23 LB23_0-2 19E0244-01 5/6/2019 0-2	SRI LB23 SBDUP06_050619 19E0244-26 5/6/2019 0-2	SRI LB23 LB23_2-4 19E0244-02 5/6/2019 2-4	SRI LB23 LB23_6-8 19E0244-03 5/6/2019 6-8	SRI LB23 LB23_8-10 19E0244-04 5/6/2019 8-10	SRI LB23_E1 LB23_E1_0-2 19E0244-13 5/6/2019 0-2	SRI LB23_E1 LB23_E1_2-4 19E0244-14 5/6/2019 2-4	SRI LB23_E1 LB23_E1_4-6 19E0244-15 5/6/2019 4-6	SRI LB23_E1 LB23_E1_6-8 19E0244-16 5/6/2019 6-8	SRI LB23_N1 LB23_N1_0-2 19E0244-05 5/6/2019 0-2	SRI LB23_N1 LB23_N1_2-4 19E0244-06 5/6/2019 2-4	SRI LB23_N1 LB23_N1_4-6 19E0244-07 5/6/2019 4-6
Inorganics (mg/kg)														
Lead	1,000	~	95.5	97.4	201	525	14.9	204	208	202	874	3380	208	1600
TCLP - Inorganics (mg/L)														
Lead	~	5	0.125 L	0.125 U	0.125 U	29.1	0.351	0.312	0.366	1.43	0.7	5.79	12.6	20.7

Table 3D

Remedial Investigation

Soil Sample Analytical Results Summary - Total and TCLP Lead Delineation

Sample ID	NYSDEC Part 375 Restricted Use - Commercial SCOs	Characteristics of	19F0244-08	SRI LB23_N2 LB23_N2_0-2 19E0244-09 5/6/2019 0-2	SRI LB23_N2 LB23_N2_2-4 19E0244-10 5/6/2019 2-4	SRI LB23_N2 LB23_N2_4-6 19E0244-11 5/6/2019 4-6	SRI LB23_S1 LB23_S1_0-2 19E0244-17 5/6/2019 0-2	SRI LB23_S1 LB23_S1_2-4 19E0244-18 5/6/2019 2-4	SRI LB23_S1 LB23_S1_4-6 19E0244-19 5/6/2019 4-6	SRI LB23_S1 LB23_S1_6-8 19E0244-20 5/6/2019 6-8	SRI LB23_S2 LB23_S2_0-2 19E0244-21 5/6/2019 0-2	SRI LB23_S2 LB23_S2_2-4 19E0244-22 5/6/2019 2-4	SRI LB23_S2 LB23_S2_4-6 19E0244-23 5/6/2019 4-6
Inorganics (mg/kg)		_											
Lead	1,000	~	86.4	102	521	103	65	915	59.9	15.1	120	832	678
TCLP - Inorganics (mg/L)													
Lead	~	5	0.125 U	0.125 U	4.46	0.263	0.561	13.7	64.2	0.209	3.69	50.7	2.17

Table 3D Remedial Investigation Soil Sample Analytical Results Summary - Total and TCLP Lead Delineation

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Notes:

- 1. Soil sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules, and Regulations (NYCRR) Part 375 Restricted Use Commercial Soil Cleanup Objectives (SCO).
- 2. Soil sample analytical results are compared to the 6 New York Codes, Rules and Regulations (NYCRR) Part 371.3 and 40 CFR 261 Subpart C and Table 1 of 40 CFR 261.24 Environmental Protection Agency (EPA) Resource Conservation and Recovery Act (RCRA) Characteristics of Hazardous Waste.
- 3. Only detected analytes are shown in the table.
- 4. Analytes detected with concentrations above Restricted Use Commercial SCOs are bolded.
- 5. Analytes detected with concentrations above RCRA Maximum Concentration of Contaminants for the Toxicity Characteristic are shaded.
- 6. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 7. Sample SBDUP06_050619 is a duplicate sample of LB23_0-2.
- 8. \sim = Regulatory limit for this analyte does not exist
- 9. bgs = below grade surface
- 10. mg/kg = milligrams per kilogram
- 11. mg/L = milligrams per liter
- 12. TCLP = Toxicity Characteristic Leaching Procedure

Qualifiers:

U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase		RI		RI		RI		RI		RI		RI		RI		RI		RI		RI		RI	1
Location	NYSDEC	LMW01D)	LMW08D		LMW08S		LMW11		LMW12D		LMW12S		LMW15		LMW19D		LMW19S		LMW20D		LMW20S	4
Sample ID	SGVs	LMW01D_09	0518	LMW08D_0905	18	LMW08S_090)518	LMW11_090718	8 LN	/IW12D_0906	18	LMW12S_090	0618	LMW15_090	618	LMW19D_090718	LM	W19S_090	718	LMW20D_090	618	LMW20S_090618	4
Laboratory ID	Juvs	1810168-0	2	1810168-05		1810168-04	4	1810296-03		1810253-04		1810253-03	3	1810253-09	5	1810296-05		1810296-04	1	1810253-07	7	1810253-06	4
Sample Date		9/5/2018	3	9/5/2018		9/5/2018		9/7/2018		9/6/2018		9/6/2018		9/6/2018		9/7/2018		9/7/2018		9/6/2018		9/6/2018	
Volatile Organic Compounds (μg/L)	_	_																					1
1,1,1-Trichloroethane	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	8.23		13.1	D	0.2	J	4.47	1
1,1,2-Trichloroethane	1	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.39	J	0.2	U	0.2 U	J	0.4	U	0.2	U	0.38 J	
1,1-Dichloroethane	5	27.4		0.2	UJ	0.43	J	0.28	J	0.78	J	16.1	J	22.4	J	15.4		5.62	D	6.46	J	26.4 J	
1,1-Dichloroethene	5	10.2	J	0.2	UJ	0.87	J	0.93	J	0.98	J	17.2	J	10.3	J	9.58 J		10.3	J	3.87	J	16.2 J	
1,2,4-Trimethylbenzene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U	J	2.1	D	0.2	U	0.2 U	
1,2-Dichloroethane	0.6	0.2	U	0.2	U	0.2	U	0.2	U	0.41	J	0.2	U	0.2	U	0.2 U	J	0.4	U	0.2	U	0.2 U	
1,2-Dichloropropane	1	0.2	U	0.2	UJ	0.2	UJ	0.2	U	2.9		0.2	U	0.2	U	0.2 U	J	0.4	U	0.2	U	0.2 U	
1,3,5-Trimethylbenzene (Mesitylene)	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U	J	0.6	JD	0.2	U	0.21 J	
Benzene	1	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.22	J	0.2	U	0.2 U	J	2.88	D	0.2	U	0.2 U	
Bromochloromethane	5	0.2	UJ	0.2	U	0.2	U	0.2	U	0.53		0.2	U	0.2	U	0.2 U	J	0.4	U	0.2	U	0.2 U	
Carbon Disulfide	60	0.2	U	0.66	J	0.2	UJ	0.2 ا	UJ	0.2	UJ	0.3	J	0.2	UJ	0.64 J		0.4	UJ	0.2	UJ	0.2 U.	j
Chloroethane	5	0.2	UJ	0.2	UJ	0.2	UJ		UJ		UJ	0.2	UJ	0.2	UJ	0.2 U	J	23.1	J	0.2	UJ	0.2 U.	
Chloroform	7	0.2	U	0.2	U	0.2	U	0.7		2.74		0.2	U	0.2	U	0.2 U	,	3.18	_ D	0.67		0.39 J	
Cis-1,2-Dichloroethene	5	1,100	D	2.74	J	149	D	22.6		109		214	D	268	D	249)	446	D	207	D	228 D	
Ethylbenzene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U	,	2.22	D	0.2	U	0.2 U	
M,P-Xylene	5	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U	J	6.24	D	0.5	U	0.5 U	
Methyl Ethyl Ketone (2-Butanone)	50	0.2	U	0.2	UJ	0.2	UJ	0.2	U	15.3	J	0.2	UJ	0.2	UJ	0.2 U	J	68.1	D	0.2	UJ	0.2 U.	j
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.21 J		0.4	U	0.2	U	0.2 U	
Methylcyclohexane	~	0.2	U	0.2	UJ	0.2	UJ		U	7.38		0.2	U	0.2	U	0.2 U	J	0.4	U	0.2	U	0.2 U	
Methylene Chloride	5	1	UJ	1	UJ	1	UJ	1	U		UJ	1.54	J	1	UJ	1 L	J	2.02	U	1	UJ	1 U.	j
n-Propylbenzene	5	0.2	U	0.2	U	0.2	U	ا 0.2	UJ		U	0.2	U	0.2	U	0.2 U		0.4	J	0.2	U	0.2 U	
o-Xylene (1,2-Dimethylbenzene)	5	0.2	U	0.2	U	0.2	U		U		U	0.2	U	0.2	U	0.2 U	J	2.34	D	0.2	U	0.2 U	
Tetrachloroethene (PCE)	5	1.53	J	0.2	UJ	0.2	UJ	5.61	J	10.8	J	3.05	J	0.23	J	2.92 J		14.2	J	5.45	J	5.17 J	
Toluene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.27	J	0.2	U	0.2 U	J	3.92	D	0.2	U	0.2 U	
Total Xylenes	5	0.6	U	0.6	U	0.6	U	0.6	U		UJ	0.6	UJ	0.6	UJ	0.6 U	J	8.58	D	0.6	UJ	0.6 U.	j
Trans-1,2-Dichloroethene	5	10.8		0.2	UJ	0.68	J	0.22	J		J	1.42	J	1.23	J	1.63		2.42	_ D	0.8	J	2.01 J	
Trichloroethene (TCE)	5	3,190	J	118		2.15		1,490	J	874	D	15,800	D	4,290	J	5,080 J		14,400	J	2,540	D	2,210 DE	<u>:</u>
Vinvl Chloride	2	8.35	J	0.2	UJ	0.43	J	1.12	J	2.49	J	9.9	J	9	J	11.7 J		45.5	J	7.78	J	19.6 J	
Semivolatile Organic Compounds (μg/L)				-																			1
1,4-Dioxane (P-Dioxane)	~	NA		NA		5.3		NA		NA		29		NA		NA		NA		NA		NA	1
Acenaphthene	20	0.05	U	0.0541	U	0.05	U	0.0513	U	0.0513	U	0.0541	U	0.0513	U	0.05 L	J	0.05	U	0.0513	U	0.0513 U	
Anthracene	50	0.05	U	0.0541	U	0.05	U		U		U	0.0541	U	0.0513	U	0.05 U	J	0.05	U	0.144		0.123	
Bis(2-Ethylhexyl) Phthalate	5	0.5	UJ	2.18	J	2.44	J		UJ	3.21	J	0.724	J	1.29	J	0.9 J		0.77	J	0.513	UJ	0.513 U.	j
Fluoranthene	50	0.05	U	0.0541	U	0.05	U		U	0.0718		0.0541	U	0.0513	U	0.05 U	J	0.05	U	0.297		0.349	
Fluorene	50	0.05	U	0.0541	Ü	0.05	Ū		U	0.0513		0.0541	Ü	0.0513	Ü	0.05 U	J	0.05	U	0.174		0.103	
Naphthalene	10	0.05	U	0.0541	Ü	0.05	Ü		U		U	0.0541	Ü	0.0513	Ü	0.05 U	, [0.05	Ü	0.103		0.0513	
Phenanthrene	50	0.05	Ü	0.0541	Ü	0.05	Ü		Ü	0.185		0.119	-	0.0513	Ü	0.05 U	J	0.05	Ü	0.872		0.626	
Pyrene	50	0.05	Ū	0.0541	Ü	0.05	Ū		Ü	0.0513		0.0541	U	0.0513	Ū	0.05 U	J	0.05	Ü	0.195		0.236	
,			-				-	-	-	-		- · · · · ·			-				-			· · ·	_

Notes provided on Page 3.

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

D.		DI		DI		DI		DI		DI		DI		DI		CDI		CDI		CDI
Phase		RI MW-1		RI MW-1		RI MW-2		RI MW-3		RI MW-4		RI MW-5		RI MW-6		SRI GWG01		SRI GWG02		SRI GWG03
Location	NYSDEC				0540		-10								10		.		10	
Sample ID	SGVs	MW-1_09051	ı	GWDUP01_090		MW-2_0905		MW-3_0900		MW-4_0906		MW-5_09071		MW-6_0907		GWG01_0509	19	GWG02_0509		GWG03_050919
Laboratory ID		1810168-01		1810168-06	'	1810168-0		1810253-0		1810253-0		1810296-01		1810296-02		19E0476-01		19E0476-02	_	19E0476-03
Sample Date		9/5/2018		9/5/2018		9/5/2018	5	9/6/2018	3	9/6/2018	3	9/7/2018		9/7/2018		5/9/2019		5/9/2019		5/9/2019
Volatile Organic Compounds (μg/L)	1 -					0.10	_													
1,1,1-Trichloroethane	5	0.2	U	0.2	U	8.48		0.2	U	0.2	U	0.21	J	0.2	U	0.2	U	0.2	U	0.2 U
1,1,2-Trichloroethane	1 -	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
1,1-Dichloroethane	5	13.6	J	14.5	J	0.2	U	0.2	UJ	0.33	J	1.34		0.29	J	3.37		0.2	U	9.77
1,1-Dichloroethene	5	7.96	J	7.52	J	1.07	J	0.2	UJ	0.2	UJ	0.74	J	0.2	U	1.32		0.2	U	2.66
1,2,4-Trimethylbenzene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
1,2-Dichloroethane	0.6	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
1,2-Dichloropropane	1	0.2	UJ	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
1,3,5-Trimethylbenzene (Mesitylene)	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Benzene	1	0.2	U	0.2	U	7.17		0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Bromochloromethane	5	0.2	UJ	0.2	U	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Carbon Disulfide	60	0.2	U	0.2	UJ	0.2	U	0.2	UJ	0.25	J	0.2	UJ	0.2	U	0.2	U	0.74		0.28 J
Chloroethane	5	0.2	UJ	0.2	UJ	0.2	UJ	0.2	UJ	0.2	UJ	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2 U
Chloroform	7	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.41	J	0.2	U	0.2	U	0.2	_ U	0.53
Cis-1,2-Dichloroethene	5	474	D	432	D	273	D	0.98		7.9		134		13.7		33.9		7.92		387 D
Ethylbenzene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
M,P-Xylene	5	0.5	UJ	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5 U
Methyl Ethyl Ketone (2-Butanone)	50	0.2	U	0.2	UJ	0.2	U	0.2	UJ	0.2	UJ	19.3		0.2	U	0.2	U	0.2	U	0.2 U
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Methylcyclohexane	~	0.2	UJ	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Methylene Chloride	5	1	UJ	1	UJ	1	UJ	1	UJ	1	UJ	1	U	1	U	1	U	1	U	1 U
n-Propylbenzene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	UJ	0.2	U	0.2	U	0.2	U	0.2 U
o-Xylene (1,2-Dimethylbenzene)	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Tetrachloroethene (PCE)	5	0.55	J	0.59	J	0.2	UJ	0.2	UJ	0.2	UJ	5.22	J	0.2	UJ	0.2	U	0.2	U	0.2 U
Toluene	5	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2	U	0.2 U
Total Xylenes	5	0.6	U	0.6	U	0.6	U	0.6	UJ	0.6	UJ	0.6	U	0.6	U	0.6	U	0.6	U	0.6 U
Trans-1,2-Dichloroethene	5	2.93	J	2.96	J	3.84		0.2	UJ	0.75	J	1		0.26	J	0.2	U	0.2	U	5.5
Trichloroethene (TCE)	5	3,820	J	2,240	J	1.64		21.7	J	265	D	728	J	15.1	J	61.2		0.2	U	124
Vinyl Chloride	2	15.2	J	15.3	J	40.4	J	0.2	U	2.35	J	9.71	J	16.4		10.8		22.2		3.48
Semivolatile Organic Compounds (µg/L)																				
1,4-Dioxane (P-Dioxane)	~	8.9		8.9		NA		NA		NA		NA		NA		1.76		2.76		0.26
Acenaphthene	20	0.0513	U	0.0513	U	0.358		0.0541	U	0.0526	U	0.0513	U	0.0513	U	0.0513	U	0.441		0.113
Anthracene	50	0.0513	U	0.0513	U	0.0526	U	0.0541	U	0.0526	U	0.0513	U	0.0513	U	0.0513	U	0.0821		0.0513 U
Bis(2-Ethylhexyl) Phthalate	5	0.513	UJ	0.513	UJ	3.19	J	0.541	UJ	5.07	J	0.513	UJ	0.513	UJ	0.677	В	0.513	U	0.513 U
Fluoranthene	50	0.0513	U	0.0513	U	0.0526	U	0.0541	U	0.0526	U	0.0513	U	0.0615		0.0513	U	0.113		0.0513 U
Fluorene	50	0.0513	Ū	0.0513	U	0.0526	Ü	0.0541	Ü	0.0526	Ü	0.0513	U	0.0513	U	0.0513	Ü	0.421		0.0513
Naphthalene	10	0.0513	Ü	0.0513	U	0.0526	Ü	0.0757		0.0526	Ü	0.123		0.0821	-	0.0513	U	0.328		0.0513 U
Phenanthrene	50	0.0513	Ü	0.0513	Ü	0.0526	Ü	0.0541	U	0.0526	Ü	0.0513	U	0.0513	U	0.0513	Ü	0.492		0.0513
Pyrene	50	0.0513	Ü	0.0513	Ü	0.0526	Ü	0.0541	Ü	0.0526	Ü	0.0513	Ü	0.0513	Ü	0.0513	Ü	0.0513		0.0821
,							-		-		-		-		-		-			

Notes provided on Page 3.

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (NYSDEC SGVs).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above NYSDEC SGVs are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.
- 5. Sample GWDUP01_090518 is a duplicate sample of MW-1_090518.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. μ g/L = micrograms per liter
- 8. NA = Not analyzed

- D = The concentration reported is a result of a diluted sample.
- E = The result is estimated and cannot be accurately reported due to levels encountered or interferences.
- B = The analyte was found in the associated analysis batch blank.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase		RI	RI		RI		RI		RI		RI		RI		RI		RI	RI	RI	RI		RI	
Location		LMW01D	LMW08D	,	LMW08S		LMW11		LMW12D		LMW12S		LMW15		LMW19D		LMW19S	LMW20D	LMW20S	MW-1		MW-1	
Sample ID	NYSDEC	LMW01D 090518	LMW08D 09		LMW08S 0905	18	LMW11 0907	18	LMW12D 090		LMW12S 090		LMW15 09061	18	LMW19D 09071	18	LMW19S 090718	LMW20D 090618	LMW20S_090618	MW-1 090518	8 (GWDUP01 09	0518
Laboraotry ID	SGVs	1810168-02	1810168-0		1810168-04		1810296-03		1810253-04		1810253-03		1810253-05		1810296-05		1810296-04	1810253-07	1810253-06	1810168-01		1810168-06	
Sample Date		9/5/2018	9/5/2018		9/5/2018		9/7/2018		9/6/2018		9/6/2018		9/6/2018		9/7/2018		9/7/2018	9/6/2018	9/6/2018	9/5/2018		9/5/2018	
Pesticides (µg/L)		3/3/2010	3/3/2010		3/3/2010		3/1/2010		3/0/2010		3/0/2010		3/0/2010		3/1/2010		3/1/2010	3/0/2010	3/0/2010	3/3/2010		3/3/2010	_
Alpha Endosulfan	~	0.00432 U	0.00444	U	0.0041	U	0.0176		0.004	U	0.00432	U	0.0041	U	0.00421	U	0.00593 U	0.0041 U	0.00421 U	0.0041	U	0.0041	U
Beta Bhc (Beta Hexachlorocyclohexane)	0.04	0.00432 U	0.0136		0.0041	U	0.00457	U	0.004	U	0.00432	U	0.0041	U	0.00421	U	0.00593 U	0.0041 U	0.00421 U	0.0041	U	0.0041	Ü
Beta Endosulfan	~	0.0114 P	0.00444	U	0.0041	Ü	0.00457	Ü	0.004	Ü	0.00432	Ū	0.0041	Ü	0.00421	Ü	0.00593 U	0.0041 U	0.00421 U	0.0041	Ü	0.0041	Ü
Delta Bhc (Delta Hexachlorocyclohexane)	0.04	0.00432 U	0.00444	Ü	0.0041	U	0.00457	Ü	0.004	Ü	0.00432	Ü	0.0041	U	0.00421	U	0.00593 U	0.0041 U	0.00696	0.0041	U	0.0041	Ü
Gamma Bhc (Lindane)	0.05	0.00432 U	0.00444	Ü	0.0041	Ū	0.00457	Ü	0.00543	-	0.00547	-	0.0041	Ü	0.00421	Ü	0.00593 U	0.0041 U	0.00446 P	0.0041	Ū	0.0041	Ü
Heptachlor	0.04	0.00432 U	0.00444	Ü	0.0041	Ü	0.00457	Ü	0.004	U	0.00432	U	0.0041	Ü	0.00421	Ü	0.00593 U	0.0041 U	0.00517	0.0041	Ü	0.0041	Ü
Polychlorinated Biphenyls (µg/L)	~	ND	ND		ND		ND		ND	-	ND		ND		ND		ND	ND	ND	ND		ND	
Inorganics (µg/L)			•															.	JI.				
Aluminum	~	613	71.9		141		5,800	J	651		5,850		3,740		110	J	13,000 J	552	3,340	50	U	50	U
Aluminum (Dissolved)	~	95.8	55.6	U	55.6	U	55.6	UJ	55.6	U	55.6	U	55.6	U	55.6	UJ	55.6 U.		55.6 U	55.6	U	55.6	U
Arsenic	25	1.57	1.76		3.13		3.04		2.13		12.4		9.88		2.8		10.5	1.15	2.69	1.11	U	1.11	U
Arsenic (Dissolved)	25	1.65	1.73		2.72		1.11	U	1.11	U	1.59		3.59		2.78		1.18	1.11 U	1.59	1.11	U	1.11	U
Barium	1,000	128 J	40	J	124	J	572	J	198		1,450		979		191	J	3,260 J	199	257	154	J	152	J
Barium (Dissolved)	1,000	101	36.5		117		215	J	175		93.5		149		191	J	130 J	174	113	143		141	
Cadmium	5	1.11 U	1.11	U	1.11	U	1.11	U	1	U	1.31		1	U	1.11	U	2.95	1 U	1 U	1.11	U	1.11	U
Calcium	~	55,200 R	27,700	R	84,500	R	254,000	J	82,000		670,000		455,000		69,100	J	786,000 J	68,500	84,300	74,000	R	74,200	R
Calcium (Dissolved)	~	47,000	25,600		80,900		83,700	J	72,800		57,000		60,800		68,800	J	95,500 J	61,100	54,000	70,900		69,500	
Chromium, Total	50	5 UJ	5	UJ	5	UJ	12.9	J	5.56	U	5.56	U	5.56	U	5	UJ	10.4 J	5.56 U	7.36	5	UJ	5	UJ
Cobalt	~	5 UJ	5	UJ	5	UJ	14.8	J	5.56	U	19.5		8.05		5	UJ	51.3 J	5.56 U	5.56 U	5	UJ	5	UJ
Copper	200	9.4	5.39		5.55		45.2	J	9.55		93.7		26.3		5	UJ	96.1 J	7.89	19.7	5	U	5.59	
Copper (Dissolved)	200	5.56 U	5.56	U	5.56	U	5.56	UJ	5.56	U	5.56	U	5.56	U	5.56	UJ	6.45 J	5.56 U	5.56 U	5.56	U	5.56	U
Cyanide	200	10.4	NA		10	U	10	U	NA		10	U	10	U	NA		10 U	NA	10 U	10	U	NA	
Iron	300	1,280	382		2,640		7,000	J	1,320		6,330		15,800		154	J	9,020 J	1,210	5,710	322	J	324	
Iron (Dissolved)	300	22.2 U	132	В	2,430	В	89.9	J	35		29.9		78.9		41.1	J	173 J	64.7	22.2 U	351	В	345	В
Lead	25	5.3 U	9.38	U	5.77	U	8.48	J	5.56	UJ	18	J	20.6	J	5	UJ	33.3 J	5.56 UJ	5.56 UJ	6.35	U	6.56	U
Magnesium	35,000	23,900 J	8,860	J	21,800	J	96,600	J	36,400		158,000		142,000		27,400	J	164,000 J	36,000	33,400	24,000	J	23,700	J
Magnesium (Dissolved)	35,000	18,900	7,930		20,000		29,200	J	31,600		18,400		24,300		27,400	J	38,000 J	32,100	19,100	22,000		21,700	
Manganese	300	202 J	89.3	J	560	J	1,520	J	182		6,360		4,240		308	J	19,600 J	530	648	1,580	J	1,560	J
Manganese (Dissolved)	300	148	81.8		535		64.2	J	127		75.9		164		305	J	6,010 J	461	323	1,450		1,480	
Potassium	~	7,480 J	5,030	J	5,700	J	7,390	J	9,150	J	9,500	J	15,500	J	9,630	J	6,570 J	9,040 J	6,630 J	3,960	J	3,860	J
Potassium (Dissolved)	~	7,250 J	4,950	J	5,750	J	5,790	J	8,820	J	5,000	J	8,450	J	9,700	J	3,820 J	8,690 J	5,150 J	3,910	J	3,820	J
Selenium	10	1.11 UJ	1.11	UJ	1.11	UJ	12.5	J	4.85		33		22.3		1.11	UJ	42 J	1.07	1 U	1.11	UJ	1.11	UJ
Selenium (Dissolved)	10	1.11 UJ	1.11	UJ	1.11	UJ	1.11	UJ	1.11	U	1.13		1.4		1.11	UJ	2.92 J	1.57	1.46	2.36	J	1.11	UJ
Sodium	20,000	15,000 J	4,750	J	22,900	J	70,800		56,900		20,800		27,700		33,400	J	34,700	53,600	33,400	50,900	J	50,700	J
Sodium (Dissolved)	20,000	14,500	4,520		22,000		69,700	J	59,000	J	19,400	J	25,700	J	33,700	J	33,200 J	56,500 J	34,400 J	48,600		48,000	
Thallium	0.5	1.11 UJ	1.11	UJ	1.11	UJ	1.11	U	1.83	J	1	UJ	1	UJ	1.11	U	1.11 U	1 UJ	1 UJ	1.11	U	1.11	UJ
Vanadium	~	10 U	10	U	10	U	19.2	J	11.1	U	49.6		12.6		10	UJ	39.1 J	11.1 U	15.9	10	U	10	U
Zinc	2,000	17.7 J	18.4	J	15	UJ	46.5	J	16.7	U	33.4		37.6		15	UJ	52.8 J	19.1	29.4	20	J	15	UJ

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and
- Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (NYSDEC SGVs)
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above NYSDEC SGVs are bolded and shaded.
- ${\it 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.}\\$
- 5. Sample GWDUP01_090518 is a duplicate sample of MW-
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. μg/L = micrograms per liter
- 8. NA = Not analyzed
- 9. ND = Not detected

- P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table X Groundwater Summary Report Groundwater Sample Analytical Results

Project Name XXX XXX, New York Regulatory Site No.: XXX Langan Project No.: XXX

Notes:

- 1. Groundwater sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class GA Water (NYSDEC SGVs).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above NYSDEC SGVs are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above NYSDEC SGVs are italicized.
- 5. Sample GWDUP01_090518 is a duplicate sample of MW-1_090518.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. μg/L = micrograms per liter
- 8. NA = Not analyzed
- 9. ND = Not detected

- P = The relative percent difference (RPD) between the results for the two columns exceeds the method-specified criteria.
- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 4C Remedial Investigation Groundwater Sample Analytical Results Summary - PFAS

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase Location Sample ID Laboratory ID Sample Date	USEPA Health Advisory for Emerging Contaminants	RI LMW08S LMW08S_090 1810203-03 9/5/2018)518 2	RI LMW12S_09 LMW12S_09 1810281-0 9/6/2018	0618 01	RI MW-1 MW-1_0905 1810203-0 9/5/2018	1	RI MW-1 GWDUP01_0: 1810203-0 9/5/201:	3
Per and Polyfluoroalkyl Substances (ng						•			
N-ethyl perfluorooctane- sulfonamidoacet	~	2	U	2	U	2	U	2	U
N-methyl perfluorooctane- sulfonamidoac	~	2	U	2	U	2	U	2	U
Perfluorobutanesulfonic Acid (PFBS)	~	2	U	2	U	2	U	2	U
Perfluorobutanoic acid (PFBA)	~	2	U	2	U	2	U	2	U
Perfluorodecanesulfonic acid (PFDS)	~	2	U	2	U	2	U	2	U
Perfluorodecanoic acid (PFDA)	~	2	U	2	U	2	U	2	U
Perfluorododecanoic Acid (PFDoA)	~	2	U	2	U	2	UJ	2	U
Perfluoroheptanesulfonic acid (PFHpS)	~	2	U	2	U	2	UJ	2	U
Perfluoroheptanoic acid (PFHpA)	~	2.6		2	U	2	U	2	U
Perfluorohexanesulfonic Acid (PFHxS)	~	2	U	2	U	2	UJ	2	U
Perfluorohexanoic Acid (PFHxA)	~	5.4		2	U	3.5	J	3.3	
Perfluorononanoic Acid (PFNA)	~	2	U	2	U	2	UJ	2	U
Perfluorooctanesulfonamide (FOSA)	~	2	UJ	2	UJ	2	UJ	2	UJ
Perfluorooctanesulfonic acid (PFOS)	70	3.5		2	U	4.8		4.6	
Perfluorooctanoic Acid (PFOA)	70	11		2	U	6		7.2	
Perfluoropentanoic Acid (PFPeA)	~	2.2		2	U	2	UJ	2	U
Perfluorotetradecanoic Acid (PFTA)	~	2	U	2	U	2	UJ	2	U
Perfluorotridecanoic Acid (PFTrDA)	~	2	U	2	U	2	UJ	2	U
Perfluoroundecanoic Acid (PFUnA)	~	2	U	2	U	2	UJ	2	U
Sodium 1H,1H,2H,2H-perfluoro-1-[1,2-130	~	2	U	2	U	2	U	2	U
Sodium 1H,1H,2H,2H-Perfluorodecane Su	~	2	U	2	U	2	U	2	Ü

Notes

- 1. Regulatory criteria do not exist for per- and polyfluoroalkyl substances (PFAS) and 1,4-Dioxane in New York State. Perflourooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are compared to the United States Environmental Protection Agency (USEPA) health advisory limit of 70 parts per trillion.
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above the USEPA Health Advisory Limit are bolded and shaded.
- 4. Analytical results with reporting limits (RL) above USEPA Health Advisory Limit are italicized.
- 5. Sample GWDUP01_090518 is a duplicate sample of MW-1_090518.
- 6. ~ = Regulatory limit for this analyte does not exist
- 7. ng/L = nanograms per liter

- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the RL; however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

Table 5 Remedial Investigation Soil Vapor Sample Analytical Results Summary

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Location Sample ID Laboratory ID Sample Date Sample Type	LSV22 LSV22_081 18H0720-0 8/14/201 SV)2
Volatile Organic Compounds (μg/m³)		
1,2,4-Trimethylbenzene	16	D
1,3,5-Trimethylbenzene (Mesitylene)	5.2	D
1,3-Butadiene	4.2	J
2-Hexanone	8.8	D
4-Ethyltoluene	13	D
Acetone	73	D
Benzene	3.8	D
Bromodichloromethane	3.1	D
Carbon Disulfide	3.2	D
Chloroform	19	D
Cyclohexane	3.7	D
Dichlorodifluoromethane	310	D
Ethylbenzene	5.4	D
Isopropanol	4.7	D
M,P-Xylene	21	D
Methyl Ethyl Ketone (2-Butanone)	23	D
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	3.6	D
Methylene Chloride	6.7	D
n-Heptane	2.9	D
n-Hexane	6.2	D
o-Xylene (1,2-Dimethylbenzene)	8.8	D
Propylene	26	D
Styrene	4	D
Tetrachloroethene (PCE)	14	D
Tetrahydrofuran	3.4	D
Toluene	15	D
Trichloroethene (TCE)	3.7	D
Trichlorofluoromethane	1.5	D

Notes:

- 1. Only detected analytes are shown in the table.
- 2. $\mu g/m^3$ = micrograms per cubic meter
- 3. SV = Soil Vapor

- D = The concentration reported is a result of a diluted sample.
- $\mbox{\it J}-\mbox{\it The analyte}$ was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.

Table 6A **Remedial Investigation** Off-Site Surface Water Sample Analytical Results Summary

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase							SRI SW2 SW3 SW3 SW2 050219 SW3 050219 SWDUP01 050219						
Location	NYSDEC	NYSDEC	NYSDEC	NYSDEC	NYSDEC	SW1			SW3				
Sample ID	Type H(FC)	Type A(C)	Type A(A)	Type E	Type W	SW1 050219	SW2 050219	SW3 050219	SWDUP01 050219				
Laboratory ID	Class C	Class C	Class C	Class C	Class C	19E0144-01	19E0144-03	19E0144-02	19E0144-04				
Sample Date						5/2/2019	5/2/2019	5/2/2019	5/2/2019				
Volatile Organic Compounds (μg/L)													
Acetone	~	~	~	~	~	1.05 J	1 U	1 U	1 U				
Cis-1,2-Dichloroethene	~	~	~	~	~	2.08	1.46	1.39	1.32				
Methyl Isobutyl Ketone (4-Methyl-2-Pentanone)	~	~	~	~	~	0.41 J	0.2 U	0.2 U	0.2 U				
Tert-Butyl Methyl Ether	~	~	~	~	~	0.49 J	0.54	0.54	0.51				
Toluene	6,000	100	480	~	~	0.94	0.3 J	0.53	0.2 U				
Trichloroethene (TCE)	40	~	~	~	~	0.54	0.35 J	0.2 U	0.36 J				
Vinyl Chloride	~	~	~	~	~	0.34 J	0.23 J	0.21 J	0.2 U				
Semivolatile Organic Compounds (µg/L)	•	-						•					
Acenaphthylene	~	~	~	~	~	0.0513 U	0.0526 U	0.103	0.0513 U				
Bis(2-Ethylhexyl) Phthalate	~	0.6	~	~	~	1.91	0.526 U	0.513 U	0.513 U				
Fluorene	~	0.54	4.8	~	~	0.0513 U	0.0526 U	0.0513	0.0513 U				
Naphthalene	~	13	110	~	~	2.56	0.116	2.43	0.0923				
Pesticides (μg/L)	~	~	~	~	~	ND	ND	ND	ND				
Polychlorinated Biphenyls (μg/L)	~	~	~	~	~	ND	ND	ND	ND				
Inorganics (µg/L)													
Aluminum	~	100	~	~	~	55.6 U	55.6 U	56.5 B	55.6 U				
Aluminum (Dissolved)	~	100	~	~	~	55.6 U	88.8	55.6 U	143				
Barium	~	~	~	~	~	124	127	127	126				
Barium (Dissolved)	~	~	~	~	~	136	120	122	121				
Calcium	~	~	~	~	~	48,900	48,800	49,300	50,800				
Calcium (Dissolved)	~	~	~	~	~	48,000 B	50,100 B	50,500 B	49,900 B				
Iron	~	300	~	~	~	1,050	970	1,180	955				
Iron (Dissolved)	~	300	~	~	~	300	278 U	278 U	278 U				
Magnesium	~	~	~	~	~	14,900	14,800	14,900	15,100				
Magnesium (Dissolved)	~	~	~	~	~	14,000	14,600	14,700	14,700				
Manganese	~	~	~	~	~	152	148	153	150				
Manganese (Dissolved)	~	~	~	~	~	139	136	142	140				
Potassium	~	~	~	~	~	3,770	3,740	3,770	3,840				
Potassium (Dissolved)	~	~	~	~	~	3,720 B	3,650 B	3,600 B	3,590 B				
Selenium	~	4.6	~	~	~	1.11 U	1.11 U	1.28	1.11 U				
Selenium (Dissolved)	~	4.6	~	~	~	1.11 U	1.18	1.11 U	1.11 U				
Sodium	~	~	~	~	~	83,200	82,000	81,800	83,000				
Sodium (Dissolved)	~	~	~	~	~	83,900	84,400	85,100	84,400				
Per and Polyfluoroalkyl Substances (ng/L)								T					
Perfluorobutanesulfonic Acid	~	~	~	~	~	5.4	NA	5.71	5.75				
Perfluorobutanoic acid	~	~	~	~	~	4.06	NA	4.3	4.31				
Perfluoroheptanoic acid	~	~	~	~	~	2.49	NA	2.71	2.53				
Perfluorohexanesulfonic Acid	~	~	~	~	~	2.34	NA	2.37	2.43				
Perfluorohexanoic Acid	~	~	~	~	~	6.99	NA	7.62	7.64				
Perfluorooctanesulfonic acid	~	~	~	~	~	7.96	NA	9.92	11.8				
Perfluorooctanoic Acid	~	~	~	~	~	7.08	NA	8.19	8.76				
Perfluoropentanoic Acid	~	~	~	~	~	6.62	NA	7.51	7.5				

Notes:

- 1. Surface water sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class C Water (NYSDEC SGVs).
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above NYSDEC Type H(FC) Class C are bolded.
- 4. Analytes detected with concentrations above NYSDEC Type A(C) Class C are shaded. 5. Analytes detected with concentrations above NYSDEC Type A(A) Class C are underlined.
- 6. Analytes detected with concentrations above NYSDEC Type E Class C are red.
- 7. Analytes detected with concentrations above NYSDEC Type W Class C are outlined.
- 8. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 9. Sample SWDUP01_050219 is a duplicate sample of SW3_050219.
- 10. ~ = Regulatory limit for this analyte does not exist
 11. * = Criterion not established due to non-quantified CaCO3 and pH values during the Supplemental Remedial Investigation."
- 12. μ g/L = micrograms per liter
- 13. ng/L = nanograms per liter 14. ND = Not detected

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
- B = The analyte was found in the associated analysis batch blank.

Table 6A

Remedial Investigation **Surface Water Sample Analytical Results Summary**

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

- 1. Surface water sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Title 6 of the Official Compilation of New York Codes, Rules and Regulations (NYCRR) Part 703.5 and the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values for Class C Water
- 2. Only detected analytes are shown in the table.
- 3. Analytes detected with concentrations above NYSDEC Type H(FC) Class C are bolded.
- 4. Analytes detected with concentrations above NYSDEC Type A(C) Class C are shaded.
- 5. Analytes detected with concentrations above NYSDEC Type A(A) Class C are underlined.
- 6. Analytes detected with concentrations above NYSDEC Type E Class C are red.
- 7. Analytes detected with concentrations above NYSDEC Type W Class C are outlined.
- 8. Analytical results with reporting limits (RL) above the lowest applicable criteria are italicized.
- 9. Sample SWDUP01_050219 is a duplicate sample of SW3_050219. 10. ~ = Regulatory limit for this analyte does not exist
- 11. * = Criterion not established due to non-quantified CaCO3 and pH values during the Supplemental Remedial Investigation."
- 12. μg/L = micrograms per liter
- 13. ND = Not detected

- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.
- B = The analyte was found in the associated analysis batch blank.

Table 6B **Remedial Investigation Off-Site Sediment Sample Analytical Results Summary**

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Phase					SRI	SRI	SRI
Location	Freshwater	Freshwater	Freshwater	Freshwater	SED1	SED2	SED3
Sample ID	Sediment	Sediment	Sediment	Sediment	SED1 0-0.5	SED2 0-0.5	SED3 0-0.5
Laboratory ID	Guidance Values -	Guidance Values -	Guidance Values -	Guidance Values -	19E0170-01	19E0170-03	19E0170-02
Sample Date	Class A	Class B	Class B	Class C	5/2/2019	5/2/2019	5/2/2019
•	(maximum value)	(minimum value)	(maximum value)	(minimum value)	0-0.5	0-0.5	0-0.5
Sample Depth (feet bgs) Volatile Organic Compounds (mg/kg)					0-0.5	0-0.5	0-0.5
	i		1		0.0044 U	0.043	0.074
Acetone	~	~	~	~			
Methyl Ethyl Ketone (2-Butanone)	~	~	~	~	0.0022 U		0.021
Methylene Chloride Semivolatile Organic Compounds (mg/kg)	~	~	~	~	0.0044 U	0.0053 U	0.012 J
	I		1		0.0482 U	0.106 U	0.162 JD
Acethors	~	~	~	~			
Anthracene	~	~	~	~	0.111 D	0.215 D	-
Benzo(a)Anthracene	~	~	~	~	0.614 D		4.52 D
Benzo(a)Pyrene	~	~	~	~	0.703 D	0.921 D	2.17 D
Benzo(b)Fluoranthene	~	~	~	~	0.789 D	0.999 D	2.28 D
Benzo(g,h,i)Perylene	~	~	~	~	0.453 D	0.541 D	0.616 D
Benzo(k)Fluoranthene	~	~	~	~	0.578 D	0.74 D	2 D
Bis(2-Ethylhexyl) Phthalate	360	360	~	~	0.761 D		0.454 D
Carbazole	~	~	~	~	0.0738 JD		0.154 U
Chrysene	~	~	~	~	0.723 D		4.97 D
Dibenz(a,h)Anthracene	~	~	~	~	0.125 D	0.148 JD	0.251 JD
Fluoranthene	~	~	~	~	1.51 D	2.33 D	6.98 D
Fluorene	~	~	~	~	0.0482 U	0.106 U	0.268 JD
Indeno(1,2,3-c,d)Pyrene	~	~	~	~	0.61 D	0.729 D	0.97 D
Phenanthrene	~	~	~	~	0.642 D	1.07 D	1.46 D
Pyrene	~	~	~	~	1.12 D	1.63 D	5.25 D
Pesticides (mg/kg)	~	~	~	~	ND	ND	ND
Polychlorinated Biphenyls (mg/kg)	~	~	~	~	ND	ND	ND
Inorganics (mg/kg)							
Aluminum	~	~	~	~	4,600	5,370	13,100
Arsenic	10	10	33	33	2.49	1.96	4.57
Barium	~	~	~	~	53.1	58.2	148
Cadmium	1	1	5	5	0.45	0.404	1.01
Calcium	~	~	~	~	20,000	11,100	5,570
Chromium, Total	43	43	110	110	14.3	43.9	39.4
Chromium, Trivalent	~	~	~	~	14.3	43.9	39.4
Cobalt	~	~	~	~	5.31	5.51	12.3
Copper	32	32	150	150	24.6	23.6	56.2
Iron	~	~	~	~	29,800	18,100	25,900
Lead	36	36	130	130	38.4	180	201
Magnesium	~	~	~	~	9,200	8,260	7,660
Manganese	~	~	~	~	317	283	314
Mercury	0.2	0.2	1	1	0.0347 U		0.0834
Nickel	23	23	49	49	13.7	14.5	28
Potassium	~	~	~	~	569	773	2,560
Sodium	~	~	~	~	101	99.6	169
Vanadium	~	~	~	~	11.4	12.9	42.2
Zinc	120	120	460	460	143	134	244
General Chemistry (%)	.20	.20				1	
Solids, Percent	~	~	~	~	86.4	78.1	53.6
Per and Polyfluoroalkyl Substances (mg/kg)	~	~	~	~	ND	NA	ND ND
. J. aa i difinadidam fi dabatanda (ing/kg/			<u> </u>	·	110	137.1	110

Notes:

- 1. Sediment sample analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Screening and Assessment of Contaminated Sediment (SACS) Freshwater Sediment Guidance Values.
- 2. Only detected analytes are shown in the
- 3. Analytes detected with concentrations within Class B are bolded.
- ${\it 4. Analytes \ detected \ with \ concentrations \ within \ Class \ C \ are \ bolded \ and \ shaded.}$
- 5. Analytical results with reporting limits (RL) above Class A are italicized.
- 6. \sim = Regulatory limit for this analyte does not
- 7. bgs = below grade surface 8. mg/kg = milligrams per kilogram
- 9. % = percent 10. NA = Not analyzed11. ND = Not detected

- D = The concentration reported is a result of a diluted sample.
- J = The analyte was detected above the Method Detection Limit (MDL), but below the RL; therefore, the result is an estimated concentration.
- U = The analyte was analyzed for, but was not detected at a level greater than or equal to the RL; the value shown in the table is the RL.

Table 7 Remedial Investigation QAQC Sample Analytical Results Summary

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

Sample ID	GWFB01_090	1518	GWFB01 090518	GWTB01 090518	GWTB02_090618	GWTB03_090718	SBEB01 08071	ıs l	SBEB02_080818		SBEB03_080918	R T	SBEB04_081018	SB	EB05_081318
Laboraotry ID	1810168-0		1810203-04	1810168-08	1810253-08	1810296-06	18H0320-05		18H0372-06		18H0440-06		18H0525-12		18H0594-13
Sample Date	9/5/2018		9/5/2018	9/5/2018	9/6/2018	9/7/2018	8/7/2018		8/8/2018		8/9/2018		8/9/2018		8/13/2018
Sample Type	FB		FB	ТВ	ТВ	ТВ	EB		EB		EB		EB		EB
Volatile Organic Compounds (µg/L)															
Acetone	1	UJ	NA	1 UJ	1 UJ	1 U	1.7	J	1.53	J	1.1	J	1.39	1	5 U
Semivolatile Organic Compounds (µg/L)												•		•	
Naphthalene	0.0526	U	NA	NA	NA	NA	0.0571	U	0.0513 l	J	0.0513	U	0.0541 l	J	2.56 U
Pesticides (µg/L)	ND		NA	NA	NA	NA	ND		ND		ND		ND		ND
Herbicides (µg/L)	NA		NA	NA	NA	NA	NA		NA		NA		NA		NA
Polychlorinated Biphenyls (µg/L)	ND		NA	NA	NA	NA	ND		ND		ND		ND		ND
Inorganics (µg/L)															
Calcium	50	R	NA	NA	NA	NA	NA		NA		NA		NA		NA
Calcium (Dissolved)	755		NA	NA	NA	NA	NA		NA		NA		NA		NA
Chromium, Total	5	UJ	NA	NA	NA	NA	4.48		2.32		1.11	U	1 l	J	5 U
Copper	5	U	NA	NA	NA	NA	7.88		1.54		1.11	U	12.7		3 U
Cyanide	NA		NA	NA	NA	NA	10	R	10 F	R	10	R	10 l	J	10 U
Iron (Dissolved)	80.9	В	NA	NA	NA	NA	NA		NA		NA		NA		NA
Lead	7.81	J	NA	NA	NA	NA	1.11	U	1.11 L	J	1.11	U	1 l	J	5 U
Manganese	5	UJ	NA	NA	NA	NA	5.47		2.23		1.11	U	1 l	J	5 U
Nickel	5	UJ	NA	NA	NA	NA	3.96		1.11 L	J	1.11	U	1 l	J	5 U
Potassium	50	UJ	NA	NA	NA	NA	NA		NA		NA		NA		NA
Potassium (Dissolved)	87.8	J	NA	NA	NA	NA	NA		NA		NA		NA		NA
Sodium (Dissolved)	940		NA	NA	NA	NA	NA		NA		NA		NA		NA
Zinc	15	UJ	NA	NA	NA	NA	5.24	J	3.79		5.05	J	12.6 E	3	15 U
Zinc (Dissolved)	24.3		NA	NA	NA	NA	NA		NA		NA		NA		NA
Per and Polyfluoroalkyl Substances (ng/L)	NA		ND	NA	NA	NA	NA		NA		NA		NA		NA

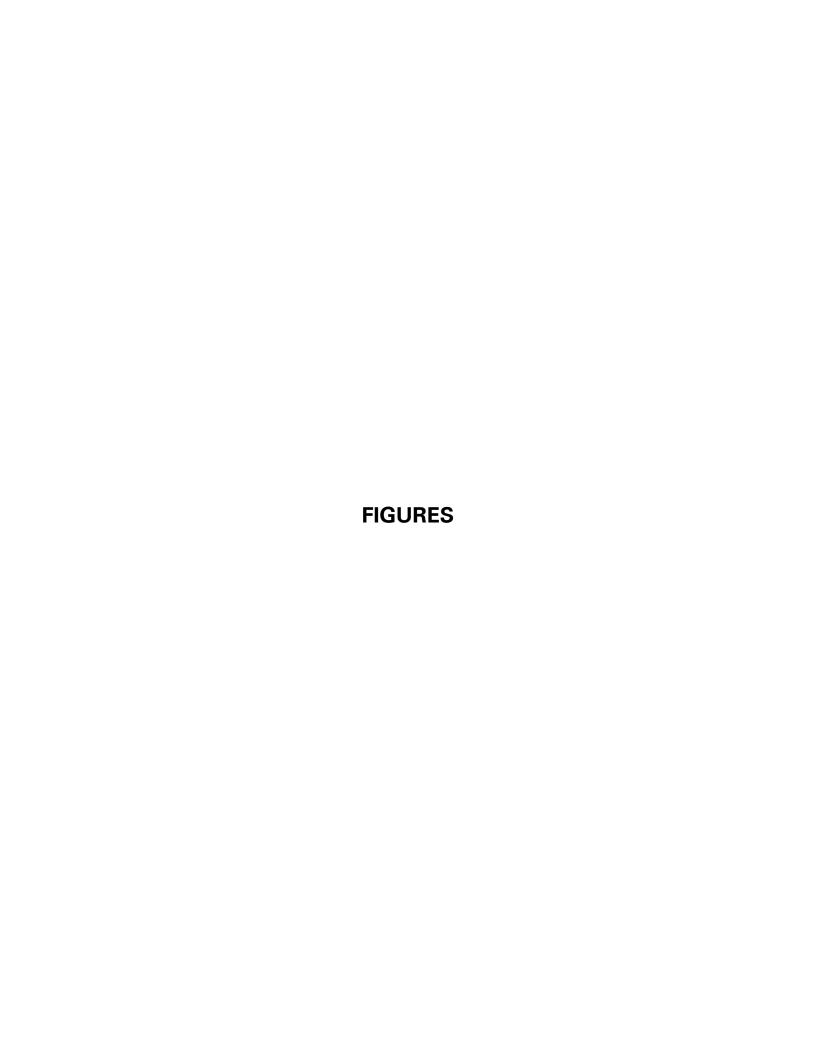
Notes provided on Page 3.

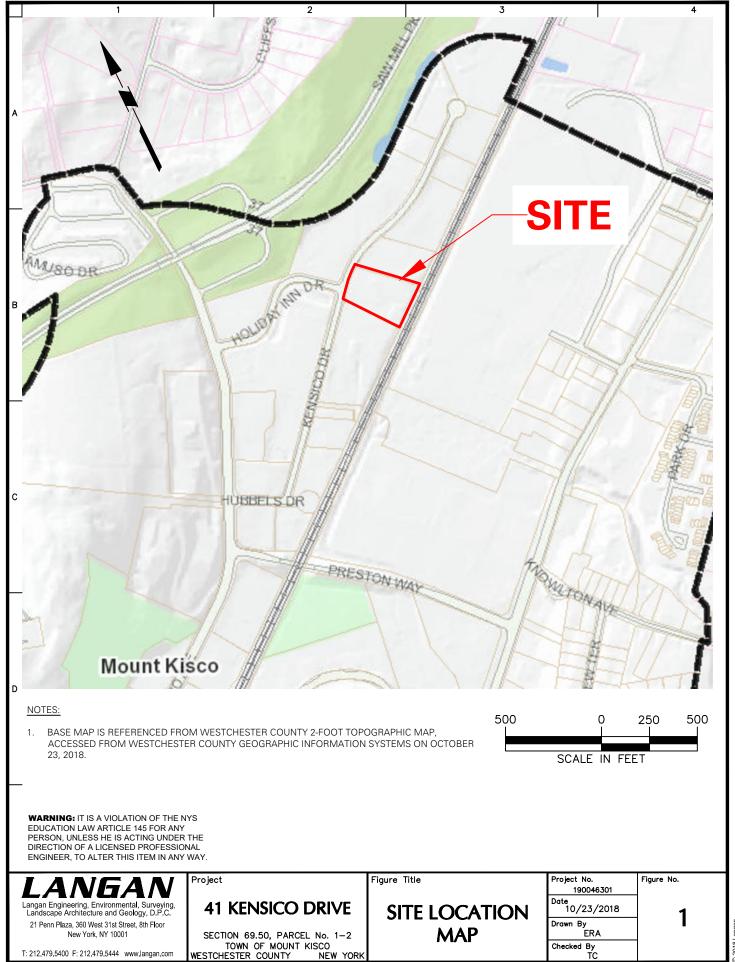
Table 7 Remedial Investigation QAQC Sample Analytical Results Summary

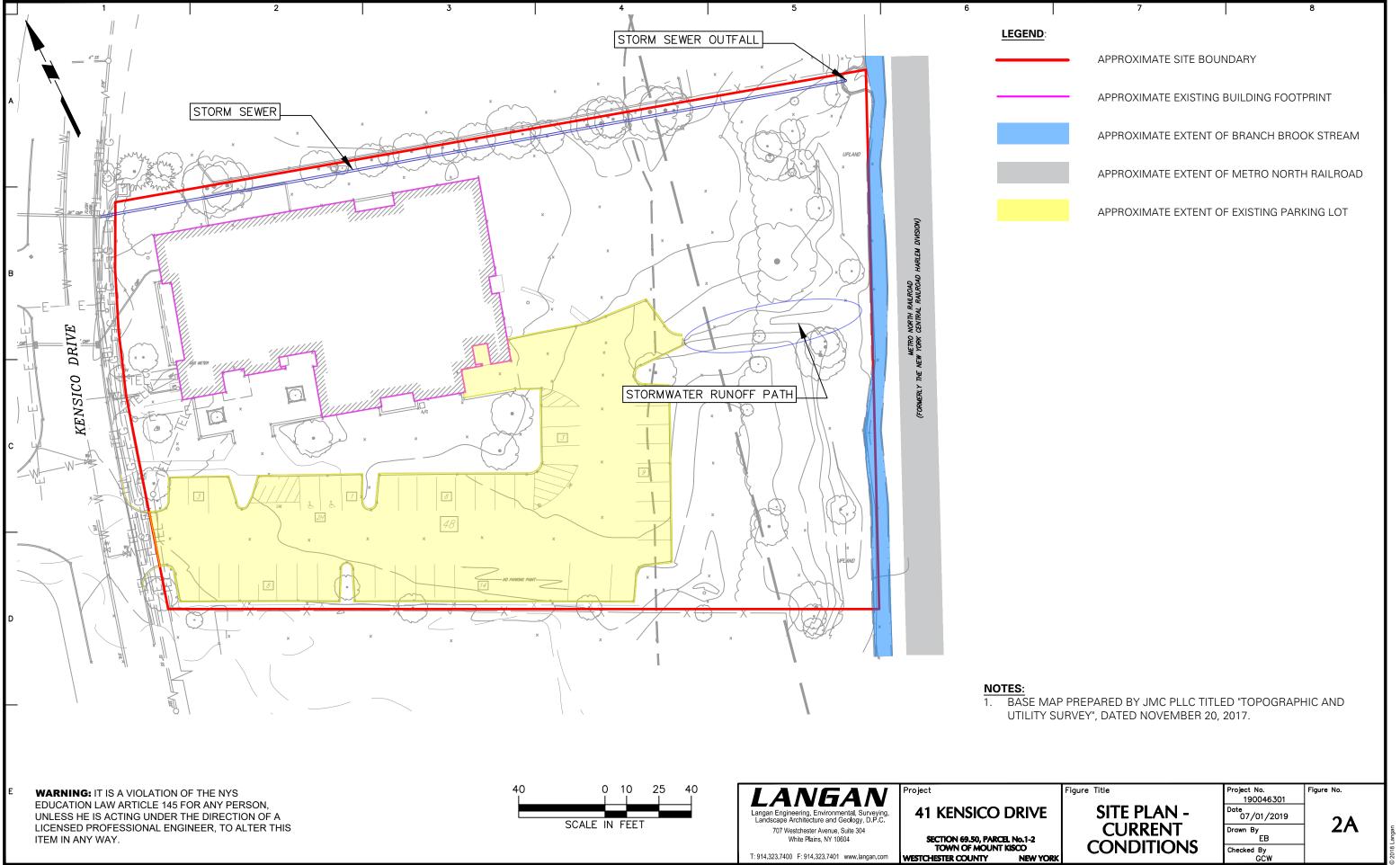
41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

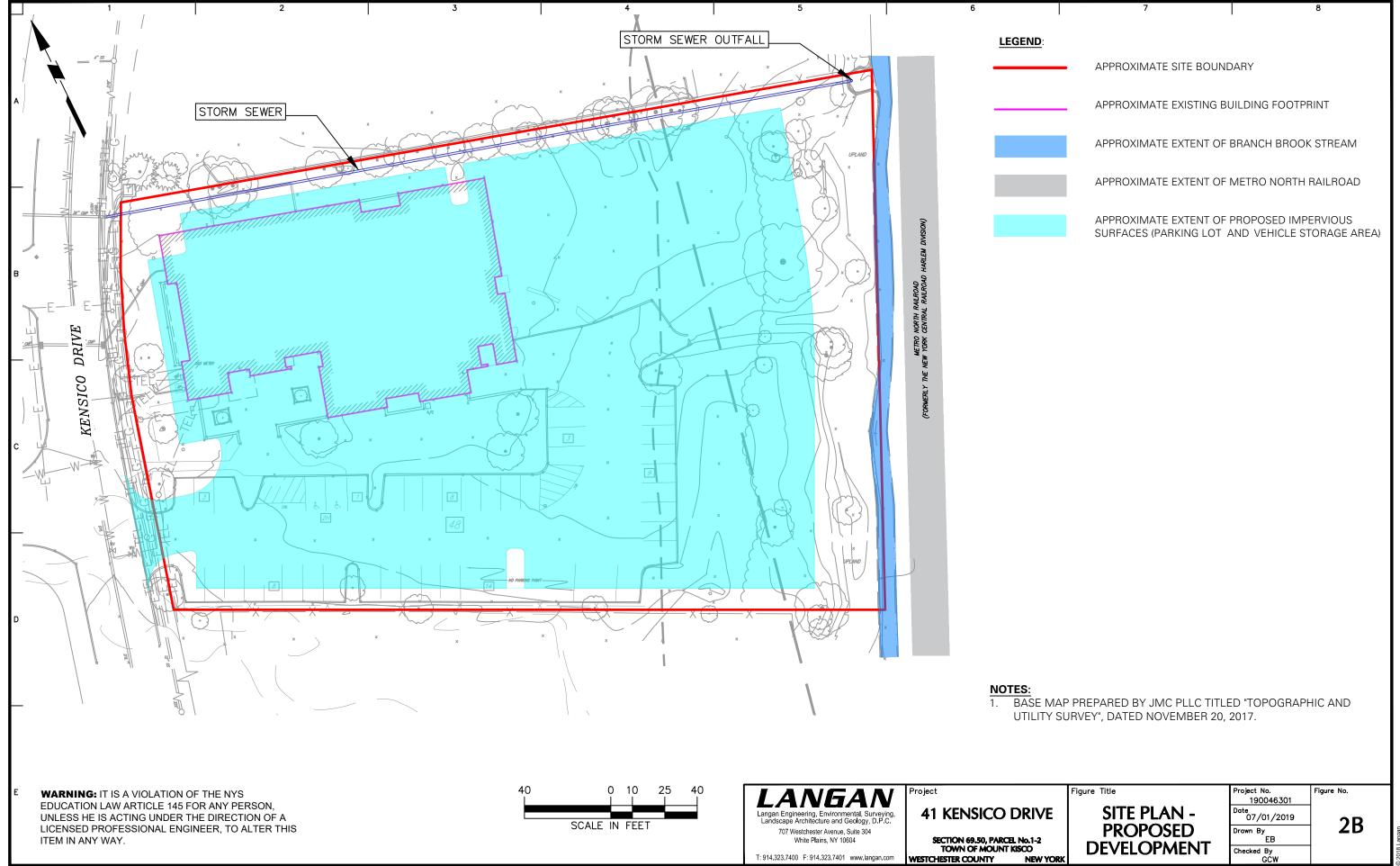
Sample ID	SBEB06_081	1418	SBEB07_08	1518	SBEB08_082	018	SBEB09_050	319	SBEB10_050219	SBEB11_050619	SWFB01_050219	SWTB01_050219	TB_050919
Laboraotry ID	18H0655-1	12	18H0697-	02	18H0937-0)7	19E0189-2	21	19E0157-04	19E0244-25	19E0144-05	19E0144-06	19E0476-04
Sample Date	8/14/201	8	8/15/201	8	8/20/201	8	5/3/2019)	5/2/2019	5/6/2019	5/2/2019	5/2/2019	5/9/2019
Sample Type	EB		EB		EB		EB		EB	EB	FB	ТВ	ТВ
Volatile Organic Compounds (µg/L)													
Acetone	1	U	1.17	J	4.08		1	U	1.79 J	NA	1 U	1 U	1 U
Semivolatile Organic Compounds (µg/L)													
Naphthalene	0.0588	U	0.0541	U	0.0513	U	0.0645	U	0.0513 U	NA	0.0947	NA	NA
Pesticides (μg/L)	ND		ND		ND		ND		NA	NA	ND	NA	NA
Herbicides (µg/L)	ND		NA		NA		NA		NA	NA	NA	NA	NA
Polychlorinated Biphenyls (µg/L)	ND		ND		ND		ND		NA	NA	ND	NA	NA
Inorganics (µg/L)													
Calcium	NA		NA		NA		55.6	U	NA	NA	113	NA	NA
Calcium (Dissolved)	NA		NA		NA		NA		NA	NA	67.2 B	NA	NA
Chromium, Total	6	U	1	U	1.11	U	5.56	U	NA	NA	5.56 U	NA	NA
Copper	3	U	1	U	1.11	U	22.2	U	NA	NA	22.2 U	NA	NA
Cyanide	10	U	10	U	10	U	10	U	NA	NA	10 U	NA	NA
Iron (Dissolved)	NA		NA		NA		NA		NA	NA	278 U	NA	NA
Lead	6	U	1	U	1.11	U	5.56	U	NA	NA	5.56 U	NA	NA
Manganese	6	U	1	U	1.11	U	5.56	U	NA	NA	5.56 U	NA	NA
Nickel	6	U	1	U	1.11	U	11.1	U	NA	NA	11.1 U	NA	NA
Potassium	NA		NA		NA		119		NA	NA	150	NA	NA
Potassium (Dissolved)	NA		NA		NA		NA		NA	NA	55.6 U	NA	NA
Sodium (Dissolved)	NA		NA		NA		NA		NA	NA	556 U	NA	NA
Zinc	17	U	6.35	U	5.59	U	27.8	U	NA	NA	27.8 U	NA	NA
Zinc (Dissolved)	NA		NA		NA		NA		NA	NA	27.8 U	NA	NA
Per and Polyfluoroalkyl Substances (ng/L)	NA		NA		NA		ND		ND	ND	ND	NA	NA

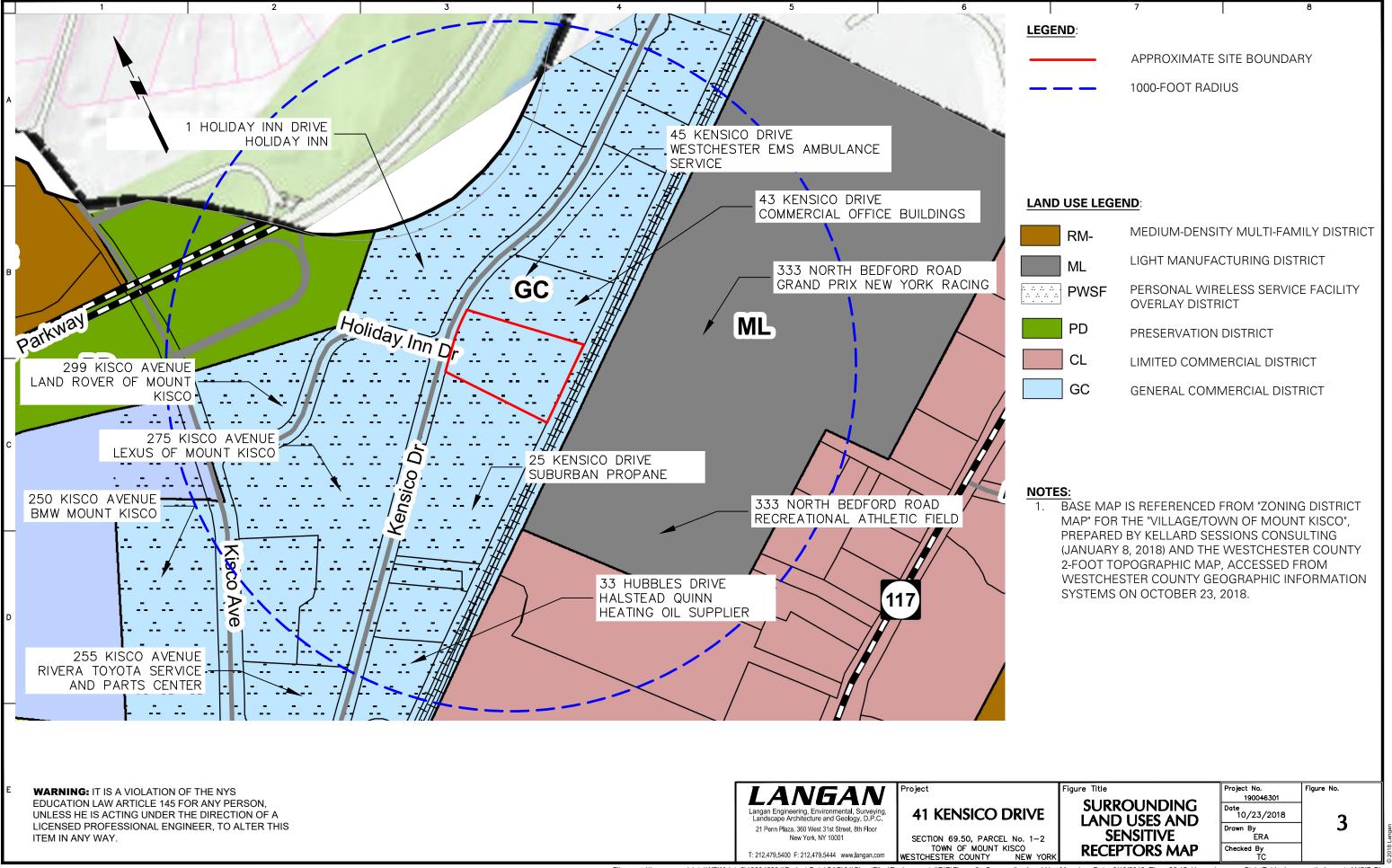
Notes provided on Page 3.

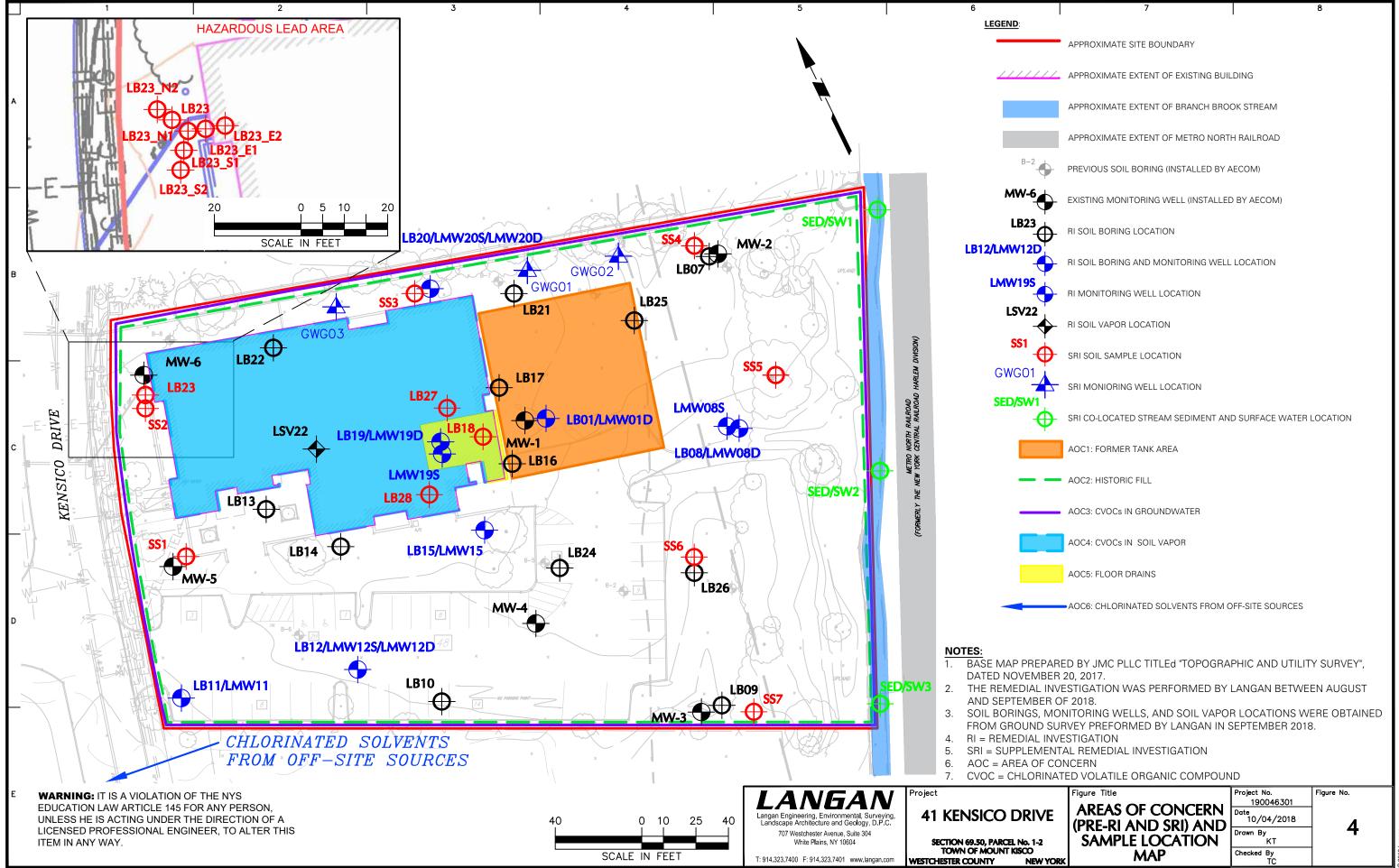

Table 7 Remedial Investigation QAQC Sample Analytical Results Summary

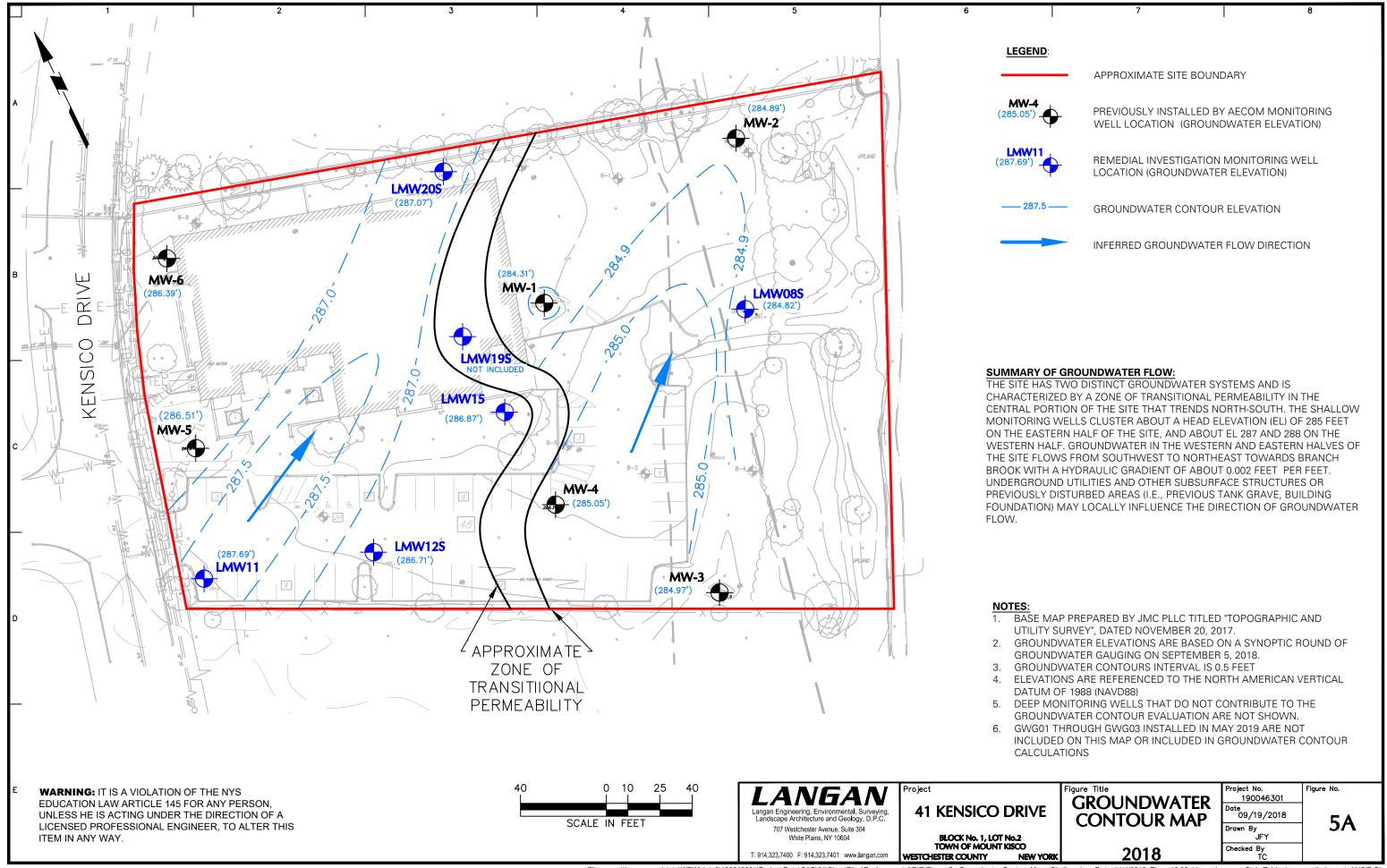

41 Kensico Drive Mount Kisco, New York NYSDEC BCP Site No.: C360163 Langan Project No.: 190046301

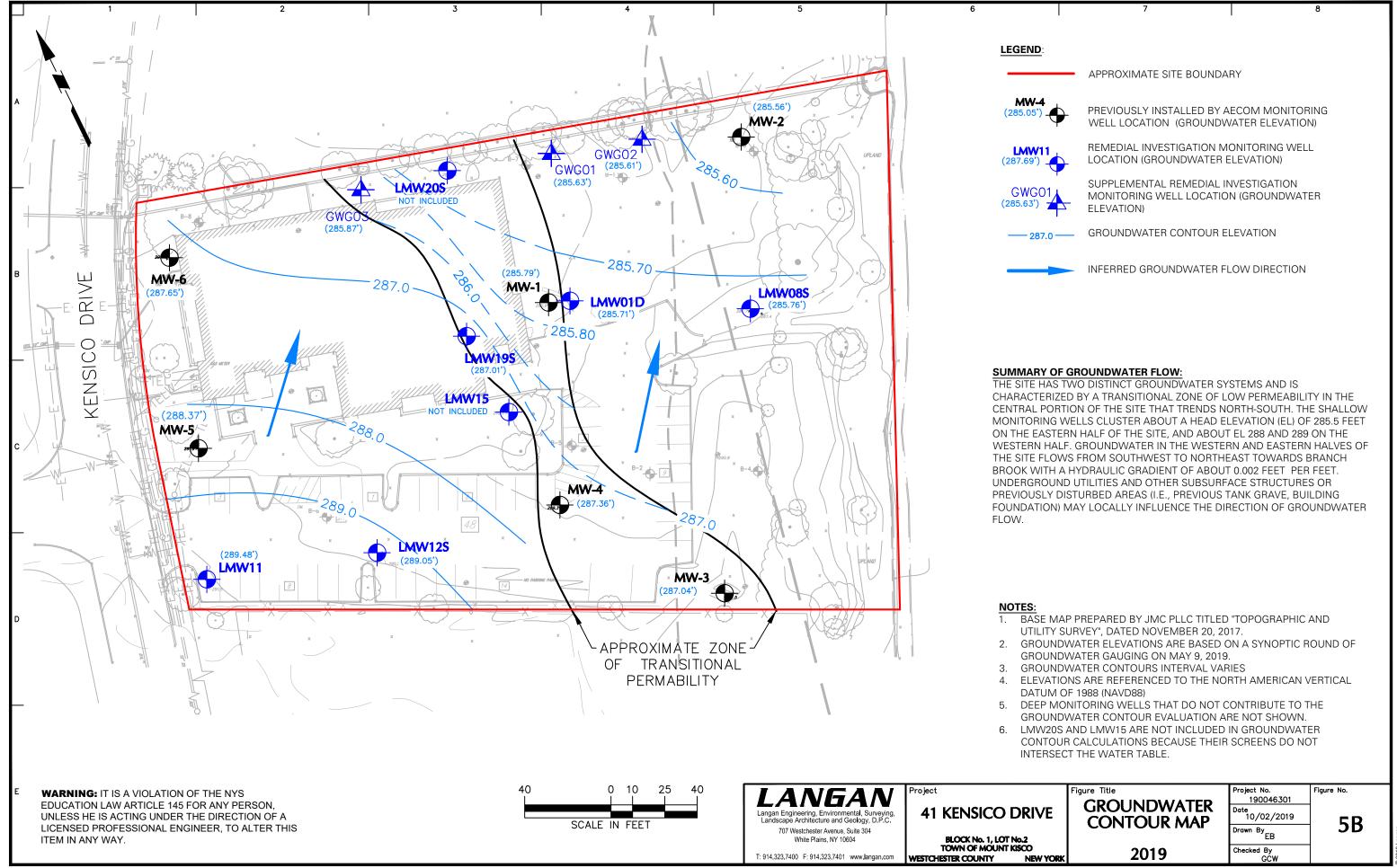

Notes:

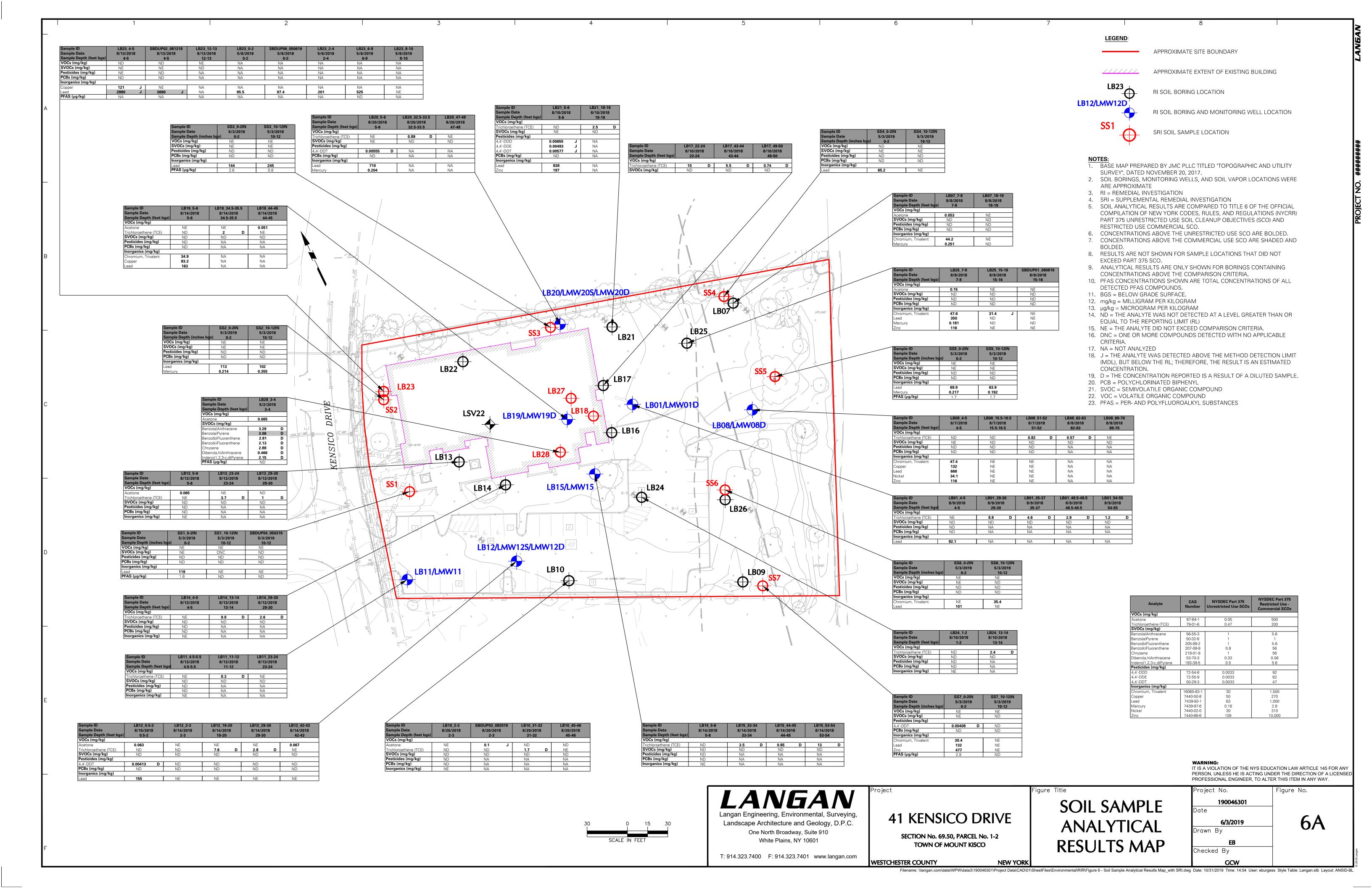

- 1. Only detected analytes are shown in the table.
- 2. μ g/L = micrograms per liter
- 3. FB = Field Blank
- 4. TB = Trip Blank
- 5. EB = Equipment Blank
- 5. NA = Not Analyzed
- 6. ND = Not detected

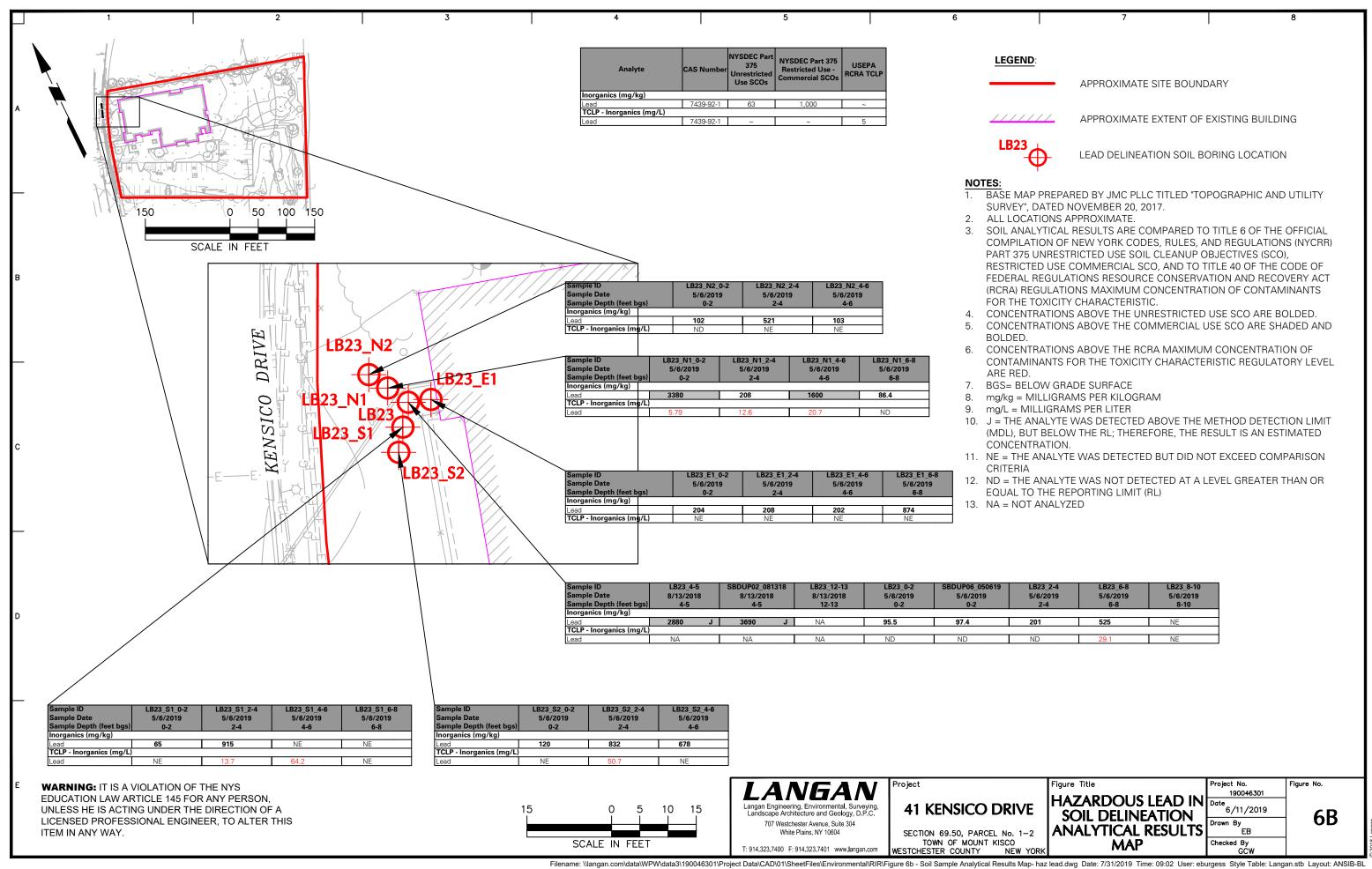

- $\mbox{\ensuremath{B}}\mbox{=}\mbox{\ensuremath{The}}\mbox{\ensuremath{analysis}}\mbox{\ensuremath{blank}}\mbox{.}$
- R The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- J The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.

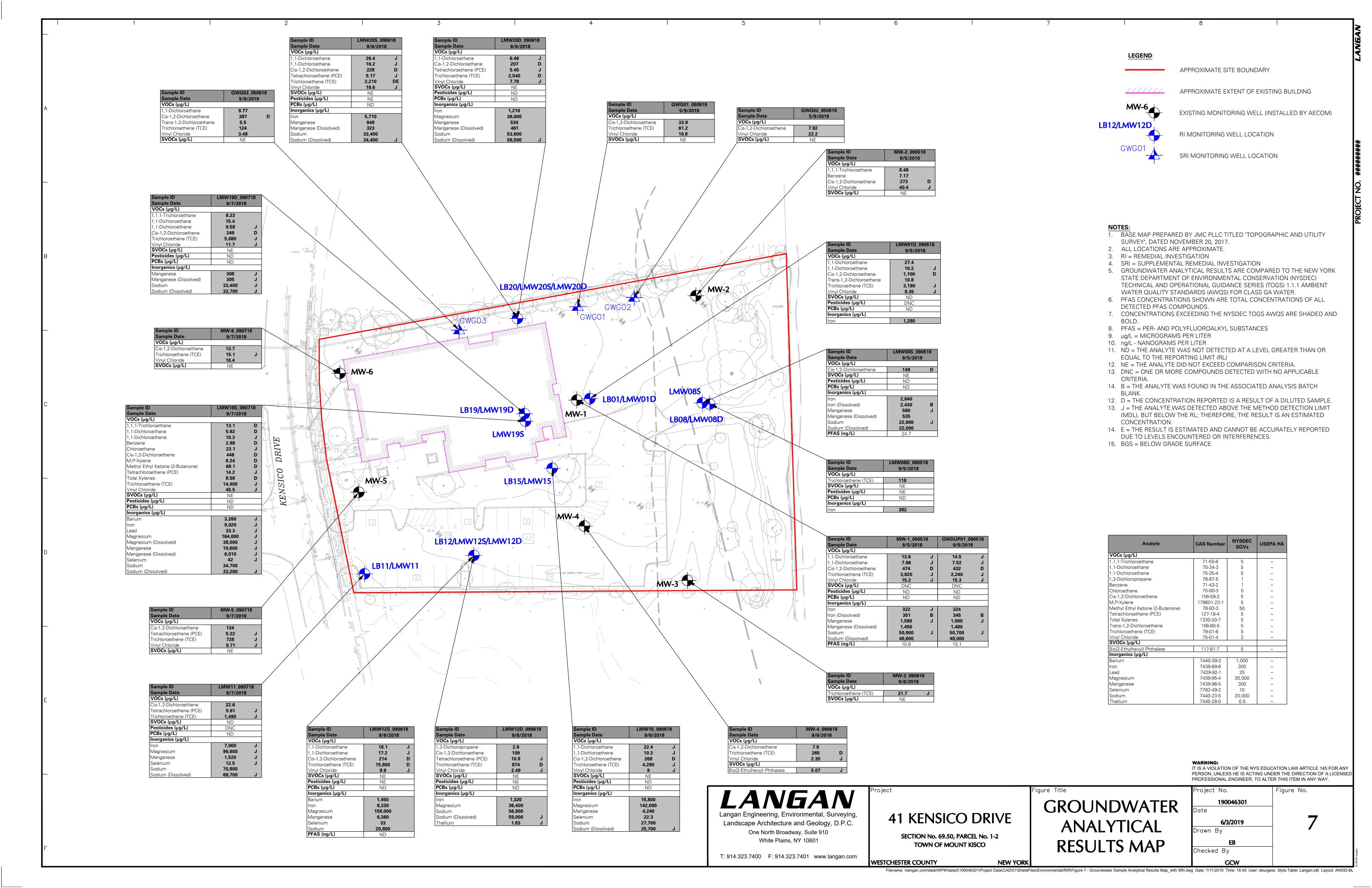


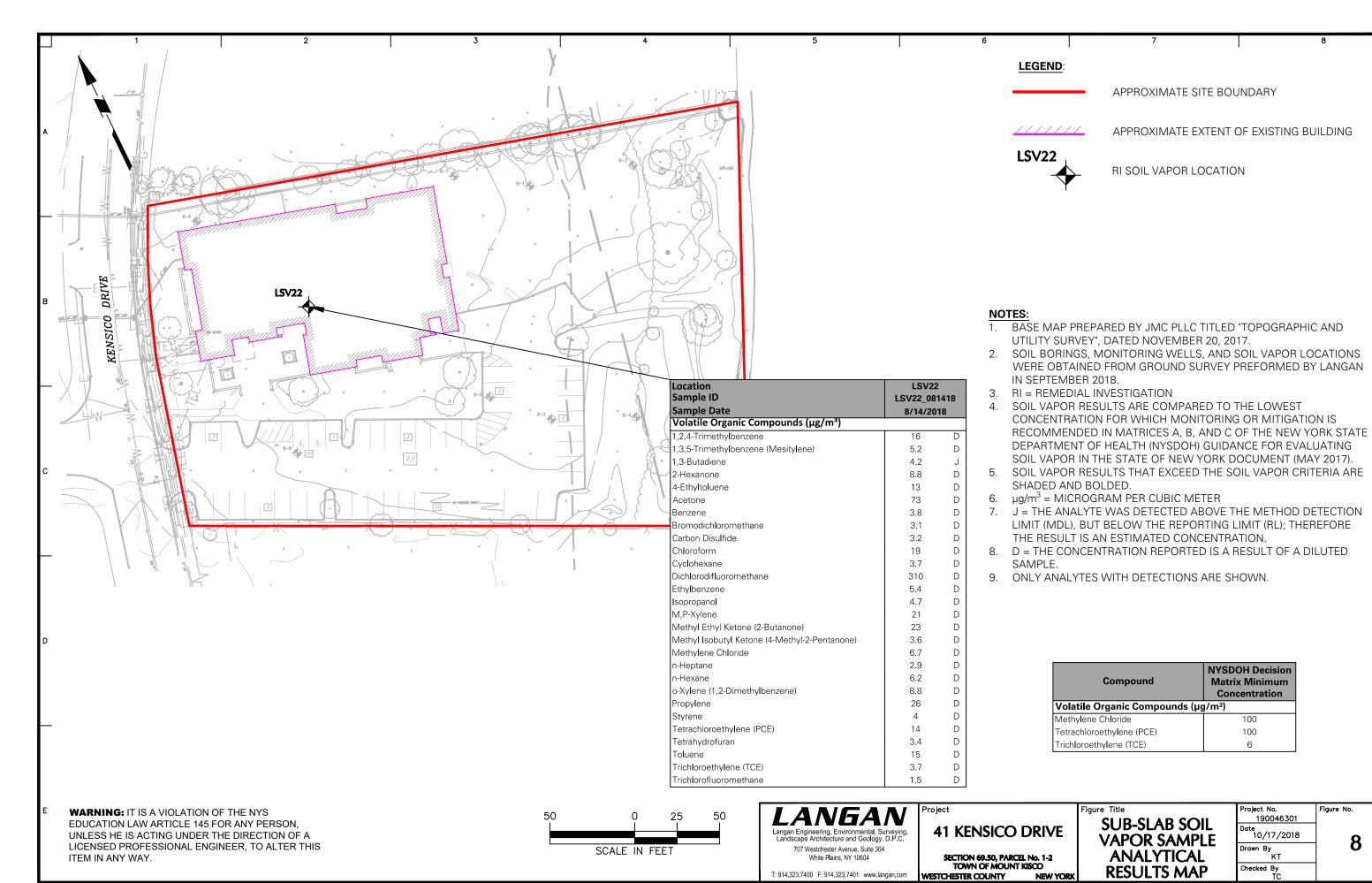


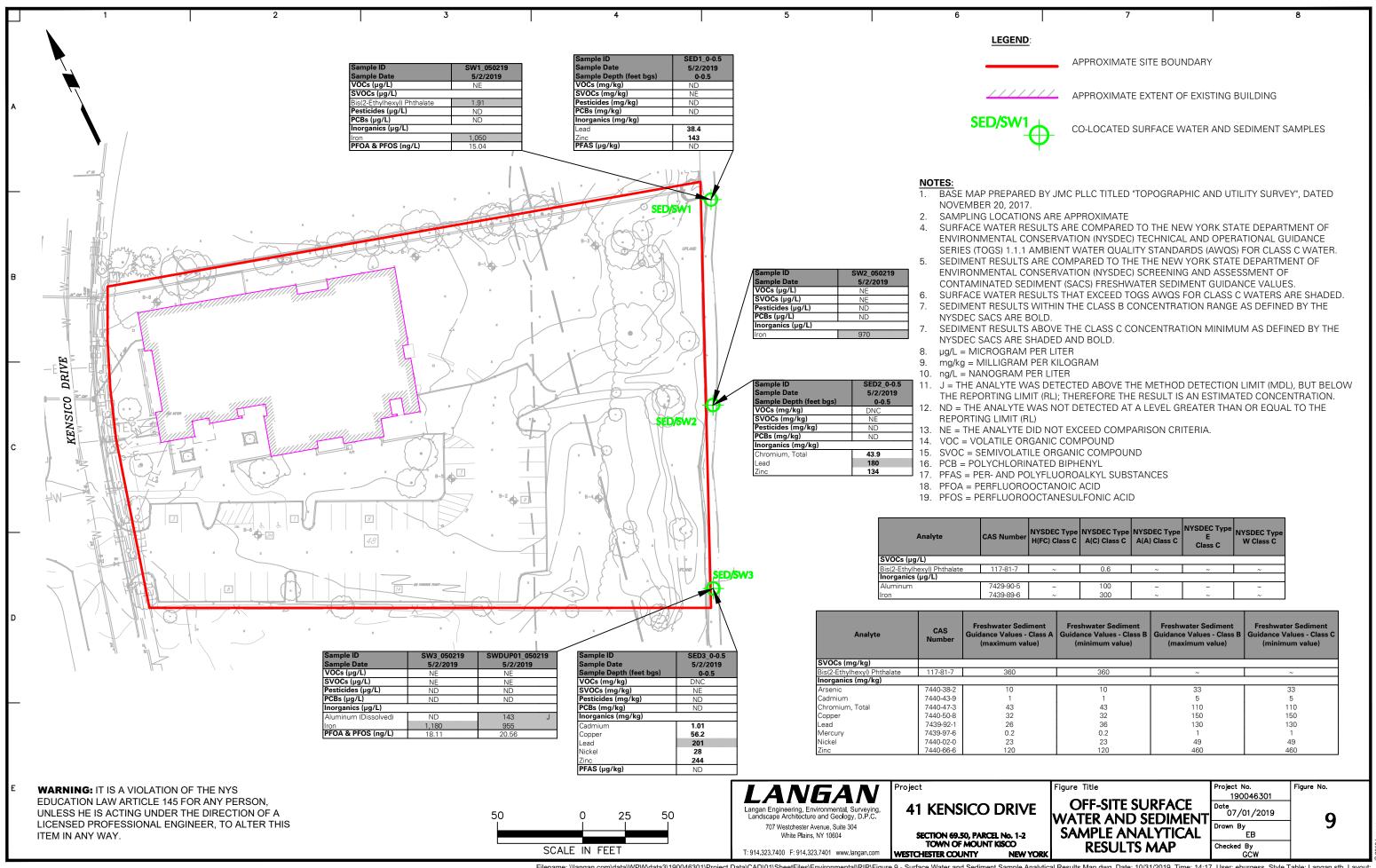


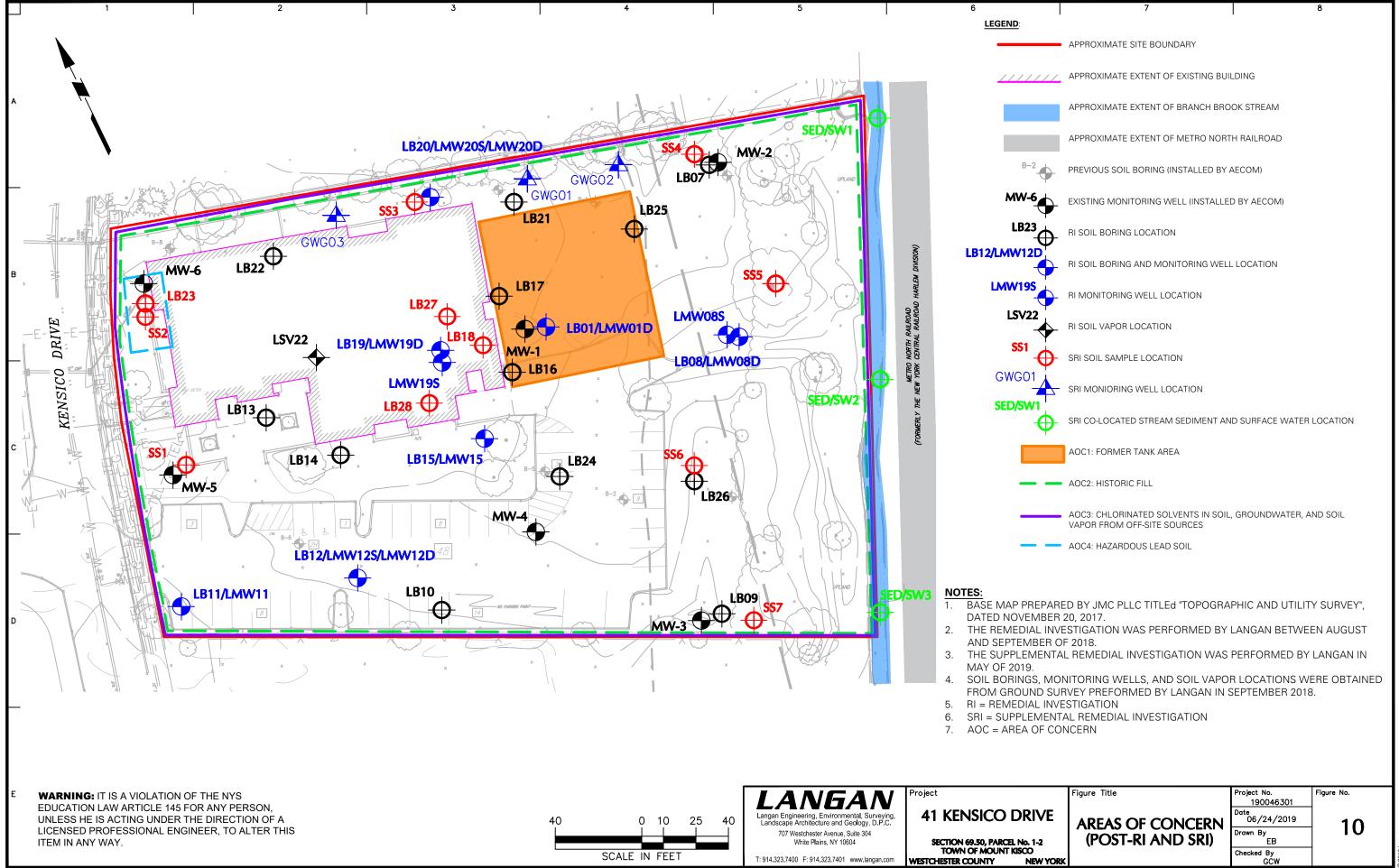












APPENDIX A PREVIOUS ENVIRONMENTAL REPORTS

APPENDIX B GEOPHYSICAL SURVEY REPORTS

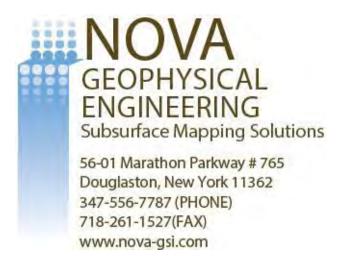
GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Property 41 Kensico Drive, Mt. Kisco, New York 10549

NOVA PROJECT NUMBER

18-0877

DATED


August 8, 2018

PREPARED FOR:

LANGAN

360 West 31st Street, 8th Floor New York, NY 10001 www.langan.com

PREPARED BY:

NOVA GEOPHYSICAL SERVICES

SUBSURFACE MAPPING SOLUTIONS

56-01 Marathon Parkway #765, Douglaston, New York 11362 Ph. 347-556-7787 Fax. 718-261-1527 www.nova-gsi.com

August 8, 2018

Tyler Chow, PE Project Manager

LANGAN

Phone: 212.479.5400 Fax: 212.479.5444

21 Penn Plaza

360 West 31st Street, 8th Floor New York, NY 10001-2727

Direct: 212.479.5438 Mobile: 646.689.2685

Re: Geophysical Engineering Survey (GES) Report

Commercial Site 41 Kensico Drive.

Mt. Kisco, New York 10549

Dear Mr. Chow:

Nova Geophysical Services (NOVA) is pleased to provide the findings of the geophysical engineering survey (GES) at the above referenced project site: 41 Kensico Drive, Mt. Kisco, New York 10549 (the "Site").

INTRODUCTION TO GEOPHYSICAL ENGINEERING SURVEY (GES)

NOVA performed a geophysical engineering survey (GES) consisting of a Ground Penetrating Radar (GPR) and Electromagnetic (EM) survey at the site. The purpose of this survey is to locate and identify underground utilities, storage tanks, and other substructures on August 2nd, 2018.

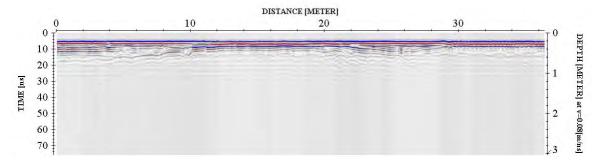
The equipment selected for this investigation was a Sensors and Software Noggin 250 MHz ground penetrating radar (GPR) with a shielded antenna and a Radio Detection RD7100 Electromagnetic utility locator.

A GPR system consists of a radar control unit, control cable, and transducer (antenna). The control unit transmits a trigger pulse at a normal repetition rate of 250 MHz. The trigger pulse is sent to the transmitter electronics in the transduce via the control cable. The transmitter electronics amplify the trigger pulse into bipolar pulses that are radiated to the surface. The

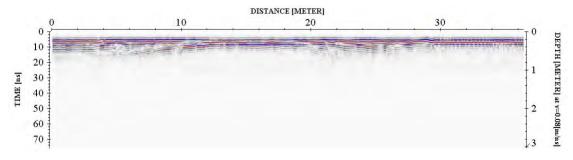
transformed pulses vary in shape and frequency according to the transducer used. In the subsurface, variations of the signal occur at boundaries where there is a dielectric contrast (void, steel, soil type, etc.). Signal reflections travel back to the control unit and are represented as color graphic images for interpolation.

A typical electromagnetic (EM) utility locating system consists of a transmitter unit and a receiver unit. The receiver unit can be used independently of the transmitter unit in order to detect utility lines with an inherent EM signature (electric utility lines, water lines, etc.). If needed a current at a specific frequency can also be placed on a utility that is being located. This can be done via the transmitter unit by either direct connection or induction via an EM field varying at specific frequency. The receiver unit is then set to the selected frequency and the electromagnetic field created by the current running through the utility can be located allowing the utility to be marked.

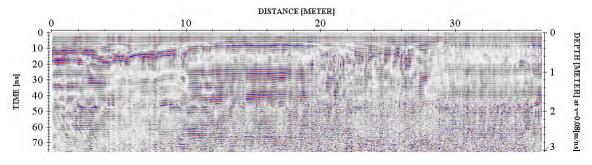
GEOPHYSICAL METHODS

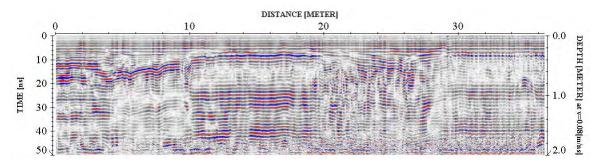

The project site was screened using GPR to search the specified area and inspected for reflections, which could be indicative of substructures and utilities within the subsurface. An EM utility locator was also used to help determine the locations of utilities within the survey area.

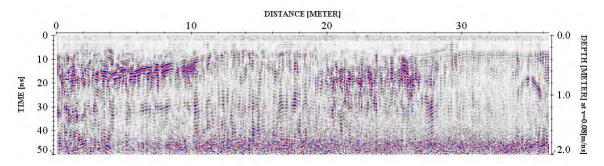
EM data was collected and interpreted on site and suspected utilities marked as needed. GPR data profiles were collected for the areas of the Site specified by the client and processed as specified below.


DATA PROCESSING

In order to improve the quality of the results and to better identify anomalies NOVA processed the collected data. The processing work flow is briefly described in this section.




Step 2. Remove instrument noise (dewow)


Step 3. Correct for attenuation losses (energy decay function)

Step 4. Remove static from bottom of profile (time cut)

Step 5. Mute horizontal ringing/noise (subtracting average)

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 41 Kensico Drive.

Mt. Kisco, New York 10549

The above example shows the significance of data processing. The last image (step 5) has higher

resolution than the starting image (raw data - step 1) and represents the subsurface anomalies

much more accurately.

PHYSICAL SETTINGS

NOVA observed the following physical conditions at the time of the survey.

Weather: Sunny

Temperature: 85° F

Surface: Asphalt, Concrete, Vegetation

Geophysical Noise Level: Geophysical noise at the site was medium due to being located in a

semi-urban environment.

RFSULTS

The results of the geophysical engineering survey (GES) identified the following at the project

site:

The GES identified subsurface utilities: Electric, gas, sanitary sewer, storm sewer, water,

and street lighting subsurface utilities located within the survey area. Shown in site survey

plan.

The GES identified a large, approximately 5 foot diameter, drainage outflow on the

northern edge of the survey area draining to the creek on the eastern side of the site.

Shown in the site survey plan.

An area with a previously removed UST was investigated and is shown on the survey

plan. No large geophysical anomalies resembling an underground storage tank (UST)

were identified.

All detected subsurface anomalies were marked in the onsite mark out.

Multiple boring locations were cleared. All cleared boring locations were marked in the

onsite mark out.

GEOPHYSICAL ENGINEERING SURVEY REPORT

Commercial Site 41 Kensico Drive,

Mt. Kisco, New York 10549

If you have any questions, please do not hesitate to contact the undersigned.

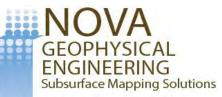
Sincerely,

NOVA Geophysical Services

Levent Eskicakit, P.G., E.P.

Sweet Phill

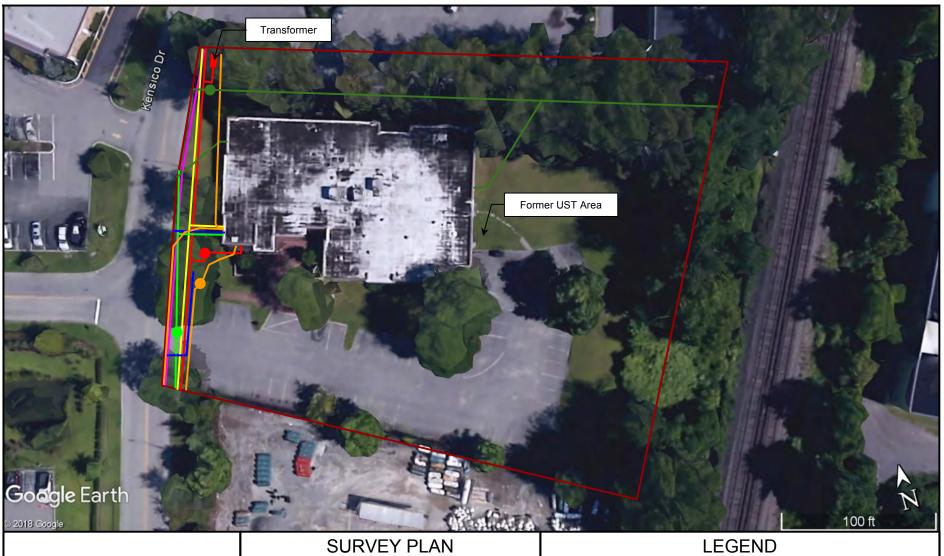
Project Engineer


Attachments:

Geophysical Images

Survey Plan

Site Location Map


56-01 Marathon Parkway # 765 Douglaston, New York 11362 347-556-7787 (PHONE) 718-261-1527(FAX) www.nova-gsi.com SITE: Commercial Site 41 Kensico Drive,

Mt. Kisco, New York 10549

CLIENT: Langan

DATE: August 2nd, 2018

AUTH: Chris Steinley

56-01 Marathon Parkway # 765 Douglaston, New York 11362 347-556-7787 (PHONE) 718-261-1527(FAX) www.nova-gsi.com

SITE: **Commercial Site**

41 Kensico Drive,

Mt. Kisco, New York 10549

CLIENT: Langan

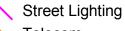
DATE: August 2nd, 2018

AUTH: Chris Steinley

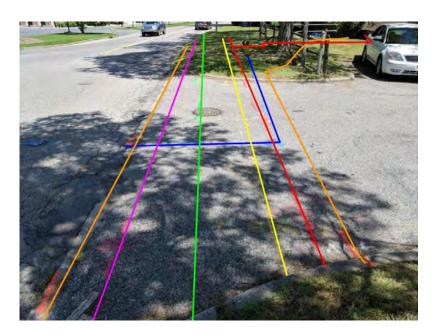
Survey Area

Water

Sanitary Sewer

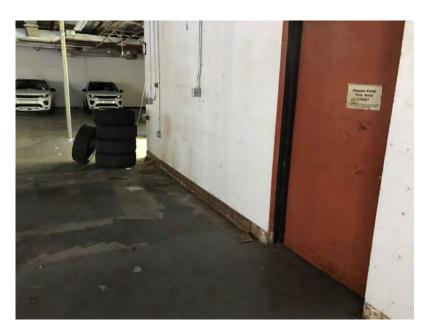

Storm Sewer

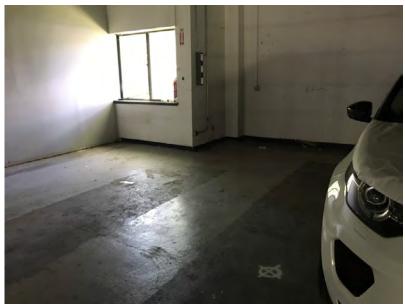
Electric

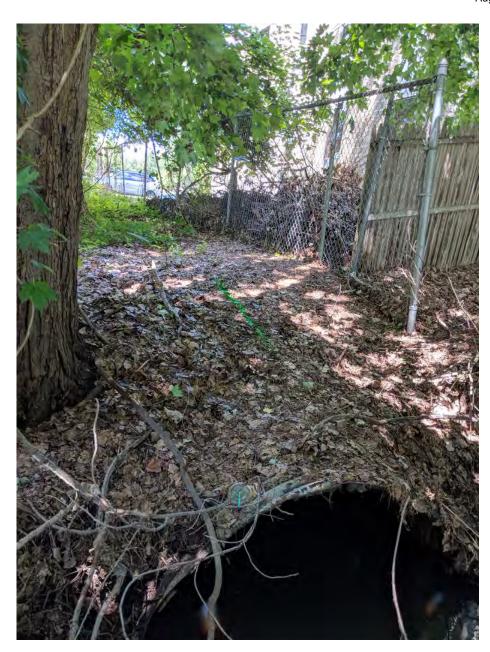

Gas

Manhole

Telecom







Commercial Site 41 Kensico Drive, Mt. Kisco, New York 10549

Vit. Kisco, New York 105 August 2nd, 2018

APPENDIX C SOIL BORING LOGS

LANGAN

	V LJ /	1/V		Log		Boring _			LB	01			Sheet 1	of	3		
Project 41 Kensico Drive						Project No.											
41 Kensico Drive Location						190046301 Elevation and Datum											
Mount Kisco Drilling Company						NAVD88 289.8 Date Started Date Finished											
AARCO Environmental Services, Inc.					Da	8/9/1						Jaie i	IIIISIICU	8/9/18			
Drilling Equipment						Completion Depth Rock Depti						Depth					
Geoprobe 7822 DT Size and Type of Bit						60 ft Disturbed						60 ft Undisturbed Core					
2" Diameter Steel Macrocore Cutting Shoe Casing Diameter (in) Casing Depth (ft)						Number of Samples					5		N/A mpletion	24 HR.	N/A		
L N/A						Water Level (ft.)					4.5	Ž	Z	<u>T</u>	N/A		
Casing Hammer N/A Weight (lbs) N/A Drop (in) N/A							Drilling Foreman Thomas Seickel										
Sampler 2" Diameter 4-foot Long Steel MC							Field Engineer										
Sampler Hammer	mer N/A Weight (lbs) N/A Drop (in) N/A							Luke McCartney									
SYMBOL (tt)	Sample Description						Depth b o			Sample Data Sample Data Sample Data Perconomic Sample Data Perconomic Sample Data Perconomic Sample Data			Remarks				
9 HAN (ft) +289.8		Oampic Desci	ιριιστι			Scale	Number	Туре	Rec (in	Pene resi BL/6	Readii (ppm		(Drilling Fluid, D Fluid Loss, Drilling	Resistance	e, etc.)		
	-2") SLATE STC										0.0						
R1	R1 (0-18"): brown fine SAND, trace silt, trace fine gravel, asphalt (moist) [FILL]							111			0.0						
								MACROCORE	18/48								
						2 -	L	ACRO	18/								
						3 =	Σ										
-													0 11 11 501 15 11000				
													Collect LB01_4-5 at 1000				
						6 -	R2	MACROCORE	10/48								
	00 (0 6"); dark b	rown fine SAND	trano nil	t timbor		7 -		M									
202.3 \ co	\ Concrete (wet) [FILL]										0.0						
R2	2b (6-10"): soft g	rey CLAY (wet)				8 +											
						9 =											
						10	R3	CORE	œ								
R3	R3a (0-17"): soft grey CLAY, trace silt, trace fine sand, trace fine gravel (wet)							MACROC	24/48		0.0						
tra	ice fine gravel (v	vet)				11 =		MA			0.0						
278.3	Bb (17-24"): loos	e grayish brown	fine SAN	ND. trace							0.0						
me	ediùm sand, trac	ce fine sand, trac	e fine gr	avel (wet)		12 +											
						13											
						F = 1		ORE	∞								
일 :::: R4	l (0-22"): mediur	m-dense fine SA	ND, trac	e silt (wet)		14 -	R4	MACROCOR	22/48		0.0						
4630						15		MA			0.0						
											0.0						
						16											
						17 -											
PE PE	5 (0-31"): mediur	m-dense fine SA	ND trac	e silt (wet)				ORE	ω,		0.0						
NO N	, (0-01). III c ulul	m-delise ilile SA	.เงษ, แสบ	C SIII (WGI)		18	R5	MACROCORE	31/48		0.0						
						19 -		MAC			0.0						
ANG P											0.0						
						E 20 I											

LB01 Log of Boring Sheet of 3 Proiect Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.8 Mount Kisco Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale (ft) Reading (ppm) 269. 20 Switch to dual-tube for deeper interval sampling 21 22 **R**6 DT 0.0 R6a (0-8"): soft grey CLAY (wet) 266. 23 0.0 R6b (8-32"): stiff grey SILT (wet) 6/28/2019 6:05:15 PM 0.0 24 0.0 Small lenses of clay between 21-22" 0.0 25 26 DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ. R7 (0-35"): medium-dense grey silty fine SAND (wet) Small lenses of clay between R^{7} 20-21" Ы 0.8 28 0.7 Collect LB01 28-29 CVOC 0.2 Blue dye test: Negative 29 1.6 3.4 3.4 Collect LB01_29-30 at 1245 30 31 88 DT 0.8 R8 (0-28"): medium-dense grey silty fine SAND (wet) 33 2.1 Lense of clayey silt between 1.6 34 2.1 Collect LB01 33-34 CVOC at 1248 0.8 35 36 Blue dye test: 35-37 Negative 1.4 R9a (0-27"): medium-dense grey fine SAND, trace silt (wet) 37 Collect LB01_27-39 at 1300 for TOC, BOD, COD 0.0 **R**3 0.2 grabs at 34-35'
• Collect LB01_35-37 at 1250 38 0.0 0.0 R9b (27-37"): medium-dense grey silty fine SAND (wet) 39 0.0 R9c (37-43"): firm olive CLAY (moist to wet) 42 R10a (0-28"): fine olive CLAY, trace silt (wet) R10 34/60 DT 0.0 Lense of clayey SILT 43 between 12-13" 0.0 0.0 0.0 Lenses of clay between 22-23" and 25-26" 0.2 R10b (28-34"): medium-dense silty fine SAND (wet)

LB01 Log of Boring Sheet of 3 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.8 Mount Kisco Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale (ft) Reading (ppm) 244. 45 46 25/60 <u>7</u> DT 48 0.6 Collect LB01 48-49 CVOC R11a (0-12"): soft olive-grey CLAY (wet) 3.5 49 Collect LB01_48.5-49.5 at R11b (12-25"): medium-dense olive silty fine SAND (wet) 1300 1.4 Blue dye test: Negative 50 51 NLANGAN.COMIDATAWIWPWIDATA3/190046301/PROJECT DATAL DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS. GR. 52 22/60 R12 П 53 R12a (0-16"): medium-dense olive-brown fine SAND, trace Collect LB01 53-54 CVOC 2.7 silt (wet) 54 1.9 Collect LB01_54-55 at 1315 Blue dye test: Negative 24 R12b (16-22"): firm olive-brown fine SAND, weathered rock 55 56 Install MW01D to 56' feet bgs - Auger refusal R13 4/60 Poor recovery 58 Collect LB01 48-60 at 1400 for TOC, $BO\overline{D}$, COD, grabs at 54-55 59 0.4 R13 (0-4"): weathered rock, rock fragments 60 End of boring at 60 FT BGS -End of boring at 60 feet bgs MW01D installed at 56 feet 61 - Bulk samples between 25-39 and 49-60 for INJIT parameters 62 5 samples for RI parameters 63 - 5 samples for treatability parameters 64 65 66 67 68 69

LANGAN **LB07** Log of Boring Sheet of 1 Proiect Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 288.8 **Drilling Company** Date Started Date Finished AARCO Environmental Services, Inc. 8/8/18 8/18/18 **Drilling Equipment** Rock Depth Completion Depth Geoprobe 7822 DT 20 ft 20 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2" Diameter Steel Macrocore Cutting Shoe N/A N/A Casing Diameter (in) Casing Depth (ft) 24 HR. Completion Water Level (ft.) N/A Drop (in) N/A Casing HammerN/A Drilling Foreman Weight (lbs) N/A Thomas Seickel Sampler 2" Diameter 4-foot Long Steel MC Field Engineer Drop (in) N/A Sampler Hammer Weight (lbs) N/A N/A Luke McCartney Sample Data 6/28/2019 6:05:21 MATERIAL SYMBOL Remarks Elev Depth Recov. (in)
Penetr. resist (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) (ppm) 288 (0-5"): topsoil 288. 0.0 R1 (5-34"): loose brown fine SAND, some silt, trace clay, 0.0 trace fine gravel, concrete (moist) [FILL] MACROCORE 0.0 Ξ 0.0 0.0 3 5 MACROCC 6 0.0 R2a (0-7"): loose brown silty fine SAND, some clay, DISCIPLINE/ENVIRONMENTAL\GINTLOGS\41 concrete, rubber (moist to wet) [FILL] 0.0 R2b (7-17"): soft grey to black organic CLAY (moist) 0.0 Collect LB07_7-8 at 1550 8 9 R3a (0-12"): soft brown to black organic CLAY (moist) 83 0.0 R3b (12-21"): soft brown organic CLAY, some silt, trace fine sand, trace medium sand (wet) 0.0 R3c (21-34"): firm grey silty fine SAND (wet) 0.0 0.0 12 1\DATA\WPW\DATA3\190046301\PROJECT DATA_ 13 7/48 7 15 0.0 R4 (0-7"): loose grey medium SAND, trace fine sand, trace Poor recovery 16 coarse sand (wet) 0.0 R5a (0-17"): loose grey medium SAND, some fine sand 0.0 MACROCORE 0.0

R5

0.0

0.0

0.0

0.0

Collect LB07 18-19 at 1352

End of boring at 20 feet bgs, borehole backfilled with

clean sand to grade

18

19

R5b (17-25"): loose grey coarse SAND, some medium

sand, trace fine gravel (wet)

End of boring at 20 feet bgs

R5c (25-44"): stiff grey SILT (wet)

		VU	1/V		Log o	of B	Boring			LE	808			Sheet	1	of		4
Project		4416				Pro	oject No			400	0.4000	4						
Location	1	41 Kensico Drive				Ele	vation	and Da	atum		04630	1						
D ::::		Mount Kisco				L				NA۱	/D88 2							
Drilling (Compa	^{ny} AARCO Environmen	tal Services Inc			Da	te Start	ed			8/7/18		Date F	Finished		8/8/18		
Drilling E	Equipm		tai Ocivioco, ino	<u>, </u>		Со	mpletio	n Dept	th		0/1/10		Rock [Depth		0/0/10		
≩ Size and	1 Type	Geoprobe 7822 DT								Diet	71 ft urbed		Unc	disturbed		71 ft Core		
	,,	2" Diameter Steel Ma	acrocore Cutting		5 4 (6)	Nu	mber of	Samp	oles			5			N/A		N/A	4
≦ Casing [N/A			asing Depth (ft)		ater Lev			Firs	t -	4	Cor	mpletion Z		24 HR.	N/A	4
Casing I		^{er} N/A	Weight (lbs)	N/A	Drop (in) N/A	Dri	lling Fo	reman		-1	0-:	-11						
Sampler		2" Diameter 4-foot Lo		2" Diame	ter 5-foot Long S	t e ie	ld-Ehgi	neer		nom	as Sei	скеі						
Sampler	Hamn	^{ner} N/A	Weight (lbs)	N/A	Drop (in) N/A	L			L		McCar			1				
MATERIAL SYMBOL	Elev.		Sample Descr	rintion			Depth	Jec	T o		mple Da	ata PIC)	(5.31)	Rem			
MATE	(ft) +286.7		Sample Desci	іриоп			Scale	Number	Typ	Reco	Penetr. resist BL/6in	Readi (ppn			ng Fluid, D ss, Drilling)
\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	+286.5	(0-3") topsoil	TOTAL CAND		-: It (-l	\nearrow	— 0 ·	=				0.0	1					
		R1 (3-17"): loose b	rown tine SAND	, some s	SIIT (ary) [FILL]		1	3				0.0						
₹ \$								4_	CORE	7/48		0.0)					
							_ 2	<u> </u>	MACROCORE	12/								
	}						3	-	Ň									
<u> </u>						∇	_	=										
<u> </u>						<u> </u>	- 4	+						Collec	t LB08	_4-5 at	1500	
							5	4										
	+281.0			-,		_	<u> </u>]	MACROCORE	∞								
	+280.7	R2a (0-4"): loose b R2b (4-22"): soft bl			It (moist to wet)	$\overline{}$	- 6	- - - - - - - - -	CRO	27/48		0.0						
		,	ŭ	, ,			7	4	MA			0.0						
	+279.2	R2c (22-27"): loose	e brown organic	fine SAN	ND (wet)			3				0.0)					
֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		,	· ·		,		- 8	+	T									
₹ 	+277.7	R3a (0-19"): loose	Lancon alles din a	CAND		_	9	4				0.0)					
		R3a (0-19). 100se	brown silty line (SAND, I	race clay (wet)]	CORE	ထ္		0.0)					
	+276.2						10	7 2	MACRO	37/48		0.0						
		R3b (19-37"): grey (wet)	fine SAND, som	ne silt, tra	ace coarse sand		11	4	MA			0.0						
		(1131)						}				0.0						
š _f							_ 12	+	T									
<u> </u>		D40 (0.24"); grov n	madium CAND 4	· · · · · · · · · · · · · · · · · · ·	area aand (wat)		13	4				0.0)					
<u>.</u>		R4a (0-24"): grey r	nedium SAND, t	race coa	arse sand (wel)			}	ORE	∞		0.0						
Į 1							- 14	₹ -	MACROCOR	35/48		0.0						
050	+271.7	D41 (04 0511) (15					15	_	MA			0.0						
		R4b (24-35"): stiff (grey SILT (wet)					=				0.0		Collec	t LB08	15.5-1	6.5 at	t
<u> </u>							16	+	+		\vdash			1500	-	_		
							- - 17	4						A.,	· 1 inab	cocin	to 1	7
		R5a (0-8"): stiff gre	ev SILT, some fir	ne sand	(wet)		<u> </u>	=	ORE	∞		0.0)	feet b	4-inch gs abou	ıt 2 feet	into	,
A DIMICA		R5b (8-29): stiff gre	-		()		18	₹ 188	MACROCORE	29/48		0.0		sand/s	silt cont	act		
SI I I							_ 19	#	MA			0.0						
LANG							- · •	1				0.0						

Log of Boring **LB08** Sheet of 4 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 286.7 Mount Kisco Sample Data Remarks Depth Elev Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Reading (ppm) (ft) Scale 266.7 20 21 0.0 R6a (0-9"): stiff grey SILT, trace clay (wet) micro-lenses of silty fine 22 0.0 SAND in clay R6b (9-22"): stiff grey clayey SILT (wet) 0.0 23 0.0 6/28/2019 6:05:25 PM R6c (22-29"): dense grey silty fine SAND (wet) 0.0 24 25 MACROCORE 0.0 R7a (0-7"): stiff grey SILT, some clay (wet) DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ 0.0 R7b (7-26"): stiff grey SILT (wet) 27 0.0 0.0 28 29 30 0.0 R8 (0-24"): stiff grey SILT (wet) 0.0 31 0.0 0.0 32 33 0.0 28/48 R9a (0-13"): stiff grey SILT (wet) 0.0 0.0 R9b (13-24"): stiff grey clayey SILT (wet) 35 0.0 0.0 R9c (24-28"): dense silty fine SAND (wet) 36 37 COM\DATA\WPW\DATA3\190046301\PROJECT DATA_ 38 0.0 0.0 R10 (0-18"): stiff grey clayey SILT (wet) 3-inches of soft clay between 39 0.0 43 poor recovery R11 (0-2"): stiff grey SILT, trace fine sand (wet) 45/48 R12 R12a (0-16"): very soft grey CLAY (wet)

Log of Boring **LB08** Sheet of 4 Project Project No. 190046301 41 Kensico Drive Location Elevation and Datum NAVD88 286.7 Mount Kisco Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Reading (ppm) 241. 45 R12b (16-28"): stiff grey clayey SILT (wet) 46 0.3 R12 Report: Log 24 R12c (28-37"): stiff olive SILT (wet) 4.4 R12d (37-45") stiff olive SILT, some fine sand (wet) 3.7 48 DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS,GPJ ... 6/28/2019 6:05:26 PM ... R13 (0-48"): stiff olive SILT, some fine sand (wet) 49 MACROCORE R13 50 0.7 Blue dye test: Negative 5.7 6.4 Collect LB08_51-52 at 1330 0.5 52 8/8/18: Continue sampling with Dual Tube (3 3/4") with 53 2.1 1 inch acetate liners (start at R14 50 feet) 5-foot runs 1.5 R14 (0-19"): medium-dense olive fine SAND, trace silt (wet) Hearing sands within rods 54 2.4 between 50-0.7 55 56 0.8 R15 R15 (0-32"): medium-dense olive fine SAND, some silt 1.1 (wet) 58 1.4 3.6 59 0.4 0.3 60 61 62 8/8/18: Collect LB08_62-63 R16 OM\DATA\WPW\DATA3\190046301\PROJECT DATA\ at 0940 0.1 R16a (0-12"): medium-dense olive fine SAND (wet) 63 0.3 0.3 R16b (12-18"): stiff olive SILT (wet) +222.6 64 0.0 R16c (18-22"): medium-dense olive fine SAND, trace silt R16d (22-28"): stiff olive SILT, trace clay (wet) 66 0.0 67 0.0 32/60 R17 R17a (0-26"): stiff grey clayey SILT (wet) 0.0 68 0.0 0.0 69 0.0 Collect LB08_69-70 at 1000 R17b (26-32"): firm grey CLAY, trace silt (wet) 0.0

Log of Boring **LB08** Sheet of 4 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 286.7 Sample Data Remarks Depth Scale Elev PID Reading (ppm) Recov. (in)
Penetr. resist Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) -216.7 R18 2/12 NLANGAN.COMIDATAWPWIDATA3/190046301/PROJECT DATAL_DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ ... 6/28/2019 6:05:26 PM ... Report Log - LANGAN DT 0.0 R18 (0-2"): rock fragments Refusal at 71 feet bgs on Refusal at 71 feet bgs on bedrock bedrock Monitoring well MW08D set at 48 feet bgs, see well 72 construction log for details. 73 * Refusal at 48 feet when 74 driving casing to set pre-pack well. 75 76 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94

I ARICARI

	L	4	/VU/	1/V		Log	of E	Boring			LB	09		Sheet	1	of	1
	Project		41 Kensico Drive				Pro	oject No.			190	04630 ⁻	1				
	Location						Ele	evation a	nd Da								
	Drilling C	ompar	Mount Kisco				Da	te Starte	d		NAV	/D88 2		e Finished			
	Drilling E	auinm	AARCO Environment	tal Services, Inc.			Co	mpletion	Dent	h	8,	/10/18		k Depth	8/	10/18	
			Geoprobe 7822 DT					mpletion	Бери			20 ft		к Берит		20 ft	
200	Size and	Туре	of Bit 2" Diameter Steel Ma	acrocore Cutting S	hoe		Nu	mber of	Samp	les	Dist	urbed	1	Indisturbed	N/A	Core	N/A
J - LA	Casing D	iamete				asing Depth (ft)	Wa	ater Leve	l (ft.)		First		6	Completion		24 HR.	N/A
JI. LO	Casing H	amme		Weight (lbs)	N/A	Drop (in) N/A	Dri	lling Fore	eman		_				1	<u>-=</u>	,, .
i rep	Sampler		2" Diameter 5-foot Lo				Fie	eld Engine	eer	T	homa	as Sei	ckel				
N	Sampler	Hamm	ner N/A	Weight (lbs)	N/A	Drop (in) N/A			1	Lı		McCar		1			
0.00.0	MATERIAL SYMBOL	Elev.		Sample Descript	tion			Depth	per	e		mple Da	PID	(Drillin	Rema g Fluid, Dep		ina
2019	SYI	(ft) +290.7						Scale — 0 –	Number	Type	Rec (in	Penetr. resist BL/6in	Reading (ppm)	Fluid Los	s, Drilling F	Resistance	e, etc.)
. 0/20/			R1 (0-24"): medium medium sand, trace	n-dense reddish-br e coarse sand (mo	rown fii oist) [Fl	ne SAND, trace ILL]			1				0.0				
								1 -					0.0				
500	>>>>							_ 2 -					0.0				
פווי									돈	П	24/60						
5								3 -									
ก + -								4 -									
V								5 -	1								
אט טי							$\overline{\Box}$										
ENSIC							$\underline{\vee}$	6 -						Collec	LB09_6	3-7 at 1	100
4								- - 7 -	1								
LOG									R2	ᆸ	12/60						
L/GIN								8 -									
ENIA		+281.7	R2a (0-8"): medium	n-dense reddish br	rown to	 grev fine	_	9 -					0.0				
	///	+281.0	SAND, tráce mediu R2b (8-12"): soft bl	ım sand, trace coa	ars san	d (moist)		_ _ 10 -	1				0.0				
\EIN \			1125 (0-12). 3011 bit	ack OLAT (IIIOISI)				_ 10									
L IN								- 11 -									
ביים.			R3a (0-7"): stiff bla	ak ta aray CLAV (moiat)			- - 12 -	1				0.0				
ξ'		+278.2	R3b (7-21"): mediu	m-dense grey to o	olive gr	ey fine SAND,			R3	Ы	36/60		0.0				
ונו		+277.2	some coarse sand,		`	,		_ 13 - _					0.0				
3			R3c (21-36"): olive	grey slity fine SAN	שר (we	τ)		14 -	1				0.0				
000+								_ _ 15 -					0.0				
118007									1								
Y Y		+274.4	R4 (0-44"): medium	dones well serie	d grav	fino SAND ——	_	16 -	=				0.0				
1/1/1			(wet)	i-uciise weil-suile(u grey	IIIIE OAIND		_ _ 17 -			0		0.0 0.0				
Į.								- 10	8	Ы	44/60		0.0				
								- 18 -					0.0				
GAIN.								19 -	=				0.0	End of	boring a	at 20 fe	et bgs,
FAI		+270.7	End of boring at 20	feet bgs				E 20 -					0.0	boreho clean	le backt and to (illed wit grade.	th

	H	/VG/	4/V		Log		Boring			LB	310			Sheet 1	of	3
Project		41 Kensico Drive				Pro	oject No			100	04630 ²	1				
Location	n	41 Relisico Dilve				Ele	evation a	ınd Da	atum	190	04030	<u> </u>				
Drilling	Compa	Mount Kisco				Da	te Starte	ad .		NA۱	/D88 2		Date I	Finished		
Drilling	Compa	AARCO Environme	ntal Services, Ir	nc.			ite otarti	, u		8	/20/18		Date		8/20/18	
Drilling	Equipm					Со	mpletior	n Dept	th				Rock	Depth		
Size aι	nd Type	Geoprobe 8140LC of Bit	Sonic Rig			 Ni		0		Dist	47 ft urbed		Un	disturbed	47 ft Core	
OZ Casino	Diamet	4" Diameter Steel S	Sonic Carbide Bi		Casing Depth (ft)	+	mber of			First	t	3	Co	N/A mpletion	24 HR.	N/A
- BO		N/A	Maight (lha)				ater Lev	` ′		Ψ	.	2	Ţ		<u>Ā</u>	N/A
Size and Size and Size and Size and Casing Casing Sample	Hamme		Weight (lbs)	N/A	Drop (in) N/A	-	illing For	eman		hom	as Seid	ckel				
	er Hamn	4" Diameter 5-foot I	ong Steel Soni		Drop (in) N/A	Fie	eld Engir	eer								
S -	J TIAITIII	ner N/A] · · · · · · · · · · · · · · · · · · ·	N/A			l		L		McCart mple Da					
6/28/2019 6:05:35 PM MATERIAL WE SYMBOL	Elev. (ft)		Sample Desc	cription			Depth Scale		Type		Penetr. resist BL/6in	PII Read) ling	Rer (Drilling Fluid,	narks Depth of Ca	sing,
/2019 MA SY	+289.7	(0.011)					0 -	Nun	F	Rec	Per B. re.	(ppr		Fluid Loss, Drillin	g Resistanc	e, etc.)
88 000	+289.5 +289.2	(0-3") asphalt cov R1a (3-6"): dense		fine SAN	D, trace fine			1				0.0)			
		gravel (dry) [FILL]]				- 1	=				0.0				
NMENTALGINTLOGSKAT KENSICO DRIVE. RI + SRI BORING LOGS. GPJ		(wet)	ium-uense, onve	s, iiile oa	IND, trace siit	∇	_ 2	=				0.0		Collect L P10) 2 2 at 1	1600
NGL							_	₹ 1	BAG	36/60		0.0		Collect LB10 Red dye test		
BOR							- 3	}		ر س		0.0)			
8 : : : :							_ 4	₫								
≅								=								
N :							5	1								
							-	=								
SN		R2 (0-40"): mediu some silt, trace cl	ım-dense, olive- lav (wet)	-brown to	olive fine SAND,		6	3				0.0				
S'41		Some on, hade of	ay (wot)				7	=				0.0				
							Ė _	± 22	BAG	40/60		0.0				
Ne							- 8 -	7				0.0				
Z L							_ 9	3				0.0				
							E	=				0.0)			
<u> </u>							- 10	#				0.4	,			
		R3 (0-54"): mediu clay (wet)	ım-dense, olive-	-brown, fir	ne SAND, trace		11	1				0.0				
SCIPL		, ,					E	3				0.0)			
ă a							12	R3	g S	54/60		0.0				
DAT							- - 13	<u> </u>	BAG	54/		0.0 7.1				
							Ē	=				32.				
SAI							- 14	}				49.				
90046301/PROJECT DATA, DISCIPLINE, ENVIRC	±274.7	 					15	1				46. 52.				
900		R4a (0-35"): soft, (wet)	olive-brown, cla	ayey SILT	, trace fine sand		<u> </u>	=				0.0				
ATA3							16	=				2.0)			
							- - 17	=				10.		01. 1	+ OC" 1=	
OM/DATA/WPW/DATA3/1							Ė ''	4Z	BAG	09/09		32. 28.		Clay lense a		
M A A	271.8 +271.3	R4b (35-41"): loos	se, olive-brown,	silty fine	SAND (wet)		18	╡ ̄		9		155		Fine sand m	icro lens	es
	7 27 1.3	R4c (41-53"): stiff	, olive-brown, C	LAY, som	ne silt, trace fine		E 10	<u> </u>				54.				
§ / /	+270.3	sand (wet) R4d (53-60"): me	dium-dones eli	ve-brown	fine SAND		<u> </u>	=				78. 166				
<u> </u>	+269.7	1. me	uiuiii-ueiise, Oll\	ve-biown,	IIILE SAND,		F 00	7	1		1	100				

LB10 Log of Boring Sheet of 2 3 Project Project No. 41 Kensico Drive 190046301 Elevation and Datum Location NAVD88 289.72 Mount Kisco Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Reading (ppm) 269. 20 185 4 some silt (wet) 231.4 R5a (0-34") soft, olive-brown, clayey SILT (wet) 21 35.7 35.1 22 40.4 **R**5 BAG 83.0 Clay lenses at 41", 54" R5b (34-60") medium-dense, gray, silty fine SAND, trace 23 86.8 6/28/2019 6:05:35 PM clay (wet) 130.4 24 77.7 72.8 +264.7 25 163.7 R6a (0-36"): loose, olive gray, fine SAND, some silt, trace clay (wet) 78.1 26 60.5 DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ 80.9 27 69.5 BAG 50.7 28 58.2 R6b (36-60") loose, gray, fine SAND, trace silt (wet) 178.9 29 245.3 270.3 30 90.8 R7 (0-60"): well sorted, medium-dense, olive-gray to gray fine SAND (wet) 172.2 31 198.3 Red dye test: negative 535.3 32 231.2 Collect LB10_31-32 at 1625 BAG R7 219.9 33 348.6 179.6 34 358.9 Grading upwards 181.7 35 271.8 R8a (0-23"): well-sorted, loose, gray fine SAND (wet) 166.3 36 175.4 133.9 37 110.8 R8b (23-33"): loose, gray, fine SAND, some silt, trace clay 09/09 88 "ILANGAN.COMIDATA\WPWIDATA3\190046301\PROJECT DATA_ BAG (wet) 107.1 Clay lense at 34" R8c (33-48") medium-dense, olive-brown, fine SAND, trace 38 108.6 clay (wet) 72.9 39 85.7 R8d (48-60") well-sorted, medium-dense, olive-brown, fine SAND, trace fine gravel (wet) 79.0 65.1 R9 (0-60"): well-sorted, medium dense olive-brown, fine SAND (wet) 139.1 137 117 42 75.9 09/09 BAG 57.5 43 24.8 11.9 8.9 29.8

Log of Boring **LB10** Sheet 3 of 3 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.72 Mount Kisco Sample Data Remarks Elev Depth PID Reading (ppm) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 244. 45 Collect LB10 45-46 at 1700 36.8 R10a (0-12"): medium-dense, olive-brown, fine SAND, Red dye test: negative some medium sand, trace coarse sand, trace fine gravel, 17.7 24/60 R10 BAG trace coarse gravel (wet) 12.9 R10b (12-24"): bedrock 2.5 1.1 Report: I End of Boring at 47' Borehole backfilled with quick-release bentonite 48 NLANGAN. COMIDATAWIPWIDATA3/190046301/PROJECT DATAL_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE - RI + SRI BORING LOGS. GPJ... 6/28/2019 6:05:36 PM ... pellets and grout, capped with concrete at grade 49 50 52 53 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69

		NUA	1/V	Log o		Boring			LB	11		Sh	neet	1	of	2
	Project	41 Kensico Drive			Pro	oject No.			190	04630 ²	1					
	Location				Ele	evation an	nd Da	tum								
	Drilling Compa	Mount Kisco			Da	ite Started	d		NAV	/D88 2		ite Finis	shed			
	Drilling Equipm	AARCO Environmental	l Services, Inc.		Co	mpletion	Dent	h	8	/13/18	Ro	ck Dep	ıth	8/	13/18	
		Geoprobe 7822 DT				mpiction	Бері			24 ft		ok Dop	· · · · ·		24 ft	
SAN	Size and Type	of Bit 2" Diameter Steel Macr	rocore Cuttina Shoe		Nu	ımber of S	Samp	les	Dist	urbed	3	Undist	urbed N/A		Core	N/A
<u> </u>	Casing Diamet			Casing Depth (ft)	wa	ater Level	(ft.)		First		5	Comple	etion	2	24 HR. V 1	N/A
) 	Casing Hamme		Weight (lbs) N/A	Drop (in) N/A	Dri	illing Fore	man		_			_ _			<u></u>	47.1
ze :	Sampler	2" Diameter 5-foot Long	g Steel DT		Fie	eld Engine	eer	S	ergic	Maga	na					
≥	Sampler Hamn	ner N/A	Weight (lbs) N/A	Drop (in) N/A		ı		Lı		McCart						
0.00.4	MATERIAL SYMBOL (ft)	Sa	ample Description			Depth Scale	Number	Туре		Penetr. resist aldw BL/6in g	PID Reading		Drilling Fluid Loss, D	Rema uid, Dep		ıg,
3/2018	+290.8	─ (0-2") asphalt cover				0 -	Ž	F	Re	Pe BL	(ppm)	' F	Fluid Loss, D	rilling R	esistance,	etc.)
0/20	290.0	R1 (2-36"): dense gre	ey to brown to olive b	rown silty fine	_/						0.0					
5		SAND (moist)				- 1 - -					0.0					
2						2 -			0		0.0					
פוצ						= =	쥰	П	36/60		1.6					
200						- 3 -					1.9 2.2					
n +						4 -						E	Blue dye	test: I	Negative)
					∇	F _ :						(Collect LE	311_4	l.5-5.5 a	t 0900
2		R2a (0-20"): medium	dense brown silty fir	ne SAND (wet)		5 -					0.9 2.7					
200						6 -					1.6					
7	284.1	R2b (20-60"): firm oli	ive-brown clayey SIL	T, trace fine sand		7 -					0.4					
200		(wet)	, ,			- ' -	R2	Ы	09/09		4.8 4.9	3	soft brown 31", 33",	n clay 34", 3	lenses : 6", 37",	at 22", 38",
						8 -	_		9		2.4	4	14", 54"			
Ä						9 -					7.2 7.3					
											8.4					
2	+280.5				_	10 -					6.1					
		R3a (0-12"): medium	ા-dense brown silty fir	ne SAND (wet)		11 -					3.6 8.9		Blue dye		_	
2	279.5	R3b (12-56"): firm oli	ive-brown SILT, some	e clay, trace fine		ŧ					38.9		Collect LE	311_1	. 1-12 at	0915
֡֝֟֝֟֝֝֟֝֝֝֝֟֝֝֟֝֝֟֝֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝	1111	sand (wet)				12 -	e e	L	09		18.4					
2	1111					13 -	R3	<u></u>	26/60		17.9 22.5					
	1111										13.1					
ב ב ב	1111					_ 14 _					6.0					
14030	1111					15 -					2.6					
3/1900							1									
A A	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R4a (0-18"): medium	ı-dense brown silty fir	ne SAND (wet)	_	16 -					1.3 2.3		.11		411 OH 41	711
\ \ \ \						17 -	}		0		13.6	'	clay lense	es at 4	+', 6", 17	, ·
Į Į	273.3	R4b (18-34"): firm to	soft olive brown CLA	Y, trace silt (wet)		= 10	8	Б	48/60		3.6					
) OM IF						_ 18 <u>_</u>					12.8 16.6		soft brown 39", 45"	n clay	lenses	at 28",
SAIN.	271.8	R4c (34-40"): mediur	m-dense arev siltv fin	e SAND, trace		19	1				10.3		, -			
Ž		clay (wet)	. g , s,	_,		F =	1				9.7					

Log of Boring **LB11** Sheet 2 of 2 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 290.8 Mount Kisco Sample Data Remarks Elev Depth PID Reading (ppm) Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale 270.8 20 R4d (40-48"): medium-dense grey silty fine SAND, some 21 2.9 R5 (0-36"): medium-dense greyish brown fine SAND (wet) 4.1 36/48 R522 占 8.6 Blue dye test: Negative 3.3 23 2.0 Collect LB11_23-24 at 0930 NLANGAN.COMIDATAWIWPWIDATA3/190046301/PROJECT DATA_DISCIPLINEIENVIRONMENTAL/GINTLOGS41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ... 6/28/2019 6:05:42 PM 0.4 -266.8 24 End of boring at 24 feet bgs - refusal on rock. MW11 End of boring at 24 feet bgs - refusal on rock. installed, see well 25 construction log for details. 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 42 43

LA	\V G /	4/V		Log	of E	Boring			LB	12		9	Sheet	1	of	2
Project					Pr	oject No.										
Location	41 Kensico Drive				Ele	evation an	nd Da			04630						
Drilling Compa	Mount Kisco				Da	ite Started	1		NΑ\	/D88 2		ate Fi	nished			
Brilling Comp	AARCO Environmer	ntal Services. In	C.			no otario	1		8	/14/18		J. O T II	monod	8/	14/18	
Drilling Equipr		,			Co	mpletion	Dept	h		,	R	ock D	epth			
	Geoprobe 6610 DT									45 ft					45 ft	
Size and Type Casing Diame Casing Hamm Sampler	e of Bit 2" Diameter Steel M	lacrocore Cuttin	a Shoe		Νu	ımber of S	Samp	les	Dist	urbed	9	Undi	isturbed N	/A (Core	N/A
Casing Diame	eter (in)	adiocoro outini,		Casing Depth (ft)	W	ater Level	(ft)		First				pletion		24 HR.	
Casing Hamm	N/A	Weight (lbs)		Drop (in) N/A		illing Fore	` '		$ar{\Box}$		3	Ţ	-		Ā	N/A
Sampler	N/A	110.9.11 (120)	N/A	N/A	-	9 . 0.0		A	dam	Hutch	inson					
	2" Diameter 5-foot L			Dona (in)	Fie	eld Engine	er									
Sampler Ham	mer N/A	Weight (lbs)	N/A	Drop (in) N/A				Lı		McCarl						
Sampler Ham NATERIAL RIVERIAL (ft) +289.	,					Depth	<u></u>			mple Da				Rema	rks	
SYMBOL (tt)		Sample Desc	cription			Scale	Number	Туре	(in)	Penetr. resist BL/6in	PID Readin		(Drilling I Fluid Loss,	Fluid, De	oth of Cas	sing,
+289.						<u> </u>	z	ŀ	Ľ	Д - Ш	(ppm)					5, 515.7
	R1 (3-60"): mediu		h-brown	fine SAND, trace		} =	1				0.0					
	silt (moist to wet)					- 1	1				0.0					
							1				0.0					
						_ 2 -	_	L	09		0.0		Collect I	_B12_2	2-3 at 1	300
					∇	3 -	쥰	Б	09/09		0.0					
					_	F°:					0.0					
						- 4	}				0.0					
						<u> </u>					0.0					
						5 -					0.0					
						E :										
						6 -	1									
	P2 (0.40"): modiu	m danaa aliva h	rown fin	o SAND trace oil	+						0.0					
	R2 (0-40"): mediui (wet)	m-derise olive-b	nown iiii	e SAND, trace si	ı	7 -		L	90		0.0					
								П	40/60		0.0					
						- 8 -					0.0					
						- 9 -	}				0.0					
											0.0					
						10 -					0.0					
							}									
	R3 (0-46"): mediu	m-dense olive-b	rown fin	e SAND. some		11 -					0.0					
	silt (wet)			,		= =	1				0.0					
						<u> </u>	₈	_	09		0.0					
						- 12 -	R3	Б	46/60		0.0					
						- 13 -					0.0		clay lens	se at 2	0"	
						14 -	1				0.0					
						<u> </u>					0.0					
						15 -					4.5					
						<u> </u>	1									
						16 -	1									
						<u> </u>	1									
070						_ 17 _		L	000				clay lens	se at 3	5"	
	R4 (0-30"): mediu	m dense grey si	ilty fine S	SAND, trace clay		1 10	8	П	30/60		42.7					
	(wet)					- 18 -	1				66.8		Red dye	test: I	Negativ	e
272.						- 19 -	1				62 166.5		Och C	D40	10.00	1 1010
						Ė 'Š :					100.5		Collect I Collect I			
						E ₂₀ =					100.0		for CVO			

LB12 Log of Boring Sheet of 2 Proiect Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 289.6 Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Reading (ppm) 269. 20 Collect LB12 18-20 for BOD, 414 R5a (0-27"): medium dense olive-brown silty fine SAND COD, TOC at 1310 15.7 (wet) 21 17.9 30.1 22 21.4 DT 25.3 R5b (27-60"): stiff olive-brown clayey SILT (wet) 23 44.5 6/28/2019 6:05:46 PM 30.2 24 49.8 Red dye test: Negative 70.8 Collect LB12 24-25 at 1315 25 100.5 R6a (0-19"): soft grey SILT, some clay (wet) 77 26 108.5 BORING LOGS.GPJ 263 136.1 R6b (19-41"): stiff olive-grey clayeySILT (wet) 27 158.2 clay lenses at 23", 27", 33", DT 114.7 28 135.6 Red dye test: Negative 197 RI + SRI R6c (41-60"): medium-dense fine SAND (wet) 29 209.4 Collect LB12 29-30 at 1320 Collect LB12 29-30 at 1320 225.5 DISCIPLINE/ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE for CVOCs 30 191.8 R7 (0-52"): well-sorted medium-dense grey to olive-grey 31 fine SAND (wet) 34.5 50.9 32 78.9 **R**4 DT 45.5 33 39.5 fine sand grading upward 82.4 34 42.8 Collect LB12 34-35 at 133for CVOCs 18.3 Red dye test: Negative 35 3.9 36 37 A\WPW\DATA3\190046301\PROJECT DATA\ 88 1.3 R8a (0-21"): well-sorted medium-dense olive-brown fine 38 2.9 Red dye test: Negative SAND (wet) Collect LB12 39-40 at 1335 15.9 for CVOCs 39 35.2 Collect LB12 39-40 for BOD. 10.3 COD, TOC at 1335 R8b (21-28"): medium-dense olive brown fine SAND, trace silt, trace clay (wet) 6.6 Red dye test: Negative Collect LB12_42-43 at 1340 Collect LB12_42-43 at 1340 R9a (0-6"): loose olive brown fine SAND (wet) 83 42 for CVOCs R9b (6-12"): stiff olive-brown clayey SILT, trace fine sand 1.6 (wet) 43 13.9 End of boring at 44 feet -R9c (12-21"): dense grey to brown coarse SAND, some refusal, monitoring wells 15.6 medium sand (wet) MW12 and MW12D End of boring at 44 feet 3.7 completed, see well construction log for details.

LF	\V <i>L</i>			Log	of E	Boring			LB	13			Sheet	1	of	2
Project					Pr	oject No.										
Location	41 Kensico Drive				Ele	evation an	ıd Da			046301						
Drilling Com	Mount Kisco				Da	ite Started	1		NAV	/D88 2		Date	Finished			
Drining Cont	AARCO Environmer	ntal Services, In	ıC.			no otario	•		8/	/13/18		Date	i illionou	8/	13/18	
Drilling Equi	pment	,			Co	mpletion	Dept	h				Rock	Depth			
≨ Size and Ty	Geoprobe 7822 DT								Diet	30 ft urbed		He	ndisturbed	10	30 ft Core	
Size and Tyl	2" Diameter Steel M	acrocore Cuttin			Nι	ımber of S	Samp	les	Dist	uibeu	3	UI	N/A			N/A
Size and Type Casing Dian Casing Ham Sampler	N/A		Ca	asing Depth (ft)		ater Level	. ,		First		5.5	Co	ompletion 	2	4 HR. <u>V</u>	N/A
Casing Ham	^{mer} N/A	Weight (lbs)	N/A	Drop (in) N/A	Dr	illing Fore	man	_								
	2" Diameter 5-foot L	ong Steel DT			Fie	eld Engine	er	5	ergic	Maga	ına					
Sampler Hai	mmer N/A	Weight (lbs)	N/A	Drop (in) N/A		Ü		Lu	uke N	McCarl	ney					
1 NAL		•		•	•	.	ļ.,		Sa	mple Da	ata		R	ema	rke	
Sampler Har		Sample Desc	cription			Depth Scale	Number	Туре	(in)	Penetr. resist BL/6in	PII Read	ling	(Drilling Flu Fluid Loss, D	id, Der	th of Casi	ng,
+29						<u> </u>	ž	<u> </u>	2	g - 8	(ppr 0.0		Tidid Loss, D	- IIIII I G	icolotal loc.	, ctc.)
	R1 (0-18"): loose I	prown to grayish	n-brown fir	ne SAND, trace							0.0					
	medium sand, trac (moist) [FILL]	ce coarse sand,	trace fine	gravel, brick		F 1 -	}				0.0)				
	(IIIOISI) [FILL]					[]	1				0.0)				
						_ 2 _	Σ	DT	18/60							
Cap Copy of the Cap Copy of th						3 -	PE .		18							
						[]										
<u> </u>						- 4 -										
Ľ																
					∇	_ 5 -							Collect LE	313_5	5-6 at 1	1:30
₹ ₩ ₩					<u></u>								Red dye t	est: N	Jenative	2
						6 -							1 tou dyo t		10gaare	-
						7 -										
28:	2.8 R2 (0-31"): mediu			E.E. CAID -		<u> </u>	R2	占	31/60		0.0)				
	(wet)	m-dense olive to	o drown si	Ity line SAND		8 -	_		3		0.0					
						:					0.0)				
						F 9 -	1				0.0)				
Ž 281	n 3					= =	1				0.0					
20	R3a (0-16"): medii	um-dense brow	n fine SAN	ND, some silt		10 -					0.0					
28/ 28/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 24/ 24	(wet)					11 -					1.9 2.3		alau lama	4 ,	101	4.4"
= 	8.8 R3b (16-44"): firm	olivo brown cilt	v fine CAN	ID trace class		£	1				2.3		clay lense	o al	io and	44
	(wet)	OUAC-DIOMII ZIII	y IIIIE SAN	ים, וומט ט clay		12 -	1				1.8					
						<u> </u>	R3	Б	09/09		1.4	1				
270	6.8					- 13 -					0.6					
3	R3c (44-60"): med	lium-dense gray	/ish-brown	fine SAND,		£ ,, =					1.2					
	trace silt (wet)					<u> </u>					1. ⁴					
ر 127 - ان ان ان	5.3 D4a (0.47") - madi		brown 30	u fine CAND		15 -			Ш		0.6					
	R4a (0-17"): medii (wet)	urn-aense olive-	tlie nwora-	y iine SAND		Ē - :	1				0.4					
						16 -					1.1					
+27	R4b (17-60"): firm	olive brown to	grey claye	y SILT, trace		ŧ :					1.9	9				
	fine sand (wet)	`				- 17 -	4		09		1.0		clay lense	s at 2	23" and	30"
						10	R 4	5	09/09		0.6					
						- 18 - -					0.8					
527.						19 -					0.6					
						F :					1.8					
 	0.3					L 20 _	1									

LB13 Log of Boring Sheet 2 of 2 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 290.29 Mount Kisco Sample Data Remarks Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (ppm) 270. 20 R5a (0-19"): firm grey SILT, some clay, trace fine sand (wet) 1.6 21 3.7 2.1 R5b (19-48"): firm grey clayey SILT, trace fine sand (wet) 22 4.4 clay lenses at 42" DT 5.2 23 6.4 Collect LB12_23-24 at 1145 3.6 Red dye test at 23-24: 24 5.0 R5c (48-60"): medium-dense grey fine SAND, some silt Negative (wet) 1.6 265. 25 0.8 R6a (0-15"): medium-dense grey silty fine SAND, trace clay (wet) 26 1.9 R6b (15-47"): stiff olive-grey clayey SILT (wet) 1.2 27 1.8 clay lenses at 18", 23", 56" DT 8.0 28 1.1 0.4 Red dye test at 23-24: Negative 29 1.6 /\LANGAN.COM/DATA\\WPW/DATA3\190046301\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE - RI + R6c (47-60"): medium-dense grey fine SAND, trace clay Collect LB13_29-30 at 1200 0.8 260.3 30 0.3 End of boring at 30 feet bgs. End of boring at 30 feet bgs. borehole backfilled with clean sand to grade, capped 31 with concrete. 32 33 34 35 36 37 38 39 40 42 43

	IVEAIV	Log of E				LB14		Sheet	l of	2
Project	AA Kanaina Driva	Pro	oject No.			100010001				
Location	41 Kensico Drive	Ele	evation an	ıd Datı		190046301				
	Mount Kisco				1	NAVD88 2				
Drilling Compa		Da	ite Started	t		0/40/40	Da	te Finished	0/40/40	
Drilling Equipm	AARCO Environmental Services, Inc.	Со	mpletion	Depth		8/13/18	Ro	ock Depth	8/13/18	
	Geoprobe 7822 DT					30 ft				
Size and Type Casing Diamet	of Bit 2" Diameter Steel Macrocore Cutting Shoe	Nu	ımber of S	Sample	s	Disturbed	3	Undisturbed N/A	Core	N/A
Casing Diamet	er (in) Casing D	Depth (ft) Wa	ater Level	(ft.)		First		Completion	24 HR.	
Casing Hamme	N/A		illing Fore	` '		<u>¥</u>	5	<u> </u>	<u> </u>	N/A
Sampler					Se	ergio Maga	na			
	2" Diameter 5-foot Long Steel DT ner N/A Weight (lbs) N/A Drop	o (in) N/A	eld Engine	eer	1	ka MaCart	201			
8 - '	N/A N/A	N/A			Lu	ke McCart Sample Da				
Sampler Hamn	Sample Description		Depth Scale	Number	Type	Recov. (in) Penetr. resist BL/6in	PID Reading (ppm)	(D.:::: El.::-	marks , Depth of Casi ing Resistance	
	R1a (0-8"): loose brown fine SAND, some silt, tra	ice clay,	0 -		I		0.0			
289.6	true coarse sand (moist) R1b (8-16"): soft black to olive CLAY, some silt (r	moist)	1 -]			0.0			
		ilioist)]	ш		0.0			
+288.6	R1c (16-38"): olive to brown silty fine SAND, trace	e clay	2 -	_ [MACKOCORE	09	0.0			
ONMENIALGENILOGS STATEMS CODEN VER STATEMS TO DEVENE TO THE STATEMS CODEN VER STATEM	(moist to wet)		3 -	쥰	2 2	38/60	0.0			
<u>₹</u>					Ž		0.0			
n + =			4 -	1	ı					
<u>.</u>		∇	<u></u>	1	ı			Collect LB1	4_4-5 at 10	000
<u>\$</u>	R2 (0-33"): medium-dense reddish-brown to brow	vn to olive	5 -		ı					
	brown silty fine SAND (wet)		6 -	1	ı		0.0 0.1			
Z				1			0.3			
7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			7 -		MACKOCORE	00	0,4			
			[]	R2	2 2	53/60	2.3	Clay lenses	s at 14", 25	", and
			8 -		ĕ		4.3 5.0	37"		
₹			- 9 -	1	ı		7.8			
N N N N N N N N N N N N N N N N N N N]	ı		7.8			
	R3a (0-19"): firm olive-brown SILT, trace clay (we	et)	10 -		t		3.1			
			11 -	1	ı		5.6 19.8			
280.6 200 200 200 278.6			ŧ '' :	1			7.1	Clay lenses 54"	s at 18", 22'	, and
278.6	R3b (19-54"): medium-dense silty fine SAND, tra	ce clay	12 -		S S	g	13.0			
$\{ \cdot \cdot \cdot \cdot $	(wet)	,	F 40 =	R3	MACKOCOKE	09/09	33.6			
			13 -]	MΑ		48.9 10.3	Blue dye te	_	
276.6	R3c (54-60"): firm olive-brown SILT (wet)		14 -	1			75.0	Collect LB1	4_13-14 at	1015
303/4	130 (34-00). IIIII Olive-blown SILT (wet)		[]]			51.2			
275.6	R4a (0-20"): stiff olive-brown clayey SILT (wet)		15 -	+	▐		32.8			
			- 16 -	1			8.1 16.2			
276.6	D4b (20.42"); modium dence alice become alle for	o CAND	‡	1			13.6			
	R4b (20-42"): medium-dense olive-brown silty fine trace clay (wet)	E SAND,	17 -		S H	و ا	14.8			
			E =	R 8	MACKOCOKE	09/09	10.1			
			- 18 - -		ΔĀ		2.9			
271.6	R4c (42-50"): stiff olive-brown clayey SILT, trace	fine CAND	19 -	1			2.4 3.4			
	1340 (42-50). Suil Olive-blown dayey SiL1, trace	IIIIE SAND]			3			
= LK LK +270.6			<u> </u>							

Log of Boring **LB14** Sheet 2 of 2 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 290.63 Mount Kisco Sample Data Remarks Elev (ft) Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale Reading (ppm) 270.6 20 R5a (0-36"): very soft gray CLAY, trace silt (wet) 0.2 21 0.9 0.8 22 0.3 2.1 23 3.3 R5b (36-60"): stiff gray clayey SILT (wet) 4.1 24 6.3 3.5 25 1.5 R6a (0-20"): medium-dense gray silty fine SAND, trace clay (wet) 0.3 26 2.4 4.5 R6b (20-50"): stiff gray clayey SILT (wet) MACROCORE 27 0 Clay lenses at 21", 33", and NLANGAN.COM/DATAWPW/DATA3/190046301/PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE - RI + SRI BORING 3.6 28 3.1 3.0 29 2.2 Blue dye test: negative R6c (50-60"): well-sorted medium-dense gray fine SAND 3.4 Collect LB14_29-30 at 1030 260.6 30 1.1 End of boring at 30 feet bgs. End of Boring at 30 feet bgs. Borehole backfilled with clean sand to grade. 31 32 33 34 35 36 37 38 39 42 43

LAIVEAIV	Log of E	Boring		LB15		SI	neet 1	of	3
Project 44 Konside Priva	Pro	oject No.		4000400	04				
41 Kensico Drive Location	Ele	evation and Da	atum	1900463	01				
Mount Kisco Drilling Company	Do	ate Started		NAVD88		Date Finis	ahad		
AARCO Environmental Services, Inc.	Da	ite Started		8/14/1		Date i iiii		3/14/18	
Drilling Equipment	Co	mpletion Dept	th			Rock Dep			
Geoprobe 6610 DT	Niu	ımbar af Samr	Non	56 Disturbed	ft	Undist		Core	
2" Diameter Steel Macrocore Cutting Shoe Casing Diameter (in) Casing Diameter	Denth (ft)	ımber of Samp		First	4	Compl	N/A letion	24 HR.	I/A
· N/A	VV	ater Level (ft.) illing Foreman		∇	5	<u> </u>			I/A
⊊ Sampler	o (in) N/A	illing i oreman		Sergio Mag	gana				
řl	o (in) N/A	eld Engineer							
=	` ´N/A			uke McCa. Sample I					
Sample Description		Depth Scale	Type	Recov. (in) Penetr. resist	PIE Read (ppr	ling ,	Rem (Drilling Fluid, D Fluid Loss, Drilling	epth of Casing	
R1a (0-6"): loose reddish-brown silty fine SAND ((moist)	F 0 =			0.0				
[FILL] R1b (6-23"): dense olive silty fine SAND, some c	lay (moist)	E 1 =			0.0				
□		E 3	띴		0.0				
R1c (23-27"): soft brown CLAY (moist)		2 - 2	OCO	27/60	0.0)			
		- 3 - 1 "	MACROCORE	27					
		Ē, Ē							
		F 4 =							
R2a (0-9"): very soft olive-brown CLAY, trace silt	(wet)	5 🕂			+	(0900 Collect	LB15_5-6	
284.2 R2b (9-37.5"): dense olive fine SAND (wet)		6 -				ı	Red dye test:	negative	
		ŧ d							
		F 7 = 1	CORE	09/	0.0				
		8 - 8 - 8	MACROCORE	37.5/60	0.0				
			Σ		0.0				
E (**********) ■ (**********)		9 =			0.0				
R3a (0-3"): medium-dense reddish-brown fine SA	ND (wot)	F 10 =			0.0				
R3b (3-26"): olive-brown silty fine SAND (wet)	(wet)				54				
		F 11 =			28 55		clay lenses at 48"	t 13", 26",	and
		12	ORE		72	´			
€ :		F 10 = 22	MACROCORE	28/60	61				
R3c (26-60"): olive-brown to gray fine SAND, trac	ce silt (wet)	13 -	MA		5				
31: (1:00) \$1: (1:00)		14			40				
		15			73.				
R4a (0-14"): medium-dense gray fine SAND, trac	ce silt (wet)				51. 15.				
2		16			45.		clay lenses at	t 12", 24",	34",
R4b (14-38"): medium-dense gray silty fine SANI	D, trace	17 -	RE		18. 49.		and 38"		
clay (wet)		<u>₹</u>	MACROCORE	09/09	73.				
R4c (38-50"): stiff gray clayey SILT (wet)		18	MAC	9	40				
270.9) tropp	19			38				
R4d(50-60"): medium-dense gray silty fine SAND clay (wet)	э, гасе	E 3			75				
		└ 20 	1						

LB15 Log of Boring Sheet of 3 Proiect Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.9 Mount Kisco Sample Data Remarks Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (ppm) 269. 20 R5a (0-16"): olive-gray silty fine SAND, trace clay 54.8 21 28.8 34.1 R5b (16-53"): stiff olive gray clayey SILT (wet) 22 48.9 clay lenses at 9", 16", 24", 26", 30", 36", and 38" 28 23 31 20 24 24 R5c (50-60"): medium-dense olive-gray silty fine SAND (wet) 33 25 R6a (0-48"): stiff gray clayey SILT (wet) 33.1 26 36.4 ENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ. clay lenses at 11" and 25" 28.7 MACROCORE 35.4 32.7 28 34.3 41.7 260. 29 37.1 R6b (48-60"): medium-dense gray fine SAND, trace clay 44 4 (wet) 30 R7a (0-20"): medium-dense gray fine SAND, some silt, 33.8 trace clay (wet) 31 33.8 clay lenses at 2", 14-16", and 41-44" 32.7 R7b (20-41"): medium-dense gray fine SAND, trace silt 32 (wet) **R**4 30.6 33 105 0905 Collect LB15 33-34 50.8 Red dye test: negative R7c (41-48"): stiff gray clayey SILT, some fine sand (wet) 34 66 R7d (48-51.5"): medium-dense gray fine SAND (wet) 40 35 R8a (0-37"): stiff olive-gray clayey SILT (wet) 8.6 36 2.3 2.0 MACROCORE 37 clay lenses at 3", 7.5", 9", 14", 17", and 32" 31.4 36.7 38 11.5 R8b (37-48"): medium-dense gray silty fine SAND (wet) 23.1 39 54 90.1 R9a (0-36"): very soft olive gray CLAY (wet) 3 3.6 2.7 MACROCORE 42 3 3.5 43 3.0 R9b (36-48"): medium-dense olive-brown silty fine SAND, trace clay (wet) 46 83 0920 Collect LB15 44-45 R9c (48-60"): well-sorted medium-dense olive-brown fine SAND (wet) 96 Red dye test: negative

Log of Boring **LB15** Sheet of 3 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.9 Mount Kisco Sample Data Remarks Elev (ft) Depth PID Reading (ppm) Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Scale 244. 45 R10a (0-19"): medium-dense oilve-brown fine SAND, trace silt (wet) 46 MACROCORE R10b (19-27"): medium-dense gray fine SAND (wet) 48 50.8 2019 6:06:03 PM 30.5 49 48 33 50 R11a (0-36"): very soft gray CLAY, some silt, trace coarse 10.7 51 9.7 3.6 MACROCORE 52 3.8 ٦ 1 6.5 53 6.5 R11b (36-48"): soft olive-gray clayey SILT (wet) 0940 Collect LB15 53-54 7 Red dye test: negative 38.9 39.1 /\LANGAN.COM/DATA\\WPW/DATA3/190046301\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE Encountered bedrock at white metamorphic rock R12 0/0 39.1 about 56' feet bgs, MW15 installed. See NW +233.9 construction log for details. End of boring at 56 feet bgs. 57 58 59 60 61 62 63 64 65 66 67 68 69

LANGAN Log of Boring **LB16** Sheet of 1 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 289.81 Drilling Company Date Started Date Finished AARCO Environmental Services, Inc. 8/10/18 8/10/18 Drilling Equipment Rock Depth Completion Depth Geoprobe 7822 DT 20 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2" Diameter Steel Macrocore Cutting Shoe N/A N/A Casing Diameter (in) Casing Depth (ft) 24 HR. Completion Water Level (ft.) N/A N/A Drop (in) N/A Casing HammerN/A Weight (lbs) Drilling Foreman N/A Thomas Seickel Sampler 2" Diameter 5-foot Long Steel DT Field Engineer Drop (in) N/A Sampler Hammer Weight (lbs) N/A N/A Luke McCartney Sample Data MATERIAL SYMBOL Remarks Elev Depth Recov. (in)
Penetr. resist Number (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) Scale (ppm) 289. (0-3") asphalt cover 289 0.0 R1 (3-15"): medium-dense brown fine SAND, some silt, trace clay, trace fine sand, concrete, brick (moist) [FILL] 0.0 0.0 MACROCORE 2 15/60 꼰 3 5 0745 Collect LB16_5-6 6 MACROCORE 0.0 R2a (0-10"): very soft black CLAY (wet) 0.0 **DISCIPLINE/ENVIRONMENTAL** R2b (10-20"): dense olive fine SAND, trace coarse sand 9 0.0 0.0 R2c (20-26"): medium-dense olive medium SAND, trace coarse sand (wet) 0.0 12 0.0 R3a (0-5"): dense brown coarse SAND, trace medium 37/60 |LANGAN.COM\DATA\WPW\DATA3\190046301\PROJECT DATA| sand, trace fine sand (wet) 0.0 R3b (5-19"): dense brown to gray silty fine SAND (wet) 13 0.0 0.0 R3c (19-37"): dense gray fine SAND, trace silt (wet) 0.0 0.0 0.0 R4 (0-55"): dense gray fine SAND, some silt 0.0 16 0.0 0.0

MACROCORE

18

19

55/60

0.0

0.0

0.0 0.0

0.0

0.0

End of boring at 20 feet bgs. Borehole backfilled with sand

and capped with asphalt

Project Project No. 41 Kensico Drive 1900463 Location Elevation and Datum			
Location Elevation and Datum			
I I	289 92		
Mount Kisco NAVD88 Drilling Company Date Started		te Finished	
AARCO Environmental Services, Inc. 8/10/1			3/10/18
Drilling Equipment Completion Depth	Ro	ck Depth	
Geoprobe 7822 DT 50 Size and Type of Bit Disturbed		Undisturbed	Core
2" Diameter Steel Macrocore Cutting Shoe Number of Samples Casing Diameter (in) Number of Samples First	4	N/A Completion	N/A 24 HR.
L N/Δ vvater Level (π.) ∇	5	<u>T</u>	<u>▼</u> N/A
Casing Hammer N/A Weight (lbs) N/A Drop (in) N/A Drilling Foreman Thomas So	eickel		
2" Diameter 5 feet Long Steel DT	<u> </u>		
N/A N/A LUKE MCC	artney Data		
		Rema	
2		(Drilling Fluid, De Fluid Loss, Drilling	Resistance, etc.)
R1 (0-18"): loose brown fine SAND, trace silt, trace medium sand, trace coarse sand (moist) [FILL]	0.0		
	0.0		
	0.0		
18/60 18/60			
		0815 Collect L	_B17_4-5
± 5 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1 ± 1	4		
R2a (0-4"): loose gray fine SAND, (wet) [FILL]			
R2b (4-7"): very soft black CLAY (moist)			
R2c (7-16"): medium-dense gray medium SAND, some coarse sand (wet)	0.0 2.3		
R2d (16-23"): medium-dense gray to brown fine SAND,	1.4		
trace fine gravel (wet)	1.2		
	7		
R3a (0-9"): medium-dense brown coarse SAND, trace medium sand (wet) R3b (9-37"): medium-dense gray fine SAND, trace silt (wet)	0.0		
R3b (9-37"): medium-dense gray fine SAND, trace silt (wet)	0.0		
	0.0		
	0.0		
	0.0		
R4 (0-46"): medium-dense gray fine SAND, trace silt (wet)	0.0		
	0.0		
48/60	0.0		
	0.0		
	0.4		
	1.3		

Log of Boring **LB17** Sheet of 3 Project Project No. 190046301 41 Kensico Drive Location Elevation and Datum NAVD88 289.92 Mount Kisco Sample Data Remarks Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Reading (ppm) 269.9 20 21 0.3 R5a (0-8"): medium-dense gray silty fine SAND, trace clay 0.9 MACROCORE 0.6 0825 Collect LB17_22-24 R5b (8-24"): stiff gray clayey SILT (wet) 0.8 23 2.5 R5c (24-34"): stiff gray CLAY (wet) micro lenses of silt 24 1.7 Blue dye test at 24-25 feet R5d (34-52"): stiff olive-gray clayey SILT (wet) 2.5 bgs: negative 25 R6a (0-36"): medium-dense fine SAND, trace silt (wet) 1.0 26 1.3 MACROCORE 27 1.9 28 0.9 R6b (36-58"): medium-dense silty fine SAND (wet) clay lenses between 38-40" 0.7 29 0.8 12 30 0.5 31 0.2 MACROCORE 1.3 R7a (0-34"): medium-dense clayey silty fine SAND (wet) 1.2 33 1.1 clay lenses at 19-20" 34 0.9 1.5 35 36 MACROCORE 37 2.0 R8a (0-18"): medium-dense gray fine SAND (wet) 38 2.7 clay micro-lenses 3.1 R8b (18-30"): medium-dense silty fine SAND, trace clay 39 27 (wet) 1.1 R8c (30-35"): stiff olive-gray CLAY (moist) 2.3 MACROCORE 1.3 1.7 R9a (0-13"): very soft olive gray CLAY (wet) 43 2.1 0845 Collect LB17 43-44 4.7 R9b (13-29"): stiff olive-brown clayey SILT (moist to wet) 4.1 Blue dye test: negative

Log of Boring **LB17** Sheet of 3 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 289.92 Sample Data Remarks Elev (ft) Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Reading (ppm) Scale 45 2.4 R10a (0-22"): very soft olive-brown CLAY, some silt (wet) 0.1 46 0.2 0.2 MACROCORE 0.3 clay lenses at 37-38" R10b (22-45"): medium-dense olive-brown silty fine SAND 29/60 R10 0.9 (wet) 48 1.2 0900 Collect LB17_49-50 . 6/28/2019 6:06:13 PM 1.2 clay lenses 50-51" and 56-57" 49 0.9 R10c (45-59"): medium-dense brown fine SAND, trace silt blue dye test: negative (wet) End of boring at 50 feet bgs 2.7 -239.9 50 (Refusal). /LANGAN.COM/DATA/WPW/DATA3/190046301/PROJECT DATA_DISCIPLINE:ENVIRONMENTAL/GINTLOGS/41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ ... 51 52 53 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69

	LA	/VU/	1/V	Log		Boring			LE	318			Sheet 1	of	1
	Project	41 Kensico Drive			Pr	oject No.			190	04630 ⁻	1				
	Location	Mount Kisco			Ele	evation an	id Da	atum		/D88					
	Drilling Compa	ny			Da	ite Started	t					Date F	inished		
	Drilling Equipm	Eastern Environment ent	al		Co	mpletion	Dept	h		5/3/19	F	Rock [Depth	5/3/19	
_	Size and Type	Geoprobe 420M							Diet	12 ft urbed		Line	disturbed	Core	
ANG A		N/A		Oi D41- (#)	Nu	ımber of S	Samp	les			1		N/A		N/A
- 60-	Casing Diamet	N/A	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Casing Depth (ft)		ater Level	` ′		Firs	-	5	Z	mpletion Z	24 HR.	N/A
about: 1	Casing Hamme		Weight (lbs) N/A	Drop (in) N/A		illing Fore	man		atric	k Slavi	n				
ž :: 5	Sampler Hamn	2" Diameter 3-foot Lo	ong Steel MC Weight (lbs) N/A	Drop (in) N/A	Fi∈	eld Engine	eer		ouro	n McM	ahan				
	4 7 E	N/A	IN/A	IN/A					Sa	mple Da	ata		Rem	arks	
0.00	SYMBOL (tt)	:	Sample Description	l		Depth Scale	Number	Type	Recov.	Penetr. resist BL/6in	PID Readi (ppm	ng	(Drilling Fluid, De Fluid Loss, Drilling		ng, , etc.)
726/20		4" concrete slab		20. (_	0 -	_								
2		trace fine gravel (di	I brown fine SAND, so ry) [FILL]	me silt, trace clay,	•	1 -		ORE	6		0.0				
ون د د							조	MACROCOR	8/36		0.0				
פר						_ 2 _		MA			0.0				
200						3 -					0.0				
マ ト ト						4 -		JRE			0.0				
2		R2a (0-10"): uncon	solidated brown fine S	SAND, some silt,	∇		22	MACROCORE	18/36						
2		trace clay, trace fin	e gravel, with concrete	e, with brick (dry)	<u>-</u>	5 -		MAC	-		0.0		1200 Collect I	_B18_5-6	3
200		R2b (10-18"): unco	nsolidated dark brown e fine gravel, with bric	i fine SAND, some k (wet) [FILL]	:	6 -					0.0				
4		R3a (0-12"): uncon	solidated dark brown t e fine gravel, with bric	fine SAND, some		7 -		쀮			0.0				
200		R3b (12-22"): unco	nsolidated black silty t	, , , -		- ' -	R3	MACROCORE	33/36		0.0				
		clay, organic fibers R3c (22-33"): unco	nsolidated grey fine S.	AND, trace silt,		8 -		MACI	က		0.0				
7			I, trace coarse sand (v solidated grey coarse	,		9 -	_				0.0				
		medium sand, trace	e fine sand (wet)	OAND, trace				띴			0.5				
						<u> </u>	72	MACROCOR	36/36		0.7 11.8				
						11 -	-	MACF	3		7.7				
		R4b (30-36"): unco (wet)	nsolidated brown-grey	silty fine SAND		12 -					15.3 7.2		End of boring	at 12 for	at hae
{ {		(wei)											Borehole back	kfilled wit	:h
ב						13 -							capped with c	oncrete.	iu
3						14									
1000+						15 -									
31300						Ė									
Z X						16 -									
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						17									
A A						18 -									
						- 10 -									
CAN						19 -									
₹	l					⊢ -	1		1						

LANG	AN	Log	of Boring		LB1	9	Sheet	1 of 2
Project 41 Kensico Drive			Project No.		19004	16301		
Location			Elevation and Da	atum		10301		
Mount Kisco			Data Startad		NAVE	088 290.6	sta Finiahad	
Drilling Company	mental Services, Inc.		Date Started		8/1	4/18	ate Finished	8/14/18
Drilling Equipment	nental Gervices, inc.		Completion Dep	th	0/1		ock Depth	0/14/10
Geoprobe 6610 [)T					45 ft	11 2 1 1	
Size and Type of Bit 2" Diameter Stee	I Macrocore Cutting Shoo	e	Number of Sam	oles	Distur	oed 3	Undisturbed N/A	Core N/A
Size and Type of Bit 2" Diameter Stee Casing Diameter (in) N/A Casing Hammer N/A Sampler 2" Diameter 5-foo		Casing Depth (ft)	Water Level (ft.)		First	5.5	Completion	24 HR. V N/A
Casing Hammer N/A	Weight (lbs)	A Drop (in) N/A	Drilling Foreman				-	
Sampler 2" Diameter 5-foo	ot Long Steel DT		Field Engineer	S	Sergio I	Magana		
	Weight (lbs)	A Drop (in) N/A		L	.uke Mo	cCartney		
			Double la		Sam	ple Data	R	emarks
MATERIAL (#) (#) (#) (#) (#) (#) (#) (#) (#) (#)	Sample Description	n	Depth Scale	Type	Recov. (in)	FID Reading	, (Drilling Flui	d, Depth of Casing, illing Resistance, etc.)
290.6 (0-2") concrete	slab				E 0	(ppm) 0.0	Tidia 2000, Di	ming reductines, etc.)
:[XXXXX K1 (2-30). der	se brown to gray fine SA	ND, some silt,	-			0.9		
trace coarse sa	and, trace fine gravel (mo	oist) [FILL]	F 1 =			0.0		
wi Karana I			E 2 =	ORE		0.0		
<u> </u>			<u> </u>	MACROCORE	36/60	0.0		
			- 3 -	MAC	က	6.0		
			F ,]					
*			F 4 =					
₩ ₩							1130 Colle	ect LB18_5-6
			平]				1100 00110	.o.
ਲੋ XXXXX+284.6 R2a (0-6"): me	dium-dense dark gray to	olive fine SAND,	6 =					
trace silt, trace	clay, trace coarse sand (edium-dense olive to red		7 -	뀚		0.0		
SAND, trace si		dion brown into	28	000	49/60	0.0		
trace coarse sa R2a (0-6"): me trace silt, trace R2b (6-44"): m SAND, trace si			E 8 = 1"	MACROCORE	94	1.3		
			<u> </u>	_		3.1		
			F 9 =			12.9		
			10			15.5 22.9		
P3 (0 57"): dor	ise olive-brown fine SANI	D. somo silt (wot)	F " =			30.9		
Z (0-57). dei	se olive-blown line SAM	D, some siit (wet)	F 11 =			33.1		
			F 40 =	发		61.6		
			- 12 - - 12 - - 22	MACROCORE	22/60	52.8 52.4		
			[- 13 -]	IACR	22	69		
			<u> </u>	2		47.9		
			<u> 14 </u>					
\(\times \\ \t			15			66		
86	ense gray silty fine SAND), trace clay (wet)	F 13 =			38.3 12.6		
ATA3			16			12.9		
			<u> </u>	Щ		15.9	clay lense	s at 43"
			17 -	MACROCORE	09/09	42.5		
			18 -	ACRC	09	14.5 13.2		
			F = 1	Σ		8.1		
R3 (0-57"): der R3 (0-57"): der R3 (0-57"): der R4 (0-48"): der R4 (0-48"): de R4b (48-60"): de R4b (48-60")	lense gray silty fine SANI	D, some clay (wet)	F 19 =			19.9		
¥ : : : : : : : : : : : : : : : : : : :	-					30.4		

LB19 Log of Boring Sheet of 2 Proiect Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 290.6 Mount Kisco Sample Data Remarks Elev Depth Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale (ppm) 270. 20 R5a (0-51"): firm gray clayey SILT, trace fine sand (wet) 5.5 21 7.5 16.4 22 13.8 24.3 clay lenses at 8", 10", 12", 23 25", 44", 47", 51" 22.1 16.9 24 22 4 R5b (51-56"): firm olive gray CLAY, trace silt (wet) -266 22.8 R5c (56-60"): dense gray silty fine SAND (wet) 25 12.2 R6a (0-30"): medium-dense olive-gray silty fine SAND, trace clay (wet) 15.5 26 16.53 18.9 MACROCORE 27 15.5 SRI BORING 20.1 clay lenses at 5", 30", R6b (30-50"): firm olive-gray clayey SILT, trace fine sand 32-34", 38", 44" (wet) 28 22.6 12.6 29 9.7 R6c (50-60"): medium-dense gray SILT, some fine sand, 20 1 trace clay (wet) 30 13.3 R7a (0-12"): medium-dense olive-gray fine SAND, trace sily 13.1 ENVIRONMENTAL\GINTLOGS\41 KENSICO 259.6 31 13.3 R7b (12-36"): stiff olive-gray SILT, trace fine sand (wet) clay lenses at 12", 32", 41", MACROCORE 19.4 32 19 **R**4 8.8 33 11.1 R7c (36-48"): stiff olive-gray clayey SILT (wet) 18.9 34 12.1 1145 Collect LB19 34.5-35.5 R7d (48-54"): medium-dense gray fine SAND (wet) 156 Red dye test: negative 35 70 R8a (0-7"): medium-dense gray fine SAND (wet) 60.1 36 88.8 R8b (7-40"): stiff olive-gray CLAY, trace silt, trace fine sand (wet) 53.6 MACROCORE 37 88.8 88 36.6 38 34.3 50.2 39 30.3 47.7 29.7 R9a (0-36"): firm olive-gray CLAY, trace silt, trace fine sand 33.6 47.6 46.9 MACROCORE 42 46.2 1200 Collect LB19_44-45 42.6 Red dye test: negative 43 46.9 R9b (36-48"): medium-dense olive-brown fine SAND, trace End of boring at 45 feet bgs, Refusal on rock. 42.9 silt, trace clay (wet) MW19/MW19D installed. 69.9 R9c (48-60"): medium-dense olive-brown fine SAND (wet) See MW construction log for 63.2

		/VC/					Boring oject No.			LB				neet	1	of	
Project		AA Kamataa Dubaa				Pi	oject No.			400	0.4000	4					
ocation	- 4	41 Kensico Drive				Elv	evation ar	nd Da		190	04630 ⁻	1					
.ooauOH		Marria 17:				اتا	vauvii di	iu Da		NIA.	/D00 0	000					
Orilling Co		Mount Kisco				Da	ite Starte	4		NΑ\	/D88 2		ate Finis	shed			
niiiiig O			ntal Camilara			108	iie olai lel	J		^	100140		ate i IIIIS	»ı ıcu	0.1	20/40	
Orilling Ed		AARCO Environme	ınıaı services, Ir	IC.		100	mpletion	Dent	h	8	/20/18	D.	ock Dep	ıth	8/	20/18	
, iming E			Cania Di-			1	picuui	Dehr			40.5		ou neh	u1		10 t	
Size and		Geoprobe 8140LC	Sonic Kig			+				Diet	49 ft urbed		Undist	urhed	1	49 ft Core	
o unu		4" Diameter Steel S	Sonic Carbide Bi	it		Nu	ımber of S	Samp	les	5,50	DOG	3	J. Idiott	N/A			N/A
Casing D	iameter	· (in)			Casing Depth (ft)	۱۸/	ater Leve	/ft \		First			Comple		2	24 HR.	
		N/A	1141 : 11 (11)					` '		∇		5	Ţ			Ā	N/A
Casing H	lammer _l	N/A	Weight (lbs)	N/A	Drop (in) N/A	Dr	illing Fore	man									
Sampler		4" Diameter 5-foot l	long Steel Sonic	Sample	ar .	_	alal En ada a		TI	hom	as Sei	ckel					
Sampler I		_	Weight (lbs)		Drop (in) N/A	156	eld Engine	eer									
		·r N/A	, ,	N/A	N/A			1	Lı		McCarl mple Da						
ZOL 30L	Elev.						Depth	-				PID		R	ema	rks	
MATERIAL SYMBOL	(ft)		Sample Des	cription			Scale	Number	Type	(i.)	Penetr. resist BL/6in	Readin		(Drilling Flu Fluid Loss, Di	id, Dep	oth of Casi	ing,
≥"	+289.9	D4 (0.45***					L 0 -	ž	_	œ	م م	(ppm)		iuiu LUSS, Di	iiiiiy F	woistal ICE	, c ιυ.)
$\otimes\!\!\otimes\!\!\!\otimes$		R1 (0-43"): loose trace coarse sand	, brown, tine SA	ND, trac	e medium sand,		Ė [1				0.0					
\ggg		[FILL]	u, ii ace iiile gia\	voi, yias	s, piastic (111015t)		E 1 -	1				0.0					
XXX							; ;	1									
XXX							2 -	1				0.0					
XXX								-	BAG	43/60		0.0					
XXX							F 2 :	쥰	B/	43/		0.0					
XXX							- 3 -	}				0.0					
XXX							<u> </u>					0.0					
XXX							F 4 -	1									
XXX						∇	Ę :										
XXX						<u>-</u>	5 -	+			\vdash			Collect LE			
XXX							E :	}					F	Red dye to	est: r	negative)
XXX							_ 6 -	†									
XXX							E :	1									
XXXX							7 -	1.	(5)	٥							
XXX		D0= (0.44ll): -1 -1	. In many many 10	CAND			Ė :	R2	BAG	28/60		0.0					
XXX		R2a (0-14"): dark trace fine gravel,			some tine sand,		- 8 -	1				0.0					
$\times\!\!\times\!\!\!\times$	+281 1	•	` , , -	-			Ė :	1				0.0					
	+280.6	R2b (14-20"): stif	f, gray, CLAY, tr	ace sit,	trace fine sand		- 9	}				0.0					
	200.0	(moist)		ND			‡ :	†				0.0					
		R2c (20-28): loos trace coarse sand	se, gray, tine SA d (wet)	ND, som	ne medium sand,		10 -	_									
		adoc coarse sarr	a (***Ct)				<u> </u>	1									
							_ 11 -	1				0.0					
		R3a (0-14"): loos	e, gray, fine SAI	ND, som	e medium sand,		<u> </u>	1				2.8					
		trace coarse sand	d (wet)				_ 12 -	1				24.3					
	+277.5_	R3b (14-45"): me	dsium-dense d	rav eiltv	fine SAND (wet)		£ :	R3	BAG	45/60		24.9					
. . :		1.00 (17-40). IIIC	asiaiii-aeiise, yi	iay, siity	IIIC OAND (WEL)		13 -	‡	"	4		37.8					
: : :							E :	1				24.1					
							- 14 -	1				33.1					
							F	1				16.5					
$ \cdot \cdot \cdot $, ,					- 15 -	_				19.4					
		R4a (0-24"): loos	e, gray, silty fine	SAND ((wet)		‡ ' ' :	1									
: : :							16 -	1				15.9					
							£ '0 =	1				24.0					
[:].[:]							 	1				14.1					
		R4b (23-48"): loo	se, greyish brow	vn, silty f	ine SAND (wet)		<u> </u>	4	G	90		23.8					
: - :		•		-	,		<u> </u>	8	BAG	09/09		32.6		Clay lense	es at	49" and	1 54"
							_ 18 -	1				29.2					
							E :	1				32.4					
-1 11 J	+270.9_	R4c (48-60"): stiff			OU.T. (- 19 -	-				19.7					
ИV	!	R4C (4X-hii"), ctit	t grevish-hrown	Clavev	SILL trace tine		F .	4	1	1							

LB20 Log of Boring Sheet of 3 Project Project No. 41 Kensico Drive 190046301 Elevation and Datum Location NAVD88 289.9 Mount Kisco Sample Data Remarks Elev Depth Sample Description Recov. (in) (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) (ft) Scale Reading (ppm) 269.9 20 R5a (0-24"): loose, greyish-brown, silty fine SAND, trace 31.6 21.7 clay (wet) 21 10.0 11.2 22 25.1 Clay lenses at 14", 22", 39", R5b (24-60"): medium-dense, greyish-brown, silty fine **R**5 BAG 20.7 SAND, trace clay (wet) 23 16.7 36.9 24 11.1 15.0 25 22.9 15.6 R6: (0-55"): loose, greyish brown, silty fine SAND (wet) 26 12.8 7.4 27 12.5 55/60 BAG 3.7 28 8.1 11.2 29 16.4 128 DISCIPLINE/ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE -30 25.5 R7a (0-9"): olive-brown, medium-dense, fine SAND (wet) 25.9 R7b (9-60"): stiff, olive-brown, clayey SILT, trace fine sand 31 22.0 30.0 Clay lenses at 10", 21", 25", 32 31", 40", 49", 59" 35.9 BAG R7 48.1 33 78.0 Collect LB20_32.5-33.5 at 21.8 8.40 Red dye test: negative 34 115.8 41.8 35 68.8 R8a (0-57"): loose, olive-brown, fine SAND, trace silt (wet) Drive 6" casing to 35 feet below grade surface 41.9 36 4.6 7.5 37 23.9 **R**8 R8b (27-56"): medium-dense, olive brown, silty fine SAND, BAG 49.9 Clay lenses at 20" some clay (wet) 38 29.4 27.5 39 29.9 50.5 -250.2 R8c (56-60"): medium-dense, olive-brown, fine SAND (wet) 50.1 R9a (0-52"): loose, olive-brown, fine SAND (wet) 16.6 3.4 19.7 42 50.4 09/09 BAG 45.2 43 25.1 18.1 45.1 Weathered rock in last 8" R9b (52-60"): loose, olive-brown, fine SAND, trace clay 35.3

Log of Boring **LB20** Sheet 3 of 3 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum NAVD88 289.9 Mount Kisco Sample Data Remarks Elev (ft) Depth Recov. (in) Penetr. resist BL/6in Sample Description (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Reading (ppm) Scale 244. 45 (wet) R10a (0-38"): loose, olive-brown, fine SAND (wet) 18.1 11.1 46 22.5 48/60 R10 25.3 BAG 7.5 22.3 Collect LB20 47-48 at 09:00 48 Red dye test: negative 9.2 NLANGAN.COMIDATAWIWPWIDATA3/190046301/PROJECT DATA_DISCIPLINEIENVIRONMENTAL/GINTLOGS41 KENSICO DRIVE - RI + SRI BORING LOGS.GPJ... 6/28/2019 6:06:27 PM R10b (38-48"): loose, whitish-brown, coarse SAND, some 8.5 Bedrock nested fine sand, trace fine gravel, trace coarse gravel -240.9 49 11.9 End of Boring at 49 feet bgs. 50 Well couplet MW20/20D set. See well construction log for details. 52 53 54 55 56 58 59 60 61 62 63 64 65 66 67 68 69

LB21 Log of Boring Sheet of 1 Project Project No. 190046301 41 Kensico Drive Location Elevation and Datum Mount Kisco NAVD88 289.7 Drilling Company Date Started Date Finished AARCO Environmental Services, Inc. 8/10/18 8/10/18 Drilling Equipment Rock Depth Completion Depth Geoprobe 7822 DT 20 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2" Diameter Steel Macrocore Cutting Shoe N/A Casing Diameter (in) Casing Depth (ft) 24 HR. Completion Water Level (ft.) N/A N/A 5 Drop (in) N/A Casing HammerN/A Weight (lbs) Drilling Foreman N/A Thomas Seickel Sampler 2" Diameter 5-foot Long Steel DT Field Engineer Drop (in) N/A Sampler Hammer Weight (lbs) N/A N/A Luke McCartney 6/28/2019 6:06:32 Sample Data MATERIAL SYMBOL Remarks Elev Depth Recov. (in)
Penetr. resist (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) (ppm) R1a (0-18"): medium-dense fine brown SAND, trace coarse sand (moist) [FILL] 0.0 0.0 0.0 R1b (18-22"): black coarse SAND, some fine gravel (moist) MACROCORE 0.0 2 [FILL] 22/60 쥰 3 5 0915 Collect LB21 5-6 6 R2a (0-2"): black plastic and timber (wet) [FILL] 9 280. 0.0 R2b (2-8"): very soft black CLAY (moist to wet) **DISCIPLINE/ENVIRONM** 280.0 0.0 R2c (8-10"): dark gray to black fine SAND, some coarse 0.0 sand (wet) MACROCORE 12 09/9 JGAN.COM/DATA/WPW/DATA3/190046301/PROJECT DATA/ 13 Poor Recovery 0.0 R3 (0-6"): medium-dense gray fine SAND, some coarse sand (wet) 0.0 16 MACROCORE 17 29/60 0.4 R4a (0-26"): medium-dense silty fine SAND (wet) clay micro-lenses 18 1.5 0925 Collect LB21 18-19 2.1 Blue dye test: negative 19 4.4 End of boring at 20 feet bgs. 3.1 Borehole backfilled with R4b (26-29"): stiff olive-gray clayey SILT (wet) clean sand to grade

	4	IVE		4/V		Log	of E	oring			LE	322			Sheet 1	of	1			
Project		41 Kensico Drive									100									
Location	41 Kensico Drive Location									190046301 Elevation and Datum										
Drilling C	NAVD88 290.58 Date Started Date Finished																			
							7/18 8/7/18													
Drilling E		Completion Depth							Rock Depth											
Geoprobe 420M Size and Type of Bit										oles	Dist	15 ft Disturbed			Undisturbed Core					
Size and Casing D Casing H Casing H Casing H	Casing Diameter (in) Casing Diameter (in) Casing Depth (ft)										Firs	First		Co	N/A mpletion	24 HR.	/A			
Casing H	N/A g Hammer _{N/A} Weight (lbs) N/A Drop (in) N/A								(ft.) man		<u> </u>			7		Δ N	/A			
Sampler			\ f = -4.1		Ł				hom	as Seid	ckel									
	Hamn	2" Diameter 3-foot Long Steel DT ver N/A Weight (lbs) N/A Drop (in) N/A						eld Engine	eer		באנו	McCart	nev							
MATERIAL SYMBOL SA PM									ļ.,		Sa	mple Da	ata	Remarks						
MATERIAL SYMBOL	Elev. (ft)			Sample Desc	ription			Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PII Read	ling	(Drilling Fluid, D	epth of Casing	, tc.)			
N N N N N N N N N N N N N N N N N N N	+290.6	(0-8"): cond	rete sl	ab				_ 0 -	ž		<u>«</u>	g - m	(ppr 0.0		Tidid E033, Dillilling	resistance, et				
	+289.8	,		brown fine SANI) some	silt trace		_ 1 _		띪			0.0							
<u> </u>		medium sa		: ' :	돖	MACROCORE	26/36		0.											
				_ 2 -		MACI														
								_ 3 -												
										ш										
÷ 💥								_ 4 -	22	COR	12/36									
		R2a (0-6"):	ailt trace		- - 5 -	5 - 2 - 2	MACROCORE	12/	0.		0									
		mediùm sa	ne gravel (dry)]				0.0										
			clay, brick (dry)		- 6 -					0.0										
		[FILL]			_ 7 -		ORE													
								- :	R3	MACROCORE	7/36									
		D0 (0 711) 1	4	E CAND	.	- di		<u> </u>		MA			0.0		Poor Pocovo					
NIMENTALIGINI LOGSAT KENSICO DRIVE - RI + SKI BOKING LOGS GFO		coarse san	oose tr d (dry)	[FILL]	trace m	edium sand, trace	•	9 -					0.0)	Poor Recovery					
								10 -		쀮										
		P42 (0 8")·	looso	brown fine SANI) traco	cilt trace clay	_	10 -	72	MACROCORE	18/36		0.0	0						
	+279.6 +279.1	⊤ trace coaŕs	e sand	l, trace fine grave	eľ, brick	(moist) [FILL]	\not	_ 11 -		MACI	_		0.0	0	1305 Collect	LB22_11-1	2			
	1219.1	R4c (13-18	"): stiff	gray silty fine SA gray SILT (wet)	ND (we	t)		_ _ 12 -					0.0							
		R5a (0-24")): stiff (gray SILT (wet)						ш			0.0							
								_ 13 -	R5	MACROCORE	36/36		0.0							
A CONTRACTOR		DEN (24.26	"\· otiff	gray SILT, som	o fino o	and (wot)		_ _ 14 _	2	IACRO	36/		0.0							
301/4	. 075 0	130 (24-30). Sun	gray SILT, SUIT	e iiile sa	and (wet)				2			0.0		End of Boring Borehole bac		bgs.			
90004	+275.6							_ 15 -					0.0	-	clean sand to capped with o					
A I A 3/1								_ 16 _	1											
70/00/0									1											
AWA!								- 17 -												
MUDA								18 -	1											
ILANGAN.COMIDATAWPWIDATA3/1900/463/1/PKOJECT DATA_DISCIPLIN								_ _ 19 -												
ANG																				
 								20 -	1						<u> </u>					

Log of Boring LB23 (RIWP) Sheet of 1 Proiect Project No. 190046301 41 Kensico Drive Location Elevation and Datum Mount Kisco NAVD88 290.87 Drilling Company Date Started Date Finished AARCO Environmental Services, Inc. 8/13/18 8/13/18 Drilling Equipment Rock Depth Completion Depth Geoprobe 7822 DT 15 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2" Diameter Steel Macrocore Cutting Shoe N/A Casing Diameter (in) Casing Depth (ft) 24 HR. First Completion Water Level (ft.) N/A 4.5 N/A Drop (in) N/A Casing HammerN/A Weight (lbs) Drilling Foreman N/A Sergio Magana Sampler 2" Diameter 5-foot Long Steel DT Field Engineer Drop (in) N/A Sampler Hammer Weight (lbs) N/A N/A Luke McCartney Sample Data 6/28/2019 6:06:37 MATERIAL Remarks Elev Depth Number Recov. (in)
Penetr. resist (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description (ft) Scale (ppm) R1 (0-38"): medium-dense brown to black silty fine SAND, some clay, trace coarse sand, trace fine gravel (moist to 0.0 wet) [FILL] 0.0 RI + SRI BORING LOGS.GP. 0.0 MACROCORE 2 0.0 38/60 꼰 0.0 3 0.0 ∇ plastic chips at 4.5 feet bgs DISCIPLINE/ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE -5 0800 Collect LB23_4-5 and SBDUP02_081318 6 MACROCORE 0.0 R2a (0-4"): medium-dense black fine SAND, some medium sand, trace coarse sand, trace fine gravel (wet) [FILL] 0.0 R2b (4-14"): medium-dense brown silty fine SAND, some 0.0 clay (wet) 282 0.0 R2c (14-24"): soft dark brown CLAY, trace silt (wet) 9 0.0 R2d (24-34"): dense gray silty fine SAND (wet) 0.0 0.0 MACROCORE 12 0.0 0815 Collect LB23_12-13 R3a (0-12"): stiff grayish-brown silty fine SAND (wet) 38/60 COMIDATAIWPWIDATA3/190046301/PROJECT DATA 0.0 13 0.0 R3b (12-38"): stiff grayish-brown clayey SILT, some fine micro-lenses of clay at 18", 31", and 33" sand (wet) 0.0 14 0.0 0.0 0.0 16 MACROCORE 0.0 micro-lenses of clay at 14", R4 (0-35): stiff gray-brown clayey SILT, some fine sand 35/60 17", and 27' (wet) 0.0 18 0.0 0.0 19 0.0 End of Boring at 20 feet bgs. Borehole backfilled with 0.0 clean sand to grade

Log of Boring LB23 (SRIWP) Sheet of 1 Project Project No. 41 Kensico Drive 190046301 Location Elevation and Datum Mount Kisco NAVD88 Drilling Company Date Started Date Finished Eastern Environmental 5/6/19 5/6/19 Drilling Equipment Rock Depth Completion Depth Geoprobe 6610 DT 10 ft Size and Type of Bit Disturbed Undisturbed Core Number of Samples 2" Diameter Steel Macrocore Cutting Shoe N/A N/A Casing Diameter (in) Casing Depth (ft) 24 HR. Completion Water Level (ft.) N/A N/A Drop (in) N/A Casing HammerN/A Weight (lbs) Drilling Foreman N/A Patrick Slavin Sampler 2" Diameter 4-foot Long Steel MC Field Engineer Drop (in) N/A Sampler Hammer Weight (lbs) N/A N/A Lauren McMahon 6/28/2019 6:06:39 Sample Data MATERIAL SYMBOL Remarks Elev Depth Recov. (in)
Penetr. resist (Drilling Fluid, Depth of Casing, Fluid Loss, Drilling Resistance, etc.) Sample Description Reading (ppm) (ft) Scale HAND AUGER Hand Auger: unconsolidated brown fine SAND, some silt, HAND AUGER 1120 Collect LB23 0-2 trace clay, trace fine gravel (moist) [FILL] 0.0 24/24 0.0 0.0 0.0 1121 Collect LB23 2-4 R1: unconsolidated brown fine SAND, some silt, trace clay, trace fine gravel, with brick, with plastic (moist) [FILL] 0.0 3 0.0 0.0 꼰 /\LANGAN.COM\DATA\WPW\DATA3\190046301\PROJECT DATA_DISCIPLINE\ENVIRONMENTAL\GINTLOGS\41 KENSICO DRIVE -5 0.0 0.0 6 0.0 1122 Collect LB23 6-8 0.0 7 0.0 MACROCORE 0.0 R2a (0-10"): unconsolidated black fine SAND, trace fine 82 0.0 gravel, trace medium sand, trace clay (wet) 1123 Collect LB23 8-10 R2b (10-20"): unconsolidated olive-brown fine SAND, trace 0.0 medium sand, trace silt (wet) 9 0.0 R2c (20-27"): unconsolidated black silty fine SAND, some 0.0 clay, trace silt (wet) 0.0 R2d (27-29"): unconsolidated grey fine SAND, trace End of boring at 10 feet bgs. Borehole backfilled with medium sand, trace silt, trace clay (wet) clean sand to grade. 12 13 15 16 17 18 19

		4		1/V		Log o				l	LB2	3_E1			Sheet 1	of	1
	Project		41 Kensico Drive	Project No. 190046301													
	Location			Elevation and Datum													
	Drilling C	ompa	Mount Kisco ny	NAVD88 Date Started Date Finished													
	Drilling E	Co	mpletion	Dept	:h		5/6/19		ock E	Depth	5/6/19						
_			·			In: 1	8 ft										
INGAI	Size and	,,	2" Diameter Steel Ma	acrocore Cutting Sho	Nu	mber of S	Samp	oles		Disturbed 4			ndisturbed Core N/A		N/A		
og - L/	Casing D		N/A		Nater Level (ft.)			Firs	:t 7 	4	Cor		24 HR. <u>V</u> 1	N/A			
DOLL: L	Casing H	łamme	^{er} N/A	Dri	lling Fore	man		Patrick Slavin									
Re	Sampler	Hamn	2" Diameter 4-foot Lo	Fie	eld Engine	eer											
4 7	·	I Idillii	N/A	Drop (in) N/A				L		n McM ample Da							
9 6:00:	MATERIAL SYMBOL	Elev. (ft)	;	Sample Description	n			Depth Scale	Number	Туре	tecov.	Penetr. resist BL/6in	PID Readin		Rema (Drilling Fluid, De Fluid Loss, Drilling		g, etc.)
28/201	<u> </u>		R1: unconsolidated	d brown fine SAND, s	some	silt, trace clay,		_ 0 _	Ž		Œ	Г-ш	(ppm)		1205 Collect L		
۰,0 ک			trace fine gravel, wi	ist) [FILL]		- 1 -					0.0		1200 Collect E	_0 2			
שט.כנ										CORE	8		0.0				
9 5						<u> </u>	R-	MACROCORE	24/48		0.0		1206 Collect L	_B23_E1_2-4			
שאספ								3 -		Ň			0.0				
120							∇	_ 4 _					0.0				
Z								- T							1207 Collect L	LB23_E1_4-6	
אַ								5 -		쓌			0.0				
2010			R2a (0-8"): unconso gravel, trace mediu	[FILL]	1	6 -	R-2	MACROCORE	31/48		0.0		1208 Collect I	B23 F1	6-8		
- NE			R2b (8-18"): uncons sand, trace clay, tra), trace medium ic (wet) [FILL]			"	MACF	'n		0.0		1208 Collect LB23_E		_0-0		
065/4			R2c (18-28"): uncor clay, organic fibers	nsolidated black silty (wet)	/ fine	SAND, some		7 -					0.0				
GINIC				nsolidated grey fine	SAN	D, trace silt,		8 -	-				0.0		End of boring		
NAL			trace day (wet)		_/	9 -							Borehole back clean sand to	1			
JININE																	
אואאויי								10 -									
								11 -									
7001								12 -									
ואור								- '2									
5								13 -									
שכטאי								14 -									
03011																	
19004								15 -									
AIAS								16 -	1								
אאיר								_ _ 17 _									
A A																	
שלי								- 18 -	1								
GAIN.C								19 -	1								
Ż								ļ :	1								

		4	\		1/V		Log		oring		l	_B2	3_N1			Sheet 1	of	1
	Project		4	1 Kensico Drive				Pro	ject No.			190	04630 ²	1				
	Location							Ele	vation ar	nd Da	atum			-				
	Drilling C	ompa		lount Kisco				Dat	te Starte	d		NA	√D88	Da	ate F	inished		
	Drilling E	quipm		astern Environment	ial			Coi	mpletion	Dept	h		5/6/19	Ro	ock D	Depth	5/6/19	
-			G	eoprobe 6610 DT					· 	•		ID:-4	8 ft		11	· ::-4:	0	
N C A	Size and		2"	" Diameter Steel Ma	acrocore Cutting Shoe			Nui	mber of S	Samp	oles		urbed	4		N/A		N/A
- bo	Casing D		N	/A	T	Casing D			ter Leve	` ′		Firs	t , 	4	Con		24 HR. <u>V</u> 1	N/A
por: L	Casing F	lamme	PN.	/A	Weight (lbs) N/A	Drop	(in) N/A	Drii	lling Fore	man		Patric	k Slavi	n				
2 ::	Sampler	Hamn		Diameter 4-foot Lo	Woight (lbc)	Drop	(in) N/A	Fie	ld Engine	eer								
7 04	<u> </u>			N/A	N/A		` ^ N/A						n McM mple Da			D		
2019 0.00	MATERIAL SYMBOL	Elev. (ft)			Sample Description				Depth Scale — 0 —	Number	Type	Recov.	Penetr. resist BL/6in	PID Reading (ppm)	9	Rema (Drilling Fluid, De Fluid Loss, Drilling		g, etc.)
0/20/				trace clay, trace fine	d brown-black fine SAN ne gravel, with brick, wi	ND, some	e silt, c (moist)		_					0.0		0950 Collect L	.B23_N1_	_0-2
				[FILL]	-				- 1 -		RE			0.0				
90									_ 2 -	~	MACROCORE	37/48		0.0		0951 Collect L	B23 N1	2-4
פוצפ									= :	-	MACF	3		0.0		000.00.00.		
200									- 3 - -					0.0				
の + ビ								$\underline{\nabla}$	_ 4 -							0952 Collect L	.B23_N1_	_4-6
- 1									- - 5 -					0.0				
3				R2a (0-6"): unconso	olidated black fine SA	ND, trac	e fine			_	CORE	蛉		0.0				
			\neg	gravel, trace medium with brick (wet) [FIL	ım sand, trace coarse	sand, tra	ace clay,		- 6 -	R-2	MACROCORE	30/48		0.0		0953 Collect L	.B23_N1_	_6-8
1405			_	R2b (6-20"): uncons medium sand, trace	solidated olive-brown	fine SAN	ID, trace	_	7 -		Ň			0.0				
			_	R2c (20-30"): uncor clay, organic fibers	nsolidated black silty f	ine SAN	D, some		- - 8 -					0.0		Ford of bosins	-4 O f4	.
<u>P</u>			\	olay, organio neoro	(web)									0.0		End of boring Borehole back	filled with	
									- 9 -							clean sand to	grade.	
									10 -									
									_ 11 -									
2									- :									
ב ל									- 12 -									
5									13 -									
300									_ _ 14 -									
30.17																		
19004C									_ 15 <u>-</u>									
A LAS									16 -	1								
7									_ _ 17 -									
N A A									-									
2									_ 18 -									
7.1.5									19 -	1								
ξ	1								= :	1			1					

	/		VUI	1/V		Log		Boring		L	B23	3_N2			Sheet 1	of	1
Proj	ect		44 Kanaisa Driva				Pro	oject No.			4000	246204					
Loca	ation		41 Kensico Drive				Ele	evation a	nd Da	tum	1900	046301	<u> </u>				
			Mount Kisco				_	. 6:			NAV	/D88	1 -	- · ·			
Drilli	ing C	ompa	^{ıny} Eastern Environment	·al			Da	te Starte	d			5/6/19		Date F	Finished	5/6/19	
Drilli	ing E	quipm		.aı			Со	mpletion	Dept	h	`	3/0/19	ı	Rock	Depth	3/0/19	
7 0:		_	Geoprobe 6610 DT								I 5: .	8 ft					
Size	and	Type	of Bit 2" Diameter Steel Ma	acrocore Cutting	g Shoe		Nu	mber of	Samp	les	Dist	ırbed	4	Un	disturbed N/A	Core N	N/A
_ Cas	ing D	iamet	ter (in) N/A		С	asing Depth (ft)	Wa	ater Leve	l (ft.)		First		4		mpletion	24 HR. V 1	V/A
Cas	ing H	amme	erN/A	Weight (lbs)	N/A	Drop (in) N/A	Dri	illing Fore	man							<u> </u>	4,7.
Sam			2" Diameter 4-foot Lo	na Steel MC			Eic	eld Engin	or	Р	atricl	k Slavir	1				
: San	npler	Hamn		Weight (lbs)	N/A	Drop (in) N/A		au Liigiiii	561	L	aurer	n McMa	ahon				
3:47 r F	٦							5 "	ļ.,		Sai	mple Da	ta		Rem	arke	
6/28/2019 6:06:47 PM Report: Log - LANGAN	SYMBO	Elev. (ft)	;	Sample Desc	ription			Depth Scale	Number	Туре	Recov.	Penetr. resist BL/6in	PID Readi (ppn	ing	(Drilling Fluid, D Fluid Loss, Drilling		g, etc.)
	\bowtie		R1: unconsolidated	brown-black fi	ne SAND), some silt,		- 0 -					0.0	١	1035 Collect I	LB23_N2_	_0-2
$\exists \bowtie \times$	\bowtie		trace clay, trace fin (moist) [FILL]	e graver, with t	πιοκ, WILΠ	CONCIECE		E 1 -	}				0.0				
± ₩	\bowtie							E	1	CORE	∞		0.0)			
	\bowtie							_ 2 -	~	MACROCORE	27/48		0.0		1036 Collect I	LB23_N2_	_2-4
	\bowtie							- - 3 -	=	MA			0.0				
	\bowtie												0.0				
° + - -	\bowtie						$\overline{\wedge}$	4 -	1						1037 Collect I	LB23_N2_	4-6
<u> </u>	\bowtie							<u> </u>	1								_
	\bowtie							- 5 -		묎			0.0				
	\bowtie		R2a (0-6"): unconse	olidated black f ım sand trace	ine SANI	D, trace fine brick (wet)	_	6 -	R-2	SOCC	30/48		0.0		1038 Collect I	R23 N2	6-8
			\[FILL]		•	, ,		E	-	MACROCORE	$\tilde{\omega}$		0.0)	1000 Oolicci I	LD20_I 1 2_	_0-0
GS84			R2b (6-20"): uncon medium sand, trace	e silt (wet)			_	- 7 -					0.0				
			R2c (20-30"): unco	nsolidated blac	k silty fin	e SAND, some		8 -	1				0.0				
NEANGAN.COMIDATAWIYWIDA IAXRIBOQA65011PROJECT DATA_DISCIPLINEENVIRONMENTALGIN ILOGSSAT KENSICO DRIVE - KL + SKI BOKING LOGS.GFU			Clay, Organic libers	(wet)			_/	9 -					0.0	,	End of boring Borehole bac clean sand to	kfilled with	
VIKONIN								10 -									
NE/EN								11 -									
DISCIP								12 -									
DAIA								- 40									
*KOJEC								- - 14 -									
463U1\r								_ _ _ 15 -									
A3/1900								16 -									
FW/DA								_									
DALAW								- 17 - - 18 -									
N.C.C.								-									
\\LANGA								- 19 - - 20 -									

		NULL	T/W	Log o	of E	3orin	g _		L	.B23	3_S1		;	Sheet 1	of		1
Projec	t				Pr	oject N	No.										
Location	-n	41 Kensico Drive				evatio	ond l	Dot		1900	046301	1					
Localio	ווכ	Mount Kisco			EIE	evalio	i and i	Dat		NAV	מפרוי						
Drilling	Compa				Da	ate Sta	rted			INAV	D00	Da	ate Fi	inished			
		Eastern Environmen	ıtal							5	5/6/19				5/6/19		
Drilling	Equipm				Co	omplet	ion De	epth	1		0.6	Ro	ock D	Depth			
Size a	nd Type	Geoprobe 6610 DT of Bit			 					Distu	8 ft irbed		Und	disturbed	Core		
Cooine	Diamet	2" Diameter Steel Ma	acrocore Cutting Shoe	Casing Depth (ft)	NU	ımber	of Sar	npie	es	First		4	Com	N/A	24 HR.	N/A	
י בס		N/A			W	ater Le	evel (fl	t.)		First		4	Con	mpletion 	24 HK.	N/A	
Casing	Hamme	erN/A	Weight (lbs) N/A	Drop (in) N/A	Dr	illing F	orema	an					_				
Sampl		2" Diameter 4-foot Lo	-		Fie	eld En	ninger		P	atrick	(Slavi	n					
Sampl	er Hamn		Weight (lbs) N/A	Drop (in) N/A	1' "	CIU LI	giricci		l a	aurer	п МсМа	ahon					
. 4-1		1 1171								Sar	nple Da			Rem	orko		
MATERIAL SYMBOL	Elev. (ft)		Sample Description	1		Dep	oth ile	Number	Type	cov.	Penetr. resist BL/6in	PID Reading	a	(Drilling Fluid, D	epth of Cas	sing,	
S A S	(,					o	:	n Z	f	. Re	a a B	(ppm)	,	Fluid Loss, Drilling	Resistance	e, etc.)	
	\otimes	R1: unconsolidated trace fine gravel. w	d brown fine SAND, so vith concrete, with plas	ome silt, trace clay, stic (moist)		Ė	=					0.0		1211 Collect	LB23_S	1_0-2	2
- XXX	\boxtimes	J g g ,	, ,	(- 1	크					0.0					
	\otimes					Ė	₫.		CORE	ထ္		0.0					
	\boxtimes					- 2	4	ż	MACROCORE	28/48		0.0		1212 Collect	LB23_S	1_2-4	1
	\otimes					<u> </u> 3	₫		MA			0.0					
	\otimes					E	=					0.0					
					$\overline{\triangle}$	<u>+</u> 4	+							1213 Collect	I B23 S	1 4-6	ŝ
	\otimes					Ė	=							.2.0 00001			•
			nsolidated black fine Sa um sand, trace coarse			E 5	\exists		끴			0.0					
3		with glass (wet) [FI	ILL]	_		- - 6		7-7	COF	38/48		0.0					
		R2b (10-30"): uncc medium sand, trac	onsolidated grey fine S	SAND, trace		Ė °	3	ב	MACROCORE	38		0.0		1214 Collect	LB23_S	1_6-8	3
±		modiam sana, trae	ont (wot)			F 7	4		Š			0.0					
		R2c (30-38"): unco	onsolidated grey fine S	AND, trace silt,		-	=					0.0					
<u> </u>		trace clay (wet)				[8	+					0.0		End of boring	at 8 fee	et bgs	i.
Ź						F,	=							Borehole bac clean sand to	kfilled w arade.	/ith	
Ž						F 9	7								3		
						F 10	Ę										
						Ē	3										
						F 1	1 🚽										
						Ē,	,]										
2						F 12	· 🗐										
5						E 13	3 =										
						F	3										
2						F 14	1 =										
000						F ,											
9006						15	,]										
<u>É</u>						E 16	3 🚽										
5						Ė	=										
						E 17	7 🚽										
<u> </u>						- - 18	Ė										
5						£ '	' <u> </u>										
NAK.						E 19	9 🚽										
Z Z						þ	=										

				T/W	Log	of E	3oring			LB2	3_S2		She	eet 1	of	f	1
	Project					Pr	oject No).									
	Location		41 Kensico Drive				evation	and D	otum		046301	1					
	Location		Mount Kisco				evalion	anu D	atuii		/D88						
	Drilling C	ompa				Da	ate Star	ed		147 (7000	Da	te Finish	ied			
			Eastern Environmen	ıtal							5/6/19				5/6/19)	
	Drilling E	quipm					ompletic	n Dep	th		0.4	Ro	ck Depth	1			
E	Size and	Туре	Geoprobe 6610 DT of Bit			N.			-1	Dist	8 ft urbed		Undistur	bed	Core		
פֿב	Casing D	liamot	2" Diameter Steel Ma	acrocore Cutting Shoe	Casing Depth (ft)	INL	umber o	ı Sam	pies	First		4	Complet	N/A	24 HR.	N/	Α
7 - K			N/A				ater Le				<u>.</u>	4	<u>T</u>	1011	<u>T</u>	N/	A
][]	Casing F	lamme	erN/A	Weight (lbs) N/A	Drop (in) N/A	Dr	illing Fo	remar									
ב ב	Sampler		2" Diameter 4-foot Lo	ong Steel MC		Fie	eld Engi	neer	F	atric	k Slavi	n					
: ≥	Sampler	Hamn		Weight (lbs) N/A	Drop (in) N/A		9		L	aure	n McM	ahon					
	7. - -							<u>.</u>		Sa	mple Da	ata		Ren	narks		
0.0	MATERIAL SYMBOL	Elev. (ft)		Sample Description	1		Dept Scale	Number	Туре	(ii)	Penetr. resist BL/6in	PID Reading		(Drilling Fluid, I	Depth of C		
207/	∑″ XXXXX		D1: unconcolidato	d brown fine SAND, so	omo silt traca alay		├ 0	ž		ď	9 5 B	(ppm)	_	uid Loss, Drillin			-
. 0/20			trace fine gravel, w	vith plastic (moist) [FIL	L]	,	F	=				0.0	12	220 Collect	LB23_	S2_0	-2
<u>ا</u>							- 1	7	щ			0.0					
9							F ,	- [COR	32/48		0.0					
פר							- 2	₹ - - - - -	MACROCORE	32/		0.0	12	221 Collect	LB23_	S2_2	-4
	\bowtie						F 3	4	Μ			0.0					
						_	Ţ.	=				0.0					
-						$\underline{\vee}$	4	+					12	222 Collect	LB23_	S2_4	-6
_	\bowtie						Ē _	=									
5			medium sand, trac	nsolidated olive-brown ce silt (wet)	tine Sand, trace		- 5	7	뀚			0.0					
2				,			- 6	F2-	MACROCORE	38/48		0.0	10	OOO Calland	I Daa i	വേദ	0
			R2b (18-30"): unco	onsolidated black-brow	n silty fine SAND,		ŧ		ACR	38		0.0	12	223 Collect	LDZ3_	32_0	-0
5			some clay, organic	· ·	AND		7	-	-			0.0					
2			medium sand, trac	onsolidated grey fine S be silt (wet)	AND, trace		F _	=				0.0					
5							8	=				0.0	Er	nd of boring orehole bac	g at 8 fe	et bo	JS.
7							F 9	4						ean sand to			
							Ē	=									
2							10	7									
							F ,	=									
							- 11	7									
کر آج							12	-									
{ -							E	}									
Š							F 13	1									
3							14	Ė									
							E '	=									
2403							_ 15	4									
2130							E	=									
Ĭ							16	7									
1							17	4									
2							ŧ	=									
7							18	-									
2							Ė	=									
202							- 19	7									
ζ	1	1					Г	7	1	1			1				

	/VU/	4/V		Log		oring	_		LB	24			Sheet 1	of	1
Project	41 Kensico Drive				Pro	ject No.			1900	046301					
Location	41 Rensico Dilve				Ele	vation a	nd Da	tum		040301					
Drilling Compa	Mount Kisco				Dat	e Starte	d		NAV	/D88 2		Date	Finished		
Drilling Compa	AARCO Environme	ntal Services, In	IC.			o otarto	-		8/	/10/18		Date		3/10/18	
Drilling Equipm					Cor	npletion	Dept	h				Rock	Depth		
⊰ Size and Type	Geoprobe 7822 DT of Bit				 				Dist	20 ft urbed		Ur	ndisturbed	Core	
© ∠ Casing Diamet	2" Diameter Steel M	lacrocore Cuttin		Casing Depth (ft)	Nur	mber of S	Samp	ies	First		2	Cc	N/A ompletion	24 HR.	N/A
- bo	N/A	TAL : 1. (II.)				ter Leve			∇		2		<u></u>	<u>Ā</u>	N/A
Size and Type Casing Diamet Casing Hamme Casing Hamme	^{er} N/A	Weight (lbs)	N/A	Drop (in) N/A		ling Fore	eman	т	hom:	as Seid	:kel				
	2" Diameter 5-foot L	ong Steel DT Weight (lbs)		Drop (in)	Fiel	d Engine	eer		110111	40 0010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Sampler Hamn	ner N/A	vveignt (ibs)	N/A	Drop (in) N/A	Т,		1	L		McCart mple Da					
Sampler Hamn (59:90:90:90:90:90:90:90:90:90:90:90:90:90		Sample Desc	cription			Depth Scale	Number	Type		Penetr. resist BL/6in	PII Read	ling	Rem (Drilling Fluid, D Fluid Loss, Drilling		sing,
+288.4	(0-6"): asphalt cov	ver				_ 0 _	z		LE.	а - ш	(ppr	11)			-,,
	R1a (0-26"): medi		n fine SA	ND, some silt		_ 1 _	}				0.0				_
1068 GPJ	(wet)				-	. '					0.0		0945 Collect I	_B24-1-2	2
Ö					∇	_ 2 -		CORE	0		0.0				
UN +285.9	R1b (26-36"): very	y soft black CLA	Y (wet)			-	쥰	MACROCORE	36/60		0.0				
M M M						- 3 -		MA			0.0				
<u>₩</u>					į	- 4 -									
					Ē										
					Ē	- 5 -									
					E	- 6 -	}								
					Ė		=	Щ							
¥ S9 +280.9	R2a (0-5"): soft gr	•	•	,		- 7 - -	22	MACROCORE	37/60		0.0				
	R2b (5-17"): dens	e gray silty fine	SAND (n	noist)	Ē	- 8 -	<u> </u>	1ACR(37.		0.0				
₹ // //2/9.9	R2c (17-24"): stiff	brown to gray C	CLAY, so	me silt, trace	_	-		2			0.0)			
+279.4 W	coarse sand (mois	st)			_/	- 9 -					0.0				
∩ I. · · · · · · · · · 1	medium sand, tra	ce coarse sand,	trace fin	e gravel (wet)	Ī	- - 10 -					0.0				
					E		}								
					Ė	- 11 -	=								
DISCIPLINEFINIR	R3a (0-12"): medi SAND, some coal	ium-dense brow	n to redd	ish-brown fine sand (wet)	į	- - 12 -		ORE			0. ²				
	R3b (12-40"): brov						R3	MACROCORE	40/60		1.1				
	,	0 , ,		,	Ė	- 13 -	=	MAC	7		2.1		1000 Collect I	_B24_13	3-14
[] [] [] [] [] [] [] [] [] [Ī	- - 14 -	=				2.3 2.7		Blue dye test:	nogotiv	10
M					Ē		=				2.1	1	blue uye test.	negativ	Е
00046						- 15 -	}				1.3 0.0				
0 +272.4				. — — — — — — —	[- - 16 -	=				0.0	1			
MDAT	R4 (0-49"): mediu	ım-dense gray fi	ne SANE), some silt (wet)	<u> </u>		1				0.0				
AMP.					ļ	- 17 -	-	CORE	90		0.0				
DATA						- - 18 -	8	MACROCORE	49/60		0.0				
SOM					ļ	- 10		Ř			0.0				
#275.9 #275.9 #275.9 #275.9 #275.9 #275.9					ļ	19 -	=				0.0		End of Boring		
¥ +268.4						- 20					0.0)	Borehole bac clean sand to		ith

LA	IV GA IV		Boring _		LB	25	-	Sheet 1	of	1
Project	41 Kensico Drive	Pr	roject No.		1000	0.463.04				
Location	41 Kensico Drive	Ele	evation and [Datum		046301				
D 'II' O	Mount Kisco				NAV	/D88 289.36				
Drilling Compa	any AARCO Environmental Services, Inc.	Da	ate Started		9	8/8/18	Date	Finished	8/8/18	
Drilling Equipr		Co	ompletion De	pth		5/0/10	Rock	k Depth	0/0/10	
7 0: 17	Geoprobe 7822 DT				In: (20 ft	L			
Size and Type	2" Diameter Steel Macrocore Cutting Shoe	Νι	umber of San	nples	DIST	urbed 3		Indisturbed N/A		I/A
Size and Type Casing Diame Casing Hamm Casing Hamm	ter (in) Casing Depth (ft) N/A	w	ater Level (ft	.)	First	7	С	completion	24 HR. T N	I/A
Casing Hamm		Dr	rilling Forema	n	<u> </u>	•				.,, .
Sampler	2" Diameter 4 fact Long Steel DT		eld Engineer	7	Thoma	as Seickel				
		\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	elu Liigiileel	L	_uke N	McCartney				
Sampler Hamildon					Sai	mple Data		Rem	arks	
MATERIAL SYMBOL (tt)	Sample Description		Depth Scale	Type	ecov.	Penetr. resist BL/6in dd)	ding	(Drilling Fluid, D	epth of Casing	J,
+289.4	R1 (0-31"): loose fine brown SAND, some silt, trace fine				œ	0. (bb		Fluid Loss, Drilling	Resistance, e	:
	gravel, glass (moist) [FILL]					0.	.0			
				RE		0.				
<i>i</i> ₩₩			2 = 5	000	31/48	0.				
C4 - SAG BOXING I COS CAS			F = 1"	MACROCORE	3,	0.				
			3 -	_						
<u> </u>			\mathbb{E}_{λ}							
¥										
¥ \\\			5 =							
			E = 1	NACROCORE	84					
	R2a (0-10"): brick and timber [FILL]		6 = 6	CRO	19/48		•			
282.4	POL (40.40ll) as fill belongs in OLAY (seciet)	$\overline{\Delta}$	生 7 手	MA		0.		1445 Collect	I B25 7 9	
	R2b (10-19"): soft black organic CLAY (moist)					0.		1443 Collect	LD23_1-0	
			E 8 =			0.	.0			
			9 =							
	R3a (0-9"): very soft black organic CLAY (wet)		F 3	ORE	ω	0.	.0			
	R3b (9-17"): very soft brown organic CLAY, trace silt (mo	oist	10 = 8		33/48	0.	.0			
278.9	to wet)		ŧ 3	MACROC	(1)	0.				
278.9 278.9 277.9		!	F 11 =			0.				
	R3d (28-31"): loose gray fine SAND, trace coarse sand (wet)		E 12 =	\perp		0.				
276.0	R4a (0-9"): loose gray medium SAND, some fine sand	_	<u> </u>			0.	.0			
276.	\tag{wet} R4b (9-15"): loose gray silty fine SAND (wet)	/_	13	끭		0.				
\$ 	R4c (15-36"): loose gray coarse SAND, some medium		14 = 5	t oco	43/48	0.				
5	sand, trace fine gravel (wet)		F 4"	MACROCORE	43	0.				
274.4 274.4	R4d (36-43"): stiff gray SILT (wet)		15	2		0.	.0	1450 Collect		16
91001			E 16					and SBDUP0	1_080818	
			16							
≥			E 17 =							
	R5 (0-32"): very stiff gray SILT, trace clay (wet)		Ė ₫.,	MACROCORE	<u></u>	0.	.0			
			18 = 18	CRO	32/48	0.				
S. IIII			19	MA		0.		End of Poring	n at 20 fa-t	hac
*276.			F . =			0.		End of Boring Borehole bac	kfilled with	
#2694	1		上 ₂₀ 土					clean sand to	grade.	

		/VG	AIV		Log		oring			LB	26			Sheet 1	of	1
Project		41 Kensico Drive				Pro	ject No.			190	04630 ⁻	1				
Locatio	n	TI RELISIOO DIIVE				Ele	vation a	nd Da	tum		04000					
Drilling	Compa	Mount Kisco				Dat	e Starte	ıd.		NA\	/D88 2		Date	Finished		
Driming	Compa	AARCO Environm	nental Services, Ir	nc.			o otal to			8	/10/18		Julio		3/10/18	
Drilling	Equipm		_			Cor	npletion	Dept	h				Rock	Depth		
⊰ Size an	d Type	Geoprobe 7822 D of Bit	<u>) T</u>			 				Dist	20 ft urbed		Ur	ndisturbed	Core	
où S Casing	Diamet	2" Diameter Steel	Macrocore Cuttin		Casing Depth (ft)		mber of		ies	First	<u> </u>	1	Cc	N/A ompletion	24 HR.	N/A
- D		N/A	120/11/11/11				ter Leve	` ′		∇	-	6		<u>T</u>	<u>Ā</u>	N/A
Casing		^{er} N/A	Weight (lbs)	N/A	Drop (in) N/A		ling Fore	eman	Т	hom:	as Seid	ckel				
		2" Diameter 5-foo	t Long Steel DT Weight (lbs)		Dron (in)	Fie	ld Engin	eer		110111	45 001	oncor				
Sample	r Hamn	ner N/A	vveignt (ibs)	N/A	Drop (in) N/A	Т,			L		McCarl			T		
Sambol Saymon Saymon Saymon Saymon Saymon Saymon Saymbol Saymb	Elev.		Sample Desc	crintion			Depth	per	e e			PID)	Rem (Drilling Fluid, D		sina
MAT SYI	(ft) +289.9		Campio Book	onpaon			Scale — 0 -	Number	Type	Rec (in	Penetr. resist BL/6in	Readi (ppn	n) ¯	Fluid Loss, Drilling	Resistance	e, etc.)
(8/28/. 	∕. +289.4	(0-2"): topsoil	li danaa baasaa	fine CAI	VID 4		_ U -	=				0.0				
		sand (moist)	dium-dense brown	i iine SAi	ND, trace coarse	Ė	_ 1 -	=				0.0				
989						Ī	-	=	믮			0.0				
07							- 2 - - -	- - -	MACROCORE	22/60		0.0)			
30RII							- - 3 -	₫"	MACF	7						
SRIE						Ī	- - -	1	_							
-						Ī	- 4 - -	7								
<u> </u>	:						- - 5 -	}_								
00						abla	-	1								
SENS!						<u>*</u>	- 6 -	=						1030 Collect	LB26_6-	-7
8/41 /							- - 7 -]	ORE							
ALIGINTLOGSW1 KENSICO DRIVE. RI + SRI BORING LOGS. GPJ							-	22	MACROCORE	8/60						
NIO NIO						į	- 8 - -	-	MAC							
Z - , , ,	280.9		soft gray CLAY,		trope fine cond		- - - 9 -	3								
		(wet)			, trace line sand		-]				0.0)	Poor Recover	ry	
		R2b (7-8"): very	soft black CLAY	(wet)		Ė	- 10 - -	=				0.0)			
						Ē	<u>-</u> 11 -	=								
							-]	ш			0.0)			
	.4+277.9		dium-dense gray fi	ine SANI	D, trace medium	[- 12 -		MACROCORE	09		0.0				
A H	+276.9	sand, trace coa	` ,	4	He Go - OAND		- - 13 -	- R3	ACRC	32/60		0.0				
	\vdots	(wet)	edium-dense gray	to olive s	SIITY TINE SAND	Ī		=	Σ			0.0				
	.]						- 14 -	}				0.0				
4630 <u>1</u>	+274.9						- - - 15 -	1_				0.0				
1900		R4 (0-57"): med (wet)	dium-dense well-s	orted gra	y fine SAND	Ē	- 10	=				0.0				
ATA3						ļ	- - 16 -	}				0.0				
JWVI						Ę	: - - 17 -	=)RE			0.0				
MA H						ļ	- ''	- 25	MACROCORE	27/60		0.0				
MVD/MVD						ļ	- - 18 -	=	MACI	5		0.0		End of Boring		
						į	- - - 19 -	1				0.0		Borehole bac clean sand to		ith
ILANGAN COMIDATAIWPWIDATA31190046301/PROJECT							- เม ⁻ - -	=				0.0			5	
}	+269.9					-	<u> </u>	1								

L	_/	4		U/	4/V		Log	of E	Boring			LB	327			Sheet 1	of	1
Pro	ject		41 Kensid	o Drive				Pro	oject No.			100	046301					
Loc	ation		41 Nelisic	O DIIVE				Ele	evation ar	nd Da	atum	190	04030					
Drill	ling C	ompai	Mount Kis	SCO .				Da	te Starte	Ŀ		NA\	/D88		Date F	Finished		
			Eastern E	invironme	ental			L					5/2/19				5/2/19	
Drill	ling E	quipm	ent Geoprobe	6610 DT	-			Co	mpletion	Dept	h		12 ft		Rock I	Depth		
Size	e and	Туре	of Bit		Macrocore Cuttin	a Shoo		Nu	mber of S	Samp	oles	Dist	urbed		Un	disturbed N/A	Core	N/A
Cas	sing D	iamet	er (in)	ei Steei i	viaciocore Cullin	y Shoe	Casing Depth (ft)	Wa	ater Leve	(ft.)		First	i			mpletion	24 HR.	
Size Cas	sing H	amme	N/A PN/A		Weight (lbs)	N/A	Drop (in) N/A	Dri	illing Fore	man		1 -	-	4			<u>*</u>	N/A
San	npler			er 4-foot	Long Steel MC	14// (Fie	eld Engine	eer	Р	atric	k Slavi	n				
: San	npler l	Hamm		N/A	Weight (lbs)	N/A	Drop (in) N/A				L		McCart					
6/28/2019 6:07:02 PM	SYMBOL	Elev.			0I- D				Depth	ē	T		mple Da	ita Pl	D		arks	
019 b:	SYM	(ft)			Sample Desc	ription			Scale	Number	Type	Reco (ii)	Penetr. resist BL/6in	Read (pp	ding	(Drilling Fluid, E Fluid Loss, Drilling	epth of Ca Resistand	asing, ce, etc.)
				rete slab	se brown to mottl	ed brow	n fine SAND		- 0 -					0.	.0			
∹KXX	\bowtie				lay, trace fine gra				1 -		ij			0.				
	\bowtie		R1b (15	5-31"): me	edium dense grey	fine SA	ND, some silt,		_ 2 -	돈	MACROCORE	31/48		0. 0.				
	\bowtie		trace fir	ie gravel,	with brick (moist) [FILL]				"	MACR	31		0.				
	\bowtie								- 3 -		_			0.				
± ₩	\bowtie							∇	4 -					0.	.0	1320 Collect DUP05	LB27_3	3.5-4.5 +
	\bowtie																	
	\bowtie								<u> </u>		SRE			0. 0.				
	\bowtie								6 -	22	MACROCORE	18/48		0.				
4 A XX			R2: me	dium dens	se grey to olive fi	ne SANI	D, some silt, trace	<u> </u>	7 -		MAC	,		0.				
SOC			ciay (m	oist to we	l)				<u> </u>					0. 0.				
NMENTALGINILOGSA1 KENSICO DRIVE - RI + SRI BORING LOGS GPJ									- 8 -					0.				
Z :									9 -					1.	2			
			R3: me		se to dense brow	n fine S	AND, some silt,			_	CORE	<u>φ</u>		3.	4			
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX				., ()					10 -	R3	MACROCO	33/48		5. 7.				
									11 -		Ň			19				
SCIP									12 -					22				
<u> </u>									'2					21	.0	End of boring Borehole bad	kfilled w	vith
E D									13 -							clean sand to capped with		
ROJE									- - 14 -									
301/P																		
90046									<u> </u>									
\TA3\1									16									
PW/D									- - 17 -	1								
TA\W									- ' <i>'</i>									
M/DA									18 -	1								
NLANGAN.COMIDATAWPWIDATA3/190046301/PROJECT DATA, DISCIPLINEIENVIRO									- - 19 -									
LANG										1								
- L									20		1	1				l .		

			1/V		Log o		Boring			LE	328			Sheet 1	of	1
	Project	41 Kensico Drive				Pro	oject No.			190	004630°	1				
	Location	Mount Kisco				Ele	evation an	d Da	atum		VD88					
	Drilling Compar	ηγ				Da	te Started	l		INA			Date F	Finished		
	Drilling Equipm	Eastern Environments ent	<u>al</u>			Со	mpletion l	Dept	th		5/2/19		Rock I	Depth	5/2/19	
_	Size and Type	Geoprobe 6610 DT								Die	12 ft turbed		Lle	ndisturbed	Core	
ANG A	· ·	2" Diameter Steel Ma	acrocore Cutting Sho		-i D41- (ft)	Nu	mber of S	amp	oles			3		N/A	1	N/A
go:	Casing Diamete	N/A	T	Cas	sing Depth (ft)		ater Level	` '		Firs	st 7 	3	Z	empletion 	24 HR. <u>V</u> 1	N/A
1 2	Casing Hamme		Weight (lbs)	Ά	Drop (in) N/A	Dri	lling Fore	man		atrio	ck Slavi	n				
 	Sampler Hamm	2" Diameter 4-foot Lo	Moight (lbc)	/ A	Drop (in) N/A	Fie	eld Engine	er								
7 ¥0.	<u> </u>	N/A	N/	Ά	N/A					S	McCarl ample Da			Dam		
90.07	SYMBOL (tt)	\$	Sample Description	on			Depth Scale	Number	Type	ecov.	Penetr. resist BL/6in	PII Read	ling	Rema (Drilling Fluid, Do Fluid Loss, Drilling		g, etc.)
28/201	≥ °′	_ 4" concrete slab					0 -	ž		ď	g - a	(ppr	n)	Tidid Loss, Dilling	Tresistance, t	eic.)
٥ 		R1: loose to medium	m dense brown to g e gravel, with brick (ı	rey fir	ne SAND,) [FILL]		1 1					0.0				
5 5			r graver, mar zmen (i		, []				CORE	ω,		0.0				
2							_ 2 _	쮼	MACROCOR	35/48		0.0				
222						$\bar{\Delta}$	3 -		W			0.0		1235 Collect I	LB28 3-4	+
222							4 -					0.0)	MS/MSD	_	
2							- 4 -									
2		R2a (0-6"): loose br	rown to grey fine SA vith concrete (moist)	ND, t [FILL	race fine -]	_	5 -		쓌			0.0				
200		R2b (6-40"): medium (moist to wet)	m-dense to dense o	live s	ilty fine SAND	_	6 -	R2	MACROCORE	40/48		0.0 0.1				
		(MACF	4		1.8	3			
200							- 7 -					2. <i>′</i> 6.7				
							8 -					7.0				
Z Y							9 -									
									CORE	<u>∞</u>						
<u> </u>		R3: medium-dense	to dense olive silty	fine S	SAND (wet)		10 -	83	MACRO	21/48		8.5	5			
			•		, ,		11 -		Ň			21.				
201							12 -					31. 113				
 							- ' - -					110	.0	End of boring Borehole back	kfilled with	า
בֿ ב							13 -							clean sand to capped with c	grade and concrete.	a
3							14 -									
2000							15 -									
18004							- '3 -									
SA IAS							16 -									
\\\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.							17 -									
Z Y							10									
							- 18 -									
NGAIN.							19 -									
₹	1 1						- -	i	1	1	1 1			1		

				Client:		AutoNation					D 1
					Number:	60522492				BORING ID:	D-1
				Site Loc		41 Kensico Driv	ve, Mt Kisc	o, NY			
		25)		Method:	Geoprobe		•		Sheet: 1 of 1	
					Type(s):	Continuous		Elevation (ft):		Monitoring Well	Installed: No
				Coordin	nates:					Screened Interval:	N/A
Weather		60 Degr	ees Fahre	nheit, Su	n	Logged By:	SW	Start Date:	10/13/16	Depth of Boring:	15'
Drilling	Contrac	tor:		SET				Finish Date:	10/13/16	Water Level: 6.5	1
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push		s), moistur	lor, size, range, MA e content, sorting, s , odor, and Geologi	tructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	N/A	Hand Auger	Grass at surface Brown f-c SAN no odor		: Gravel, some Silt, b	rick fragments (F	ILL), dry,	
6 7 8 9 10	S-1	5-10	15	N/A	Direct Push	Dark gray silty	fine SAND	(SP-SM), wet, no oc	lor		
11 12 13 14	S-2	10-15	36	N/A	Direct Push	Grayish brown/	gray SILT	(ML), wet, no odor			
16							Во	ottom of boring @ 15	', no refusal		
19											

								Date/Time	Depth to ground	water while drilling
NOTES	S:	Groundy	vater samp	le collect	ted from tempora	ry well for VOC/	SVOC analysis			
-fine, m-m	nedium, c-	coarse		Checked b	у		Date:			

				Client:		AutoNation				BORING ID:	R 2
					Number:	60522492				BORING ID:	D- 2
				Site Loc		41 Kensico Dri	ve. Mt Kisa	co. NY		1	
		25			Method:	Geoprobe	,	,		Sheet: 1 of 1	
					Type(s):	Continuous		Elevation (ft):		Monitoring Well	Installed: No
				Coordin						Screened Interva	
Weather	:	60 Degr	ees Fahre	enheit, Sui		Logged By:	SW	Start Date:	10/13/16	Depth of Boring:	
Drilling	Contrac			SET				Finish Date:	10/13/16	Water Level: 7.0	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push		s), moistur	olor, size, range, M re content, sorting, s e, odor, and Geolog	tructure, angula	arity, maximum	Lab Sample ID (Depth)
1 2 3 4 5 6 7 8 9 10	N/A S-1	5-10	N/A 30	N/A	Hand Auger Direct Push	fragments (FILI	D, some f- L), dry, no	c Gravel, some Silt, odor), roots, wet, no odor -SM), trace coarse Sa			
11 12 13 14 15 16 17 18 19	S-2	10-15	48	N/A	Direct Push	Gray SILT (ML		odor ottom of boring @ 15	5', no refusal		
20 NOTES	S:	Groundy	vater sam	ple collec	ted from tempo	rary well for VO	C/SVOC ar	nalysis	Date/Time	Depth to ground	dwater while drilling

		Date/Time	Depth to groundwater write drilling
NOTES:	Groundwater sample collected from temporary well for VOC/SVOC analysis		
f-fine, m-medium, c-	coarse Checked by Date:		
•	•		•

		Client:		AutoNation				D 2
	-		Number:	60522492			BORING ID:	D-J
TTDC	Г	Site Loc		41 Kensico Drive, Mt Kisco	o, NY			
URS		Drilling	Method:	Geoprobe			Sheet: 1 of 1	
		Sample	Type(s):	Continuous	Elevation (ft):		Monitoring Well	Installed: No
		Coordin	ates:				Screened Interval	: N/A
Weather: 50 Degree	s Fahren	theit, Sur	ı	Logged By: SW	Start Date:	11/14/16	Depth of Boring:	7'
Drilling Contractor:		SET			Finish Date:	11/14/16	Water Level: 5'	T-
Depth (ft) Sample Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	MATERIALS: Col component(s), moisture grain size,		ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 N/A 0-5	N/A	0		Grass at surface Brown f-c SAND, some f-c		orick fragments,	wood	B-3 (1-2)
5				fragments, moist to wet, no	B-3 (4-5)			
6 S-1	16	0.5	Direct Push					
8				Во	ttom of boring @ 7',	no refusal		
	es collec	eted @ 1-	2' and 4-5' for \	VOC analysis		Date/Time	Depth to ground	water while drilling

NOTES:	Soil samples collected @ 1-2' and 4-5' for VOC analysis			
f-fine, m-medium,	c-coarse Checked by	Date:		

				Client:		AutoNation				BORING ID:	R-4
				Project	Number:	60522492				BOKING ID.	<i>D</i> ,
		25		Site Loc	cation:	41 Kensico Driv	ve, Mt Kiso	co, NY			
-			,	Drilling	Method:	Geoprobe				Sheet: 1 of 1	
					Type(s):	Continuous		Elevation (ft):		Monitoring Well	Installed: No
				Coordin	nates:					Screened Interval	: N/A
Weather	:	50 Degr	ees Fahre	enheit, Su	n	Logged By:	SW	Start Date:	11/14/16	Depth of Boring:	12'
Drilling	Contrac	tor:		SET	T			Finish Date:	11/14/16	Water Level: 3.5	'
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), moisture	olor, size, range, MA e content, sorting, s g, odor, and Geologi	tructure, angul	arity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger		ne f-c Sand	l, little f-c Gravel, bri , moist, no odor (FIL	-	oncrete	
6 7 8 9	S-1	5-10	36	0.3	Direct Push			SILT, wood fragme			

Depth (ft)	Sample	Sample Depth (Recovery	Headspace (ppn	Blow count/ Direct Push	MATERIALS: Color, size, range, MAIN COMPONENT, minor component(s), moisture content, sorting, structure, angularity, maximum grain size, odor, and Geologic Unit (If Known)	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Gray SILT, some f-c Sand, little f-c Gravel, brick fragments, concrete fragments, coal fragments, moist, no odor (FILL)	
6	S-1	5-10	36	0.3	Direct Push	Dark brown/black organic SILT, wood fragments, roots, wet, no odor (OL)	
9	5-1	3-10	30	0.3	Direct Push	Gray interbedded SILT and fine SAND, little f-c Gravel, wet, no odor (ML-SP)	
11	S-2	10-12	18	0	Direct Push		
13						Bottom of boring @ 12', no refusal	
14							
16							
18							
19						Date/Time Depth to ground	water while drilling

		Date/Time	Depth to groundwater while drilling
NOTES:	Groundwater sample collected from temporary well for VOC analysis		
f-fine, m-medium, o	coarse Checked by Date:		

				Client:		AutoNation				BORING ID:	B-5
					Number:	60522492				2011110121	
		25	•	Site Loc		41 Kensico Drive, Mt	t Kisco,	NY			
		W			Method:	Geoprobe				Sheet: 1 of 1	
					Type(s):	Continuous		Elevation (ft):		Monitoring Well	
Weather		50 D	F.L	Coordin		Lagrad Day CV	37	Start Data	11/14/16	Screened Interval	
w eatner Drilling			ees Fahre	SET	<i>1</i>	Logged By: SV		Start Date: Finish Date:	11/14/16 11/14/16	Depth of Boring: Water Level: 3'	12
Dillilling	Contrac							Tillish Date.	11/14/10	water Ecver. 3	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), moi	isture c	r, size, range, MA ontent, sorting, sti dor, and Geologic	ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Gray SILT, some f-c fragments, coal fragm				ncrete	
6 7 8 9	S-1	5-10	40	0.2	Direct Push	Black organic SILT, v					
10	S-2	10-12	18	0	Direct Push	Gray silty fine SAND), little f	-c Gravel, wet, no	odor (SP-SM)		
13							Botto	m of boring @ 12',	no refusal		
14											
16											
17											
19											
20									D-4-7"	Dord :	
NOTE	S:	Groundy	water sam	ple collec	ted from tempo	rary well for VOC ana	alysis		Date/Time	Depth to ground	water while drilling
						,	J				
										1	

f-fine, m-medium, c-coarse

				T									
				Client:		AutoNation				BORING ID:	B-6		
					Number:	60522492							
				Site Loc		41 Kensico Drive, M	It Kisco	o, NY		1			
					Method:	Geoprobe				Sheet: 1 of 1			
					Type(s):	Continuous		Elevation (ft):		Monitoring Well			
Weather	_	50 D	F.l	Coordi		Lagrad Day C	***	Start Data	11/14/16	Screened Interval			
weatner Drilling			ees Fahre	SET	n	Logged By: S	W	Start Date: Finish Date:	11/14/16 11/14/16	Depth of Boring: Water Level: 3.5			
Dillillig	Contrac							Fillish Date.	11/14/10	water Level. 3.3			
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), mo	MATERIALS: Color, size, range, MAIN COMPONENT, minor component(s), moisture content, sorting, structure, angularity, maximum grain size, odor, and Geologic Unit (If Known)						
						Asphalt at surface							
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Gray SILT, little fine	e Sand,	moist to wet, no odd	or (FILL)				
6 7 8 9 10	S-1	5-10	36	0.2	Direct Push	Black organic SILT, Gray/brown fine SA	roots,	wet, no odor (OL)	avel, wet, no od				
11	S-2	10-12	24	0	Direct Push	Brown grading to gra	ay SIL	Γ, wet, no odor (ML)					
							Bott	com of boring @ 12',	no refusal				
13													
14													
15													
16													
17													
18													
19													
20								I	Date/Tim-	Donth to record	votor while dellin-		
NOTE	S:	Groundy	water sam	ple collec	eted from tempo	orary well for VOC an	alysis		Date/Time	Depin to grounds	vater while drilling		

NOTES:	Groundwater sample collected from temporary well for VOC analysis	
f-fine, m-medium, c	coarse Checked by Date:	

				Client:		AutoNation				BORING ID:	B-7
					Number:	60522492				2012110121	
		25		Site Loc		41 Kensico Drive,	Mt Kisc	o, NY		T	
					Method:	Geoprobe		Elevation (ft).		Sheet: 1 of 1	Installad, No
				Coordin	Type(s):	Continuous		Elevation (ft):		Monitoring Well Screened Interval	
Weather	:	50 Degr	ees Fahre			Logged By:	SW	Start Date:	11/14/16	Depth of Boring:	
Drilling				SET		88		Finish Date:	11/14/16	Water Level: 6'	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), n	noisture	or, size, range, MA content, sorting, st odor, and Geologic	ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Gray SILT, some f fragments, moist to		D, some f-c Gravel, l odor (FILL)	orick fragments,	wood	
6 7 8 9	S-1	5-10	30	0	Direct Push			s, moist to wet, no or			
10	S-2	10-12	24	0	Direct Push						
12						Gray SILT, wet, no	o odor (N	ML)			
13							Bot	tom of boring @ 12	, no refusal		
15											
16											
17											
18											
20	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>				Date/Time	Depth to ground	water while drilling
NOTE	S:	Ground	water sam	ple collec	ted from tempo	rary well for VOC a	analysis				
									I .	1	

f-fine, m-medium, c-coarse

				Client:	Nih o	AutoNation 60522492				BORING ID:	B-8
			li i		Number:		a Mt Vica	NV			
	JE	25)	Site Loc	Method:	41 Kensico Driv Geoprobe	e, MI KISC), N I		Sheet: 1 of 1	
						Continuous		Elevation (ft):			Installed: No
				Coordin	Type(s):	Continuous		Elevation (It):		Monitoring Well Screened Interval	
Weather:		50 Dagu	ees Fahre	-		Logged Dru	SW	Start Date:	11/14/16		
Orilling (ees runre	SET	ı	Logged By:	3 W	Finish Date:	11/14/16	Depth of Boring: Water Level: 6.5	
Jillillig	Contrac							rillisii Date.	11/14/10	water Level. 6.5	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s)	, moisture	or, size, range, MA content, sorting, st odor, and Geologic	ructure, angulai	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Gray SILT, som fragments, mois	e f-c SANI), some f-c Gravel, t odor (FILL)	orick fragments, v	wood	
7 8 9	S-1	5-10	36	0.2	Direct Push			wet, no odor (ML) wet, no odor (OL)			
11	S-2	10-12	24	0	Direct Push	Gray SILT, wet,	no odor (N	ML)			
							Bot	tom of boring @ 12'	, no refusal		
13											
14											
15											
16											
17											
- ' —											
18											
10											
19											
20									T	T	
NOTES	S:	Groundy	vater sam	nle collec	ted from tempo	rary well for VO	Canalysis		Date/Time	Depth to ground	water while drilling
	•	STOUTIUN	acer saiii	PIC COINCE	aa nom tempo	, ۷00	c unury 515				
									-		

f-fine, m-medium, c-coarse

				Client:		AutoNation					D O
					Number:	60522492				BORING ID:	D-9
		25		Site Loc		41 Kensico Drive	e, Mt Kisc	o, NY			
				Drilling	Method:	Geoprobe				Sheet: 1 of 1	
					Type(s):	Continuous		Elevation (ft):		Monitoring Well	
				Coordin		I		I		Screened Interval	
Weather			ees Fahre		n	Logged By:	SW	Start Date:	11/14/16	Depth of Boring:	
Drilling	Contrac			SET				Finish Date:	11/14/16	Water Level: 4.5	'
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s),	moisture	or, size, range, MA content, sorting, st odor, and Geologic	ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Gray SILT, some fragments, moist		D, some f-c Gravel, to odor (ML-SM)	orick fragments,	wood	
6 7 8 9 10	S-1	5-10	36	0.2	Direct Push	Gray SILT, wet,	no odor (I	ML)			
11	S-2	10-12	24	0	Direct Push						
_							Bot	tom of boring @ 12'	, no refusal		1
13								-			
14											
15											
16											
17											
18											
19											
20 NOTES	S:	Grounds	water sam	ple collec	eted from tempo	rary well for VOC	analysis		Date/Time	Depth to ground	water while drilling
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		J. Guild	acer bulli	r to confee	a mom compo						

f-fine, m-medium, c-coarse

				an .						D 10
				Client:	Nb.o	AutoNation			BORING ID:	<i>B-10</i>
	Day of the last				Number:	60522492	- NIX/			
		25		Site Loc		41 Kensico Drive, Mt Kisc	0, N Y		C1 1 . C . 1	
					Method:	Geoprobe Continuous	Elevation (ft):		Sheet: 1 of 1	Installed: No
				Coordin	Type(s):	Continuous	Elevation (It):		Monitoring Well Screened Interval	
Weather		50 Dear	ees Fahre	-		Logged By: SW	Start Date:	11/14/16	Depth of Boring:	
Drilling			ees ranre	SET	ri	Logged By: SW	Finish Date:	11/14/16	Water Level: 4.5	
Dillilling	Contrac						riiisii Date.	11/14/10	water Level. 4.3	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	MATERIALS: Col component(s), moisture grain size,		ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Asphalt at surface Brown SILT, some fine Sa	nd, little F-C Gravel,	moist, no odor	(FILL)	
6 7 8 9 10	S-1	5-10	36	0	Direct Push	Brown SILT, wet, no odor	(ML)			
11	S-2	10-12	24	0	Direct Push					
						Bot	tom of boring @ 12'	, no refusal		
13 14 15 16 17 18										
10										
19										
20								Date/Time	Depth to ground	water while drilling
NOTES	S:	Groundy	water sam	ple collec	ted from tempo	orary well for VOC analysis		200711110	Sopar to ground	g
					•	•		-		

f-fine, m-medium, c-coarse

				Client:	Nb o	AutoNation			BORING ID:	B- II
					Number:	60522492 41 Kensico Drive, Mt Kisc	no NV		1	
		25		Site Loc		•	50, N Y		C1	
					Method:	Geoprobe Continuous	Elevation (ft):		Sheet: 1 of 1	Installad, No
				Coordin	Type(s):	Continuous	Elevation (It):		Monitoring Well Screened Interval	
Weather:		50 Dear	oog Fahre	-		Logged By: SW	Start Data	11/14/16		
			ees ranre	enheit, Sur	ri	Logged By: SW	Start Date:	11/14/16	Depth of Boring:	
Drilling (Contrac			SET			Finish Date:	11/14/16	Water Level: 4.5	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), moisture	lor, size, range, MA content, sorting, str odor, and Geologic	ructure, angula	rity, maximum	Lab Sample ID (Depth)
1 2 3 4 5	N/A	0-5	N/A	0	Hand Auger	Grass at surface Brown fine SAND, some S	Silt, little f-c Gravel, 1	moist to wet, no	odor (FILL)	
6 7 8 9 10	S-1	5-10	32	0	Direct Push	Gray SILT, wet, no odor (I Black organic SILT, organ Gray fine SAND, some Sil	ics, large root @7', w	· 	·	
11	S-2	10-12	16	0	Direct Push	Gray fine SAND, some Sil	t, some f-c Gravel, w	ret, no odor		
12						Rot	ttom of boring @ 12'.	no refusal		
13 14 15 16 17 18 19 20							ttom of boring @ 12'	Date/Time	Depth to ground	water while drilling
NOTES	S:	Groundy	vater sam	ple collec	ted from tempo	rary well for VOC analysis		Date/Time	Depth to ground	water while drilling
.,011		J. Junu	. a.v. saili	ric conce	aom tempe	, , oc analysis				

f-fine, m-medium, c-coarse

BORING ID: B-1 D Client: AutoNation 60536364 Project Number: **AECOM** 41 Kensico Drive, Mt Kisco, NY Site Location: **Drilling Method:** Geoprobe Sheet: 1 of 3 **Elevation (ft):** Monitoring Well Installed: No Sample Type(s): Continuous Coordinates: Screened Interval: N/A SW Weather: 40 Degrees Fahrenheit, Fog/Rain Logged By: Start Date: 3/9/17 Depth of Boring: 50' Drilling Contractor: SET Finish Date: 3/9/17 Water Level: 6.5' Sample Depth (ft) Headspace (ppm) Blow count/ Direct Push Depth (ft) Recovery MATERIALS: Color, size, range, MAIN COMPONENT, minor component(s), Sample Lab Sample ID moisture content, sorting, structure, angularity, maximum grain size, odor, and (Depth) Geologic Unit (If Known) Grass at surface N/A 0-5 N/A Gray SILT (ML), medium density, wet, no oder N/A Hand Auger Brown f-c SAND, some f-c Gravel, some Silt, brick fragments (FILL), dry, no odor Direct Push S-1 5-10 15 N/A Dark gray silty fine SAND (SP-SM), wet, no odor 11 12 Grayish brown/gray SILT (ML), wet, no odor S-2 10-15 36 N/A Direct Push 13 15 16 17 60 Gray SILT (ML), medium density. Wet, no odor

		Date/Time	Depth to groundwater while drilling
NOTES:	Groundwater sample collected from temporary well for VOC/SVOC analysis		
f-fine, m-medium, c	-coarse Checked by Date:		

19

20

				T							
				Client:		AutoNation				BORING ID:	B-ID
~					Number:	60536364	3.6. 77'	NII.7			
	AΞ	CO	М	Site Loc	Method:	41 Kensico Dri Geoprobe	ve, Mt Kis	CO, N Y		Sheet: 2 3	
_					Type(s):	Continuous		Elevation (ft):		Monitoring Well	Installed: No
				Coordin		Continuous		Elevation (It):		Screened Interva	
Weather	r:	40 Degi	rees Fahr	enheit, Fo		Logged By:	SW	Start Date:	3/9/17	Depth of Boring:	
Drilling				SET	0			Finish Date:	3/9/17	Water Level: 6.5	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push		s), moistur	olor, size, range, MA e content, sorting, st e, odor, and Geologic	ructure, angu	larity, maximum	Lab Sample ID (Depth)
21 22 23 24 25			48			Gray SILT (M	L), medium	density, wet, no odor			
26 27 28 29 30			48			Gray SILT (Mi	L), medium	density, wet, no odor			B-1D (30')
31 32 33 34 35			60			Gray SILT (M	L), medium	density, wet, no odor			
36 37 38 39			60			Gray SILT (M	L), medium	density, wet, no odor			

			Date/Time	Depth to groundwater while drilling
NOTES:	Groundwater sample collected from temporary well for VO	C/SVOC analysis		
-fine, m-medium, c	coarse Checked by	Date:		

				Client:		AutoNation			BORING ID:	R_1 D
					Number:	60536364			BUKING ID:	D-1 D
_			14	Site Loc	eation:	41 Kensico Drive, Mt K	isco, NY			
A			VI		Method:	Geoprobe			Sheet: 3 3	
					Type(s):	Continuous	Elevation (ft):		Monitoring Well	
				Coordin		T			Screened Interval	
Weather:			ees Fahre		g / Rain	Logged By: SW	Start Date:	3/9/17	Depth of Boring:	
Drilling (Contrac			SET			Finish Date:	3/9/17	Water Level: 6.5	
Depth (ft)	Sample	Sample Depth (ft)	Recovery	Headspace (ppm)	Blow count/ Direct Push	component(s), moist	Color, size, range, MA are content, sorting, s ze, odor, and Geologi	tructure, angu	larity, maximum	Lab Sample ID (Depth)
41 42 43 44 45			60			Gray SILT (ML), mediu	m density, wet, no odor			
46 47 48 49			60			Gray SILT (ML), mediu	m density, wet, no odor			
50						Bottom of boring @ 50', towards end of boring	no refusal; however, si	It was becoming	denser	B-1 D (50')
NOTES	S:	Ground	water sam	ple collect	ed from tempo	orary well for VOC/SVOC	analysis	Date/Time	Depth to ground	water while drilling

f-fine, m-medium, c-coarse

APPENDIX D WELL CONSTRUCTION LOGS

Well No. LMW01D

PROJECT	PROJECT NO.		
41 Kensico Drive	190046301		
LOCATION	ELEVATION AND DA	TUM	
Mount Kisco, New York	N/A		
DRILLING AGENCY	DATE STARTED	DATE FINISHED	
AARCO Environmental Services Corp.	8/9/2018	8/9/2018	
DRILLING EQUIPMENT	DRILLER		
Geoprobe® 7822DT	Thomas Seickel		
SIZE AND TYPE OF BIT	INSPECTOR		
4' Macrocore with Bullet Cutter Head	Luke McCartney		

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 56 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC sump was installed between 44-54' and 54-56' with 2-inch solid PVC pipe to grade. #2 sand was backfilled around the screen and sump to 43', bentonite pellets were backfilled between 41 to 43; and the remaining length of borehole was filled with grout slurry to grade. The well head was completed in a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. A total of 130 gallons of water were pumped into 55-gallon drums as containment for disposal.

TYPE OF CASING		DIAMETE	R	TYPE (OF BAC	CKF	ILL MATER	RIAL	
PVC Sched. 40		2"		Grout S	Slurry				
TYPE OF SCREEN		DIAMETE	R	TYPE (OF SEA	AL N	IATERIAL		
PVC Sched. 40		2"		Fast-Re	elease	Ben	tonite Pelle	ets	
BOREHOLE DIAMET	TER .			TYPE (OF FILT	ΓER	MATERIA	L	
								#2 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)	,	WELL [DET	AILS	SUMMARY SOIL	DEPTH
	290.05		0					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION	l	DEPTH (ft)	cover	>				0'
	249.05		41			H	grout		
TOP OF FILTER	ELEVATION		DEPTH (ft)	1				See LB01 Soil Boring	
	247.05		43					Log for Details	
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	246.05		44	riser					
BOTTOM OF WELL	ELEVATION		DEPTH (ft)						
	234.05		56	ļ			,		41'
SCREEN LENGTH							seal		43'
	10'								44'
SLOT SIZE									
	20-Slot								
	DWATER ELE			PVC					
ELEVATION	DATE		O WATER	screen					
288.21	9/5/2018	1.84		ļ					
ELEVATION	DATE	DEPTH T	O WATER						
ELEVATION	DATE	DEPTH T	O WATER			1	sand		
							pack		
ELEVATION	DATE	DEPTH T	O WATER						
ELEVATION:	DATE	DERTILE	0 14/4 TED	ļ			0.6		
ELEVATION	DATE	DEPIH	O WATER				2-foot		
ELEVATION:	DATE	DEDTUT	O MATER			Ш	— sump		54'
ELEVATION	DATE	DEPIRT	O WATER						56'
	LANGAN E	ngineeri	ng and Envir	onmen	tal Se	rvio	es, Inc.		

Well No. LMW08S

PROJECT	PROJECT NO.		
41 Kensico Drive	190046301		
LOCATION	ELEVATION AND DA	TUM	
Mount Kisco, New York	N/A		
DRILLING AGENCY	DATE STARTED	DATE FINISHED	
AARCO Environmental Services Corp.	8/8/2018	8/8/2018	
DRILLING EQUIPMENT	DRILLER		
Geoprobe® 7822DT	Thomas Seickel		
SIZE AND TYPE OF BIT	INSPECTOR		
4-1/4" HSA with Bullet Cutter Head	Luke McCartney		

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 15 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 2-15 ftbgs and riser to grade. #2 sand was backfilled around the screen to 1.5 feet bgs, bentonite pellets were backfilled between 0.5 to 1.5 ftbgs and the remaining length of borehole was backfilled with #2 sand. The wellhead was completed with a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and development the well using a submersible whale pump. A total of 50 gallons of water were pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETE	R	TYPE (OF BAC	CKF	ILL MATER	RIAL			
PVC Sched. 40		2"		#2 Sand							
TYPE OF SCREEN		DIAMETE	R	TYPE OF SEAL MATERIAL							
PVC Sched. 40		2"		Fast-Release Bentonite Pellets							
BOREHOLE DIAMET	TER .			TYPE (OF FILT	ΓER	MATERIA	L			
								#2 sand			
TOP OF CASING	ELEVATION		DEPTH (ft)	'	WELL [DET	AILS	SUMMARY SOIL	DEPTH		
	286.97		0					CLASSIFICATION	(FT) bgs		
TOP OF SEAL	ELEVATION		DEPTH (ft)	cover	>				0'		
	286.47		0.5				#2 sand				
TOP OF FILTER	ELEVATION		DEPTH (ft)			*		See LB08 Soil Boring			
	285.47		1.5					Log for Details			
TOP OF SCREEN	ELEVATION		DEPTH (ft)								
	284.97		2	riser							
BOTTOM OF WELL	ELEVATION		DEPTH (ft)								
	271.97		15				_		0.5'		
SCREEN LENGTH							seal		1.5'		
	13'								2'		
SLOT SIZE											
	20-Slot										
	DWATER ELE			PVC							
ELEVATION	DATE	DEPTH TO	WATER	screen							
284.82	9/5/2018	2.15									
ELEVATION	DATE	DEPTH TO	WATER								
ELEVATION	DATE	DEPTH TO	WATER			┥	—— sand				
							pack				
ELEVATION	DATE	DEPTH TO	WATER								
ELEVATION:	DATE	DEDTILE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
ELEVATION	DATE	DEPTH TO	WAIER						451		
ELEVATION:	DATE	DEDTUTO	NAVATED						15'		
ELEVATION	DATE	DEPTH TO	VVAIEK								
											
	LANGAN E	ngineerin	g and Envir	onmen	tal Se	rvi	ces, Inc.				

Well No. LMW08D

PROJECT	PROJECT NO.		
41 Kensico Drive	190046301		
LOCATION	ELEVATION AND DA	тим	
Mount Kisco, New York	N/A		
DRILLING AGENCY	DATE STARTED	DATE FINISHED	
AARCO Environmental Services Corp.	8/8/2018	8/8/2018	
DRILLING EQUIPMENT	DRILLER		
Geoprobe® 7822DT	Thomas Seickel		
SIZE AND TYPE OF BIT	INSPECTOR		
4-1/4" HSA with Bullet Cutter Head/ 4" Steel Carbide Bit	Luke McCartney		

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 17 ftbgs then advanced 4-inch steel casing to refusal at 48 ftbgs to complete monitoring well installation and construction. A 2-inch diameter pre-pack well screen was installed between 42'-47' with 2-inch solid PVC pipe to grade. During extraction of the casing the borehole collapsed to about 24 ftbgs, a 2-foot bentonite seal was placed between 22-24 ftbgs and the remainder of the borehole was filled with grout slurry.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and development the well using a submersible whale pump. A total of 70 gallons of water were pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETER		TYPE (OF BAC	CKF	LL MATER	RIAL	
PVC Sched. 40		2"		#2 San	id				
TYPE OF SCREEN		DIAMETER		TYPE (OF SEA	L N	IATERIAL		
PVC Sched. 40		2"		Fast-Re	elease l	Ben	tonite Pelle	ets	
BOREHOLE DIAMET	TER .			TYPE (OF FILT	ΓER	MATERIA	L	
	6 and 4-inch							#2 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)	,	WELL [DET	AILS	SUMMARY SOIL	DEPTH
	286.69		0					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION		DEPTH (ft)	<u>cover</u>					0'
	264.69		22				#2 sand		
TOP OF FILTER	ELEVATION	l	DEPTH (ft)			A		See LB08 Soil Boring	
	244.69		42					Log for Details	
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	244.69		42	riser					
BOTTOM OF WELL	ELEVATION		DEPTH (ft)						
	239.69		47						22'
SCREEN LENGTH							\leftarrow seal		42'
	5'								42'
SLOT SIZE									
	20-Slot								
GROUN	DWATER ELE	VATIONS		PVC					
ELEVATION	DATE	DEPTH TO \	WATER	screen					
286.64	9/5/2018	0.05							
ELEVATION	DATE	DEPTH TO \	WATER						
ELEVATION	DATE	DEPTH TO \	WATER			4	sand		
							pack		
ELEVATION	DATE	DEPTH TO \	WATER						
ELEVATION	DATE	DEPTH TO \	WATER						
									47'
ELEVATION	DATE	DEPTH TO \	WATER						
	LANGAN E	Engineering	and Enviro	onmen	tal Se	rvio	es, Inc.		

Well No. LMW11

PROJECT	PROJECT NO.					
41 Kensico Drive	190046301	190046301				
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM				
Mount Kisco, New York	N/A					
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
AARCO Environmental Services Corp.	8/13/2018	8/13/2018				
DRILLING EQUIPMENT	DRILLER					
Geoprobe® 7822DT	Sergio Magana					
SIZE AND TYPE OF BIT	INSPECTOR					
4-1/4" HSA with Bullet Cutter Head	Luke McCartney					

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 24 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 4-24 ftbgs and riser to grade. #2 sand was backfilled between 3 to 24 ftbgs, bentonite pellets were backfilled between 1 to 3 ftbgs and the remaining length of the borehole was backfilled with #2 sand. The wellhead was completed in a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and development the well using a submersible whale pump. A total of 55 gallons of water were pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETER	R	TYPE (OF BAC	CKF	ILL MATER	RIAL	
PVC Sched. 40		2"		#2 San	d				
TYPE OF SCREEN		DIAMETER	R	TYPE (OF SEA	AL N	IATERIAL		
PVC Sched. 40	C Sched. 40 2"			Fast-Re	elease l	Ben	tonite Pelle	ets	
BOREHOLE DIAMET	TER .			TYPE (OF FILT	ΓER	MATERIA	L	
	6-inch							#2 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)	,	NELL [DET	AILS	SUMMARY SOIL	DEPTH
	290.62		0					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION		DEPTH (ft)	<u>cover</u>	\				0'
	289.62		1				#2 sand		1
TOP OF FILTER	ELEVATION		DEPTH (ft)			4		See LB11 Soil Boring	
	286.62		3					Log for Details	
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	285.62		4	riser					
BOTTOM OF WELL	ELEVATION		DEPTH (ft)		\square				
	265.62		24						1'
SCREEN LENGTH							←— _{seal}		3'
	20'								4'
SLOT SIZE									
	20-Slot								
GROUN	DWATER ELE	VATIONS		PVC					
ELEVATION	DATE	DEPTH TO	WATER	screen					
287.69	9/5/2018	2.93							
ELEVATION	DATE	DEPTH TO	WATER						
ELEVATION	DATE	DEPTH TO	WATER			┥	sand		
							pack		
ELEVATION	DATE	DEPTH TO	WATER						
ELEVATION	DATE	DEPTH TO	WATER						
									24'
ELEVATION	DATE	DEPTH TO	WATER						
	LANGAN E	ngineerin	g and Enviro	nmen	tal Se	rvio	ces, Inc.		

Well No. LMW12S/LMW12D

PROJECT	41 Kensico Drive	PROJECT NO.	190046301	
LOCATION	Mount Kisco, New York	ELEVATION AND DATUM	N/A	
DRILLING AGENCY	AARCO Environmental Services Corp.	DATE STARTED	8/20/2018 DATE FINISHED	8/20/2018
DRILLING EQUIPMENT	Geoprobe® 8410LC Sonic Drill Rig	DRILLER	Thomas Seickel	
SIZE AND TYPE OF BIT	6-inch/4-inch diameter	INSPECTOR	Luke McCartney	

METHOD OF INSTALLATION

AARCO advanced 6-inch diameter by 5-foot long sections of steel casing through grade surface to support a borehole opening for installation of the MW12 well couplet. The casing was advanced to 24 feet bgs to install well screen within the interval of highest impact observed between 19 to 20 feet bgs. AARCO advanced 4-inch diameter by 5-foot long sections of steel casing through the 6-inch casing to the deep well design depth of 44 feet bgs, using a fresh water supply to prevent potential heaving of saturated sands below the groundwater table. The deep well was installed at 44 feet bgs and was constructed of 2-feet of Schedule 40 PVC (sump) set between 42 to 44 feet bgs, 5-feet of Schedule 40 PVC 0.01-slot screen set between 37 to 42 feet bgs, and about 37 feet of Schedule 40 PVC solid riser pipe. Time-release coated bentonite pellets were used to backfill the annulus around the deep well sump between 42 to 44 feet bgs. No. 1 filtration sand was used to backfill the annulus around above the deep well screen between 35 to 37 feet bgs. Time-release coated bentonite pellets were used to backfill the annulus around the deep well casing between 24 to 35 feet bgs. The shallow well was installed at 24 feet bgs and was constructed of 2-feet of Schedule 40 PVC (sump) set between 22 to 24 feet bgs, 5-feet of Schedule 40 PVC 0.01-slot screen set between 17 to 22 feet bgs, and about 17 feet of Schedule 40 PVC solid riser pipe. Time-release coated bentonite pellets were used to backfill the annulus around and above the shallow well sump and deep well casing between 22 to 24 feet bgs. No. 1 filtration sand was used to backfill the annulus around and above the shallow well screen and deep well casing between 13 to 15 feet bgs. During well construction and placement of bentonite pellets were used to backfill the annulus around the shallow and deep well casing between 13 to 15 feet bgs. During well construction and placement of bentonite pellets and No. 1 sand in the borehole annulus the depths to each interval of material was t

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the wells with a surge block attached to a 1-inch PVC pipe and developed the wells using a submersible whale pump. A total of 50 gallons from MW12 and 40 gallons from MW12D were pumped into 55-gallon drums as containment for disposal.

MONITORING WELL NO.	MV	V12D	MV	V12S	WELL CONSTRUCTION	STRUCTION DIAGRAM	
BOREHOLE DIAMETER	Ginal	14 in ab	G in all	. (A in ala	WELL DETAILS	SUMMARY SOIL	DEPTH
	0-INCI	n/4-inch	6-incr	n/4-inch		CLASSIFICATION	(ft)
TYPE OF CASING	TYPE	DIAMETER (in)	TYPE	DIAMETER (in)		See Boring Log	0'
	Schedule 40	2	Schedule 40	2	Manhole at grade		1'
TYPE OF SCREEN	TYPE	DIAMETER (in)	TYPE	DIAMETER (in)			
	Schedule 40	2	Schedule 40	2			
SCREEN LENGTH/SLOT	S LENGTH (ft)	SLOT SIZE (in)	LENGTH (ft)	SLOT SIZE (in)			
	5	0.01	5	0.01			
TYPE OF SUMP	TYPE	DIAMETER (in)	TYPE	DIAMETER (in)	◆ Bentonite-grout slu	rry	
	Schedule 40	2	Schedule 40	2			
TOP OF CASING	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)			
	289.29	0	289.29	0			13'
TOP OF SEAL	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	▼ Time-release coate	d bentonite pellets	15'
	265.29	24	276.29	13			17'
TOP OF FILTER	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	◆ No. 1 Filtration San	d	
	254.29	35	274.29	15	■ 5-feet 0.01-inch slo	tted Sch. 40 PVC	
TOP OF SCREEN	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)			22'
	252.29	37	274.29	17	2-foot Sch. 40 PVC	sump	24'
TOP OF SUMP	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	← Time-release coate	d bentonite pellets	
	247.29	42	269.29	22			35'
BOTTOM OF SUMP	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)			37'
	245.29	44	267.29	24	◆ No. 1 Filtration San	d	
BOTTOM OF WELL	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	5-feet 0.01-inch slo	tted Sch. 40 PVC	42'
	245.29	44	267.29	24	◆ Time-release coate	d bentonite pellets	44'
TYPE OF BACKFILL MATE	5% bentonite/g	grout slurry comp	osed of:		<u> </u>		
	High-solids pov	wdered bentonite	e/portland ceme	nt Type I-II	2-foot Sch. 40 PVC sump set on t	op of bedrock	
TYPE OF SEAL MATERIA	L Time-release c	oated bentonite (pellets				
TYPE OF FILTER MATERI							
		filtration media					
	GROUNDWA	TER ELEVATION	NS				
LMWS12	DATE		DEPTH TO WA	ATER			
	9/5/2018	286.71	2.58				
LMW12D	DATE	_	DEPTH TO WA	ATER			
	9/5/2018	287.95	1.34				
	LANGA		٠,	. ,	g and Landscape Architecture, D.P.C.		
i		21 Penn Plaz	a, 360 vvest	31st Street, 8	h Floor, New York, New York		

Well No. LMW15

PROJECT	PROJECT NO.				
41 Kensico Drive	190046301	190046301			
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM			
Mount Kisco, New York	N/A				
DRILLING AGENCY	DATE STARTED	DATE FINISHED			
AARCO Environmental Services Corp.	8/20/2018	8/20/2018			
DRILLING EQUIPMENT	DRILLER				
Geoprobe® 8410LC Sonic Drill Rig	Thomas Seickel				
SIZE AND TYPE OF BIT	INSPECTOR				
4-inch Diameter Steel Carbide Bit	Luke McCartney				

METHOD OF INSTALLATION

AARCO advanced 4-inch steel casing to 38 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC sump was installed between 31-36' and 36-38' with 2-inch solid PVC pipe to grade. #1 sand was backfilled between around the screen and sump to 29', bentonite pellets were backfilled between 27 to 29 feet, and the remaining length of the borehole was filled with grout to grade. The wellhead was completed in a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and development the well using a submersible whale pump. A total of 45 gallons of water were pumped into a 55-gallon drum as containment for disposal.

PVC Sched. 40 TYPE OF SCREEN PVC Sched. 40		2"		I					
				Grout S	Slurry				
PVC Sched. 40		DIAMETER		TYPE (OF SEA	AL N	/IATERIAL		
		2"		Fast-Re	elease	Ben	tonite Pelle	ets	
BOREHOLE DIAMET	ER			TYPE (OF FIL	TER	MATERIA	<u>_</u>	
<u> </u>	4-inch							#1 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)	'	WELL I	DET	AILS	SUMMARY SOIL	DEPTH
<u> </u>	289.65		0					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION		DEPTH (ft)	cover	\rightarrow				0'
İ	262.65		27			4	grout		
TOP OF FILTER	ELEVATION		DEPTH (ft)					See LB15 Soil Boring	
İ	260.65		29					Log for Details	
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
İ	258.65		31	riser					
BOTTOM OF WELL	ELEVATION		DEPTH (ft)						
İ	251.65		38						27'
SCREEN LENGTH							←— _{seal}		29'
5' s	screen to 2' su	ımp							31'
SLOT SIZE									
<u>i</u>	10-Slot								
GROUND	WATER ELE	VATIONS		PVC					
ELEVATION	DATE	DEPTH TO	WATER	screen					
286.87	9/5/2018	2.78							
ELEVATION	DATE	DEPTH TO	WATER						
i									
ELEVATION	DATE	DEPTH TO	WATER			۱∢	—— sand		
							pack		
ELEVATION	DATE	DEPTH TO	WATER						
i									
ELEVATION	DATE	DEPTH TO	WATER						
					<		_2' sump		36'
ELEVATION	DATE	DEPTH TO	WATER						38'
İ	LANGAN E	ngineering	and Enviro	onmen	tal Se	ervio	ces, Inc.		

Well No. LMW19S

PROJECT	PROJECT NO.					
41 Kensico Drive	190046301	190046301				
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM				
Mount Kisco, New York	N/A					
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
AARCO Environmental Services Corp.	8/15/2018	8/15/2018				
DRILLING EQUIPMENT	DRILLER					
Geoprobe® 6610DT	Sergio Magana					
SIZE AND TYPE OF BIT	INSPECTOR					
4-1/4" HAS with Bullet Cutter Head	Luke McCartney					

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 15 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 2-15 ftbgs and riser to grade. #2 sand was backfilled around the screen to 1.5 ftbgs, bentonite pellets were backfilled between 0.5 to 1.5 ftbgs, and the remaining length of borehole was backfilled with #2 sand. The wellhead was completed and a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. A total of 55 gallons of water were pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETE	R	TYPE (OF BA	CKF	ILL MATER	RIAL	
PVC Sched. 40		2"		#2 san	d				
TYPE OF SCREEN		DIAMETE	R	TYPE (OF SE	AL N	/IATERIAL		
PVC Sched. 40	PVC Sched. 40 2"			Fast-Re	elease	Ben	tonite Pelle	ets	
BOREHOLE DIAMET	TER .			TYPE (OF FIL	TER	MATERIA	L	
	6-inch							#1 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)	,	WELL	DET	AILS	SUMMARY SOIL	DEPTH
	290.30		0					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION		DEPTH (ft)	cover	>				0'
	289.80		0.5				#2 sand]
TOP OF FILTER	ELEVATION		DEPTH (ft)			4		See LB19 Soil Boring	
	288.80		1.5					Log for Details	
TOP OF SCREEN	ELEVATION		DEPTH (ft)						
	288.30		2	riser					
BOTTOM OF WELL	ELEVATION		DEPTH (ft)						
	275.30		15						0.5'
SCREEN LENGTH							←— _{seal}		1.5'
	13'								2'
SLOT SIZE									
	20-Slot								
GROUN	DWATER ELE	VATIONS		PVC					
ELEVATION	DATE	DEPTH TO	WATER	screen					
285.10	9/5/2018	5.20							
ELEVATION	DATE	DEPTH TO) WATER						
ELEVATION	DATE	DEPTH TO) WATER			◀	—— sand		
							pack		
ELEVATION	DATE	DEPTH TO	WATER						
ELEVATION	DATE	DEPTH TO) WATER						
									15'
ELEVATION	DATE	DEPTH TO) WATER						
	LANGAN E	ngineerir	ig and Enviro	nmen	tal Se	ervi	ces, Inc.		

Well No. LMW19D

PROJECT	PROJECT NO.				
41 Kensico Drive	190046301	190046301			
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM			
Mount Kisco, New York	N/A				
DRILLING AGENCY	DATE STARTED	DATE FINISHED			
AARCO Environmental Services Corp.	8/15/2018	8/15/2018			
DRILLING EQUIPMENT	DRILLER				
Geoprobe® 6610DT	Sergio Magana				
SIZE AND TYPE OF BIT	INSPECTOR				
4-1/4" HAS with Bullet Cutter Head	Luke McCartney				

METHOD OF INSTALLATION

AARCO advanced 4-1/4" augers to 39 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC pre-pack well screen fitted with a 2-inch diameter solid PVC sump was installed between 32-37' and 37 to 39' with 2-inch solid PVC pipe to grade. #2 sand was backfilled around the screen and sump to 30', bentonite pellets were between 28-30', and the remaining length of borehole was filled with grout slurry to grade. The wellhead was completed in a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. A total of 15 gallons of water were pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETE	R	TYPE C	F BAC	CKF	ILL MATER	RIAL		
PVC Sched. 40		2"		Grout S		•				
TYPE OF SCREEN		DIAMETE	R			AL N	//ATERIAL			
PVC Sched. 40		2" Pre=Pac	ck	Fast-Re	lease l	Ben	tonite Pelle	ets		
BOREHOLE DIAMET	ΓER			TYPE C	F FILT	ΓER	MATERIA	L		
	6-inch			#1 sand						
TOP OF CASING	ELEVATION	ı	DEPTH (ft)	V	VELL [DET	AILS	SUMMARY SOIL	DEPTH	
	290.15		0					CLASSIFICATION	(FT) bgs	
TOP OF SEAL	ELEVATION	l	DEPTH (ft)	cover	>				0'	
	262.15		28				Grout			
TOP OF FILTER	ELEVATION	ı	DEPTH (ft)			*		See LB19 Soil Boring		
	260.15		30					Log for Details		
TOP OF SCREEN	ELEVATION	I	DEPTH (ft)							
	258.15		32	riser						
BOTTOM OF WELL	ELEVATION	l	DEPTH (ft)							
	251.15		39				,		28'	
SCREEN LENGTH							seal		30'	
	ack Screen wit	th 2' Sump							32'	
SLOT SIZE										
	10-Slot									
	DWATER ELE			PVC	_>					
ELEVATION	DATE	DEPTH TO	WATER	screen						
286.60	9/5/2018	3.55								
ELEVATION	DATE	DEPTH TO	WATER							
ELEVATION	DATE	DEPTH TO	WATER			4	sand			
ELEVATION:	DATE	DEDTILE	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				pack			
ELEVATION	DATE	DEPTH TO	WATER							
ELEVATION	DATE	DEPTH TO	NAVATED							
ELEVATION	DATE	DEPIHIC	WATER				0.1		071	
ELEVATION	DATE	DEPTH TO) MATER		\vdash		2' sump		37'	
ELEVATION	DATE	שביוה ול	VVAIEK						39'	
	LANCANT		a and English		tal Ca			l	<u> </u>	
	LANGAN	ingineerin	g and Envir	nmen	ıdı 5e	rVI	ces, inc.			

Well No. LMW20S/LMW20D

PROJECT	41 Kensico Drive	PROJECT NO.	190046301
LOCATION	Mount Kisco, New York	ELEVATION AND DATUM	N/A
DRILLING AGENCY	AARCO Environmental Services Corp.	DATE STARTED	8/20/2018 DATE FINISHED 8/20/2018
DRILLING EQUIPMENT	Geoprobe® 8410LC Sonic Drill Rig	DRILLER	Thomas Seickel
SIZE AND TYPE OF BIT	6-inch/4-inch diameter	INSPECTOR	Luke McCartney

METHOD OF INSTALLATION

AARCO advanced 6-inch diameter by 5-foot long sections of steel casing through grade surface to support a borehole opening for installation of the MW20 well couplet. The casing was advanced to 37 feet bgs to install well screen within the interval of highest impact observed between 32.5 to 33.5 feet bgs. AARCO advanced 4-inch diameter by 5-foot long sections of steel casing through the 6-inch casing to the deep well design depth of 49 feet bgs set on top of bedrock, using a fresh water supply to prevent potential heaving of saturated sands below the groundwater table. The deep well was installed at 49 feet bgs and was constructed of 2-feet of Schedule 40 PVC (sump) set between 47 to 49 feet bgs, 5-feet of Schedule 40 PVC 0.01-slot screen set between 42 to 47 feet bgs, and about 42 feet of Schedule 40 PVC solid riser pipe. Time-release coated bentonite pellets were used to backfill the annulus around the deep well sump between 47 to 49 feet bgs. No. 1 filtration sand was used to backfill the annulus around and above the deep well screen between 41 to 47 feet bgs. Time-release coated bentonite pellets were used to backfill the annulus around the deep well casing between 37 to 41 feet bgs. The shallow well was installed at 37 feet bgs and was constructed of 2-feet of Schedule 40 PVC (sump) set between 35 to 37 feet bgs, 5 feet of Schedule 40 PVC 0.01-slot screen set between 30 to 35 feet bgs, and about 30 feet of Schedule 40 PVC solid riser pipe. Time-release coated bentonite pellets were used to backfill the annulus around the shallow well sump and deep well casing between 35 to 37 feet bgs. No. 1 filtration sand was used to backfill the annulus around and above the shallow well screen and deep well casing between 28 to 35 feet bgs. Time-release coated bentonite pellets were used to backfill the annulus around the shallow and deep well casing between 26 to 28 feet bgs. During well construction and placement of bentonite pellets were used to backfill the annulus around the shallow and deep well casing between 26 t

METHOD OF WELL DEVELOPMENT

AARCO/Langan surged the wells with a surge block attached to a 1-inch PVC pipe and developed the wells using a submersible whale pump. A total of 25 gallons and 25 gallons were pumped from MW20 and MW20D, respectively. The development water was pumped into a 55-gallon drum as containment for disposal.

				N20	WELL CONSTRUCTION DIAGRAM		
BOREHOLE DIAMETER	6-incl	n/4-inch	6-inch	/4-inch	WELL DETAILS SUMMARY SOIL CLASSIFICATION	DEPT (ft)	
TYPE OF CASING	TYPE	DIAMETER (in	TYPE	DIAMETER (in)	See Boring Log	0'	
	Schedule 40	2	Schedule 40	2	Manhole at grade	1'	
TYPE OF SCREEN	TYPE	DIAMETER (in	TYPE	DIAMETER (in)			
	Schedule 40	2	Schedule 40	2			
SCREEN LENGTH/SLOT	S LENGTH (ft)	SLOT SIZE (in	LENGTH (ft)	SLOT SIZE (in)			
	5	0.01	5	0.01			
TYPE OF SUMP	TYPE	DIAMETER (in	TYPE	DIAMETER (in)	← Bentonite-grout slurry		
	Schedule 40	2	Schedule 40	2			
TOP OF CASING	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)			
	289.72	0	289.72	0		26'	
TOP OF SEAL	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	← Time-release coated bentonite pellets	28'	
	252.72	37	263.72	26		30'	
TOP OF FILTER	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	◆ No. 1 Filtration Sand		
	248.72	41	261.72	28	5-feet 0.01-inch slotted Sch. 40 PVC		
TOP OF SCREEN	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)		35'	
	247.72	42	259.72	30	2-foot Sch. 40 PVC sump	37'	
TOP OF SUMP	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	← Time-release coated bentonite pellets		
	242.72	47	254.72	35		41'	
BOTTOM OF SUMP	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)		42'	
	240.72	49	252.72	37	◆ No. 1 Filtration Sand		
BOTTOM OF WELL	ELEVATION	DEPTH (ft)	ELEVATION	DEPTH (ft)	5-feet 0.01-inch slotted Sch. 40 PVC	47'	
	240.72	49	252.72	37	← Time-release coated bentonite pellets	49'	
TYPE OF BACKFILL MAT	El 5% bentonite/	grout slurry comp	oosed of:		<u> </u>		
	High-solids po	wdered bentonit	e/portland ceme	nt Type I-II	2-foot Sch. 40 PVC sump set on top of bedrock		
TYPE OF SEAL MATERIA	L Time-release o	oated bentonite	pellets				
TYPE OF FILTER MATER							
		filtration media					
		TER ELEVATION					
MW-14	DATE	ELEVATION	DEPTH TO WA	ATER			
MW-14D	DATE	ELEVATION	DEPTH TO WA	ATER			
	LANGA	•	٠,	, ,	and Landscape Architecture, D.P.C. n Floor, New York, New York	I	

Well No. GWG01

PROJECT	PROJECT NO.					
41 Kensico Drive	190046301	190046301				
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM				
Mount Kisco, New York	N/A	N/A				
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
Eastern Environmental Solutions, Inc.	5/2/2019	5/2/2019				
DRILLING EQUIPMENT	DRILLER					
Geoprobe® 6610DT	Patrick Slavin					
SIZE AND TYPE OF BIT	INSPECTOR					
4"	Luke McCartney					

METHOD OF INSTALLATION

Eastern advanced 4" augers to 15 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 2-15 ft bgs and riser to grade. #0 sand was backfilled around the screen to 1.5 ftbgs, bentonite pellets were backfilled between 1 to 1.5 ftbgs. The wellhead was completed and a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

Eastern/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. Water was pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETER	R	TYPE	OF BAC	KFILL MATER	RIAL		
PVC Sched. 40	4"			#0 sand					
TYPE OF SCREEN		DIAMETER	R	TYPE	OF SEA	L MATERIAL			
PVC Sched. 40		2"		Fast-Release Bentonite Pellets					
BOREHOLE DIAMET	rer			TYPE (OF FILT	ER MATERIA	L		
	4-inch						#0 sand		
TOP OF CASING	ELEVATION		DEPTH (ft)	,	WELL D	ETAILS	SUMMARY SOIL	DEPTH	
	289.29		0.00				CLASSIFICATION	(FT) bgs	
TOP OF SEAL	ELEVATION		DEPTH (ft)	cover	\			0'	
	288.29		1.0						
TOP OF FILTER	ELEVATION		DEPTH (ft)	1			NA		
	287.79		1.5	riser		←— _{seal}	IVA	1.0	
TOP OF SCREEN	ELEVATION		DEPTH (ft)		₽ſ			1.5	
	287.29		2					2.0	
BOTTOM OF WELL	ELEVATION		DEPTH (ft)	1					
	274.29		15						
SCREEN LENGTH									
	13'								
SLOT SIZE									
	10-Slot								
	DWATER ELE			PVC					
ELEVATION	DATE	DEPTH TO	WATER	screen					
285.63	5/9/2019	3.66		l					
ELEVATION	DATE	DEPTH TO	WATER						
				l					
ELEVATION	DATE	DEPTH TO	WATER			sand		15.0	
						pack			
ELEVATION	DATE	DEPTH TO	WATER						
				l					
ELEVATION	DATE	DEPTH TO	WAIER						
ELEVATION:	DATE	DEDTIL TO	NAVATED	ļ					
ELEVATION	DATE	DEPTH TO	WAIEK						
	LANGASIS				4-1-0				
	LANGAN E	ngineerin	g and Enviro	onmer	ıtaı Sei	vices, inc.			

Well No. GWG02

PROJECT	PROJECT NO.					
41 Kensico Drive	190046301	190046301				
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM				
Mount Kisco, New York	N/A					
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
Eastern Environmental Solutions, Inc.	5/2/2019	5/2/2019				
DRILLING EQUIPMENT	DRILLER					
Geoprobe® 6610DT	Patrick Slavin					
SIZE AND TYPE OF BIT	INSPECTOR					
4"	Luke McCartney					

METHOD OF INSTALLATION

Eastern advanced 4" augers to 15 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 2-15 ft bgs and riser to grade. #0 sand was backfilled around the screen to 1.5 ftbgs, bentonite pellets were backfilled between 1 to 1.5 ftbgs. The wellhead was completed and a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

Eastern/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. Water was pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETER		TYPE	OF BACI	KFILL MATE	RIAL	
PVC Sched. 40		4"		#0 san	d			
TYPE OF SCREEN		DIAMETER		TYPE	OF SEAL	L MATERIAL		
PVC Sched. 40		2"		Fast-R	elease B	entonite Pelle	ets	
BOREHOLE DIAMET	TER			TYPE (OF FILTE	ER MATERIA	L	
	4-inch						#0 sand	
TOP OF CASING	ELEVATION	l	DEPTH (ft)		WELL D	ETAILS	SUMMARY SOIL	DEPTH
	289.14		0.00				CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION	l	DEPTH (ft)	cover	-			0'
	288.14		1.0		[
TOP OF FILTER	ELEVATION		DEPTH (ft)	1			NA	
	287.64		1.5	riser		< seal		1.0
TOP OF SCREEN	ELEVATION		DEPTH (ft)					1.5
	287.14		2					2.0
BOTTOM OF WELL	ELEVATION		DEPTH (ft)					
	274.14		15	j				
SCREEN LENGTH								
	13'							
SLOT SIZE								
	10-Slot							
	DWATER ELE			PVC				
ELEVATION	DATE	DEPTH TO	WATER	screen				
285.61	5/9/2019	3.53						
ELEVATION	DATE	DEPTH TO	WATER					
ELEVATION	DATE	DEPTH TO	WATER			sand		15.0
ELEVATION	DATE	DEPTH TO	WATER			pack		
ELEVATION	DATE	DEPTH TO	WATER					
ELEVATION	DATE	DEPTH TO	WATER					
	LANGAN E	Ingineering	and Enviro	onmer	ital Ser	vices, Inc.	I	

Well No. GWG03

PROJECT	PROJECT NO.					
41 Kensico Drive	190046301	190046301				
LOCATION	ELEVATION AND DA	ELEVATION AND DATUM				
Mount Kisco, New York	N/A	N/A				
DRILLING AGENCY	DATE STARTED	DATE FINISHED				
Eastern Environmental Solutions, Inc.	5/2/2019	5/2/2019				
DRILLING EQUIPMENT	DRILLER					
Geoprobe® 6610DT	Patrick Slavin					
SIZE AND TYPE OF BIT	INSPECTOR					
4"	Luke McCartney					

METHOD OF INSTALLATION

Eastern advanced 4" augers to 12 ftbgs to complete monitoring well installation and construction. A 2-inch diameter PVC well screen fitted with a 2-inch diameter solid PVC riser pipe was installed with screen set from 2-12 ft bgs and riser to grade. #0 sand was backfilled around the screen to 1.5 ftbgs, bentonite pellets were backfilled between 1 to 1.5 ftbgs. The wellhead was completed with a watertight manhole at grade.

METHOD OF WELL DEVELOPMENT

Eastern/Langan surged the well with a surge block attached to a 1-inch PVC pipe and developed the well using a submersible whale pump. Water was pumped into a 55-gallon drum as containment for disposal.

TYPE OF CASING		DIAMETER		TYPE	OF BA	CKE	ILL MATER	ΙΔΙ	
PVC Sched. 40		4"		#0 san		JIKI	ILL WATER	IAL	
TYPE OF SCREEN		DIAMETER				AL N	/IATERIAL		
PVC Sched. 40		2"		Fast-R	elease	Ber	tonite Pelle	ts	
BOREHOLE DIAMET	TER .						MATERIAL		
	4-inch							#0 sand	
TOP OF CASING	ELEVATION		DEPTH (ft)		WELL	DET	AILS	SUMMARY SOIL	DEPTH
	289.67		0.00					CLASSIFICATION	(FT) bgs
TOP OF SEAL	ELEVATION		DEPTH (ft)	cover					0'
	288.67		1.0			/			
TOP OF FILTER	ELEVATION		DEPTH (ft)	1		\leftarrow	casing	NA	0.5
	288.17		1.5	riser			←— _{seal}	IVA	1.0
TOP OF SCREEN	ELEVATION		DEPTH (ft)		ightharpoons				1.5
	287.67		2	j					2.0
BOTTOM OF WELL	ELEVATION		DEPTH (ft)						
	277.67		12						
SCREEN LENGTH									
	10'								
SLOT SIZE									
	10-Slot			l					
	DWATER ELE			PVC					
ELEVATION	DATE	DEPTH TO	WATER	screen					
285.87	5/9/2019	3.80		l					
ELEVATION	DATE	DEPTH TO	WATER						
ELEVATION	DATE	DEPTH TO	WATED	1]			12.0
ELEVATION	DATE	DEPIR IO	WAIEK			_	sand		12.0
ELEVATION	DATE	DEPTH TO	WATER				pack		
LLEVATION	DAIL	DEI III IO	WAILI						
ELEVATION	DATE	DEPTH TO	WATER						
ELEVATION.	DATE	DEDTH TO	14/A TED						
ELEVATION	DATE	DEPTH TO	WAIEK						
	LANGAN E	ngineering	and Enviro	onmer	tal Se	rvi	ces, Inc.		<u> </u>
		_							

APPENDIX E GROUNDWATER SAMPLING LOGS

Project Inf	ormation	Well Info	rmation	Eq	uipment Informati	ion	S	ampling Condition	s	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	MW-1	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		MW-1_090518
Project Number:	170046301	Well Depth:	12		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	GWDUP01_090518
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneatl	h Inner Cap (ppm):	12.8		GW_MS/MSD
Sampling	L.McCartney	Well Screen	2		Pine Number:			ımp Intake Depth:	11.00	Sample Date:	9/5/2018
Personnel:		Interval:	12		Tubing Diameter:	3/8"ID		ater Before Purge:	-	Sample Time:	-,-,
				STABILIZATION =	= 3 successive read	lings within limits	•				
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5		Drawdown <	.51 /			Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN	PURGING		<u> </u>			
10:50	19.86	6.90	65	0.447	26.3	7.06	-	-	0	slight brown	N/A
10:55	19.09	6.95	61	0.436	5.30	3.54	-	0.9	4.5	Clear	N/A
11:00	19.67	6.92	48	0.458	0.20	2.48	-	0.65	6.5	Clear	N
11:05	19.79	6.96	39	0.438	0.00	1.82	-	0.6	9	Clear	N
11:10	19.92	6.96	35	0.438	0.40	1.45	-	0.54	10.75	Clear	N
11:15	19.70	6.96	30	0.442	0.00	0.86	-	0.53	13.25	Clear	N
11:20	19.68	6.96	27	0.443	0.00	0.58	-	0.5	15	Clear	N
11:25	19.80	6.97	23	0.438	0.0	0.17	=	0.49	17	Clear	N
11:30	19.64	6.98	21	0.436	0.0	0.00	=	0.48	19	Clear	N
11:35	19.81	6.97	20	0.441	0.3	0.00	-	0.46	20.5	Clear	Υ
11:40	19.94	6.98	18	0.437	0.0	0.00	-	0.45	22.5	Clear	Υ
11:45	19.90	6.99	15	0.435	0.0	0.00		0.45	25	Clear	Υ
11:50											N
											N
											N
											N
											N
											N
											N
											N
											N
				1							N
				1							N
				1							N
											N N
+											N N
											N N
1											N N
				1							1/4

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Ed	quipment Informati	on	S	ampling Condition	S	Sampling I	nformation
Project Name:		Well No:	MW-2	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear		MW-2_090518
Project Number:	170046301	Well Depth:	11.8		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneath	Inner Cap (ppm):	0.5		
Sampling	L.McCartney	Well Screen	2		Pine Number:		Pu	ımp Intake Depth:		Sample Date:	9/5/2018
Personnel:		Interval:	12		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:		Sample Time:	1345
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
					(+/- 10%) above 5		Drawdown <	(36)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
	(17 070)	(17 0.17	(17 1011117)	(17 070)	BEGIN P		5.55.17	3 [,			
12:40	18.24	7.63	68	0.593	80.8	1.70	-	_	0.5	1	N/A
12:45	15.02	7.70	56	0.663	15.30	0.33	-		2		N/A
12:50	14.72	7.66	38	0.665	27.00	0.00	-	0.5	4	1	N N
12:55	14.78	7.64	21	0.669	0.00	0.00	-	0.5	6		N
13:00	14.65	7.64	9	0.669	0.00	0.00	_	0.5	8		N
13:05	14.85	7.63	-2	0.671	0.00	0.57	-	0.5	10		N
13:10	14.86	7.64	-8	0.669	0.00	0.24	-	0.5	12		N
13:15	14.72	7.65	-16	0.674	0.00	0.00	-	0.50	14		N
13:20	14.55	7.65	-21	0.672	0.00	0.00	_	0.50	16		N
13:25	14.54	7.66	-26	0.669	0.00	0.00	-	0.50	18		Y
13:30	14.76	7.65	-36	0.672	0.00	0.00	-		20		N
13:35	14.59	7.66	-37	0.674	0.00	0.00	-		22		N
13:40	14.43	7.66	-43	0.673	0.00	0.00	-		24		Υ
13:45	14.32	7.66	-45	0.675	0.00	0.00	-		26		Υ
											N
											N
											N
											N
						-					N
											N
											N
											N
											N
											N
											N
											N
											N
											N
				L							N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Mount Kisco, NY

Project Info	ormation	Well Info	rmation	Ec	quipment Informati	on	S	ampling Conditions	S	Sampling I	nformation
Project Name:	41 Kensico Dr	Well No:	MW-3	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		MW-3_090518
Project Number:	170046301	Well Depth:	12.7		Pine Number:		Back	ground PID (ppm):	0.2	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneatl	h Inner Cap (ppm):	0.7		
Sampling	L.McCartney	Well Screen	2		Pine Number:		Pı	ump Intake Depth:		Sample Date:	9/5/2018
Personnel:		Interval:	12		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	4.56	Sample Time:	1140
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	O	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		04-1-1112
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
1	,,				BEGIN P						
10:55	18.09	6.70	-63	0.358	198.0	0.00	-	- I			N/A
11:00	17.30	6.73	-82	0.342	15.80	0.00	5.80		3		N/A
11:05	17.28	6.66	-83	0.338	9.10	0.00	5.80	0.5	4.5		N
11:10	17.21	6.61	-81	0.336	5.40	0.00	5.80	0.5	6		N
11:15	17.16	6.58	-80	0.334	1.60	0.00	5.80	0.5	7.5		N
11:20	17.11	6.56	-79	0.333	0.00	0.00	5.80	0.5	9		N
11:25	17.01	6.52	-77	0.332	0.00	0.00	5.80	0.5	10.5		Υ
11:30	17.05	6.50	-76	0.331	0.00	0.00	5.80	0.50	12		Υ
11:35	16.92	6.47	-74	0.331	0.00	0.00	5.80	0.50	13.5		Υ
11:40	17.04	6.44	-72	0.330	0.00	0.00	5.80	0.50	15		Υ
											N
											N
											N
											N
											N
											N
											N
											N
											N N
											N
											N
											N
											N
											N
											N
											N
											N
											N
		•						•			

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	ormation	Well Info	rmation	Ec	quipment Informati	on	S	ampling Condition	S	Sampling In	nformation
Project Name:	41 Kensico Dr	Well No:	MW-4	Water Qua	lity Device Model:	Horiba U-52		Weather:	90s Hazy		MW-4_090618
Project Number:	170046301	Well Depth:	12		Pine Number:		Back	ground PID (ppm):	0.4	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneath	n Inner Cap (ppm):	3.9		
Sampling	L.McCartney	Well Screen	2		Pine Number:	•	Pι	ımp Intake Depth:	8.00	Sample Date:	9/6/2018
Personnel:		Interval:	12		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	-	Sample Time:	
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5		Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN P						
16:30	25.82	6.72	-81	0.763	0.0	0.00					N/A
16:35	24.76	6.72	-88	0.772	0.00	0.00	3.45				N/A
16:40	24.81	6.72	-89	0.775	0.00	0.00					N
16:45	24.75	6.72	-89	0.772	0.00	0.00					Υ
16:50											N
16:55											N
											N
											N
											N
											N
											N
											N N
											N N
											N N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
									•		N
						`					N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project In	formation	Well Info	rmation	Ed	quipment Informati	on	S	ampling Condition	S	Sampling I	nformation
Project Name:	41 Kensico Dr	Well No:	MW-5	Water Qua	ality Device Model:	Horiba U-52		Weather:	80's Cloudy		MW-5_090718
Project Number:	170046301	Well Depth:	12		Pine Number:		Back	ground PID (ppm):		Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneath	Inner Cap (ppm):			
Sampling	L.McCartney	Well Screen	2		Pine Number:		Pι	ımp Intake Depth:	9.00	Sample Date:	9/7/2018
Personnel:		Interval:	12		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	-	Sample Time:	
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5		Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
					BEGIN P	URGING					
12:10	19.61	7.68	66	0.463	161.0	0.96	-		0	Clear	N/A
12:15	18.51	7.66	63	0.457	132.00	0.00	-		2	Clear	N/A
12:20	19.23	7.51	69	0.457	2.70	0.00	-		4.5	Clear	N
12:25	18.90	7.52	73	0.459	1.00	0.00	-		7	Clear	N
12:30	18.68	7.52	73	0.459	2.20	0.00	-		9.5	Clear	Υ
12:35											N
12:40											N
											N
											N
											N
											N
											N
											N
											N N
											N
											N
											N N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- Notes:

 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Name 41 Kansico Dr Well Depth 12 Pine Number Project Name 17046301 Well Depth 12 Pine Number Pine	Project Inf	ormation	Well Info	rmation	Ec	quipment Informati	on	S	ampling Condition	ıs	Sampling I	nformation
Site Location: Mt Kiseo, NY Sampling LMcCartney Well Diameter: 2 12 Tubing Diameter: 12 Tubing Diameter: 3/8**ID Depth to Water Before Purge: 10.00 Sample Date: Sample Time: STABILIZATION = 3 successive readings with limits STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Date: Sample Time: STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Date: Sample Time: STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Time: STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Time: STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Time: STABILIZATION = 3 successive readings with limits NTU 0.0 Sample Time: NTU 0.0 Sam	Project Name:	41 Kensico Dr		MW-6	Water Qua		Horiba U-52			80's Cloudy		MW-6_090718
Sampling Link Claring Mell Screen 1/2 Tubing Diameter 3/8" Depth to Water Before Purge - Sample Time STABILIZATION = 3 successive reading within limits STABILIZATION = 3	Project Number:	170046301	Well Depth:	12		Pine Number:		Back	ground PID (ppm):		Sample(s):	
Personnel: 12 Tubing Diameter: 3/8" Depth to Water Before Purge: Sample Time:	Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneatl	n Inner Cap (ppm):			
TEMP	Sampling	L.McCartney	Well Screen	2		Pine Number:		Pu	ımp Intake Depth:	10.00	Sample Date:	9/7/2018
TEMP	Personnel:		Interval:	12				Depth to W	ater Before Purge:	-	Sample Time:	
TIME					STABILIZATION :	= 3 successive read	ings within limits					
Time		TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulativa	NOTES	
TIME		°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)			Ctobilized?
IMP						(+/- 10%) above 5	(+/- 10%) above	Drawdown <				Stabilizeur
12:47	TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gai)	color, odor etc.	
12:52						BEGIN P	URGING					
12:57	12:47	19.66	6.83	-19	0.620	26.7	0.00	=		0	Clear	N/A
13:02 19:89 6:00 -53 0.796 0.00 0.00 - 6.5 Clear N 13:07 19:81 6:80 -54 0.791 0.00 0.00 - 8.5 Clear Y N	12:52	20.37	6.79	-41	0.773	2.60	0.00	-		2.5	Clear	N/A
13:07	12:57	20.25	6.79	-49	0.809	0.00	0.00	-		4.5	Clear	N
			6.80			0.00	0.00	=			Clear	N
	13:07	19.81	6.80	-54	0.791	0.00	0.00	-		8.5	Clear	
N												
N												
N												
N												
N												
N												
N												
N												
						-						
N												
N												
N N N N N N N N N N N N N N N N N N N												
N N												
, , , , , , , , , , , , , , , , , , ,												N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Ed	quipment Informati	on	S	ampling Conditions		Sampling In	nformation
Project Name:		Well No:	LMW15	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear		LMW15_090618
Project Number:	170046301	Well Depth:	34.55		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneatl	h Inner Cap (ppm):	20.5		
Sampling	L.McCartney	Well Screen			Pine Number:		Pı	ump Intake Depth:		Sample Date:	9/6/2018
Personnel:		Interval:			Tubing Diameter:		Depth to W	ater Before Purge:		Sample Time:	945
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		04-1-11: 43
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
·					BEGIN P	URGING					
8:45	17.09	6.43	287	0.356	0.0	16.64	-	-			N/A
8:50	17.18	7.92	212	0.357	0.0	5.46	-	-	4		N/A
8:55	16.88	8.02	165	0.361	0.0	4.04	-	-	6		N
9:00	17.26	8.05	126	0.355	0.0	2.95	-	-	8		N
9:05	16.95	8.04	90	0.357	0.0	2.00	-	-	10		N
9:10	17.01	8.09	67	0.361	0.0	1.31	-	-	12		N
9:15	16.99	8.10	47	0.362	0.0	0.76	-	-	14		N
9:20	17.18	8.10	33	0.363	1000.00	0.05	-	-	16		N
9:25	16.85	8.11	21	0.365	0.00	0.00	-	-	18		N
9:30	16.87	8.11	13	0.367	0.00	0.00	-	-	20		N
9:35	16.82	8.11	7	0.367	0.00	0.00	-	-	22		N
9:40	16.77	8.12	1	0.368	0.00	0.00	-	-	24		N
9:45	16.72	8.10	-2	0.369	0.00	0.00	-	-	26		Υ
											N N
											N
											N
											N
											N
				1							N
											N
											N
											N
											N
											N
	<u> </u>	-	<u> </u>			-			<u> </u>		N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

	ormation	Well Info			uipment Informati		S	ampling Conditions		Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW01D	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		LMW01D_090518
Project Number:	170046301	Well Depth:	54.7		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	42.4		
Sampling	L.McCartney	Well Screen	44		Pine Number:		P	ump Intake Depth:	14.00	Sample Date:	9/5/2018
Personnel:		Interval:	54		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	2.05	Sample Time:	1120
				STABILIZATION =	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		
			•		(+/- 10%) above 5		Drawdown <	(92)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	(+7-370)	(+7- 0.1)	(47- 101114)	(47-370)		PURGING	0.00 .0	derite Spini,		00.0.7 000. 010.	
10:15	21.92	7.36	214	0.346	31.1	2.52	2.20	- 1	0.25		N/A
10:20	17.96	8.24	195	0.335	0.00	0.00		-	0.25		N/A
10:25	18.09	8.24	189	0.335	0.00	0.00	-	0.5	1.45		N/A N
10:30	18.08	8.18	179	0.330	0.00	0.00	-	0.5	2.25		N N
10:35	17.74	8.17	179	0.325	0.00	0.00	5.30	0.5	2.75		N
10:40	17.74	8.18	163	0.325	0.00	0.00	6.30	0.5	3.5		N N
10:45	17.53	8.19	155	0.323	0.00	0.00	5.60	0.5	4.1		N N
10:50	17.60	8.21	147	0.320	0.00	0.00	5.00	0.50	4.6		N N
10:55	17.36	8.22	138	0.320	0.0	0.00	-	0.50	5.2		N N
11:00	17.36	8.25	140	0.317	980.0	0.00	-	0.50	5.8		N N
11:05	17.41	8.28	129	0.317	846.0	0.00	-	0.50	6.5		N
11:10	17.45	8.31	125	0.316	692.0	0.00	_		7		N
11:15	17.47	8.35	128	0.314	580.0	0.00	-		7.6		N
11:20	17.46	8.38	116	0.312	454.0	0.00	-		8.5		N
11.20	17.40	0.00	110	0.012	-10-1.0	0.00			0.0		N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Infe	ormation	Well Info	rmation	Ec	quipment Informati	on .	S	ampling Conditions	5	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW08D	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear		LMW08D_090518
Project Number:	170046301	Well Depth:			Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	2.1		
Sampling	L.McCartney	Well Screen			Pine Number:		Pi	ump Intake Depth:		Sample Date:	9/5/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:		Sample Time:	1625
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1.0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		Stabilized?
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
	,,			, , , , , , , , , , , , , , , , , , , ,	BEGIN	PURGING		0			
15:25	18.90	8.68	28	0.145	86.9	0.27	-	- 1			N/A
15:30	15.91	8.75	19	0.151	62.50	0.00	1	-	4		N/A
15:35	16.07	8.75	10	0.149	64.40	0.00	-	-	6		N
15:40	15.81	8.76	-26	0.151	44.80	0.00	-	-	8		N
15:45	15.54	8.76	-32	0.152	43.70	0.00	-	-	10		N
15:50	15.90	8.76	-41	0.151	35.60	0.00	-	-	12		N
15:55	15.96	8.75	-48	0.151	37.10	0.00	-	-	13		N
16:00	17.78	8.72	-48	0.148	29.00	0.00	-	-	13.5		N
16:05	16.14	8.78	-36	0.154	32.50	0.00	-	-	15		N
16:10	15.55	8.78	-53	0.150	26.00	0.00		=	17		N
16:15	16.66	8.76	-53	0.150	31.30	0.00	1	=	18.5		N
16:20	17.18	8.77	-63	0.150	26.20	0.00	-	-	20.5		N
16:25	18.14	8.76	-61	0.150	24.60	0.00	-	-	22		N
											N
											N
											N
											N
											N
											N N
											N
-											N N
 					-						N N
					+						N N
											N N
+											N
											N
				1							N
											N
-				1	1						-

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Ec	quipment Informati	on	S	ampling Conditions	s	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW08S	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear		LMW08S_090518
Project Number:	170046301	Well Depth:	15		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	4.7		
Sampling	L.McCartney	Well Screen	2		Pine Number:		Pi	ump Intake Depth:	14.00	Sample Date:	9/5/2018
Personnel:		Interval:	15		Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	-	Sample Time:	
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeu:
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volulile (Gal)	color, odor etc.	
					BEGIN I	PURGING					
15:51	20.17	7.60	-90	0.399	4.6	9.00	-	-	0	Clear	N/A
15:56	16.65	7.49	-83	0.385	0.00	6.45	-		2.25	Clear	N/A
16:01	16.01	7.38	-85	0.386	0.00	4.42	-	0.5	5	Clear	N
16:06	15.51	7.35	-83	0.387	0.00	3.12	0	0.5	7.5	Clear	N
16:11	15.39	7.37	-84	0.386	0.00	2.12	T.	0.5	10	Clear	N
16:16	15.21	7.38	-87	0.389	0.00	1.26	ı	0.5	12.5	Clear	N
16:21	15.23	7.41	-90	0.388	0.00	0.60	-	0.5	15	Clear	N
16:26	15.25	7.45	-94	0.389	0.0	0.00	-	0.50	17.5	Clear	N
16:31	15.26	7.47	-96	0.389	0.0	0.00	-	0.50	20	Clear	N
16:36	15.45	7.48	-99	0.384	0.0	0.00	-	0.50	22.5	Clear	Υ
16:37											N
											N
											N
											N
											N
											N
											N
											N N
											N N
											N N
											N
				1							N N
											N N
											N
											N
				1							N
											N
											N
·				•							

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Project Inf	formation	Well Info	rmation	Ec	quipment Informati		S	Sampling Conditions	1	Sampling In	nformation
Project Name:	41 Kensico Dr	Well No:	LMW11	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear	, ,	LMW11_090518
Project Number:	170046301	Well Depth:			Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pum	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):			
Sampling	L.McCartney	Well Screen			Pine Number:		P	ump Intake Depth:		Sample Date:	9/5/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	3.15	Sample Time:	1205
				STABILIZATION	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.11. 12
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
					BEGIN P	URGING				1	
11:05	19.47	6.52	184	0.560	0.0	10.48	3.15	-			N/A
11:10	16.66	7.46	179	0.550	535.00	3.80	3.50	-	2		N/A
11:15	15.85	7.58	177	0.539	>1000	0.00	3.50	-	4.5		N
11:20	15.67	7.58	175	0.544	>1000	0.00	3.35	-	7		N
11:25	15.43	7.57	173	0.431	>1000	0.00	3.50	-	10.5		N
11:30	15.43	7.56	172	0.324	>1000	0.00	3.50	-	12.5		N
11:35	15.44	7.56	171	0.265	>1000	0.00	3.50	-	14.5		N
11:40	15.33	7.59	168	0.242	>1000	0.00	3.50	-	16.5		N
11:45	15.66	7.60	166	0.237	>1000	0.00	3.50	-	18.5		N
11:50	15.46	7.60	165	0.235	>1000	0.00	3.50	-	20.5		N
11:55	15.46	7.61	164	0.234	>1000	0.00	3.50	-	22.5		N
12:00	15.44	7.61	164	0.234	>1000	0.00	3.50	-	24.5		N
12:05	15.26	7.61	163	0.233	>1000	0.00	3.50	-	26.5		N
											N
											N
											N N
											N N
											N N
											N
											N N
											N
											N
											N
											N
											N
											N
											N
			•								N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Info	rmation	Well Info	mation	Equipment Information	n	Sampling Conditions		Sampling	Information		
Project Name:	41 Kensico Dr	Well No:	LMW08S	Water Quality Device Model:	Horiba U-52	Weather:	90s Hazy		LMW12D_090618		
Project Number:	170046301	Well Depth:	22	Pine Number:		Background PID (ppm):	0	Sample(s):			
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump Make and Model:	Perri Pump	PID Beneath Inner Cap (ppm):	20.3				
Sampling	L.McCartney	Well Screen		Pine Number:		Pump Intake Depth:	42.00	Sample Date:	9/6/2018		
Personnel:		Interval:		Tubing Diameter:	3/8"ID	Depth to Water Before Purge:	-	Sample Time:			
STABILIZATION = 3 successive readings within limits											

Personnel:		Interval:			Tubing Diameter:		Depth to W	ater Before Purge:	-	Sample Time:	
				STABILIZATION :	= 3 successive read	lings within limits					
	TEMP °Celsius	PH	ORP mV	CONDUCTIVITY mS/cm	TURBIDITY ntu (+/- 10%) above 5	DO mg/l (+/- 10%) above	DTW ft Drawdown <	Flow Rate (gpm)	Cumulative Discharge	NOTES	Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
					BEGIN	PURGING					
13:33	21.72	7.86	97	0.556	15.6	8.11	-	-	0	Clear	N/A
13:38	21.29	7.77	107	0.557	24.60	7.02	1.50	0.5	2.5	Clear	N/A
13:43	18.44	7.73	103	0.592	41.50	0.00		0.5	5	Clear	N
13:48	17.84	7.62	87	0.592	23.10	0.94		0.5	7.5	Clear	N
13:53	18.16	7.55	80	0.589	862.00	0.75	1.50	0.5	10	Light olive	N
13:58	18.04	7.53	60	0.589	743.00	0.00		0.5	12.5	Light olive	N
14:03	17.84	7.55	46	0.589	587.00	0.00	1.50	0.5	14	Light olive	N
14:08	17.71	7.61	30	0.588	472.0	0.00		0.50	16.5	Light olive	N
14:13	17.99	7.63	21	0.588	387.0	0.00		0.50	19	slight olive	N
14:18	18.00	7.63	18	0.589	354.0	0.00		0.50	21.5	slight olive	N
14:23	18.31	7.68	6	0.589	328.0	0.00	1.50	0.50	24	slight olive	N
14:28	18.03	7.69	4	0.588	313.0	0.00		0.50	26.5	slight olive	N
14:33	18.30	7.71	9	0.588	185.0	0.00	1.50	0.50	29	slight olive	N
14:38											N
											N
											N
											N
											N
											N
											N
											N N
											N N
											N N
											N N
											N N
											N N
											N N
					l	l				ı	IN

Notes

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Project Inf	ormation	Well Info	rmation	Equipment Information Sampling Conditions		ns Sampling Informati		Information			
Project Name:	41 Kensico Dr	Well No:	LMW08S	Water Qua	ality Device Model:	Horiba U-52		Weather:	90s Hazy		LMW12S_090618
Project Number:	170046301	Well Depth:	22		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneatl	h Inner Cap (ppm):	161.7		
Sampling	L.McCartney	Well Screen			Pine Number:	-	Pu	ımp Intake Depth:	19.00	Sample Date:	9/6/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	-	Sample Time:	
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5		Drawdown <		Volume (Gal)		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volulile (Gal)	color, odor etc.	
					BEGIN I	PURGING					
9:33	20.06	7.71	203	0.420	9999.0	1.11	=	=	0	Brown, turbid	N/A
9:38	18.75	7.75	180	0.389	9999.00	0.00	-	0.5	2.5	Brown, turbid	N/A
9:43	18.80	7.73	173	0.386	9999.00	0.00	-	0.5	5	Brown, turbid	N
9:48	18.92	7.73	164	0.379	9999.00	0.00	-	0.5	7.5	Brown, turbid	N
9:53	19.35	7.77	153	0.367	9999.00	0.00	-	0.5	10	Brown, turbid	N
9:58	19.39	7.80	148	0.359	9999.00	0.00	-	0.48	12	Brown, turbid	N
10:03	19.17	7.83	141	0.353	9999.00	0.00	-	0.47	14	Brown, turbid	N
10:08	19.10	7.88	133	0.350	9999.0	0.00	-		16	Brown, turbid	N
10:13	19.02	7.93	129	0.336	9999.0	0.00	-		18.5	Brown, turbid	N
10:18	19.05	7.98	125	0.339	9999.0	0.00	-		21	Brown, turbid	N
10:23	18.73	8.02	123	0.336	9999.0	0.00	-		23.5	Brown, turbid	Υ
10:28	18.00	8.07	120	0.333	9999.0	0.00	-		26	Brown, turbid	N
10:33										Brown, turbid	N
10:38											N
											N
											N
											N
											N
											N
											N N
											N N
											N N
											N N
											N N
											N N
											N N
				l	l						IN

- Notes:

 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Project Inf	ormation	Well Info	rmation	E	quipment Informati	on	S	ampling Conditions	3	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW19D	Water Qua	ality Device Model:	Horiba U-52		Weather:	80s clear		LMW19D_090718
Project Number:	170046301	Well Depth:			Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	76.1		
Sampling	L.McCartney	Well Screen			Pine Number:		Pi	ump Intake Depth:		Sample Date:	9/7/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	3.55	Sample Time:	1020
				STABILIZATION	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1.0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		Stabilized?
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
					BEGIN	PURGING					
9:20	20.02	7.77	74	0.465	61.7	1.81	-	-	1		N/A
9:25	17.92	8.02	75	0.493	164.0	0.00	-	-	2		N/A
9:30	17.35	7.97	71	0.496	104.0	0.00	-	-	5.5		N
9:35	17.42	7.97	71	0.496	51.1	0.00	-	-	7.5		N
9:40	17.17	7.95	69	0.499	40.0	0.00	-	-	10		N
9:45	17.10	7.96	67	0.500	37.5	0.00	-	-	12.5		N
9:50	16.94	7.96	47	0.502	36.6	0.00	-	-	14.5		N
9:55	16.86	7.96	55	0.503	30.2	0.00		-	16.5		N
10:00	16.75	7.97	59	0.504	23.8	0.00	ı	=	18.5		N
10:05	16.68	7.96	60	0.504	9.2	0.00	ı	-	20.5		N
10:10	16.67	7.97	60	0.504	2.2	0.00	ı	-	22.5		N
10:15	16.56	7.97	60	0.505	5.4	0.00	-	-	24.5		N
10:20	16.52	7.96	60	0.505	0.0	0.00	-	-	26.5		N
											N
											N
											N
											N
											N
											N N
				-							N N
											N
 											N N
											N N
											N N
											N N
											N N
+											N
1											N
<u> </u>					1	l .		1l			

Notes:

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	ormation	Well Info	rmation	Ed	quipment Informati	ion	S	Sampling Condition	s	Sampling I	nformation
Project Name:	41 Kensico Dr	Well No:	LMW19S	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		LMW19S_090718
Project Number:	170046301	Well Depth:	11.4		Pine Number:		Back	ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	50.4		
Sampling	L.McCartney	Well Screen			Pine Number:		P	ump Intake Depth:		Sample Date:	9/7/2018
Personnel:		Interval:			Tubing Diameter:		Depth to W	ater Before Purge:	5.2	Sample Time:	840
				STABILIZATION :	= 3 successive read	lings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	0 1.0	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		Stabilized?
					(+/- 10%) above 5		Drawdown <		Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
					BEGIN	PURGING					
7:40	21.69	6.52	211	0.764	684.0	4.03	5.20	-	1		N/A
7:45	21.39	6.95	102	0.679	0.0	0.03	-	=	2		N/A
7:50	21.20	6.86	61	0.682	0.0	0.00	-	-	5		N
7:55	20.84	6.77	39	0.626	1000.0	0.00	-	-	7	of sediment in tub	N
8:00	20.56	6.77	45	0.539	1000.0	0.00	-	-	9		N
8:05	20.67	6.77	48	0.512	1000.0	0.00	-	-	11		N
8:10	20.35	6.75	57	0.497	1000.0	0.00	-	-	13		N
8:15	20.31	6.77	54	0.304	1000.0	0.00	-	-	15		N
8:20	20.26	6.76	54	0.476	1000.0	0.00	-	-	17		N
8:25	20.21	6.77	55	0.483	1000.0	0.00	-	-	19		N
8:30	20.16	6.78	57	0.478	1000.0	0.00	-	-	21		Υ
8:35	20.15	6.78	59	0.313	1000.0	0.00	-	-	23		N
8:40	20.13	6.78	60	0.275	1000.0	0.00	-	-	25		N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
				ļ							N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Ec	quipment Informati	on	S	ampling Conditions	3	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW20D	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		LMW20S_090618
Project Number:	170046301	Well Depth:	47.4		Pine Number:			ground PID (ppm):	0	Sample(s):	
Site Location:	Mt Kisco, NY	Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump	PID Beneat	h Inner Cap (ppm):	11		
Sampling	L.McCartney	Well Screen			Pine Number:			ump Intake Depth:		Sample Date:	9/6/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	1.72	Sample Time:	1350
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.11. 12
					(+/- 10%) above 5		Drawdown <	.51 /	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
	(5,5)	(((,,,	BEGIN	PURGING		31 /		,	
12:50	25.92	7.41	92	0.000	130.0	20.12	1.72	-	0.75		N/A
12:55	18.23	8.08	-144	0.495	0.0	0.00	4.38	-	3		N/A
13:00	18.10	8.08	-167	0.495	0.0	0.00	4.34	_	5		N N
13:05	18.01	8.10	-171	0.488	541.0	0.00	4.23	_	7		N
13:10	17.54	8.12	-169	0.480	120.0	0.00	4.20	-	9		N
13:15	17.56	8.10	-178	0.488	201.0	0.00	4.20	-	11		N
13:20	17.32	8.10	-189	0.489	242.0	0.00	4.20	_	13		N
13:25	17.33	8.10	-195	0.488	185.0	0.00	4.20	-	15		N
13:30	17.08	8.09	-204	0.492	160.0	0.00	4.10	-	17		N
13:35	17.08	8.09	-212	0.493	144.0	0.00	4.10	-	19		N
13:40	17.17	8.09	-221	0.495	117.0	0.00	4.00	-	21		N
13:45	16.82	8.09	-233	0.496	127.0	0.00	4.20	-	23		N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
				1	l						N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Project Inf	formation	Well Info	rmation	Ec	uipment Informati	on	S	ampling Conditions	S	Sampling	Information
Project Name:	41 Kensico Dr	Well No:	LMW20S	Water Qua	lity Device Model:	Horiba U-52		Weather:	80s clear		LMW20S_090718
Project Number:		Well Depth:	36.7		Pine Number:			ground PID (ppm):	0	Sample(s):	
Site Location:		Well Diameter:	2-INCH	Pump	Make and Model:	Perri Pump		h Inner Cap (ppm):	9.4		
Sampling	L.McCartney	Well Screen			Pine Number:			ump Intake Depth:		Sample Date:	9/7/2018
Personnel:		Interval:			Tubing Diameter:	3/8"ID	Depth to W	ater Before Purge:	2.55	Sample Time:	1510
				STABILIZATION :	= 3 successive read	ings within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate		NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Cumulative		0. 1.11. 12
					(+/- 10%) above 5		Drawdown <	(31)	Discharge		Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (L)	color, odor etc.	
	(11 0,11)	()	((,,,	BEGIN	PURGING		31 /			
14:10	21.50	8.38	171	0.366	274.0	3.42	-	-	0.75		N/A
14:15	19.75	8.54	150	0.354	99.6	0.00	-	_	2		N/A
14:20	19.15	8.55	137	0.355	66.0	0.00		_	4		N N
14:25	18.99	8.55	127	0.354	49.0	0.00	-	_	6		N
14:30	18.65	8.55	122	0.355	49.4	0.00	_	-	8		N
14:35	18.88	8.56	114	0.354	43.0	0.00	_	-	10		N
14:40	18.98	8.56	109	0.354	40.1	0.00	_	-	12		N
14:45	18.98	8.57	102	0.354	35.1	0.00	-	-	14		N
14:50	18.91	8.56	97	0.353	32.3	0.00	-	-	16		N
14:55	18.88	8.56	93	0.351	30.7	0.00	-	-	18		N
15:00	18.66	8.55	89	0.351	35.6	0.00	-	-	20		N
15:05	18.56	8.55	86	0.350	27.4	0.00	-	-	22		N
15:10	18.57	8.55	82	0.351	34.6	0.00	-	-	24		N
											N
											N
											N
											N
											N
											N
											N
											N
				ļ	ļ					ļ	N
				ļ	ļ					ļ	N
											N
											N
											N
											N
											N
				1	1					1	N

Notes

- 1. Well depths and groundwater depths were measured in feet below the top of well casing.
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

LANGAN Engineering, Environmental, Surveying and Landscape Architecture, D.P.C.

Projec	t Information	Well Info	rmation	E	quipment Informa	tion	S	ampling Condition		Sampling I	nformation
Project Name:	41 Kensico Drive	Well No:	GWG01	Water Qua	lity Device Model:	Horiba U52		Weather:	58° F; cloudy		
Project Number:	190046301	Well Depth:	12 ft		Pine Number:	19228	Back	ground PID (ppm):	0.0	Sample(s):	GWG01_050919
Site Location:	Mount Kisco, New York	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneatl	n Inner Cap (ppm):	0		
Sampling	L. McMahon	Well Screen	2		Pine Number:		Pi	ump Intake Depth:	9.00	Sample Date:	5/9/2019
Personnel:		Interval:	15		Tubing Diameter:	1/2"x3/8"	Depth to W	ater Before Purge:	3.66	Sample Time:	13:30
			S	TABILIZATION = 3	successive reading	gs within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5	(+/- 10%) above 0.5	Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	mg/l	0.33 ft	<0.13 gpm)	volume (Gai)	color, odor etc.	
					BEGIN PUF	RGING					
12:45	12.77	5.20	180	0.532	0.0	0.96	-		0.00	Clear	N/A
12:50	11.31	6.34	29	0.473	0.0	0.0	-	0.11	0.53	Clear	N/A
12:55	10.96	6.71	-15	0.466	0.0	0.0	1	0.11	1.06	Clear	N
13:00	10.87	6.86	-41	0.472	0.0	0.0	-	0.11	1.59	Clear	N
13:05	10.79	6.92	-57	0.483	0.0	0.0	1	0.11	2.11	Clear	N
13:10	10.77	6.96	-73	0.495	0.0	0.0	-	0.11	2.64	Clear	N
13:15	10.77	7.01	-83	0.507	0.0	0.0	1	0.11	3.17	Clear	N
13:20	10.73	7.02	-86	0.508	0.0	0.0	1	0.11	3.70	Clear	N
13:25	10.70	7.04	-91	0.507	0.0	0.0	-	0.11	4.23	Clear	Υ
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
1					1			1		1	N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	t Information	Well Info	rmation	Equipment Information		Sampling Conditions			Sampling Information		
Project Name:	41 Kensico Drive	Well No:	GWG02	Water Qua	lity Device Model:	Horiba U52		Weather:	58° F; cloudy		
Project Number:	190046301	Well Depth:	12 ft		Pine Number:	19228	Back	ground PID (ppm):	0.0	Sample(s):	GWG02_050919
Site Location:	Mount Kisco, New York	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneat	h Inner Cap (ppm):	0		
Sampling	L. McMahon	Well Screen	2		Pine Number:	44401		ump Intake Depth:	9.00	Sample Date:	5/9/2019
Personnel:		Interval:	15		Tubing Diameter:	1/2"x3/8"	Depth to W	ater Before Purge:	3.53	Sample Time:	14:16
			ST	ABILIZATION = 3 st	uccessive readings	within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5	(+/- 10%) above	Drawdown <		Volume (Gal)		Stabilizeur
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	volume (Gai)	color, odor etc.	
					BEGIN PURG	iING					
13:56	11.76	7.90	-18	0.502	0.0	0.00	-		0	Clear	N/A
14:01	10.49	7.20	-53	0.500	0.0	0.00	-	0.11	0.53	Clear	N/A
14:06	10.36	7.20	-64	0.501	0.0	0.00	-	0.11	1.06	Clear	N
14:11	10.32	7.20	-71	0.502	0.0	0.00	-	0.11	1.59	Clear	N
14:16	10.31	7.19	-74	0.504	0.0	0.00	-	0.11	2.11	Clear	Υ
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
				ļ							N
				ļ							N
											N
				<u> </u>							N
				<u> </u>							N
											N N
											N N
											N N
											N
											N N
				l							IN

- 1. Well depths and groundwater depths were measured in feet below the top of well casing
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

Projec	ct Information	Well Info			uipment Informati		S	ampling Conditions		Sampling In	nformation
Project Name:	41 Kensico Drive	Well No:	GWG03	Water Qua	lity Device Model:	Horiba U52		Weather:	58° F; cloudy		
Project Number:	190046301	Well Depth:	12 ft		Pine Number:	19228	Back	ground PID (ppm):	0.0	Sample(s):	GWG03_050919
Site Location:	Mount Kisco, New York	Well Diameter:	2-inch	Pump	Make and Model:	Peristaltic	PID Beneath	Inner Cap (ppm):	2.1		
Sampling	L. McMahon	Well Screen	2		Pine Number:	44401	Pι	ımp Intake Depth:	8 ft	Sample Date:	5/9/2019
Personnel:		Interval:	12		Tubing Diameter:	1/2"x3/8"	Depth to W	ater Before Purge:	3.8 ft	Sample Time:	16:04
			ST	ABILIZATION = 3 st	uccessive readings	within limits					
	TEMP	PH	ORP	CONDUCTIVITY	TURBIDITY	DO	DTW	Flow Rate	Cumulative	NOTES	
	°Celsius		mV	mS/cm	ntu	mg/l	ft	(gpm)	Discharge		Stabilized?
					(+/- 10%) above 5		Drawdown <				Stabilized?
TIME	(+/- 3%)	(+/- 0.1)	(+/- 10mV)	(+/- 3%)	NTU	0.5 mg/l	0.33 ft	<0.13 gpm)	Volume (Gal)	color, odor etc.	
	,,	, , ,		, ,	BEGIN PURG			31 /		,	
14:54	12:45	7.32	-30	0.485	12.8	0.86	-		0	Clear	N/A
14:59	11.46	7.56	-72	0.487	30.5	0.00	-	0.11	0.53	Clear	N/A
15:04	11.26	7.24	-60	0.508	14.1	0.00	-	0.09	0.98	Clear	N
15:09	11.72	7.11	-38	0.519	13.9	3.72	-	0.04	1.16	Clear	N
15:14	11.84	7.11	-20	0.519	15.7	4.42	-	0.04	1.35	Clear	N
15:19	11.87	7.14	-24	0.524	13.5	4.50	-	0.04	1.56	Clear	N
15:24	11.89	7.13	-7	0.537	11.0	5.04	-	0.05	1.80	Clear	N
15:29	11.91	7.14	-3	0.542	10.5	6.14	-	0.05	2.06	Clear	N
15:34	11.68	7.16	-7	0.540	26.7	5.76	-	0.10	2.54	Clear	N
15:39	11.60	7.13	-7	0.553	27.2	5.79	-	0.05	2.80	Clear	N
15:44	11.64	7.15	-6	0.552	12.2	5.88	-	0.05	3.06	Clear	N
15:49	11.66	7.16	-1	0.555	8.0	6.03	-	0.04	3.28	Clear	N
15:54	11.64	7.17	4	0.558	6.4	6.18	-	0.06	3.57	Clear	N
15:59	11.65	7.18	7	0.564	4.1	6.38	-	0.04	3.78	Clear	N
16:04	11.62	7.20	10	0.563	2.7	4.93	-	0.04	3.96	Clear	N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N
											N

- 1. Well depths and groundwater depths were measured in feet below the top of well casing
- 2. Well and tubing diameters are measured in inches.
- 3. PID = Photoionization Detector
- 4. PPM = Parts per million
- 5. pH = Hydrogen ion concentration
- 6. ORP = Oxidation-reduction potential, measured in millivolts (mV)
- 7. DO = Dissolved Oxygen, measured in milligrams per liter (mg/L)
- 8. DTW = Depth to water
- 9. mS/cm = milli-Siemans per centimeter
- 10. NTU = Nephelometric Turbidity Unit

APPENDIX F SUB-SLAB SOIL VAPOR SAMPLING LOGS

Sub-slab soil vapor sampling log sheet Sample Number: LSV22

PROJECT:	PROJECT NO.: 190046301							
41 Kensico Drive	SURFACE ELEVATION AND DATUM:							
Mt. Kisco, NY	NA							
DRILLING FIRM OR LANGAN INSTALLER:	INSTALLATION DATE STARTED: DATE FINISHED:							
AARCO Environmental Services, Corp.	8/13/2018-8/14/18 8/13/2018 8/14/16							
INSTALLATION FOREMAN:	SAMPLE DATE STARTED: DATE FINISHED:							
Sersio Magana	8/14/2018 8/14/2018							
INSTALLATION EQUIPMENT:	TYPE OF SAMPLING DEVICE:							
Geoprobe® 6610 DT	6-Liter Summa Canister SAMPLER:							
INSPECTOR: Luke McCartney	Kyle Twombly							
POTENTIAL SAMPLE INTERFERENCES:	WEATHER CONDITIONS (PRECIP., TEMP., PRESS., WIND SPEED AND DIR.):							
	Temp: 75-70°F Wind: 5w@ 5-10 mph Precipitation: 0.2 in Ha Pressure: 29.9 in Ha							
METHOD OF INSTALLATION AND PURGING:	0							
TUBING TYPE/DIAMETER:	TYPE OF MATERIAL ABOVE SEAL:							
1/4-Inch Teflon-lined Polyethylene Tubing	None (Prefered)							
IMPLANT SCREEN TYPE/LENGTH/DIAMETER:	SEAL MATERIAL (Bentonite, Beeswax, Modeling Clay, etc.):							
2-Inch Polyethylene Probe	Bentonite							
BOREHOLE DIAMETER:	FILTER PACK MATERIAL (Sand or Glass Beads):							
2-inch	No. 2 Sand							
PURGE VOLUME (L):	IMPLANT/PROBE DETAILS DEPTH NOTES							
PURGE FLOW RATE (ML/MIN):								
PID AFTER PURGE (PPM): HELIUM TESTS Pre-sampling Post-sar								
HELIUM TEST IN BUCKET(%): 33.97. 8.8	7							
HELIUM TEST IN TUBE (PPM): 33.17. 7.6	7.							
SAMPLE START TIME: 8/19/18 / 13:15								
SAMPLE STOP TIME: 8/14/18 / 15:15								
TOTAL SAMPLE TIME (MIN): 12.0								
REGULATOR FLOW RATE (L/MIN): 42.15	Top of Seal							
VOLUME OF SAMPLE (LITERS):								
PID AFTER SAMPLE (PPM):								
SAMPLE MOISTURE CONTENT:	 							
CAN SERIAL NUMBER:	Top of Pack							
REGULATOR SERIAL NUMBER: 3350								
	 							
CAN START VACUUM PRESS. (" HG): 78.15 CAN STOP VACUUM PRESS. (" HG): 4.26								
SAMPLE LOCATION SKETCH								
SAMPLE LOCATION SKETCH	<u> </u>							
	Tube Depth							
	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -							
	NOTES							
14								
See Sample Location Plan	To							
	1 1							
	×.							
	*							
	The state of the s							
	× ×							
langan Engineering Environments	al, Surveying, Landscape Architecture, and Geology D.P.C.							
	Street 8th Floor New York New York 10001-2727							

APPENDIX G DATA USABILITY SUMMARY REPORTS

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Tyler Chow, Langan Project Manager

From: Emily Strake, Langan Senior Project Chemist

Date: September 24, 2018

Re: Data Usability Summary Report

For 41 Kensico Drive

Soil Samples Collected in August, 2018

Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in 2018 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAC registration # 10854) and Phoenix Environmental Laboratories, Inc. (NYSDOH NELAC registration #11301) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total organic carbon (TOC), biological oxygen demand (BOD), chemical oxygen demand (COD), pesticides, metals, mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), and percent moisture (%M) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs SW-846 Method 8270D and 8270D with SIM
- Pesticides by SW-846 Method 8081B
- PCBs by SW-846 Method 8082A
- Herbicides by SW-846 Method 8151A
- Total Metals by Method SW-846 6010C
- Mercury by SW-846 Method 7473
- Cyanide by SW-846 Method 9010
- Hexavalent Chromium by SW-846 Method 7196A
- TOC by SM5210B
- BOD by SM5220D
- COD by SM5220D
- Percent Moisture by SM2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 2 of 24

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
18H0436	18H0436-01	LB01_28-29	8/09/2018	VOCs, %S
18H0436	18H0436-02	LB01_33-34	8/09/2018	VOCs, %S
18H0436	18H0436-03	LB01_48-49	8/09/2018	VOCs, %S
18H0436	18H0436-04	LB01_53-54	8/09/2018	VOCs, %S
18H0436	18H0436-05	LB01_27-39	8/09/2018	TOC, BOD, COD, %S
18H0436	18H0436-06	LB01_48-60	8/09/2018	TOC, BOD, COD, %S
18H0440	18H0440-01	LB01_4-5	8/09/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0440	18H0440-02	LB01_29-30	8/09/2018	VOCs, SVOCs, %S
18H0440	18H0440-03	LB01_35-37	8/09/2018	VOCs, SVOCs, %S
18H0440	18H0440-04	LB01_48.5-49.5	8/09/2018	VOCs, SVOCs, %S
18H0440	18H0440-05	LB01_54-55	8/09/2018	VOCs, SVOCs, %S
18H0440	18H0440-06	SBEB03_08091 8	8/09/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI
18H0320	18H0320-01	LB22_11-12	8/07/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0320	18H0320-02	LB08_4-5	8/07/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0320	18H0320-03	LB08_15.5-16.5	8/07/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0320	18H0320-04	LB08_51-52	8/07/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0320	18H0320-05	SBEB01_08071 8	8/07/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI
18H0525	18H0525-01	LB09_6-7	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0525	18H0525-02	LB16_5-6	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0525	18H0525-04	LB17_22-24	8/10/2018	VOCs, SVOCs, %S
18H0525	18H0525-05	LB17_43-44	8/10/2018	VOCs, SVOCs, %S
18H0525	18H0525-06	LB17_49-50	8/10/2018	VOCs, SVOCs, %S
18H0525	18H0525-07	LB21_5-6	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0525	18H0525-08	LB21_18-19	8/10/2018	VOCs, SVOCs, %S
18H0525	18H0525-09	LB24_1-2	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0525	18H0525-10	LB26_6-7	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 3 of 24

	Lab	Client	Sample	
SDG	Sample ID	Sample ID	Date	Analytical Parameters
18H0525	18H0525-11	LB24_13-14	8/10/2018	VOCs, SVOCs, %S
18H0525	18H0525-12	SBEB04_08101 8	8/10/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI
18H0372	18H0372-01	LB07_7-8	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0372	18H0372-02	LB07_18-19	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0372	18H0372-03	LB25_7-8	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0372	18H0372-04	LB08_69-70	8/8/2018	VOCs, SVOCs, %S
18H0372	18H0372-05	LB08_62-63	8/8/2018	VOCs, SVOCs, %S
18H0372	18H0372-06	SBEB02_08081 8	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI
18H0372	18H0372-07	LB25_15-16	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0372	18H0372-08	SBDUP01_0808 18	8/8/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-01	LB11_4.5-5.5	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-02	LB11_11-12	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-03	LB11_23-24	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-04	LB13_5-6	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-05	LB13_23-24	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-06	LB13_29-30	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-07	LB14_4-5	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-08	LB14_13-14	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-09	LB14_29-30	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-10	LB23_4-5	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-11	LB23_12-13	8/13/2018	VOCs, SVOCs, %S
18H0594	18H0594-12	SBDUP02_0813 18	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0594	18H0594-12	SBEB05_08131 8	8/13/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI
18H0655	18H0655-01	LB15_5-6	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-02	LB15_33-34	8/14/18	VOCs, SVOCs, %S
18H0655	18H0655-03	LB15_44-45	8/14/18	VOCs, SVOCs, %S

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 4 of 24

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
18H0655	18H0655-04	LB15_53-54	8/14/18	VOCs, SVOCs, %S
18H0655	18H0655-05	LB12_2-3	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-06	LB12_19-20	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-07	LB12_29-30	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-08	LB12_42-43	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-09	LB19_5-6	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0655	18H0655-10	LB19_34.5-35.5	8/14/18	VOCs, SVOCs, %S
18H0655	18H0655-11	LB19_44-45	8/14/18	VOCs, SVOCs, %S
18H0655	18H0655-12	SBEB06_08141 8	8/14/18	VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals, CN, CrVI
18H0697	18H0697-01	LB12_0.5-2	8/15/18	VOCs, SVOCs, PCBs, Pesticides, Metals, CN, CrVI, %S
18H0697	18H0697-02	SBEB07_08151 8	8/15/18	VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals, CN, CrVI, %S
18H0937	18H0937-01	LB10_2-3	8/20/18	VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals, CN, CrVI, %S
18H0937	18H0937-02	LB10_31-32	8/20/18	VOCs, SVOCs, %S
18H0937	18H0937-03	LB10_45-46	8/20/18	VOCs, SVOCs, %S
18H0937	18H0937-04	LB20_5-6	8/20/18	VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals, CN, CrVI, %S
18H0937	18H0937-05	LB20_32.5-33.5	8/20/18	VOCs, SVOCs, %S
18H0937	18H0937-06	LB20_47-48	8/20/18	VOCs, SVOCs, %S
18H0937	18H0937-07	SBEB08_08201 8	8/20/18	VOCs, SVOCs, PCBs, Pesticides, Herbicides, Metals, CN, CrVI
18H0937	18H0937-08	SBDUP03_0820 18	8/20/18	VOCs, SVOCs, %S

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34a, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016,

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 5 of 24

Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 6 of 24

valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB01_27-39	SM5210B	BOD5	BIOLOGIC OXYGEN DEMAND, FIVE DAY	UJ
LB01_48-60	SM5210B	BOD5	BIOLOGIC OXYGEN DEMAND, FIVE DAY	UJ
LB01_4-5	SW6010B	7440-02-0	Nickel	J
LB01_4-5	SW6010B	7440-38-2	Arsenic	J
LB01_4-5	SW6010B	7440-41-7	Beryllium	J
LB01_4-5	SW6010B	7440-66-6	Zinc	J
LB01_4-5	SW6010B	7782-49-2	Selenium	UJ
LB01_4-5	SW9010	57-12-5	Cyanide	UJ
SBEB03_080918	SW6020A	7440-66-6	Zinc	J
SBEB03_080918	SW6020A	7782-49-2	Selenium	UJ
SBEB03_080918	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SBEB03_080918	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SBEB03_080918	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
SBEB03_080918	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
SBEB03_080918	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SBEB03_080918	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
SBEB03_080918	SW8082A	1336-36-3	Polychlorinated Biphenyl (PCBs)	UJ
SBEB03_080918	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
SBEB03_080918	SW8270D	132-64-9	Dibenzofuran	UJ
SBEB03_080918	SW8270D	95-48-7	2-Methylphenol (O-Cresol)	UJ
SBEB03_080918	SW9010	57-12-5	Cyanide	R
LB08_15.5-16.5	SW6010B	7439-92-1	LEAD	J
LB08_15.5-16.5	SW6010B	7782-49-2	SELENIUM	UJ
LB08_15.5-16.5	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB08_15.5-16.5	SW8260C	67-64-1	ACETONE	U (0.0086)
LB08_4-5	SW6010B	7782-49-2	SELENIUM	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 7 of 24

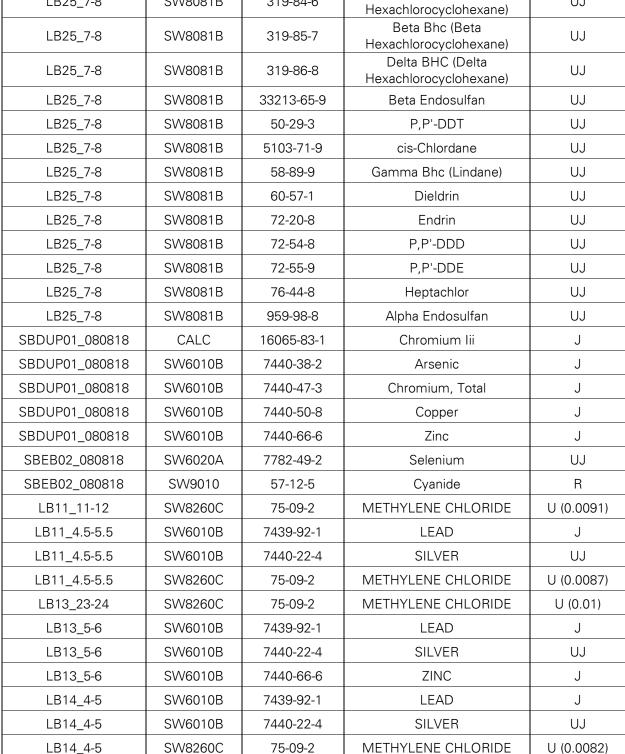
Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB08_4-5	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB08_4-5	SW8260C	106-46-7	1,4-DICHLOROBENZENE	UJ
LB08_4-5	SW8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
LB08_4-5	SW8260C	541-73-1	1,3-DICHLOROBENZENE	UJ
LB08_4-5	SW8260C	79-34-5	1,1,2,2- TETRACHLOROETHANE	UJ
LB08_4-5	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
LB08_4-5	SW8260C	95-50-1	1,2-DICHLOROBENZENE	UJ
LB08_4-5	SW8260C	96-12-8	1,2-DIBROMO-3- CHLOROPROPANE	UJ
LB08_4-5	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ
LB08_51-52	SW6010B	7439-92-1	LEAD	J
LB08_51-52	SW6010B	7782-49-2	SELENIUM	UJ
LB08_51-52	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB22_11-12	SW6010B	7782-49-2	SELENIUM	UJ
LB22_11-12	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB22_11-12	SW8260C	156-59-2	CIS-1,2-DICHLOROETHYLENE	J
LB22_11-12	SW8260C	75-01-4	VINYL CHLORIDE	J
SBEB01_080718	SW6020A	7440-66-6	ZINC	J
SBEB01_080718	SW6020A	7782-49-2	SELENIUM	UJ
SBEB01_080718	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
SBEB01_080718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
SBEB01_080718	SW8260C	67-64-1	ACETONE	J
SBEB01_080718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	UJ
SBEB01_080718	SW9010	57-12-5	CYANIDE	R
LB09_6-7	SW6010B	7440-38-2	ARSENIC	U (2.33)
LB09_6-7	SW9010	57-12-5	CYANIDE	UJ
LB16_5-6	SW6010B	7440-38-2	ARSENIC	U (4.6)
LB16_5-6	SW8260C	103-65-1	N-PROPYLBENZENE	UJ
LB16_5-6	SW8260C	104-51-8	N-BUTYLBENZENE	UJ
LB16_5-6	SW8260C	105-05-5	1,4-DIETHYL BENZENE	UJ
LB16_5-6	SW8260C	106-46-7	1,4-DICHLOROBENZENE	UJ
LB16_5-6	SW8260C	108-86-1	BROMOBENZENE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 8 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB16_5-6	SW8260C	110-57-6	TRANS-1,4-DICHLORO-2- BUTENE	UJ
LB16_5-6	SW8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
LB16_5-6	SW8260C	135-98-8	SEC-BUTYLBENZENE	UJ
LB16_5-6	SW8260C	541-73-1	1,3-DICHLOROBENZENE	UJ
LB16_5-6	SW8260C	622-96-8	4-ETHYLTOLUENE	UJ
LB16_5-6	SW8260C	79-34-5	1,1,2,2- TETRACHLOROETHANE	UJ
LB16_5-6	SW8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
LB16_5-6	SW8260C	87-68-3	HEXACHLOROBUTADIENE	UJ
LB16_5-6	SW8260C	91-20-3	NAPHTHALENE	UJ
LB16_5-6	SW8260C	95-50-1	1,2-DICHLOROBENZENE	UJ
LB16_5-6	SW8260C	96-12-8	1,2-DIBROMO-3- CHLOROPROPANE	UJ
LB16_5-6	SW8260C	98-06-6	T-BUTYLBENZENE	UJ
LB16_5-6	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ
LB16_5-6	SW8260C	CYMP	P-CYMENE (P- ISOPROPYLTOLUENE)	UJ
LB16_5-6	SW9010	57-12-5	CYANIDE	UJ
LB17_22-24	SW8260C	67-64-1	ACETONE	U (0.0092)
LB17_43-44	SW8260C	67-64-1	ACETONE	U (0.0089)
LB17_49-50	SW8260C	67-64-1	ACETONE	U (0.0099)
LB21_5-6	SW6010B	7440-38-2	ARSENIC	UJ
LB21_5-6	SW8081B	1031-07-8	ENDOSULFAN SULFATE	UJ
LB21_5-6	SW8081B	309-00-2	ALDRIN	UJ
LB21_5-6	SW8081B	319-84-6	ALPHA BHC (ALPHA HEXACHLOROCYCLOHEXAN E)	UJ
LB21_5-6	SW8081B	319-85-7	BETA BHC (BETA HEXACHLOROCYCLOHEXAN E)	UJ
LB21_5-6	SW8081B	319-86-8	DELTA BHC (DELTA HEXACHLOROCYCLOHEXAN E)	UJ
LB21_5-6	SW8081B	33213-65-9	BETA ENDOSULFAN	UJ
LB21_5-6	SW8081B	50-29-3	P,P'-DDT	J
LB21_5-6	SW8081B	5103-71-9	ALPHA-CHLORDANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301


September 24, 2018 Page 9 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB21_5-6	SW8081B	58-89-9	GAMMA BHC (LINDANE)	UJ
LB21_5-6	SW8081B	60-57-1	DIELDRIN	UJ
LB21_5-6	SW8081B	72-20-8	ENDRIN	UJ
LB21_5-6	SW8081B	72-54-8	P,P'-DDD	J
LB21_5-6	SW8081B	72-55-9	P,P'-DDE	J
LB21_5-6	SW8081B	76-44-8	HEPTACHLOR	UJ
LB21_5-6	SW8081B	959-98-8	ALPHA ENDOSULFAN	UJ
LB21_5-6	SW9010	57-12-5	CYANIDE	UJ
LB24_1-2	SW6010B	7440-38-2	ARSENIC	U (2.71)
LB24_1-2	SW9010	57-12-5	CYANIDE	UJ
LB26_6-7	SW6010B	7440-38-2	ARSENIC	UJ
LB26_6-7	SW9010	57-12-5	CYANIDE	UJ
SBEB04_081018	SW8260C	67-64-1	ACETONE	J
SBEB04_081018	SW8270D	108-95-2	PHENOL	UJ
SBEB04_081018	SW8270D	132-64-9	DIBENZOFURAN	UJ
SBEB04_081018	SW8270D	95-48-7	2-METHYLPHENOL (O- CRESOL)	UJ
LB07_7-8	SW8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
LB07_7-8	SW8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
LB07_7-8	SW8082A	11104-28-2	PCB-1221 (Aroclor 1221)	UJ
LB07_7-8	SW8082A	11141-16-5	PCB-1232 (Aroclor 1232)	UJ
LB07_7-8	SW8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
LB07_7-8	SW8082A	12674-11-2	PCB-1016 (Aroclor 1016)	UJ
LB07_7-8	SW8082A	1336-36-3	Polychlorinated Biphenyl (PCBs)	UJ
LB07_7-8	SW8082A	53469-21-9	PCB-1242 (Aroclor 1242)	UJ
LB25_15-16	CALC	16065-83-1	Chromium lii	J
LB25_15-16	SW6010B	7440-38-2	Arsenic	J
LB25_15-16	SW6010B	7440-47-3	Chromium, Total	J
LB25_15-16	SW6010B	7440-50-8	Copper	J
LB25_15-16	SW6010B	7440-66-6	Zinc	J
LB25_7-8	SW8081B	1031-07-8	Endosulfan Sulfate	UJ
LB25_7-8	SW8081B	309-00-2	Aldrin	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 10 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB25_7-8	SW8081B	319-84-6	Alpha Bhc (Alpha Hexachlorocyclohexane)	UJ
LB25_7-8	SW8081B	319-85-7	Beta Bhc (Beta Hexachlorocyclohexane)	UJ
LB25_7-8	SW8081B	319-86-8	Delta BHC (Delta Hexachlorocyclohexane)	UJ
LB25_7-8	SW8081B	33213-65-9	Beta Endosulfan	UJ
LB25_7-8	SW8081B	50-29-3	P,P'-DDT	UJ
LB25_7-8	SW8081B	5103-71-9	cis-Chlordane	UJ
LB25_7-8	SW8081B	58-89-9	Gamma Bhc (Lindane)	UJ
LB25_7-8	SW8081B	60-57-1	Dieldrin	UJ
LB25_7-8	SW8081B	72-20-8	Endrin	UJ
LB25_7-8	SW8081B	72-54-8	P,P'-DDD	UJ
LB25_7-8	SW8081B	72-55-9	P,P'-DDE	UJ
LB25_7-8	SW8081B	76-44-8	Heptachlor	UJ
LB25_7-8	SW8081B	959-98-8	Alpha Endosulfan	UJ
SBDUP01_080818	CALC	16065-83-1	Chromium Iii	J
SBDUP01_080818	SW6010B	7440-38-2	Arsenic	J
SBDUP01_080818	SW6010B	7440-47-3	Chromium, Total	J
SBDUP01_080818	SW6010B	7440-50-8	Copper	J
SBDUP01_080818	SW6010B	7440-66-6	Zinc	J
SBEB02_080818	SW6020A	7782-49-2	Selenium	UJ
SBEB02_080818	SW9010	57-12-5	Cyanide	R
LB11_11-12	SW8260C	75-09-2	METHYLENE CHLORIDE	U (0.0091
LB11_4.5-5.5	SW6010B	7439-92-1	LEAD	J
LB11_4.5-5.5	SW6010B	7440-22-4	SILVER	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301 September 24, 2018 Page 11 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator
	-		-	Qualifier
LB23_4-5	SW6010B	7439-92-1	LEAD	J
LB23_4-5	SW6010B	7440-22-4	SILVER	UJ
LB23_4-5	SW6010B	7440-50-8	COPPER	J
SBDUP02_081318	SW6010B	7439-92-1	LEAD	J
SBDUP02_081318	SW6010B	7440-22-4	SILVER	UJ
SBDUP02_081318	SW6010B	7440-50-8	COPPER	J
SBDUP02_081318	SW8260C	75-09-2	METHYLENE CHLORIDE	U (0.0087)
SBEB05_081318	SW8270D	108-95-2	PHENOL	UJ
SBEB05_081318	SW8270D	132-64-9	DIBENZOFURAN	UJ
SBEB05_081318	SW8270D	95-48-7	2-METHYLPHENOL (O- CRESOL)	UJ
LB12_19-20	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB12_2-3	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB12_29-30	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB12_42-43	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB15_5-6	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
LB19_5-6	SW7196A	18540-29-9	CHROMIUM, HEXAVALENT	UJ
SBEB06_081418	SW6010B	7440-38-2	ARSENIC	UJ
SBEB06_081418	SW6010B	7782-49-2	SELENIUM	U (0.017)
SBEB06_081418	SW8270D	108-95-2	PHENOL	UJ
SBEB06_081418	SW8270D	132-64-9	DIBENZOFURAN	UJ
SBEB06_081418	SW8270D	95-48-7	2-METHYLPHENOL (O- CRESOL)	UJ
SBEB06_081418	SW8270DSIM	85-01-8	PHENANTHRENE	UJ
SBEB07_081518	SW6020A	7440-38-2	ARSENIC	UJ
SBEB07_081518	SW6020A	7440-41-7	BERYLLIUM	UJ
SBEB07_081518	SW6020A	7440-66-6	ZINC	U (6.35)
SBEB07_081518	SW6020A	7782-49-2	SELENIUM	UJ
SBEB07_081518	SW8260C	67-64-1	ACETONE	J
SBEB07_081518	SW8270D	108-95-2	PHENOL	UJ
SBEB07_081518	SW8270D	132-64-9	DIBENZOFURAN	UJ
SBEB07_081518	SW8270D	95-48-7	2-METHYLPHENOL (O- CRESOL)	UJ

SW6010B

7440-38-2

LB10_2-3

J

Arsenic

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

Langan Project No	0.: 190046301
September 24, 2018	Page 12 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB20_47-48	SW8260C	79-01-6	Trichloroethylene (TCE)	J
LB20_5-6	SW6010B	7440-38-2	Arsenic	J
SBDUP03_082018	SW8260C	100-41-4	Ethylbenzene	UJ
SBDUP03_082018	SW8260C	100-42-5	Styrene	UJ
SBDUP03_082018	SW8260C	10061-01-5	Cis-1,3-Dichloropropene	UJ
SBDUP03_082018	SW8260C	10061-02-6	Trans-1,3-Dichloropropene	UJ
SBDUP03_082018	SW8260C	106-46-7	1,4-Dichlorobenzene	UJ
SBDUP03_082018	SW8260C	106-93-4	1,2-Dibromoethane (Ethylene Dibromide)	UJ
SBDUP03_082018	SW8260C	107-06-2	1,2-Dichloroethane	UJ
SBDUP03_082018	SW8260C	108-10-1	Methyl Isobutyl Ketone (4- Methyl-2-Pentanone)	UJ
SBDUP03_082018	SW8260C	108-87-2	Methylcyclohexane	UJ
SBDUP03_082018	SW8260C	108-88-3	Toluene	UJ
SBDUP03_082018	SW8260C	108-90-7	Chlorobenzene	UJ
SBDUP03_082018	SW8260C	110-82-7	Cyclohexane	UJ
SBDUP03_082018	SW8260C	120-82-1	1,2,4-Trichlorobenzene	UJ
SBDUP03_082018	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SBDUP03_082018	SW8260C	124-48-1	Dibromochloromethane	UJ
SBDUP03_082018	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SBDUP03_082018	SW8260C	156-59-2	Cis-1,2-Dichloroethylene	UJ
SBDUP03_082018	SW8260C	156-60-5	Trans-1,2-Dichloroethene	UJ
SBDUP03_082018	SW8260C	1634-04-4	Tert-Butyl Methyl Ether	UJ
SBDUP03_082018	SW8260C	179601-23-1	m,p-Xylene	UJ
SBDUP03_082018	SW8260C	541-73-1	1,3-Dichlorobenzene	UJ
SBDUP03_082018	SW8260C	56-23-5	Carbon Tetrachloride	UJ
SBDUP03_082018	SW8260C	591-78-6	2-Hexanone	UJ
SBDUP03_082018	SW8260C	67-64-1	Acetone	J
SBDUP03_082018	SW8260C	67-66-3	Chloroform	UJ
SBDUP03_082018	SW8260C	71-43-2	Benzene	UJ
SBDUP03_082018	SW8260C	71-55-6	1,1,1-Trichloroethane (TCA)	UJ
SBDUP03_082018	SW8260C	74-83-9	Bromomethane	UJ
SBDUP03_082018	SW8260C	74-87-3	Chloromethane	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 13 of 24

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SBDUP03_082018	SW8260C	74-97-5	Bromochloromethane	UJ
SBDUP03_082018	SW8260C	75-00-3	Chloroethane	UJ
SBDUP03_082018	SW8260C	75-01-4	Vinyl Chloride	UJ
SBDUP03_082018	SW8260C	75-09-2	Methylene Chloride	UJ
SBDUP03_082018	SW8260C	75-15-0	Carbon Disulfide	UJ
SBDUP03_082018	SW8260C	75-25-2	Bromoform	UJ
SBDUP03_082018	SW8260C	75-27-4	Bromodichloromethane	UJ
SBDUP03_082018	SW8260C	75-34-3	1,1-Dichloroethane	UJ
SBDUP03_082018	SW8260C	75-35-4	1,1-Dichloroethene	UJ
SBDUP03_082018	SW8260C	75-69-4	Trichlorofluoromethane	UJ
SBDUP03_082018	SW8260C	75-71-8	Dichlorodifluoromethane	UJ
SBDUP03_082018	SW8260C	76-13-1	1,1,2-Trichloro-1,2,2- Trifluoroethane	UJ
SBDUP03_082018	SW8260C	78-87-5	1,2-Dichloropropane	UJ
SBDUP03_082018	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SBDUP03_082018	SW8260C	79-00-5	1,1,2-Trichloroethane	UJ
SBDUP03_082018	SW8260C	79-01-6	Trichloroethylene (TCE)	UJ
SBDUP03_082018	SW8260C	79-20-9	Methyl Acetate	UJ
SBDUP03_082018	SW8260C	79-34-5	1,1,2,2-Tetrachloroethane	UJ
SBDUP03_082018	SW8260C	87-61-6	1,2,3-Trichlorobenzene	UJ
SBDUP03_082018	SW8260C	95-47-6	O-Xylene (1,2- Dimethylbenzene)	UJ
SBDUP03_082018	SW8260C	95-50-1	1,2-Dichlorobenzene	UJ
SBDUP03_082018	SW8260C	96-12-8	1,2-Dibromo-3-Chloropropane	UJ
SBDUP03_082018	SW8260C	98-82-8	Isopropylbenzene (Cumene)	UJ
SBDUP03_082018	SW8270D	108-95-2	Phenol	UJ
SBDUP03_082018	SW8270D	118-74-1	Hexachlorobenzene	UJ
SBDUP03_082018	SW8270D	120-12-7	Anthracene	UJ
SBDUP03_082018	SW8270D	129-00-0	Pyrene	UJ
SBDUP03_082018	SW8270D	132-64-9	Dibenzofuran	UJ
SBDUP03_082018	SW8270D	191-24-2	Benzo(G,H,I)Perylene	UJ
SBDUP03_082018	SW8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	UJ
SBDUP03_082018	SW8270D	205-99-2	Benzo(B)Fluoranthene	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

- 5	- ,		
September	24, 2018	Page 14 of 24	

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SBDUP03_082018	SW8270D	206-44-0	Fluoranthene	UJ
SBDUP03_082018	SW8270D	207-08-9	Benzo(K)Fluoranthene	UJ
SBDUP03_082018	SW8270D	208-96-8	Acenaphthylene	UJ
SBDUP03_082018	SW8270D	218-01-9	Chrysene	UJ
SBDUP03_082018	SW8270D	50-32-8	Benzo(A)Pyrene	UJ
SBDUP03_082018	SW8270D	53-70-3	Dibenz(A,H)Anthracene	UJ
SBDUP03_082018	SW8270D	56-55-3	Benzo(A)Anthracene	UJ
SBDUP03_082018	SW8270D	83-32-9	Acenaphthene	UJ
SBDUP03_082018	SW8270D	85-01-8	Phenanthrene	UJ
SBDUP03_082018	SW8270D	86-73-7	Fluorene	UJ
SBDUP03_082018	SW8270D	87-86-5	Pentachlorophenol	UJ
SBDUP03_082018	SW8270D	91-20-3	Naphthalene	UJ
SBDUP03_082018	SW8270D	95-48-7	2-Methylphenol (O-Cresol)	UJ
SBDUP03_082018	SW8270D	МЕРНЗМЕРН4	3- And 4- Methylphenol (Total)	UJ
SBEB08_082018	SW6020A	7440-66-6	Zinc	U (5.59)
SBEB08_082018	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The following major deficiencies were identified.

Cyanide by SW-846 Method 9014/9010C:

Equipment blank samples SBEB03_080918, SBEB02_080818 and SBEB01_080718, were submitted to the laboratory unpreserved. The laboratory preserved the samples upon receipt; however, a pH adjustment is necessary to prevent loss of hydrogen cyanide. The associated sample results are rejected.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 15 of 24

VOCs by SW-846 Method 8260C:

LCS/LCSD BH80429 exhibited recoveries greater than the upper control limit for acetone at 151% and 167%. The associated sample result is qualified as "J". In addition, the LCS/LCSD RPD for 1,4-dioxane was greater than the control limit at 33%. The associated sample result was non-detect; on the basis of professional judgment, qualification is not necessary.

The continuing calibration analyzed on 8/9/18 at 10:12 displayed a %D greater than the control limit for 1,4-dioxane at 179% and a RRF less than the control limit for TCE at 0.0196. The associated field blank sample results are qualified as estimated.

Field blank sample SBEB01_080718 displayed a positive detection for acetone at 1.7 ug/L. Associated sample results less than the reporting limit are qualified as "U" at the RL.

LCS/LCSD BH80425 displayed recoveries greater than the upper control limit for vinyl chloride at 150% and 138%, and chloroethane at 145%. The associated positive detections are qualified as J".

Sample LB08_4-5 exhibited an internal standard area count less than the lower control limit at 40% for 1,2-dichlorobenzene-d4. Results for compounds quantitated by 1,2-dichlorobenzene-d4 are qualified as estimated.

Sample LB22_11-12 displayed a concentration for cis-1,2-dichloroethene that was greater than the range of the instrument calibration; the result is qualified as "J", for estimated.

LCS/LCSD BH80642 displayed a recovery greater than the upper control limit for acetone at 165%. The associated positive field blank sample result collected on August 10, 2018 is qualified as "J". The investigative soil sample results are qualified as "U" at the reporting limit.

Sample LB16_5-6 exhibited an internal standard area count less than the lower control limit at 49% for 1,2-dichlorobenzene-d4. Results for compounds quantitated by 1,2-dichlorobenzene-d4 are qualified as estimated.

Method blank sample BH80791 displayed positive detections for dichlorodifluoromethane at 0.0026 mg/kg and methylene chloride at 0.0057 mg/kg. The associated positive detections are qualified as "U" at the reporting limit.

LCS/LCSD BH81003 displayed recoveries greater than the upper control limit for chloroethane and vinyl chloride. In addition, the acetone RPD was greater than the control limit at 31.5%. The positive detection for acetone is qualified as "J".

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 16 of 24

LCS/LCSD BH81074 exhibited recoveries less than the lower control limit for

Tetrachloroethylene at 78.4% and 77.5%. The associated equipment blank sample result is

qualified as "UJ".

Sample SBDUP03_082018 was analyzed 3 days outside of the holding time period. The

associated soil sample results are qualified as estimated.

Sample LB20_47-48 exhibited a positive detection greater than the range of the instrument

calibration for trichloroethene. The associated sample result is qualified as "J".

SVOCs by SW-846 Method 8270D and 8270D SIM:

LCS BH80571 displayed recoveries less than the lower control limit for 2-methylphenol and

dibenzofuran at 42.6% and 63.3%, respectively. The associated sample results are qualified as

"UJ".

LCS BH80718 displayed recoveries less than the lower control limit for 2-methylphenol, phenol,

and dibenzofuran at 34.9%, 17.2%, and 59.4%, respectively. The associated sample results are

qualified as "UJ".

LCS BH80830 displayed recoveries less than the lower control limit for 2-methylphenol, phenol,

and dibenzofuran at 27.5%, 42.9%, and 11%, respectively. The LCS/LCSD RPDs were also

greater than the control limit. The associated sample results are qualified as "UJ".

The continuing calibration analyzed on 8/8/18 at 07:29 exhibited a %D greater than the control

limit with a negative bias for phenanthrene at 25.2%. The associated non-detect field blank

sample result is qualified as "UJ".

Sample SBDUP03_082018 was analyzed 3 days outside of the holding time period. The

associated soil sample results are qualified as estimated.

Pesticides by SW-846 Method 8081B:

Sample LB21_5-6 displayed a surrogate recovery less than the lower control limit for TCMX at

28.1% on the primary chromatography column. The associated sample results are gualified as

estimated.

Sample LB25_7-8 displayed recoveries less than the lower control limit for DCB on the primary

and secondary chromatography columns at 29.1% and 21.5%, respectively. The associated

sample results are qualified as "UJ".

LANGAN

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 17 of 24

PCBs by SW-846 Method 8082A:

The equipment blank sample exhibited a retention time shift greater than the control limit for all

four surrogates. The associated sample results are qualified as estimated.

LCS/LCSD BH80646 displayed recoveries greater than the upper control limit for Aroclor 1260

and Aroclor 1016. The associated sample results are qualified as estimated.

Sample LB07_7-8 exhibited surrogate recoveries less than the lower control limit for DCB on

the primary and secondary chromatography columns at 25.5% and 22%, respectively. The

associated sample results are qualified as estimated.

Metals by SW-846 Method 6010C and 6020A:

CRDL standard Y8H1032 displayed recoveries greater than the upper control limit for arsenic,

beryllium, and nickel at 146%, 142, and 152%, respectively. The associated sample results are

qualified as "J".

ICP interference check sample Y8H1032 displayed recoveries less than the lower control limit

for selenium and zinc at 79.1% and 79%, respectively. The associated sample results are

qualified as estimated.

LCS/LCSD BH80509 displayed a recovery less than the lower control limit for selenium at

75.1%. The associated field blank sample result is qualified as "UJ".

CRDL standard Y8H1339 displayed recoveries outside of control limits for selenium at 331%

and zinc (no recovery). The associated field blank sample results are qualified as estimated.

ICP interference check sample Y8H1041 displayed recoveries less than the lower control limit

for selenium at 75.8%. The associated sample results are qualified as estimated.

CRDL standard Y8H0922 displayed recoveries outside of control limits for lead at 149%,

selenium at 69.6%, and zinc at 147%. The associated sample results near the reporting limit

are qualified as estimated.

Preparation blank sample BH80590-BLK1 displayed a positive detection for arsenic at 1.34

mg/kg. The associated sample results are qualified as "U" at the sample concentration.

CRDL standard Y8H1410 exhibited a recovery less than the lower control limit for arsenic at

62.1% and a recovery greater than the upper control limit for zinc at 190%. The associated

arsenic sample results are qualified as "UJ".

LANGAN

Data Usability Summary Report
For 41 Kensico Drive
2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 18 of 24

LCS BH80509 displayed a recovery less than the lower control limit for selenium at 75.1%. The associated field blank sample result is qualified as "UJ".

MS sample LB13_5-6 displayed a recovery less than the lower control limit for silver at 27.9%. The associated sample results are qualified as "UJ".

Laboratory duplicate sample LB13_5-6 displayed a RPD greater than the control limit for lead at 36.4%. The associated sample results are qualified as estimated.

ICP serial dilution sample LB13_5-6 displayed %Ds greater than the control limit for lead and zinc at 18.8% and 31.2%. The associated sample results are qualified as "J".

Preparation blank sample BH81039 displayed a positive detection for selenium at 0.04 mg/L. The associated field blank sample result is qualified as "U" at the sample concentration.

CRDL standard Y8H2238 exhibited a recovery less than the lower control limit for arsenic at 30.9%. The associated field blank sample result is qualified as "UJ".

LCS/LCSD BH81080 exhibited recoveries less than the lower control limit for arsenic, beryllium, and selenium at 77.2%, 61.1%, and 53.2%, respectively. The associated equipment blank sample results are qualified as "UJ".

Preparation blank sample Y8I0622 displayed a positive detection for zinc at 4.69 ug/L. The associated field blank sample result is qualified as "U" at the sample concentration.

Preparation blank sample Y8J0110 displayed a positive detection for zinc at 21.4 ug/L. The associated field blank sample result is qualified as "U" at the sample concentration.

CRDL standard Y8H2702 exhibited a recovery less than the lower control limit for arsenic at 55.8%. The associated soil sample results are qualified as "J".

Cyanide by SW-846 Method 9014/9010C:

MS sample LB01_4-5 exhibited a recovery less than the lower control limit at 59.6%. The associated sample result is qualified as "UJ".

MS sample LB08_51-52 exhibited a recovery less than the lower control limit at 69.1%. The associated sample results are qualified as "UJ".

MS sample LB24_1-2 exhibited a recovery less than the lower control limit at 67%. The associated sample results are qualified as "UJ".

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 19 of 24

CrVI by SW-846 Method 7196A:

Sample SBEB01_080718 was analyzed approximately 5 hours outside of the holding time

period. The associated sample result is qualified as "UJ".

MS sample LB15_5-6 exhibited a recovery less than the lower control limit at 53.2%. The

associated soil sample results are qualified as "UJ".

BOD by SM5210B:

BOD was analyzed approximately 6 hours past the 5day holding time period. The associated

sample results are qualified as estimated.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were

identified.

VOCs by SW-846 Method 8260C:

LCS/LCSD BH80615-BS1 displayed recoveries greater than the upper control limit for vinyl

chloride at 137% and 143%, and chloroethane at 152%. The associated sample results were

non-detect; qualification is not necessary.

The continuing calibration analyzed on 8/13/18 at 15:23 displayed %Ds greater than the control

limit with positive biases for chloroethane, chloromethane, tetrachloroethene, and vinyl

chloride. The associated sample results were non-detect; qualification is not necessary.

The continuing calibration analyzed on 8/14/18 at 09:53 displayed a %D greater than the control

limit with a positive bias for chloroethane. The associated sample results were non-detect;

qualification is not necessary.

Field blank sample SBEB02_080818 exhibited a positive detection for acetone at 1.53 ug/L. The

associated soil sample results were orders of magnitude greater than the blank amount;

qualification is not necessary.

LCS/LCSD BH80946 exhibited a RPD greater than the control limit for 1,4-dioxane at 41.7%.

The associated equipment blank sample result was non-detect; qualification is not necessary.

Retention time differences for surrogate spikes were miscalculated by the laboratory on Form II

for samples LB12_29-30 and LB19_34.5-35.5 because the calibration mean retention time was

not populated. The retention time differences are acceptable.

LANGAN

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 20 of 24

LCS/LCSD BH81071 exhibited recoveries greater than the upper control limit for chloroethane and vinyl chloride. The associated sample results were non-detect; qualification is not

necessary.

Method blank sample BH81071 exhibited a positive response for 1,2,3-trichlorobenzene. The

associated sample results were non-detect; qualification is not necessary.

Equipment blank sample SBEB07_081518 exhibited a positive detection for acetone at 1.17 ug/L. The associated soil sample result was more than an order of magnitude greater than the

blank amount; qualification is not necessary.

LCS/LCSD BH80946 displayed a %RPD greater than the control limit for 1,4-dioxane at 41.7%.

The associated sample result was non-detect; qualification is not necessary.

The continuing calibration analyzed on 8/3/18 at 14:46 displayed %Ds greater than the control

limit with positive biases for 1,1-DCE and 1,4-dioxane. The associated equipment blank sample

result was non-detect; qualification is not necessary.

Equipment blank sample SBEB08 082018 exhibited a positive detection for acetone at 4.08

ug/L. The associated soil sample results were orders of magnitude greater than the blank

amount; qualification is not necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM:

LCS/LCSD BH80571 displayed a recovery greater than the upper control limit for

pentachlorophenol at 159%. The associated equipment blank sample result was non-detect;

qualification is not necessary.

Sample SBEB03_080918 displayed a surrogate recovery less than the lower control limit for

phenol-d5 at 10.5%. The remaining two acid extractable surrogates recovered within control;

on the basis of professional judgment, qualification is not necessary.

Sample SBEB04_081018 displayed a surrogate recovery less than the lower control limit for

phenol-d5 at 13.5%. The remaining two acid extractable surrogates recovered within control;

on the basis of professional judgment, qualification is not necessary.

Sample SBEB02_080818 displayed a surrogate recovery less than the lower control limit for

phenol-d5 at 10.7%. The remaining two acid extractable surrogates recovered within control;

on the basis of professional judgment, qualification is not necessary.

LANGAN

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 21 of 24

Second source calibration verification Y8H0907 displayed a %D greater than the control limit with a positive bias for pentachlorophenol. The associated sample results were non-detect; qualification is not necessary.

Sample LB14_4-5 displayed a surrogate recovery greater than the upper control limit for 2,4,6-tribromophenol at 112%. The remaining two acid extractable surrogates recovered within control; on the basis of professional judgment, qualification is not necessary.

Sample SBEB06_081418 displayed a surrogate recovery less than the lower control limit for phenol-d5 at 13.5%. The remaining two acid extractable surrogates recovered within control; on the basis of professional judgment, qualification is not necessary.

Second-source calibration verification sample Y8H0907 displayed a %D greater than the control limit with a positive bias for pentachlorophenol. The associated sample result was non-detect; qualification is not required.

Samples LB10_2-3, LB10_31-32, LB20_5-6, LB20_32.5-33.5, and LB20_47-48 displayed surrogate recoveries greater than the upper control limit for 2,4,6-tribromophenol. The remaining two acid extractable surrogates recovered within control; on the basis of professional judgment, qualification is not necessary.

Pesticides by SW-846 Method 8081B:

LCS BH80691 displayed recoveries greater than the upper control limit for 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, alpha-BHC, alpha-chlordane, beta-BHC, delta-BHC, endosulfan I, endosulfan sulfate, endrin, gamma-BHC, and heptachlor. The associated positive detections were previously qualified; no further action is necessary.

LCS BH80691 displayed recoveries greater than the upper control limit for alpha-BHC, beta-BHC, and delta-BHC. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BH80463 displayed a recovery greater than the upper control limit for 4,4'-DDD at 145%. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BH80692 displayed recoveries greater than the upper control limit for delta-BHC and endrin. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BH80721 displayed recoveries greater than the upper control limit for alpha-BHC, beta-BHC, and delta-BHC. The associated sample results were non-detect; qualification is not necessary.

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 22 of 24

LCS/LCSD BH80834 displayed a recovery greater than the upper control limit for delta-BHC. The associated sample results were non-detect; qualification is not necessary.

LCS/LCSD BH80796 displayed recoveries greater than the upper control limit for alpha-BHC, delta-BHC, endosulfan I, and gamma-BHC. The associated sample results were non-detect; qualification is not necessary.

PCBs by SW-846 Method 8082A:

Samples LB26_6-7, LB09_6-7, LB16_5-6, LB21_5-6, LB24_1-2, and SBEB04_081018 displayed a retention time shift for the surrogate spikes TCMX and DCB. On the basis of professional judgment, qualification is not necessary.

LCS/LCSD BH80721 exhibited a recovery greater than the upper control limit for Aroclor 1260 on the primary chromatography column. The associated equipment blank sample result was non-detect; qualification is not required.

Sample SBEB02_080818 displayed a retention time shift for the surrogate spikes TCMX and DCB. On the basis of professional judgment, qualification is not necessary.

Samples SBEB05_081318, LB11_4.5-5.5, LB13_5-6, LB14_4-5, LB23_4-5 and SBDUP02_081318 displayed a retention time shift for the surrogate spikes TCMX and DCB. On the basis of professional judgment, qualification is not necessary.

Sample SBEB06_081418 and LB15_5-6 displayed a retention time shift for the surrogate spikes TCMX and DCB. On the basis of professional judgment, qualification is not necessary.

Sample SBEB07_081518 displayed a retention time shift for the surrogate spikes TCMX and DCB. On the basis of professional judgment, qualification is not necessary.

LCS/LCSD BH81010 exhibited a recovery greater than the upper control limit for Aroclor 1260 on the secondary chromatography column. The associated equipment blank sample result was non-detect; qualification is not required.

Metals by SW-846 Methods 6010C and 6020A:

Field blank sample SBEB03_080918 displayed a positive detection for zinc at 5.05 ug/L. The associated soil sample result was orders of magnitude greater than the blank amount; qualification is not required.

Field blank sample SBEB01_080718 displayed positive detections for chromium, copper, manganese, nickel, and zinc. The associated sample results were orders of magnitude greater than the blank amount; qualification is not required.

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples Langan Project No.: 190046301

September 24, 2018 Page 23 of 24

CRDL standard Y8H1348 exhibited recoveries greater than the upper control limit for lead, nickel, and zinc. The associated sample results were substantially above the reporting limit; on the basis of professional judgment, qualification is not necessary.

Preparation blank sample BH80673 displayed a positive detection for zinc at 2.39 ug/L. The associated field blank sample result was greater than 5X the blank amount; on the basis of professional judgment, qualification is not necessary. The field blank also exhibited a positive detection for zinc. The field blank detections for zinc and copper were orders of magnitude less than the associated investigative sample results; qualification is not necessary.

Field blank sample SBEB02_080818 exhibited positive detections for manganese, chromium, copper and zinc. The associated sample results were orders of magnitude greater than the blank amount; qualification is not required.

CRDL standard Y8H1303 exhibited recoveries greater than the upper control limit for arsenic, beryllium, and nickel. The associated sample results were substantially above the reporting limit; on the basis of professional judgment, qualification is not necessary.

Laboratory duplicate sample SBEB08_082018 displayed a RPD greater than the control limit for zinc at 26.1%. The associated sample result was previously qualified on the basis of preparation blank contamination; no further action is necessary.

Cyanide by SW-846 Method 9014/9010C:

Sample SBEB01_080718 displayed a MS recovery less than the lower control limit at 77.5%. The equipment blank should not be used to evaluate sample matrix effects and the results were not used to assess matrix interference.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±2X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 50%. The following analytes did not meet the precision criteria:

- SBDUP01_080818 and LB25_15-16: trivalent chromium, arsenic, total chromium, copper, zinc.
- SBDUP02_081318 and LB23_4-5: copper
- SBDUP03_082018 and LB10_2-3: none (the duplicate soil sample was not analyzed for metals, PCBs, pesticides, mercury or cyanide).

Data Usability Summary Report For 41 Kensico Drive 2018 Soil Samples

Langan Project No.: 190046301 September 24, 2018 Page 24 of 24

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned

above, that means that all specified criteria were met for that parameter. All of the data

packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the

percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Elizabeth Burgess, Langan Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 4, 2019

Re: Data Usability Summary Report

For 41 Kensico Drive May 2019 Soil Samples

Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of soil samples collected in May 2019 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- PFAS by USEPA Method 537M
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D
- Mercury by SW-846 Method 7471B
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 2 of 40

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19E0157	19E0157-01	LB27_3.5-4.5	5/2/2019	VOCs, SVOCs, PFAS, %S
19E0157	19E0157-02	LB28_3-4	5/2/2019	VOCs, SVOCs, PFAS, %S
19E0157	19E0157-03	SBDUP05_3.5-4.5	5/2/2019	VOCs, SVOCs, PFAS, %S
19E0157	19E0157-04	SBEB10_050219	5/2/2019	VOCs, SVOCs, PFAS
19E0189	19E0189-01	SS1_0-2in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-02	SS1_10-12in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-03	SS2_0-2in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-04	SS2_10-12in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-05	SS3_0-2in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-06	SS3_10-12in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-07	SS4_0-2in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-08	SS4_10-12in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-09	SS5_0-2in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-10	SS5_10-12in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-11	SS6_0-2in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-12	SS6_10-12in	5/3/2019	VOCs, SVOCs, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-13	SS7_0-2in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 3 of 40

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19E0189	19E0189-14	SS7_10-12in	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-15	LB18_5-6	5/3/2019	VOCs, SVOCs, %S
19E0189	19E0189-20	SBDUP04_050319	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN, %S
19E0189	19E0189-21	SBEB09_050319	5/3/2019	VOCs, SVOCs, PFAS, pesticides, PCBs, metals, Hg, CrIII, CrVI, CN
19E0244	19E0244-01	LB23_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-02	LB23_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-03	LB23_6-8	5/6/2019	PFAS, Lead (total/TCLP)
19E0244	19E0244-04	LB23_8-10	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-05	LB23_N1_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-06	LB23_N1_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-07	LB23_N1_4-6	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-08	LB23_N1_6-8	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-09	LB23_N2_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-10	LB23_N2_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-11	LB23_N2_4-6	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-13	LB23_E1_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-14	LB23_E1_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-15	LB23_E1_4-6	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-16	LB23_E1_6-8	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-17	LB23_S1_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-18	LB23_S1_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-19	LB23_S1_4-6	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-20	LB23_S1_6-8	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-21	LB23_S2_0-2	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-22	LB23_S2_2-4	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-23	LB23_S2_4-6	5/6/2019	Lead (total/TCLP)
19E0244	19E0244-25	SBEB11_050619	5/6/2019	PFAS, Lead (total/TCLP)
19E0244	19E0244-26	SBDUP06_050619	5/6/2019	Lead (total/TCLP)

Validation Overview

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 4 of 40

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), the USEPA Contract Laboratory Program "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, standard isotope recoveries, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

R – The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 5 of 40

- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB27_3.5-4.5	8270D	51-28-5	2,4-DINITROPHENOL	UJ
LB27_3.5-4.5	8270D	1912-24-9	ATRAZINE	UJ
LB27_3.5-4.5	8270D	100-52-7	BENZALDEHYDE	UJ
LB27_3.5-4.5	8270D	92-87-5	BENZIDINE	UJ
LB27_3.5-4.5	8270D	65-85-0	BENZOIC ACID	UJ
LB27_3.5-4.5	8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
LB27_3.5-4.5	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LB27_3.5-4.5	8260C	75-01-4	VINYL CHLORIDE	UJ
LB27_3.5-4.5	8270D	56-55-3	BENZO(A)ANTHRACENE	J
LB27_3.5-4.5	8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
LB27_3.5-4.5	8260C	107-02-8	ACROLEIN	UJ
LB27_3.5-4.5	8260C	74-83-9	BROMOMETHANE	UJ
LB27_3.5-4.5	8270D	206-44-0	FLUORANTHENE	J
LB27_3.5-4.5	8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LB27_3.5-4.5	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
LB27_3.5-4.5	8260C	75-00-3	CHLOROETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 6 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB27_3.5-4.5	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LB27_3.5-4.5	8270D	85-01-8	PHENANTHRENE	J
LB27_3.5-4.5	8260C	127-18-4	Tetrachloroethylene	UJ
LB27_3.5-4.5	8270D	110-86-1	PYRIDINE	UJ
LB27_3.5-4.5	8270D	129-00-0	PYRENE	J
LB28_3-4	8270D	51-28-5	2,4-DINITROPHENOL	UJ
LB28_3-4	8270D	1912-24-9	ATRAZINE	UJ
LB28_3-4	8270D	100-52-7	BENZALDEHYDE	UJ
LB28_3-4	8270D	92-87-5	BENZIDINE	UJ
LB28_3-4	8270D	65-85-0	BENZOIC ACID	UJ
LB28_3-4	8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
LB28_3-4	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LB28_3-4	8260C	591-78-6	2-HEXANONE	UJ
LB28_3-4	8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
LB28_3-4	8260C	67-64-1	ACETONE	J
LB28_3-4	8260C	107-02-8	ACROLEIN	UJ
LB28_3-4	8260C	75-01-4	VINYL CHLORIDE	UJ
LB28_3-4	8260C	75-00-3	CHLOROETHANE	UJ
LB28_3-4	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LB28_3-4	8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LB28_3-4	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
LB28_3-4	8270D	110-86-1	PYRIDINE	UJ
SBDUP05_3.5-4.5	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SBDUP05_3.5-4.5	8270D	1912-24-9	ATRAZINE	UJ
SBDUP05_3.5-4.5	8270D	100-52-7	BENZALDEHYDE	UJ
SBDUP05_3.5-4.5	8270D	92-87-5	BENZIDINE	UJ
SBDUP05_3.5-4.5	8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
SBDUP05_3.5-4.5	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
SBDUP05_3.5-4.5	8270D	56-55-3	BENZO(A)ANTHRACENE	J
SBDUP05_3.5-4.5	8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
SBDUP05_3.5-4.5	8260C	107-02-8	ACROLEIN	UJ
SBDUP05_3.5-4.5	8260C	74-83-9	BROMOMETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 7 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SBDUP05_3.5-4.5	8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
SBDUP05_3.5-4.5	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBDUP05_3.5-4.5	8260C	75-00-3	CHLOROETHANE	UJ
SBDUP05_3.5-4.5	8260C	75-01-4	VINYL CHLORIDE	UJ
SBDUP05_3.5-4.5	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SBDUP05_3.5-4.5	8270D	206-44-0	FLUORANTHENE	J
SBDUP05_3.5-4.5	8270D	85-01-8	PHENANTHRENE	J
SBDUP05_3.5-4.5	8270D	86-30-6	N-NITROSODIPHENYLAMINE	UJ
SBDUP05_3.5-4.5	8270D	87-86-5	PENTACHLOROPHENOL	UJ
SBDUP05_3.5-4.5	8260C	127-18-4	Tetrachloroethylene	UJ
SBDUP05_3.5-4.5	8270D	110-86-1	PYRIDINE	UJ
SBDUP05_3.5-4.5	8270D	129-00-0	PYRENE	J
SBEB10_050219	8270D	51-28-5	2,4-DINITROPHENOL	UJ
SBEB10_050219	8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
SBEB10_050219	8270D	100-52-7	BENZALDEHYDE	UJ
SBEB10_050219	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
SBEB10_050219	8260C	591-78-6	2-HEXANONE	UJ
SBEB10_050219	8260C	67-64-1	ACETONE	J
SBEB10_050219	8260C	107-02-8	ACROLEIN	UJ
SBEB10_050219	8260C	74-83-9	BROMOMETHANE	UJ
SBEB10_050219	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SBEB10_050219	8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
SBEB10_050219	8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
SBEB10_050219	8260C	127-18-4	Tetrachloroethylene	UJ
SBEB10_050219	8270D	77-47-4	HEXACHLOROCYCLOPENTADIENE	UJ
SBEB10_050219	8270D	99-09-2	3-NITROANILINE	UJ
SBEB10_050219	8270DSIM	87-68-3	HEXACHLOROBUTADIENE	UJ
SS1_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS1_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS1_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS1_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS1_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 8 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS1_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS1_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS1_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS1_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS1_0-2IN	8260C	67-64-1	Acetone	J
SS1_0-2IN	8260C	107-02-8	Acrolein	UJ
SS1_0-2IN	6010B	7440-36-0	Antimony	UJ
SS1_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS1_0-2IN	8270D	92-87-5	Benzidine	UJ
SS1_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS1_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS1_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS1_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS1_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS1_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS1_0-2IN	6010B	7440-50-8	Copper	J
SS1_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS1_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS1_0-2IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS1_0-2IN	6010B	7439-92-1	Lead	J
SS1_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS1_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS1_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS1_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS1_0-2IN	E537	1763-23-1	Perfluorooctanesulfonic acid	J
SS1_0-2IN	6010B	7440-22-4	Silver	UJ
SS1_0-2IN	6010B	7440-23-5	Sodium	J
SS1_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS1_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS1_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS1_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS1_0-2IN	6010B	7440-62-2	Vanadium	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 9 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS1_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS1_0-2IN	6010B	7440-66-6	Zinc	J
SS1_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS1_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS1_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS1_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS1_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS1_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS1_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS1_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS1_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS1_10-12IN	8260C	67-64-1	Acetone	J
SS1_10-12IN	8260C	107-02-8	Acrolein	UJ
SS1_10-12IN	6010B	7440-36-0	Antimony	UJ
SS1_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS1_10-12IN	8270D	92-87-5	Benzidine	UJ
SS1_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS1_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS1_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS1_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS1_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS1_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS1_10-12IN	6010B	7440-50-8	Copper	J
SS1_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS1_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS1_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	UJ
SS1_10-12IN	6010B	7439-92-1	Lead	J
SS1_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS1_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS1_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS1_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS1_10-12IN	6010B	7440-22-4	Silver	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 10 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS1_10-12IN	6010B	7440-23-5	Sodium	J
SS1_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS1_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS1_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS1_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS1_10-12IN	6010B	7440-62-2	Vanadium	J
SS1_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS1_10-12IN	6010B	7440-66-6	Zinc	J
SS2_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS2_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS2_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS2_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS2_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS2_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS2_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS2_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS2_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS2_0-2IN	8260C	67-64-1	Acetone	J
SS2_0-2IN	8260C	107-02-8	Acrolein	UJ
SS2_0-2IN	6010B	7440-36-0	Antimony	UJ
SS2_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS2_0-2IN	8270D	92-87-5	Benzidine	UJ
SS2_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS2_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS2_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS2_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS2_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS2_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS2_0-2IN	6010B	7440-50-8	Copper	J
SS2_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS2_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS2_0-2IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 11 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS2_0-2IN	6010B	7439-92-1	Lead	J
SS2_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS2_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS2_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS2_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS2_0-2IN	6010B	7440-22-4	Silver	UJ
SS2_0-2IN	6010B	7440-23-5	Sodium	J
SS2_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS2_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS2_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS2_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS2_0-2IN	6010B	7440-62-2	Vanadium	J
SS2_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS2_0-2IN	6010B	7440-66-6	Zinc	J
SS2_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS2_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS2_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS2_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS2_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS2_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS2_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS2_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS2_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS2_10-12IN	8260C	67-64-1	Acetone	J
SS2_10-12IN	8260C	107-02-8	Acrolein	UJ
SS2_10-12IN	6010B	7440-36-0	Antimony	UJ
SS2_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS2_10-12IN	8270D	92-87-5	Benzidine	UJ
SS2_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS2_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS2_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS2_10-12IN	8260C	75-00-3	Chloroethane	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 12 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS2_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS2_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS2_10-12IN	6010B	7440-50-8	Copper	J
SS2_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS2_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS2_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS2_10-12IN	6010B	7439-92-1	Lead	J
SS2_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS2_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS2_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS2_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS2_10-12IN	6010B	7440-22-4	Silver	UJ
SS2_10-12IN	6010B	7440-23-5	Sodium	J
SS2_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS2_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS2_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS2_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS2_10-12IN	6010B	7440-62-2	Vanadium	J
SS2_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS2_10-12IN	6010B	7440-66-6	Zinc	J
SS3_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS3_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS3_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS3_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS3_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS3_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS3_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS3_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS3_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS3_0-2IN	8260C	67-64-1	Acetone	J
SS3_0-2IN	8260C	107-02-8	Acrolein	UJ
SS3_0-2IN	6010B	7440-36-0	Antimony	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 13 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS3_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS3_0-2IN	8270D	92-87-5	Benzidine	UJ
SS3_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS3_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS3_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS3_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS3_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS3_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS3_0-2IN	6010B	7440-50-8	Copper	J
SS3_0-2IN	8081B	58-89-9	Gamma BHC	UJ
SS3_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS3_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS3_0-2IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS3_0-2IN	6010B	7439-92-1	Lead	J
SS3_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS3_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS3_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS3_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS3_0-2IN	E537	1763-23-1	Perfluorooctanesulfonic acid	J
SS3_0-2IN	6010B	7440-22-4	Silver	UJ
SS3_0-2IN	6010B	7440-23-5	Sodium	J
SS3_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS3_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS3_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS3_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS3_0-2IN	6010B	7440-62-2	Vanadium	J
SS3_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS3_0-2IN	6010B	7440-66-6	Zinc	J
SS3_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS3_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS3_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS3_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 14 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS3_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS3_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS3_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS3_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS3_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS3_10-12IN	8260C	67-64-1	Acetone	J
SS3_10-12IN	8260C	107-02-8	Acrolein	UJ
SS3_10-12IN	6010B	7440-36-0	Antimony	UJ
SS3_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS3_10-12IN	8270D	92-87-5	Benzidine	UJ
SS3_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS3_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS3_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS3_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS3_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS3_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS3_10-12IN	6010B	7440-50-8	Copper	J
SS3_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS3_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS3_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS3_10-12IN	6010B	7439-92-1	Lead	J
SS3_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS3_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS3_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS3_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS3_10-12IN	6010B	7440-22-4	Silver	UJ
SS3_10-12IN	6010B	7440-23-5	Sodium	J
SS3_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS3_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS3_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS3_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS3_10-12IN	6010B	7440-62-2	Vanadium	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 15 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS3_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS3_10-12IN	6010B	7440-66-6	Zinc	J
SS4_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS4_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS4_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS4_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS4_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS4_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS4_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS4_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS4_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS4_0-2IN	8260C	67-64-1	Acetone	UJ
SS4_0-2IN	8260C	107-02-8	Acrolein	UJ
SS4_0-2IN	6010B	7440-36-0	Antimony	UJ
SS4_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS4_0-2IN	8270D	92-87-5	Benzidine	UJ
SS4_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS4_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS4_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS4_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS4_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS4_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS4_0-2IN	6010B	7440-50-8	Copper	J
SS4_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS4_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS4_0-2IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS4_0-2IN	6010B	7439-92-1	Lead	J
SS4_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS4_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS4_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS4_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS4_0-2IN	6010B	7440-22-4	Silver	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 16 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS4_0-2IN	6010B	7440-23-5	Sodium	J
SS4_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS4_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS4_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS4_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS4_0-2IN	6010B	7440-62-2	Vanadium	J
SS4_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS4_0-2IN	6010B	7440-66-6	Zinc	J
SS4_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS4_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS4_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS4_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS4_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS4_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS4_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS4_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS4_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS4_10-12IN	8260C	67-64-1	Acetone	J
SS4_10-12IN	8260C	107-02-8	Acrolein	UJ
SS4_10-12IN	6010B	7440-36-0	Antimony	UJ
SS4_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS4_10-12IN	8270D	92-87-5	Benzidine	UJ
SS4_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS4_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS4_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS4_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS4_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS4_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS4_10-12IN	6010B	7440-50-8	Copper	J
SS4_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS4_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS4_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 17 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS4_10-12IN	6010B	7439-92-1	Lead	J
SS4_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS4_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS4_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS4_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS4_10-12IN	6010B	7440-22-4	Silver	UJ
SS4_10-12IN	6010B	7440-23-5	Sodium	J
SS4_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS4_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS4_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS4_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS4_10-12IN	6010B	7440-62-2	Vanadium	J
SS4_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS4_10-12IN	6010B	7440-66-6	Zinc	J
SS5_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS5_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS5_0-2IN	8270D	95-94-3	1,2,4,5-Tetrachlorobenzene	UJ
SS5_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS5_0-2IN	8270D	88-06-2	2,4,6-Trichlorophenol	UJ
SS5_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS5_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS5_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS5_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS5_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS5_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS5_0-2IN	8260C	67-64-1	Acetone	UJ
SS5_0-2IN	8260C	107-02-8	Acrolein	UJ
SS5_0-2IN	6010B	7440-36-0	Antimony	UJ
SS5_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS5_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS5_0-2IN	8270D	111-91-1	Bis(2-Chloroethoxy) Methane	UJ
SS5_0-2IN	8270D	111-44-4	Bis(2-Chloroethyl) Ether	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 18 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS5_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS5_0-2IN	8260C	75-25-2	Bromoform	UJ
SS5_0-2IN	6010B	7440-70-2	Calcium	J
SS5_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS5_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS5_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS5_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS5_0-2IN	6010B	7440-50-8	Copper	J
SS5_0-2IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS5_0-2IN	8081B	58-89-9	Gamma BHC	UJ
SS5_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS5_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS5_0-2IN	6010B	7439-92-1	Lead	J
SS5_0-2IN	6010B	7439-95-4	Magnesium	J
SS5_0-2IN	8260C	79-20-9	Methyl Acetate	UJ
SS5_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS5_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS5_0-2IN	8270D	621-64-7	N-Nitrosodi-N-Propylamine	UJ
SS5_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS5_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS5_0-2IN	E537	1763-23-1	Perfluorooctanesulfonic acid	J
SS5_0-2IN	6010B	7440-22-4	Silver	UJ
SS5_0-2IN	6010B	7440-23-5	Sodium	J
SS5_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS5_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS5_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS5_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS5_0-2IN	6010B	7440-62-2	Vanadium	J
SS5_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS5_0-2IN	6010B	7440-66-6	Zinc	J
SS5_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS5_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 19 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS5_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS5_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS5_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS5_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS5_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS5_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS5_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS5_10-12IN	8260C	67-64-1	Acetone	J
SS5_10-12IN	8260C	107-02-8	Acrolein	UJ
SS5_10-12IN	6010B	7440-36-0	Antimony	UJ
SS5_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS5_10-12IN	8270D	92-87-5	Benzidine	UJ
SS5_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS5_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS5_10-12IN	8260C	75-25-2	Bromoform	UJ
SS5_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS5_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS5_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS5_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS5_10-12IN	6010B	7440-50-8	Copper	J
SS5_10-12IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS5_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS5_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS5_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS5_10-12IN	6010B	7439-92-1	Lead	J
SS5_10-12IN	8260C	79-20-9	Methyl Acetate	UJ
SS5_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS5_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS5_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS5_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS5_10-12IN	E537	1763-23-1	Perfluorooctanesulfonic acid	J
SS5_10-12IN	6010B	7440-22-4	Silver	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 20 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS5_10-12IN	6010B	7440-23-5	Sodium	J
SS5_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS5_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS5_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS5_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS5_10-12IN	6010B	7440-62-2	Vanadium	J
SS5_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS5_10-12IN	6010B	7440-66-6	Zinc	J
SS6_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS6_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS6_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS6_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS6_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS6_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS6_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS6_0-2IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS6_0-2IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS6_0-2IN	8260C	67-64-1	Acetone	J
SS6_0-2IN	8260C	107-02-8	Acrolein	UJ
SS6_0-2IN	6010B	7440-36-0	Antimony	UJ
SS6_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS6_0-2IN	8270D	92-87-5	Benzidine	UJ
SS6_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS6_0-2IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS6_0-2IN	8260C	75-25-2	Bromoform	UJ
SS6_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS6_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS6_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS6_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS6_0-2IN	6010B	7440-50-8	Copper	J
SS6_0-2IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS6_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 21 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS6_0-2IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS6_0-2IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	J
SS6_0-2IN	6010B	7439-92-1	Lead	J
SS6_0-2IN	8260C	79-20-9	Methyl Acetate	UJ
SS6_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS6_0-2IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS6_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS6_0-2IN	8270D	87-86-5	Pentachlorophenol	UJ
SS6_0-2IN	6010B	7440-22-4	Silver	UJ
SS6_0-2IN	6010B	7440-23-5	Sodium	J
SS6_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS6_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS6_0-2IN	8260C	79-01-6	Trichloroethylene	UJ
SS6_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS6_0-2IN	6010B	7440-62-2	Vanadium	J
SS6_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS6_0-2IN	6010B	7440-66-6	Zinc	J
SS6_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS6_10-12IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS6_10-12IN	8260C	123-91-1	1,4-Dioxane	UJ
SS6_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS6_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS6_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS6_10-12IN	8260C	591-78-6	2-Hexanone	UJ
SS6_10-12IN	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SS6_10-12IN	8270D	101-55-3	4-Bromophenyl Phenyl Ether	UJ
SS6_10-12IN	8260C	67-64-1	Acetone	J
SS6_10-12IN	8260C	107-02-8	Acrolein	UJ
SS6_10-12IN	6010B	7440-36-0	Antimony	UJ
SS6_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS6_10-12IN	8270D	92-87-5	Benzidine	UJ
SS6_10-12IN	6010B	7440-41-7	Beryllium	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 22 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS6_10-12IN	8270D	108-60-1	Bis(2-Chloroisopropyl) Ether	UJ
SS6_10-12IN	8260C	75-25-2	Bromoform	UJ
SS6_10-12IN	8260C	108-90-7	Chlorobenzene	UJ
SS6_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS6_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS6_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS6_10-12IN	6010B	7440-50-8	Copper	J
SS6_10-12IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS6_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS6_10-12IN	8270D	77-47-4	Hexachlorocyclopentadiene	UJ
SS6_10-12IN	8270D	193-39-5	Indeno(1,2,3-C,D)Pyrene	UJ
SS6_10-12IN	6010B	7439-92-1	Lead	J
SS6_10-12IN	8260C	79-20-9	Methyl Acetate	UJ
SS6_10-12IN	8260C	104-51-8	N-Butylbenzene	UJ
SS6_10-12IN	8270D	62-75-9	N-Nitrosodimethylamine	UJ
SS6_10-12IN	8081B	72-55-9	P,P'-DDE	UJ
SS6_10-12IN	8270D	87-86-5	Pentachlorophenol	UJ
SS6_10-12IN	6010B	7440-22-4	Silver	UJ
SS6_10-12IN	6010B	7440-23-5	Sodium	J
SS6_10-12IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS6_10-12IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS6_10-12IN	8260C	79-01-6	Trichloroethylene	UJ
SS6_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS6_10-12IN	6010B	7440-62-2	Vanadium	J
SS6_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS6_10-12IN	6010B	7440-66-6	Zinc	J
SS7_0-2IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS7_0-2IN	8260C	75-35-4	1,1-Dichloroethene	UJ
SS7_0-2IN	8260C	123-91-1	1,4-Dioxane	UJ
SS7_0-2IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS7_0-2IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS7_0-2IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 23 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS7_0-2IN	8270D	91-58-7	2-Chloronaphthalene	UJ
SS7_0-2IN	8260C	591-78-6	2-Hexanone	UJ
SS7_0-2IN	8260C	67-64-1	Acetone	UJ
SS7_0-2IN	8260C	107-02-8	Acrolein	UJ
SS7_0-2IN	6010B	7440-36-0	Antimony	UJ
SS7_0-2IN	8270D	100-52-7	Benzaldehyde	UJ
SS7_0-2IN	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
SS7_0-2IN	6010B	7440-41-7	Beryllium	UJ
SS7_0-2IN	8270D	111-44-4	Bis(2-Chloroethyl) Ether	UJ
SS7_0-2IN	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	J
SS7_0-2IN	8260C	75-25-2	Bromoform	UJ
SS7_0-2IN	8270D	86-74-8	Carbazole	UJ
SS7_0-2IN	8260C	108-90-7	Chlorobenzene	UJ
SS7_0-2IN	8260C	75-00-3	Chloroethane	UJ
SS7_0-2IN	8260C	74-87-3	Chloromethane	UJ
SS7_0-2IN	6010B	7440-47-3	Chromium, Total	J
SS7_0-2IN	6010B	7440-50-8	Copper	J
SS7_0-2IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS7_0-2IN	8270D	117-84-0	Di-N-Octylphthalate	UJ
SS7_0-2IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS7_0-2IN	6010B	7439-92-1	Lead	J
SS7_0-2IN	8260C	79-20-9	Methyl Acetate	UJ
SS7_0-2IN	8260C	104-51-8	N-Butylbenzene	UJ
SS7_0-2IN	8270D	98-95-3	Nitrobenzene	UJ
SS7_0-2IN	8081B	72-55-9	P,P'-DDE	UJ
SS7_0-2IN	E537	1763-23-1	Perfluorooctanesulfonic acid	J
SS7_0-2IN	8270D	108-95-2	Phenol	UJ
SS7_0-2IN	6010B	7440-22-4	Silver	UJ
SS7_0-2IN	6010B	7440-23-5	Sodium	J
SS7_0-2IN	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SS7_0-2IN	8260C	127-18-4	Tetrachloroethylene	UJ
SS7_0-2IN	8260C	79-01-6	Trichloroethylene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 24 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS7_0-2IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS7_0-2IN	6010B	7440-62-2	Vanadium	J
SS7_0-2IN	8260C	75-01-4	Vinyl Chloride	UJ
SS7_0-2IN	6010B	7440-66-6	Zinc	J
SS7_10-12IN	8260C	630-20-6	1,1,1,2-Tetrachloroethane	UJ
SS7_10-12IN	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SS7_10-12IN	8270D	51-28-5	2,4-Dinitrophenol	UJ
SS7_10-12IN	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SS7_10-12IN	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SS7_10-12IN	8270D	91-58-7	2-Chloronaphthalene	UJ
SS7_10-12IN	8260C	67-64-1	Acetone	J
SS7_10-12IN	6010B	7440-36-0	Antimony	UJ
SS7_10-12IN	8270D	100-52-7	Benzaldehyde	UJ
SS7_10-12IN	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
SS7_10-12IN	6010B	7440-41-7	Beryllium	UJ
SS7_10-12IN	8270D	111-44-4	Bis(2-Chloroethyl) Ether	UJ
SS7_10-12IN	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
SS7_10-12IN	8260C	75-25-2	Bromoform	UJ
SS7_10-12IN	8260C	74-83-9	Bromomethane	UJ
SS7_10-12IN	8270D	86-74-8	Carbazole	UJ
SS7_10-12IN	8260C	56-23-5	Carbon Tetrachloride	UJ
SS7_10-12IN	8260C	75-00-3	Chloroethane	UJ
SS7_10-12IN	8260C	74-87-3	Chloromethane	UJ
SS7_10-12IN	6010B	7440-47-3	Chromium, Total	J
SS7_10-12IN	6010B	7440-50-8	Copper	J
SS7_10-12IN	8260C	124-48-1	Dibromochloromethane	UJ
SS7_10-12IN	8260C	75-71-8	Dichlorodifluoromethane	UJ
SS7_10-12IN	8270D	117-84-0	Di-N-Octylphthalate	UJ
SS7_10-12IN	8270D	87-68-3	Hexachlorobutadiene	UJ
SS7_10-12IN	6010B	7439-92-1	Lead	J
SS7_10-12IN	8270D	98-95-3	Nitrobenzene	UJ
SS7_10-12IN	8081B	72-55-9	P,P'-DDE	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 25 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SS7_10-12IN	8270D	108-95-2	Phenol	UJ
SS7_10-12IN	6010B	7440-22-4	Silver	UJ
SS7_10-12IN	6010B	7440-23-5	Sodium	J
SS7_10-12IN	8260C	75-69-4	Trichlorofluoromethane	UJ
SS7_10-12IN	6010B	7440-62-2	Vanadium	J
SS7_10-12IN	8260C	75-01-4	Vinyl Chloride	UJ
SS7_10-12IN	6010B	7440-66-6	Zinc	J
LB18_5-6	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
LB18_5-6	8260C	75-35-4	1,1-Dichloroethene	UJ
LB18_5-6	8260C	123-91-1	1,4-Dioxane	UJ
LB18_5-6	8270D	51-28-5	2,4-Dinitrophenol	UJ
LB18_5-6	8270D	121-14-2	2,4-Dinitrotoluene	UJ
LB18_5-6	8270D	606-20-2	2,6-Dinitrotoluene	UJ
LB18_5-6	8270D	91-58-7	2-Chloronaphthalene	UJ
LB18_5-6	8260C	591-78-6	2-Hexanone	UJ
LB18_5-6	8260C	67-64-1	Acetone	J
LB18_5-6	8260C	107-02-8	Acrolein	UJ
LB18_5-6	8270D	100-52-7	Benzaldehyde	UJ
LB18_5-6	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
LB18_5-6	8270D	111-44-4	Bis(2-Chloroethyl) Ether	UJ
LB18_5-6	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
LB18_5-6	8260C	75-25-2	Bromoform	UJ
LB18_5-6	8270D	86-74-8	Carbazole	UJ
LB18_5-6	8260C	108-90-7	Chlorobenzene	UJ
LB18_5-6	8260C	75-00-3	Chloroethane	UJ
LB18_5-6	8260C	74-87-3	Chloromethane	UJ
LB18_5-6	8260C	75-71-8	Dichlorodifluoromethane	UJ
LB18_5-6	8270D	117-84-0	Di-N-Octylphthalate	UJ
LB18_5-6	8270D	87-68-3	Hexachlorobutadiene	UJ
LB18_5-6	8260C	79-20-9	Methyl Acetate	J
LB18_5-6	8260C	104-51-8	N-Butylbenzene	UJ
LB18_5-6	8270D	98-95-3	Nitrobenzene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 26 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB18_5-6	8270D	108-95-2	Phenol	UJ
LB18_5-6	8260C	75-65-0	Tert-Butyl Alcohol	UJ
LB18_5-6	8260C	127-18-4	Tetrachloroethylene	UJ
LB18_5-6	8260C	79-01-6	Trichloroethylene	UJ
LB18_5-6	8260C	75-69-4	Trichlorofluoromethane	UJ
LB18_5-6	8260C	75-01-4	Vinyl Chloride	UJ
SBDUP04_050319	8260C	76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroethane	UJ
SBDUP04_050319	8260C	75-35-4	1,1-Dichloroethene	UJ
SBDUP04_050319	8260C	123-91-1	1,4-Dioxane	UJ
SBDUP04_050319	8270D	51-28-5	2,4-Dinitrophenol	UJ
SBDUP04_050319	8270D	121-14-2	2,4-Dinitrotoluene	UJ
SBDUP04_050319	8270D	606-20-2	2,6-Dinitrotoluene	UJ
SBDUP04_050319	8270D	91-58-7	2-Chloronaphthalene	UJ
SBDUP04_050319	8260C	591-78-6	2-Hexanone	UJ
SBDUP04_050319	8260C	67-64-1	Acetone	J
SBDUP04_050319	8260C	107-02-8	Acrolein	UJ
SBDUP04_050319	6010B	7440-36-0	Antimony	UJ
SBDUP04_050319	8270D	100-52-7	Benzaldehyde	UJ
SBDUP04_050319	8270D	85-68-7	Benzyl Butyl Phthalate	UJ
SBDUP04_050319	6010B	7440-41-7	Beryllium	UJ
SBDUP04_050319	8270D	111-44-4	Bis(2-Chloroethyl) Ether	UJ
SBDUP04_050319	8270D	117-81-7	Bis(2-Ethylhexyl) Phthalate	UJ
SBDUP04_050319	8260C	75-25-2	Bromoform	UJ
SBDUP04_050319	8270D	86-74-8	Carbazole	UJ
SBDUP04_050319	8260C	108-90-7	Chlorobenzene	UJ
SBDUP04_050319	8260C	75-00-3	Chloroethane	UJ
SBDUP04_050319	8260C	74-87-3	Chloromethane	UJ
SBDUP04_050319	6010B	7440-47-3	Chromium, Total	J
SBDUP04_050319	6010B	7440-50-8	Copper	J
SBDUP04_050319	8260C	75-71-8	Dichlorodifluoromethane	UJ
SBDUP04_050319	8270D	117-84-0	Di-N-Octylphthalate	UJ
SBDUP04_050319	8270D	87-68-3	Hexachlorobutadiene	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 27 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SBDUP04_050319	6010B	7439-92-1	Lead	J
SBDUP04_050319	8260C	79-20-9	Methyl Acetate	UJ
SBDUP04_050319	8260C	104-51-8	N-Butylbenzene	UJ
SBDUP04_050319	8270D	98-95-3	Nitrobenzene	UJ
SBDUP04_050319	8081B	72-55-9	P,P'-DDE	UJ
SBDUP04_050319	8270D	108-95-2	Phenol	UJ
SBDUP04_050319	6010B	7440-22-4	Silver	UJ
SBDUP04_050319	6010B	7440-23-5	Sodium	J
SBDUP04_050319	8260C	75-65-0	Tert-Butyl Alcohol	UJ
SBDUP04_050319	8260C	127-18-4	Tetrachloroethylene	UJ
SBDUP04_050319	8260C	79-01-6	Trichloroethylene	UJ
SBDUP04_050319	8260C	75-69-4	Trichlorofluoromethane	UJ
SBDUP04_050319	6010B	7440-62-2	Vanadium	J
SBDUP04_050319	8260C	75-01-4	Vinyl Chloride	UJ
SBDUP04_050319	6010B	7440-66-6	Zinc	J
SBEB09_050319	8260C	123-91-1	1,4-Dioxane	UJ
SBEB09_050319	8270D	51-28-5	2,4-Dinitrophenol	UJ
SBEB09_050319	8260C	591-78-6	2-Hexanone	UJ
SBEB09_050319	8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SBEB09_050319	8260C	67-64-1	Acetone	UJ
SBEB09_050319	8260C	107-02-8	Acrolein	UJ
SBEB09_050319	8270DSIM	1912-24-9	Atrazine	UJ
SBEB09_050319	8270D	100-52-7	Benzaldehyde	UJ
SBEB09_050319	8260C	74-83-9	Bromomethane	UJ
SBEB09_050319	8260C	74-87-3	Chloromethane	UJ
SBEB09_050319	8260C	75-71-8	Dichlorodifluoromethane	UJ
SBEB09_050319	8270D	117-84-0	Di-N-Octylphthalate	UJ
SBEB09_050319	8260C	78-93-3	2-Butanone	UJ
SBEB09_050319	8081B	72-55-9	P,P'-DDE	UJ
SBEB09_050319	6010B	7440-09-7	Potassium	U (0.119)
SBEB09_050319	8260C	127-18-4	Tetrachloroethylene	UJ
LB23_8-10	6010B	7439-92-1	Lead, TCLP	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 28 of 40

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LB23_N1_0-2	6010B	7439-92-1	Lead, TCLP	J
LB23_N1_2-4	6010B	7439-92-1	Lead, TCLP	٦
LB23_N2_0-2	6010B	7439-92-1	Lead, TCLP	UJ
LB23_N2_2-4	6010B	7439-92-1	Lead, TCLP	J
LB23_N2_4-6	6010B	7439-92-1	Lead, TCLP	J
LB23_E1_0-2	6010B	7439-92-1	Lead, TCLP	J
LB23_E1_2-4	6010B	7439-92-1	Lead, TCLP	J
LB23_S1_0-2	6010B	7439-92-1	Lead, TCLP	J
LB23_S1_2-4	6010B	7439-92-1	Lead, TCLP	J
LB23_S1_6-8	6010B	7439-92-1	Lead	J
LB23_S2_0-2	6010B	7439-92-1	Lead, TCLP	J
LB23_S2_2-4	6010B	7439-92-1	Lead, TCLP	J
LB23_S2_4-6	6010B	7439-92-1	Lead, TCLP	J

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

19E0157:

The laboratory control sample and duplicate (LCS/LCSD) for batch BE90297 exhibited percent recoveries below the lower control limit (LCL) for tetrachloroethylene (69.9%, 65.2%). The associated results in sample SBEB10_050219 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BE90412 exhibited percent recoveries below the LCL for tetrachloroethylene (75.9%, 77.7%). The associated results in sample LB27_3.5-4.5 and SBDUP05_3.5-4.5 are qualified as "UJ" based on potential low bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 29 of 40

The initial calibration (ICAL) for instrument MS VOA 2 exhibited a relative standard deviation (RSD) above the control limit for 1,4-dioxane (33.7%). The associated results in sample LB27_3.5-4.5, LB28_3-4, and SBDUP05_3.5-4.5 are qualified as "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) analyzed on 4/22/2019 at 21:51 exhibited percent differences (%Ds) above the control limit for acrolein (-49.7%), dichlorodifluoromethane (51.6%), and vinyl chloride (31.1%). The associated results in sample LB27_3.5-4.5, LB28_3-4, and SBDUP05_3.5-4.5 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/1/2019 at 21:11 exhibited %Ds above the control limit for 1,4-dioxane (30.1%), acrolein (-49.8%), and dichlorodifluoromethane (36.5%). The associated results in sample SBEB10_050219 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 5/6/2019 at 9:46 exhibited %Ds above the control limit for 2-butanone (38.2%), 2-hexanone (45.6%), acetone (42.7%), and bromomethane (-28.6%). The associated results in sample SBEB10_050219 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/7/2019 at 22:57 exhibited %Ds above the control limit for bromomethane (26.1%), chloroethane (24.6%), and trichlorofluoromethane (21.8%). The associated results in sample LB27_3.5-4.5 and SBDUP05_3.5-4.5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/8/2019 at 10:06 exhibited %Ds above the control limit for 2-hexanone (22.8%), and acetone (53.6%), chloroethane (21.8%), trichlorofluoromethane (22.9%). The associated results in sample LB28_3-4 are qualified as "J" or "UJ" based on potential indeterminate bias.

19E0189:

The LCS for batch BE90476 exhibited a percent recovery below the LCL for bromoform (71.8%). The associated results in sample LB18_5-6, SBDUP04_050319, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, and SS7_0-2IN are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BE90476 exhibited a relative percent difference (RPD) above the control limit for acrolein (55.9%), chloroethane (61.8%), and dichlorodifluoromethane (63.4%). The associated results in sample LB18_5-6, SBDUP04_050319, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, and SS7_0-2IN are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 30 of 40

The LCS/LCSD for batch BE90592 exhibited percent recoveries below the LCL for tetrachloroethylene (68.3%, 68.7%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential low bias.

The ICAL for instrument QVOA4 exhibited response factors (RFs) below the control limit for chlorobenzene (0.459), tetrachloroethene (0.199), and trichloroethene (0.175). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, SS7_0-2IN, LB18_5-6, and SBDUP04_050319, are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/1/2019 at 21:11 exhibited %Ds above the control limit for 1,4-dioxane (30.1%), acrolein (-49.8%), and dichlorodifluoromethane (36.5%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 4/8/2019 at 18:47 exhibited %Ds above the control limit for 1,4-dioxane (-79.8%) and tert-butyl alcohol (-79.3%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, SS7_0-2IN, LB18_5-6, and SBDUP04_050319, are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/8/2019 at 18:43 exhibited %Ds above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (258%), bromomethane (240%), chloroethane (232%), chloromethane (204%), dichlorodifluoromethane (424%), trichlorofluoromethane (258%), and vinyl chloride (296%). The associated results in sample SS7_10-12IN are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/9/2019 at 10:53 exhibited %Ds above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (134%), 1,1-dichloroethene (21.7%), 2-hexanone (22.6%), acetone (37.7%), chloromethane (69%), methyl acetate (20.3%), n-butylbenzene (24.3%), trichlorofluoromethane (52.2%), and vinyl chloride (38.2%). The associated results in sample LB18_5-6, SBDUP04_050319, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, and SS7_0-2IN are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/9/2019 at 22:45 exhibited %Ds above the control limit for 2-butanone (45.6%), 2-hexanone (33.8%), acetone (48%), bromomethane (-61.8%), and chloromethane (-27.3%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 31 of 40

The CCV analyzed on 5/8/2019 at 13:41 exhibited %Ds above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (146%), 1,1-dichloroethene (22.9%), 2-hexanone (25.5%), acetone (41.6%), acrolein (237%), chloroethane (41%), chloromethane (50.4%), n-butylbenzene (26.7%), trichlorofluoromethane (60.2%), and vinyl chloride (48.7%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, and SS4_10-12IN are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 7:44 exhibited %Ds above the control limit for 1,1,1,2tetrachloroethane (21.3%), acetone (55.9%), bromoform (32.9%), carbon tetrachloride (27.4%), and dibromochloromethane (22.6%). The associated results in sample SS7_10-12IN are qualified as "J" or "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

19E0157:

The field duplicate and parent sample (SBDUP05_3.5-4.5 and LB27_3.5-4.5) exhibited absolute differences above the RL for benzo(a)anthracene (0.0993 mg/kg), fluoranthene (0.187 mg/kg), phenanthrene (0.151 mg/kg), and pyrene (0.152 mg/kg). The associated results are qualified as "J" based on potential indeterminate bias.

The ICAL for instrument BNA #7 exhibited a RSD above the control limit for pyridine (28.3%). The associated results in sample LB27_3.5-4.5, LB28_3-4, and SBDUP05_3.5-4.5 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/4/2019 at 16:14 exhibited %Ds above the control limit for 2,4-dinitrophenol (65.8%) and 4.6-dinitro-2-methylphenol (44.2%). The associated results in sample SBEB10_050219 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/8/2019 at 15:38 exhibited %Ds above the control limit for 2,4dinitrophenol (37.5%), atrazine (-41.7%), benzaldehyde (-29.1%), benzidine (-65.8%), benzoic acid (26.2%), benzyl butyl phthalate (23.2%), bis(2-ethylhexyl) phthalate (25%), and di-n-octyl phthalate (52.9%). The associated results in sample LB27_3.5-4.5 and LB28_3-4 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 8:29 exhibited %Ds above the control limit for 3-nitroaniline (25.5%), benzaldehyde (-43.5%), di-n-octyl phthalate (43%), and hexachlorocyclopentadiene (25.1%). The associated results in sample SBEB10_050219 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 32 of 40

The CCV analyzed on 5/9/2019 at 8:32 exhibited %Ds above the control limit for 2,4-dinitrophenol (28%), atrazine (-41.3%), benzaldehyde (-27.6%), benzidine (-53.4%), benzyl butyl phthalate (24.7%), bis(2-ethylhexyl) phthalate (26.9%), di-n-octyl phthalate (56.1%), n-nitrosodimethylamine (23.3%), and pentachlorophenol (-28.4%). The associated results in sample SBDUP05_3.5-4.5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 8:01 exhibited a %D above the control limit for hexachlorobutadiene (52.6%). The associated results in sample SBEB10_050219 are qualified as "UJ" based on potential indeterminate bias.

19E0189:

The ICV analyzed on 5/4/2019 at 15:49 exhibited %Ds above the control limit for 2,4-dinitrophenol (50.8%) and 2,6-dinitrotoluene (34.7%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, and SS6_10-12IN are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/4/2019 at 16:14 exhibited %Ds above the control limit for 2,4-dinitrophenol (65.8%) and 4,6-dinitro-2-methylphenol (44.2%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/4/2019 at 18:34 exhibited a %D above the control limit for 2,4-dinitrophenol (62.3%). The associated results in sample SS7_0-2IN, SS7_10-12IN, LB18_5-6, and SBDUP04_050319 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 9:35 exhibited %Ds above the control limit for 1,2,4,5-tetrachlorobenzene (21.9%), 2,4,6-trichlorophenol (23.7%), 2,4-dinitrotoluene (28.3%), 4,6-dinitro-2-methylphenol (65%), 4-bromophenyl phenyl ether (25.3%), benzaldehyde (-31.4%), bis(2-chloroethoxy)methane (-24.5%), bis(2-chloroethyl)ether (-27%), bis(2-chloroisopropyl)ether (-55.4%), hexachlorobutadiene (33%), hexachlorocyclopentadiene (35.9%), n-nitrosodimethylamine (-29.8%), n-nitroso-di-n-propylamine (-25.2%), and pentachlorophenol (57.9%). The associated results in sample SS5_0-2IN are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 14:54 exhibited %Ds above the control limit for benzaldehyde (-27%) and di-n-octyl phthalate (38.9%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 33 of 40

The CCV analyzed on 5/10/2019 at 14:40 exhibited %Ds above the control limit for 2,4-dinitrotoluene (61.9%), 4,6-dinitro-2-methylphenol (82.7%), 4-bromophenyl phenyl ether (32.8%), benzaldehyde (-26.8%), benzidine (-50.5%), bis(2-chloroisopropyl)ether (-46.7%), hexachlorobutadiene (60.4%), hexachlorocyclopentadiene (55.3%), indeno(1,2,3-cd)pyrene (31.7%), n-nitrosodimethylamine (-25.6%), and pentachlorophenol (66.1%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_10-12IN, SS6_0-2IN, and SS6_10-12IN are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 14:36 exhibited %Ds above the control limit for 2,4dinitrotoluene (36.5%), 2,6-dinitrotoluene (38.5%), 2-chloronaphthalene (27.1%), benzaldehyde (31.2%), bis(2-chloroethyl)ether (-24.8%), benzyl butyl phthalate (37.7%), bis(2ethylhexyl)phthalate (33.2%),carbazole (21.8%),di-n-octyl phthalate (53.6%),hexachlorobutadiene (29.1%), nitrobenzene (25.8%), and phenol (22.8%). The associated results in sample SS7_0-2IN, SS7_10-12IN, LB18_5-6, and SBDUP04_050319 are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 17:09 exhibited a %D above the control limit for atrazine (46%). The associated results in sample SBEB09_050319 are qualified as "UJ" based on potential indeterminate bias.

PFAS by USEPA Method 537M:

19E0189:

The LCS for batch BE90415 exhibited a percent recovery above the upper control limit (UCL) for perfluorooctanesulfonic acid (131%). The associated results in sample SS1_0-2IN, SS3_0-2IN, SS5_0-2IN, SS5_10-12IN, and SS7_0-2IN are qualified as "J" based on potential high bias.

Pesticides by SW-846 Method 8081B:

<u>19E0189:</u>

The ICAL for instrument GC Dual E exhibited a RSD above the control limit for 4,4'-DDE (20.2%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, SS7_0-2IN, SS7_10-12IN, SBDUP04_050319, and SBEB09_050319 from the primary gas chromatography (GC) column are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 34 of 40

The CCV analyzed on 5/14/2019 at 10:40 exhibited a %D above the control limit for gamma-BHC (21.7%). The associated results in sample SS3_0-2IN and SS5_0-2IN from the primary GC column are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

19E0189:

The laboratory duplicate and parent sample (SS5_0-2IN) exhibited a RPD above the control limit for magnesium (40.8%) and calcium (46.7%). The associated results are qualified as "J" based on potential indeterminate bias.

The MS for batch BE90359 exhibited percent recoveries below the LCL for lead (53.8%), silver (19.4%), antimony (47.7%), beryllium (73.9%), chromium (74.2%), copper (53.1%), vanadium (71.9%), and zinc (54.4%). The associated results in sample SBDUP04_050319, SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3_0-2IN, SS3_10-12IN, SS4_0-2IN, SS4_10-12IN, SS5_0-2IN, SS5_10-12IN, SS6_0-2IN, SS6_10-12IN, SS7_0-2IN, and SS7_10-12IN are qualified as "J" or "UJ" based on potential low bias.

The CCV analyzed on Y9E3022-CCVD exhibited a percent recovery above the UCL for sodium (111%). The associated results in sample SS1_0-2IN, SS1_10-12IN, SS2_0-2IN, SS2_10-12IN, SS3 0-2IN, SS3 10-12IN, SS4 0-2IN, SS4 10-12IN, SS5 0-2IN, SS5 10-12IN, SS6 0-2IN, SS6_10-12IN, SS7_0-2IN, and SS7_10-12IN are qualified as "J" based on potential high bias.

The CCV analyzed on Y9E3022-CCVE exhibited a percent recovery above the UCL for sodium (114%). The associated results in sample SBDUP04_050319 are qualified as "J" based on potential high bias.

The continuing calibration blank (CCB) (Y9E0830-CCBC) exhibited a detection of potassium (0.15 ug/mL). The associated results in sample SBEB09_050319 are qualified as "U" at the sample concentration based on potential blank contamination.

19E0244:

The laboratory duplicate and parent sample (LB23_S1_6-8) exhibited a RPD above the control limit for lead (37%). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on Y9F0308-CCVC exhibited a percent recovery below the LCL for lead (TCLP) (77.3%). The associated results in sample LB23_8-10, LB23_N1_0-2, LB23_N1_2-4, LB23_N2_0-2, LB23_N2_2-4, LB23_N2_4-6, LB23_E1_0-2, LB23_E1_2-4, LB23_S1_0-2, LB23_S1_2-4,

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 35 of 40

LB23_S2_0-2, LB23_S2_2-4, and LB23_S2_4-6 are qualified as "J" or "UJ" based on potential low

bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

<u>19E0157:</u>

The method blank (MB) for batch BE90297 exhibited a detection of methylene chloride (1.67

ug/L). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch BE90412 exhibited percent recoveries above the UCL for vinyl chloride

(140%, 138%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch BE90412 exhibited a RPD above the control limit for trans-1,3-

dichloropropene (40.3%) and 1,2,3-trichlorobenzene (48%). Organic results are not qualified on

the basis of MS/MSDs alone. No qualification is necessary.

The MSD for batch BE90412 exhibited a percent recovery below the LCL for acrolein (13.8%).

Organic results are not qualified on the basis of MSDs alone. No qualification is necessary.

The LCS/LCSD for batch BE90464 exhibited percent recoveries above the UCL for vinyl chloride

(144%, 139%). The associated results are non-detections. No qualification is necessary.

The field blank (FB) (SBEB10_050219) exhibited a detection of acetone (1.79 ug/L). The

associated results are non-detections. No qualification is necessary.

The ICV analyzed on 4/22/2019 at 21:51 exhibited a %D above the control limit for 1,4-dioxane

(60.7%). The associated results were previously qualified. No further action is necessary.

The ICV analyzed on 5/1/2019 at 21:11 exhibited a %D above the control limit for

tetrachloroethylene (-32.9%). The associated results were previously qualified. No further action

is necessary.

The CCV analyzed on 5/6/2019 at 9:46 exhibited a %D above the control limit for

tetrachloroethylene (-24%). The associated results were previously qualified. No further action is

necessary.

LANGAN

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 36 of 40

The CCV analyzed on 5/7/2019 at 22:57 exhibited %Ds above the control limit for 1,4-dioxane (63.1%) and acrolein (-51.4%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/8/2019 at 10:06 exhibited %Ds above the control limit for 1,4-dioxane (47%), acrolein (-46.9%), dichlorodifluoromethane (-21.3%). The associated results were previously qualified. No further action is necessary.

19E0189:

The LCS for batch BE90476 exhibited percent recoveries above the UCL for chloromethane (148%), vinyl chloride (153%), trichlorofluoromethane (151%), and 1,1,2-trichloro-1,2,2-trifluoroethane (151%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch BE90476 exhibited percent recoveries below the LCL for methylcyclohexane (51.1%, 53.4%), cyclohexane (58%, 64.1%), 1,2-dibromo-3-chloropropane (33.6%, 30.4%), 1,2-dibromoethane (39.8%), and bromoform (26.5%, 17.5%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MS/MSD for batch BE90476 exhibited percent recoveries above the UCL for chloromethane (262%, 287%), vinyl chloride (265%, 327%), trichlorofluoromethane (267%, 340%), dichlorodifluoromethane (205%, 251%), and 1,1,2-trichloro-1,2,2-trifluoroethane (267%, 341%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MS/MSD for batch BE90476 exhibited a RPD above the control limit for styrene (72.3%), cis-1,3-dichloropropene (93.9%), trans-1,3-dichloropropene (69%), acrylonitrile (95.9%), 4-methyl-2-pentanone (121%), 1,2,4-trichlorobenzene (52.9%), 2-hexanone (157%), bromomethane (57.9%), chloroethane (110%), 2-butanone (108%), 1,2,3-trichlorobenzene (55.4%), and hexachlorobutadiene (67.8%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The LCS for batch BE90639 exhibited percent recoveries above the UCL for chloromethane (136%), vinyl chloride (134%), trichlorofluoromethane (147%), and 1,1,2-trichloro-1,2,2-trifluoroethane (147%). The associated results are non-detections. No qualification is necessary.

The ICV analyzed on 5/1/2019 at 21:11 exhibited a %D above the control limit for tetrachloroethene (-32.9%). The associated results were previously qualified. No further action is necessary.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 37 of 40

The CCV analyzed on 5/9/2019 at 10:53 exhibited %Ds above the control limit for 1,4-dioxane (-65.2%), acrolein (109%), chloroethane (65.1%), dichlorodifluoromethane (-23.3%), and tert-butyl alcohol (-74.5%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/9/2019 at 22:45 exhibited %Ds above the control limit for 1,4-dioxane (41.6%), acrolein (21.6%), and dichlorodifluoromethane (-24.9%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/8/2019 at 13:41 exhibited %Ds above the control limit for 1,4-dioxane (-66.5%) and tert-butyl alcohol (-74.7%). The associated results were previously qualified. No further action is necessary.

SVOCs by SW-846 Method 8270D:

19E0157:

The LCS for batch BE90460 exhibited a percent recovery above the UCL for di-n-octylphthalate (146%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch BE90460 exhibited a RPD above the control limit for anthracene (30.2%), pyrene (41.8%), benzo(g,h,i)perylene (48.1%), indeno(1,2,3-c,d)pyrene (47.6%), benzo(b)fluoranthene (50%), fluoranthene (39.6%), benzo(k)fluoranthene (50.5%), chrysene (46.9%), benzo(a)pyrene (51.3%), dibenz(a,h)anthracene (38.8%), benzo(a)anthracene (48.8%), hexachlorocyclopentadiene (30.4%), and acenaphthene (31.9%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The MSD for batch BE90460 exhibited a percent recovery below the LCL for phenanthrene (31.9%). Organic results are not qualified on the basis of MSDs alone. No qualification is necessary.

The LCS/LCSD for batch BE90532 exhibited percent recoveries above the UCL for 2,3,4,6-tetrachlorophenol (172%, 168%). The associated results are non-detections. No qualification is necessary.

The ICV analyzed on 4/29/2019 at 15:38 exhibited a %D above the control limit for pyridine (-43.2%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/10/2019 at 8:29 exhibited %Ds above the control limit for 2,4-dinitrophenol (65.6%) and 4,6-dinitro-2-methylphenol (44.8%). The associated results were previously qualified. No further action is necessary.

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 38 of 40

The CCV analyzed on 5/9/2019 at 8:32 exhibited a %D above the control limit for pyridine (-27%).

The associated results were previously qualified. No further action is necessary.

19E0189:

The LCS/LCSD for batch BE90532 exhibited percent recoveries above the UCL for 2,3,4,6-

tetrachlorophenol (172%, 168%). The associated results are non-detections. No qualification is

necessary.

The LCS for batch BE90594 exhibited a percent recovery above the UCL for 2,3,4,6-

tetrachlorophenol (131%). The associated results are non-detections. No qualification is

necessary.

The MS/MSD for batch BE90594 exhibited percent recoveries above the UCL for 2,3,4,6-

tetrachlorophenol (136%, 136%). Organic results are not qualified on the basis of MS/MSDs

alone. No qualification is necessary.

The LCS for batch BE90618 exhibited a percent recovery above the UCL for 2,3,4,6-

tetrachlorophenol (134%). The associated results are non-detections. No qualification is

necessary.

The CCV analyzed on 5/10/2019 at 9:35 exhibited a %D above the control limit for 2,4-

dinitrophenol (81.8%). The associated results were previously qualified. No further action is

necessary.

The CCV analyzed on 5/10/2019 at 14:54 exhibited %Ds above the control limit for 2,4-

dinitrophenol (56.3%) and 4,6-dinitro-2-methylphenol (44.8%). The associated results were

previously qualified. No further action is necessary.

The CCV analyzed on 5/10/2019 at 14:40 exhibited %Ds above the control limit for 2,4-

dinitrophenol (110%) and 2,6-dinitrotoluene (67%). The associated results were previously

qualified. No further action is necessary.

PFAS by USEPA Method 537M:

<u>19E0157:</u>

The LCS for batch BE90321 exhibited a percent recovery above the UCL for

perfluorooctanesulfonic acid (132%). The associated results are non-detections. No qualification

is necessary.

LANGAN

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301

June 4, 2019 Page 39 of 40

<u>19E0244:</u>

The LCS for batch BE90415 exhibited a percent recovery above the UCL for

perfluorooctanesulfonic acid (131%). The associated results are non-detections. No qualification

is necessary.

Metals by SW-846 Method 6010D:

19E0189:

The MB for batch BE90359 exhibited a detection of potassium (7.2 mg/kg). The associated results

are greater than ten times the contamination. No qualification is necessary.

The MS/MSD for batch BE90359 exhibited percent recoveries below the LCL for aluminum (-

914%), iron (-3350%), magnesium (-1800%), manganese (-3.48%), potassium (-236%), and

calcium (-2270%). The associated results in the parent sample are greater than four times the

spiked amount. No qualification is necessary.

The MB for batch BE90367 exhibited a detection of aluminum (0.126 mg/L). The associated

results are non-detections. No qualification is necessary.

The FB (SBEB09_050319) exhibited a detection of potassium (0.119 mg/L). The associated

results are non-detections. No qualification is necessary.

The field duplicate and parent sample (SBDUP04_050319 and SS1_10-12IN) exhibited a RPD

above the control limit for lead (138%). The associated results were previously qualified. No

further action is necessary.

The CCV analyzed on Y9E0830-CCVC exhibited percent recoveries above the UCL for aluminum

(112%) and sodium (112%). The associated results are non-detections. No qualification is

necessary.

The CCV analyzed on Y9E0830-CCVC exhibited a percent recovery above the UCL for potassium

(114%). The associated results were previously qualified. No further action is necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For

results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less

than ±2X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

RPD is less than or equal to 50% for soil. The following field duplicate and parent sample pairs

were compared to the precision criteria:

LANGAN

Data Usability Summary Report For 41 Kensico Drive May 2019 Soil Samples Langan Project No.: 190046301 June 4, 2019 Page 40 of 40

- SBDUP04_050319 and SS1_10-12in
- SBDUP05_3.5-4.5 and LB27_3.5-4.5
- SBDUP06_050619 and LB23_0-2

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Tyler Chow, Langan Project Manager

From: Emily Strake, Langan Senior Project Chemist

Date: October 16, 2018

Re: Data Usability Summary Report

For 41 Kensico Drive

Groundwater Samples Collected in September, 2018

Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in 2018 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAC registration # 10854) and ConTest Analytical Laboratory. (NYSDOH NELAC registration #10899) for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), pesticides, total organic carbon (TOC), biological oxygen demand (BOD), chemical oxygen demand (COD), pesticides, polychlorinated biphenyls (PCBs), metals, mercury (Hg), cyanide (CN), and polyfluoroalkyl substances (PFAS) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs SW-846 Method 8270D and 8270D with SIM
- Pesticides by SW-846 Method 8081B
- PCBs by SW-846 Method 8082A
- Metals by Method SW-846 6010D
- Metals by Method SW-846 6020B
- Mercury by SW-846 Method 7473
- Cyanide by SW-846 Method SM 4500 CN C/E
- PFAS by SOP 434-PFAAS

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
-----	------------------	---------------------	----------------	-----------------------

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 2 of 47

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
1810168	1810168-01	MW-1_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810168	1810168-02	LMW01D_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810168	1810168-03	MW-2_090518	9/5/2018	VOCs, SVOCs
1810168	1810168-04	LMW08S_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810168	1810168-05	LMW08D_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810168	1810168-06	GWDUP01_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810168	1810168-07	GWFB01_090518	9/5/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810168	1810168-08	GWTB01_090518	9/5/2018	VOCs
1810253	1810253-01	MW-3_090618	9/6/2018	VOCs, SVOCs
1810253	1810253-02	MW-4_090618	9/6/2018	VOCs, SVOCs
1810253	1810253-03	LMW12S_090618	9/6/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810253	1810253-04	LMW12D_090618	9/6/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810253	1810253-05	LMW15_090618	9/6/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810253	1810253-06	LMW20S_090618	9/6/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810253	1810253-07	LMW20D_090618	9/6/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810253	1810253-08	GWTB02_090618	9/6/2018	VOCs
1810296	1810296-01	MW-5_090718	9/7/2018	VOCs, SVOCs
1810296	1810296-02	MW-6_090718	9/7/2018	VOCs, SVOCs
1810296	1810296-03	LMW11_090718	9/7/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810296	1810296-04	LMW19S_090718	9/7/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN
1810296	1810296-05	LMW19D_090718	9/7/2018	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg
1810296	1810296-06	GWTB03_090718	9/7/2018	VOCs

Validation Overview

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 3 of 47

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34a, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, overall system performance, serial dilutions, dual column performance, field duplicate, and field blank sample results.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 4 of 47

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW-1_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
MW-1_090518	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
MW-1_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
MW-1_090518	SW8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
MW-1_090518	SW8260C	541-73-1	1,3-DICHLOROBENZENE	UJ
MW-1_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
MW-1_090518	SW8260C	67-64-1	ACETONE	UJ
MW-1_090518	SW8260C	107-02-8	ACROLEIN	UJ
MW-1_090518	SW8260C	74-97-5	BROMOCHLOROMETHANE	UJ
MW-1_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
MW-1_090518	SW8260C	108-90-7	CHLOROBENZENE	UJ
MW-1_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
MW-1_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
MW-1_090518	SW8260C	74-95-3	DIBROMOMETHANE	UJ
MW-1_090518	SW8260C	179601-23-1	M,P-XYLENES	UJ
MW-1_090518	SW8260C	108-87-2	METHYLCYCLOHEXANE	UJ
MW-1_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
MW-1_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
MW-1_090518	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
MW-1_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
MW-1_090518	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
MW-1_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
MW-1_090518	SW8260C	75-01-4	VINYL CHLORIDE	J

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 5 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator
MW-1_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	Qualifier J
MW-1_090518	SW6010B	7440-33-3	CALCIUM (TOTAL)	 R
MW-1_090518	SW6010B	7440-70-2	CHROMIUM (TOTAL)	UJ
MW-1_090518	SW6010B	7440-47-3	COBALT (TOTAL)	UJ
MW-1_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
MW-1_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
	SW8270DSIM	87-86-5		UJ
MW-1_090518			PENTACHLOROPHENOL	
MW-1_090518	SW6010B	7439-89-6	IRON (TOTAL)	J
MW-1_090518	SW6010B	7439-92-1	LEAD (TOTAL)	U (0.00635)
MW-1_090518	SW8081B	53494-70-5	ENDRIN KETONE	UJ
MW-1_090518	SW8081B	5566-34-7	gamma-Chlordane	UJ
MW-1_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J
MW-1_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	J
MW-1_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
MW-1_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
MW-1_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
MW-1_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	J
MW-1_090518	SW6010B	7440-66-6	ZINC (TOTAL)	J
MW-1_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
MW-1_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	J
MW-1_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
MW-1_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
MW-1_090518	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
MW-1_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
MW-1_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
MW-1_090518	SW8270D	110-86-1	PYRIDINE	UJ
MW-1_090518	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
LMW01D_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	J
LMW01D_090518	SW6010B	7440-70-2	CALCIUM (TOTAL)	R
LMW01D_090518	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ
LMW01D_090518	SW6010B	7440-48-4	COBALT (TOTAL)	UJ
LMW01D_090518	SW6010B	7439-92-1	LEAD (TOTAL)	U (0.00530)

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 6 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW01D_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
LMW01D_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW01D_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW01D_090518	SW8260C	67-64-1	ACETONE	UJ
LMW01D_090518	SW8260C	107-02-8	ACROLEIN	UJ
LMW01D_090518	SW8260C	74-97-5	BROMOCHLOROMETHANE	UJ
LMW01D_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW01D_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW01D_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW01D_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW01D_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW01D_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW01D_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW01D_090518	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW01D_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J
LMW01D_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	J
LMW01D_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW01D_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
LMW01D_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
LMW01D_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW01D_090518	SW6010B	7440-66-6	ZINC (TOTAL)	J
LMW01D_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
LMW01D_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
LMW01D_090518	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW01D_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
LMW01D_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
LMW01D_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW01D_090518	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW01D_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW01D_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW01D_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW01D_090518	SW8270D	110-86-1	PYRIDINE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 7 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW01D_090518	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
MW-2_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
MW-2_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
MW-2_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
MW-2_090518	SW8260C	67-64-1	ACETONE	UJ
MW-2_090518	SW8260C	107-02-8	ACROLEIN	UJ
MW-2_090518	SW8260C	74-97-5	BROMOCHLOROMETHANE	UJ
MW-2_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
MW-2_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
MW-2_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
MW-2_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
MW-2_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
MW-2_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
MW-2_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
MW-2_090518	SW8260C	75-01-4	VINYL CHLORIDE	J
MW-2_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
MW-2_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
MW-2_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
MW-2_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
MW-2_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
MW-2_090518	SW8270D	110-86-1	PYRIDINE	UJ
LMW08S_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	J
LMW08S_090518	SW6010B	7440-70-2	CALCIUM (TOTAL)	R
LMW08S_090518	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ
LMW08S_090518	SW6010B	7440-48-4	COBALT (TOTAL)	UJ
LMW08S_090518	SW6010B	7439-92-1	LEAD (TOTAL)	U (0.00577)
LMW08S_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J
LMW08S_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	J
LMW08S_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW08S_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
LMW08S_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
LMW08S_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	J

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 8 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW08S_090518	SW6010B	7440-66-6	ZINC (TOTAL)	UJ
LMW08S_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
LMW08S_090518	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW08S_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW08S_090518	SW8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
LMW08S_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW08S_090518	SW8260C	107-02-8	ACROLEIN	UJ
LMW08S_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW08S_090518	SW8260C	75-15-0	CARBON DISULFIDE	UJ
LMW08S_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW08S_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW08S_090518	SW8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
LMW08S_090518	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
LMW08S_090518	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW08S_090518	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW08S_090518	SW8260C	108-87-2	METHYLCYCLOHEXANE	UJ
LMW08S_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW08S_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW08S_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
LMW08S_090518	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW08S_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW08S_090518	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW08S_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
LMW08S_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
LMW08S_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW08S_090518	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW08S_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW08S_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW08S_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
LMW08S_090518	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW08S_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 9 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW08S_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW08S_090518	SW8270D	110-86-1	PYRIDINE	UJ
LMW08D_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	J
LMW08D_090518	SW6010B	7440-70-2	CALCIUM (TOTAL)	R
LMW08D_090518	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ
LMW08D_090518	SW6010B	7440-48-4	COBALT (TOTAL)	UJ
LMW08D_090518	SW6010B	7439-92-1	LEAD (TOTAL)	U (0.00938)
LMW08D_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J
LMW08D_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	J
LMW08D_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW08D_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
LMW08D_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
LMW08D_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW08D_090518	SW6010B	7440-66-6	ZINC (TOTAL)	J
LMW08D_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
LMW08D_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
LMW08D_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW08D_090518	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW08D_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW08D_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
LMW08D_090518	SW8260C	75-34-3	1,1-DICHLOROETHANE	UJ
LMW08D_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
LMW08D_090518	SW8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
LMW08D_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW08D_090518	SW8260C	107-02-8	ACROLEIN	UJ
LMW08D_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW08D_090518	SW8260C	75-15-0	CARBON DISULFIDE	J
LMW08D_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW08D_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW08D_090518	SW8260C	156-59-2	CIS-1,2-DICHLOROETHYLENE	J
LMW08D_090518	SW8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
LMW08D_090518	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 10 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW08D_090518	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW08D_090518	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW08D_090518	SW8260C	108-87-2	METHYLCYCLOHEXANE	UJ
LMW08D_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW08D_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW08D_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
LMW08D_090518	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	UJ
LMW08D_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW08D_090518	SW8260C	75-01-4	VINYL CHLORIDE	UJ
LMW08D_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW08D_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW08D_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
LMW08D_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW08D_090518	SW8270D	110-86-1	PYRIDINE	UJ
GWDUP01_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	J
GWDUP01_090518	SW6010B	7440-70-2	CALCIUM (TOTAL)	R
GWDUP01_090518	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ
GWDUP01_090518	SW6010B	7440-48-4	COBALT (TOTAL)	UJ
GWDUP01_090518	SW6010B	7439-92-1	LEAD (TOTAL)	U (0.00656)
GWDUP01_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J
GWDUP01_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	J
GWDUP01_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
GWDUP01_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
GWDUP01_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
GWDUP01_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	J
GWDUP01_090518	SW6010B	7440-66-6	ZINC (TOTAL)	UJ
GWDUP01_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
GWDUP01_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
GWDUP01_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
GWDUP01_090518	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
GWDUP01_090518	SW8270D	95-94-3	1,2,4,5-TETRACHLOROBENZENE	UJ
GWDUP01_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 11 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWDUP01_090518	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ
GWDUP01_090518	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
GWDUP01_090518	SW8270D	91-58-7	2-CHLORONAPHTHALENE	UJ
GWDUP01_090518	SW8270D	91-57-6	2-METHYLNAPHTHALENE	UJ
GWDUP01_090518	SW8270D	88-74-4	2-NITROANILINE	UJ
GWDUP01_090518	SW8270D	91-94-1	3,3'-DICHLOROBENZIDINE	UJ
GWDUP01_090518	SW8270D	99-09-2	3-NITROANILINE	UJ
GWDUP01_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
GWDUP01_090518	SW8270D	101-55-3	4-BROMOPHENYL PHENYL ETHER	UJ
GWDUP01_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
GWDUP01_090518	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
GWDUP01_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
GWDUP01_090518	SW8260C	78-87-5	1,2-DICHLOROPROPANE	UJ
GWDUP01_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWDUP01_090518	SW8260C	107-02-8	ACROLEIN	UJ
GWDUP01_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
GWDUP01_090518	SW8260C	75-15-0	CARBON DISULFIDE	UJ
GWDUP01_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
GWDUP01_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
GWDUP01_090518	SW8260C	10061-01-5	CIS-1,3-DICHLOROPROPENE	UJ
GWDUP01_090518	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
GWDUP01_090518	SW8260C	79-20-9	METHYL ACETATE	UJ
GWDUP01_090518	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
GWDUP01_090518	SW8260C	108-87-2	METHYLCYCLOHEXANE	UJ
GWDUP01_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
GWDUP01_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWDUP01_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
GWDUP01_090518	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
GWDUP01_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWDUP01_090518	SW8260C	75-01-4	VINYL CHLORIDE	J
GWDUP01_090518	SW8270D	106-47-8	4-CHLOROANILINE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 12 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWDUP01_090518	SW8270D	7005-72-3	4-CHLOROPHENYL PHENYL ETHER	UJ
GWDUP01_090518	SW8270D	100-01-6	4-NITROANILINE	UJ
GWDUP01_090518	SW8270D	98-86-2	ACETOPHENONE	UJ
GWDUP01_090518	SW8270D	100-52-7	BENZALDEHYDE	UJ
GWDUP01_090518	SW8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
GWDUP01_090518	SW8270D	92-52-4	BIPHENYL (DIPHENYL)	UJ
GWDUP01_090518	SW8270D	111-91-1	BIS(2-CHLOROETHOXY) METHANE	UJ
GWDUP01_090518	SW8270D	111-44-4	BIS(2-CHLOROETHYL) ETHER (2- CHLOROETHYL ETHER)	UJ
GWDUP01_090518	SW8270D	108-60-1	BIS(2-CHLOROISOPROPYL) ETHER	UJ
GWDUP01_090518	SW8270D	105-60-2	CAPROLACTAM	UJ
GWDUP01_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
GWDUP01_090518	SW8270D	86-74-8	CARBAZOLE	UJ
GWDUP01_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
GWDUP01_090518	SW8270D	132-64-9	DIBENZOFURAN	UJ
GWDUP01_090518	SW8270D	84-66-2	DIETHYL PHTHALATE	UJ
GWDUP01_090518	SW8270D	84-74-2	DI-N-BUTYL PHTHALATE	UJ
GWDUP01_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
GWDUP01_090518	SW8270D	77-47-4	HEXACHLOROCYCLOPENTADIENE	UJ
GWDUP01_090518	SW8270D	78-59-1	ISOPHORONE	UJ
GWDUP01_090518	SW8270D	621-64-7	N-NITROSODI-N-PROPYLAMINE	UJ
GWDUP01_090518	SW8270D	86-30-6	N-NITROSODIPHENYLAMINE	UJ
GWDUP01_090518	SW8270D	2312-35-8	PROPARGITE	UJ
GWDUP01_090518	SW8270D	110-86-1	PYRIDINE	UJ
GWDUP01_090518	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
GWFB01_090518	SW6010B	7440-39-3	BARIUM (TOTAL)	UJ
GWFB01_090518	SW6010B	7440-70-2	CALCIUM (TOTAL)	R
GWFB01_090518	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ
GWFB01_090518	SW6010B	7440-48-4	COBALT (TOTAL)	UJ
GWFB01_090518	SW6010B	7439-92-1	LEAD (TOTAL)	J
GWFB01_090518	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	UJ
GWFB01_090518	SW6010B	7439-96-5	MANGANESE (TOTAL)	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 13 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWFB01_090518	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
GWFB01_090518	SW6010B	7440-09-7	POTASSIUM (TOTAL)	UJ
GWFB01_090518	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
GWFB01_090518	SW6010B	7440-23-5	SODIUM (TOTAL)	UJ
GWFB01_090518	SW6010B	7440-66-6	ZINC (TOTAL)	UJ
GWFB01_090518	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
GWFB01_090518	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
GWFB01_090518	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
GWFB01_090518	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
GWFB01_090518	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
GWFB01_090518	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
GWFB01_090518	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
GWFB01_090518	SW8270D	100-52-7	BENZALDEHYDE	UJ
GWFB01_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
GWFB01_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
GWFB01_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWFB01_090518	SW8260C	67-64-1	ACETONE	UJ
GWFB01_090518	SW8260C	107-02-8	ACROLEIN	UJ
GWFB01_090518	SW8260C	74-97-5	BROMOCHLOROMETHANE	UJ
GWFB01_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
GWFB01_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
GWFB01_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
GWFB01_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
GWFB01_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWFB01_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
GWFB01_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWFB01_090518	SW8260C	75-01-4	VINYL CHLORIDE	UJ
GWFB01_090518	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
GWFB01_090518	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
GWFB01_090518	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
GWTB01_090518	SW8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 14 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWTB01_090518	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
GWTB01_090518	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWTB01_090518	SW8260C	67-64-1	ACETONE	UJ
GWTB01_090518	SW8260C	107-02-8	ACROLEIN	UJ
GWTB01_090518	SW8260C	74-97-5	BROMOCHLOROMETHANE	UJ
GWTB01_090518	SW8260C	74-83-9	BROMOMETHANE	UJ
GWTB01_090518	SW8260C	75-00-3	CHLOROETHANE	UJ
GWTB01_090518	SW8260C	74-87-3	CHLOROMETHANE	UJ
GWTB01_090518	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
GWTB01_090518	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWTB01_090518	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
GWTB01_090518	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWTB01_090518	SW8260C	75-01-4	VINYL CHLORIDE	UJ
MW-1_090518	SOP 434-PFAAS	2058-94-8	Perfluoroundecanoic Acid (PFUnA)	UJ
MW-1_090519	SOP 434-PFAAS	2706-90-3	Perfluoropentanoic Acid (PFPeA)	UJ
MW-1_090520	SOP 434-PFAAS	307-24-4	Perfluorohexanoic acid (PFHxA)	J
MW-1_090521	SOP 434-PFAAS	307-55-1	Perfluorododecanoic acid (PFDoA)	UJ
MW-1_090522	SOP 434-PFAAS	355-46-4	Perfluorohexanesulfonic acid (PFHxS)	UJ
MW-1_090523	SOP 434-PFAAS	375-92-8	Perfluoroheptane Sulfonate (PFHPS)	UJ
MW-1_090524	SOP 434-PFAAS	375-95-1	Perfluorononanoic acid (PFNA)	UJ
MW-1_090525	SOP 434-PFAAS	376-06-7	Perfluorotetradecanoic acid (PFTA)	UJ
MW-1_090526	SOP 434-PFAAS	72629-94-8	Perfluorotridecanoic Acid (PFTriA)	UJ
MW-1_090527	SOP 434-PFAAS	754-91-6	Perfluorooctane Sulfonamide (FOSA)	UJ
LMW08S_090518	SOP 434-PFAAS	754-91-6	Perfluorooctane Sulfonamide (FOSA)	UJ
GWDUP01_090518	SOP 434-PFAAS	754-91-6	Perfluorooctane Sulfonamide (FOSA)	UJ
GWFB01_090518	SOP 434-PFAAS	754-91-6	Perfluorooctane Sulfonamide (FOSA)	UJ
GWTB02_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
GWTB02_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	UJ
GWTB02_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
GWTB02_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 15 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWTB02_090618	SW8260C	67-64-1	ACETONE	UJ
GWTB02_090618	SW8260C	107-02-8	ACROLEIN	UJ
GWTB02_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
GWTB02_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
GWTB02_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
GWTB02_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
GWTB02_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
GWTB02_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
GWTB02_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
GWTB02_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
GWTB02_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWTB02_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
GWTB02_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
GWTB02_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	UJ
GWTB02_090618	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	UJ
GWTB02_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWTB02_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW12D_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
LMW12D_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW12D_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW12D_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW12D_090618	SW8260C	67-64-1	ACETONE	UJ
LMW12D_090618	SW8260C	107-02-8	ACROLEIN	UJ
LMW12D_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
LMW12D_090618	SW6010B	7439-92-1	LEAD (TOTAL)	UJ
LMW12D_090618	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ
LMW12D_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW12D_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
LMW12D_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW12D_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW12D_090618	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW12D_090618	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 16 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW12D_090618	SW6010B	9/7/7440	POTASSIUM (TOTAL)	J
LMW12D_090618	SW6010B	9/7/7440	POTASSIUM (DISSOLVED)	J
LMW12D_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW12D_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	J
LMW12D_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW12D_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW12D_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
LMW12D_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW12D_090618	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW12D_090618	SW6020	7440-36-0	ANTIMONY (TOTAL)	UJ
LMW12D_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW12D_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW12D_090618	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW12D_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW12D_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW12D_090618	SW6020	7440-41-7	BERYLLIUM (TOTAL)	UJ
LMW12D_090618	SW6020	7440-41-7	BERYLLIUM (DISSOLVED)	UJ
LMW12D_090618	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW12D_090618	SW6020	7440-28-0	THALLIUM (DISSOLVED)	J
LMW12D_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW12D_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW12D_090618	SW8270D	110-86-1	PYRIDINE	UJ
LMW12D_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW12D_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW12S_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
LMW12S_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW12S_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW12S_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW12S_090618	SW8260C	67-64-1	ACETONE	UJ
LMW12S_090618	SW8260C	107-02-8	ACROLEIN	UJ
LMW12S_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
LMW12S_090618	SW6010B	7439-92-1	LEAD (TOTAL)	J

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 17 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW12S_090618	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ
LMW12S_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW12S_090618	SW8260C	75-15-0	CARBON DISULFIDE	J
LMW12S_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW12S_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW12S_090618	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW12S_090618	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ
LMW12S_090618	SW6010B	9/7/7440	POTASSIUM (TOTAL)	J
LMW12S_090618	SW6010B	9/7/7440	POTASSIUM (DISSOLVED)	J
LMW12S_090618	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW12S_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW12S_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW12S_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	J
LMW12S_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW12S_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
LMW12S_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW12S_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW12S_090618	SW6020	7440-36-0	ANTIMONY (TOTAL)	UJ
LMW12S_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW12S_090618	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW12S_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW12S_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW12S_090618	SW6020	7440-41-7	BERYLLIUM (TOTAL)	UJ
LMW12S_090618	SW6020	7440-41-7	BERYLLIUM (DISSOLVED)	UJ
LMW12S_090618	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW12S_090618	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW12S_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW12S_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW12S_090618	SW8270D	110-86-1	PYRIDINE	UJ
LMW12S_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW12S_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW15_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 18 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW15_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW15_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW15_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW15_090618	SW8260C	67-64-1	ACETONE	UJ
LMW15_090618	SW8260C	107-02-8	ACROLEIN	UJ
LMW15_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
LMW15_090618	SW6010B	7439-92-1	LEAD (TOTAL)	J
LMW15_090618	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ
LMW15_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW15_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
LMW15_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW15_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW15_090618	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW15_090618	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ
LMW15_090618	SW6010B	9/7/7440	POTASSIUM (TOTAL)	J
LMW15_090618	SW6010B	9/7/7440	POTASSIUM (DISSOLVED)	J
LMW15_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW15_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW15_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW15_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW15_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
LMW15_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW15_090618	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW15_090618	SW6020	7440-36-0	ANTIMONY (TOTAL)	UJ
LMW15_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW15_090618	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
LMW15_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW15_090618	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW15_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW15_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW15_090618	SW6020	7440-41-7	BERYLLIUM (TOTAL)	UJ
LMW15_090618	SW6020	7440-41-7	BERYLLIUM (DISSOLVED)	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 19 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW15_090618	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW15_090618	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW15_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW15_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW15_090618	SW8270D	110-86-1	PYRIDINE	UJ
LMW15_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW15_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW20D_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
LMW20D_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW20D_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW20D_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW20D_090618	SW8260C	67-64-1	ACETONE	UJ
LMW20D_090618	SW8260C	107-02-8	ACROLEIN	UJ
LMW20D_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
LMW20D_090618	SW6010B	7439-92-1	LEAD (TOTAL)	UJ
LMW20D_090618	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ
LMW20D_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW20D_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
LMW20D_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW20D_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW20D_090618	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW20D_090618	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ
LMW20D_090618	SW6010B	9/7/7440	POTASSIUM (TOTAL)	J
LMW20D_090618	SW6010B	9/7/7440	POTASSIUM (DISSOLVED)	J
LMW20D_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW20D_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW20D_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW20D_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW20D_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
LMW20D_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW20D_090618	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW20D_090618	SW6020	7440-36-0	ANTIMONY (TOTAL)	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 20 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW20D_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW20D_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW20D_090618	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW20D_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW20D_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW20D_090618	SW6020	7440-41-7	BERYLLIUM (TOTAL)	UJ
LMW20D_090618	SW6020	7440-41-7	BERYLLIUM (DISSOLVED)	UJ
LMW20D_090618	SW6020	7440-28-0	THALLIUM (TOTAL)	UJ
LMW20D_090618	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW20D_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW20D_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW20D_090618	SW8270D	110-86-1	PYRIDINE	UJ
LMW20D_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
LMW20D_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW20S_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
LMW20S_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
LMW20S_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	J
LMW20S_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
LMW20S_090618	SW8260C	67-64-1	ACETONE	UJ
LMW20S_090618	SW8260C	107-02-8	ACROLEIN	UJ
LMW20S_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
LMW20S_090618	SW6010B	7439-92-1	LEAD (TOTAL)	UJ
LMW20S_090618	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ
LMW20S_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
LMW20S_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
LMW20S_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
LMW20S_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW20S_090618	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ
LMW20S_090618	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ
LMW20S_090618	SW6010B	9/7/7440	POTASSIUM (TOTAL)	J
LMW20S_090618	SW6010B	9/7/7440	POTASSIUM (DISSOLVED)	J
LMW20S_090618	SW8260C	79-20-9	METHYL ACETATE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 21 of 47

Client Sample ID	Analysis	CAS # Analyte		Validator Qualifier
LMW20S_090618	SW8260C	78-93-3	METHYL ETHYL KETONE (2- BUTANONE)	UJ
LMW20S_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
LMW20S_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW20S_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
LMW20S_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW20S_090618	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW20S_090618	SW6020	7440-36-0	ANTIMONY (TOTAL)	UJ
LMW20S_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	J
LMW20S_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW20S_090618	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW20S_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
LMW20S_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW20S_090618	SW6020	7440-41-7	BERYLLIUM (TOTAL)	UJ
LMW20S_090618	SW6020	7440-41-7	BERYLLIUM (DISSOLVED)	UJ
LMW20S_090618	SW6020	7440-28-0 THALLIUM (TOTAL)		UJ
LMW20S_090618	SW6020	7440-28-0	THALLIUM (DISSOLVED)	UJ
LMW20S_090618	SW8270D	534-52-1 4,6-DINITRO-2-METHYLPHE		UJ
LMW20S_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
LMW20S_090618	SW8270D	110-86-1	PYRIDINE	UJ
LMW20S_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
LMW20S_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-3_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
MW-3_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	UJ
MW-3_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
MW-3_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
MW-3_090618	SW8260C	67-64-1	ACETONE	UJ
MW-3_090618	SW8260C	107-02-8	ACROLEIN	UJ
MW-3_090618	SW8260C	107-13-1 ACRYLONITRILE		UJ
MW-3_090618	SW8260C	74-83-9	74-83-9 BROMOMETHANE	
MW-3_090618	SW8260C	75-15-0	CARBON DISULFIDE	UJ
MW-3_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
MW-3_090618	SW8260C	74-87-3	CHLOROMETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 22 of 47

Client Sample ID	Analysis	CAS#	AS# Analyte	
MW-3_090618	SW8260C	79-20-9	METHYL ACETATE	UJ
MW-3_090618	SW8260C	78-93-3	78-93-3 METHYL ETHYL KETONE (2- BUTANONE)	
MW-3_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
MW-3_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
MW-3_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ
MW-3_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
MW-3_090618	SW8260C	156-60-5	TRANS-1,2-DICHLOROETHENE	UJ
MW-3_090618	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
MW-3_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
MW-3_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ
MW-3_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
MW-3_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
MW-3_090618	SW8270D	117-84-0	117-84-0 DI-N-OCTYLPHTHALATE	
MW-3_090618	SW8270D	110-86-1 PYRIDINE		UJ
MW-3_090618	SW8270DSIM	117-81-7 BIS(2-ETHYLHEXYL) PHTHA		UJ
MW-3_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-4_090618	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
MW-4_090618	SW8260C	75-34-3	1,1-DICHLOROETHANE	J
MW-4_090618	SW8260C	75-35-4	1,1-DICHLOROETHENE	UJ
MW-4_090618	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
MW-4_090618	SW8260C	67-64-1	ACETONE	UJ
MW-4_090618	SW8260C	107-02-8	ACROLEIN	UJ
MW-4_090618	SW8260C	107-13-1	ACRYLONITRILE	UJ
MW-4_090618	SW8260C	74-83-9	BROMOMETHANE	UJ
MW-4_090618	SW8260C	75-15-0	CARBON DISULFIDE	J
MW-4_090618	SW8260C	75-00-3	CHLOROETHANE	UJ
MW-4_090618	SW8260C	74-87-3 CHLOROMETHANE		UJ
MW-4_090618	SW8260C	79-20-9 METHYL ACETATE		UJ
MW-4_090618	SW8260C	78-93-3	78-93-3 METHYL ETHYL KETONE (2- BUTANONE)	
MW-4_090618	SW8260C	75-09-2	METHYLENE CHLORIDE	UJ
MW-4_090618	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 23 of 47

Client Sample ID	Sample ID Analysis		Analyte	Validator Qualifier	
MW-4_090618	SW8260C	1634-04-4	TERT-BUTYL METHYL ETHER	UJ	
MW-4_090618	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ	
MW-4_090618	SW8260C	156-60-5 TRANS-1,2-DICHLOROETHENE		J	
MW-4_090618	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ	
MW-4_090618	SW8260C	75-01-4	VINYL CHLORIDE	J	
MW-4_090618	SW8260C	XYLENES	XYLENES, TOTAL	UJ	
MW-4_090618	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ	
MW-4_090618	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ	
MW-4_090618	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ	
MW-4_090618	SW8270D	110-86-1	PYRIDINE	UJ	
MW-4_090618	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J	
MW-4_090618	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ	
LMW12S_090618	SOP 434-PFAAS	754-91-6	Perfluorooctane Sulfonamide (FOSA)	namide UJ	
MW-5_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	HANE UJ	
MW-5_090718	SW8260C	75-35-4	1,1-DICHLOROETHENE	J	
MW-5_090718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ	
MW-5_090718	SW8260C	67-64-1	ACETONE	UJ	
MW-5_090718	SW8260C	107-02-8	ACROLEIN	UJ	
MW-5_090718	SW8260C	107-13-1	ACRYLONITRILE	UJ	
MW-5_090718	SW8260C	74-83-9	BROMOMETHANE	UJ	
MW-5_090718	SW8260C	75-15-0	CARBON DISULFIDE	UJ	
MW-5_090718	SW8260C	56-23-5	CARBON TETRACHLORIDE	UJ	
MW-5_090718	SW8260C	75-00-3	CHLOROETHANE	UJ	
MW-5_090718	SW8260C	74-87-3	CHLOROMETHANE	UJ	
MW-5_090718	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ	
MW-5_090718	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ	
MW-5_090718	SW8260C	79-20-9	METHYL ACETATE	UJ	
MW-5_090718	SW8260C	103-65-1 N-PROPYLBENZENE		UJ	
MW-5_090718	SW8260C	75-65-0	75-65-0 TERT-BUTYL ALCOHOL		
MW-5_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J	
MW-5_090718	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ	
MW-5_090718	SW8260C	75-01-4	VINYL CHLORIDE	J	

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 24 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
MW-5_090718	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
MW-5_090718	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ
MW-5_090718	SW8270D	606-20-2	606-20-2 2,6-DINITROTOLUENE	
MW-5_090718	SW8270D	88-74-4	2-NITROANILINE	UJ
MW-5_090718	SW8270D	99-09-2	3-NITROANILINE	UJ
MW-5_090718	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
MW-5_090718	SW8270D	100-01-6	4-NITROANILINE	UJ
MW-5_090718	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
MW-5_090718	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	UJ
MW-5_090718	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
MW-5_090718	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
MW-5_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
MW-6_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
MW-6_090718	SW8260C	123-91-1	123-91-1 1,4-DIOXANE (P-DIOXANE)	
MW-6_090718	SW8260C	75-27-4	75-27-4 BROMODICHLOROMETHANE	
MW-6_090718	SW8260C	75-25-2	BROMOFORM	UJ
MW-6_090718	SW8260C	108-90-7 CHLOROBENZENE		UJ
MW-6_090718	SW8260C	CYMP	P-CYMENE (P- ISOPROPYLTOLUENE)	UJ
MW-6_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
MW-6_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
MW-6_090718	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
MW-6_090718	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ
MW-6_090718	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
MW-6_090718	SW8270D	88-74-4	2-NITROANILINE	UJ
MW-6_090718	SW8270D	99-09-2	3-NITROANILINE	UJ
MW-6_090718	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
MW-6_090718	SW8270D	100-01-6 4-NITROANILINE		UJ
MW-6_090718	SW8270D	117-84-0 DI-N-OCTYLPHTHALATE		UJ
MW-6_090718	SW8270DSIM	117-81-7 BIS(2-ETHYLHEXYL) PHTHALATE		UJ
MW-6_090718	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
MW-6_090718	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW11_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 25 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier	
LMW11_090718	SW8260C	75-35-4	1,1-DICHLOROETHENE	J	
LMW11_090718	SW6010B	7429-90-5	ALUMINUM (TOTAL)	J	
LMW11_090718	SW6010B	7429-90-5	ALUMINUM (DISSOLVED)	UJ	
LMW11_090718	SW6010B	7440-39-3	BARIUM (TOTAL)	J	
LMW11_090718	SW6010B	7440-39-3	BARIUM (DISSOLVED)	J	
LMW11_090718	SW6010B	7440-70-2	CALCIUM (TOTAL)	J	
LMW11_090718	SW6010B	7440-70-2	CALCIUM (DISSOLVED)	J	
LMW11_090718	SW6010B	7440-47-3	CHROMIUM (TOTAL)	J	
LMW11_090718	SW6010B	7440-47-3	CHROMIUM (DISSOLVED)	UJ	
LMW11_090718	SW6010B	7440-48-4	COBALT (TOTAL)	J	
LMW11_090718	SW6010B	7440-48-4	COBALT (DISSOLVED)	UJ	
LMW11_090718	SW6010B	7440-50-8	COPPER (TOTAL)	J	
LMW11_090718	SW6010B	7440-50-8	COPPER (DISSOLVED)	UJ	
LMW11_090718	SW6010B	7439-89-6	IRON (TOTAL)	J	
LMW11_090718	SW6010B	7439-89-6 IRON (DISSOLVED)		J	
LMW11_090718	SW6010B	7439-92-1	LEAD (TOTAL)	J	
LMW11_090718	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ	
LMW11_090718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ	
LMW11_090718	SW8260C	67-64-1 ACETONE		UJ	
LMW11_090718	SW8260C	107-02-8	ACROLEIN	UJ	
LMW11_090718	SW8260C	107-13-1	ACRYLONITRILE	UJ	
LMW11_090718	SW8260C	74-83-9	BROMOMETHANE	UJ	
LMW11_090718	SW8260C	75-15-0	CARBON DISULFIDE	UJ	
LMW11_090718	SW8260C	56-23-5	CARBON TETRACHLORIDE	UJ	
LMW11_090718	SW8260C	75-00-3	CHLOROETHANE	UJ	
LMW11_090718	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J	
LMW11_090718	SW6010B	7439-95-4 MAGNESIUM (DISSOLVED)		J	
LMW11_090718	SW6010B	7439-96-5 MANGANESE (TOTAL)		J	
LMW11_090718	SW6010B	7439-96-5 MANGANESE (DISSOLVED)		J	
LMW11_090718	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ	
LMW11_090718	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ	
LMW11_090718	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J	

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 26 of 47

Client Sample ID	Analysis	CAS#	CAS # Analyte		
LMW11_090718	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J	
LMW11_090718	SW6010B	7440-22-4	SILVER (TOTAL)	UJ	
LMW11_090718	SW6010B	7440-22-4 SILVER (DISSOLVED)		UJ	
LMW11_090718	SW6010B	7440-23-5	SODIUM (TOTAL)	J	
LMW11_090718	SW6010B	7440-62-2	VANADIUM (TOTAL)	J	
LMW11_090718	SW6010B	7440-62-2	VANADIUM (DISSOLVED)	UJ	
LMW11_090718	SW8260C	74-87-3	CHLOROMETHANE	UJ	
LMW11_090718	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ	
LMW11_090718	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ	
LMW11_090718	SW8260C	79-20-9	METHYL ACETATE	UJ	
LMW11_090718	SW8260C	103-65-1	N-PROPYLBENZENE	UJ	
LMW11_090718	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ	
LMW11_090718	SW6010B	7440-66-6	ZINC (TOTAL)	J	
LMW11_090718	SW6010B	7440-66-6	ZINC (DISSOLVED)	UJ	
LMW11_090718	SW6020	7782-49-2 SELENIUM (TOTAL		UJ	
LMW11_090718	SW6020	7782-49-2	SELENIUM (DISSOLVED)	J	
LMW11_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J	
LMW11_090718	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ	
LMW11_090718	SW8260C	75-01-4	VINYL CHLORIDE	J	
LMW11_090718	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ	
LMW11_090718	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ	
LMW11_090718	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ	
LMW11_090718	SW8270D	88-74-4	2-NITROANILINE	UJ	
LMW11_090718	SW8270D	99-09-2	3-NITROANILINE	UJ	
LMW11_090718	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ	
LMW11_090718	SW8270D	100-01-6	4-NITROANILINE	UJ	
LMW11_090718	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ	
LMW11_090718	SW8270DSIM	1 117-81-7 BIS(2-ETHYLHEXYL) PHTHALATE		UJ	
LMW11_090718	SW8270DSIM	1 62-75-9 N-NITROSODIMETHYLAMINE		UJ	
LMW11_090718	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ	
LMW11_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J	
LMW19S_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ	

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 27 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier	
LMW19S_090718	SW8260C	75-35-4	1,1-DICHLOROETHENE	J	
LMW19S_090718	SW6010B	7429-90-5	ALUMINUM (TOTAL)	J	
LMW19S_090718	SW6010B	7429-90-5 ALUMINUM (DISSOLVED)		UJ	
LMW19S_090718	SW6010B	7440-39-3	BARIUM (TOTAL)	J	
LMW19S_090718	SW6010B	7440-39-3	BARIUM (DISSOLVED)	J	
LMW19S_090718	SW6010B	7440-70-2	CALCIUM (TOTAL)	J	
LMW19S_090718	SW6010B	7440-70-2	CALCIUM (DISSOLVED)	J	
LMW19S_090718	SW6010B	7440-47-3	CHROMIUM (TOTAL)	J	
LMW19S_090718	SW6010B	7440-47-3	CHROMIUM (DISSOLVED)	UJ	
LMW19S_090718	SW6010B	7440-48-4	COBALT (TOTAL)	J	
LMW19S_090718	SW6010B	7440-48-4	COBALT (DISSOLVED)	UJ	
LMW19S_090718	SW6010B	7440-50-8	COPPER (TOTAL)	J	
LMW19S_090718	SW6010B	7440-50-8	COPPER (DISSOLVED)		
LMW19S_090718	SW6010B	7439-89-6	IRON (TOTAL)	J	
LMW19S_090718	SW6010B	7439-89-6	IRON (DISSOLVED)	J	
LMW19S_090718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ	
LMW19S_090718	SW8260C	67-64-1	ACETONE	UJ	
LMW19S_090718	SW8260C	107-02-8	ACROLEIN	UJ	
LMW19S_090718	SW8260C	107-13-1	ACRYLONITRILE	UJ	
LMW19S_090718	SW8260C	74-83-9	BROMOMETHANE	UJ	
LMW19S_090718	SW8260C	75-15-0	CARBON DISULFIDE	UJ	
LMW19S_090718	SW8260C	56-23-5	CARBON TETRACHLORIDE	UJ	
LMW19S_090718	SW8260C	75-00-3	CHLOROETHANE	J	
LMW19S_090718	SW6010B	7439-92-1	LEAD (TOTAL)	J	
LMW19S_090718	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ	
LMW19S_090718	SW6010B	7439-95-4	MAGNESIUM (TOTAL)	J	
LMW19S_090718	SW6010B	7439-95-4 MAGNESIUM (DISSOLVED)		J	
LMW19S_090718	SW6010B	7439-96-5 MANGANESE (TOTAL)		J	
LMW19S_090718	SW6010B	7439-96-5 MANGANESE (DISSOLVED)		J	
LMW19S_090718	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ	
LMW19S_090718	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ	
LMW19S_090718	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J	

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 28 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LMW19S_090718	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
LMW19S_090718	SW6010B	7440-22-4	SILVER (TOTAL)	UJ
LMW19S_090718	SW6010B	7440-22-4	7440-22-4 SILVER (DISSOLVED)	
LMW19S_090718	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW19S_090718	SW6010B	7440-62-2	VANADIUM (TOTAL)	J
LMW19S_090718	SW6010B	7440-62-2	VANADIUM (DISSOLVED)	UJ
LMW19S_090718	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW19S_090718	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
LMW19S_090718	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ
LMW19S_090718	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW19S_090718	SW8260C	75-09-2	METHYLENE CHLORIDE	U (2.02)
LMW19S_090718	SW8260C	103-65-1	N-PROPYLBENZENE	J
LMW19S_090718	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW19S_090718	SW6010B	7440-66-6 ZINC (TOTAL)		J
LMW19S_090718	SW6010B	7440-66-6	ZINC (DISSOLVED)	UJ
LMW19S_090718	SW6020	7782-49-2 SELENIUM (TOTAL)		J
LMW19S_090718	SW6020	7782-49-2	SELENIUM (DISSOLVED)	J
LMW19S_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW19S_090718	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW19S_090718	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW19S_090718	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW19S_090718	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ
LMW19S_090718	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
LMW19S_090718	SW8270D	88-74-4	2-NITROANILINE	UJ
LMW19S_090718	SW8270D	99-09-2	3-NITROANILINE	UJ
LMW19S_090718	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW19S_090718	SW8270D	100-01-6	4-NITROANILINE	UJ
LMW19S_090718	SW8270D	117-84-0 DI-N-OCTYLPHTHALATE		UJ
LMW19S_090718	SW8270DSIM	117-81-7 BIS(2-ETHYLHEXYL) PHTHALATE		J
LMW19S_090718	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
LMW19S_090718	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ
LMW19S_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 29 of 47

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier	
LMW19D_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ	
LMW19D_090718	SW8260C	75-35-4	1,1-DICHLOROETHENE	J	
LMW19D_090718	SW6010B	7429-90-5 ALUMINUM (TOTAL)		J	
LMW19D_090718	SW6010B	7429-90-5	ALUMINUM (DISSOLVED)	UJ	
LMW19D_090718	SW6010B	7440-39-3	BARIUM (TOTAL)	J	
LMW19D_090718	SW6010B	7440-39-3	BARIUM (DISSOLVED)	J	
LMW19D_090718	SW6010B	7440-70-2	CALCIUM (TOTAL)	J	
LMW19D_090718	SW6010B	7440-70-2	CALCIUM (DISSOLVED)	J	
LMW19D_090718	SW6010B	7440-47-3	CHROMIUM (TOTAL)	UJ	
LMW19D_090718	SW6010B	7440-47-3	CHROMIUM (DISSOLVED)	UJ	
LMW19D_090718	SW6010B	7440-48-4	COBALT (TOTAL)	UJ	
LMW19D_090718	SW6010B	7440-48-4	COBALT (DISSOLVED)	UJ	
LMW19D_090718	SW6010B	7440-50-8	COPPER (TOTAL)	UJ	
LMW19D_090718	SW6010B	7440-50-8	40-50-8 COPPER (DISSOLVED)		
LMW19D_090718	SW6010B	7439-89-6	IRON (TOTAL)	J	
LMW19D_090718	SW6010B	7439-89-6	IRON (DISSOLVED)	J	
LMW19D_090718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ	
LMW19D_090718	SW8260C	67-64-1	ACETONE	UJ	
LMW19D_090718	SW8260C	107-02-8	ACROLEIN	UJ	
LMW19D_090718	SW8260C	107-13-1	ACRYLONITRILE	UJ	
LMW19D_090718	SW8260C	74-83-9	BROMOMETHANE	UJ	
LMW19D_090718	SW8260C	75-15-0	CARBON DISULFIDE	J	
LMW19D_090718	SW8260C	56-23-5	CARBON TETRACHLORIDE	UJ	
LMW19D_090718	SW8260C	75-00-3	CHLOROETHANE	UJ	
LMW19D_090718	SW6010B	7439-92-1	LEAD (TOTAL)	UJ	
LMW19D_090718	SW6010B	7439-92-1	LEAD (DISSOLVED)	UJ	
LMW19D_090718	SW6010B	7439-95-4 MAGNESIUM (TOTAL)		J	
LMW19D_090718	SW6010B	7439-95-4 MAGNESIUM (DISSOLVED)		J	
LMW19D_090718	SW6010B	7439-96-5	7439-96-5 MANGANESE (TOTAL)		
LMW19D_090718	SW6010B	7439-96-5	MANGANESE (DISSOLVED)	J	
LMW19D_090718	SW6010B	7440-02-0	NICKEL (TOTAL)	UJ	
LMW19D_090718	SW6010B	7440-02-0	NICKEL (DISSOLVED)	UJ	

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 30 of 47

Client Sample ID	Analysis	CAS # Analyte		Validator Qualifier
LMW19D_090718	SW6010B	7440-09-7	POTASSIUM (TOTAL)	J
LMW19D_090718	SW6010B	7440-09-7	POTASSIUM (DISSOLVED)	J
LMW19D_090718	SW6010B	7440-22-4 SILVER (TOTAL)		UJ
LMW19D_090718	SW6010B	7440-22-4	SILVER (DISSOLVED)	UJ
LMW19D_090718	SW6010B	7440-23-5	SODIUM (TOTAL)	J
LMW19D_090718	SW6010B	7440-23-5	SODIUM (DISSOLVED)	J
LMW19D_090718	SW8260C	74-87-3	CHLOROMETHANE	UJ
LMW19D_090718	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
LMW19D_090718	SW8260C	98-82-8	ISOPROPYLBENZENE (CUMENE)	UJ
LMW19D_090718	SW8260C	79-20-9	METHYL ACETATE	UJ
LMW19D_090718	SW8260C	103-65-1	N-PROPYLBENZENE	UJ
LMW19D_090718	SW8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
LMW19D_090718	SW6010B	7440-62-2	62-2 VANADIUM (TOTAL)	
LMW19D_090718	SW6010B	7440-62-2 VANADIUM (DISSOLVED)		UJ
LMW19D_090718	SW6010B	7440-66-6	ZINC (TOTAL)	UJ
LMW19D_090718	SW6010B	7440-66-6 ZINC (DISSOLVED)		UJ
LMW19D_090718	SW6020	7782-49-2	SELENIUM (TOTAL)	UJ
LMW19D_090718	SW6020	7782-49-2	SELENIUM (DISSOLVED)	UJ
LMW19D_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	J
LMW19D_090718	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
LMW19D_090718	SW8260C	75-01-4	VINYL CHLORIDE	J
LMW19D_090718	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
LMW19D_090718	SW8270D	121-14-2	2,4-DINITROTOLUENE	UJ
LMW19D_090718	SW8270D	606-20-2	2,6-DINITROTOLUENE	UJ
LMW19D_090718	SW8270D	88-74-4	2-NITROANILINE	UJ
LMW19D_090718	SW8270D	99-09-2	3-NITROANILINE	UJ
LMW19D_090718	SW8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
LMW19D_090718	SW8270D	100-01-6	4-NITROANILINE	UJ
LMW19D_090718	SW8270D	117-84-0 DI-N-OCTYLPHTHALATE		UJ
LMW19D_090718	SW8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
LMW19D_090718	SW8270DSIM	62-75-9	N-NITROSODIMETHYLAMINE	UJ
LMW19D_090718	SW8270DSIM	87-86-5	PENTACHLOROPHENOL	UJ

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 31 of 47

Client Sample ID	Analysis	CAS # Analyte		Validator Qualifier
LMW19D_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	J
GWTB03_090718	SW8260C	79-34-5	1,1,2,2-TETRACHLOROETHANE	UJ
GWTB03_090718	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWTB03_090718	SW8260C	75-27-4	BROMODICHLOROMETHANE	UJ
GWTB03_090718	SW8260C	75-25-2	BROMOFORM	UJ
GWTB03_090718	SW8260C	108-90-7	CHLOROBENZENE	UJ
GWTB03_090718	SW8260C	CYMP	P-CYMENE (P- ISOPROPYLTOLUENE)	UJ
GWTB03_090718	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	IJ
GWTB03_090718	SW8260C	79-01-6	TRICHLOROETHYLENE (TCE)	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. The following major deficiencies were identified.

1810168:

Metals by Method 6010D

The MS for batch BI80442 (MW-1_090518) exhibited a %R below the LCL for calcium (total) (5.88%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are rejected based on significant variance.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

<u>1810168:</u>

VOCs by Method 8260C

The LCS for batch BI80403 exhibited a %R below the LCL for tetrachloroethylene (74.6, 73.0%). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, GWFB01_090518, and GWTB01_090518 are qualified as "J" and "UJ" based on potential low bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 32 of 47

The laboratory control sample and duplicate (LCS/LCSD) for batch BI80403 exhibited a relative percent difference (RPD) above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (40.3%), 1,1-dichloroethylene (36.3%), 1,4-dioxane (53.7%), acrolein (66.9%), and bromomethane (31.4%). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, GWFB01_090518, and GWTB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The LCS for batch BI80452 exhibited a %R below the LCL for 1,1-dichloroethane (74.3%), 1,2-dichloropropane (74.1%), cis-1,2-dichloroethylene (75.6%), cis-1,3-dichloropropylene (79.7%), tetrachloroethylene (76.0, 72.1%), and trans-1,2-dichloroethylene (71.7%). The associated results in samples LMW08S_090518, LMW08D_090518, and GWDUP01_090518 are qualified as "J" and "UJ" based on potential low bias.

The LCS/LCSD for batch BI80452 exhibited a RPD above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (40.3%), 2-butanone (38%), bromomethane (35.5%), chloroethane (39.2%), chloromethane (48.8%), dichlorodifluoromethane (49.5%), trichlorofluoromethane (44.4%), and vinyl chloride (47.2%). The associated results in samples LMW08S_090518, LMW08D_090518, and GWDUP01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The LCS for batch BI80482 exhibited a %R below the LCL for trichloroethylene (76.7%). The associated results in samples MW-1_090518 RE1, LMW01D_090518 RE1, MW-2_090518 RE1, LMW08S_090518 RE1, and GWDUP01_090518 RE1 are qualified as "J" and "UJ" based on potential low bias.

The MS for batch BI80403 (MW-1_090518) exhibited a %R below the LCL for 1,1-dichloroethylene (38.5%), 1,2-dichloropropane (71.7%), 1,3-dichlorobenzene (71.1%), chlorobenzene (79.6%), 1,4-dioxane (5.96%), cis-1,2-dichloroethylene (7.3, -258%), dibromomethane (75.7%), methyl tert-butyl ether (58.6, 70.1%), methylcyclohexane (64.4, 67.6%), p- & m- xylenes (66.6%), tetrachloroethylene (55.5, 59.3%), and trans-1,2-dichloroethylene (45.4, 59.0%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential low bias.

The matrix spike and duplicate (MS/MSD) for batch BI80403 exhibited a RPD above the control limit for 1,1-dichloroethane (38.6%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 33 of 47

The field duplicate (GWDUP01_090518) and parent sample (MW-1_090518) exhibited a RPD above the control limit for trichloroethylene (52.1%). The associated results are qualified as "J" and "UJ" based on potential indeterminate bias.

The field duplicate (GWDUP01_090518) and parent sample (MW-1_090518) exhibited an absolute difference greater than the reporting limit for tetrachloroethylene. The associated results are gualified as "J" and "UJ" based on potential indeterminate bias.

The initial calibration (ICAL) for batch YI80001 on instrument MSVOA7 exhibited a relative standard deviation (RSD) above the control limit for 1,4-dioxane (28.60), acrolein (22.30), and tert-butyl alcohol (30.20). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, GWFB01_090518, and GWTB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) for batch Y8I1208 on instrument MSVOA7 exhibited a percent difference (%D) above the control limit for 1,4-dioxane (-57.9%), acetone (25.8%), bromochloromethane (22.4%), bromomethane (-58.9%), chloroethane (56.4%), chloromethane (22.4%), methylene chloride (27%), tert-butyl alcohol (416%), tetrachloroethylene (31.9%), trichlorofluoromethane (50.7%), and vinyl chloride (51.3%). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, GWFB01_090518, and GWTB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1211 on instrument MSVOA7 exhibited a %D above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (-29.6%), 1,1-dichloroethylene (-28.1%), acrolein (-45.8%), bromomethane (-42.3%), carbon disulfide (-26.8%), chloroethane (35.7%), chloromethane (34.9%), methyl acetate (20.7%), methylcyclohexane (-20.7%), methylene chloride (25.4%), tert-butyl alcohol (425%), tetrachloroethylene (40.3%), trichlorofluoromethane (22.6%), and vinyl chloride (34.4%). The associated results in samples LMW08S_090518, LMW08D_090518, and GWDUP01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

SVOCs by Method 8270D and 8270D with SIM

The surrogates nitrobenzene-d5 and 2-fluorobiphenyl in sample GWDUP01_090518 exhibited a percent recovery (%R) below the LCL for nitrobenzene-d5 (40.5%). The associated base/neutral extractable results in sample GWDUP01_090518 are qualified as "J" and "UJ" based on potential low bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 34 of 47

The CCV for batch Y8I1123 on instrument BNA #3 exhibited a %D above the control limit for 2,4-dinitrophenol (104%), 2,6-dinitrotoluene (21.8%), 4,6-dinitro-2-methylphenol (80.1%), dinoctyl phthalate (27.8%), and pyridine (-32.5%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1210 on instrument BNA #3 exhibited a %D above the control limit for 2,4-dinitrophenol (121%), 4,6-dinitro-2-methylphenol (92.1%), di-n-octyl phthalate (27.7%), and pyridine (-32.8%). The associated results in samples LMW01D_090518, MW-2_090518, LMW08S_090518, and LMW08D_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1317 on instrument BNA #3 exhibited a %D above the control limit for 2,4-dinitrophenol (94.5%), 2,6-dinitrotoluene (23%), 4,6-dinitro-2-methylphenol (86.4%), benzaldehyde (-31.3%), and di-n-octyl phthalate (32.3%). The associated results in samples GWDUP01_090518 and are qualified as "J" and "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) for batch YI80012 on instrument BNA #5 exhibited a %D above the control limit for bis(2-ethylhexyl)phthalate (-35%) and n-nitrosodimethylamine (-48%). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1213 on instrument BNA #5 exhibited a %D above the control limit for pentachlorophenol (62%). The associated results in samples MW-1_090518, LMW01D_090518, and LMW08S_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

Pesticides by Method 8081B

The MS/MSD for batch BI80157 (MW-1_090518) exhibited a RPD above the control limit for endrin ketone (37.8%) and gamma-chlordane (25.8%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6010D

The field blank (FB) GWFB01_090518 exhibited a detection of lead (total) (7.81 ug/L) and iron (dissolved) (80.9 ug/L). The associated results in samples MW-1_090518, LMW01D_090518, MW-2_090518, LMW08S_090518, LMW08D_090518, and GWDUP01_090518 are qualified as "U" based on potential blank contamination.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 35 of 47

The LCS for batch BI80442 exhibited a %R above the upper control limit (UCL) for calcium (total) (136%), potassium (total) (228%), and sodium (total) (161%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" based on potential high bias.

The LCS for batch BI80461 exhibited a %R above the upper control limit (UCL) for potassium (dissolved) (216%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" based on potential high bias.

The MS for batch BI80442 exhibited a %R below the LCL for magnesium (total) (54.6%) and sodium (total) (63.9%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential low bias.

The MS for batch BI80442 (MW-1_090518) exhibited a %R above the upper control limit (UCL) for potassium (174%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" based on potential high bias.

The field duplicate GWDUP01_090518 and parent sample MW-1_090518 exhibited an absolute difference greater than the reporting limit for zinc (total). The associated results are qualified as "J" and "UJ" based on potential indeterminate bias.

The lab duplicate and parent sample MW-1_090518 exhibited a RPD above the control limit for iron (total) (24.2%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1224 on instrument WinLabICP exhibited a %R above the control limit for barium (total) (113%), chromium (total) (112%), cobalt (total) (113%), lead (total) (114%), magnesium (total) (113%), manganese (total) (111%), sodium (total) (111%), and zinc (total) (116%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The contract required detection limits (CRDL) standard for batch Y8I1224 on instrument WinLabICP exhibited a %R above the control limit for lead (total) (192%) and nickel (total) (137%). The associated results in samples MW-1_090518, LMW01D_090518,

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 36 of 47

LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The serial dilution for batch Y8I1224 exhibited a %D above the control limit for lead (total) (363%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6020B

The field duplicate GWDUP01_090518 and parent sample MW-1_090518 exhibited an absolute difference greater than the reporting limit for selenium (dissolved). The associated results are qualified as "J" and "UJ" based on potential indeterminate bias.

The lab duplicate and parent sample MW-1_090518 exhibited a RPD above the control limit for selenium (dissolved) (53.9%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1233 on instrument WinLabICP exhibited a %R above the control limit for selenium (total) (89.1%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1233 on instrument WinLabICP exhibited a %D above the control limit for thallium (total) (112%). The associated results in samples LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The contract required detection limits (CRDL) standard for batch Y8I1233 on instrument WinLabICP exhibited a %R below the control limit for selenium (total) (56.7%). The associated results in samples MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1242 on instrument WinLabICP exhibited a %D above the control limit for thallium (dissolved) (112%). The associated results in samples LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CRDL standard for batch Y8I1242 on instrument WinLabICP exhibited a %R below the control limit for selenium (dissolved) (56.7%). The associated results in samples MW-

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 37 of 47

1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "J" and "UJ" based on potential indeterminate bias.

PFAS by SOP 434-PFAAS

The LCS for batch BI80652 exhibited a %R below the LCL for perfluorooctanesulfonamide (FOSA) (25.1%). The associated results in samples MW-1_090518, LMW08S_090518, GWDUP01_090518, and GWFB01_090518 are qualified as "UJ" based on potential low bias.

The MS for batch B212652 (MW-1_090518) exhibited a %R below the LCL for perfluorohexanoic acid (PFHxA) (33.8%), perfluoropentanoic acid (PFPeA) (41.5%), perfluoroundecanoic acid (PFUnA) (42.7%), perfluorododecanoic acid (PFDoA) (36.8%), perfluorotridecanoic acid (PFTriA) (28.8%), and perfluorotetradecanoic acid (PFTA) (24%). The associated results in sample MW-1_090518 are qualified as "J" and "UJ" based on potential low bias.

The MS/MSD for batch B212652 (MW-1_090518) exhibited a RPD above the control limit for perfluoroheptanesulfonic acid (PFHPS) (38.6%), perfluorohexanesulfonic acid (PFHxS) (85.3%), and perfluorononanoic acid (PFNA) (38.4%). The associated results in sample MW-1_090518 are qualified as "UJ" based on potential indeterminate bias.

1810253:

VOCs by Method 8260C

The LCS for batch BI80334 exhibited a %R below the LCL for 1,1-dichloroethylene (66.5%) and tetrachloroethylene (81.3, 78.7%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" or "UJ" based on potential low bias.

The LCS for batch BI80334 exhibited a %R above the upper control limit (UCL) for vinyl chloride (161, 161%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" based on potential high bias.

The LCS/LCSD for batch BI80334 exhibited a RPD above the control limit for 1,1-dichloroethane (46.5%), 2-butanone (32%), acetone (56.6%), acrolein (46.6%), acrylonitrile (84.9%), carbon disulfide (53.6%), methyl acetate (74.6%), methyl tert-butyl ether (48%), methylene chloride (58.4%), tert-butyl alcohol (65.6%), and trans-1,2-dichloroethylene (47.7%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618,

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 38 of 47

LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The LCS for batch BI80482 exhibited a %R below the LCL for trichloroethylene (76.7%). The associated results in sample LMW15_090618 RE2 are qualified as "UJ" based on potential low bias.

The ICAL for batch YI80001 on instrument MSVOA7 exhibited a RSD above the control limit for 1,4-dioxane (28.60), acrolein (22.30), and tert-butyl alcohol (30.20). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch YI80001 on instrument MSVOA7 exhibited a %D above the control limit for acrolein (-67.3%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1116 on instrument MSVOA7 exhibited a %D above the control limit for 1,1,2,2-tetrachloroethane (-23.3%), 1,4-dioxane (-90.7%), acetone (36.2%), acrolein (-44.8%), bromomethane (-71.9%), chloroethane (38.1%), chloromethane (-23%), trichloroethylene (46.3%), trichlorofluoromethane (45.8%), and vinyl chloride (30.1%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, LMW20D_090618, and GWTB02_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

SVOCs by Method 8270D and 8270D with SIM

The CCV for batch Y8I1210 on instrument BNA #3 exhibited a %D above the control limit for 2,4-dinitrophenol (121%), 4,6-dinitro-2-methylphenol (92.1%), di-n-octyl phthalate (27.7%), and pyridine (-32.8%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch YI80012 on instrument BNA #5 exhibited a %D above the control limit for bis(2-ethylhexyl)phthalate (-35%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 39 of 47

The CCV for batch Y8I1307 on instrument BNA #5 exhibited a %D above the control limit for pentachlorophenol (125%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6010D

The LCS for batch BI80541 exhibited a %R above the upper control limit (UCL) for potassium (total) (223%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" based on potential high bias.

The LCS for batch BI80588 exhibited a %R above the upper control limit (UCL) for potassium (dissolved) (214%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" based on potential high bias.

The CRDL standard for batch Y8I1332 on instrument WinLabICP exhibited a %R above the control limit for lead (total) (137%) and nickel (total) (60.5%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1342 on instrument WinLabICP exhibited a %R above the control limit for sodium (dissolved) (113%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CRDL standard for batch Y8I1342 on instrument WinLabICP exhibited a %R above the control limit for lead (dissolved) (137%) and nickel (dissolved) (60.5%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6020B

The CCV for batch Y8I1340 on instrument WinLabICP exhibited a %R above the control limit for beryllium (dissolved) (113%) and thallium (dissolved) (117%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I2508 on instrument WinLabICP exhibited a %R above the control limit for beryllium (total) (113%) and thallium (total) (117%). The associated results in samples

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 40 of 47

LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CRDL standard for batch Y8I1340 on instrument WinLabICP exhibited a %R above the control limit for antimony (dissolved) (137%). The associated results in samples LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are qualified as "J" and "UJ" based on potential indeterminate bias.

PFAS by SOP 434-PFAAS

The LCS for batch B212652 exhibited a %R below the LCL for perfluorooctanesulfonamide (FOSA) (25.1%). The associated results in sample LMW12S_090618 are qualified as "UJ" based on potential low bias.

1810296:

VOCs by Method 8260C

The method blank (MB) for batch BI80566 exhibited a detection of methylene chloride (2.1 ug/L). The associated results in samples MW-5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "U" based on potential blank contamination.

The LCS/LCSD for batch BI80566 exhibited a RPD above the control limit for 1,1,2,2-tetrachloroethane (23%), 1,4-dioxane (59%), acrolein (34.7%), bromomethane (47.4%), chloroethane (27.9%), chloromethane (38.9%), dichlorodifluoromethane (28%), isopropylbenzene (28.8%), trichlorofluoromethane (23.8%), and vinyl chloride (32.7%). The associated results in samples MW-5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The LCS for batch BI80566 exhibited a %R below the LCL for 1,4-dioxane (5.01, 9.21%) and n-propylbenzene (71.9%). The associated results in samples MW-5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential low bias.

The ICAL for batch YI80016 on instrument MSVOA7 exhibited a RSD above the control limit for 1,4-dioxane (28.60), acrolein (22.30), and tert-butyl alcohol (30.20). The associated results in samples MW-5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) for batch YI80016 on instrument MSVOA7 exhibited a %D above the control limit for acrolein (-67.3%). The associated results in samples MW-

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 41 of 47

5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) for batch Y8I1403 on instrument MSVOA7 exhibited a %D above the control limit for 1,1-dichloroethylene (-23.6%), 1,4-dioxane (-53.1%), acetone (-37.1%), acrolein (-33.2%), acrylonitrile (-33.3%), carbon disulfide (-28.3%), carbon tetrachloride (20.3%), chloroethane (63.9%), chloromethane (48.5%), methyl acetate (-24.7%), tert-butyl alcohol (256%), trichlorofluoromethane (67.1%), and vinyl chloride (54.6%). The associated results in samples MW-5_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICAL for batch YI80016 on instrument VOA No. 8 exhibited a response factor (RF) below the control limit for 1,1,2,2-tetrachloroethane (0.2220), bromodichloromethane (0.1950), chlorobenzene (0.4720), and trichloroethylene (0.1950). The associated results in samples MW-6_090718, GWTB03_090718, MW-5_090718 RE1, LMW11_090718 RE1, LMW19S_090718 RE1, and LMW19D_090718 RE1 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1703 on instrument VOA No. 8 exhibited a response factor (RF) below the control limit for 1,1,2,2-tetrachloroethane (0.2430) and bromoform (0.0710). The associated results in samples MW-6_090718, GWTB03_090718, MW-5_090718 RE1, and LMW11_090718 RE1 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1703 on instrument VOA No. 8 exhibited a %D above the control limit for 1,4-dioxane (32%) and p-isopropyltoluene (20.2%). The associated results in samples MW-6_090718, GWTB03_090718, MW-5_090718 RE1, and LMW11_090718 RE1 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1713 on instrument VOA No. 8 exhibited a response factor (RF) below the control limit for trichloroethylene (0.1940). The associated results in samples LMW19S_090718 RE1 and LMW19D_090718 RE1 are qualified as "J" and "UJ" based on potential indeterminate bias.

SVOCs by Method 8270D and 8270D with SIM

The CCV for batch Y8I1304 on instrument BNA #3 exhibited a %D above the control limit for 2,4-dinitrophenol (104%), 2,4-dinitrotoluene (22.1%), 2,6-dinitrotoluene (25.3%), 2-nitroaniline (21.4%), 3-nitroaniline (22%), 4,6-dinitro-2-methylphenol (87.6%), 4-nitroaniline (27.2%), and dinoctyl phthalate (23.6%). The associated results in samples MW-5_090718, MW-6_090718,

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 42 of 47

LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The ICV for batch YI80012 on instrument BNA #5 exhibited a %D above the control limit for bis(2-ethylhexyl)phthalate (-35%) and n-nitrosodimethylamine (-48%). The associated results in samples MW-5_090718, MW-6_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1213 on instrument BNA #5 exhibited a %D above the control limit for pentachlorophenol (62%). The associated results in samples MW-5_090718, MW-6_090718, LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6010D

The LCS for batch BI80660 exhibited a %R above the upper control limit (UCL) for potassium (dissolved) (228%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" based on potential high bias.

The MS for batch BI80625 exhibited a %R above the upper control limit (UCL) for potassium (total) (216%) and sodium (total) (137%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" based on potential high bias.

The lab duplicate and parent sample LMW19D_090718 exhibited a RPD above the control limit for aluminum (total) (34.3%), iron (total) (23.1%), and copper (dissolved) (26%). The associated results in sample LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The serial dilution for batch Y8I1429 on instrument WinLabICP exhibited a %R above the control limit for barium (total) (19.4%), iron (total) (20.6%), and manganese (total) (19%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1429 on instrument WinLabICP exhibited a %R above the control limit for aluminum (total) (88.6%), barium (total) (89.2%), calcium (total) (86.1%), chromium (total) (88.8%), cobalt (total) (88.6%), copper (total) (85.5%), iron (total) (85%), lead (total) (88.3%), magnesium (total) (86.1%), manganese (total) (88.9%), nickel (total) (87.5%), potassium (total) (88.9%), silver (total) (87.3%), vanadium (total) (87.9%), and zinc (total) (88.9%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 43 of 47

The CRDL standard for batch Y8I1429 on instrument WinLabICP exhibited a %R) above the control limit for lead (total) (45.5%) and nickel (total) (31.3%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The serial dilution for batch Y8I1430 on instrument WinLabICP exhibited a %R above the control limit for barium (dissolved) (39.6%), calcium (dissolved) (11.6%), iron (dissolved) (571%), magnesium (dissolved) (13.9%), manganese (dissolved) (38.1%), potassium (dissolved) (18.8%), and sodium (dissolved) (20.3%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CCV for batch Y8I1430 on instrument WinLabICP exhibited a %R above the control limit for aluminum (dissolved) (88.6%), barium (dissolved) (89.2%), calcium (dissolved) (86.1%), chromium (dissolved) (88.8%), cobalt (dissolved) (88.6%), copper (dissolved) (85.5%), iron (dissolved) (85%), lead (dissolved) (88.3%), magnesium (dissolved) (86.1%), manganese (dissolved) (88.9%), nickel (dissolved) (87.5%), potassium (dissolved) (88.9%), silver (dissolved) (87.3%), vanadium (dissolved) (87.9%), and zinc (dissolved) (88.9%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CRDL standard for batch Y8I1430 on instrument WinLabICP exhibited a %R above the control limit for lead (dissolved) (45.5%) and nickel (dissolved) (31.3%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

Metals by Method 6020B

The CCV for batch Y8I2711 on instrument WinLabICP exhibited a %R above the control limit for selenium (total) (85.2%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

The CRDL standard for batch Y8I2711 on instrument WinLabICP exhibited a %R above the control limit for selenium (total) (140%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301

October 16, 2018 Page 44 of 47

The CRDL standard for batch Y8I2710 on instrument WinLabICP exhibited a %R above the control limit for selenium (dissolved) (140%). The associated results in samples LMW11_090718, LMW19S_090718, and LMW19D_090718 are qualified as "J" and "UJ" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

1810168:

VOCs by Method 8260C

The LCS for batch BI80403 exhibited a %R above the upper control limit (UCL) for chloroethane (160, 151%), trichlorofluoromethane (148%), and vinyl chloride (172, 158%). The associated results in sample MW-1_090518, LMW01D_090518, MW-2_090518, GWFB01_090518, and GWTB01_090518 are non-detect; no qualifier is necessary.

The MS for sample MW-1_090518 exhibited a %R below the LCL for cis-1,2-dichloroethylene (7.3, -258%) and trichloroethylene (-1060, -1670%). The sample concentration was >4X the spiked amount; no qualification is necessary.

The MS for sample MW-1_090518 RE1 exhibited a %R below the LCL for cis-1,2-dichloroethylene (NR) and trichloroethylene (NR). The sample concentration was >4X the spiked amount; no qualification is necessary.

SVOCs by Method 8270D and 8270D with SIM

The LCS for batch BI80341 exhibited a %R above the upper control limit (UCL) for 2,3,4,6-tetrachlorophenol (164%) and pentachlorophenol (231%). The associated results in sample MW-1_090518, LMW01D_090518, MW-2_090518, LMW08S_090518, and LMW08D_090518 are non-detect; no qualifier is necessary.

The LCS for batch BI80341 exhibited a %R above the upper control limit (UCL) for 2,3,4,6-tetrachlorophenol (202, 177%) and pentachlorophenol (185%). The associated results in sample GWDUP01_090518, and GWFB01_090518 are non-detect; no qualifier is necessary.

The surrogate nitrobenzene-d5 in sample LMW01D_090518 exhibited a %R below the LCL for nitrobenzene-d5 (46%). The other two base/neutral extractable surrogates are within acceptance limits; no qualifier is necessary.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301

October 16, 2018 Page 45 of 47

The surrogate 2-Fluorophenol in sample GWDUP01_090518 exhibited a %R below the LCL for 2-fluorophenol (17.6%). The other two acid extractable surrogates are within acceptance limits; no qualifier is necessary.

The MS for sample MW-1_090518 exhibited a %R above the upper control limit (UCL) for 2butanone (737, 666%), chloroethane (150%), and 2,3,4,6-tetrachlorophenol (172, 147%). The associated results are non-detect; no qualifier is necessary.

Metals by Method 6010D

The method blank (MB) for batch BI80422 exhibited a detection of potassium (total) (86.1 ug/L). The associated results in sample MW-1_090518, LMW01D_090518, LMW08S_090518, LMW08D_090518, GWDUP01_090518, and GWFB01_090518 are >10X the blank concentration or non-detect; no qualification is necessary.

<u>1810253:</u>

VOCs by Method 8260C

The LCS for batch BI80334 exhibited a %R above the upper control limit (UCL) for chloroethane (154, 156%) and trichlorofluoromethane (148, 160%). The associated results in samples MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15 090618. LMW20S 090618, LMW20D 090618, and GWTB02 090618 are non-detect; no qualifier is necessary.

SVOCs by Method 8270D and 8270D with SIM

The LCS for batch BI80408 exhibited a %R above the upper control limit (UCL) for 2,3,4,6tetrachlorophenol (183, 166%) and pentachlorophenol (203%). The associated results in sample MW-3_090618, MW-4_090618, LMW12S_090618, LMW12D_090618, LMW15_090618, LMW20S_090618, and LMW20D_090618 are non-detect; no qualifier is necessary.

The surrogate terphenyl-d14 in sample LMW20S_090618 exhibited a %R above the upper control limit (UCL) for terphenyl-d14 (113%). The other two base/neutral extractable surrogates are within acceptance limits; no qualifier is necessary.

Metals by Method 6010D

The method blank (MB) for batch BI80588 exhibited a detection of potassium (dissolved) (58.6 associated results samples LMW12S_090618, LMW12D_090618, ug/L). in LMW15_090618, LMW20S_090618, and LMW20D_090618 are >10X the blank concentration; no qualification is necessary.

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301

October 16, 2018 Page 46 of 47

1810296:

SVOCs by Method 8270D and 8270D with SIM

The LCS for batch BI80408 exhibited a %R above the upper control limit (UCL) for 2,3,4,6tetrachlorophenol (183, 166%) and pentachlorophenol (203%). The associated results in and

samples MW-5 090718, MW-6 090718, LMW11_090718, LMW19S 090718,

LMW19D_090718 are non-detect; no qualifier is necessary.

Metals by Method 6010D

The method blank (MB) for batch BI80625 exhibited a detection of calcium (total) (52.4 ug/L),

iron (total) (46.5 ug/L), and potassium (total) (146 ug/L). The associated results in samples

LMW11_090718, LMW19S_090718, and LMW19D_090718 are >10X the blank concentration;

no qualification is necessary.

The method blank (MB) for batch BI80660 exhibited a detection of iron (dissolved) (28.1 ug/L)

and potassium (dissolved) (91.9 ug/L). The associated results in samples LMW11 090718,

LMW19S_090718, and LMW19D_090718 are >10X the blank concentration; no qualification is

necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For

results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less

than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the

RPD is less than or equal to 30%. The following analytes did not meet the precision criteria:

GWDUP01_090518 and MW-1_090518: tetrachloroethylene, trichloroethylene, zinc

(total), and selenium (dissolved).

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned

above, that means that all specified criteria were met for that parameter. All of the data

packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the

percentage of analytical results that are judged to be valid, is 100%.

Signed:

I ANGAN

Data Usability Summary Report For 41 Kensico Drive 2018 Groundwater Samples Langan Project No.: 190046301 October 16, 2018 Page 47 of 47

Emily Strake, CEP Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Elizabeth Burgess, Langan Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 4, 2019

Re: Data Usability Summary Report

For 41 Kensico Drive

May 2019 Groundwater Samples Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of groundwater samples collected in May 2019 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), and 1,4-Dioxane by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- 1,4-Dioxane by SW-846 Method 8270D SIM

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19E0476	19E0476-01	GWG01_050919	5/9/2019	VOCs, SVOCs, 1,4-Dioxane
19E0476	19E0476-02	GWG02_050919	5/9/2019	VOCs, SVOCs, 1,4-Dioxane
19E0476	19E0476-03	GWG03_050919	5/9/2019	VOCs, SVOCs, 1,4-Dioxane
19E0476	19E0476-04	TB_050919	5/9/2019	VOCs

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1),

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 2 of 9

USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), and the specifics of the methods employed.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, trip blank sample results, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 3 of 9

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWG01_050919	8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
GWG01_050919	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
GWG01_050919	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
GWG01_050919	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
GWG01_050919	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWG01_050919	8270D	51-28-5	2,4-DINITROPHENOL	UJ
GWG01_050919	8270D	91-57-6	2-METHYLNAPHTHALENE	UJ
GWG01_050919	8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
GWG01_050919	8270D	101-55-3	4-BROMOPHENYL PHENYL ETHER	UJ
GWG01_050919	8270D	59-50-7	4-CHLORO-3-METHYLPHENOL	UJ
GWG01_050919	8270D	106-47-8	4-CHLOROANILINE	UJ
GWG01_050919	8270DSIM	1912-24-9	ATRAZINE	UJ
GWG01_050919	8270D	100-52-7	BENZALDEHYDE	UJ
GWG01_050919	8270D	111-91-1	BIS(2-CHLOROETHOXY) METHANE	UJ
GWG01_050919	8270DSIM	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	U (0.677)
GWG01_050919	8260C	74-83-9	BROMOMETHANE	UJ
GWG01_050919	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
GWG01_050919	8260C	75-00-3	CHLOROETHANE	UJ
GWG01_050919	8260C	74-87-3	CHLOROMETHANE	UJ
GWG01_050919	8260C	110-82-7	CYCLOHEXANE	UJ
GWG01_050919	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
GWG01_050919	8260C	87-68-3	HEXACHLOROBUTADIENE	UJ
GWG01_050919	8270D	77-47-4	HEXACHLOROCYCLOPENTADIENE	UJ
GWG01_050919	8260C	108-87-2	METHYLCYCLOHEXANE	UJ
GWG01_050919	8270D	110-86-1	PYRIDINE	UJ
GWG01_050919	8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWG01_050919	8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
GWG01_050919	8260C	10061-02-6	TRANS-1,3-DICHLOROPROPENE	UJ
GWG01_050919	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWG01_050919	8260C	75-01-4	VINYL CHLORIDE	J

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 4 of 9

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWG02_050919	8260C	108-67-8	1,3,5-TRIMETHYLBENZENE (MESITYLENE)	UJ
GWG02_050919	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWG02_050919	8270D	51-28-5	2,4-DINITROPHENOL	UJ
GWG02_050919	8260C	591-78-6	2-HEXANONE	UJ
GWG02_050919	8270D	91-57-6	2-METHYLNAPHTHALENE	UJ
GWG02_050919	8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
GWG02_050919	8270D	101-55-3	4-BROMOPHENYL PHENYL ETHER	UJ
GWG02_050919	8270D	59-50-7	4-CHLORO-3-METHYLPHENOL	UJ
GWG02_050919	8270D	106-47-8	4-CHLOROANILINE	UJ
GWG02_050919	8260C	67-64-1	ACETONE	UJ
GWG02_050919	8270DSIM	1912-24-9	ATRAZINE	UJ
GWG02_050919	8270D	100-52-7	BENZALDEHYDE	UJ
GWG02_050919	8270D	111-91-1	BIS(2-CHLOROETHOXY) METHANE	UJ
GWG02_050919	8260C	74-83-9	BROMOMETHANE	UJ
GWG02_050919	8260C	75-00-3	CHLOROETHANE	UJ
GWG02_050919	8270D	77-47-4	HEXACHLOROCYCLOPENTADIENE	UJ
GWG02_050919	8260C	79-20-9	METHYL ACETATE	UJ
GWG02_050919	8260C	108-10-1	METHYL ISOBUTYL KETONE (4-METHYL- 2-PENTANONE)	UJ
GWG02_050919	8270D	110-86-1	PYRIDINE	UJ
GWG02_050919	8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWG03_050919	8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
GWG03_050919	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
GWG03_050919	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
GWG03_050919	8260C	96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	UJ
GWG03_050919	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
GWG03_050919	8270D	51-28-5	2,4-DINITROPHENOL	UJ
GWG03_050919	8270D	91-57-6	2-METHYLNAPHTHALENE	UJ
GWG03_050919	8270D	534-52-1	4,6-DINITRO-2-METHYLPHENOL	UJ
GWG03_050919	8270D	101-55-3	4-BROMOPHENYL PHENYL ETHER	UJ
GWG03_050919	8270D	59-50-7	4-CHLORO-3-METHYLPHENOL	UJ
GWG03_050919	8270D	106-47-8	4-CHLOROANILINE	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 5 of 9

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
GWG03_050919	8270DSIM	1912-24-9	ATRAZINE	UJ
GWG03_050919	8270D	100-52-7	BENZALDEHYDE	UJ
GWG03_050919	8270D	111-91-1	BIS(2-CHLOROETHOXY) METHANE	UJ
GWG03_050919	8260C	74-83-9	BROMOMETHANE	UJ
GWG03_050919	8260C	56-23-5	CARBON TETRACHLORIDE	UJ
GWG03_050919	8260C	75-00-3	CHLOROETHANE	UJ
GWG03_050919	8260C	74-87-3	CHLOROMETHANE	UJ
GWG03_050919	8260C	110-82-7	CYCLOHEXANE	UJ
GWG03_050919	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
GWG03_050919	8260C	87-68-3	HEXACHLOROBUTADIENE	UJ
GWG03_050919	8270D	77-47-4	HEXACHLOROCYCLOPENTADIENE	UJ
GWG03_050919	8260C	108-87-2	METHYLCYCLOHEXANE	UJ
GWG03_050919	8270D	110-86-1	PYRIDINE	UJ
GWG03_050919	8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ
GWG03_050919	8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
GWG03_050919	8260C	10061-02-6	TRANS-1,3-DICHLOROPROPENE	UJ
GWG03_050919	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
GWG03_050919	8260C	75-01-4	VINYL CHLORIDE	J
TB_050919	8260C	76-13-1	1,1,2-TRICHLORO-1,2,2- TRIFLUOROETHANE	UJ
TB_050919	8260C	87-61-6	1,2,3-TRICHLOROBENZENE	UJ
TB_050919	8260C	120-82-1	1,2,4-TRICHLOROBENZENE	UJ
TB_050919	8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
TB_050919	8260C	67-64-1	ACETONE	UJ
TB_050919	8260C	107-02-8	ACROLEIN	UJ
TB_050919	8260C	74-83-9	BROMOMETHANE	UJ
TB_050919	8260C	75-00-3	CHLOROETHANE	UJ
TB_050919	8260C	74-87-3	CHLOROMETHANE	UJ
TB_050919	8260C	110-82-7	CYCLOHEXANE	UJ
TB_050919	8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
TB_050919	8260C	87-68-3	HEXACHLOROBUTADIENE	UJ
TB_050919	8260C	108-87-2	METHYLCYCLOHEXANE	UJ
TB_050919	8260C	75-65-0	TERT-BUTYL ALCOHOL	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 6 of 9

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
TB_050919	8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
TB_050919	8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
TB_050919	8260C	75-01-4	VINYL CHLORIDE	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The laboratory control sample and duplicate (LCS/LCSD) for batch BE90742 exhibited percent recoveries below the lower control limit (LCL) for 1,2,4-trichlorobenzene (62.9%, 71.1%), tetrachloroethylene (79.4%), 1,2,3-trichlorobenzene (51.1%, 62.8%), and hexachlorobutadiene (56.6%). The associated results in sample TB_050919 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BE90774 exhibited percent recoveries below the LCL for tetrachloroethylene (74.9%), carbon tetrachloride (74.3%), and 1,2,3-trichlorobenzene (73.8%, 60.8%). The associated results in samples GWG01_050919 and GWG03_050919 are qualified as "UJ" based on potential low bias.

The initial calibration verification (ICV) analyzed on 4/4/2019 at 3:21 exhibited percent differences (%Ds) above the control limit for 1,4-dioxane (-79.9%), bromomethane (51.1%), and tert-butyl alcohol (-34.5%). The associated results in sample GWG02_050919 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 4/26/2019 at 5:28 exhibited %Ds above the control limit for 1,4-dioxane (-81.9%), bromomethane (61.3%), chloroethane (36.8%), chloromethane (37.2%), dichlorodifluoromethane (55.3%), trichlorofluoromethane (48.1%), and vinyl chloride (41.8%). The associated results in samples GWG01_050919, GWG03_050919, and TB_050919 are qualified as "J" or "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 7 of 9

The continuing calibration verification (CCV) analyzed on 5/13/2019 at 10:36 exhibited %Ds above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (-27%), acetone (64.6%), acrolein (23.4%), cyclohexane (-23.9%), methylcyclohexane (-21.8%), and tert-butyl alcohol (-24.5%). The associated results in sample TB_050919 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/13/2019 at 23:47 exhibited %Ds above the control limit for 1,1,2-trichloro-1,2,2-trifluoroethane (-36.8%), 1,2,4-trichlorobenzene (-40.8%), 1,2-dibromo-3-chloropropane (-23.2%), cyclohexane (-31.6%), hexachlorobutadiene (-39%), methylcyclohexane (-30.8%), tert-butyl alcohol (-27.7%), and trans-1,3-dichloropropylene (-20.7%). The associated results in samples GWG01_050919 and GWG03_050919 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/16/2019 at 6:02 exhibited %Ds above the control limit for 1,3,5-trimethylbenzene (20.3%), 2-hexanone (-32.8%), 4-methyl-2-pentanone (-28.9%), acetone (-23.8%), chloroethane (-23.9%), and methyl acetate (-22.6%). The associated results in sample GWG02_050919 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The LCS/LCSD for batch BE90960 exhibited relative percent differences (RPDs) above the control limit for 4-chloroaniline (38.2%), 4-chloro-3-methylphenol (43%), and 2-methylnaphthalene (43%). The associated results in samples GWG01_050919, GW02_050919, and GWG03_050919 are qualified as "UJ" based on potential indeterminate bias.

The ICV analyzed on 5/4/2019 at 16:14 exhibited %Ds above the control limit for 2,4-dinitrophenol (65.8%) and 4,6-dinitro-2-methylphenol (44.2%). The associated results in samples GWG01_050919, GW02_050919, and GWG03_050919 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/16/2019 at 14:47 exhibited %Ds above the control limit for 4-bromophenyl phenyl ether (22.2%), benzaldehyde (-37.5%), bis(2-chloroethoxy)methane (-22%), hexachlorocyclopentadiene (33.9%), and pyridine (-44%). The associated results in samples GWG01_050919, GW02_050919, and GWG03_050919 are qualified as "UJ" based on potential indeterminate bias.

The method blank (MB) for batch BE90960 exhibited a detection of bis(2-ethylhexyl) phthalate (0.83 ug/l). The associated results in sample GWG01_050919 are qualified as "U" at the sample concentration based on potential blank contamination.

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301

June 4, 2019 Page 8 of 9

The CCV analyzed on 5/16/2019 at 14:20 exhibited a %D above the control limit for atrazine (57.6%). The associated results in samples GWG01_050919, GW02_050919, and GWG03_050919 are qualified as "UJ" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The MB for batch BE90742 exhibited a detection of 1,2,3-trichlorobenzene (0.44 ug/l). The associated results are non-detections. No qualification is necessary.

The MB for batch BE90774 exhibited a detection of 1,2,3-trichlorobenzene (0.32 ug/l). The associated results are non-detections. No qualification is necessary.

The LCS/LCSD for batch BE90966 exhibited percent recoveries above the upper control limit (UCL) for 1,4-dichlorobenzene (124%), 1,3,5-trimethylbenzene (142%, 137%), 1,3-dichlorobenzene (128%, 128%), dichlorodifluoromethane (154%), and p-isopropyltoluene (136%). The associated results are non-detections. No qualification is necessary.

The CCV analyzed on 5/13/2019 at 10:36 exhibited %Ds above the control limit for 1,2,3-trichlorobenzene (-49.2%), 1,2,4-trichlorobenzene (-36.5%), 1,4-dioxane (-75.8%), bromomethane (40.4%), dichlorodifluoromethane (-44.1%), and hexachlorobutadiene (-53.2%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/13/2019 at 23:47 exhibited %Ds above the control limit for 1,2,3-trichlorobenzene (-45.2%), 1,4-dioxane (-75.5%), dichlorodifluoromethane (-52.6%), and trichlorofluoromethane (-22%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/16/2019 at 6:02 exhibited %Ds above the control limit for 1,4-dioxane (-72%) and bromomethane (51.3%). The associated results were previously qualified. No further action is necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The CCV analyzed on 5/16/2019 at 14:47 exhibited %Ds above the control limit for 2,4-dinitrophenol (49.6%) and 4,6-dinitro-2-methylphenol (40.3%). The associated results were previously qualified. No further action is necessary.

Data Usability Summary Report For 41 Kensico Drive May 2019 Groundwater Samples Langan Project No.: 190046301 June 4, 2019 Page 9 of 9

COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Tyler Chow, Langan Project Manager

From: Emily Strake, Langan Senior Project Chemist

Date: September 24, 2018

Re: Data Usability Summary Report

For 41 Kensico Drive Soil Vapor Sample

Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of one soil gas sample collected in August 2018 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The sample was analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAC registration # 10854) for volatile organic compounds (VOCs) using the analytical method specified below.

• Full List VOCs by EPA Compendium Method TO-15 and TO-15 with SIM (1/1999)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
18H0720	18H0720-02	IA01_081418	08/14/2018	Not Analyzed
18H0720	18H0720-02	LSV22_081418	08/14/2018	VOCs

VALIDATION OVERVIEW

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-31, "Validating Volatile Organic Analysis of Ambient Air in Canister by Method TO-15" (September 2016, Revision 6) and the specifics of the method.

Validation includes reconstruction of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, canister certification, canister pressure, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, internal standard area counts, target compound identification and quantification, and overall system performance.

Data Usability Summary Report For 41 Kensico Drive Soil Gas Sample

Langan Project No.: 190046301 September 24, 2018 Page 2 of 3

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
LSV22_081418	TO15	106-99-0	1,3-Butadiene	J

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

Data Usability Summary Report For 41 Kensico Drive Soil Gas Sample Langan Project No.: 190046301

September 24, 2018 Page 3 of 3

VOCs by USEPA TO-15 and TO-15 SIM:

18H0720

LCS/LCSD BH80989 displayed a recovery greater than the upper control limit for 1,3-butadiene at 142%. The associated positive detection is qualified as "J". The LCS/LCSD also displayed

recoveries greater than the upper control limit for vinyl acetate and MTBE. The associated

sample results were non-detect; qualification is not necessary.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not

necessitate qualification. The section below describes the other deficiencies that were

identified.

VOCs by USEPA TO-15 and TO-15 SIM:

18H0720

The continuing calibration analyzed on 8/17/18 at 17:05 displayed a %D greater than the control

limit with a positive bias for 1,3-butaidene. The associated sample result was previously

qualified; no further action is necessary.

COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned

above, that means that all specified criteria were met for that parameter. All sample hold times

were met and the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the

percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

LANGAN

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Elizabeth Burgess, Langan Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 4, 2019

Re: Data Usability Summary Report

For 41 Kensico Drive

May 2019 Surface Water Samples Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of surface water samples collected in May 2019 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), 1,4-dioxane, per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), and trivalent chromium (CrIII) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D and 8270D SIM
- 1,4-Dioxane by SW-846 Method 8270D SIM
- PFAS by USEPA Method 537M
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D
- Metals by SW-846 Method 6020B
- Mercury by SW-846 Method 7473
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 2 of 12

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19E0144	19E0144-01	SW1_050219	5/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
19E0144	19E0144-02	SW3_050219	5/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
19E0144	19E0144-03	SW2_050219	5/2/2019	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
19E0144	19E0144-04	SWDUP01_050219	5/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
19E0144	19E0144-05	SWFB01_050219	5/2/2019	VOCs, SVOCs, 1,4-Dioxane, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII
19E0144	19E0144-06	SWTB01_050219	5/2/2019	VOCs

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3b, "ICP-MS Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 3 of 12

category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, instrument tuning, instrument calibration, laboratory blanks, laboratory control samples, system monitoring compounds, standard isotope recoveries, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, serial dilutions, dual column performance, field duplicate, field blank sample results, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 4 of 12

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SW1_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SW1_050219	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SW1_050219	SW8260C	591-78-6	2-Hexanone	UJ
SW1_050219	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SW1_050219	SW8260C	67-64-1	Acetone	J
SW1_050219	SW8260C	107-02-8	Acrolein	UJ
SW1_050219	SW8270DSIM	1912-24-9	Atrazine	UJ
SW1_050219	SW8270D	100-52-7	Benzaldehyde	UJ
SW1_050219	SW8260C	74-83-9	Bromomethane	UJ
SW1_050219	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SW1_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SW1_050219	SW8081B	72-55-9	P,P'-DDE	UJ
SW1_050219	8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SW1_050219	8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SW1_050219	8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SW1_050219	SW6010B	7440-09-7	Potassium	J
SW1_050219	SW6010B	7440-23-5	Sodium	J
SW1_050219	SW6010B	7440-23-5	Sodium	J
SW1_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SW1_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SW1_050219	SW8260C	75-01-4	Vinyl Chloride	J
SW3_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SW3_050219	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SW3_050219	SW8260C	591-78-6	2-Hexanone	UJ
SW3_050219	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SW3_050219	SW8270DSIM	208-96-8	Acenaphthylene	J
SW3_050219	SW8260C	67-64-1	Acetone	UJ
SW3_050219	SW8260C	107-02-8	Acrolein	UJ
SW3_050219	SW6010B	7429-90-5	Aluminum	U (0.0565)
SW3_050219	SW8270DSIM	1912-24-9	Atrazine	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 5 of 12

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SW3_050219	SW8270D	100-52-7	Benzaldehyde	UJ
SW3_050219	SW8260C	74-83-9	Bromomethane	UJ
SW3_050219	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SW3_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SW3_050219	SW8270DSIM	91-20-3	Naphthalene	J
SW3_050219	SW8081B	72-55-9	P,P'-DDE	UJ
SW3_050219	8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SW3_050219	8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SW3_050219	8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SW3_050219	SW6010B	7440-09-7	Potassium	J
SW3_050219	SW6010B	7440-23-5	Sodium	J
SW3_050219	SW6010B	7440-23-5	Sodium	J
SW3_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SW3_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SW3_050219	SW8260C	75-01-4	Vinyl Chloride	J
SW2_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SW2_050219	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SW2_050219	SW8260C	591-78-6	2-Hexanone	UJ
SW2_050219	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SW2_050219	SW8260C	67-64-1	Acetone	UJ
SW2_050219	SW8260C	107-02-8	Acrolein	UJ
SW2_050219	SW8270DSIM	1912-24-9	Atrazine	UJ
SW2_050219	SW8270D	100-52-7	Benzaldehyde	UJ
SW2_050219	SW8260C	74-83-9	Bromomethane	UJ
SW2_050219	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SW2_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SW2_050219	SW8270DSIM	91-20-3	Naphthalene	U (0.0526)
SW2_050219	SW8081B	72-55-9	P,P'-DDE	UJ
SW2_050219	8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SW2_050219	8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SW2_050219	8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 6 of 12

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SW2_050219	SW6010B	7440-09-7	Potassium	J
SW2_050219	SW6010B	7440-23-5	Sodium	J
SW2_050219	SW6010B	7440-23-5	Sodium	J
SW2_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SW2_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SW2_050219	SW8260C	75-01-4	Vinyl Chloride	J
SWDUP01_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SWDUP01_050219	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SWDUP01_050219	SW8260C	591-78-6	2-Hexanone	UJ
SWDUP01_050219	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SWDUP01_050219	SW8270DSIM	208-96-8	Acenaphthylene	UJ
SWDUP01_050219	SW8260C	67-64-1	Acetone	UJ
SWDUP01_050219	SW8260C	107-02-8	Acrolein	UJ
SWDUP01_050219	SW6010B	7429-90-5	Aluminum	J
SWDUP01_050219	SW8270DSIM	1912-24-9	Atrazine	UJ
SWDUP01_050219	SW8270D	100-52-7	Benzaldehyde	UJ
SWDUP01_050219	SW8260C	74-83-9	Bromomethane	UJ
SWDUP01_050219	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SWDUP01_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SWDUP01_050219	SW8270DSIM	91-20-3	Naphthalene	U (0.0923)
SWDUP01_050219	SW8081B	72-55-9	P,P'-DDE	UJ
SWDUP01_050219	8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SWDUP01_050219	8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SWDUP01_050219	8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SWDUP01_050219	SW6010B	7440-09-7	Potassium	J
SWDUP01_050219	SW6010B	7440-23-5	Sodium	J
SWDUP01_050219	SW6010B	7440-23-5	Sodium	J
SWDUP01_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SWDUP01_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SWFB01_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SWFB01_050219	SW8270D	51-28-5	2,4-Dinitrophenol	UJ
SWFB01_050219	SW8260C	591-78-6	2-Hexanone	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 7 of 12

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SWFB01_050219	SW8270D	534-52-1	4,6-Dinitro-2-Methylphenol	UJ
SWFB01_050219	SW8260C	67-64-1	Acetone	UJ
SWFB01_050219	SW8260C	107-02-8	Acrolein	UJ
SWFB01_050219	SW8270DSIM	1912-24-9	Atrazine	UJ
SWFB01_050219	SW8270D	100-52-7	Benzaldehyde	UJ
SWFB01_050219	SW8260C	74-83-9	Bromomethane	UJ
SWFB01_050219	SW6010B	7440-70-2	Calcium	U (0.0672)
SWFB01_050219	SW8270D	117-84-0	Di-N-Octylphthalate	UJ
SWFB01_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SWFB01_050219	SW8081B	72-55-9	P,P'-DDE	UJ
SWFB01_050219	8082A	12672-29-6	PCB-1248 (Aroclor 1248)	UJ
SWFB01_050219	8082A	11097-69-1	PCB-1254 (Aroclor 1254)	UJ
SWFB01_050219	8082A	11096-82-5	PCB-1260 (Aroclor 1260)	UJ
SWFB01_050219	SW6010B	7440-09-7	Potassium	U (0.150)
SWFB01_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SWFB01_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ
SWTB01_050219	SW8260C	123-91-1	1,4-Dioxane (P-Dioxane)	UJ
SWTB01_050219	SW8260C	591-78-6	2-Hexanone	UJ
SWTB01_050219	SW8260C	67-64-1	Acetone	UJ
SWTB01_050219	SW8260C	107-02-8	Acrolein	UJ
SWTB01_050219	SW8260C	74-83-9	Bromomethane	UJ
SWTB01_050219	SW8260C	78-93-3	Methyl Ethyl Ketone (2- Butanone)	UJ
SWTB01_050219	SW8260C	75-65-0	Tert-Butyl Alcohol	UJ
SWTB01_050219	SW8260C	127-18-4	Tetrachloroethylene (PCE)	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 8 of 12

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The laboratory control sample and duplicate (LCS/LCSD) for batch BE90466 exhibited percent recoveries below the lower control limit (LCL) for tetrachloroethylene (71.9%, 70.9%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, SWFB01_050219, and SWTB01_050219 are qualified as "UJ" based on potential low bias.

The LCS/LCSD for batch BE90466 exhibited percent recoveries above the upper control limit (UCL) for vinyl chloride (148%, 148%). The associated results in sample SW1_050219, SW3_050219, and SW2_050219 are qualified as "J" based on potential high bias.

The initial calibration verification (ICV) analyzed on 4/3/2019 at 21:08 exhibited a percent difference (%D) above the control limit for 1,4-dioxane (68.4%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, SWFB01_050219, and SWTB01_050219 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 5/8/2019 at 15:06 exhibited %Ds above the control limit for 2-butanone (59.2%), 2-hexanone (45.9%), acetone (108%), acrolein (42.7%), bromomethane (-37.4%), and tert-butyl alcohol (24.6%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, SWFB01_050219, and SWTB01_050219 are qualified as "J" or "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The ICV analyzed on 5/4/2019 at 16:14 exhibited %Ds above the control limit for 2,4-dinitrophenol (65.8%) and 4,6-dinitro-2-methylphenol (44.2%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, and SWFB01_050219 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/9/2019 at 8:02 exhibited %Ds above the control limit for benzaldehyde (-36.5%) and di-n-octylphthalate (43.4%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, and SWFB01_050219 are qualified as "UJ" based on potential indeterminate bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 9 of 12

The LCS for batch BE90451 exhibited a percent recovery above the UCL for bis(2-ethylhexyl) phthalate (224%). The associated results in sample SW1_050219 are qualified as "J" based on potential high bias.

The field blank (SWFB01_050219) exhibited a detection of naphthalene (0.0947 ug/L). The associated results in sample SW2_050219 and SWDUP01_050219 are qualified as "U" at the sample concentration based on potential blank contamination.

The field duplicate and parent sample (SWDUP01_050219 and SW3_050219) exhibited an absolute difference above the RL for acenaphthylene (0.0517 ug/L) and naphthalene (2.3377 ug/L). The associated results are qualified as "J" or "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/10/2019 at 17:09 exhibited a %D above the control limit for atrazine (46%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, and SWFB01_050219 are qualified as "UJ" based on potential indeterminate bias.

PCBs by SW-846 Method 8082A:

The CCV analyzed on 5/10/2019 at 12:40 exhibited a %D above the control limit for PCB-1260 on the primary gas chromatography (GC) column (23.5%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, and SWFB01_050219 are qualified as "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The initial calibration (ICAL) for instrument GC Dual E exhibited a relative standard deviation (RSD) above the control limit for 4,4'-DDE on the primary GC column (20.2%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, SWDUP01_050219, and SWFB01_050219 are qualified as "UJ" based on potential indeterminate bias.

Metals by SW-846 Method 6010D:

The method blank (MB) for batch BE90367 exhibited a detection of total aluminum (0.126 mg/L). The associated results in sample SW3_050219 are qualified as "U" at the sample concentration based on potential blank contamination.

The MB for batch BE90582 exhibited a detection of dissolved calcium (0.0575 mg/L). The associated results in sample SWFB01_050219 are qualified as "U" at the sample concentration based on potential blank contamination.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301

June 4, 2019 Page 10 of 12

The field duplicate and parent sample (SWDUP01_050219 and SW3_050219) exhibited a absolute difference above the RL for aluminum (0.0874 mg/L). The associated results are qualified as "J" based on potential indeterminate bias.

The CCV analyzed on 5/8/2019 at 15:01 exhibited percent recoveries above the UCL for total potassium (112%) and total sodium (112%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, and SWDUP01_050219 are qualified as "J" based on potential high bias.

The continuing calibration blank (CCB) (Y9E0830-CCBA) exhibited a detection of total potassium (0.17 ug/mL). The associated results in sample SWFB01_050219 are qualified as "U" at the sample concentration based on potential blank contamination.

The CCV analyzed on 5/9/2019 at 14:38 exhibited a percent recovery above the UCL for dissolved sodium (113%). The associated results in sample SW1_050219, SW3_050219, SW2_050219, and SWDUP01_050219 are qualified as "J" based on potential high bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The LCS/LCSD for batch BE90466 exhibited percent recoveries above the UCL for dichlorodifluoromethane (155%, 150%). The associated results are non-detections. No qualification is necessary.

The matrix spike and duplicate (MS/MSD) for batch BE90466 exhibited percent recoveries below the LCL for tetrachloroethylene (59.2%, 58.1%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The CCV analyzed on 5/8/2019 at 15:06 exhibited a %D above the control limit for 1,4-dioxane (51.8%). The associated results were previously qualified. No further action is necessary.

SVOCs by SW-846 Method 8270D and 8270D SIM:

The LCS for batch BE90451 exhibited percent recoveries above the UCL for pyridine (110%), 2,3,4,6-tetrachlorophenol (205%), and 1,2,4,5-tetrachlorobenzene (126%). The associated results are non-detections. No qualification is necessary.

The MS/MSD for batch BE90451 exhibited percent recoveries above the UCL for benzaldehyde (90%, 94.2%), pyridine (103%, 98.2%), di-n-octylphthalate (137%), 2,3,4,6-tetrachlorophenol

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301

June 4, 2019 Page 11 of 12

(181%, 195%), 2,6-dinitrotoluene (106%), 4-chlorophenyl phenyl ether (89.4%), hexachlorocyclopentadiene (82.8%, 88.5%), di-n-butyl phthalate (99.1%, 110%), 2,4,6-trichlorophenol (97.4%), biphenyl (diphenyl) (80.9%), and 1,2,4,5-tetrachlorobenzene (110%, 120%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The CCV analyzed on 5/9/2019 at 8:02 exhibited %Ds above the control limit for 2,4-dinitrophenol (37%) and 4,6-dinitro-2-methylphenol (36.2%). The associated results were previously qualified. No further action is necessary.

Pesticides by SW-846 Method 8081B:

The MS/MSD for batch BE90453 exhibited percent recoveries above the UCL for delta BHC (324%, 318%). Organic results are not qualified on the basis of MS/MSDs alone. No qualification is necessary.

The ICAL for instrument GC Dual E exhibited a RSD above the control limit for dieldrin on the secondary GC column (20.3%). The associated results were reported from the primary GC column. No qualification is necessary.

Metals by SW-846 Method 6010D:

The MS/MSD for batch BE90367 exhibited percent recoveries above the UCL for total magnesium (129%) and total calcium (165%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MS/MSD for batch BE90367 exhibited a percent recovery below the LCL for total sodium (-20.1%). The associated results in the parent sample are >4X the spiked amount. No qualification is necessary.

The MB for batch BE90582 exhibited a detection of dissolved potassium (0.0945 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The field blank (SWFB01_050219) exhibited detections of total potassium (0.15 mg/L), total calcium (0.113 mg/L), and dissolved calcium (0.0672 mg/L). The associated results are >10X the contamination. No qualification is necessary.

The CCV analyzed on 5/8/2019 at 15:01 exhibited a percent recovery above the UCL for total aluminum (111%). The associated results are non-detections. No qualification is necessary.

The CCB (Y9E0933-CCBB) exhibited a detection of dissolved potassium (0.106 ug/mL). The associated results are >10X the contamination. No qualification is necessary.

Data Usability Summary Report For 41 Kensico Drive May 2019 Surface Water Samples Langan Project No.: 190046301 June 4, 2019 Page 12 of 12

Metals by SW-846 Method 6020B:

The CCV analyzed on 5/9/2019 at 14:19 exhibited a percent recovery above the UCL for total thallium (123%). The associated results are non-detections. No qualification is necessary.

COMMENTS:

Field duplicate and parent sample pairs were collected and analyzed for all parameters. For results less than 5X the RL, analytes meet the precision criteria if the absolute difference is less than ±1X the RL. For results greater than 5X the RL, analytes meet the precision criteria if the RPD is less than or equal to 30% for surface water. The following field duplicate and parent sample pairs were compared to the precision criteria:

• SWDUP01_050219 and SW3_050219

On the basis of this evaluation, the laboratory appears to have followed the specified analytical methods with the exception of errors discussed above. If a given fraction is not mentioned above, that means that all specified criteria were met for that parameter. All of the data packages met ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage of analytical results that are judged to be valid, is 100%.

Signed:

Emily Strake, CEP

Senior Project Chemist

2700 Kelly Road, Suite 200 Warrington, PA 18976 T: 215.491.6500 F: 215.491.6501 Mailing Address: P.O. Box 1569 Doylestown, PA 18901

To: Elizabeth Burgess, Langan Staff Engineer

From: Emily Strake, Langan Senior Project Chemist

Date: June 4, 2019

Re: Data Usability Summary Report

For 41 Kensico Drive

May 2019 Sediment Samples Langan Project No.: 190046301

This memorandum presents the findings of an analytical data validation of the data generated from the analysis of sediment samples collected in May 2019 by Langan Engineering and Environmental Services ("Langan") at the 41 Kensico Drive site ("the site"). The samples were analyzed by York Analytical Laboratories, Inc. (NYSDOH NELAP registration # 10854) for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs), per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), pesticides, metals including mercury (Hg), cyanide (CN), hexavalent chromium (CrVI), trivalent chromium (CrIII), and total solids (%S) by the methods specified below.

- VOCs by SW-846 Method 8260C
- SVOCs by SW-846 Method 8270D
- PFAS by USEPA Method 537M
- PCBs by SW-846 Method 8082A
- Pesticides by SW-846 Method 8081B
- Metals by SW-846 Method 6010D
- Mercury by SW-846 Method 7471B
- Cyanide by SW-846 Method 9012B
- Hexavalent Chromium by SW-846 Method 7196A
- Trivalent Chromium (calculated)
- Total Solids by Standard Method 2540G

Table 1, below, summarizes the laboratory and client sample identification numbers, sample collection dates, and analytical parameters subject to review.

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301

June 4, 2019 Page 2 of 8

TABLE 1: SAMPLE SUMMARY

SDG	Lab Sample ID	Client Sample ID	Sample Date	Analytical Parameters
19E0170	19E0170-01	SED1_0-0.5	5/2/2019	VOCs, SVOCs, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, %S
19E0170	19E0170-02	SED3_0-0.5	5/2/2019	VOCs, SVOCs, PFAS, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, %S
19E0170	19E0170-03	SED2_0-0.5	5/2/2019	VOCs, SVOCs, PCBs, Pesticides, Metals, Hg, CN, CrVI, CrIII, %S

Validation Overview

This data validation was performed in accordance with USEPA Region II Standard Operating Procedure (SOP) #HW-34A, "Trace Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-33A, "Low/Medium Volatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-35A, "Semivolatile Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-17, "Validating Chlorinated Herbicides" (December 2010, Revision 3.1), USEPA Region II SOP #HW-37A, "Polychlorinated Biphenyl (PCB) Aroclor Data Validation" (June 2015, Revision 0), USEPA Region II SOP #HW-36A, "Pesticide Data Validation" (October 2016, Revision 1), USEPA Region II SOP #HW-3a, "ICP-AES Data Validation" (September 2016, Revision 1), USEPA Region II SOP #HW-3c, "Mercury and Cyanide Data Validation" (September 2016, Revision 1), the USEPA Contract Laboratory Program "National Functional Guidelines for Organic Superfund Methods Data Review" (EPA-540-R-2017-002, January 2017), USEPA "National Functional Guidelines for Inorganic Superfund Methods Data Review" (EPA-540-R-2017-001, January 2017) and the specifics of the methods employed.

EPA Method 537 was developed and validated for the analysis of finished drinking water from surface water and groundwater sources. Laboratories have modified Method 537 to enable the analysis of groundwater and soil, and to incorporate PFAS analytes not currently addressed by the promulgated method. NYSDOH offers certification for PFOA and PFOS in the drinking water category. Non-potable water and soil certification is not available; however, the method describes acceptable modifications. EPA recommends that modified methods be assessed relative to project goals and data quality objectives.

Validation includes review of the analytical data to verify that data are easily traceable and sufficiently complete to permit logical reconstruction by a qualified individual other than the originator. Items subject to review in this memorandum include holding times, sample preservation, sample extraction and digestion, instrument tuning, instrument calibration,

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301 June 4, 2019 Page 3 of 8

laboratory blanks, laboratory control samples, system monitoring compounds, standard isotope recoveries, internal standard area counts, matrix spike/spike duplicate recoveries, target compound identification and quantification, chromatograms, serial dilutions, dual column performance, and overall system performance.

As a result of the review process, the following qualifiers may be assigned to the data in accordance with the USEPA's guidelines and best professional judgment:

- **R** The sample results are unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
- **J** The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample.
- **UJ** The analyte was not detected at a level greater than or equal to the reporting limit (RL); however, the reported RL is approximate and may be inaccurate or imprecise.
- **U** The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the RL or the sample concentration for results impacted by blank contamination.
- **NJ** The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

If any validation qualifiers are assigned these qualifiers should supersede any laboratory-applied qualifiers. Data that is not qualified as a result of this data validation is considered acceptable on the basis of the items specified for review. Data that is qualified as "R" are not sufficiently valid and technically supportable to be used for data interpretation. Data that is otherwise qualified due to minor data quality anomalies are usable, as qualified.

TABLE 2: VALIDATOR-APPLIED QUALIFICATION

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SED1_0-0.5	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
SED1_0-0.5	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
SED1_0-0.5	SW8260C	107-02-8	ACROLEIN	UJ
SED1_0-0.5	SW8270D	1912-24-9	ATRAZINE	UJ
SED1_0-0.5	SW8270D	100-52-7	BENZALDEHYDE	UJ
SED1_0-0.5	SW8270D	92-87-5	BENZIDINE	UJ
SED1_0-0.5	SW8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301 June 4, 2019 Page 4 of 8

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SED1_0-0.5	SW8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
SED1_0-0.5	SW8260C	74-83-9	BROMOMETHANE	UJ
SED1_0-0.5	SW8260C	75-00-3	CHLOROETHANE	UJ
SED1_0-0.5	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SED1_0-0.5	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
SED1_0-0.5	SW8270D	91-20-3	NAPHTHALENE	UJ
SED1_0-0.5	SW8081B	72-55-9	P,P'-DDE	UJ
SED1_0-0.5	SW8270D	87-86-5	PENTACHLOROPHENOL	UJ
SED1_0-0.5	SW8270D	110-86-1	PYRIDINE	UJ
SED1_0-0.5	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
SED1_0-0.5	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SED1_0-0.5	SW8260C	75-01-4	VINYL CHLORIDE	UJ
SED3_0-0.5	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ
SED3_0-0.5	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
SED3_0-0.5	SW8260C	107-02-8	ACROLEIN	UJ
SED3_0-0.5	SW8270D	1912-24-9	ATRAZINE	UJ
SED3_0-0.5	SW8270D	100-52-7	BENZALDEHYDE	UJ
SED3_0-0.5	SW8270D	92-87-5	BENZIDINE	UJ
SED3_0-0.5	SW8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
SED3_0-0.5	SW8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
SED3_0-0.5	SW8260C	74-83-9	BROMOMETHANE	UJ
SED3_0-0.5	SW8260C	75-00-3	CHLOROETHANE	UJ
SED3_0-0.5	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SED3_0-0.5	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
SED3_0-0.5	SW8270D	91-20-3	NAPHTHALENE	UJ
SED3_0-0.5	SW8081B	72-55-9	P,P'-DDE	UJ
SED3_0-0.5	SW8270D	87-86-5	PENTACHLOROPHENOL	UJ
SED3_0-0.5	SW8270D	110-86-1	PYRIDINE	UJ
SED3_0-0.5	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
SED3_0-0.5	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SED3_0-0.5	SW8260C	75-01-4	VINYL CHLORIDE	UJ
SED2_0-0.5	SW8260C	123-91-1	1,4-DIOXANE (P-DIOXANE)	UJ

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301 June 4, 2019 Page 5 of 8

Client Sample ID	Analysis	CAS#	Analyte	Validator Qualifier
SED2_0-0.5	SW8270D	51-28-5	2,4-DINITROPHENOL	UJ
SED2_0-0.5	SW8260C	107-02-8	ACROLEIN	UJ
SED2_0-0.5	SW8270D	1912-24-9	ATRAZINE	UJ
SED2_0-0.5	SW8270D	100-52-7	BENZALDEHYDE	UJ
SED2_0-0.5	SW8270D	92-87-5	BENZIDINE	UJ
SED2_0-0.5	SW8270D	85-68-7	BENZYL BUTYL PHTHALATE	UJ
SED2_0-0.5	SW8270D	117-81-7	BIS(2-ETHYLHEXYL) PHTHALATE	J
SED2_0-0.5	SW8260C	74-83-9	BROMOMETHANE	UJ
SED2_0-0.5	SW8260C	75-00-3	CHLOROETHANE	UJ
SED2_0-0.5	SW8260C	75-71-8	DICHLORODIFLUOROMETHANE	UJ
SED2_0-0.5	SW8270D	117-84-0	DI-N-OCTYLPHTHALATE	UJ
SED2_0-0.5	SW8270D	91-20-3	NAPHTHALENE	UJ
SED2_0-0.5	SW8081B	72-55-9	P,P'-DDE	UJ
SED2_0-0.5	SW8270D	87-86-5	PENTACHLOROPHENOL	UJ
SED2_0-0.5	SW8270D	110-86-1	PYRIDINE	UJ
SED2_0-0.5	SW8260C	127-18-4	TETRACHLOROETHYLENE(PCE)	UJ
SED2_0-0.5	SW8260C	75-69-4	TRICHLOROFLUOROMETHANE	UJ
SED2_0-0.5	SW8260C	75-01-4	VINYL CHLORIDE	UJ

MAJOR DEFICIENCIES:

Major deficiencies include those that grossly impact data quality and necessitate the rejection of results. No major deficiencies were identified.

MINOR DEFICIENCIES:

Minor deficiencies include anomalies that directly impact data quality and necessitate qualification, but do not result in unusable data. The section below describes the minor deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The lab control sample and duplicate (LCS/LCSD) for batch BE90412 exhibited percent recoveries below the lower control limit (LCL) for tetrachloroethylene (75.9%, 77.7%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "UJ" based on potential low bias.

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301 June 4, 2019 Page 6 of 8

The initial calibration (ICAL) for instrument MS VOA 2 exhibited a relative standard deviation (RSD) above the control limit for 1,4-dioxane (33.7%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "UJ" based on potential indeterminate bias.

The initial calibration verification (ICV) analyzed on 4/22/2019 at 21:51 exhibited percent differences (%Ds) above the control limit for acrolein (-49.7%), dichlorodifluoromethane (51.6%), and vinyl chloride (31.1%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "UJ" based on potential indeterminate bias.

The continuing calibration verification (CCV) analyzed on 5/7/2019 at 22:57 exhibited %Ds above the control limit for bromomethane (26.1%), chloroethane (24.6%), and trichlorofluoromethane (21.8%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "UJ" based on potential indeterminate bias.

SVOCs by SW-846 Method 8270D:

The ICAL for instrument BNA #7 exhibited a RSD above the control limit for pyridine (28.3%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "UJ" based on potential indeterminate bias.

The CCV analyzed on 5/9/2019 at 14:55 exhibited %Ds above the control limit for 2,4-dinitrophenol (36.3%), atrazine (-41.8%), benzaldehyde (-33.1%), benzidine (-66.1%), benzyl butyl phthalate (22.6%), bis(2-ethylhexyl) phthalate (21.5%), di-n-octyl phthalate (48.7%), naphthalene (-26.7%), and pentachlorophenol (-21.8%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 are qualified as "J" or "UJ" based on potential indeterminate bias.

Pesticides by SW-846 Method 8081B:

The ICAL for instrument GC Dual E exhibited a RSD above the control limit for 4,4'-DDE (20.2%). The associated results in samples SED1_0-0.5, SED2_0-0.5, and SED3_0-0.5 from the primary gas chromatography (GC) column are qualified as "UJ" based on potential indeterminate bias.

OTHER DEFICIENCIES:

Other deficiencies include anomalies that do not directly impact data quality and do not necessitate qualification. The section below describes the other deficiencies that were identified.

VOCs by SW-846 Method 8260C:

The LCS/LCSD for batch BE90412 exhibited percent recoveries above the upper control limit (UCL) for vinyl chloride (140%, 138%). The associated results are non-detections. No qualification is necessary.

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301

June 4, 2019 Page 7 of 8

The ICV analyzed on 4/22/2019 at 21:51 exhibited a %D above the control limit for 1,4-dioxane

(60.7%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/7/2019 at 22:57 exhibited %Ds above the control limit for 1,4-dioxane (63.1%) and acrolein (-51.4%). The associated results were previously qualified. No further action

is necessary.

SVOCs by SW-846 Method 8270D:

The ICV analyzed on 4/29/2019 at 15:38 exhibited a %D above the control limit for pyridine (-

43.2%). The associated results were previously qualified. No further action is necessary.

The CCV analyzed on 5/9/2019 at 14:55 exhibited a %D above the control limit for pyridine (-

26.5%). The associated results were previously qualified. No further action is necessary.

PFAS by USEPA Method 537M:

The LCS for batch BE90321 exhibited a percent recovery above the UCL for

perfluorooctanesulfonic acid (132%). The associated results are non-detections. No qualification

is necessary.

PCBs by SW-846 Method 8082A:

The CCV analyzed on 5/9/2019 at 22:06 exhibited a %D above the control limit for PCB-1016 on

the secondary GC column (22.6%). The associated results were reported from the primary GC

column. No qualification is necessary.

Pesticides by SW-846 Method 8081B:

The ICAL for instrument GC Dual E exhibited a RSD above the control limit for dieldrin on the

secondary GC column (20.3%). The associated results were reported from the other GC column.

No qualification is necessary.

COMMENTS:

On the basis of this evaluation, the laboratory appears to have followed the specified analytical

methods with the exception of errors discussed above. If a given fraction is not mentioned above,

that means that all specified criteria were met for that parameter. All of the data packages met

ASP Category B requirements.

All data are considered usable, as qualified. In addition, completeness, defined as the percentage

of analytical results that are judged to be valid, is 100%.

Signed:

LANGAN

Data Usability Summary Report For 41 Kensico Drive May 2019 Sediment Samples Langan Project No.: 190046301 June 4, 2019 Page 8 of 8

Emily Strake, CEP Senior Project Chemist

APPENDIX H LABORATORY ANALYTICAL DATA REPORTS

APPENDIX I GROUNDWATER BOUNDARY – CONCEPTUAL SITE MODEL

The conceptual site model (CSM) was built on the analysis of head, stratigraphy and dissolved phase TCE concentration across the site. The goal was to devise a conceptual model to better understand the heterogeneity of the glacial deposition at the site and to predict how this distribution affects groundwater flow. The different available data sets were integrated into a viable narrative of source of contaminants and direction of flow. Langan devised this analysis by the following steps:

- 1. Graphed head elevation in monitoring wells against well mid-screen elevation to determine if head data compartmentalized groundwater into distinct sub groups.
- 2. Project head data into a vertical cross section to devise an appropriate solution for equipotential lines to show discontinuities in the groundwater continuum. Such discontinuities underscore the approximate location of a zone of transitional permeability (permeability discontinuities). These discontinuities are marked as groundwater divides in cross sections and in map view. The discontinuities are not absolute permeability barriers; rather they possess markedly lower permeability then the surrounding stratigraphy facilitating changes in equipotential flow line geometry.
- 3. Define the stratigraphic cross sections with attention to the gross distributions of fines and coarse sediments as a first approximation of the subsurface stratigraphic geometry.
- 4. Constrain groundwater contour maps to conform to the findings of head, groundwater divide analysis and stratigraphy to understand likely groundwater flow direction and magnitude.
- 5. Constrain dissolved-phase TCE contours to be in line with likely flow parameters, then to review the TCE contours to determine if they are feasible and supportable by the physical principals of migration.

1.0 Head Groups - First Approximation of Compartmentation

In a typical groundwater system, the plotting of head data as mid-screen elevations (principal X axis) against groundwater elevation (y-axis) will group screens with similar heads. This can give insight to the behavior of the overall groundwater system. The two end members of this type of analysis is either a groundwater system where head data plots nearly vertical against mid-screen completion elevation suggesting a groundwater system with a strong vertical gradient (vertical flow) or where head data plots nearly horizontal against mid-screen elevation suggesting a groundwater system with a strong horizontal gradient (horizontal flow). Head data grouping suggests the wells are screened across the same groundwater continuum regardless of their individual depths. When the

head data plots into several groups, it suggests multiple groundwater continuums (or regimes).

Langan's analysis showed groupings of data for groundwater elevations from three sets of monitoring wells (Figure I1):

- Group 1: MW-2, MW-3, MW-4, LMW-8S and LMW-19S
- Group 2: MW-5, MW-6, LMW-8D, LMW-12S, LMW-15, LMD-19D, and LMW-20S
- Group 3: LMW-1D, LMW-11, LMW-12D, and LMW-20D

Group 1 wells tightly pack about the 285-feet elevation and a mid-screen about 282 feet. The data points form an ellipsoid having a primary axis extending vertically. However the ellipsoid primary axis is only marginally longer than its minor one defining a tight spacing of data suggesting both a low horizontal and vertical gradient.

Group 2 wells form an ellipsoid with a long horizontal axis suggesting constrained head variation across a variable mid-screen depth. This suggests vertical or near vertical equipotential lines - predominantly horizontal flow

Group 3 wells form an ellipsoid where the principal axis crosses the graph diagonally. The path of the diagonal from high head elevation and low mid-screen elevation to low head elevation and high mid-screen elevation indicates higher head with depth. This suggests a notable vertical upward gradient suggesting the potential for upward groundwater flow.

The data for monitoring well MW-1 doesn't fit into any of the groups. Its relationship to the other groups cannot be resolved within the current data set. The monitoring well was completed in the former UST grave suggesting the data may be related to the architecture of the former UST excavation and backfilling, essentially an anthropomorphic artifact.

2.0 Equipotential Lines – Indication of Groundwater Barriers

The analysis discussed in Section 1.0 defines three groundwater compartments. This section analyzes the head data from a different view to approximate the zone of transitional permeability between the compartments. With the availability of nested well head data, the equipotential lines can be mapped in the vertical plane (X-Z). Equipotential lines (planes in three dimensions) are equivalent to groundwater contours shown in map view. As in map view, flow crosses equipotential contours at right angles from high potential (high head) to low potential (low head).

Langan plotted equipotential lines across 8 cross sections at the site (Figures 6A-6H). Cross-sections 1 through 7 (Figures 6A through 6G) were drawn in a nominal orthogonal orientation. As such they were used to plot stratigraphy (Section 3.0). Cross-sections 8 (Figures 6H), was drawn diagonal to the other cross-sections to examine the sensitivity of the analysis to direction.

Based on the curve, Langan reviewed the equipotential lines and observed the following:

• Cross-section 1 (Figure 6A) – Cross-section 1 is a west—east trending section from monitoring well MW-5 to soil boring LB26 and includes: well MW-5, well couplet LMW-12S/D, well couplet LMW-19S/D, well LMW-15, and well MW-4. The cross section shows equipotential lines, elevation 286-feet and elevation 287-feet. The changes in dips including inflections of the equipotential lines are interpreted to represent a zone of transitional permeability that is synonymous with groundwater divides for this CSM. The elevation 286-feet equipotential lines show two changes in dip: towards a sink about well couplet LMW-19S/D and towards well MW-4. The elevation 287-feet equipotential line is believed to be moving west to east after the well couplet LMW-12S/D. The area east of the couplet LMW-12S/D is resolved but the relatively flat groundwater table from well MW-5 to well LMW-12S implies a horizontalness of the line and suggests a groundwater divide separates it from the overlying shallow groundwater regime.

The projection of divides west and east of well LMW-15 incorporates the findings from Section 1.0. Note that the head for well LMW-15 is part of Group 2 and the head for the wells LMW-19S and MW-4 fits the Group 1 data. This distinctive grouping can only be resolved if the orientation of the cross-section trend is unaligned with the trace of the groundwater divide. In essence, the groundwater divide about LMW-15 is a repeat of the same groundwater divide separating the well couplet LMW-19S/D from the couplet LMW-12S/D.

• Cross-Section 2 (Figure 6B) – Cross-section 2 is a west-east trending section from monitoring well MW-6 to monitoring well MW-2 and also includes monitoring well couplet LMW-20S/D. This cross-section projects equipotential lines elevation 287-feet, 286-feet and 285-feet. Two groundwater divides have been identified: a vertical divide east of the well couplet LMW-20S/D and a horizontal divide separating the two screened intervals of couplet LMW-20S/D. The solution to the elevation 287-feet equipotential lines suggests a very steep dip towards the couplet LMW-20S/D. This appears to be the best fit given the overall relatively

flat head gradient from well MW-6 to the shallow interval of couplet LMW-20S/D. East of couplet LMW-20S/D, elevation 287-feet equipotential line also dips back towards the couplet LMW-20S/D. Further east, apparent flow is towards well MW-2 suggesting the presence of a groundwater divide. The location shown is approximate.

The basis for the horizontal groundwater divide shown in the cross-section is that the head data for the deep screen of couplet LMW-20S/D is within Group 3 of Section 1.0. This relationship suggests the presence of a groundwater divide facilitating the head difference.

- Cross-Section 3 (Figure 6C) Cross-section 3 is a west-east trending section from monitoring well couplet LMW-19S/D to monitoring well couplet LMW-8S/D and also includes well couplet MW-1/LMW-1D. The cross section includes equipotential lines elevation 285-feet, 286-feet, 287-feet and 288-feet. The data suggest two horizontal groundwater divides. These would create the hydrologic conditions necessary to partition the head data for well LMW-8D into Group 2 (Section 1.) and that for the well LMW-1D into Group 3 (Section 1.0). There may be a hydrologic structure east of the shallow completion of couplet LMW-19S/D that explains the probable change in dip inflection between elevation 285-feet, 286-feet and 287-feet equipotential lines.
- Cross-Section 4 (Figure 6D) Cross-section 4 is a north-south trending section from monitoring well MW-6 to monitoring well LMW-11 and also includes monitoring well MW-5. There are no couplet wells in this cross section. The groundwater table is relatively flat between wells MW-6 and MW-5 but has an inflection between wells MW-5 and LWM-11. The presence of the groundwater divide is suggested by the head grouping analysis (Section 1.0). The origin of this groundwater divide may be explained as the result of the merging of two groundwater source streams into the western shallow basin. Based on topography, there is a backfilled erosional channel that sources west of the line between wells MW6 and MW-5 as well as a backfilled erosional remnant that source to the south between LMW-11 and well couplet LMW-12S/D. If separate sand units extend both west and south of the referenced wells, then the western groundwater regime may bare an imprint of the meeting of the two separate groundwater systems within the saturated separate sands.
- Cross-Section 5 (Figure 6E) Cross-section 5 is a north-south trending section from monitoring well couplet LMW-20S/D to soil boring LB10 and includes well couplet LMW-19S/D, well LMW-15, well MW-4, and well couplet LMW-12S/D.

The mapped equipotential lines and groundwater divide are complex in part because the trend of the cross section is not congruent with that of the trend of groundwater flow (see the discussion for cross-section 1, above). Mapped in the cross-section are equipotential lines elevation 286-feet and 287-feet. The equipotential line solution infer six groundwater divides: 1) a vertical divide between well couplets LMW-20S/D and LMW-19S/D; 2) a vertical divide between couplet LMW-19S/D and well LMW-15; 3) a vertical divide between wells LMW-15 and MW-4; 4) a horizontal divide beneath well MW-4 extending to couplet LMW-12S/D separating the two screen completions, 5) a horizontal divide separating the upper and lower screen of couplet LMW-19S/D and 6) a horizontal divide separating the upper and lower screen of couplet LMW-20S/D. The position and number of divides is based on the analysis of the head grouping complete in Section 1.0 and the solution for the equipotential lines. The abutment of horizontal and vertical groundwater divides suggests a single groundwater divide with a dip.

- Cross-Section 6 (Figure 6F) Cross-section 6 is a north-south trending section from monitoring well MW-2 to well MW-3 and includes the well couplet LMW-8S/D. The cross-section includes equipotential lines elevation 285-feet and 286-feet. Shallow groundwater gradient is very low which suggests a near vertical geometry for equipotential lines intersecting with the water table. The near vertical dip of the shallow groundwater equipotential line would not extend into the deeper groundwater regime that includes the deeper screen of well couplet LMW-08S/D. Thus while the actual geometry of elevation 285-feet and 286-feet equipotential lines cannot be resolved, they are undoubtedly closer to horizontal rather than vertical. Coupled with the head grouping discussion of Section 1.0, a groundwater divide is located between the two screens of well couplet LMW-08S/D.
- Cross-Section 7 (Figure 6G) Cross-section 7 is a west-east trending section from monitoring well LMW-11 to soil boring LB09 and includes well couplet LMW-12S/D, well MW-4 and well MW-3. The cross-section maps equipotential line elevation 287-feet. The elevation 287-feet equipotential line intersects with the water table in the vicinity of well LMW-11 within the western groundwater regime (as shown); but cannot be mapped within the eastern groundwater regime. This suggests a groundwater divide between well couplet LMW-12S/D and well MW-4. A second, near horizontal divide is located between the two screen completions of couplet LMW-12S/D based on the head grouping analysis completed in Section 1.0.

• Cross-Section 8 (Figure 6H) – Cross-section 8 trends southwest to northeast from well couplet LMW-12S/D to well couplet LMW-8S/D and includes well MW-4 and LMW-15. The cross section shows elevation 285-feet, 286-feet and 287-feet equipotential lines. This cross-section was drawn to view the groundwater system outside the orthogonal geometry shown in the other cross-sections. In this projection, there are two vertical and two horizontal groundwater divides. The horizontal groundwater divides are based on the head grouping analysis of Section 1.0. The vertical groundwater divides account for the head drop between wells MW-4 and LMW-15 and between well LMW-15 and well couplet LMW-8S/D.

Based on the equipotential study, the data is interpreted to indicate a groundwater divide is physically separating the following sets of wells in map view:

- LMW-20S/D and MW-2
- LMW-20S/D and LMW-19S/D
- LMW-19S/D and MW-1/LMW-1D
- LMW-19S/D and LMW15
- LMW15 and MW-1/LMW-1D
- LMW15 and MW-4
- LMW12S/D and MW-4
- LMW-12S/D and LMW-19S/D

3.0 Stratigraphic Geometry

The site is set within a northeast to southwest trending leg of Branch Brook, a tributary of the Kisco River. The basin has an asymmetric topographic structure with a relatively steeper prominent northwest wall compared to its southeast opposite (Figure I0). The site itself is on a relatively broad plane formed by the confluence of Branch Brook and a remnant stream that formerly drained into the ancestral Branch Brook through a northwest to southeast trending fork. Based on the topography map, the former stream now drains to the west directly into the Kisco River, a consequence of stream capture. This fork confluence probably underlies the northeast-southwest trending stratigraphic geometry that is observed in the cross-sections.

Deposition in area of the site is probably a compiling of several depositional events that combined to produce the underlying stratigraphic profile: A lacustrine depositional event, probably during the retreat of the last glacier that deposited the initial olive gray to gray clays and silts over the glacial modified river valley. Upon the final retreat of the glaciers,

a resultant river system emerged which both eroded into the lacustrine clays and silts and following reworking, deposited inter-beds of clays and silts (fines) with fine to medium sands (coarse). The confining strong topographic relief on the northwest side of the valley coupled with the influence of drainage from the northwest fork would control the deposition geometry resulting in relatively short thin inter-beds where the course material would be ensconced within a larger fines stratigraphy. This depositional event is the probable origin of the vertical groundwater divide discussed previously which trends approximately south to north at the center of the site.

Following the deposition of the interbedded clays, silts and sands, the ancestral Branch Brook modified the site's underlying stratigraphy eroding into the interbedded fines and coarse material creating the essence of southwest-northeast channel geometry observed in the cross sections. In this modification, the channels were subsequently backfilled with deposits of predominantly coarse material. These deposits are probably relatively thick beds of sands interbedded with thin strata of clay. It is doubtful the bedding planes would survive the soil sampling methods employed. In addition, the influence of the northwest wall topographic relief and the influx of deposits from the stream draining into the Branch Brook from the northwest fork would complicate completely resolving the axis and trace of the channel or channels.

The most recent depositional events to the site were probably limited to reworking of shallow stratigraphy, intermittent flooding of Branch Brook resulting in the sculpting of terraces along the valley floor. However, surface traces of the terraces may have been obliterated by site development.

The borehole logs utilized for the stratigraphy study were based on direct push and sonic technologies. As such, depth control is fair at best. In addition, both methods tend to disturb non-cohesive to partially cohesive soil samples as well as fully saturated soil samples. Soil logging for the investigation followed visual-manual method outlined in the ASTM D 2488. This method is not ideal for identifying marker beds or strata that can be mapped across a site based on a distinctive profile. The method is better suited for tracing gross units of sediment packages across adjacent soil borings. Such methods are imprecise and subjective; but still useful for understanding the stratigraphic geometry of a site.

Regardless of the soil collection system employed, interpreting the stratigraphic geometry of site borehole logs is hampered by the random alignment of soil boring locations with respect to the site's underlying stratigraphic geometry. The decoupling of

cross section orientation with the stratigraphic geometry can unintentionally either hide or repeat strata sequences.

The available data did not include the boring logs for the monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5 and MW-6. Langan advanced adjacent soil borings to collect soil information for wells MW1, MW-2, MW-3 and MW-6 in accordance with the following table:

Well ID	Soil Boring ID
MW-1	LMW-1D
MW-2	LB07
MW-3	LB09
MW-6	LB23

Langan created the stratigraphic cross-sections using the same sequence of boring cross-sections discussed in Section 2.0 with the exception of cross-sections 8 and 8'. These cross sections were created to test the sensitivity of the equipotential analysis. The groundwater divides identified in Section 2.0 were including in the stratigraphic cross sections as a first approximation of the stratigraphic underpinning for the groundwater divide.

The following discussion summarizes the observations made:

- Cross-Section 1 (Figure 6A) This cross section highlights three possible channel deposit geometries: shallow channel deposit (sand) from boring LB14 to boring LB12, shallow channel deposit (sand) between boring LB24 and LB26, and a deeper channel centered on boring LB12 potentially extending to boring LB19. Of note is that the vertical groundwater divides show major changes in the sand/fine package assemblages between borings LB12 and LB19, LB19 and LB15 and LB15 and LB24. The changes in package assembly suggest a complex stratigraphy that wasn't captured by the existing boreholes. However the horizontal groundwater divide appears to correspond to a fines package extending from boring LB13 through boring LB14 and boring LB12 to LB19.
- Cross-Section 2 (Figure 6B) This cross section shows a possible channel sand geometry east of boring LB20. The channel may extend just to the west of LB20 (approximate elevation 280-285-feet). The groundwater divide ascertained from groundwater head was measured in deeper sand (approximate elevation 250-255-

feet) and this data clearly correlates with the western shallow groundwater regime. The horizontal groundwater divide separating the shallow and deep screens of LMW-20S/D may correlate with a fine sediment package that makes up most of the shallow screen in well LMW-20S.

- Cross-Section 3 (Figure 6C) This cross-section highlights a poignant channel sand geometry east of boring LB-19. The horizontal groundwater divides do correlate with a fine unit beneath the channel sand. The fine unit package also separates the shallow and deeper screens of LMW-19S/D underscoring its influence on groundwater head distribution.
- Cross-Section 4 (Figure 6D) The geometry of the sand units cannot be solved within this cross sections. The current data only highlights the complexity of stratigraphy and the abundance of fine unit packages within the shown boring logs.
- Cross-Section 5 (Figure 6E) This cross section suggests several channel sand geometries as well as a complex stratigraphy. As discussed in Section 2.0, the three vertical groundwater divides may be an artifact of the differing orientations between the trace of a single groundwater divide and the cross section trace. The shallow sand channel geometry identified in borings LB20 and LB17 may include the shallow sand units of boring LB-15. In addition, the shallow sand unit package of boring LB-19 may extend east into the channel sand geometry identified in borings LB-12 and LB-10. While this connection would explain the head data for well LMW-19S being part of the eastern groundwater regime, it is insufficient to understanding the high dissolved-phase TCE concentration reported in groundwater from this well. The mapped horizontal groundwater divides to correspond to fine unit packages.
- Cross-Section 6 (Figure 6F) This cross-section suggests a shallow channel geometry between the couplet LMW-8S/D and MW-3 and a deeper sand channel extending from boring LB25 to boring LB8. A series of fine unit packages in LB8 does support that the deep screen of well LMW-8D is part of a deeper third groundwater compartment.
- Cross-Section 7 (Figure 6G) This cross-section clearly shows the geometry of a channel sand tracing the western side of the site centered on the well couplet LMW-12S/D. The vertical groundwater divide cannot be stratigraphically resolved; however the horizontal groundwater divide between the two screens of couplet LMW-12S/D appears to correspond to a fine unit package.

4.0 Groundwater Contour Maps

In section 1 through 3, a hydrogeologic model was constructed that specifies three defined groundwater compartments. Vertical projection of head data defined a zone of transitional permeability that define the compartments. Essentially, there are two shallow groundwater compartments that can be defined geographically as western and eastern compartments. The vertical projection of head data demonstrated the probable location of the zone of transitional permeability based on vertical contouring head between adjacent monitoring wells. There is also a semblance of a 3rd groundwater compartment that defines deeper groundwater. The stratigraphic analysis showed that the shallow compartments coincide with channel type structures and in the vicinity of the well couplet LMW-19S/D, the zone of transitional permeability is shown as the stratigraphic signature of a paleo geological channel wall.

The findings were incorporated into contouring the water table. The most probable contouring of the data consistent with the findings of the CSM is shown in Figure 4A. As shown, both groundwater compartments have a northeast flow direction suggesting that recharge is further to the southwest.

In Figure 4A, the CSM does not include head data from the wells MW-1 and LMW-19S. As discussed in Section 1.0, groundwater elevation for well MW-1 is inconsistent with any adjacent well elevation trend. It represents a localize groundwater sink that lacks a stratigraphic explanation. The history of well MW-1 was that it was advanced in the former UST excavation vault. Therefore, the inconsistent groundwater elevation is probably an anthropomorphic attribute related to the remnant structure of the former UST vault.

As stated above, the head data for well LMW-19S was not used to contour the data for Figure 4A. In Figure I18, the east side of the site groundwater was contoured with the influence of head data from LMW-19S for comparison. The contours on the right show that head data from well LMW-19S gives a distinctive bias contouring suggesting that the east side of the site is recharged directly through the zone of transitional permeability. The CSM doesn't discount a contribution across the zone of transitional permeability; hydraulically, the zone is equivalent to aquitard (leaking confining zone). Rather, the head data in well LMW-19S is higher than any other water table well because that area of the zone cannot dissipate leakage fast enough, and thus the head data is an artifact of the well's location within the zone of transitional permeability and should not be included in the groundwater contouring.

As a general note, the direction of groundwater flow in the shallow compartments is antithetical to the direction of drainage of Branch Brook. The CSM indirectly acknowledges this and attributes the counterintuitive pattern to a combination of the localized stratigraphical and topographical constraints. In essence, flow direction is to the northeast in both compartments because the flow paths are bounded stratigraphically to this pathway, an outcome of the site's topography (juncture of a former confluence of two streams).

Figure I19 is a projection of the deeper completion head data into map view with contouring. While the data suggests the deeper compartment has a groundwater flow direction toward the southwest which is congruent with the drainage pattern of Branch Brook, the data is constrained to mostly an area incorporating the previously study zone of transitional permeability.

5.0 TCE Contouring

Langan used the dissolved-phase TCE in groundwater to test the applicability of the CSM. The assumption in this analysis is that constraining contaminant transport to the CSM groundwater model should produce a consistent narrative. The contour TCE data for the sites western and eastern groundwater compartments is shown in Figure I20.

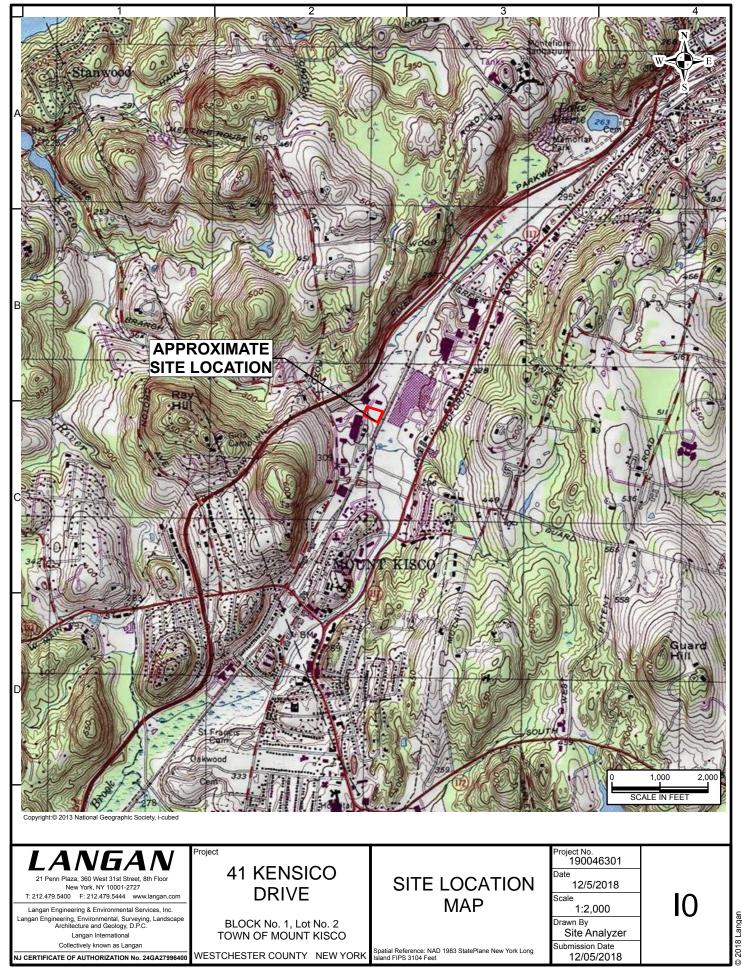
The data was contoured in base 10. This is an acceptable constraint in contouring when the data varies over several orders of magnitude. It captures the overall site condition rather than concentrating the view on the "bull's eye." The data set considered in this projection includes dissolved-phase TCE in well LMW-19S. As discussed in Section 4.0, the CSM attributes the head of this well to leakage across the zone of transitional permeability. The leakage across the zone also carries a dissolved phase constituents resulting in the dissolved-phase TCE concentrations noted in groundwater from well LMW-19S. Therefore, the 10,000 ppm isocline is extended into the zone of transitional permeability as shown in Figure I20. The resulting interpretation is consistent with the groundwater flow model including leakage across the zone of transitional permeability between the two shallow groundwater compartments. Thus, the dissolved-phase TCE in groundwater is being carried by groundwater flow and its source traces back to an off-site source to the southwest.

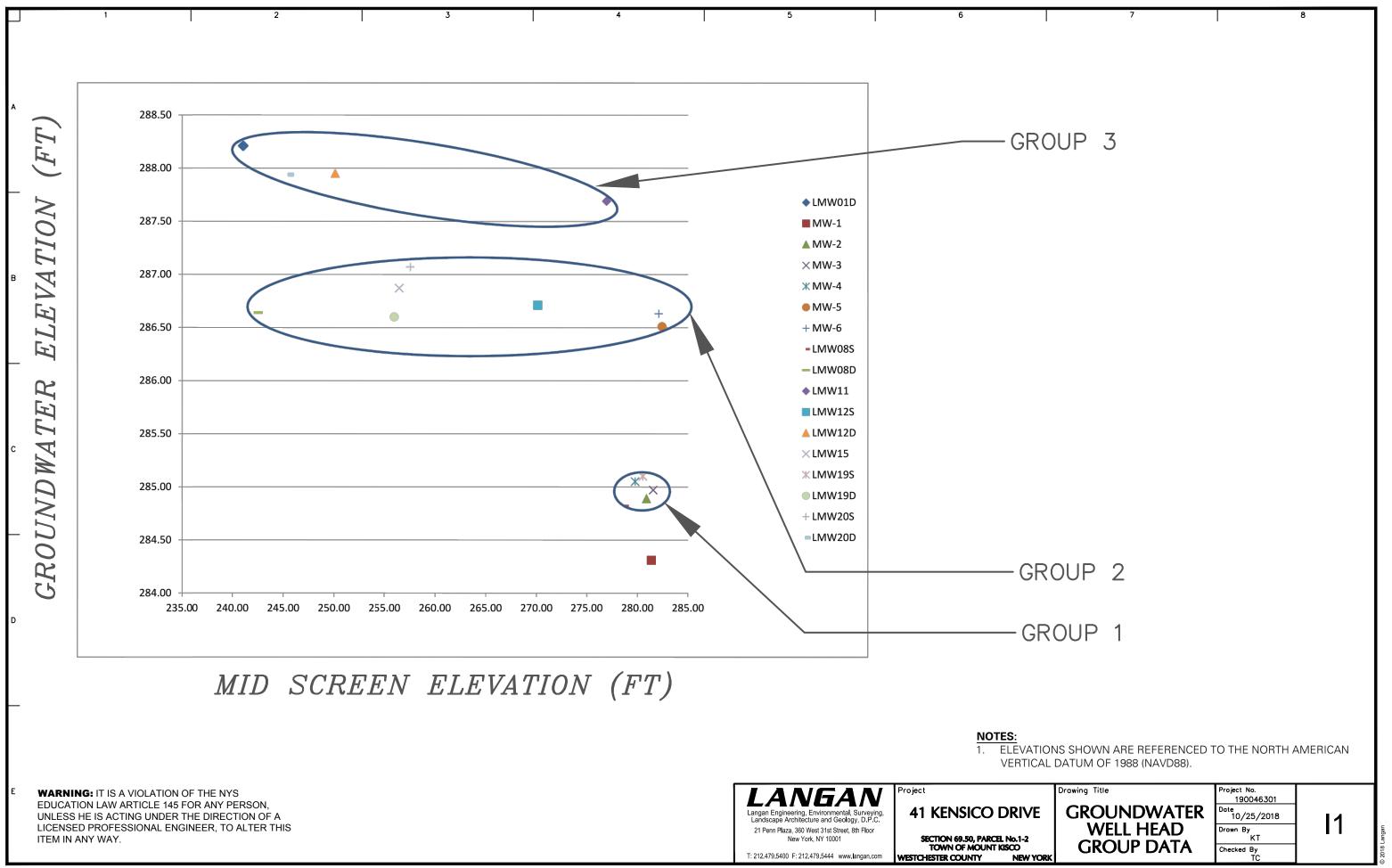
On site, the dissolved phase is leaking across the zone of transitional permeability between the two groundwater compartments as the zone isn't absolute as discussed in Section 4.0. As such, the impact of dissolved-phase TCE in groundwater within the

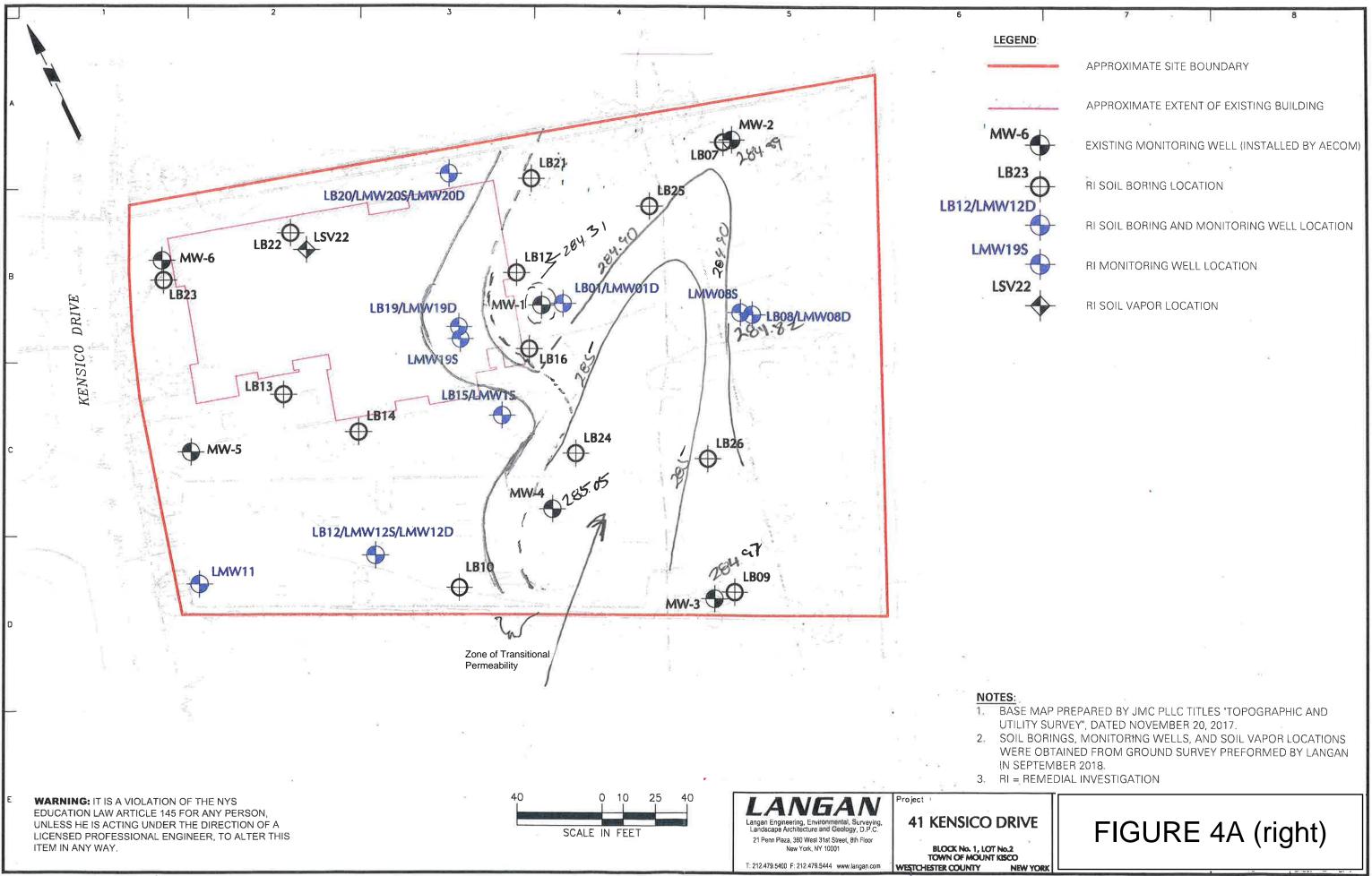
eastern groundwater compartment appears to be significantly less than in the western groundwater compartment.

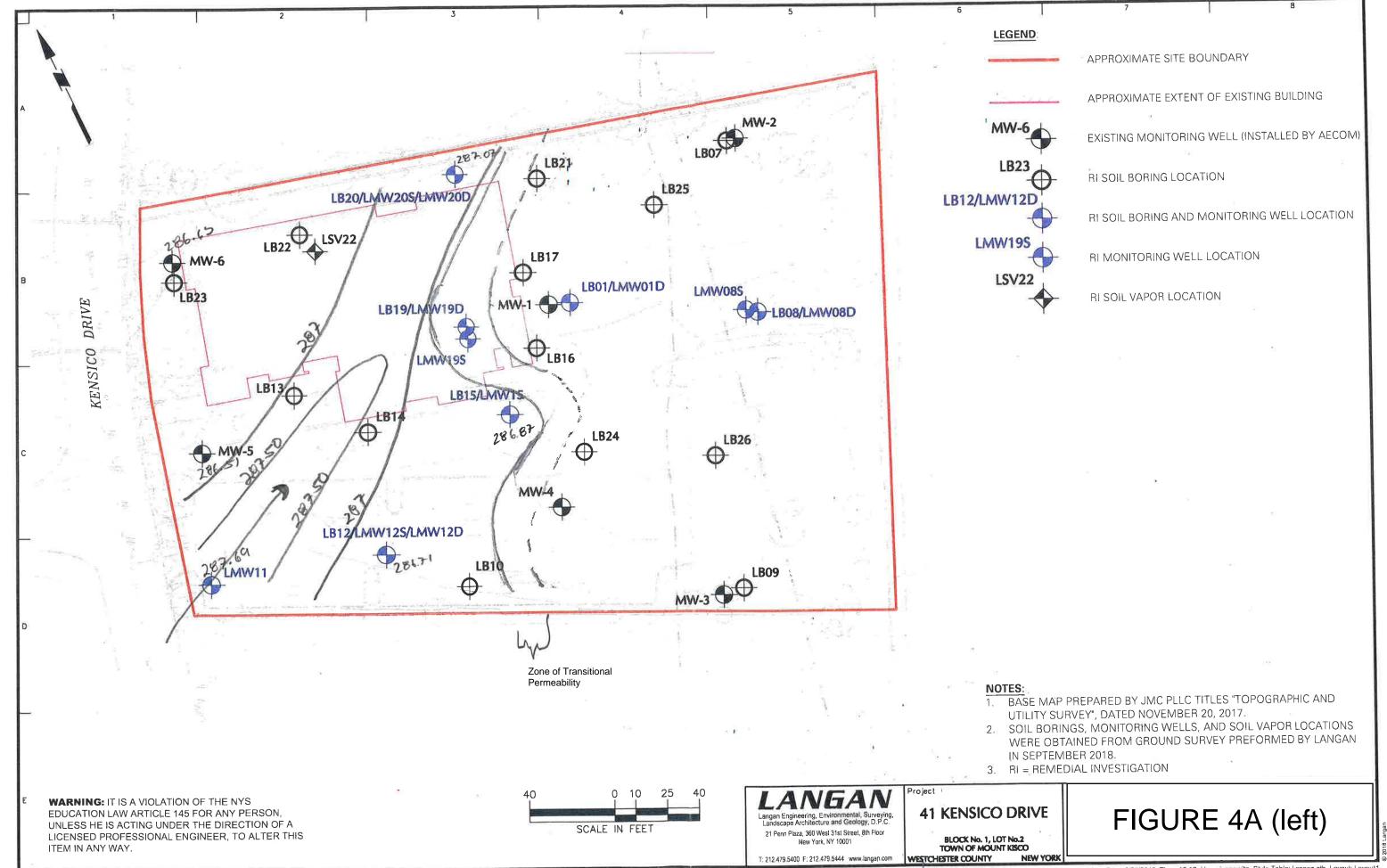
Section 6.0 Summary CSM

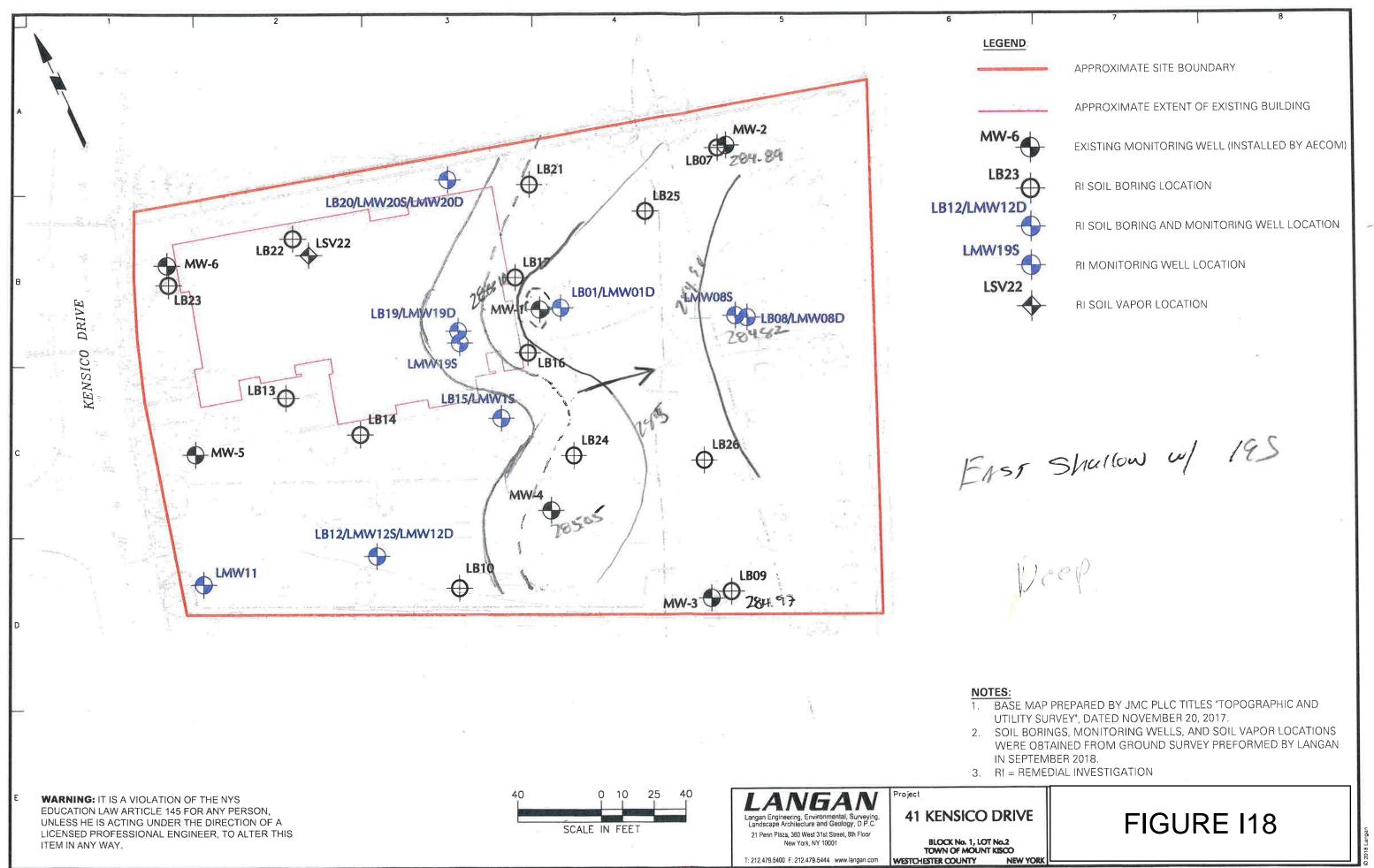
The following narrative summarizes the CSM for this site.

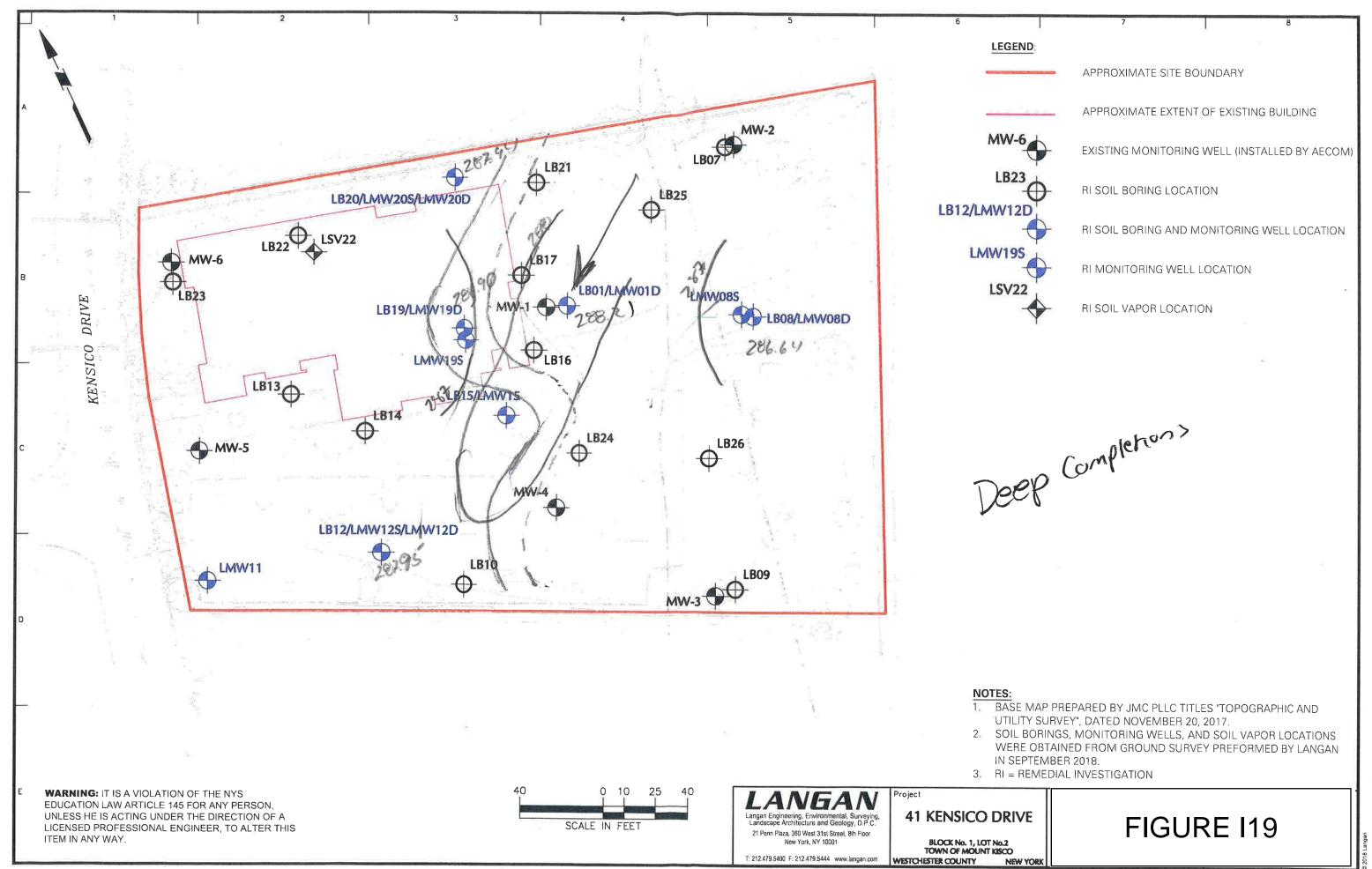

There are three established groundwater compartments: two shallow dividing the site into eastern and western groundwater units. There are also indications of a deeper compartment based on the higher heads for deeper screens. The zone of transitional permeability segregating the shallow compartments is a ridge of predominantly fine grained material (clay and silt) containing fines encapsulated coarse grained units.

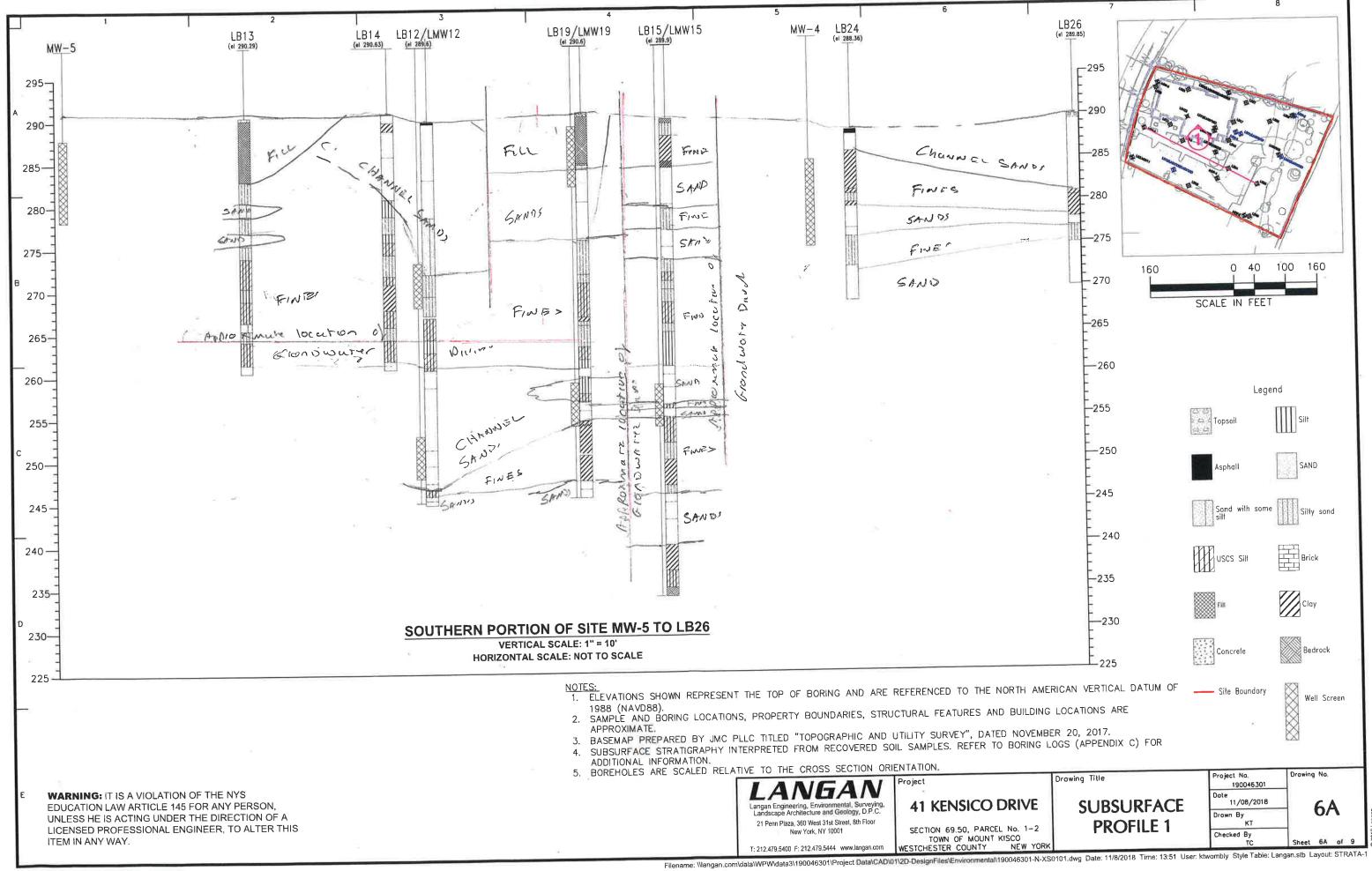

The zone of transitional permeability unit separating the two compartments has been approximately located using an equipotential line cross section study. This zone appears to have a sinusoidal profile. It has an overall north-south orientation but outside the center of the site (centered about couplet LMW-19S/D), the trace of the unit cannot be resolve stratigraphically although is clearly discernible in the distribution of head.

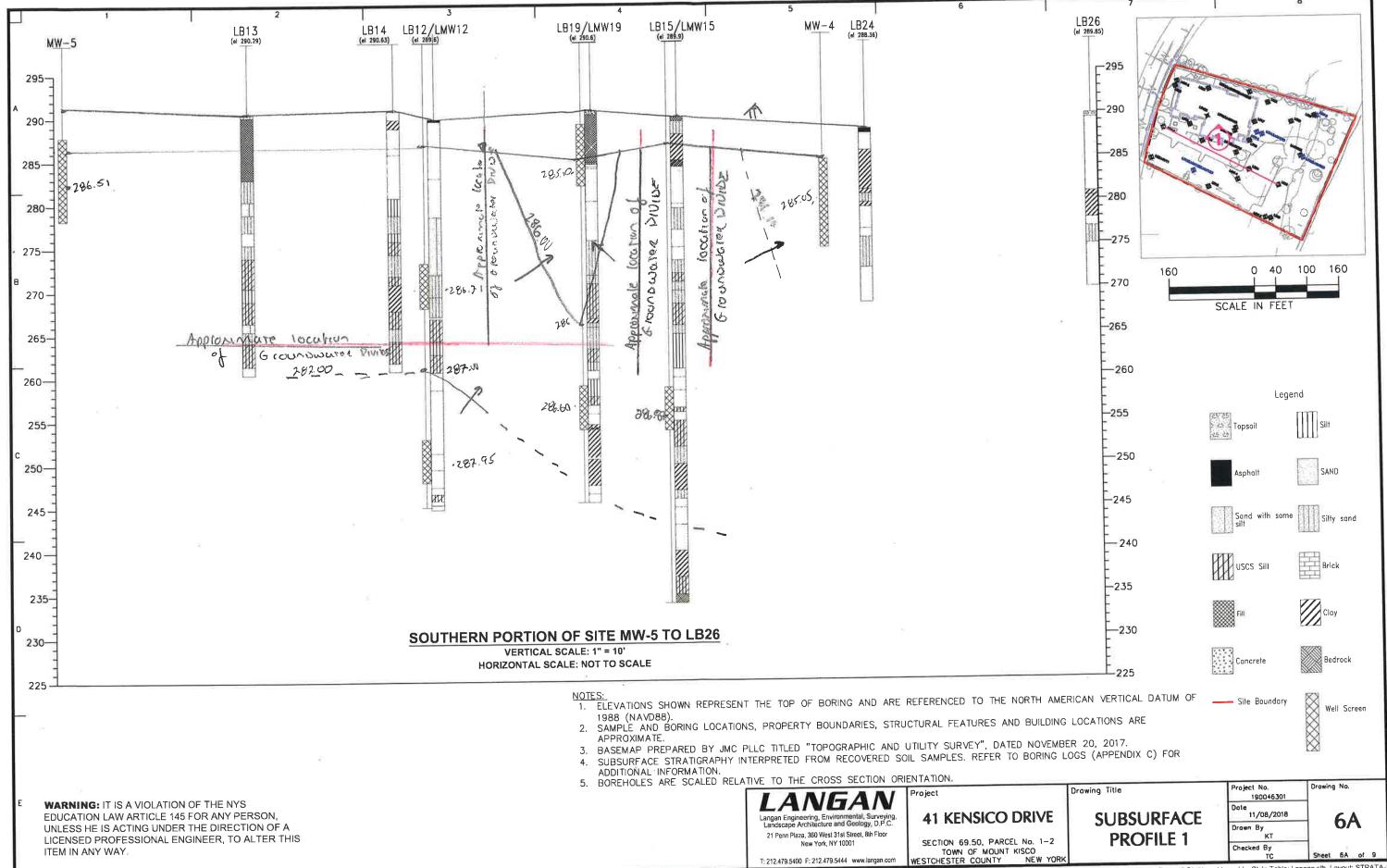

The stratigraphy shows channel like geometry underlying the western side of the site and is suggested by the limited stratigraphic data available to resolve the eastern side of the site. However, the drainage valley's topography and the site's position within the confluence of a paleo-drainage pattern complicate the full resolution of the site's stratigraphic geometry.

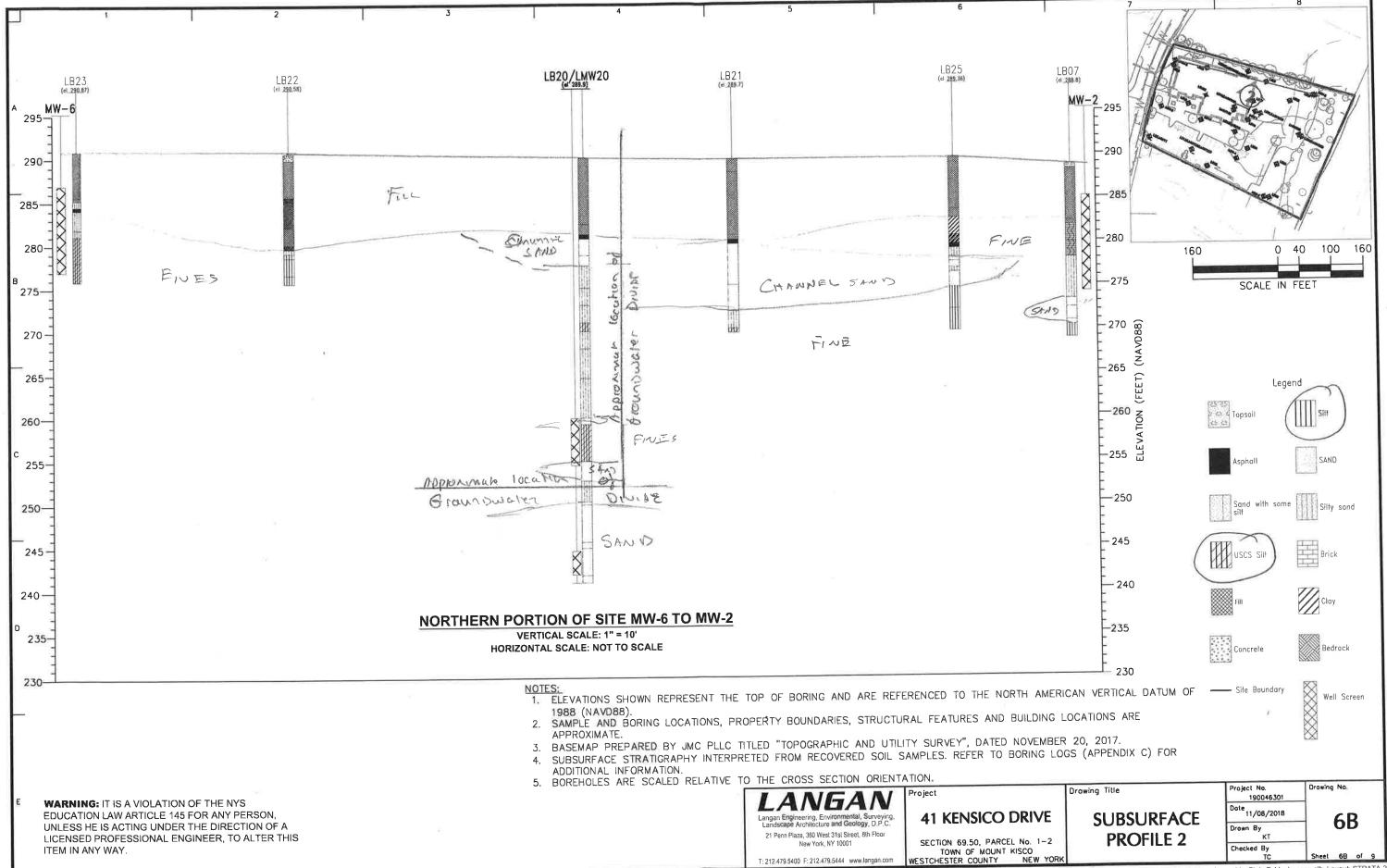

Imprinting the CSM into the groundwater contours shows a flow pattern of southwest to northeast in both shallow groundwater compartments with potential leakage across the zone of transitional permeability from high head in the western unit to lower head in the eastern unit. The resulting groundwater contours are both characterized by relatively low gradients on the order of 0.002 ft/ft. The cross over gradient is about an order of magnitude higher; but flow is less because the zone is composed of predominantly fines (clay and silt).

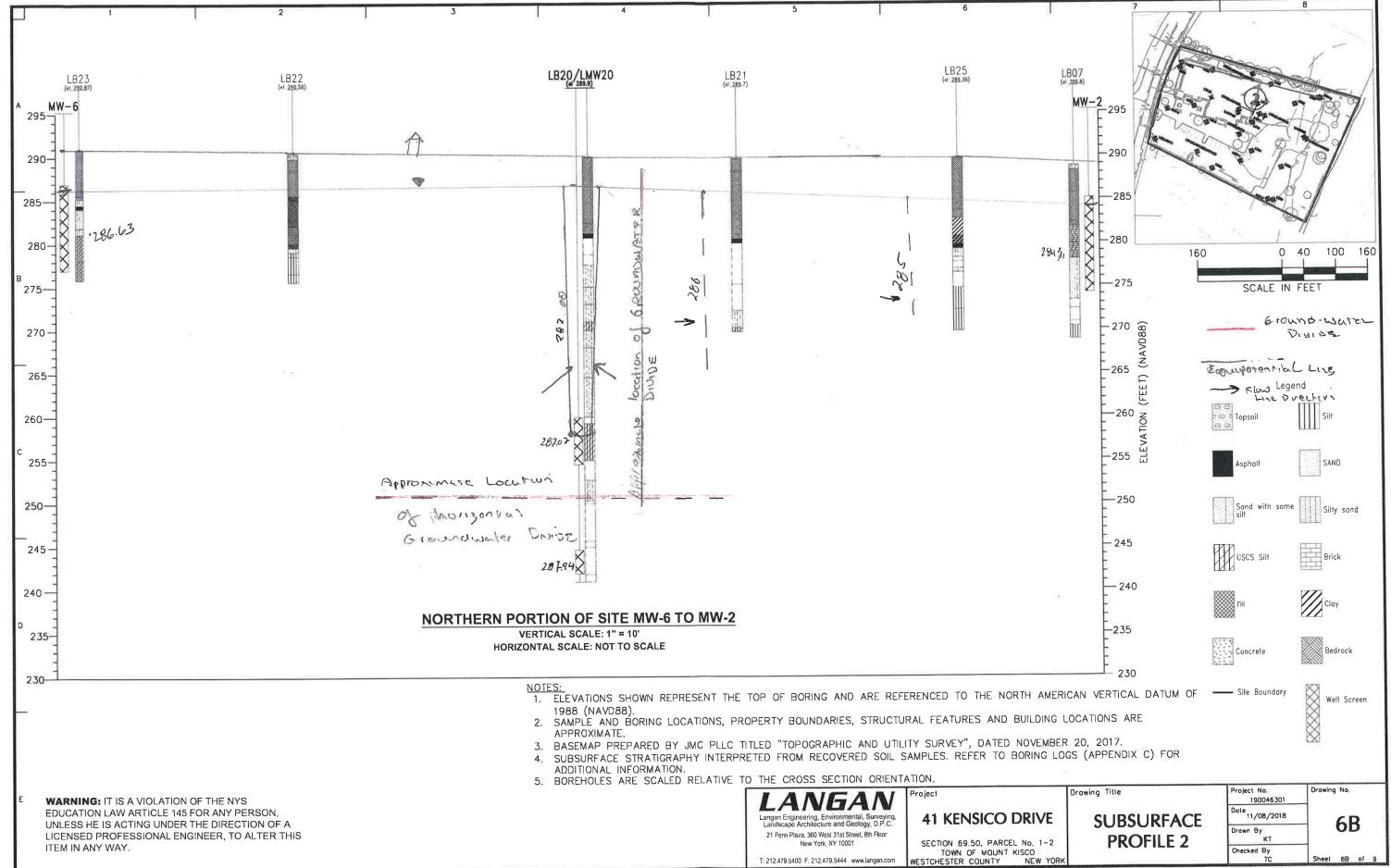

The dissolved-phase TCE in groundwater contours map out consistently with the groundwater gradient. The contours show likelihood that the source of the TCE is southwest of the site and transport across the site is consistent with the constraints imposed upon groundwater flow by the CSM.

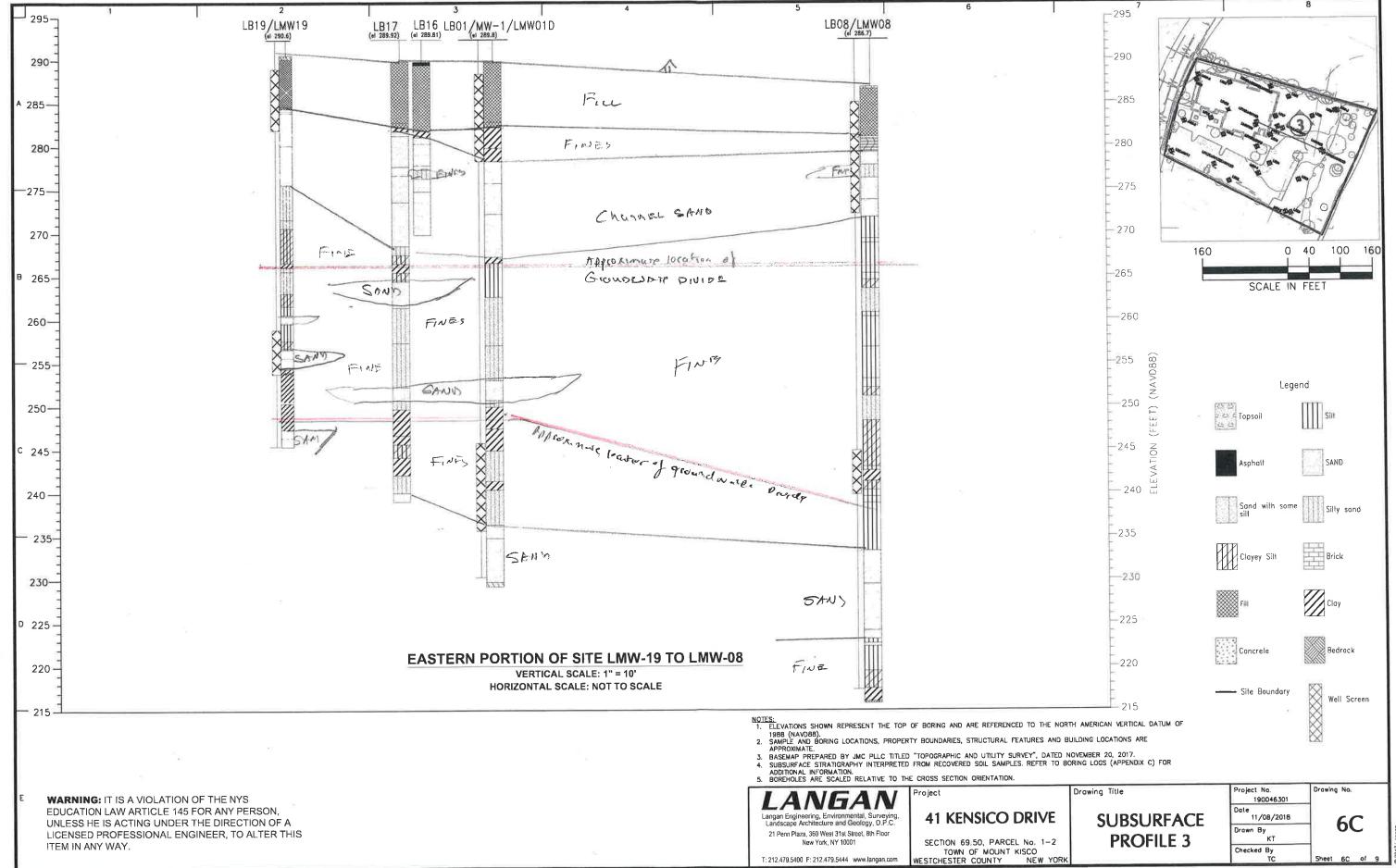


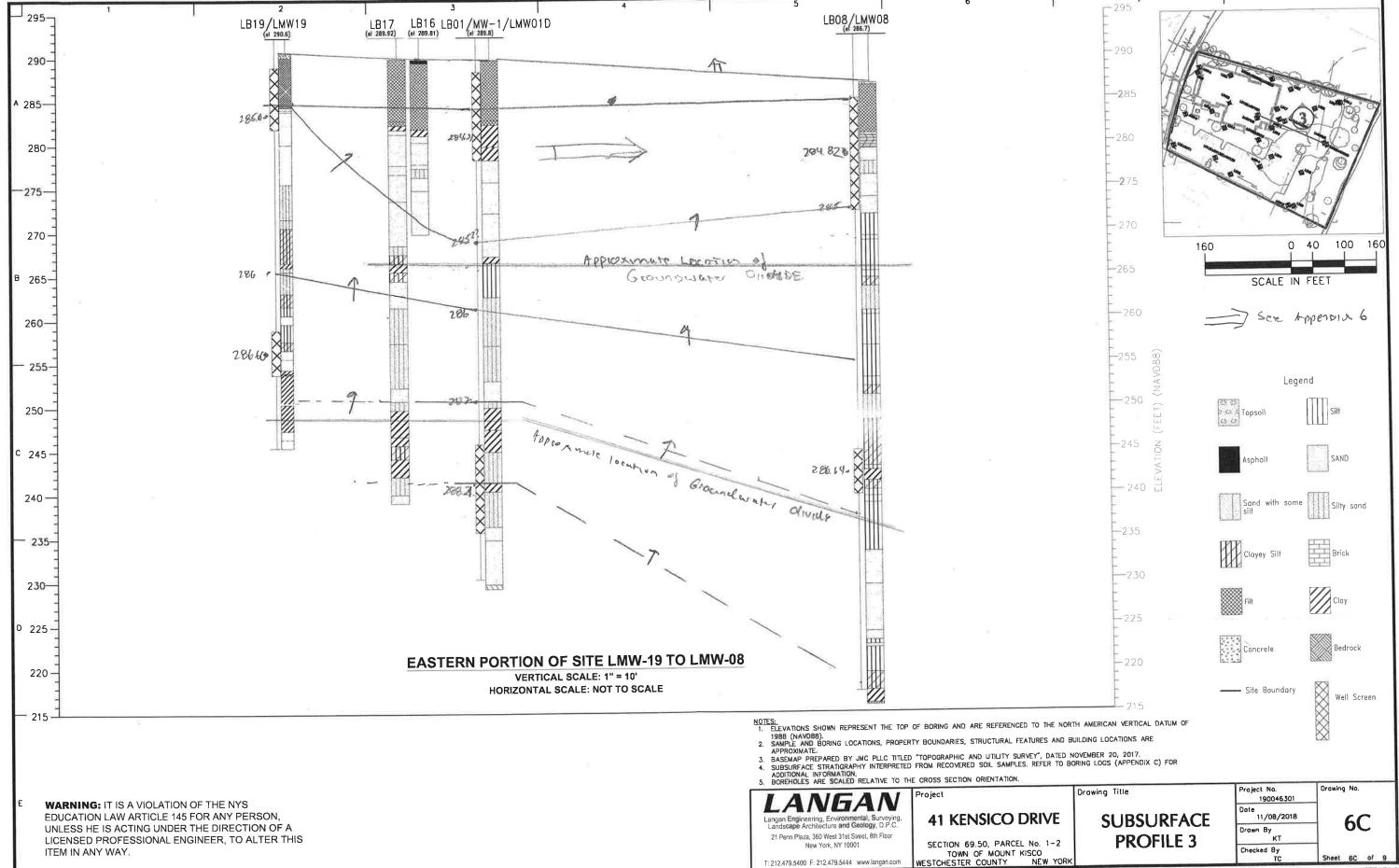


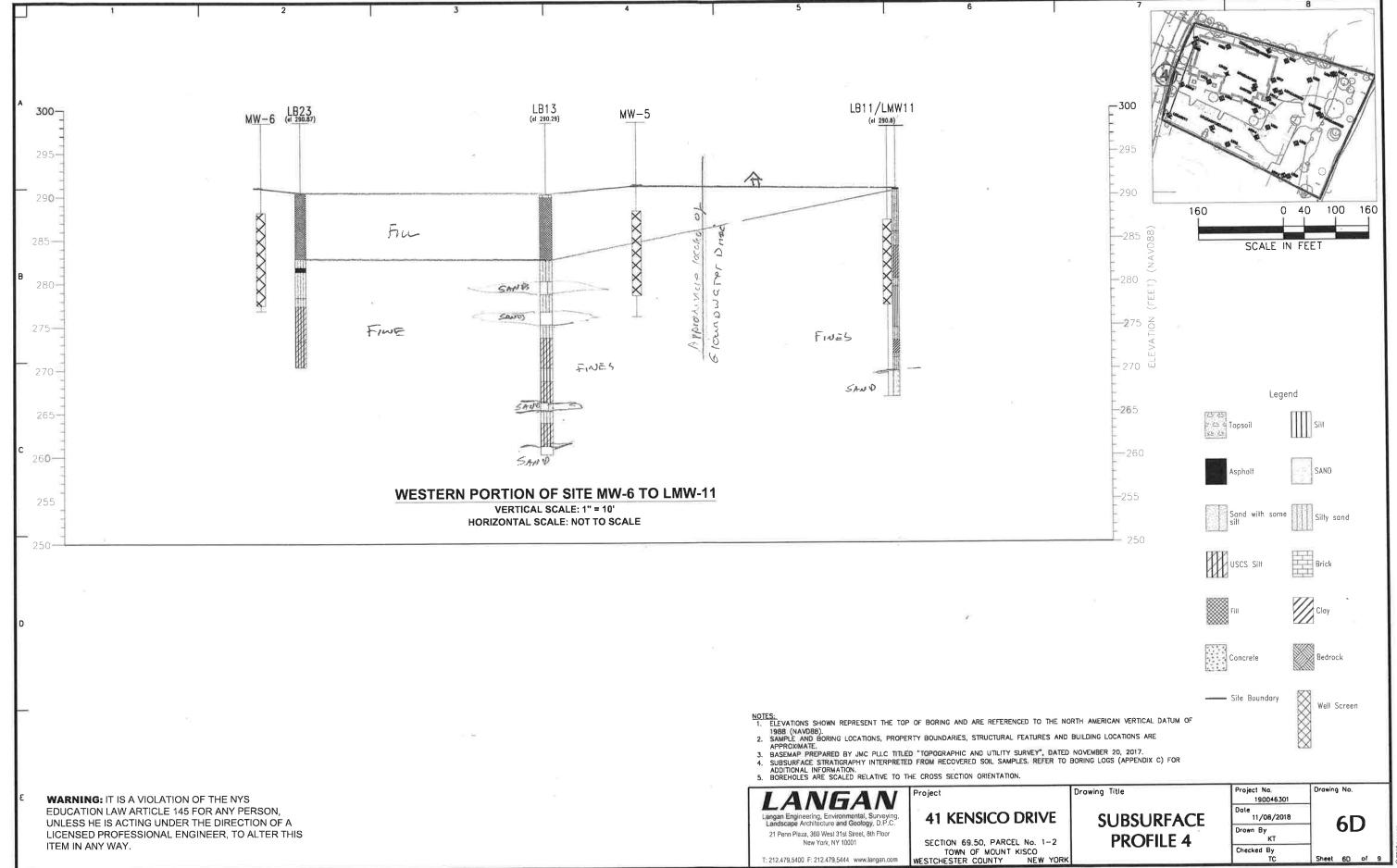


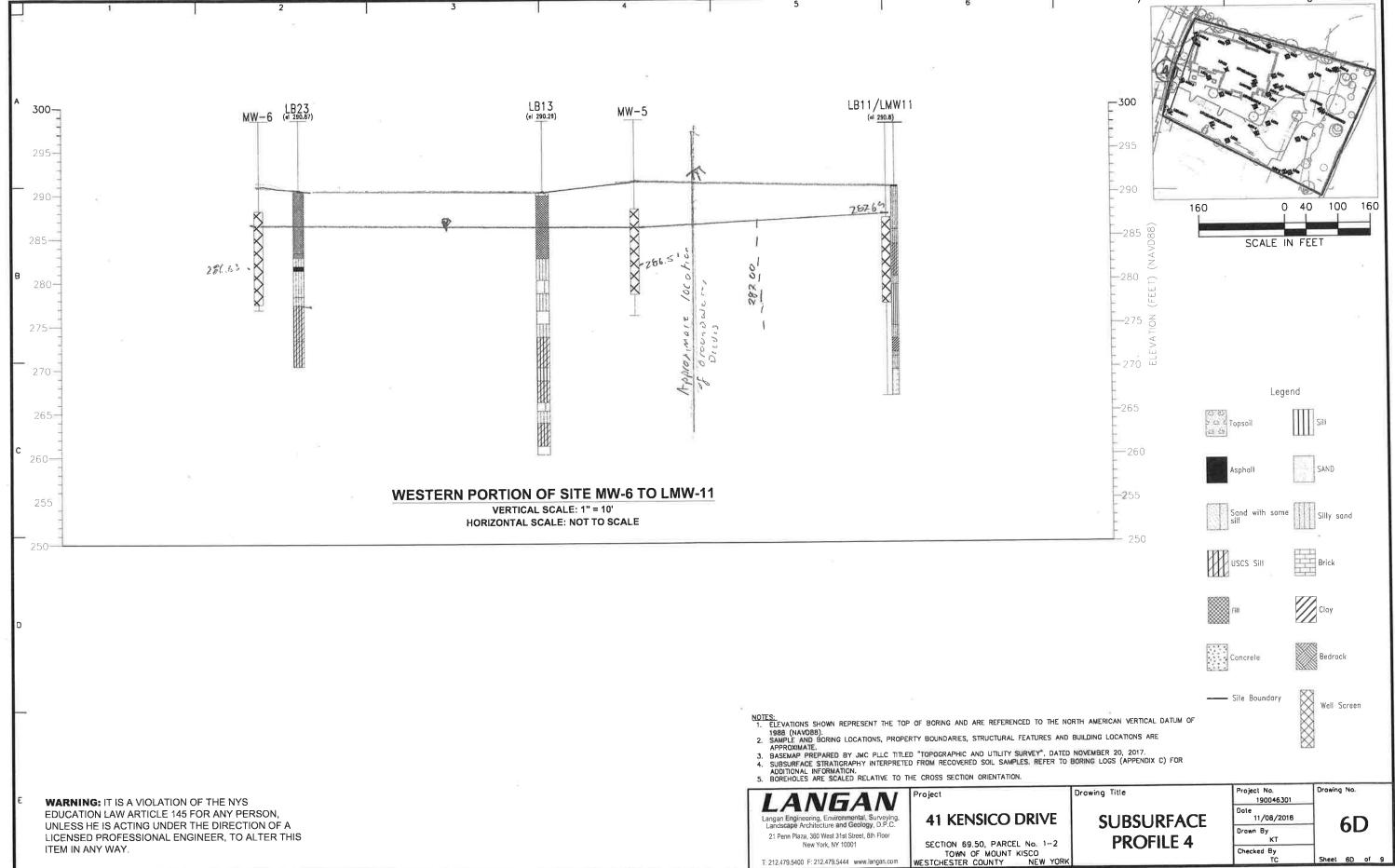


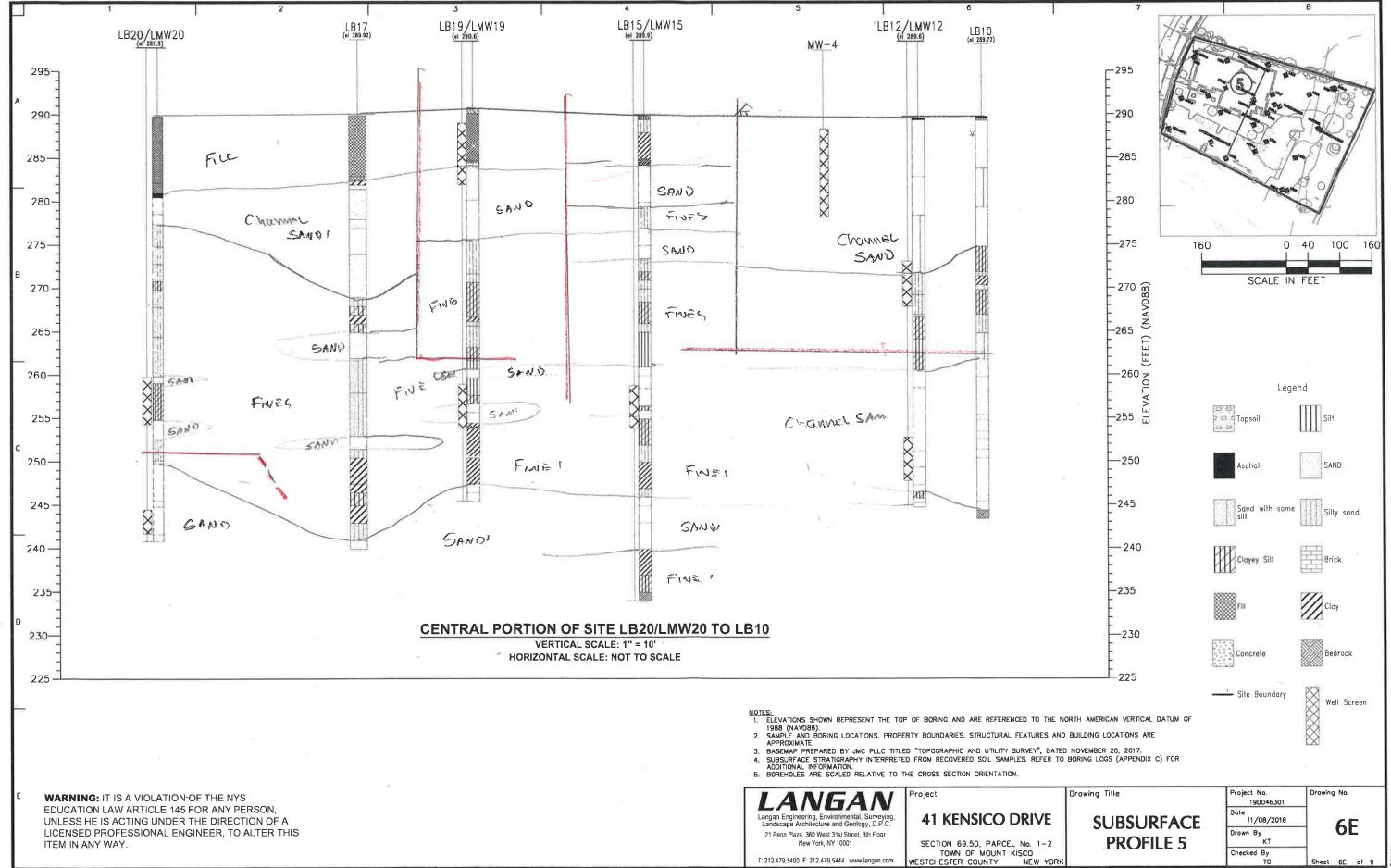


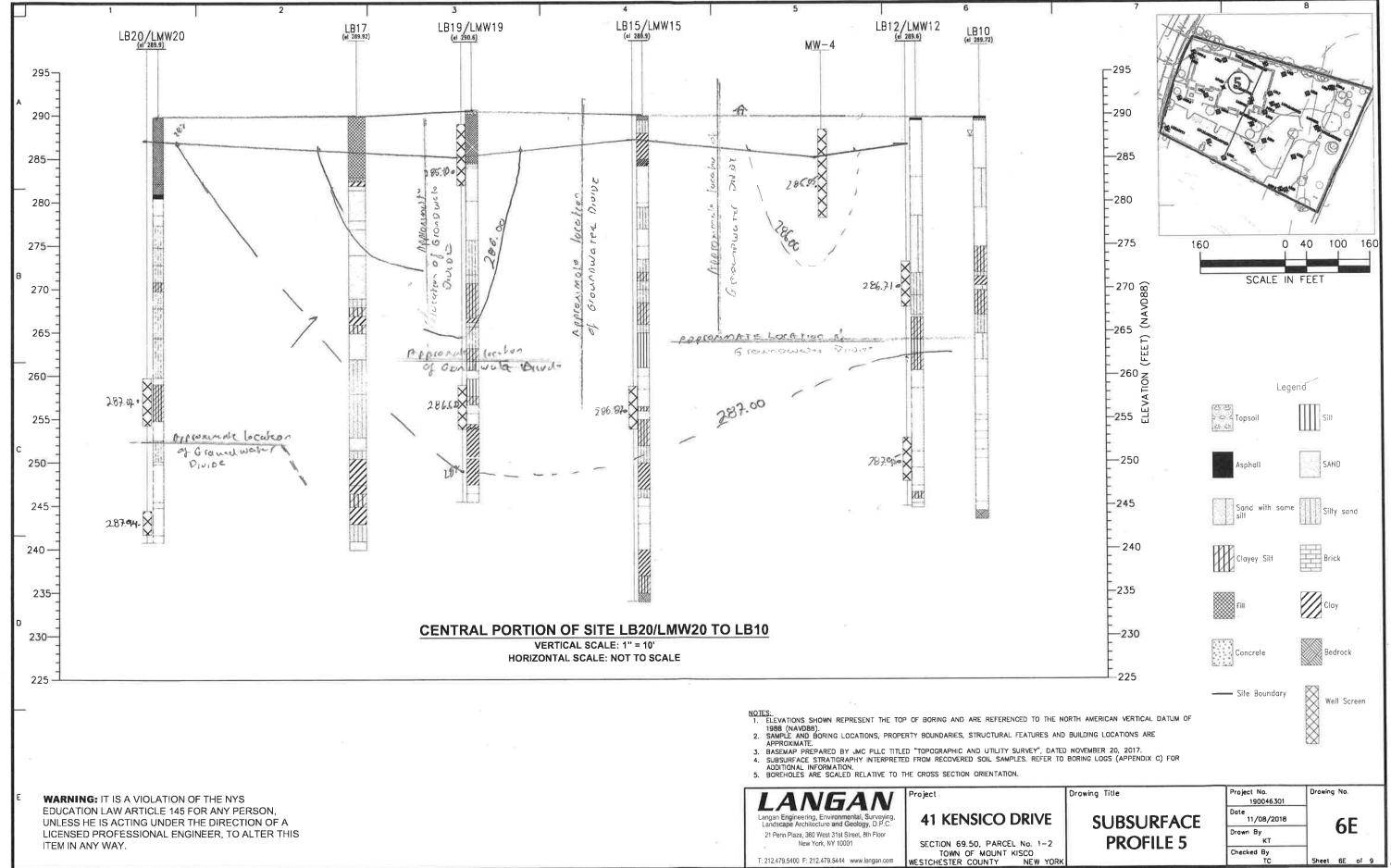


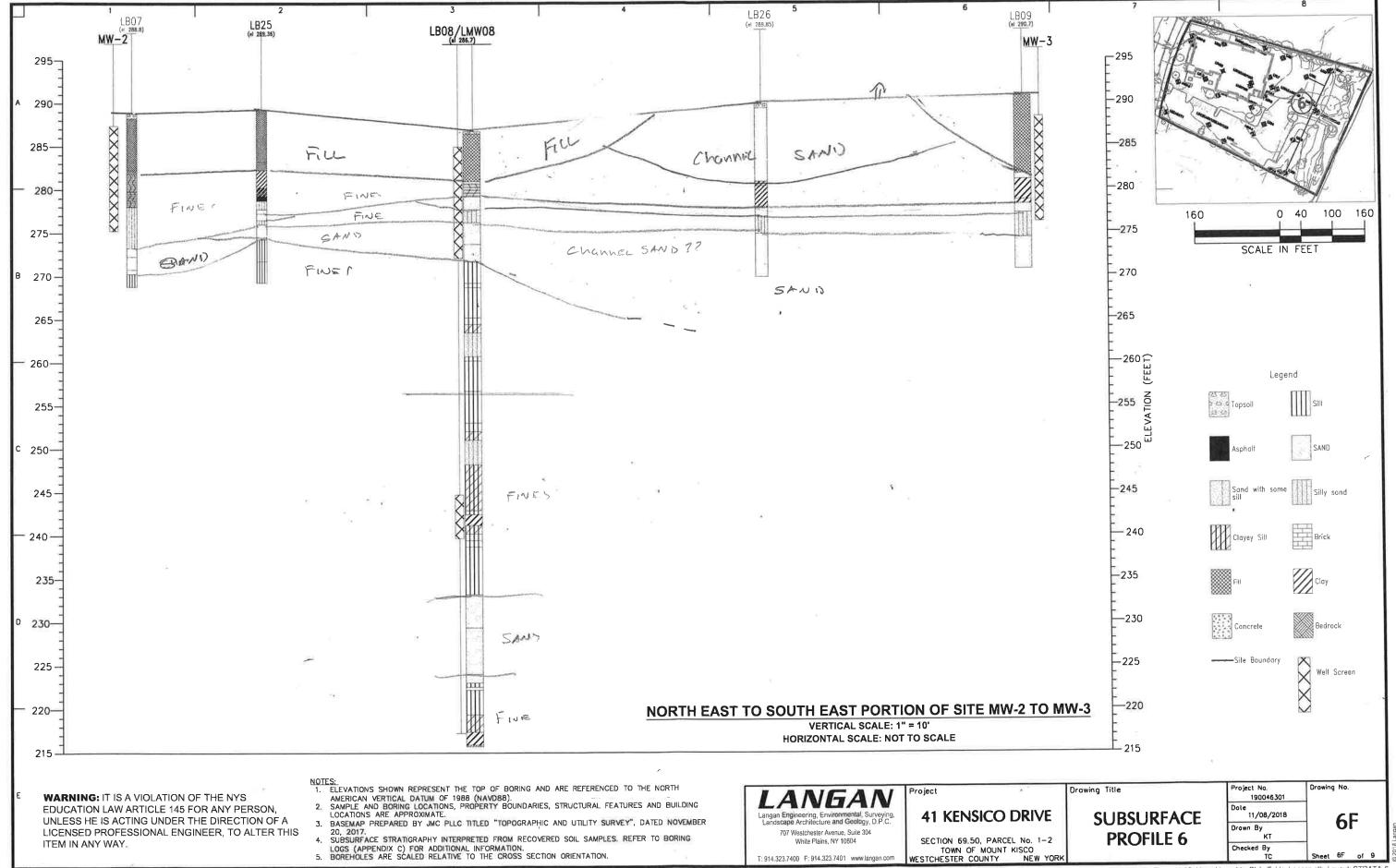


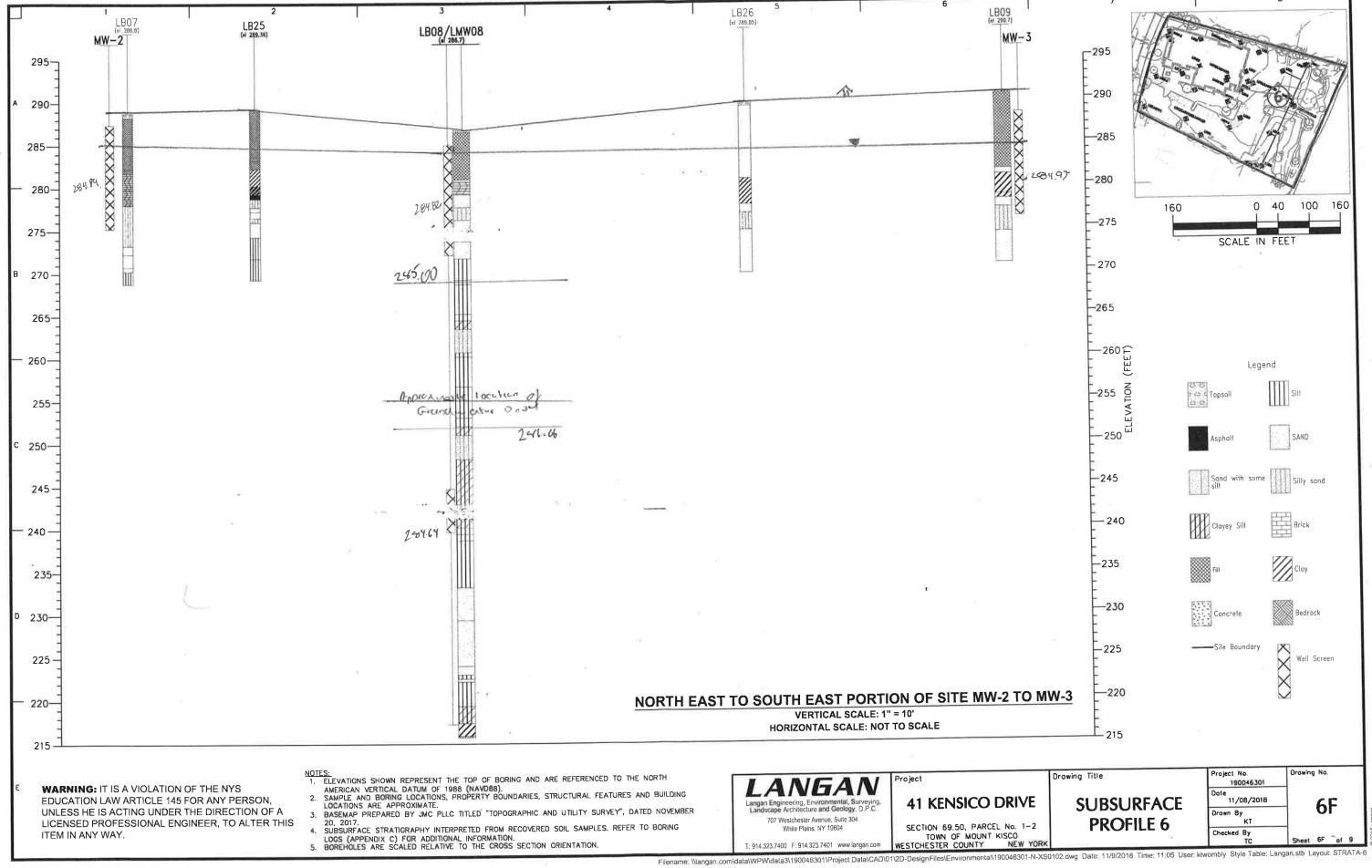


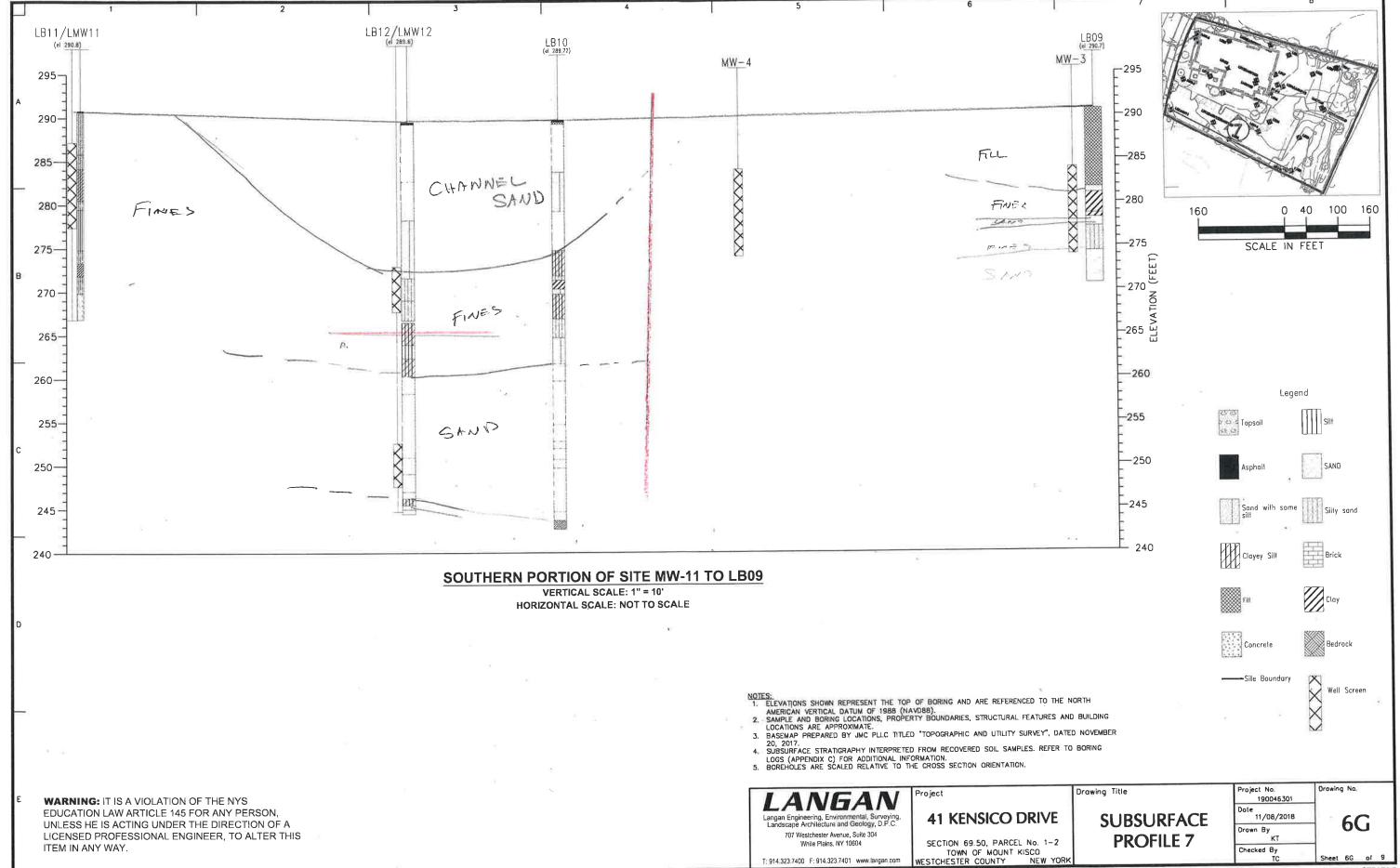


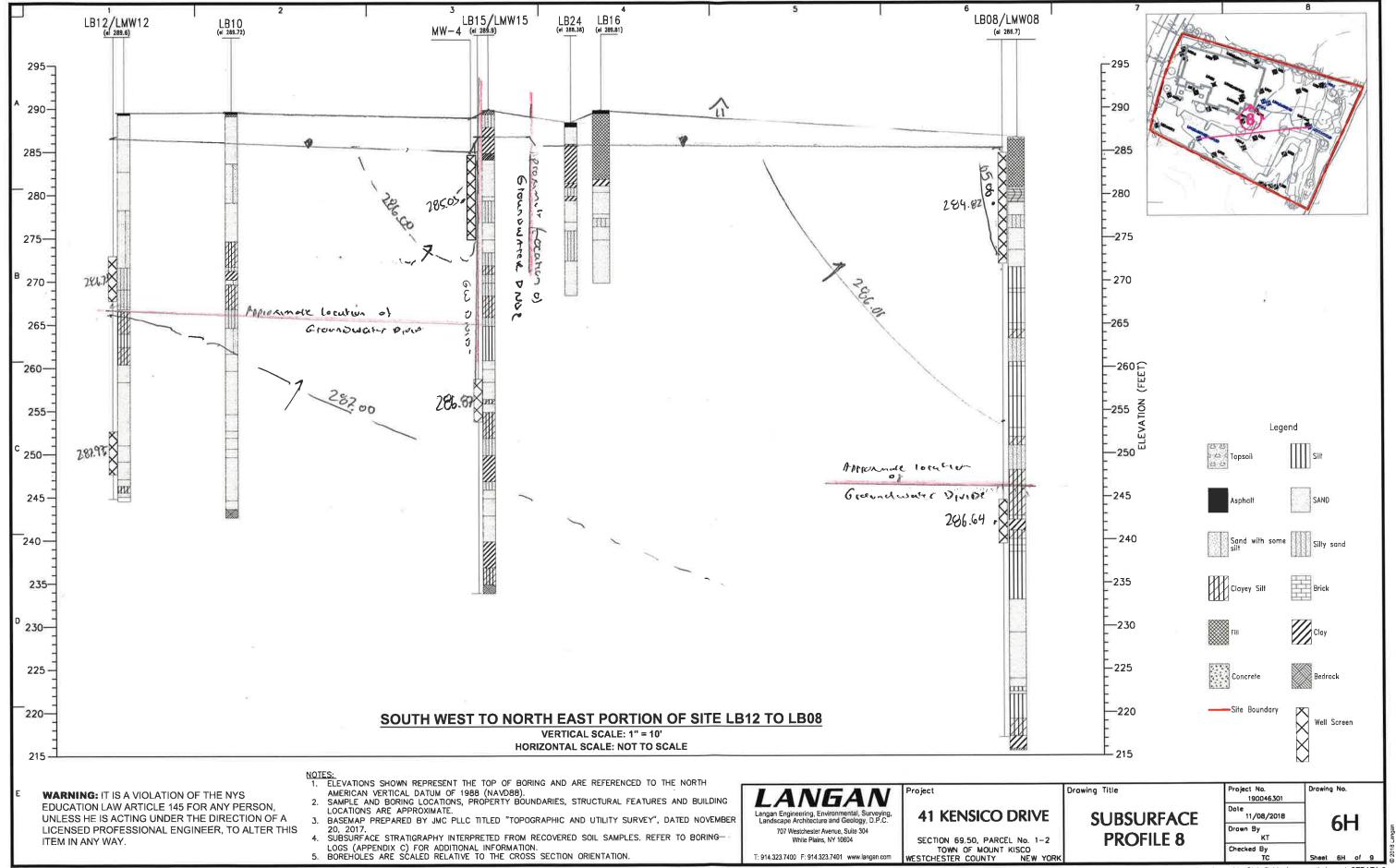


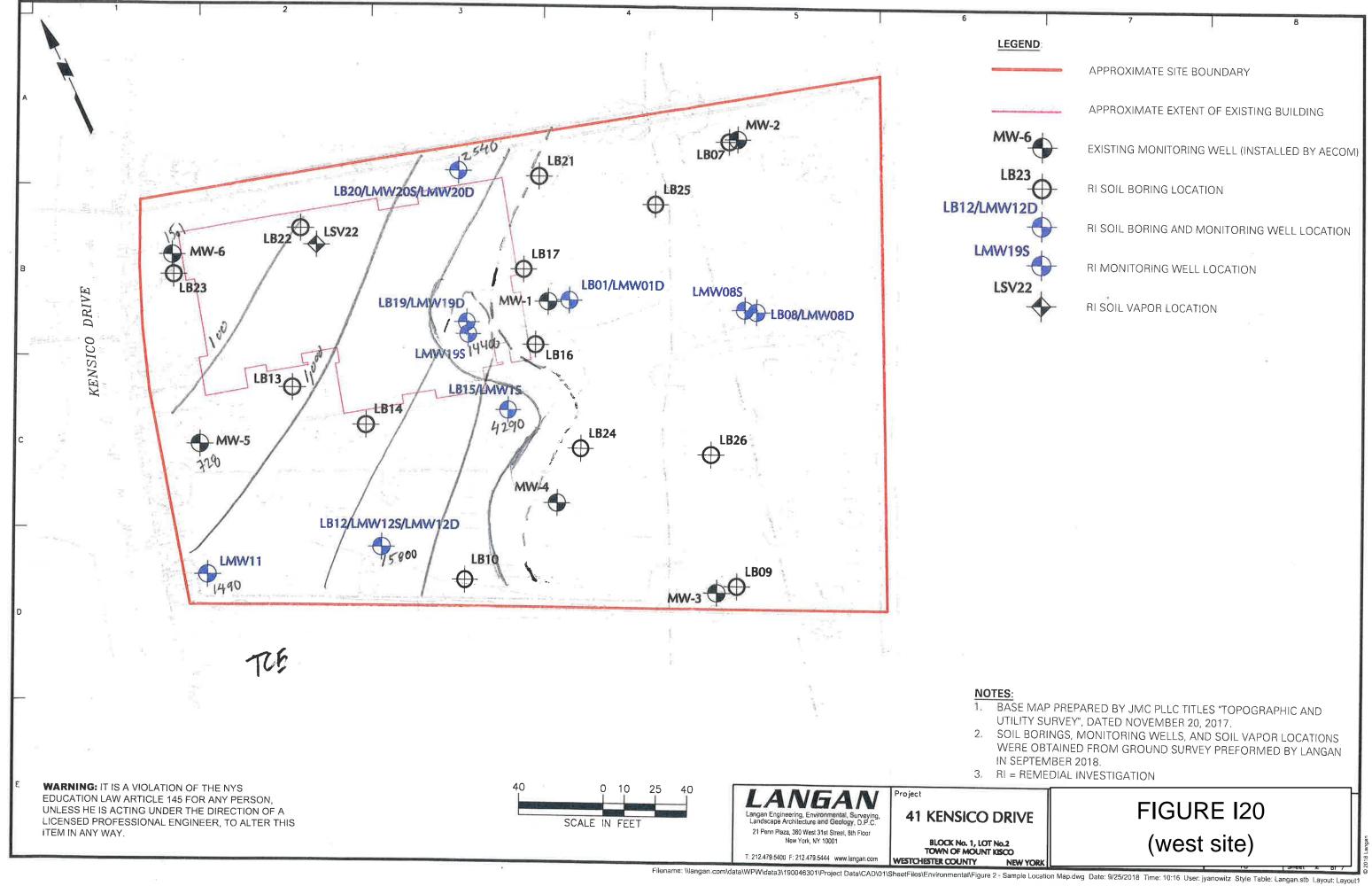


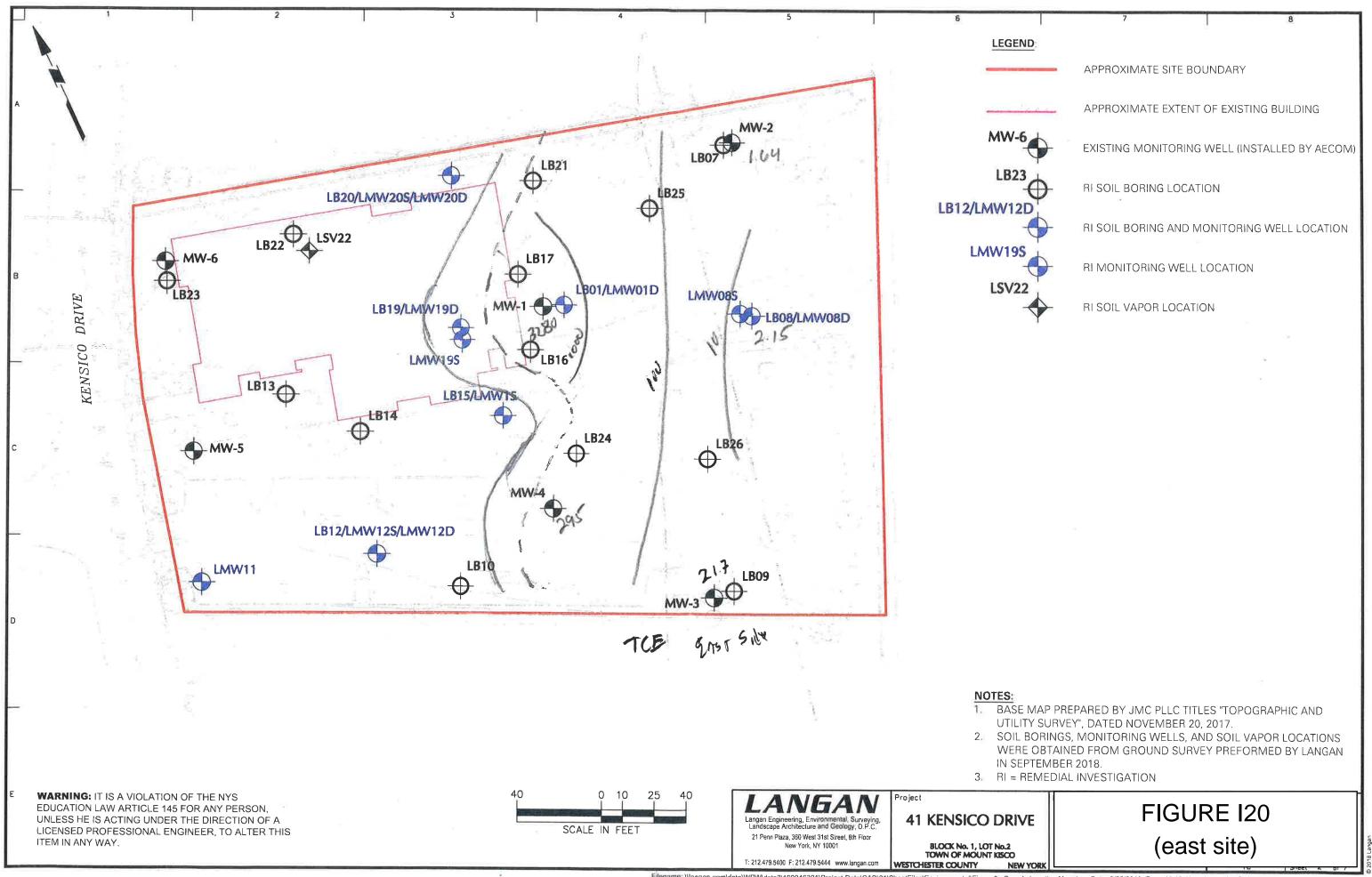












APPENDIX J FISH AND WILDLIFE RESOURCES IMPACT ANALYSIS

APPENDIX I

FISH AND WILDLIFE RESOURCE IMPACT ANALYSIS (FWRIA)

Langan conducted a Fish and Wildlife Resource Impact Analysis (FWRIA) for the site in accordance with regulations set forth in the New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation Technical Guidance for Site Investigation and Remediation (DER-10) and the guidelines set forth in the NYSDEC Fish and Wildlife Impact Analysis (FWIA) for Inactive Hazardous Waste Sites Handbook (October, 1994). The FWRIA was prepared as part of a remedial investigation (RI) completed at the site and includes an assessment of on- and off-site resources. Additional information on sampling data and locations discussed in this FWRIA are provided in the Remedial Investigation Report (RIR) the FWRIA is appended to.

1.1 Environmental Setting

As described in the RIR, the site is a 1.73-acre lot that is improved with a one-story building, landscaped areas, and an asphalt-paved paved parking lot. Based on the current settings, the habitat at this site is low quality and does not support a robust ecological community. A freshwater forested/shrub wetland is located north of the site. While the wetland is not located on the property, the buffer area associated with this wetland extends up to the northern property boundary of the site. The only sensitive natural resource identified within close proximity of the site is the aquatic ecosystem associated with Branch Brook, which flows along the eastern property boundary (see Figure 1).

Branch Brook is part of a "riverine" system classified as a Category C waterway (i.e., supporting fisheries and non-contact activities) by the NYSDEC. The portion of Branch Brook adjacent to the site is a low quality drainage system that may potentially receive groundwater discharge from the site. Additionally, runoff is transported via overland flow to Branch Brook from parking lot and landscaped areas through a carved depression in a grass covered area beyond the eastern parking lot (see Attachment 1). However, most of site is covered in impervious surfaces and/or maintained landscaping. Therefore, significant erosion of soil from the site into Branch Brook is not expected. Additionally, a railroad runs along the entire length of the eastern bank of Branch Brook both up and downstream of the site. During a site walk in May of 2019, fill material from the railroad was observed eroding into the stream. Furthermore, a storm sewer outfall was observed directly north of the site along the western bank of Branch Brook.

A redevelopment plan is in place for the site that will result in an expansion of the existing asphalt-paved parking lot, a paved automotive sales storage area and a 10-foot wide landscaped buffer area between the storage area and Branch Brook along the eastern property boundary. This redevelopment will further limit any potential for soil erosion at the site. During the redevelopment, an Erosion and Sediment Control Plan (ESCP) will be implemented that will limit

any potential erosion of soil that may occur. Additionally, the surrounding properties are commercial, residential and industrial; therefore, terrestrial habitats surrounding the site exhibit little ecological value (see Figure 3 of the RIR). Based on the condition of both the site and the surrounding properties, potential soil impacts are not expected to pose a risk to ecological receptors. Therefore, groundwater, sediment and surface water are the media that may be impacted by the site and pose a potential ecological risk that requires additional evaluation.

1.2 Identification of Applicable Screening Criteria and Regulatory Rules

Media associated with the site that pose a potential ecological risk were screened to evaluate what, if any, potential migration and exposure pathways may be complete at the site. The following sections provide a brief description of the selection of the screening criteria for each media. Sample locations evaluated as part of in the FWRIA are provided in Figure 2 of the RIR.

1.2.1 Groundwater

Groundwater was screened at the site as a conservative approach to assess the potential groundwater to surface water migration pathway at the Site. Ecological regulatory criteria were selected to screen groundwater analytical data from the site. Freshwater criteria were selected based on the knowledge that the wetland and Branch Brook are freshwater environments. Criteria were selected from the New York State Ambient Water Quality Standards (AWQS) and Guidance Values and Groundwater Effluent Limits. Both aquatic chronic (A[C]) and aquatic acute (A[A]) surface water benchmarks were utilized in this analysis to provide a range of conservative screening values. These benchmarks also helped to identify the range of potential risk of specific contaminants. It is important to note that in many cases, values for fish propagation (A[C]) and fish survival (A[A]) are higher than values that are protective of drinking water or fish consumption for humans. Therefore, analytes that may have been identified as being a potential human health risk driver may not have been identified as an ecological risk driver. Additionally, in cases where A(C) and A(A) values have not been promulgated by New York State, the following secondary peer-reviewed published sources were used in the selection of groundwater screening:

- United States Environmental Protection Agency (USEPA) National Recommended Water Quality Criteria - Aquatic Life Criteria.
- 2. USEPA Region III Biological Technical Assistance Group (BTAG) Freshwater Screening Benchmarks.

1.2.2 Surface Water

Surface water was screened to assess the potential migration of ecological impacts to Branch Brook adjacent to the site. Ecological regulatory criteria were selected from the New York AWQS and Guidance Values and Groundwater Effluent Limits. Specifically, surface water data was compared to AWQS for Class "C" waterways. AWQS included in this screening included the following types:

- Fish Propagation (fresh waters) Type A(C),
- Fish Survival (fresh waters) Type A(A),
- Wildlife Protection (fresh waters) Type (W), and
- Aesthetic (fresh waters) Type E.

1.2.3 Sediment

Sediment was screened to assess the potential migration of ecological impacts to Branch Brook adjacent to the site. Contaminant-specific ecological regulatory criteria were selected from the Table 5 of the NYSDEC guidance document *Screening and Assessment of Contaminated Sediment (SACS)* dated June 24, 2014.

1.3 Contaminant-Specific Impact Analysis

A contaminant-specific impact analysis was completed to identify possible migration pathways to the stream located along the eastern property boundary of the site. Analytical data associated with an identified migration pathway and exposure route was screened against the ecological criteria outlined above.

1.3.1 Migration and Exposure Pathways

Migration and exposure pathways associated with the site were evaluated to determine the presence of a potential exposure route between contaminant sources at the site and ecological receptors. Based on a review of the current conditions of the site, knowledge of the proposed site redevelopment plans, and a review of the RI and SRI sampling data, two potential migration pathways were identified, including overland flow and groundwater to surface water discharge.

The overland flow is not expected to be a significant source of impacts within the stream due to the current and future site features. Currently, the site is comprised of impervious surfaces (i.e., an asphalt-paved parking lot and buildings) and a maintained landscaped lawn. Additionally, the future site conditions will include a larger paved parking lot and a paved outdoor automotive sales storage area extending up to 10 feet from Branch Brook. The remainder of the site will include a 10-foot landscaped buffer between the parking lot/storage area and the stream. These features will significantly prevent potential surface soil impacts from eroding and migrating off-site.

The main potential migration pathway at the site is associated with impacted groundwater that may discharge to surface water. An analysis of topographic features and groundwater level measurement data from the RI demonstrates that shallow groundwater is migrating northeast towards the stream that flows along the eastern property boundary. The migration and potential discharge of groundwater to the stream represents a potential risk to ecological receptors. This risk is associated with the site-related impacts detected in shallow groundwater that may be migrating to the stream.

1.3.2 Criteria-Specific Analysis

The criteria-specific analysis evaluates the potential migration pathways between the site and ecological resources. Branch Brook was found to be an ecological resource of concern and the potential migration pathways of groundwater to surface water discharge and overland flow were identified. Therefore, site-specific shallow groundwater, surface water and sediment data were screened using the applicable screening criteria as identified above. A summary of the screening results is provided below.

1.3.3 Groundwater

Groundwater data from shallow downgradient monitoring wells located closest to the stream (MW-2, MW-3 and LMW-08S) were considered in the criteria-specific analysis. A summary of shallow groundwater sampling locations and screening results is provided in Table 1 of this Appendix.

The monitoring wells were sampled and analyzed for Target Compound List (TCL), volatile organic compounds (VOCs), TCL semi-volatile organic compounds (SVOCs), TCL polychlorinated biphenyls (PCBs), and TCL pesticides and Target Analyte List (TAL) metals (total and dissolved) in September 2018, as part of the RI field activities. Based on an evaluation of groundwater data compared to the screening criteria presented above, the following groundwater contaminants of potential ecological concern (COPECs) were identified:

- VOCs:
 - Trichloroethylene (MW-3)
- SVOCs: no exceedances
- Pesticides: no exceedances
- Total Metals:
 - o Aluminum (LMW-08S)
 - o Barium (LMW-08S)
 - o Iron(LMW-08S)
 - o Lead (LMW-08S)
 - o Manganese(LMW-08S)
- Dissolved Metals:
 - o Barium (LMW-08S)
 - o Iron(LMW-08S)
 - Manganese(LMW-08S)

1.3.4 Surface Water

Surface water data was collected from three co-located sample locations with sediment samples within the stream along the eastern boundary of the site. Sample locations included one adjacent

to the northern property boundary of the site (SW1), one adjacent to a storm runoff channel located along the eastern property boundary of the site (SW2), and one adjacent to the southern property boundary of the site (SW3). A summary of the surface water sampling locations and screening results is provided in Table 6A of the RIR.

Surface water samples were sampled and analyzed for TCL VOCs, TCL SVOCs, TCL PCBs, TCL pesticides, TAL metals (total and dissolved) and emerging contaminants, include 1,4-dioxane and per- and polyfluoroalkyl substances (PFAS) in May 2019, as part of SRI field activities per the request of the NYSDEC. Based on an evaluation of surface water data compared to the screening criteria presented above, the following surface water COPECs were identified:

VOCs: no exceedances

• SVOCs: bis(2-Ethylhexyl) phthalate (SW1)

• Pesticides: no exceedances

• PCBs: no exceedances

Total Metals: iron (SW1, SW2 and SW3)Dissolved Metals: aluminum (SW3)

1.3.5 Sediment

Three sediment sampling locations were collocated with the surface water samples within the stream along the eastern boundary of the site, including one adjacent to the northern property boundary of the site (SED1), one adjacent to a storm runoff channel located along the eastern property boundary of the site (SED2), and one adjacent to the southern property boundary of the site (SED3). A summary of the sediment sampling locations and screening results is provided in Table 6B of the RIR.

Sediment samples were sampled and analyzed for TCL VOCs, TCL SVOCs, TCL PCBs, TCL pesticides, TAL metals and emerging contaminants, include 1,4-dioxane and per- and PFAS in May 2019, as part of SRI field activities per the request of NYSDEC. Based on an evaluation of sediment data compared to the screening criteria presented above, the following COPECs were identified at the specified sediment sampling locations:

VOCs: no exceedancesSVOCs: no exceedances

• Pesticides: no exceedances

• PCBs: no exceedances

Metals:

o Cadmium (SED3)

o Total chromium (SED2)

o Copper (SED2)

o Lead (SED1, SED2, and SED3)

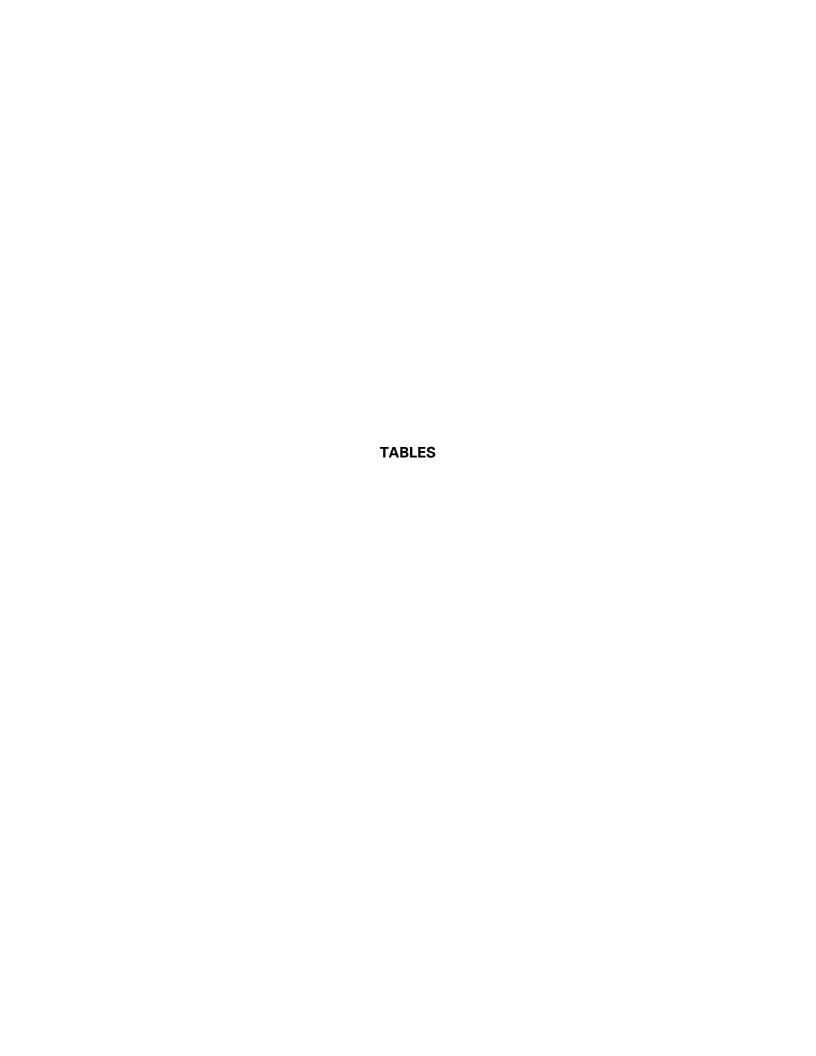
Nickel (SED3)

o Zinc (SED1, SED2 and SED3)

Based on the constituents identified in Branch Brook, four surface soil samples collected along the eastern portion of the site (SS4 through SS7) were evaluated. These samples were evaluated in the FWRIA to determine if soil at the site is a source of impacts observed in Branch Brook sediments. Surface soil samples were analyzed for TCL VOCs, TCL SVOCs, PCBs, pesticides, and TAL metals. The results from these surface soil samples indicated that metals were the only analytes detected at elevated levels. However, only lead at SS7 was detected at a level (132 mg/kg) equivalent to its respective Class C Guidance Level for sediment (130 mg/kg). All other metals were detected at levels within the range for Class B Guidance Levels or below. Additional discussion about these samples and their results are provided in the RIR and on Tables 3A, 3B, 3C, and 3D of the RIR.

1.4 Conclusions

The results of the preliminary FWRIA indicate that, although there is potential for ecological resources to be impacted by contamination in groundwater, surface water and sediment, it is unlikely the site contamination is causing significant adverse effects on the adjacent ecological resources for the following reasons:


- The VOCs in groundwater are attributed to a hydraulically upgradient off-site source (see Section 8.0 of the RIR);
- A decreasing trend in groundwater contaminant concentrations was observed at the site from the western to eastern property boundaries. Therefore, contaminant levels detected in downgradient groundwater wells will likely decrease further before being discharged to the stream adjacent to the site. Groundwater concentrations are likely to decrease over the flow path distance between the most downgradient wells and the waterway. Additionally, surface water samples from Branch Brook indicate that COPECs identified in groundwater have not migrated to this ecological habitat;
- Metal concentrations exceeding media-specific ecological regulatory criteria are only slightly above ecological criteria and in many cases are consistent with historic fill concentrations for the metropolitan region;
- Metal concentrations detected in Branch Brook sediments were generally higher than
 metal concentrations in surface soil samples collected adjacent to the drainage channel
 leading towards Branch Brook. These results indicate that other sources of metals are
 likely impacting Branch Brook, including but not limited to, fill material from the railroad
 embankment along the eastern bank of Branch Brook and stormwater from off-site
 commercial and industrial properties that discharges to Branch Brook through the storm
 sewer outfall observed near the northeastern corner of the site.

Based on these findings, no further ecological impact assessment is warranted.

41 Kensico Drive, Mount Kisco, NY Langan Project No. 190046301 BCP ID No. C360163

Sample Location Sample ID		NYSDEC TOGS Standards and Guidance		Secondary	MW-2	MW-3 MW-3_090618	LMW08S LMW08S_090518
	CAS Number	Values			MW-2_090518		
Lab ID	OAO Humber	Aquatic Health:	Aquatic Health:	Sources	1810168-03	1810253-01	1810168-04
Sampling Date and Time		Chronic	Acute		9/5/2018 1:45:00 PM	9/6/2018 11:40:00 AM	9/5/2018 4:36:00 PM
Volatile Organic Compounds (μg/L) 1,1,1,2-Tetrachloroethane	620.20.6	1	1		0.200	0.200	0.200
1,1,1-Trichloroethane	630-20-6 71-55-6	11	~	b	0.200 U 8.480	0.200 U 0.200 U	
1,1,2,2-Tetrachloroethane	71-55-6 79-34-5	610	~	b	0.200 U		0.200 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon	76-13-1	~	~	Б	0.200 U		0.200 U
1,1,2-Trichloroethane	79-00-5	1200	~	b	0.200 U		0.200 U
1,1-Dichloroethane	75-34-3	47	~	b	0.200 U		0.430 J
1,1-Dichloroethylene	75-35-4	25	~	b	1.070	0.200 U	0.870
1,2,3-Trichlorobenzene	87-61-6	5	~		0.200 U	0.200 U	0.200 U
1,2,3-Trichloropropane	96-18-4	~	~		0.200 U		0.200 U
1,2,4-Trichlorobenzene	120-82-1	5	~		0.200 U		0.200 U
1,2,4-Trimethylbenzene	95-63-6	33	290		0.200 U	0.200 U	0.200 U
1,2-Dibromo-3-chloropropane	96-12-8	~	~		0.200 U		0.200 U
1,2-Dibromoethane 1,2-Dichlorobenzene	106-93-4 95-50-1	~ 5	~		0.200 U 0.200 U	0.200 U	0.200 U 0.200 U
1,2-Dichloroberizerie 1,2-Dichloroethane	107-06-2	100	~	b	0.200 U	0.200 U 0.200 U	0.200 U
1,2-Dichloropropane	78-87-5	~	~	Б	0.200 U	0.200 U	0.200 U
1,3,5-Trimethylbenzene	108-67-8	71	~	b	0.200 U		0.200 U
1,3-Dichlorobenzene	541-73-1	5	~		0.200 U	0.200 U	0.200 U
1,4-Dichlorobenzene	106-46-7	5	~		0.200 U		0.200 U
1,4-Dioxane	123-91-1	~	~		40 U	40 U	40 U
2-Butanone	78-93-3	14000	~	b	0.200 U		0.200 U
2-Hexanone	591-78-6	99	~	b	0.200 U	0.200 U	0.200 U
4-Methyl-2-pentanone	108-10-1	170	~	b	0.200 U	0.200 U	0.200 U
Acetone	67-64-1	1500	~	b	1 U	1 U	1 U
Acrolein	107-02-8	3	3	а	0.200 U	0.200 U	0.200 U
Acrylonitrile	107-13-1	~	~		0.200 U	0.200 U	0.200 U
Benzene	71-43-2	210	760		7.170	0.200 U	
Bromochloromethane	74-97-5	~	~		0.200 U		0.200 U
Bromodichloromethane	75-27-4	~	~		0.200 U		0.200 U
Bromoform Bromomethane	75-25-2	320	~	b	0.200 U		0.200 U
Carbon disulfide	74-83-9 75-15-0	0 0.92	~	b b	<i>0.200</i> U 0.200 U	0.200 U 0.200 U	0.200 U 0.200 U
Carbon disdinde Carbon tetrachloride	56-23-5	13.3	~	b b	0.200 U		0.200 U
Chlorobenzene	108-90-7	5	~	5	0.200 U	0.200 U	0.200 U
Chloroethane	75-00-3	~	~		0.200 U		0.200 U
Chloroform	67-66-3	1.8	~	b	0.200 U		0.200 U
Chloromethane	74-87-3	~	~		0.200 U	0.200 U	0.200 U
cis-1,2-Dichloroethylene	156-59-2	590	~	b	273 D	1	149 D
cis-1,3-Dichloropropylene	10061-01-5	~	~		0.200 U	0.200 U	0.200 U
Cyclohexane	110-82-7	~	~		0.200 U		0.200 U
Dibromochloromethane	124-48-1	~	~		0.200 U	0.200 U	0.200 U
Dibromomethane	74-95-3	~	~		0.200 U		0.200 U
Dichlorodifluoromethane	75-71-8	~	~		0.200 U	0.200 U	0.200 U
Ethyl Benzene	100-41-4	17	150		0.200 U		0.200 U
Hexachlorobutadiene	87-68-3	1	10		0.200 U	0.200 U	0.200 U
Isopropylbenzene Methyl acetate	98-82-8 79-20-9	2.6	23		0.200 U 0.200 U	0.200 U 0.200 U	0.200 U
Methyl tert-butyl ether (MTBE)	79-20-9 1634-04-4	~ 11070	~	b	0.200 U 0.200 U		0.200 U 0.200 U
Methylcyclohexane	108-87-2	~	~	D	0.200 U	0.200 U	0.200 U
Methylene chloride	75-09-2	98.1	~	b	0.200	0.200	0.200 U
n-Butylbenzene	104-51-8	~	~	5	0.200 U	0.200 U	0.200 U
n-Propylbenzene	103-65-1	128	~	b	0.200 U	0.200 U	0.200 U
o-Xylene	95-47-6	65	590	~	0.200 U	0.200 U	0.200 U
p- & m- Xylenes	179601-23-1	65	590		0.500 U	0.500 U	0.500 U
p-Isopropyltoluene	99-87-6	85	~	b	0.200 U		0.200 U
sec-Butylbenzene	135-98-8	~	~		0.200 U		0.200 U
Styrene	100-42-5	72	~	b	0.200 U	0.200 U	0.200 U
tert-Butyl alcohol (TBA)	75-65-0	~	~		0.500 U	0.500 U	0.500 U
tert-Butylbenzene	98-06-6	~	~		0.200 U	0.200 U	0.200 U
Tetrachloroethylene	127-18-4	111	~	b	0.200 U		
Toluene	108-88-3	100	480		0.200 U		0.200 U
trans-1,2-Dichloroethylene	156-60-5	970	~		3.840	0.200 U	0.680
trans-1,3-Dichloropropylene	10061-02-6	~	~		0.200 U		0.200 U
Trichloroethylene	79-01-6	21	~	b	2	22	2
Trichlorofluoromethane	75-69-4	~	~		0.200 U		
Vinyl Chloride	75-01-4	930	~	b	40.4	0.200 U	
Xylenes, Total	1330-20-7	65	590		0.600 U	0.600 U	0.600 U

Sample Location Sample ID		NYSDEC TOGS Standards and Guidance Values			MW-2	MW-3	LMW08S
Lab ID	CAS Number	Va Aquatic Health:	Aquatic Health:	Secondary Sources	MW-2_090518 18l0168-03	MW-3_090618 18l0253-01	LMW08S_090518 1810168-04
Sampling Date and Time		Chronic	Acute		9/5/2018 1:45:00 PM	9/6/2018 11:40:00 AM	9/5/2018 4:36:00 PM
Semivolatile Organic Compounds (µg/L)							
1,1-Biphenyl	92-52-4	14	~	b	2.630 U	2.700 U	2.500 U
1,2,4,5-Tetrachlorobenzene	95-94-3	3	~	b	2.630 U		
2,3,4,6-Tetrachlorophenol	58-90-2	1.2	~	b	<i>2.630</i> U		2.500 U
2,4,5-Trichlorophenol	95-95-4	~	~		2.630 U		
2,4,6-Trichlorophenol	88-06-2	4.9	~	b	2.630 U		2.500 U
2,4-Dichlorophenol	120-83-2	11	~	b	2.630 U		2.500 U
2,4-Dimethylphenol	105-67-9	~	~		2.630 U		
2,4-Dinitrophenol 2,4-Dinitrotoluene	51-28-5 121-14-2	~ 44	~	h	2.630 U 2.630 U		
2,6-Dinitrotoluene	606-20-2	81	~	b b	2.630 U 2.630 U		2.500 U 2.500 U
2-Chloronaphthalene	91-58-7	~	~	D	2.630 U		
2-Chlorophenol	95-57-8	24	~	b	2.630 U		2.500 U
2-Methylnaphthalene	91-57-6	4.7	42	5	2.630 U		2.500 U
2-Methylphenol	95-48-7	13	~	b	2.630 U		
2-Nitroaniline	88-74-4	~	~	~	2.630 U		
2-Nitrophenol	88-75-5	1920	~	b	2.630 U		2.500 U
3- & 4-Methylphenols	65794-96-9	~	~		2.630 U		2.500 U
3,3-Dichlorobenzidine	91-94-1	4.5	~	b	2.630 U		
3-Nitroaniline	99-09-2	~	~		2.630 U		2.500 U
4,6-Dinitro-2-methylphenol	534-52-1	~	~		2.630 U		2.500 U
4-Bromophenyl phenyl ether	101-55-3	1.5	~	b	2.630 U		
4-Chloro-3-methylphenol	59-50-7	~	~		2.630 U		
4-Chloroaniline	106-47-8	232	~	b	2.630 U	2.700 U	2.500 U
4-Chlorophenyl phenyl ether	7005-72-3	0	~	b	<i>2.630</i> U	<i>2.700</i> U	<i>2.500</i> U
4-Nitroaniline	100-01-6	~	~		2.630 U	2.700 U	2.500 U
4-Nitrophenol	100-02-7	60	~	b	5.260 U	5.410 U	5.000 U
Semivolatile Organic Compounds (µg/L)							
Acetophenone	98-86-2	~	~		2.630 U		
Benzaldehyde	100-52-7	~	~		2.630 U		2.500 U
Benzyl butyl phthalate	85-68-7	19	~	b	2.630 U	2.700 U	2.500 U
Bis(2-chloroethoxy)methane	111-91-1	~	~		2.630 U		2.500 U
Bis(2-chloroethyl)ether	111-44-4	~	~		1.050 U		1.000 U
Bis(2-chloroisopropyl)ether	108-60-1	~	~		2.630 U		2.500 U
Caprolactam Carbazole	105-60-2	~	~		2.630 U		2.500 U 2.500 U
Carbazole Dibenzofuran	86-74-8	3.7	~	b	2.630 U		
Diethyl phthalate	132-64-9 84-66-2	210	~	b b	2.630 U 2.630 U	2.700 U 2.700 U	2.500 U 2.500 U
Dimethyl phthalate	131-11-3	210	~	D	2.630 U		2.500 U
Di-n-butyl phthalate	84-74-2	19	~	b	2.630 U		2.500 U
Di-n-octyl phthalate	117-84-0	22	~	b	2.630 U		2.500 U
Hexachlorocyclopentadiene	77-47-4	0.45	4.5	5	5.260 U		5.000 U
Isophorone	78-59-1	~	~		2.630 U		
N-nitroso-di-n-propylamine	621-64-7	~	~		2.630 U		2.500 U
N-Nitrosodiphenylamine	86-30-6	210	~	b	2.630 U		2.500 U
Phenol	108-95-2	4	~	b	2.630 U	2.700 U	2.500 U
Propargite	2312-35-8	~	~		2.630 U	2.700 U	2.500 U
Pyridine	110-86-1	2380	~	b	2.630 U	2.700 U	2.500 U
Acenaphthene	83-32-9	5.3	48		0.3580	0.0541 U	0.0500 U
Acenaphthylene	208-96-8	~	~		0.0526 U	0.0541 U	0.0500 U
Anthracene	120-12-7	3.8	35		0.0526 U	0.0541 U	0.0500 U
Atrazine	1912-24-9	1.8	~	b	0.526 U	0.0	0.500 U
Benzo(a)anthracene	56-55-3	0.03	0.23		0.0526 U		0.0500 U
Benzo(a)pyrene	50-32-8	0.015	~	b	<i>0.0526</i> U		
Benzo(b)fluoranthene	205-99-2	~	~		0.0526 U		0.0500 U
Benzo(g,h,i)perylene	191-24-2	~	~		0.0526 U	******	0.0500 U
Benzo(k)fluoranthene	207-08-9	~	~		0.0526 U		
Bis(2-ethylhexyl)phthalate	117-81-7	16	~	b	3.190	0.541 U	2.440
Chrysene	218-01-9	~	~		0.0526 U		0.0500 U
Dibenzo(a,h)anthracene Fluoranthene	53-70-3 206 44 0	~ 0.04	_ ~	h	0.0526 U	0.0541 U	0.0500 U
Fluorantnene Fluorene	206-44-0 86-73-7	0.04 0.54	4.8	b	0.0526 U 0.0526 U		
Hexachlorobenzene	86-73-7 118-74-1	0.0003	4.0	b	0.0526 U 0.0211 U	0.0541 U	
Hexachlorobutadiene	87-68-3	0.0003	10		0.526 U	0.541 U	
Hexachloroethane	67-06-3 67-72-1	12	~	b	0.526 U		
Indeno(1,2,3-cd)pyrene	193-39-5	0	~ ~	b	0.0526 U		
Naphthalene	91-20-3	13	110		0.0526 U		0.0500 U
Nitrobenzene	98-95-3	~	~		0.263 U		
N-Nitrosodimethylamine	62-75-9	117	~	b	0.526 U		
Pentachlorophenol	87-86-5	6.7	8.7		0.263 U	0.270 U	
Phenanthrene	85-01-8	5	45		0.0526 U		
		4.6	42	1	0.0526 U		

Sample Location		NYSDEC TOGS Standards and Guidance			MW-2	MW-3	LMW08S
Sample ID		Values		Secondary		MW-3_090618	LMW08S_090518
Lab ID	CAS Number	Aquatic Health:	Aquatic Health:	Sources	1810168-03	1810253-01	1810168-04
Sampling Date and Time		Chronic	Acute	Sources	9/5/2018 1:45:00 PM	9/6/2018 11:40:00 AM	9/5/2018 4:36:00 PM
		Gillonio	710010		3/3/2010 1.43.001101	3/0/2010 11.40.00 AIVI	3/3/2010 4.30.001 101
Pesticides (µg/L) 4,4'-DDD	72-54-8	T		T	NIT	NT	0.00410 U
• '			~		NT		
4,4'-DDE	72-55-9	~	~		NT	NT	0.00410 U
4,4'-DDT	50-29-3	0.001	1.1	а	NT	NT	0.00410 U
Total DDT	~	0.000011	~		NT	NT	0.00410 U
Aldrin	309-00-2	~	3	а	NT	NT	0.00410 U
alpha-BHC	319-84-6	~	~		NT	NT	0.00410 U
alpha-Chlordane	5103-71-9	~	~		NT	NT	0.00410 U
beta-BHC	319-85-7	~	~		NT	NT	0.00410 U
Chlordane, total	57-74-9	0.0043	2.4	а	NT	NT	<i>0.02050</i> U
delta-BHC	319-86-8	141	~	b	NT	NT	0.00410 U
Dieldrin	60-57-1	0.056	0.24		NT	NT	0.00205 U
Endosulfan I	959-98-8	0.056	0.22	а	NT	NT	0.00410 U
Endosulfan II	33213-65-9	0.056	0.22	а	NT	NT	0.00410 U
Endosulfan sulfate	1031-07-8	~	~		NT	NT	0.00410 U
Endrin	72-20-8	0.036	0.086		NT	NT	0.00410 U
Endrin aldehyde	7421-93-4	~	~		NT	NT	0.01030 U
Endrin ketone	53494-70-5	~	~		NT	NT	0.01030 U
gamma-BHC (Lindane)	58-89-9	~	0.95		NT	NT	0.00410 U
gamma-Chlordane	5566-34-7	~	~		NT	NT	0.01030 U
Heptachlor	76-44-8	0.04	~		NT	NT	0.00410 U
Heptachlor epoxide	1024-57-3	0.03	~		NT	NT	0.00410 U
Methoxychlor	72-43-5	0.03	~		NT	NT	0.00410 U
Toxaphene	8001-35-2	0.005	1.6		NT	NT	0.103 U
Metals, Total (μg/L)	0001-33-2	0.003	1.0		IVI	IVI	0.705
Aluminum	7429-90-5	100	~	T	NT	NT	141
Arsenic	7440-38-2	150	340		NT	NT	3.13
Barium	7440-39-3	4	~	b	NT	NT	124
Cadmium	7440-43-9	2.1	3.8		NT	NT	1.11 U
Calcium	7440-70-2	116000	3.6 ~	b	NT	NT	84500
Chromium	7440-47-3	74	570		NT	NT	5 U
Cobalt	7440-48-4	5.0	110		NT	NT	5 U
					NT	NT	
Copper	7440-50-8	9.0	13				5.55
Iron	7439-89-6	300	~		NT	NT	2640
Lead	7439-92-1	3.8	97	1 .	NT	NT	5.77
Magnesium	7439-95-4	82000	~	b	NT	NT	21800
Manganese	7439-96-5	120	~	b	NT	NT	560
Nickel	7440-02-0	52	468		NT	NT	5 U
Mercury	7439-97-6	0.77	1.4	1 .	NT -	NT	0.20 U
Potassium	7440-09-7	53000	~	b	NT	NT	5700 B
Silver	7440-22-4	0.1	4	1	NT	NT	<i>5</i> U
Selenium	7782-49-2	4.6	~	1	NT	NT	1.11 U
Sodium	7440-23-5	680000	~	b	NT	NT	22900
Thallium	7440-28-0	8.0	20		NT	NT	1.11 U
Vanadium	7440-62-2	14	190	1	NT	NT	10 U
Zinc	7440-66-6	83	117		NT	NT	15 U

Sample Location NYSDEC TOGS Standards and Guidance MW-2 MW-3 LMW08S Sample ID MW-2_090518 MW-3_090618 LMW08S_090518 Values **Secondary CAS Number** Lab ID 1810168-03 1810253-01 1810168-04 **Aquatic Health: Aquatic Health:** Sources Chronic 9/6/2018 11:40:00 AM 9/5/2018 4:36:00 PM Acute 9/5/2018 1:45:00 PM Sampling Date and Time Metals, Dissolved (μg/L) Aluminum 7429-90-5 100 NT NT 55.60 Arsenic 7440-38-2 150 340 NT NT 2.72 Barium 7440-39-3 4 NT NT 117 Calcium 116000 7440-70-2 NT NT 80900 Chromium 7440-47-3 74 570 NT NT 5.56 Cobalt 7440-48-4 5 110 NT NT 5.56 Copper 7440-50-8 9.0 13 NT NT 5.56 300 В Iron 7439-89-6 NT NT 2430 Lead 7439-92-1 3.8 97 NT NT 5.56 Magnesium 7439-95-4 82000 NT NT 20000 Manganese 7439-96-5 NT NT 535 120 Nickel 7440-02-0 52 468 NT NT 5.56 Mercury 0.77 7439-97-6 NT NT 0.20 1.4 Potassium 7440-09-7 NT 53000 NT 5750 Silver 7440-22-4 0.10 4.1 NT NT 5.56 Selenium 7782-49-2 4.6 NT NT 1.11 Sodium NT 7440-23-5 680000 NT 22000 Vanadium 7440-62-2 14 190 NT NT 11.10 83 NT 7440-66-6 117 NT 16.70 Cyanide, Total (µg/L) 57-12-5 22 NT NT Cyanide, total 5.2 10.00

NT

NT

0.05

Total PCBs **NOTES**:

- 1 U = Indicates 1/2 the reporting limit exceeds the lowest NYSDEC TOGs Standard and Guidance Value
- = Indicates that the concentration exceeds the Aquatic (Chronic) NYSECTOGs Standard and Guidance Value

0.000074

- = Indicates that the concentration exceeds the Aquatic (Acute) NYSEC TOGs Standard and Guidance Value
- 1. Groundwater samples analytical results are compared to the New York State Department of Environmental Conservation (NYSDEC) Technical and Operational Guidance Series (TOGS)
- 1.1.1 Ambient Water Quality Standards (AWQS) and Guidance Values for drinking water (class GA) .

1336-36-3

- 2. Freshwater surface water screening values are from NYSDEC Standards and Guidance Values, unless otherwide noted:
- a National Recommended Water Quality Criteria Aquatic Life Criteria 2018. https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table
- b USEPA Region III Biological Technical Assistance Group (BTAG) Freshwater Screening Brenchmarks. 2006. https://www.epa.gov/sites/production/files/2015-09/documents/r3_btag_fw_benchmarks_07-06.pdf

ug/L=micrograms per litter

Polychlorinated Biphenyls (µg/L)

D=result is from an analysis that required a dilution

J=analyte detected at or above the MDL (method detection limit) but below the RL (Reporting Limit) - data is estimated

U=analyte not detected at or above the level indicated

B=analyte found in the analysis batch blank

NT=this indicates the analyte was not a target for this sample

~=this indicates that no regulatory limit has been established for this analyte

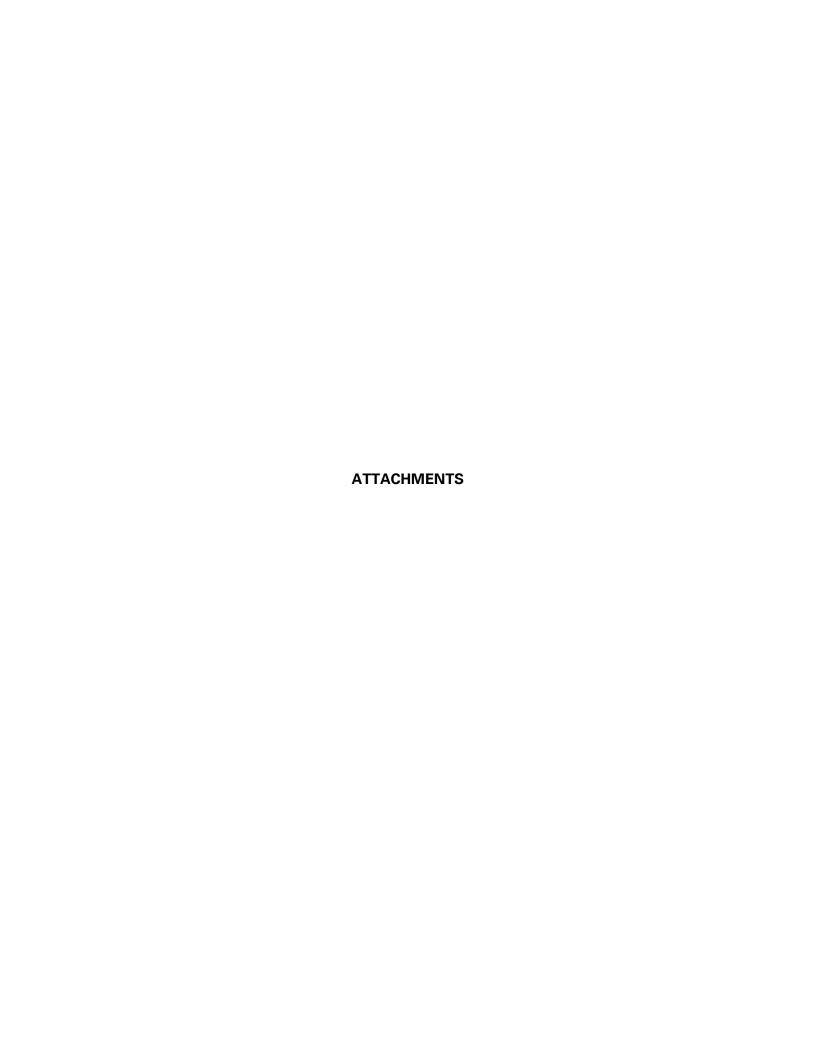


Photo 1: General view of Branch Brook (facing northeast).

Photo 2: Exposed fill from railway embankment eroding to Branch Brook (facing east)

Photo 3: Railway embankment erosion (facing northeast)

Photo 4: Storm sewer outfall located near the northeastern corner of the property (facing north)

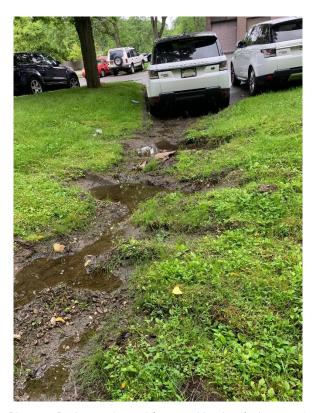


Photo 5: Drainage channel from parking lot (facing west)

Photo 6: Drainage channel from parking lot (facing northwest)