

PHASE II **SUBSURFACE** INVESTIGATION

COMMERCIAL PROPERTY 325 and 327 YONKERS AVENUE YONKERS, NEW YORK, 10701

PREPARED FOR:

COMMERCE BANK 2059 SPRINGDALE ROAD CHERRY HILL, NEW JERSEY, 08003

> YONKERS REALTY CORP. 325 - 327 YONKERS AVENUE YONKERS, NEW YORK 10701

> > **JUNE 7, 2005**

LEA PROJECT # 05-160.1

Environmental Scientist

52 ELM STREET, HUNTINGTON, NEW YORK 11743-3402 TELEPHONE: (631) 673-0612 • FAX: (631) 427-5323 WWW.LAURELENV.COM

TABLE OF CONTENTS

LIST	OF FIGURES	2
LIST	DE APPENDICES	2
1.0	INTRODUCTION	3
1.1	SAMPLING PLAN	4
3.0	PHASE II SUBSURFACE SOIL INVESTIGATION	5
3.1	GEOPHYSICAL SURVEY	5
3.2	SUBSURFACE SOIL SAMPLING	3
3.3	UIC INVESTIGATION	0
4.0	QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES (QA/QC)	.0
4.1	SAMPLING PERSONNEL	.0
4.2	SAMPLING EQUIPMENT	, O Q
•	.2.1 GeoProbe	9
•	•	9
4.3		.9
	.3.1 Sample Identification	.9
	3.3 Laboratory-Custody Procedures	10
5.0	· · · · · · · · · · · · · · · · · · ·	10
5.1		10
5.2		11
6.0	CONCLUSIONS	14
7.0	RECOMMENDATIONS	14
LIST (OF FIGURES	
0.1	Site Location	
2.0	Sample Location Map	
3.0	GeoProbe Operating System	
5.0	Georioue Operating System	
LIST	OF APPENDICES	
Labora	tory AnalysisAppendix	: A
NYSD:	EC TAGM #4046 RSCO Appendix	¢Β
Person	nel Qualifications Appendix	k C
Boring	LogsAppendix	κD

REPORT SPECIFICATIONS

This report contains (15) pages of text.

Copies and circulation of this report are as follows:

Two (2) bound copies to Commerce Bank, Ms. Kristina Arwood.

One (1) bound copy to Yonkers Realty Corp., Mr. Mangini

Two (2) copies in the confidential client file at Laurel Environmental Associates, Ltd. (LEA).

This report is prepared for the exclusive use of the principal noted above and is considered private and confidential. *LEA* shall not release this report or any of the findings of this report to any person or agency except with the authorization of the named principals.

1.0 INTRODUCTION

Laurel Environmental Associates, Ltd. (LEA) was retained by Yonkers Realty Corp., and Commerce Bank, to perform a Phase II Subsurface Investigation of the property located at 325 Yonkers Avenue, Yonkers, New York (please see Figure 1.0, Site Location). The purpose of this investigation was to check the status of the underlying sediments due to possible underground storage tank (UST), drywell and floor drain contamination.

The following tasks were completed by *LEA* at the subject property:

- 1. Utilized a Schonstedt model GA-72CV Magnetometer and model XTpc Pipe and Cable Locater throughout the subject property to identify boundaries of subsurface structures including USTs and utilities.
- 2. Utilized a Model 6610 Dual Track mounted GeoProbe® to collect all soil samples. Soil samples were submitted for analysis using United States Environmental Protection Agency (USEPA) Method 8021 and 8270 STARS for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), respectively and heavy metals. One soil sample was submitted for analysis using USEPA Method 8260 to test for VOCs.
- 3. Utilized a Photo Ionization Detector (PID) to field screen soil samples prior to submittal for analysis.
- 4. Performed visual observation and structural testing of Underground Injection Controls (UICs) to determine if final discharge point is to sewer.

1.1 SAMPLING PLAN

A sampling and analysis program was developed to address the potential recognized environmental conditions commonly associated with on-site sanitary systems. These recognized environmental conditions are including but not limited to leaking underground storage tanks, petroleum based soil and groundwater contamination.

Soil Samples were collected from eight (8) on-site boring locations. Using a Model 6610 Dual Track mounted GeoProbe®; samples were collected at various depths (See Table 1). Soil samples were submitted for analysis using USEPA Methods 8021 and 8270 STARS list for volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs), respectively, with selected samples submitted for heavy metals. One soil sample was analyzed using USEPA method 8260 STARS to test for halogenated VOCs (See Table I).

Several attempts were made at obtaining a soil gas sample in the area south of Cho's 21st Century Dry Cleaning. Due to shallow bedrock in the area, one (1) soil sample from four (4) to five (5) feet below grade was submitted in place of a soil gas sample for analysis using USEPA Method 8260 to test for halogenated VOCs. The sample was originally labeled SG-1 on the chain of custody, but has been changed to Soil Boring 18 (SB-18) in this report to eliminate any misunderstandings.

Table I

Sample ID, SB=Soil Boring SG=Soil Gas	Sampled Depths, feet below grade	Analyte, USEPA Method						
SB-1	7 - 9	8021 STARS, 8270 STARS						
SB-7	16 - 17	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-8	17 - 19	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-10	12 - 14	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-13	13 - 15	8021 STARS, 8270 STARS						
SB-15	8 - 10	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-16	5-6	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-17	3 - 5	8021 STARS, 8270 STARS, eight RCRA heavy metals						
SB-18 (aka SG-1)	4 - 5	8260						

3.0 PHASE II SUBSURFACE SOIL INVESTIGATION

On May 17, 2005 and May 18, 2005 *LEA* Environmental Hydrogeologist Scott A. Yanuck, *LEA* Environmental Scientists Brendan C. Moran and Stephen T. Byrne conducted all sampling utilizing a dual track mounted Model 6610DT GeoProbe®. On May 19, 2005 Scott A. Yanuck and Brendan C. Moran returned to conduct all remaining sampling utilizing a dual track mounted Model 6610DT GeoProbe®.

3.1 GEOPHYSICAL SURVEY

A Schonstedt model GA-72CV Magnetometer and model XTpc Pipe and Cable Locater was utilized throughout the subject property to identify boundaries of subsurface structures including USTs and utilities.

3.2 SUBSURFACE SOIL SAMPLING

Subsurface probes were sited using a GeoProbe® hydraulically powered probing tool (see Figure 3: Geoprobe Operating System). Mechanized, vehicle mounted probe systems apply static force and hydraulically powered percussion hammers for tool placement (static down forces up to 35,000 pounds combined with percussion hammers of eight horsepower continuous output). Recovery of sample volumes was facilitated with a five foot, open ended probe driven sampler.

Soil samples were taken utilizing a Model 6610DT Dual Track Mounted GeoProbe®. For each sample (SB-1, SB-2, SB-3, SB-4, SB-5, SB-6, SB-7, SB-8, SB-9, SB-10, SB-11, SB-12, SB-13, SB-14, SB-15, SB-16, SB-17 and SB-18) the following method was employed: a four foot probe driven drill steel attachment was used to break through a thin layer of concrete and/or asphalt. The drill steel was then removed and continuous samples were taken with an open ended sampler in five foot increments. Sampling was conducted at various depths below grade (See Table II). Each sample was contained within a non-reactive transparent plastic sleeve that lined the hollow probe. The plastic sleeves were removed for subsequent field screening and sample aliquot acquisition.

Table II

- WU-V								
Boring ID, SB=Soil Boring	Boring Depths, feet below grade	Maximum PID Reading/Depth						
SG=Soil Gas								
SB-1	5 - 14	0.5 ppm @ 3'						
SB-2	5 - 7	0.0 ppm						
SB-3	5 - 10	0.0 ppm						
SB-4	5 - 7	0.0 ppm						
SB-5	5 - 10	0.0 ppm						
SB-6	5 - 10	0.0 ppm						
SB-7	4 - 17	105.0 ppm @ 17'						
SB-8	4 - 21	166.0 ppm @ 19'						
SB-9	4 - 17	16.0 ppm @13'						
SB-10	4 - 17	6.6 ppm @14'						
SB-11	2 - 17	0.0 ppm						
SB-12	2 - 17	0.0 ppm						
SB-13	2 - 17	0.0 ppm						
SB-14	2 - 17	0.0 ppm						
SB-15	0 - 15	0.0 ppm						
SB-16	3 - 7.5	0.0 ppm						
SB-17	0-5	0.0 ppm						
SB-18 (aka SG-1)	0 - 5	0.0 ppm						

ppm = parts per million

Initial boring placement was determined based upon location of anomalies, accessibility and proximity to subsurface utilities. Based on this information, a total of eighteen (18) locations were selected for sampling and analysis, with a maximum sampling depth of twenty-one (21) feet below grade. The presence of the underlying bedrock caused shallow refusal in several locations.

3.3 UIC INVESTIGATION

Prior to observation and testing, all UIC structure covers were removed for subsequent inspection. Direction of the flow dyed water was then visually traced between all structures until a connection to municipal sewer was confirmed. Structural testing was conducted by means of driving a solid-metal pry bar through bottom lying sediments until a consistent, solid structure was reached. All known on-site UIC structures were found to be solid-bottomed and drain to one of two common points. UIC structures on the southern portion of the subject property drain from west to east to a common point located in the southeast quadrant of the site, prior to discharging to the City of Yonkers sanitary sewer system. The eastern UIC structures, generally drain from north to south, to a common point located in the northeast quadrant of the property, before discharging to the City of Yonkers sanitary sewer system.

Figure 3.0: GeoProbe Operating System

Hydraulic powered probe unit imperated from a engine driven pump Remote vehicle tention allows operator to start engine from probe unit lich driven hydranlie pemp supplies 10 gpm n. 2000 rpm. 3/000 psi operating pressure Probe unit folds for transport Unit utilizes seatic weight of vehicle and pocussion hammer to advance probing tools. Hydraulic harmoner delivers pocussion rate of 30 Hz Tribes have greater than 18,000 lbs of down force and 25,000 lbs of retraction force Drives multiple diameter probes (1°, 1.25° and 2.25°) to depths over 100 feet. Soil Probing Tool Gregordwater SP-15 Sampler The tools are advanced and The total allows a stamless a rample is acquired in a swel. I screen to be delivered n and earline plastic sheathing the restant of the second to the underlying groundminer. At the segred depth, the serior LIMENT PERMANE is retrieved and samples are હર્માં માને તે એક્સર્ટ પ્રાથમિક Large Soc. 15° z 2' sucrabir. Man (2.25 x / 21.3 & 4) 1 Sminless Steel Screen Expecidable Drive Point

4.0 QUALITY ASSURANCE AND QUALITY CONTROL PROCEDURES (QA/QC)

The following sampling QA/QC protocol is in accordance with the United States Environmental Protection Agency's (USEPA) accepted sampling procedures for hazardous waste streams [Municipal Research Laboratory, 1980, Sampling and Analysis Procedures for Hazardous Material Waste Streams, Office of Emergency and Remedial Response, Cincinnati, Ohio. EPA-600/280-018] and American Society of Testing and Material's (ASTM's) Sampling Procedures.

4.1 SAMPLING PERSONNEL

The activities associated with the survey, sampling and analysis plan were performed by or under the auspices of a USEPA Office of Emergency and Remedial Response, Certified Sampler for Hazardous Materials. The sample staff (samplers) possessed a minimum of a B.A. Degree in the Earth, Environmental, or Biological Sciences or a B.S. Degree in Engineering. All samplers had received mandatory forty-hour Occupational Safety and Health Administration (OSHA) training on working with potentially hazardous materials and appropriate Hazard Communication Program and "Right-To-Know" training.

4.2 SAMPLING EQUIPMENT

Separate QA/QC measures were implemented for each of the instruments used in the performance of the SAP.

4.2.1 GeoProbe

Prior to arrival on the subject property and between sample locations, the probes were decontaminated by washing them with a detergent (Alconox) and potable water solution. The probes were then rinsed with distilled water.

4.2.2 Sample Vessels

All sample vessels were "level A" certified decontaminated containers supplied by a New York State Certified Commercial Laboratory. Samples analyzed for hydrocarbons were placed in containers with Teflon lined caps. All samples were preserved by cooling them to a temperature of approximately four degrees Celsius.

4.3 SAMPLE DOCUMENTATION

A sample represents physical evidence. An essential part of liability reduction is the proper control of gathered evidence. To establish proper control, the following sample identification and chain-of custody procedures were followed.

4.3.1 Sample Identification

Sample identification was executed by use of a sample tag, log book and chain-of-custody form. Sample documentation provided the following information: 1) the project code; 2) the sample laboratory number; 3) the sample preservation; 4) instrument used for source sample grabs; 5) the composite medium used for source sample grabs; 6) the date the sample was secured from the source media; 7) the time the sample was secured from the source media; and 8) the person who secured the sample from the source media.

4.3.2 Chain-of-Custody Procedures

Due to the evidential nature of samples, possession was traceable from the time the samples were collected until they were received by the testing laboratory. A sample was considered under custody if it: was in a person's possession; it was in a person's view, after being in possession; if it was in a person's possession and they locked it up; or, it was in a designated secure area. When transferring custody, the individuals relinquishing and receiving the samples signed, dated and noted the time on the Chain-of-Custody Form.

4.3.3 Laboratory-Custody Procedures

A designated sample custodian accepted custody of the shipped samples and verified that the information on the sample tags matched that on the Chain-of-Custody Records. Pertinent information as to shipment, pick-up, courier, etc., was entered in the "remarks" section. The custodian entered the sample tag data into a bound logbook. The laboratory custodian used the sample tag number, or assigned a unique laboratory number to each sample tag, and assured that all samples were transferred to the proper analyst or stored in the appropriate source area. The laboratory custodian distributed samples to the appropriate analysts. Laboratory personnel were responsible for the care and custody of samples, from the time they were received, until the sample was exhausted or returned to the sample custodian. All identifying data sheets and laboratory records were retained as part of the permanent documentation. Samples received by the laboratory were retained until after analysis and quality assurance checks were completed.

5.0 LABORATORY ANALYSIS

5.1 ANALYTICAL TEST METHODS

Samples were placed into appropriate laboratory containers, placed on ice and delivered via laboratory courier to York Analytical (ID#10854) for analysis. Soil samples were submitted for the parameters of concern as outlined within the "Sampling Plan", Section 1.1 of the report.

5.2 ANALYTICAL RESULTS

Samples collected from borings, SB-7, SB-8, SB-9 and SB-10, in the vicinity of the two diesel underground storage tanks in front of the Waste Management® facility were found to be visually contaminated and registered elevated PID readings. As required under the Navigation Law, the NYSDEC Spills hotline was notified of the petroleum impacted soils and Spill #05-01972 was issued for the subject property. Laboratory analysis of samples from this area showed elevated concentrations of VOCs, but below the NYSDEC TAGM Recommended Soil Cleanup Objectives (RSCOs).

Laboratory analysis of SB-18 showed detectable levels of the VOC Tetrachloroethylene (commonly referred to as PERC, a dry-cleaning solvent), but at concentrations below NYSDEC TAGM RSCOs. The presence of this compound within the soils is indicative of a prior and/or current release. Further study is recommended to determine if the release has adversely impacted the soils and groundwater.

Elevated levels of semi-volatile organic compounds and lead were detected in the sample collected from the west side of Firestone®, known as SB-17, above the NYSDEC TAGM RSCOs. No VOCs were present within the sample.

Samples collected and analyzed from the west side of the building, near a fuel oil UST, had elevated levels of five (5) semi-volatile organic compounds above NYSDEC TAGM.

The remaining samples, SB-7, SB-8, SB-10, SB-13, SB-15, had elevated levels of Chromium, a heavy metal. These soil boring locations, with the exception of SB-15, are located in areas that will require remedial action for other issues, such as the elevated lead area and/or the leaking diesel UST zone. Therefore, no additional work should be necessary to address the presence of Chromium. Laboratory analysis did not detect any VOCs or SVOCs within these samples. SB-15 is located beneath the concrete slab within the building occupied by Firestone®. Due to its location, it is not considered a recognized environmental condition.

Please refer to Tables III, IV and V for a synopsis of the findings. The complete laboratory analysis is included in Appendix A and the NYSDEC TAGM Recommended Soil Cleanup Objectives can be found in Appendix B.

TABLE III
Tabulated VOC and SVOC Analytical Results

Analyte/ Location		SB-1	SB-7	SB-8	SB-17	NYS DEC TAGM
Depth		7' - 9'	16' - 17'	17' - 19'	3' - 5'	RSCO
Date		5/17/2005	5/17/2005	5/17/2005	5/19/2005	
	8021	<u>Total</u>	<u>Total</u>	<u>Total</u>	<u>Total</u>	<u>Total</u>
1,2,4-Trimethylbenzene		BQL	8,100	1,500	BQL	10,000
1,3,5-Trimethylbenzene		BQL	1,100	120	BQL	3,300
Isopropylbenzene		BQL	530	600	BQL	2,300
Naphthalene (8021)		BQL	1,300	1,100	BQL	13,000
n-Butylbenzene		BQL	340	1,700	BQL	10,000
n-Propylbenzene		BQL	1,500	1,200	BQL	3,700
	8270					
Acenaphthene		BQL	4,200	1,800	BQL	50,000
Anthracene		600	2,000	850	99	50,000
Benz (a)anthracene		3,200	BQL	BQL	600	224
Benz (a) pyrene		1,200	BQL	BQL	340	61
Benzo (b) fluoranthene		1,100	BQL	BQL	310	61
Benzo(ghi)perylene		380	BQL	BQL	BQL	50,000
Benzo (k) fluoranthene		1,300	BQL	BQL	370	610
Chrysene		1,700	BQL	BQL	420	400
Fluoranthene		5,700	540	BQL	990	50,000
Fluorene		BQL	8,000	3,200	BQL	50,000
Indeno(123-cd)pyrene		420	BQL	BQL	BQL	3,200
Naphthalene (8270)		BQL	7,300	BQL	BQL	13,000
Phenanthrene		1,400	15,000	5700	480	50,000
Pyrene		5,400	1,300	BQL	870	50,000

All concentrations are in parts per billion (ppb)

BQL = below analytical quantitation level

NA - Not Analyzed or Not Applicable

Bold = above NYSDEC TAGM RSCOs

Analytes not tabulated here are below analytical quantitation limits

TABLE IV
Tabulated Heavy Metals Analytical Results

Location	\$B-7	SB-8	SB-10	SB-15	SB-16	SB-17	NYSDEC TAGM
Depth Date	16' - 17' 5/17/2005	17' - 19' 5/17/2005	12' - 14' 5/17/2005	8' - 10' 5/19/2005	5' - 6' 5/19/2005	3' - 5' 5/19/2005	RSCO
Analyte	<u>Total</u>	<u>Total</u>	<u>Total</u>	<u>Total</u>	<u>Total</u>	<u>Total</u>	
Arsenic	1.17	2.7	2.32	2.37	6.22	8.25	7.5
Barium	22.5	79.5	55.6	67.4	118	110	300
Cadmium	BQL	BQL	BQL	BQL	BQL	0.61	1
Chromium	6.39	15.1	13.7	16.5	22.3	18.4	10
Lead	2.07	3.8	3.64	3.47	13.6	3,960	61
Mercury	BQL	BQL	BQL	BQL	BQL	0.26	0.1

All metals concentrations are in parts per million (ppm)

BQL = below analytical quantitation level

NA =Not Applicable or Not Analyzed

Bold = above NYSDEC TAGM RSCOs

Analytes not tabulated here are below analytical quantitation limits

TABLE V
Tabulated VOC Analytical Result
Soil Sample Collected May 18, 2005

Location Depth Analyte 8260	SB-18 4' - 5'	NYSDEC TAGM RSCO	
Tetrachloroethylene	920	1,400	

All concentrations are in parts per billion (ppb)

BQL = below analytical quantitation level

NA - Not Analyzed or Not Applicable

Bold = above NYSDEC TAGM RSCOs

Analytes not tabulated here are below analytical quantitation limits

6.0 CONCLUSIONS

Based on the completion of this Phase II Subsurface Investigation, *Laurel Environmental Associates*, *Ltd.* has found the following:

- Detectable levels of several VOCs were present in SB-1, SB-7, SB-8 and SB-17, but at concentrations below NYSDEC TAGM RSCOs. Samples from borings SB-7, SB-8, SB-9 and SB-10 were visually contaminated and registered elevated PID readings. These borings were completed within the area surrounding the diesel USTs adjacent to the entrance to the Waste Management building.
- Elevated levels of five (5) SVOCs were present in SB-1 above NYSDEC TAGM RSCOs. Elevated levels of four (4) SVOCs were present in SB-17 above NYSDEC TAGM RSCOs. Detectable levels of the VOC Tetrachloroethylene (PERC) were present in SB-18, but at concentrations below NYSDEC TAGM RSCOs.
- Elevated levels of the heavy metal Chromium were present in samples SB-8, SB-10, SB-15, SB-16 and SB-17 at concentrations above NYSDEC TAGM RSCOs. Very high levels of the heavy metal Lead were present in SB-17 at concentrations above NYSDEC TAGM RSCOs.
- All known, on-site UIC structures are solid-bottomed and eventually discharge to the City of Yonkers sanitary sewer system.

7.0 RECOMMENDATIONS

Based on the findings, *LEA* recommends the following course of additional investigation and remedial corrective action:

- 1. Conduct additional soil and soil-gas testing for "perc" within the tenant space occupied by the Dry Cleaner and from at least three areas along the exterior of the building.
- Register, permit, pump, and remove the leaking diesel USTs along with any contaminated soil encountered. Properly dispose of the tanks, product, tank sludge and contaminated soil at a licensed facility. Collect endpoint samples and submit for analysis using 8021/8270 STARS.
- Remove lead contaminated soil from the area along the west side of the Firestone® Auto Repair and
 properly dispose of soil. Collect endpoint samples and submit for laboratory analysis for lead.
- Review results and prepare report of findings. Submit to NYSDEC for closure of Spill # 05-01972

OA/OC Review by:

Carla Sullivan, Quality Assurance

DISCLAIMER FOR PHASE II ENVIRONMENTAL SITE ASSESSMENT

The observations described in this report were made under the conditions stated therein. The conclusions presented in the report were based solely upon the services described therein, and not on scientific tasks or procedures beyond the scope of described services or the time and budgetary constraints imposed by the Client.

In preparing this report, Laurel Environmental Associates, Ltd. may have relied on certain information provided by state and local officials and other parties referenced therein, and on information contained in the files of state and/or local agencies available to Laurel Environmental Associates, Ltd. at the time of the subject property assessment. Although there may have been some degree of overlap in the information provided by these various sources, Laurel Environmental Associates, Ltd. did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this subject property assessment.

Observations were made of the subject property and of structures on the subject property as indicated within the report. Where access to portions of the subject property or to structures on the subject property was unavailable or limited, Laurel Environmental Associates, Ltd. renders no opinion as to the presence of non-hazardous or hazardous materials, or to the presence of indirect evidence relating to non-hazardous or hazardous materials, in that portion of the subject property or structure. In addition, Laurel Environmental Associates, Ltd. renders no opinion as to the presence of hazardous materials, or the presence of indirect evidence relating to hazardous materials, where direct observation of the interior walls, floor, or ceiling of a structure on a subject property was obstructed by objects or coverings on or over these surfaces.

Laurel Environmental Associates, Ltd. did not perform testing or analyses to determine the presence or concentration of asbestos at the subject property or in the environment of the subject property under the scope of the services performed.

The conclusions and recommendations contained in this report are based in part, where noted, upon the data obtained from a limited number of soil samples obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until further exploration. If variations or other latent conditions then appear evident, it will be necessary to reevaluate the conclusions and recommendations of this report.

Any water level readings made in test pits, borings, and/or observation wells were made at the times and under the conditions stated in the report. However, it must be noted that fluctuations in the level of groundwater may occur due to variations in rainfall and other factors different from those prevailing at the time measurements were made.

Except as noted within the text of the report, no qualitative laboratory testing was performed as part of the subject property assessment. Where an outside laboratory has conducted such analyses, Laurel Environmental Associates, Ltd. has relied upon the data provided, and has not conducted an independent evaluation of the reliability of the data.

The conclusions and recommendations contained in this report are based in part, where noted, upon various types of chemical data and are contingent upon their validity. The data have been reviewed and interpretations were made in the report. As indicated within the report, some of the data may be preliminary "screening" level data, and should be confirmed with quantitative analyses if more specific information is necessary. Moreover, it should be noted that variations in the types and concentrations of contaminants and variations in their flow paths may occur due to seasonal water table fluctuations, past disposal practices, the passage of time, and other factors. Should additional chemical data become available in the future, the data should be reviewed, and the conclusions and recommendations presented herein modified accordingly.

Chemical analyses have been performed for specific constituents during the course of this subject property assessment, as described in the text. However, it should be noted that additional chemical constituents not searched for during the current study might be present in soil and/or groundwater at the subject property.

APPENDIX A

Laboratory Analysis

Technical Report

prepared for

Laurel Environmental
52 Elm Street
Huntington, NY 11743-3402
Attention: Scott Yanuck

Report Date: 6/2/2005.

Re: Client Project ID: 05-160.1 / 325 Yonkers Ave.

York Project No.: 05050799

CT License No. PH-0723

New York License No. 10854

Report Date: 6/2/2005 Client Project ID: 05-160.1 / 325 Yonkers Ave. York Project No.: 05050799

Laurel Environmental 52 Elm Street

Huntington, NY 11743-3402 Attention: Scott Yanuck

Purpose and Results

This report contains the analytical data for the sample(s) identified on the attached chain-of-custody received in our laboratory on 05/24/05. The project was identified as your project "05-160.1/325 Yonkers Ave. ".

The analyses were conducted utilizing appropriate EPA, Standard Methods, and ASTM methods as detailed in the data summary tables .

All samples were received in proper condition meeting the NELAC acceptance requirements for environmental samples except those indicated under the Notes section of this report.

All the analyses met the method and laboratory standard operating procedure requirements except as indicated under the Notes section of this report, or as indicated by any data flags, the meaning of which is explained in the attachment to this report, if applicable.

The results of the analyses, which are all reported on an as-received basis unless otherwise noted, are summarized in the following table(s).

Analysis Results

Client Sample ID			SB-1 7-9'		SB-7 16-17'	
York Sample ID			05050799-01		05050799-02	
Matrix		_	SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles-STARS List	SW846-8260	ug/Kg				
1,2,4-Trimethylbenzene			Not detected	5.0	8100	100
1,3,5-Trimethylbenzene			Not detected	5.0	1100	100
Benzene			Not detected	5.0	Not detected	100
Ethylbenzene			Not detected	5.0	Not detected	100
Isopropylbenzene			Not detected	5.0	530	100
Methyl-tert-butyl ether (MTBE)			Not detected	5.0	Not detected	100
Naphthalene			Not detected	5.0	1300	100
n-Butylbenzene			Not detected	5.0	340	100
n-Propylbenzene			Not detected	5.0	1500	100
o-Xylene			Not detected	10	Not detected	200
p- & m-Xylenes			Not detected	10	Not detected	200
p-Isopropyltoluene			Not detected	5.0	Not detected	100
sec-Butylbenzene			Not detected	5.0	Not detected	100
tert-Butylbenzene			Not detected	5.0	Not detected	100
Toluene			Not detected	5.0	Not detected	100

Client Sample ID			SB-1 7-9'		SB-7 16-17'	
York Sample ID			05050799-01		05050799-02	
Matrix			SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
Total Xylenes			Not detected	10	Not detected	200
STARS Target Semi-Volatiles	SW846-8270	ug/kG				
Acenaphthene			Not detected	240	4200	480
Anthracene			600	160	2000	320
Benzo[a]anthracene			3200	230	Not detected	460
Benzo[a]pyrene			1200	240	Not detected	480
Benzo[b]fluoranthene			1100	190	Not detected	380
Benzo[g,h,i]perylene			380	280	Not detected	550
Benzo[k]fluoranthene			1300	460	Not detected	910
Chrysene			1700	230	Not detected	450
Dibenz[a,h]anthracene			Not detected	240	Not detected	470
Fluoranthene			5700	210	540	410
Fluorene			Not detected	300	8000	600
Indeno[1,2,3-cd]pyrene			420	270	Not detected	540
Naphthalene			Not detected	190	7300	380
Phenanthrene			1400	230	15000	450
Рутепе			5400	280	1300	560
Total RCRA Metals	SW846	mg/kG	***			
Arsenic, total					1.17	1.00
Barium, total					22.5	0.50
Cadmium, total					Not detected	0.50
Chromium, total					6.39	0.50
Lead, total					2.07	0.50
Selenium, total					Not detected	1.00
Silver, total				-	Not detected	0.50
Mercury	SW846-7471	mg/kG			Not detected	0.10

Client Sample ID			SB-8 17-19'		SB-10 12-14'	
York Sample ID			05050799-03		05050799-04	
Matrix			SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles-STARS List	SW846-8260	ug/Kg			_	
1,2,4-Trimethylbenzene			1500	100	Not detected	5.0
1,3,5-Trimethylbenzene			120	100	Not detected	5.0
Benzene			Not detected	100	Not detected	5.0
Ethylbenzene			Not detected	100	Not detected	5.0
Isopropylbenzene			600	100	Not detected	5.0
Methyl-tert-butyl ether (MTBE)			Not detected	100	Not detected	5.0
Naphthalene			1100	100	Not detected	5.0
n-Butylbenzene			1700	100	Not detected	5.0
n-Propylbenzene			1200	100	Not detected	5.0
o-Xylene			Not detected	200	Not detected	10
p- & m-Xylenes			Not detected	200	Not detected	10
p-Isopropyltoluene			Not detected	100	Not detected	5.0
sec-Butylbenzene			Not detected	100	Not detected	5.0
tert-Butylbenzene			Not detected	100	Not detected	5.0
Toluene			Not detected	100	Not detected	5.0
Total Xylenes			Not detected	200	Not detected	10

Client Sample ID			SB-8 17-19'		SB-10 12-14'	
York Sample ID			05050799-03		05050799-04	
Matrix			SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
STARS Target Semi-Volatiles	SW846-8270	ug/kG				
Acenaphthene			1800	480	Not detected	48
Anthracene			850	320	Not detected	32
Benzo[a]anthracene			Not detected	460	Not detected	46
Benzo[a]pyrene			Not detected	480	Not detected	48
Benzo[b]fluoranthene			Not detected	380	Not detected	38
Benzo[g,h,I]perylene			Not detected	550	Not detected	55
Benzo[k]fluoranthene			Not detected	910	Not detected	91
Chrysene			Not detected	450	Not detected	45
Dibenz[a,h]anthracene			Not detected	470	Not detected	47
Fluoranthene			Not detected	410	Not detected	41
Fluorene			3200	600	Not detected	60
Indeno[1,2,3-cd]pyrene			Not detected	540	Not detected	54
Naphthalene			Not detected	380	Not detected	38
Phenanthrene			5700	450	Not detected	45
Ругепе			Not detected	560	Not detected	56
Total RCRA Metals	SW846	mg/kG		_		
Arsenic, total			2.70	1.00	2.32	1.00
Barium, total			79.5	0.50	55.6	0.50
Cadmium, total			Not detected	0.50	Not detected	0.50
Chromium, total			15.1	0.50	13.7	0.50
Lead, total			3.80	0.50	3.64	0.50
Selenium, total			Not detected	1.00	Not detected	1.00
Silver, total			Not detected	0.50	Not detected	0.50
Mercury	SW846-7471	mg/kG	Not detected	0.10	Not detected	0.10

Client Sample ID			SB-13 13-15'	
York Sample ID			05050799-05	
· Matrix			SOIL	
Parameter	Method	Units	Results	MDL
Volatiles- STARS List	SW846-8260	ug/Kg		
1,2,4-Trimethylbenzene			Not detected	5.0
1,3,5-Trimethylbenzene			Not detected	5.0
Benzene			Not detected	5.0
Ethylbenzene			Not detected	5.0
lsopropylbenzene			Not detected	5.0
Methyl-tert-butyl ether (MTBE)			Not detected	5.0
Naphthalene			Not detected	5.0
n-Butylbenzene			Not detected	5.0
n-Propylbenzene			Not detected	5.0
o-Xylene		Ĩ	Not detected	10
p- & m-Xylenes			Not detected	10
p-Isopropyltoluene			Not detected	5.0
sec-Butylbenzene			Not detected	5.0
tert-Butylbenzene			Not detected	5.0
Toluene			Not detected	5.0
Total Xylenes			Not detected	10

Client Sample ID			SB-13 13-15'	
York Sample ID			05050799-05	
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
STARS Target Semi-Volatiles	SW846-8270	ug/kG		
Acenaphthene			Not detected	48
Anthracene			Not detected	32
Benzo[a]anthracene			Not detected	46
Benzo[a]pyrene			Not detected	48
Benzo[b]fluoranthene			Not detected	38
Benzo[g,h,i]perylene			Not detected	55
Benzo[k]fluoranthene			Not detected	91
Chrysene			Not detected	45
Dibenz[a,h]anthracene			Not detected	47
Fluoranthene			Not detected	41
Fluorene			Not detected	_60
Indeno[1,2,3-cd]pyrene			Not detected	54
Naphthalene			Not detected	38
Phenanthrene		<u> </u>	Not detected	45
Ругепе			Not detected	56

Client Sample ID			SG-1 4-5'	
York Sample ID	-		05050799-06	
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
Volatiles-8260 list	SW846-8260	ug/Kg		
1,1,1,2-Tetrachloroethane			Not detected	5.0
1,1,1-Trichloroethane			Not detected	5.0
1,1,2,2-Tetrachloroethane			Not detected	5.0
1,1,2-Trichloroethane			Not detected	5.0
1,1-Dichloroethane			Not detected	5.0
1,1-Dichloroethylene			Not detected	5.0
1,1-Dichloropropylene			Not detected	5.0
1,2,3-Trichlorobenzene			Not detected	5.0
1,2,3-Trichloropropane			Not detected	5.0
1,2,3-Trimethylbenzene			Not detected	5.0
1,2,4-Trichlorobenzene			Not detected	5.0
1,2,4-Trimethylbenzene			Not detected	5.0
1,2-Dibromo-3-chloropropane			Not detected	5.0
1,2-Dibromoethane			Not detected	5.0
1,2-Dichlorobenzene			Not detected	5.0
1,2-Dichloroethane			Not detected	5.0
1,2-Dichloroethylene (Total)			Not detected	5.0
1,2-Dichloropropane			Not detected	5.0
1,3,5-Trimethylbenzene			Not detected	5.0
1,3-Dichlorobenzene			Not detected	5.0
1,3-Dichloropropane			Not detected	5.0
1,4-Dichlorobenzene			Not detected	5.0
1-Chlorohexane			Not detected	5.0
2,2-Dichloropropane			Not detected	5.0
2-Chlorotoluene			Not detected	5.0
4-Chlorotoluene			Not detected	5.0
Benzene			Not detected	5.0

Client Sample ID		T	SG-1 4-5'	
York Sample ID			05050799-06	
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
Bromobenzene			Not detected	5.0
Bromochloromethane	1		Not detected	5.0
Bromodichloromethane		Ĭ	Not detected	5.0
Bromoform			Not detected	5.0
Bromomethane			Not detected	5.0
Carbon tetrachloride			Not detected	5.0
Chlorobenzene			Not detected	5.0
Chloroethane			Not detected	5.0
Chloroform			Not detected	5.0
Chloromethane			Not detected	5.0
cis-1,3-Dichloropropylene			Not detected	5.0
Dibromochloromethane			Not detected	5.0
Dibromomethane			Not detected	5.0
Dichlorodifluoromethane			Not detected	5.0
Ethylbenzene			Not detected	5.0
Hexachlorobutadiene			Not detected	5.0
Isopropylbenzene			Not detected	5.0
Methylene chloride			Not detected	5.0
MTBE			Not detected	5.0
Naphthalene			Not detected	5.0
n-Butylbenzene			Not detected	5.0
n-Propylbenzene			Not detected	5.0
o-Xylene			Not detected	5.0
p- & m-Xylenes			Not detected	5.0
p-Isopropyitoluene			Not detected	5.0
sec-Butylbenzene			Not detected	5.0
Styrene			Not detected	5.0
tert-Butylbenzene			Not detected	5.0
Tetrachloroethylene			920	5.0
Toluene			Not detected	5.0
trans-1,3-Dichloropropylene			Not detected	5.0
Trichloroethylene			Not detected	5.0
Trichlorofluoromethane			Not detected	5.0
Vinyl chloride			Not detected	5.0

Client Sample ID			SB-15 8-10'		SB-16 5-61	
York Sample ID			05050799-07	,	05050799-08	
Matrix			SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
Volatiles-STARS List	SW846-8260	ug/Kg			•••	
1,2,4-Trimethylbenzene			Not detected	5.0	Not detected	5.0
1,3,5-Trimethylbenzene			Not detected	5.0	Not detected	5.0
Benzene			Not detected	5.0	Not detected	5.0
Ethylbenzene			Not detected	5.0	Not detected	5.0
Isopropylbenzene			Not detected	5.0	Not detected	5.0
Methyl-tert-butyl ether (MTBE)			Not detected	5.0	Not detected	5.0
Naphthalene			Not detected	5.0	Not detected	5.0
n-Butylbenzene			Not detected	5.0	Not detected	5.0
n-Propylbenzene			Not detected	5.0	Not detected	5.0

Client Sample ID			SB-15 8-10'		SB-16 5-6'	
York Sample ID			05050799-07		05050799-08	
Matrix			SOIL		SOIL	
Parameter	Method	Units	Results	MDL	Results	MDL
o-Xylene			Not detected	10	Not detected	10
p- & m-Xylenes			Not detected	10	Not detected	10
p-Isopropyltoluene			Not detected	5.0	Not detected	5.0
sec-Butylbenzene			Not detected	5.0	Not detected	5.0
tert-Butylbenzene			Not detected	5.0	Not detected	5.0
Toluene			Not detected	5.0	Not detected	5.0
Total Xylenes			Not detected	10	Not detected	10
STARS Target Semi-Volatiles	SW846-8270	ug/kG				
Acenaphthene			Not detected	48	Not detected	48
Anthracene			Not detected	32	Not detected	32
Benzo[a]anthracene			Not detected	46	Not detected	46
Benzo[a]pyrene			Not detected	48	Not detected	48
Benzo[b]fluoranthene			Not detected	38	Not detected	38
Benzo[g,h,i]perylene			Not detected	55	Not detected	55
Benzo[k]fluoranthene			Not detected	91	Not detected	91
Chrysene			Not detected	45	Not detected	45
Dibenz[a,h]anthracene	-		Not detected	47	Not detected	47
Fluoranthene			Not detected	41	Not detected	41
Fluorene			Not detected	60	Not detected	60
Indeno[1,2,3-cd]pyrene			Not detected	54	Not detected	54
Naphthalene			Not detected	38	Not detected	38
Phenanthrene			Not detected	45	Not detected	45
Ругепе		1	Not detected	56	Not detected	56
Total RCRA Metals	SW846	mg/kG	***			
Arsenic, total			2.37	1.00	6.22	1.00
Barium, total			67.4	0.50	118	0.50
Cadmium, total			Not detected	0.50	Not detected	0.50
Chromium, total			16.5	0.50	22.3	0.50
Lead, total			3.47	0.50	13.6	0.50
Selenium, total			Not detected	1.00	Not detected	1.00
Silver, total			Not detected	0.50	Not detected	0.50
Mercury	SW846-7471	mg/kG	Not detected	0.10	Not detected	0.10

Client Sample ID			SB-17 3-5'	L
York Sample ID			05050799-09	
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
Volatiles- STARS List	SW846-8260	ug/Kg		
1,2,4-Trimethylbenzene			Not detected	5.0
1,3,5-Trimethylbenzene	1		Not detected	5.0
Benzene			Not detected	5.0
Ethylbenzene			Not detected	5.0
Isopropylbenzene			Not detected	5.0
Methyl-tert-butyl ether (MTBE)			Not detected	5.0
Naphthalene			Not detected	5.0
n-Butylbenzene			Not detected	5.0
n-Propylbenzene			Not detected	5.0
o-Xylene			Not detected	10
p- & m-Xylenes			Not detected	10

Client Sample ID			SB-17 3-5'	
York Sample ID			05050799-09	<u> </u>
Matrix			SOIL	
Parameter	Method	Units	Results	MDL
p-Isopropyltoluene			Not detected	5.0
sec-Butylbenzene			Not detected	5.0
tert-Butylbenzene			Not detected	5.0
Toluene			Not detected	5.0
Total Xylenes			Not detected	10
STARS Target Semi-Volatiles	SW846-8270	ug/kG		
Acenaphthene			Not detected	96
Anthracene	I		99	64
Benzo[a]anthracene			600	92
Benzo[a]pyrene			340	96
Benzo[b]fluoranthene	1.		310	76
Benzo[g,h,i]perylene			Not detected	110
Benzo[k]fluoranthene			370	180
Chrysene			420	90
Dibenz[a,h]anthracene			Not detected	94
Fluoranthene			990	82
Fluorene			Not detected	120
Indeno[1,2,3-cd]pyrene			Not detected	110
Naphthalene			Not detected	76
Phenanthrene			480	90
Рутепе			870	110
Total RCRA Metals	SW846	mg/kG	***	
Arsenic, total			8.25	1.00
Barium, total			110	0.50
Cadmium, total			0.61	0.50
Chromium, total			18.4	0.50
Lead, total			3960	0.50
Selenium, total			1.26	1.00
Silver, total			Not detected	0.50
Mercury	SW846-7471	mg/kG	0.26	0.10

Units Key:

For Waters/Liquids: mg/L = ppm; ug/L = ppb

For Soils/Solids: mg/kg = ppm; ug/kg = ppb

Notes for York Project No. 05050799

- 1. The MDL (Minimum Detectable Limit) reported is adjusted for any dilution necessary due to the levels of target and/or non-target analytes and matrix interference.
- 2. Samples are retained for a period of thirty days after submittal of report, unless other arrangements are made.
- 3. York's liability for the above data is limited to the dollar value paid to York for the referenced project.
- 4. This report shall not be reproduced without the written approval of York Analytical Laboratories, Inc.
- 5. All samples were received in proper condition for analysis with proper documentation.
- 6. All analyses conducted met method or Laboratory SOP requirements.
- 7. It is noted that no analyses reported herein were subcontracted to another laboratory.

Approved B

Robert Q. Bradley Managing Director Date: 6/2/2005

ANALYTICAL I ONE RE STAMFO (203) 325-137	DRK ABORATORI SEARCH DRIVE RD, CT 0690 1 FAX (203)	: 6		F	-iela	C	ha	in-	of-C	ustod	y Record	Page 1 of 1
Company LAUREL EN		Report			ce To:			Proj	ect ID/N	<u>O.</u>	Br/	
Ch.	VI FUNHENING	SCOLL SHE	MCF	KAMAS	LOBASIO			-160				led By (Signature)
			 					JAN	Kers A	re		(Printed)
Sample No.	ļ	tion/ID	Date Sa	mpled			Matrix Air D	THER	ANA	LYSES RE	EQUESTED	Container Description(s)
	53-1-	7'-9'	5/17/	05					80L1	8270	S/avs	2 SHALL 1 LARGE
	58-7	16-17'				/			SGL1 8	1270 Hays	8 DURA Models	
3	58-8 1	7-19				\mathcal{I}				1		
4	58-10	12'-14'	1	•		\mathcal{I}						
	5B-13 1	3'-15'	2118102	· •		/		"-	80H 87	170 Stars		
þ	56-1	-5'	7			/			8260			2 JUAU
7	SB-15 8	-10'	5/19/09	5	l	/			887-1	5270 Stol	2/ hundays	2 GHAU 1 CARGE
	SB-16 5	1-6				/			8021	1270)
ς	58-17 3	5'-5'	<u> </u>			/			FUL 1	81.70 V		V
	istation in				Provers Ke							
Chain-of-Custo	dy Record						<u>هريد . • • • • • • • • • • • • • • • • • • </u>		and the second s	esserver ein nervel die stelle 2		/
Bollos Dalles 1			_ _	2)			5/1	4/0	040 ~1	Wan		5/24 1030
Bottles Relinquis	ed from Lab by	Date/Time	Sa	naple Reling	uished by		•	Date/Tir		Sandile	Received by LE	Py Patertine
Bottles Receive		Date/Time	Sa	mple Relinq	uished by			Date/Tir	ne i	Sample F	Received in LAB by	Date/Time
Comments/Spec	ial Instructio	ns								Turi	n-Around Time StandardRUSH	-l(define)

APPENDIX B

NYSDEC TAGM 4046 RSCO

APPENDIX A of <u>TAGM #4046</u> TABLE 1

Recommended soil cleanup objectives (mg/kg or ppm) Volatile Organic Contaminants

The second section of the sect		/ Omine	[a	ontaminants h **	HORE	A Health	1	***
Contaminant	Partition Coefficient, Koc	Groundwater Standards/ Criteria, Cw (ug/l or ppb)	soil conc., Cs (ppm)	Soil cleanup objectives to protect GW quality (ppm)	Based	l (ppm) n- Systemic	CRQL (ppb)	Rec. Soil Cleanup Objective (ppm)
Acetone	2.2	50	0.0011	0.11	N/A	8,000	10	0.2
Benzene	83	0.7	0.0006	0.06	24	N/A	5	0.06
Benzoic Acid	54 <u>*</u>	50	0.027	2.7	N/A	300,000	5	2.7
2-Butanone	4.5 *	50	0.003	0.3	N/A	4,000	10	0.3
Carbon Disulfide	54 <u>*</u>	50	0.027	2.7	N/A	8,000	5	2.7
Carbon Tetrachloride	110 *	5	0.006	0.6	5.4	60	5	0.6
Chlorobenzene	330	5	0.017	1.7	N/A	2,000	5	1.7
Chloroethane	37 *	50	0.019	1.9	N/A	N/A	10	1.9
Chloroform	31	7	0.003	0.30	114	800	5	0.3
Dibromochl oromethane	N/A	50	N/A	N/A	N/A	N/A	5	N/A
1,2-Dichlorobenzene	1,700	4.7	0.079	7.9	N/A	N/A	330	7.9
1,3-Dichlorobenzene	310 *	5	0.0155	1.55	N/A	N/A	330	1.6
1,4-Dichlorobenzene	1,700	5	0.085	8.5	N/A	N/A	330	8.5
1,1-Dichloroethane	30	5	0.002	0.2	N/A	N/A	5	0.2
1,2-Dichloroethane	14	5	0.001	0.1	7.7	N/A	5	0.1
1,1-Dichloroethene	65	5	0.004	0.4	12	700	5	0.4
1,2-Dichloroethene (trans)	59	5	0.003	0.3	N/A	2,000	5	0.3
1-3 dichloropropane	51	5	0.003	0.3	N/A	N/A	5	0.3
Ethylbenzene	1,100	5	0.055	5.5	N/A	8,000	5	5.5
113 Freon (1,1,2 Trichloro- 1,2,2 Trifluoroethane)	1,230 *	5	0.060	6.0	N/A	200,000	5	6.0
Methylene chloride	21	5	0.001	0.1	93	5,000	5	0.1
4-Mcthyl-2-Pentanone	19 *	50	0.01	1.0	N/A	N/A	10	1.0
Tetrachloroethene	277	5	0.014	1.4	14	800	5	1.4
1,1,1-Trichloroethane	152	5	0.0076	0.76	N/A	7,000	5	0.8
1,1,2,2-Tetrachloroethane	118	5	0.006	0.6	35	N/A	5	0.6
1,2,3-trichloropropane	68	5	0.0034	0.34	N/A	80	5	0.4
1,2,4-trichlorobenzene	670 <u>*</u>	5	0.034	3.4	N/A	N/A	330	3.4
Toluene	300	5	0.015	1.5	N/A	20,000	5	1.5
Trichloroethene	126	5	0.007	0.70	64	N/A	5 ,	0.7
Vinyl chloride	57	2	0.0012	0.12	N/A	N/A	10	0.2
Xylenes	240	5	0.012	1.2	N/A	200,000		1.2

a. Allowable Soil Concentration Cs = f x Cw x Koc b. Soil cleanup objective = Cs x Conection Factor (CF N/A is not available

Correction Factor (CF) of 100 is used as per TAGM #4046

As per TAGM #4046, Total VOCs < 10 ppm.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and should be adjusted for the actual soil organic carbon content if it is known.

Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. All other Koc values are experimental values.

TABLE 2
Recommended soil cleanup objectives (mg/kg or ppm)
Semi-Volatile Organic Contaminants

		Semi-Vo		ar para arra cara cara cara arra	. ,	,		and process and a construction of
Contaminant	Partition Coefficient, Koc	Groundwater Standards/ Criteria, Cw (ug/l or ppb)	Allowable soil conc., Cs (ppm)	b ** Soil cleanup objectives to protect GW quality (ppm)	Base Carcin-	A Health d (ppm) Systemic Toxicants	CRQL (ppb)	Rec. Soil Cleanup Objective (ppm)
Acenaphthene	4,600	20	0.9	90.0	N/A	5,000	330	50.0 ***
Acenaphthylene	2,056 *	20	0.41	41.0	N/A	N/A	330	41.0
Aniline	13.8	5	0.001	0.1	123	N/A	330	0.1
Anthracene	14,000	50	7.00	700.0	N/A	20,000	330	50.0 ***
Benzo(a)anthracene	1,380,000	0.002	0.03	3.0	0.224	N/A	330	0.224 or MDI
Benzo (a) pyrene	5,500,000	0.002 (ND)	0.110	11.0	0.0609	N/A	330	0.061 or MD
Benzo (b) fluoranthene	550,000	0.002	0.011	1.1	N/A	N/A	330	1.1
Benzo (g,h,i) perylene	1,600,000	5	8.0	800	N/A	N/A	330	50.0 ***
Benzo (k) fluoranthene	550,000	0.002	0.011	1.1	N/A	N/A	330	1.1
bis(2- ethylhexyl)phthalate	8,706 <u>*</u>	50	4.35	435.0	50	2,000	330	50.0 ***
Butylbenzylphthlate	2,430	50	1.215	122.0	N/A	20,000	330	50.0 ***
Chrysene	200,000	0.002	0.004	0.4	N/A	N/A	330	0.4
4- Chloroaniline	43 ****	5	0.0022	0.22	200	300	330	0.220 or MDI
4-Chloro-3- methylphenol	47	5	0.0024	0.24	N/A	N/A	330	0.240 or MDI
2-Chlorophenol	15 <u>*</u>	50	0.008	0.8	N/A	400	330	0.8
Dibenzofuran	1,230 *	5	0.062	6.2	N/A	N/A	330	6.2
Dibenzo(a,h)anthracene	33,000,000	50	1,650	165,000	0.0143	N/A	330	0.014 or MDI
3,3'-Dichlorobenzidine	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
2,4-Dichlorophenol	380	1	0.004	0.4	N/A	200	330	0.4
2,4-Dinitrophenol	38	5	0.002	0.2	N/A	200	1,600	0.200 or MDL
2,6 Dinitrotoluene	198*	5	0.01	1.0	1.03	N/A	330	1.0
Diethylphthlatc	142	50	0.071	7.1	N/A	60,000	330	7.1
Dimethylphthlate	40	50	0.020	2.0	N/A	80,000	330	2.0
Di-n-butyl phthalate	162*	50	0.081	8.1	N/A	8,000	330	8.1
Di-n-octyl phthlate	2,346 *	50	1.2	120.0	N/A	2,000	330	50.0 ***
Fluoranthene	38,000	50	19	1900.0	N/A	3,000	330	50.0 ***
Fluorene	7,300	50	3.5	350.0	N/A	3,000	330	50.0 ***
Hexachlorobenzene	3,900	0.35	0.014	1.4	0.41	60	330	0.41
Indeno (1,2,3- cd)pyrene	1,600,000	0.002	0.032	3.2	N/A	N/A	330	3.2
Isophorone	88.31 <u>*</u>	50	0.044	4.40	1,707	20,000	330	4.40
-methylnaphthalene	727 <u>*</u>	50	0.364	36.4	N/A	N/A	330	36.4
2-Methylphenol	15	5	0.001	0.1	N/A	N/A	330	0.100 or MDL
4-Methylphenol	17	50	0.009	0.9	N/A	4,000	330	0.9
Naphthalene	1,300	10	0.130	13.0	N/A	300	330	13.0
Nitrobenzene	36	5	0.002	0.2	N/A	40	330	0.200 or MDL

2-Nitroaniline	86	5	0.0043	0.43	N/A	N/A	1,600	0.430 or MDL
2-Nitrophenol	65	5	0.0033	0.33	N/A	N/A	330	0.330 or MDL
4-Nitrophenol	21	5	0.001	0.1	N/A	N/A	1,600	0.100 or MDL
3-Nitroaniline	93	5	0.005	0.5	N/A	N/A	1,600	0.500 or MDL
Pentachlorophenol	1,022	1	0.01	1.0	N/A	2,000	1,600	1.0 or MDL
Phenanthrene	4,365 *	50	2.20	220.0	N/A	N/A	330	50.0 ***
Phenol	27	1	0.0003	0.03	N/A	50,000	330	0.03 or MDL
Pyrene	13,295 <u>*</u>	50	6.65	665.0	N/A	2,000	330	50.0 ***
2,4,5-Trichlorophenol	89 <u>*</u>	1	0.001	0.1	N/A	8,000	330	0.1

a. Allowable Soil Concentration Cs = fx Cw x Koc b. Soil cleanup objective = Cs x Correction Factor (CF)N/A is not available MDL is Method Detection Limit

Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. Other Koc values are experimental values.

Correction Factor (CF) of 100 is used as per TAGM #4046

As per TAGM #4046, Total VOCs < 10 ppm., Total Semi-VOCs < 500ppm. and Individual Semi-VOCs < 50 ppm.

**** Koc is derived from the correlation Koc = 0.63 Kow (Determining Soil Response Action Levels......EPA/540/2-89/057). Kow is

obtained from the USEPA computer database 'MAIN'.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1%, and should be adjusted for the actual soil organic carbon content if it is known.

Recommended soil cleanup objectives (mg/kg or ppm) Organic Pesticides / Herbicides and PCBs TABLE 3

Partition Ground Coefficient, Stan Koc Critical Stan Koc Critical 3,800 3,800 6,600 6,600 6,600 10,700 11,09800 11,098 11,0980 11,098 1	01) (02) (05) (05) (05) (05) (05) (05) (05) (05	a Allowable Soil conc., Cs (ppm) (0.005 0.002 0.0040 0.00440 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.0006 0.0006 0.0006 0.0000	b ** Soil cleanup objectives to protect GW quality (ppm) 0.5 0.2 0.2 0.3 2.0 0.5 7.7 4.4 4.4	USEPA Health Based (ppm) Carcin- System ogens Toxica 0.041	Health ppm) Systemic Toxicants 2	CRQL (ppb)	Rec. Soil Cleanup Objective (ppm)
Coefficient, Stan Koc (ug/l 3,800 3,800 3,800 6,600 21,305 * 104 * 104 * 10,700 * 11,0900 11,080 N/A	01) 05) 05) 01) 01) 01)	the second secon	objectives lo protect GW quality (ppm) 0.5 0.2 0.2 0.3 2.0 0.5 7.7 7.7 2.5 0.66		oxicants 2 N/A N/A	CRQL (ppb)	Clcanup Objective (ppm)
96,000 3,800 6,600 21,305 * 104 * 10	4D (<0.01) 4D (<0.05) 4D (<0.05) 4D (<0.05) 6.1 6.1 7.4 4.4 1D (<0.01) 1D (<0.01) 1D (<0.01) 1D (<0.01) 1D (<0.01)	0.002 0.002 0.003 0.003 0.00440 0.025 0.0006	0.5 0.2 0.3 2.0 2.0 0.5 7.7 7.7 4.4 4.4	0.041 0.111 N/A 0.54 N/A 2.9	2 X X		
3,800 6,600 21,305 * 104 * 104 * 170,000 * 170,000 * 1709800 1709800 1709800 1709800 1,080 * 8,168 * 8,168 * 8,167 * 10,700 * 10,7	4D (<0.05) 4D (<0.05) 4D (<0.05) 4A 4 4A 4D (<0.01) 4C (<0.01) 4D (<0.01) 4D (<0.01) 4D (<0.01) 4D (<0.01)	0.002 0.002 0.003 0.005 0.0040 0.025 0.0006	0.2 0.3 2.0 0.5 7.7 4.4 4.4	0.111 3.89 N/A 0.54 N/A 2.9	Y Z	∞	0.041
3,800 6,600 21,305 * 104 * 770,000 * 170,000 * 170,000 * 170,000 * 170,000 * 1,1080 * 1,1080 * 1,1080 * 1,1080 * 1,1080 * 1,1080 *	4.4 (20.05) (0.1 (4.4 (4.4 (4.4 (4.01))) (10 (<0.01)) (10 (<0.01)) (10 (<0.01)) (10 (<0.01))	0.002 0.003 0.005 0.077 0.0440 0.025 0.0006	0.3 0.3 2.0 0.5 7.7 4.4 4.4	3.89 N/A 0.54 N/A 2.9	Ϋ́χ	∞	0.11
6,600 21,305 ± 104 ± 104 ± 440,000 ± 170,000 ± 170,000 ± 170,000 ± 1,0	1D (<0.05) 0.1 4.4 1D (<0.01) 1D (<0.01) 1D (<0.01)	0.003 0.002 0.003 0.0440 0.025 0.0006	0.3 2.0 0.5 7.7 4.4 2.5	N/A 0.54 N/A 2.9		∞	0.2
21,305 * 104 * 1770,000 * 1 170,000 * 1 170,000 * 1 170,000 * 1 10,700 * 1 10,038 *	0.1 4.4 ID (<0.01) ID (<0.01) ID (<0.01)	0.02 0.005 0.0440 0.025 0.0006	2.0 0.5 7.7 4.4 4.4 2.5 0.06	0.54 N/A 2.9	A/A	&	0.3
104 ** 770,000 ** 140,000 ** 1709800 1709800 1,000 ** 8,168 ** 8,031 ** 9,157 ** N/A 1,080	4.4 ID (<0.01) ID (<0.01) ID (<0.01) D (<0.01)	0.005 0.0440 0.025 0.0006	0.5 7.7 4.4 2.5 0.06	N/A 2.9	20	80	0.54
770,000 ± 440,000 ± 1243,000 ± 1 1709800 1 10,700 ± 8,168 ± 8,031 ± 9,157 ± N/A 1,080 1	ID (<0.01) ID (<0.01) ID (<0.01) ID (<0.01)	0.0440 0.025 0.0006 0.0010	2.5	2.9	800	800	0.5
440,000 ± 1709800 1709800 10,700 ± 10,038 ± 10,038 ± 10,038 ± 1,1080 1,1080	ID (<0.01) ID (<0.01) 0.000035	0.0440 0.025 0.0006 0.0010	2.5		N/A	16	2.9
243,000 ± 1709800	0.000035	0.0006	2.5	2.1	N/A	16	2.1
1709800 10,700 * 8,168 * 8,031 * 10,038 * 9,157 * N/A	0.000035	0.0006	90.0	2.1	40	16	2.1
8,168 ± 8,031 ± 10,038 ± 9,157 ± N/A 1,080	1001	0.0010		N/A	N/A	N/A	N/A
8,168 ± 8,031 ± 10,038 ± 9,157 ± N/A 1,080	(10.0 /) U	•	0.1	0.044	4	16	0.044
8,031 ± 10,038 ± 10,038 ± 9,157 ± N/A 1,080	0.1	0.000	6.0	N/A	N/A	16	6.0
10,038 ± 9,157 ± N/A 1,080	0.1	0.009	6.0	N/A	N/A	16	6:0
9,157 ± N/A 1,080	0.1	0.01	0.1	N/A	N/A	16	1.0
N/A 1,080	ND (<0.01)	0.001	0.1	N/A	79	œ	0.10
1,080	N/A	N/A	N/A	N/A	Ϋ́	N/A	N/A
	ND (<0.05)	0.0006	90.0	5.4	70	∞	90:0
gainma - chlordane 140,000	0.1	0.14	14.0	0.54	2	8	0.54
Heptachlor 12,000 ND (ND (<0.01)	0.0010	0.1	0.16	94	∞	0.10
Heptachlor 220 ND (ND (<0.01)	0.0002	0.02	0.077	8.0	∞	0.02
Methoxychlor 25,637 3	35.0	9.0	006	N/A	400	8	:
Mitotane N/A N	N/A	N/A	N/A	N/A	N/A	A/X	ΥX
Parathion 760	1.5	0.012	1.2	N/A	200	∞	1.2
PCBs 17,510 0		0.1	10.0	0.1	N/A	99	1.0 (Surface)10 (sub-surf)
Polychlorinated dibenzo- N/A N furans (PCDF)	V/A	V.	N/A	N/A	A'A	N/A	N/A
Silvex 2,600 0.	0.26	0.007	0.7	K/A	009	330	0.7
2,4,5-T 53 3	35	0.019	1.9 N/A 200 330	N/A	200	330	1.9

Partition coefficient is calculated by using the following equation: log Koc = -0.55 log S + 3.64, where S is solubility in water in ppm. All other Koc values are experimental values.

••

Correction Factor (CF) of 10th is used as per TACIM #4046

•••

As per TACIM #4046, Total VOCs < 10 ppm.

Note: Soil cleanup objectives are developed for soil organic carbon content (f) of 1% (5% for PCBs as per PCB Quidance Document), and should be adjusted for the setual soil organic carbon content if it is known.

APPENDIX A of <u>TAGM #4046</u> TABLE 4

Recommended soil cleanup objectives (mg/kg or ppm) Heavy Metals

<u>ر </u>			*	****
Contaminants	Protect Water Quality (ppm)	Eastern USA Background (ppm)	CRDL (mg/kg or ppm)	Rec. Soil Cleanu Objective (ppm)
Aluminum	N/A	33,000	2.0	SB
Antimony	N/A	N/A	0.6	SB
Arsenic	N/A	3-12 **	0.1	7.5 or SB
Barium	N/A	15-600	2.0	300 or SB
Beryllium	N/A	0-1.75	0.05	0.16 (HEAST) or SI
Cadmium	N/A	0.1-1	0.05	1 or SB
Calcium	N/A	130 - 35,000 ***	50.0	SB
Chromium	N/A	1.5 - 40 **	0.1	10 or SB
Cobalt	N/A	2.5 - 60 **	0.5	30 or SB
Copper	N/A	1 - 50	0.25	25 or SB
Cyanide	N/A	N/A	0.1	***
Iron	N/A	2,000 - 550,000	1.0	2,000 or SB
Lead	N/A	事事事 **********************************	0.03	SB ****
Magnesium	N/A	100 - 5,000	50.0	SB
Manganese	N/A	50 - 5,000	0.15	SB
Mercury	N/A	0.001 - 0.2	0.002	0.1
Nickel	N/A	0.5 -25	0.4	13 or SB
Potassium	N/A	8,500 - 43,000 <u>**</u>	50.0	SB
Selenium	N/A	0.1 - 3.9	0.05	2 or SB
Silver	N/A	N/A	0.1	SB
Sodium	N/A	6,000 - 8,000	50.0	SB
Thallium	N/A	N/A	0.1	SB
Vanadium	N/A	1-300	0.5	150 or SB
Zinc	N/A	9-50	0.2	20 or SB

Note:

Some forms of metal salts such as Aluminum Phosphide, Calcium Cyanide, Potassium Cyanide, Copper cyanide, Silver cyanide, Sodium cyanide, Zinc phosphide, Thallium salts, Vanadium pentoxide and Chromium (VI) compounds are more toxic in nature. Please refer to the USEPA HEASTs database to find cleanup objectives if such metals are present in soil.

SB is site background N/A is not available

- CRDL is contract required detection limit which is approx. 10 times the CRDL for water.
- New York State background
- Some forms of Cyanide are complex and very stable while other forms are pH dependent and lience are very unstable. Sitespecific form(s) of Cyanide should be taken into consideration when establishing soil cleanup objective.
- Background levels for lead vary widely. Average levels in undeveloped, rural areas may range from 4-61 ppm. Average background levels in metropolitan or suburban areas or near highways are much higher and typically range from 200-500 ppm.
- Recommended soil cleanup objectives are average background concentrations as reported in a 1984 survey of reference material by E. Carol McGovern, NYSDEC.

APPENDIX C

Personnel Qualifications

SCOTT A. YANUCK, C.E.I., C.E.S.

EDUCATION: STATE UNIVERSITY OF NEW YORK AT STONY BROOK

B.A., Earth and Space Sciences, December, 1987, Minor in Technology and

Society.

M.Sc., Hydrogeology, May, 1993. Course work included classes in Geophysics, Chemical Hydrogeology, Organic Contaminant Hydrology, and Computer

Modeling.

EXPERIENCE:

PRINCIPAL, MANAGING HYDROGEOLOGIST

LAUREL Environmental Associates, Ltd.

- □ Supervise all technical and financial operations of environmental consulting firm.
- Completed OSHA 40 Hour HAZWOPER Supervisors course, 8 Hour Refresher Courses to current.
- Completed ASTM Environmental Site Assessment training course for professionals.
- □ Completed NJDEPE UST Certification Program.
- □ Completed Mold Remediation Manage Course based on NYC DOH Guidelines
- □ NYSDOL Asbestos Inspector, #AH97-08528

September, 1992-present

PROJECT MANAGER, GROUP SUPERVISOR: ENVIRONMENTAL SERVICES

Richard D. Galli, P.E., P.C.

In charge of Environmental Services Group. Scope of work within group includes the following:

- □ Phase I Environmental Assessments.
- □ Phase II Environmental Assessments.
- ☐ Groundwater Contamination Studies.
- ☐ Underground Storage Tanks (UST'S): testing, removal, closure.
- □ Underground Injection Well Closure (UIC)
- ☐ Hazardous Site Remediation.
- □ State Superfund RI/FS.
- ☐ Indoor Air Quality (IAQ) studies.

In addition to performing any of the above-mentioned work, personally responsible for project management, including project setup, project review and quality control/quality assurance of proposals and reports generated by the environmental group.

February, 1992-September, 1992

CARLA M. SULLIVAN, C.E.S

EDUCATION

BS GEOLOGY, January 1998. Cum Laude

- ☐ Long Island University, C.W. Post Campus, Brookville, NY GPA 3.65
- ☐ Nominated for C.W. POST Academic Achievement Award
- Recipient of C. W. POST Earth and Environmental Science Award for Excellence in Geology

EXPERIENCE:

SE	NIOR GEOLOGIST, Laurel Environmental Associates, Ltd., Huntington, NY November
199	7 - present.
	Project Manager
	Certified Environmental Specialist
	Phase I Environmental Site Assessments
	Phase II Soil and Groundwater Sampling and Analysis Reports.
	Supervises and writes Remediation/Phase III and Analysis
	Geotechnical reports, class V injection well closure plans and RI/FS workplan for regulatory
	agency approval
	Groundwater Contamination Studies.
	Underground Storage Tanks (UST'S): testing, removal, closure
	Underground Injection Well Closure (UIC)
	Hazardous Site Remediation.
In	addition to performing any of the above-mentioned work personally, responsible for project
	anagement, including project setup, project review and quality control/quality assurance of
pro	oposals and reports
FIE	CLD SKILLS:
TIED OILEGO.	
۵	Completed OSHA 40 HOUR HAZWOPER with confined space, 8 Hour Refresher Courses to current.
	Supervises drilling and installation of groundwater monitoring wells, drilling of borings, UST
	removals, geotechnical drilling, leaching pool "super sucker" remediation, ground penetrating
	radar survey.
	Performs split spoon soil sampling, groundwater monitoring well installation, purging &
	sampling, soil-vapor sampling, UST sampling & registration, dye trace & floor drain closure,
	magnetometer survey
	Experience with PID, hand auger, soil-vapor probe, soil dredge sampler, magnetometer, pH
	meter.
RELATED COURSEWORK:	
	Hydrogeology, Stratigraphy, Geomorphology, Structural Geology, Sedimentology,
	Mineralogy, Oceanography, Plate Tectonics, Paleontology, Paleoecology.
RESEARCH:	
	The Biotic Events in the Manlius Formation. In process of identifying unknown species.
	Conducted field work in mapping the stratigraphy and the paleoecology of this diverse layer.
۸С	TIVITIES:
	Member of the National Honorary Society in the Earth Sciences Sigma Gamma
_	Epsilon Signia Gamma
	Member of the National Society of Research for Professionals 5 Sigma Xi
_	Member of the National Honor Society C. W. Post Chapter Phi Beta Kappa
_	Associate Member of the Geological Society of America
_	Member of New York State Paleontological Society
<u> </u>	Member of the American Natural History Museum
- Monoco of the American Natural History Museum	
AF	<u>FILIATIONS</u>
	American Institute of Professional Geologists
	Environmental Assessment Association, Certified Environmental Inspector and Specialist
	Huntington Historical Society
	Oyster Bay Historical Society
O	Long Island Association
	Long Island Geologists
	New York State Council of Professional Geologists

BRENDAN C. MORAN

EXPERIENCE

Environmental Consultant, <u>Laurel Environmental Associates</u>, <u>Ltd.</u>, Huntington, NY February 2005 - Present.

- Performs visual inspections & writes Phase I Environmental Site Assessments
- ☐ Performs & writes Phase II Subsurface Soil Investigations
- ☐ Supervise & writes Remediation/Phase III projects and reports
- □ Performs & writes Groundwater Investigations

FIELD SKILLS:

- Performs soil, drywell and cesspool sampling, groundwater monitoring, well purging & sampling and soil vapor sampling
- ☐ Experienced with van-mounted GeoProbe
- □ Experienced with track-mounted GeoProbe
- Experienced with Photo Ionization Detector for field screening
- ☐ Experienced with Magnetometer and Pipe Locator

WRITING SKILLS:

□ Numerous Phase I, II, & III reports

RELATED QUALIFICATIONS

- Completed OSHA 40 Hour HAZWOPER with confined space
- ☐ Computer assisted statistical analysis using Minitab
- ☐ Proficient in MSWord, MSExcel and TurboCAD

EDUCATION

BA Environmental Sciences, May 2003.

☐ Millersville University, Millersville, PA

RELATED COURSES

□ Sedimentation, Geology I, Historical Geology, Marine Geology, Oceanography, Calculus I, II and III, Physics I and II, Topics In Environmental Awareness, Chemistry I and II, Statistics I and II

STEPHEN BYRNE

EXPERIENCE

Environmental Consultant, <u>Laurel Environmental Associates</u>, <u>Ltd.</u>, Huntington, NY January 2004 - Present.

- Performs & writes Phase I Environmental Site Assessments and Phase II Sampling & Analysis Reports.
- Experienced with GeoProbe® macro core soil sampler

FIELD	SKILLS:
	Performs soil, drywell and cesspool sampling, groundwater monitoring well purging & sampling
_	Experienced with hand auger
	Experienced with Photoionizatoin Detector (PID)
	(4-2)
WRITI	NG SKILLS:
	Numerous Phase I & II reports
	Graduate Thesis: "The Leeds Pond Site; Prehistoric Cultural Investigation and Pottery Analysis"
RELA7	<u>red qualifications</u>
	s Assistant, Adelphi University, September 2003 - December 2003; January 2004 - May 2004
	Reviewed/Graded tests and quizzes
	Laboratory Assistant
Consult	ant, Suffolk County Archaeological Association, August 2002 - November 2003
Consun	Lectured Students on Archaeological Field Methods
	Lectured Students on Archaeological Field Methods Lectured Students on Long Island Geology/History/Native Americans
	Oversaw Archeological Activities at Historic Site in Smithtown
u	Assisted in the preparation and cataloguing of historic and prehistoric artifacts
EDUC.	<u>ATION</u>
	VIRONMENTAL SCIENCE, September 2002 - Present.
	Adelphi University, 1 South Avenue, Garden City, New York.
DELAT	TED COURSES:
	Groundwater hydrology
	Toxicology
٥	Conservation Preservation Regulation
	Energy and The Environment
u	Virology

□ Pollution Controls

BS Anthropology, May 2001.

□ Adelphi University, Garden City, New York. Overall GPA: 3.7

Prior Experience

Principle Member for Clothing Company, Mengwear®, LLC Manager for Italian Restaurant

Member

Suffolk County Archaeological Association

APPENDIX D

Boring Logs

SOIL BORING LOG

						
Client: Site Location: Job#:	Commerce Bank & Yonkers Realty Corp. 325 & 327 Yonkers Ave., Yonkers, NY 05-160.1				SB-1	
Field Geologist: Driller: Weather Cond. Temp: SOIL TYPE Condition of gravel/sand mix Poorly graded gravel or gravel/sand mix Well graded sands gravelly sands, no Poorly graded sands gravelly sands, no Poorly graded sand gravelly sands, no Silty sands, sand smixtures Inorganic silts, fine silty-clayey fine sand Inorganic clays, grasandy clays, silty corganic silts, organic silts, organic clays of migh plasticity, organic soils Bedrock etc.	SAY, BOSAN, BOSA	ees Fahrenhei	1 2 3 4 5 6 7 8 9 10 11 12 13	GW GP GP OL OL GP GW GW BW BD	Drill Type: _6 Sample Type: PID (ppm) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Selit Grab Core: 5' Description/Remarks
Other (fill, etc) Specify	omments		21			

^{* =}Depth relative to grade

SOIL BORING LOG

Client: Site Location: Job#:	Commerce Bank & Yonkers Realty Corp. 325 & 327 Yonkers Ave., Yonkers, NY 05-160.1			_ SB-2 - -	
Field Geologist: Driller: Weather Cond. Temp: SOIL TYPE CO Well graded gravels or gravel/sand mix Poorly graded grave or gravel/sand mix Well graded sands,		eit 1		Drill Type: _6 Sample Type:	Selfondual track mounted GeoProbe® Split Grab Core: 5' Description/Remarks
gravelly sands, no fit Poorly graded sands gravelly sands, no fit Silty sands, sand sil mixtures Inorganic silts, fine s silty-clayey fine sand Inorganic clays, grat sandy clays, silty cla Organic silts, organic clays of low plasticit Organic clays of me high plasticity, organ Peat and other high organic soils Bedrock etc.	s, ines it sand, ds vely/ ays ic silty y d. to nic silts			0.0	
Other (fill, etc) Specify Misc. Corefusal at 7'	omments				

^{* =}Depth relative to grade

SOIL BORING LOG

Site Location:	Commerce Bank & Yonkers Realty Corp. 325 & 327 Yonkers Ave., Yonkers, NY 05-160.1			SB-3 -		
Driller: S Weather Cond.		t	Boring Profile*	Drill Type: _6610 dual track mounted GeoProbe® Sample Type: Split Grab Core: 5'		
or gravel/sand mix		1	Profile	PID (ppm)	Description/Remarks	
Poorly graded gravels	000 000 000 000 000 000 000 000 000 00	2				
or gravel/sand mix	9550 9 6 7 6 0 0	3			-	
Well graded sands,		4				
gravelly sands, no fin	es .	•	GW	0.0		
Poorly graded sands,		6	GP	0.0		
gravelly sands, no fin	es	7		0.0		
Silty sands, sand silt	12 (C)	8		0.0		
mixtures	253	9		0.0		
Inorganic silts, fine sa	and,	1	BD	0.0		
silty-clayey fine sands		11				
Inorganic clays, grave	10.52.52.52.52.521	12				
sandy clays, silty clay		13	t			
Organic silts, organic	silty	14				
clays of low plasticity		15		 		
Organic clays of med		16		 		
high plasticity, organi		17		 		
Peat and other highly		18		 		
organic soils		19				
Bedrock etc.		20 21		-		
Other (fill, etc)		֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓		1		
Specify					-	
]				
Misc. Con	nments	1				
refusal at 10']				
]				
		1		 		
		1				
		ł		{ 		
		4		↓		

^{* =}Depth relative to grade

SOIL BORING LOG

Client: Site Location: Job#:	Commerce Bank & Yonkers 325 & 327 Yonkers Ave., Yo 05-160.1			SB-4		
Field Geologist: Driller: Weather Cond. Temp: SOIL TYPE Co Well graded gravels or gravel/sand mix Poorly graded grave or gravel/sand mix Well graded sands, gravelly sands, no fi Poorly graded sands gravelly sands, no fi Silty sands, sand sil mixtures Inorganic silts, fine s silty-clayey fine sand Inorganic clays, grav sandy clays, silty cla Organic silts, organi clays of low plasticit Organic clays of me high plasticity, organ Peat and other high organic soils Bedrock etc.	odes els els els sand, ds vely/ ays ic silty y d. to nic silts		1 2 3 4 5	GW GP BD	PID (ppm)	Grab Core: 5' Description/Remarks
Other (fill, etc) Specify Misc. Comments refusal at 7'						

^{* =}Depth relative to grade

SOIL BORING LOG

Client: Site Location: Job#:		27 Yonkers Av		rs Realty Corp. Yonkers, NY	SB-5		
Field Geologist: Driller: Weather Cond. Temp: SOIL TYPE Co	SAY, BO Sunny 75 degree	CM, STB CM, STB ees Fahrenheit	<u> </u>	Boring	Drill Type: _6610 dual track mounted GeoProbe® Sample Type: Split Grab Core: 5'		
Well graded gravels		1000000000		Profile*	PID (ppm)	Description/Remarks	
or gravel/sand mix Poorly graded grave or gravel/sand mix Well graded sands, gravelly sands, no fi Poorly graded sand gravelly sands, no fi Silty sands, sand sil mixtures Inorganic silts, fine silty-clayey fine san Inorganic clays, gra sandy clays, silty cla Organic silts, organ clays of low plasticit Organic clays of me high plasticity, organ Peat and other high organic soils Bedrock etc. Other (fill, etc) Specify Misc. Co refusal at 10'	fines ds, fines silt sand, nds avely/ ays nic silty ity ed. to nnic silts nly		6 7 8 9	OL OL OH OH OH BD	0.0 0.0 0.0 0.0 0.0		
<u> </u>			<u> </u>	Depth relative to	grade		

SOIL BORING LOG

			COIL DOMIN	<u> </u>	3/1//2003
Site Location:	Commerce Bank & Yonkers Realty Corp. 325 & 327 Yonkers Ave., Yonkers, NY 05-160.1			SB-6	
Field Geologist: Driller: Weather Cond.	SAY, BCM, STB SAY, BCM, STB Sunny 75 degrees Fahrenhe DDES IS CONTROL OF THE	1 2 3 4 5 6 7 8	CL CL OL OH SW BD	PID (ppm) 0.0 0.0 0.0 0.0 0.0	6610 dual track mounted GeoProbe® e: Split Grab Core: 5' Description/Remarks
Other (fill, etc) Specify Misc. Col refusal at 10'	mments				
		1		<u> </u>	

^{* =}Depth relative to grade

SOIL BORING LOG

Site Location:	Commerce Bank & Yo 325 & 327 Yonkers Av 05-160.1			SB-7		
Driller: S Weather Cond.	SAY, BCM, STB SAY, BCM, STB Sunny 75 degrees Fahrenhei	t	Boring Profile*	Drill Type: Sample Typ	Grab Core: 5'	
Poorly graded gravels or gravel/sand mix Well graded sands, gravelly sands, no fine Poorly graded sands, gravelly sands, no fine Silty sands, sand silt mixtures Inorganic silts, fine sa silty-clayey fine sands Inorganic clays, grave sandy clays, silty clay Organic silts, organic clays of low plasticity Organic clays of med high plasticity, organic Peat and other highly organic soils Bedrock etc.	es e	7 8 9 10 11 12 13 14 15	SP SP OL SP CL CL CL SW SW SW SW	10		
Other (fill, etc) Specify Misc. Con	nments					

^{* =}Depth relative to grade

SOIL BORING LOG

	-					
Client: Site Location:	Commerce Bank & Yonkers Realty 325 & 327 Yonkers Ave., Yonkers,				SB-8	
Job#:	05-160.	1			'	
					•	
Field Geologist:		CM, STB		_	Drill Type:	.6610 dual track mounted GeoProbe®
Driller:		CM, STB			Sample Typ	pe: Split
Weather Cond.	Sunny					Grab
Temp:		ees Fahrenhei	t			Core: 5'
SOIL TYPE C				Boring		
Well graded gravel	s			Profile*	PID (ppm)	Description/Remarks
or gravel/sand mix			1			
Poorly graded grav	els	00000000000000000000000000000000000000	2			
or gravel/sand mix		95599655	3			
Well graded sands	-			SP		
gravelly sands, no		Α	5		7.5	-
Poorly graded sand	-			OL OD	0.4	
gravelly sands, no			7		0.0	-
Silty sands, sand s	IIT			SP CL	8.7	
mixtures				CL	0.9	
Inorganic silts, fine silty-clayey fine sar				CL	0.0	
Inorganic clays, gra				ML	0.0	-1
sandy clays, silty cl	•			SM	0.0	
Organic silts, organ				sw		brown soil, clay with odor
clays of low plastic	•			sw	61.9	
Organic clays of me				sw		dark grey soil with odor
high plasticity, orga			17			dark grey soil with odor
Peat and other high			18	SM		grey, wet soil with strong odor
organic soils			19	SM		grey, wet soil with strong odor
Bedrock etc.			20	SM	1 r	grey, wet soil with strong odor
			21	SM	53.8	grey, wet soil with odor
Other (fill, etc)						
Specify						
Misc. Comments						
						-

^{* =}Depth relative to grade

SOIL BORING LOG

Site Location:	Commerce Bank & Yo 325 & 327 Yonkers Av 05-160.1			SB-9	
Driller: S Weather Cond. S	12000000000000000000000000000000000000	t 1 2	Boring Profile*	Drill Type: Sample Type	6610 dual track mounted GeoProbe® e: Split Grab Core: 5' Description/Remarks
or gravel/sand mix Well graded sands, gravelly sands, no fine Poorly graded sands, gravelly sands, no fine Silty sands, sand silt mixtures Inorganic silts, fine sa silty-clayey fine sands Inorganic clays, grave sandy clays, silty clay Organic silts, organic clays of low plasticity Organic clays of med high plasticity, organic Peat and other highly organic soils Bedrock etc.	es	5 6 7 8 9 10 11 12 13 14 15	SP SP OL SP CL CL CL	2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.7 2.0	light grey, wet soil
Other (fill, etc) Specify Misc. Con	nments				

^{* =}Depth relative to grade

				SOIL BORING	G LOG	5/17/2005
Client: Site Location: Job#:	Commerce Bank & Yonkers Realty Corp. 325 & 327 Yonkers Ave., Yonkers, NY 05-160.1				SB-10	
Field Geologist: Driller: Weather Cond. Temp: SOIL TYPE C	SAY, BO Sunny 75 degr	ees Fahrenhei	t	Boring Profile*	Drill Type: Sample Type PID (ppm)	6610 dual track mounted GeoProbe® a: Split Grab Core: 5' Description/Remarks
or gravel/sand mix Poorly graded grav or gravel/sand mix Well graded sands, no Poorly graded sand gravelly sands, no Silty sands, sand si mixtures Inorganic silts, fine silty-clayey fine sar Inorganic clays, gra sandy clays, silty cl Organic silts, orgar clays of low plastici Organic clays of me high plasticity, orga Peat and other high organic soils Bedrock etc. Other (fill, etc) Specify Misc. Co	fines its, fines iit sand, nds avely/ days nic silty ed. to nnic silts		9 10 11 12 13 14 15 16 17	GP CL SP SP	4.8 1.0 0.0 0.0 0.0 0.0 1.5 4.2 6.6 0.2 0.3 1.2	

^{* =}Depth relative to grade

SOIL BORING LOG

					
_	Commerce Bank & Yo 325 & 327 Yonkers Av			SB-11	
-	05-160.1			•	
Driller: Weather Cond. Temp: SOIL TYPE CO Well graded gravels or gravel/sand mix Poorly graded gravelior gravel/sand mix Well graded sands,	\$ \$200 00 00 00 00 00 00 00 00 00 00 00 00	1 2 3 4	sw	PID (ppm) 0.0 0.0 0.0	6610 dual track mounted GeoProbe® e: Split Grab Core: 5' Description/Remarks
gravelly sands, no fin Poorly graded sands, gravelly sands, no fin Silty sands, sand silt mixtures Inorganic silts, fine sa silty-clayey fine sand; Inorganic clays, grave sandy clays, silty clay Organic silts, organic clays of low plasticity Organic clays of med high plasticity, organi Peat and other highly organic soils Bedrock etc.	and, sely/ ys silty solution of c silts	10 11 11 12 13 14 15	GP GP	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
Other (fill, etc) Specify Misc. Cor	mments				

^{* =}Depth relative to grade

SOIL BORING LOG

Site Location:	Commerce Bank & \\ 325 & 327 Yonkers / 05-160.1			Drill Type: _6610 dual track mounted GeoProbe® Sample Type: Split Grab Core: 5' PID (ppm) Description/Remarks			
Driller: Weather Cond.	SAY, BCM, STB SAY, BCM, STB Sunny 75 degrees Fahrenh DDES	eit	Boring Profile*				
or gravel/sand mix Poorly graded gravel: or gravel/sand mix Well graded sands, gravelly sands, no fin Poorly graded sands, gravelly sands, no fin Silty sands, sand silt mixtures Inorganic silts, fine sa silty-clayey fine sand Inorganic clays, grave sandy clays, silty clay Organic silts, organic clays of low plasticity Organic clays of med high plasticity, organi Peat and other highly organic soils Bedrock etc. Other (fill, etc) Specify Misc. Cor	and, sely/ ys: silty I. to ic silts		GP GP GP GP GP GP GP GP GP GP GP GP GP G	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0			

^{* =}Depth relative to grade

SOIL BORING LOG

						0/10/2000			
Site Location:	Commerce Ban 325 & 327 Yonk 05-160.1			rs Realty Corp. onkers, NY	SB-13				
Driller: Weather Cond. Temp: SOIL TYPE CO	SAY, BCM, STE SAY, BCM, STE Sunny 75 degrees Fah	В		Boring Profile*	Drill Type: _6610 dual track mounted GeoProbe® Sample Type: Split Grab Core: 5' PID (ppm) Description/Remarks				
or gravel/sand mix Poorly graded gravels or gravel/sand mix Well graded sands, gravelly sands, no fines Poorly graded sands, gravelly sands, no fines Silty sands, sand silt mixtures Inorganic silts, fine sand, silty-clayey fine sands Inorganic clays, gravely/ sandy clays, silty clays Organic silts, organic silty clays of low plasticity Organic clays of med. to high plasticity, organic silts Peat and other highly organic soils Bedrock etc. Other (fill, etc) Specify Misc. Comments			GP 3 GP 4 SW 5 SW 6 GP 7 GP 8 SM 9 SM 10 SM 11 SM 12 SM 13 CL 14 CL 15 CL 16 OH 17 SM	GP SW SW GP GP SM SM SM SM CL CL CL OH	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0				

^{* =}Depth relative to grade

SOIL BORING LOG

	Commerce Bank 8	Yonke	ers Realty Corp.	SB-14			
Site Location:	325 & 327 Yonker	s Ave.,	Yonkers, NY				
Job#: <u>(</u>	05-160.1			•			
Field Geologist:	SAY, BCM, STB		Drill Type: _6610 dual track mounted GeoProbe®				
_	SAY, BCM, STB			Sample Type: Split			
	Sunny				Grab		
Temp:	75 degrees Fahrei	nheit		Core: 5'			
SOIL TYPE CO	DES		Boring	1 33.3.0			
Well graded gravels	1000000	O'C	Profile*	PID (ppm)	Description/Remarks		
or gravel/sand mix	<u> </u>	0 ° 0 0 ° 1			,		
Poorly graded gravels	S 6000000	र्जु ँ 2	GP	0.0			
or gravel/sand mix	9 5 5 6 6 G	3	GP	0.0			
Well graded sands,		4	sw	0.0			
gravelly sands, no fin	es		SW	0.0			
Poorly graded sands,		* - (1	GP	0.0			
gravelly sands, no fin	es Company		' GP	0.0			
Silty sands, sand silt	136	2.7.213 (e) C (c) at 2.7.11	SM	0.0			
mixtures			SM	0.0			
Inorganic silts, fine sa		****	SM	0.0			
silty-clayey fine sands		الندس	SM	0.0			
Inorganic clays, grave	10.52.52.52.5	• - • •	SM	0.0			
sandy clays, silty clay			CL	0.0			
Organic silts, organic	'		CL	0.0			
clays of low plasticity			CL	0.0			
Organic clays of med			OH	0.0			
high plasticity, organi		5000 T	SM	0.0			
Peat and other highly				{ 			
organic soils	D-213-213-213-213-213-213-213-213-213-213	40%-20V		{ }			
Bedrock etc.				{ 			
Other (fill, etc)							
Specify							
Misc. Comments							
				 			
				11			

^{* =}Depth relative to grade

SOIL BORING LOG

5/19/2005

							_	· · · · · · · · · · · · · · · · · · ·		
Client: Commerce Bank & Yonkers Realty Corp.					_	SB-15				
•	325 & 327 Yonkers Ave., Yonkers, NY									
Job#:	05-160. ⁻	1		<u>_</u>	_					
Field Geologist:	SAV RO	CM, STB		-		Drill Type:	6610 di	ial track mauntail Cas Brok	-6	
		CM, STB			_	Drill Type: _6610 dual track mounted GeoProbe® Sample Type: Split Grab				
•	Sunny	Jiei, OTB			-					
-		ees Fahrenhei			Crab Core: 5'					
SOIL TYPE CO		3331 4/11/3/11/0/	Boring			Core. 5				
Well graded gravels		00000000	a	Profile*	II	PID (ppm)		Description/Remarks		
or gravel/sand mix		500000000	1	GP	11	0.0				
Poorly graded gravel	s	OB DO OBOS	2	GP	11	0.0				
or gravel/sand mix		0000000000	3	GP	11	0.0				
Well graded sands,			4	SW	11	0.0				
gravelly sands, no fir	nes	å	5	SW	1	0.0	-			
Poorly graded sands	i,		6	GP][0.0				
gravelly sands, no fines Silty sands, sand silt			7	GP][0.0				
		3-16-16-16-16-16-16-16-16-16-16-16-16-16-	8	SM	brack brack	0.0				
mixtures			9	SM][0.0				
Inorganic silts, fine s	and,			SM	Ш	0.0				
silty-clayey fine sands			SM	╢	0.0					
Inorganic clays, grav	Inorganic clays, gravely/			SM	41	0.0				
sandy clays, silty cla	ys			ML]]	0.0				
Organic silts, organic	c silty		i i	ML	41	0.0				
clays of low plasticity			15	ML	41	0.0				
Organic clays of med					41					
high plasticity, organ					41					
Peat and other highly	y		1		41					
organic soils					41					
Bedrock etc.					$\ \ $					
Other (fill, etc)					╢					
Specify					11					
Ореспу			l		1					
Misc. Comments			1		11			······································		
			1		11		1			
]					
]					
		·			H					

^{* =}Depth relative to grade

SOIL BORING LOG 5/19/2005 Client: Commerce Bank & Yonkers Realty Corp. SB-16 Site Location: 325 & 327 Yonkers Ave., Yonkers, NY Job#: 05-160.1 Field Geologist: SAY, BCM, STB Drill Type: 6610 dual track mounted GeoProbe® Driller: SAY, BCM, STB Sample Type: **Split** Weather Cond. Sunny Grab Temp: 75 degrees Fahrenheit Core: 5' SOIL TYPE CODES **Boring** Well graded gravels Profile* PID (ppm) Description/Remarks or gravel/sand mix Poorly graded gravels 3 GP or gravel/sand mix 0.0 4 CL 0.0 Well graded sands, 5|SL gravelly sands, no fines 0.0 6 SL 0.0 Poorly graded sands, 7 SL gravelly sands, no fines 0.0 8 SL Silty sands, sand silt 0.0 mixtures Inorganic silts, fine sand, silty-clayey fine sands Inorganic clays, gravely/ sandy clays, silty clays Organic silts, organic silty clays of low plasticity Organic clays of med. to high plasticity, organic silts Peat and other highly organic soils Bedrock etc. Other (fill, etc) Specify Misc. Comments refusal at 8'

^{* =}Depth relative to grade

SOIL BORING LOG

5/19/2005

				· · · · · · · · · · · · · · · · · · ·					
Client: Site Location:						SB-17			
Job#:	05-160.		,	TOTIKETS, IVI					
Field Geologist:		СМ, ЅТВ		Drill Type: _6610 dual track mounted GeoProbe®					
Driller:		CM, STB			Sample Type: Split Grab				
Weather Cond.	Sunny								
Temp:		ees Fahrenhei				Core: 5'			
SOIL TYPE C			5	Boring					
Well graded gravel		000000000		Profile*	PID (ppm)	Description/Remarks			
or gravel/sand mix		5202020263	1		0.0				
Poorly graded grav		OCCUPATION OF THE PROPERTY OF		ML	0.0				
or gravel/sand mix		95 <u>40 464</u> 847		ML	0.0				
Well graded sands				ML	0.0				
gravelly sands, no			ML	0.0					
Poorly graded sand									
gravelly sands, no									
Silty sands, sand s	ilt								
mixtures									
Inorganic silts, fine sand,									
silty-clayey fine sands									
Inorganic clays, gra	-								
sandy clays, silty c									
Organic silts, organic silty clays of low plasticity									
Organic clays of m	ed. to								
high plasticity, orga	anic silts								
Peat and other high	hly	***							
organic soils									
Bedrock etc.									
Other (fill, etc)									
Specify		<u> </u>			 -				
Miss O			ĺ						
Misc. Comments refusal at 5'									
ļ		.,		ļ					

* =Depth relative to grade

SOIL BORING LOG

							
Site Location: 3	Commerce Bank & Yo 325 & 327 Yonkers Av			_ SB-18			
Job#: <u>(</u>	05-160.1			-			
_	SAY, BCM, STB		Drill Type: _6610 dual track mounted GeoProbe®				
	SAY, BCM, STB Sunny			Sample Type: Split Grab			
_	75 degrees Fahrenhei			-	Core: 5'		
SOIL TYPE CO			Poring		Cole. 5		
Well graded gravels	Dente Oracha Da	1	Boring Profile*	PID (ppm)	Description/Remarks		
or gravel/sand mix		1	GP	0.0	Description/Nemarks		
Poorly graded gravels	708 770 00 00 00 00 00 00 00 00 00 00 00 00	2	GP	0.0			
or gravel/sand mix	\$500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	SP	0.0			
Well graded sands,	P. 7 19.13		SP	0.0			
gravelly sands, no fine	es		GW	0.0			
Poorly graded sands,							
gravelly sands, no fine	es <u>Establis</u>	i					
Silty sands, sand silt	100 miles	Ì					
mixtures		l			-		
Inorganic silts, fine sa	ınd,						
silty-clayey fine sands							
Inorganic clays, grave	11.52.52.52.521			 			
sandy clays, silty clay							
Organic silts, organic	silty						
clays of low plasticity				{			
Organic clays of med.				{ 			
high plasticity, organic				-			
Peat and other highly				 			
organic soils				[
Bedrock etc.				┨┝╾┈╌			
Other (fill, etc)				┧┝ ───			
Specify				11			
		1		1			
Misc. Con	nments	1		1			
refusal at 5'				1			
		1					
		1					
		ļ		 			
		1		J ! _			

^{* =}Depth relative to grade