

August 30, 2022

New York State Department of Environmental Conservation Division of Environmental Remediation 625 Broadway, 12th Floor Albany, New York 12233-7014

Attn: Rachel Savarie, PE

Re: Addendum to the Final Remedial Investigation Report, dated February 2022

965 Mamaroneck Avenue, Village of Mamaroneck, NY 10543

Westchester County TaxID No. 8-20-244

BCP Site No. C360189

Offsite Soil Vapor and Indoor Air Investigation for the Property located at 955 Mamaroneck Ave.

Dear Ms. Savarie,

On behalf of the Participant, 1946 Holding Corp., Tenen Environmental, LLC (Tenen) has conducted an offsite soil vapor and indoor air investigation at 955 Mamaroneck Avenue (adjacent property, hereinafter referenced as "Offsite Property B"). The Participant, having a property located at 965 Mamaroneck Avenue, Village of Mamaroneck, New York (the Site), entered the New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) in December 2019. The following Remedial Investigation Report (RIR) Addendum documents the soil vapor and indoor air investigation conducted at Offsite Property B in April 2022.

Background

The Site is located at 965 Mamaroneck Avenue in the Village and Town of Mamaroneck, New York. The Site is an irregularly-shaped parcel, identified by Westchester County TaxID No. 8-20-244 with an area of approximately 22,520 square feet (SF). The Site is located on the southeast corner of the intersection of Mamaroneck Avenue and North Barry Avenue Extension.

In accordance with the January 2020 NYSDEC-approved Remedial Investigation Work Plan (RIWP) and July and October 2020 NYSDEC-approved Supplemental RIWPs (SRIWPs), Tenen conducted RI and SRI activities on and off the Site in March, July, and December 2020. The results of these investigations are described in Tenen's Final NYSDEC-approved RIR, dated February 2022¹.

Groundwater samples collected during the RI and July 2020 SRI indicated that chlorinated volatile organic compounds (cVOCs) are present in groundwater at concentrations above the NYSDEC Technical and Operational Guidance Series (TOGS) 1.1.1 Ambient Water Quality Standards and Guidance Values (Class GA Standards) across the Site and offsite to the west, with the highest concentrations occurring in the offsite wells along the eastern sidewalk of Mamaroneck Avenue. A soil vapor investigation was conducted within the Site building as

¹ Note that DECs RIR February 2022 approval letter states the following: The Department notes Section 7.3 of the revised RIR states that a soil vapor intrusion (SVI) investigation will be conducted at 955 Mamaroneck Avenue (Offsite Property B) during the current heating season (November 2021 – March 2022) in accordance with the NYSDEC-approved offsite SVIWP, dated February 1, 2021. As the Department is unable to make the significant threat determination for the site until the above SVI sampling is completed, the Department concurs with the proposed sampling and recommends this SVI assessment be completed as soon as possible during the current heating season as access to the offsite property was previously agreed upon.

August 18, 2022 BCP Site No. C360189

part of the RI and low concentrations of cVOCs, including tetrachloroethene (PCE), were detected in sub-slab soil vapor and indoor air. Sub-slab soil vapor and co-located indoor air samples were compared to the applicable NYSDOH Matrices as listed in the NYSDOH October 2006 Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (Soil Vapor Guidance) and all locations resulted in a 'no further action' matrix decision for all analytes. Based on these findings, NYSDOH requested investigation of four properties directly adjacent to the Site to assess the potential for offsite soil vapor migration and evaluation of offsite soil vapor intrusion conditions (if present) due to elevated cVOC concentrations detected in groundwater. An Offsite Soil Vapor and Indoor Air Investigation Work Plan (SVIWP) was prepared by Tenen and submitted on February 1, 2021 and approved by NYSDEC on February 11, 2021.

The Offsite SVIWP specified that one offsite commercial building and four offsite residential buildings would be sampled. Access agreements were obtained on December 16, 2020 for the property adjoining the Site to the south, consisting of one commercial building and one residential building (955 Mamaroneck Ave., "Offsite Property B") and for one residential building adjoining the Site to the east (932 Lester Ave., "Offsite Property A") on January 18, 2021. Three requests for access were sent to the remaining two residential buildings adjoining the Site to the east (926 Lester Ave., "Offsite Property C" and 934 Lester Ave., "Offsite Property D") by Tenen via FedEx in July and October 2020 and November 2021. Additionally, one request was left at the front doors of each property by NYSDEC on January 15, 2021. To date, there has been no response from either property owner. A table detailing all neighboring property access attempts is included in Appendix G of the RIR.

Soil vapor and indoor air sampling was completed at Offsite Property A on March 30, 2021 and is detailed in Section 5.2.3.2 of the February 2022 RIR. Detected cVOCs were compared to their respective NYSDOH Decision Matrix and resulted in a 'no further action' Matrix Decision for all analytes.

Although an access agreement was received for the commercial and residential buildings located on Offsite Property B in December 2020, sampling could not be conducted during the November 15, 2020 - March 31, 2021 heating season due to a burst water line at the property rendering all heating equipment inoperative and therefore, not able to be active prior to and during sampling, as required by NYSDOH Soil Vapor Guidance.

The offsite soil vapor and indoor air investigation at Offsite Property B was conducted on April 6, 2022 in accordance with the approved Offsite SVIWP. This sampling was conducted just outside of the heating season as approved by NYSDEC in email correspondence dated March 10, 2022. Note that while the sampling was conducted after March 31, the heating requirements set forth in the NYSDOH Soil Vapor Guidance were met. This RIR Addendum provides a summary of Tenen's findings, including the results of the laboratory analysis, conclusions and recommendations.

Sample Collection

Soil Vapor

On April 6, 2022, Tenen installed two sub-slab soil vapor points at Offsite Property B: one within the commercial building on the property and one within the residential building on the property [see Figure 2]. Two samples (955M SV-1 and 955M SV-2) were collected within the existing buildings on April 6, 2022.

Soil Vapor Sample Designations – April 2022

Sample Name	Sample Type	Sample Length	Sample Location
955M_SV-1	Indoor soil vapor	8 hours	Boiler room of the commercial building
955M_SV-2	Indoor soil vapor	24 hours	Basement of the residential building

At each soil vapor sampling location, a ½-inch diameter, two-inch long perforated soil vapor sampling probe (AMS gas vapor probe tip) was placed directly into the soil beneath the slab. All soil vapor sample locations were

August 18, 2022 BCP Site No. C360189

installed with a hammer-core drill and sealed at grade using an inert clay or bentonite. Access to the sub-slab soil at each soil vapor sampling location was gained by drilling through the existing concrete slab using a drill bit. All probes were installed approximately two-inches below the bottom of the existing concrete slab.

The soil vapor sampling probe was connected to dedicated tubing that was extended to grade. In accordance with NYSDOH Soil Vapor Guidance protocols, a tracer gas (helium) was used to verify the integrity of the soil vapor probe. A plastic chamber was sealed above the borehole. The sampling tube was pushed through the top of the sealed chamber. The atmosphere inside the chamber was enriched with the tracer gas (helium). A portable helium monitor was attached to the sampling tube to measure a vapor sample from the probe for the presence of high concentrations (>10%) of the tracer gas.

Soil vapor was purged from the boring hole by attaching the surface end of the tubing to an air valve and then to a vacuum pump. The vacuum pump removed one to three volumes of air (volume of the sample probe and tube) prior to sample collection. The flow rate for both purging and sample collection did not exceed 0.2 liters per minute.

The soil vapor sample was first screened for organic vapors using a photoionization detector (PID). Pre-sample PID readings from the soil vapor points varied from non-detect in 955M_SV-2 to 20.7 parts-per-million (ppm) in 955M_SV-1. Soil vapor samples were collected in individually certified, clean, 6-liter Summa canisters using eight-hour regulators (commercial space) or 24-hour regulators (residential space). All samples were analyzed for VOCs via USEPA Method TO-15.

Field notes were maintained summarizing sample identification, date and time of sample collection, sampling depth, identity of samplers, sampling methods and devices, soil vapor purge volumes, volume of the soil vapor extracted, vacuum of canisters before and after the samples were collected and chain of custody protocols.

Indoor Air and Ambient Air

On April 6, 2022, Tenen collected three indoor air samples (955M_IA-1 through 955M_IA-3) from Offsite Property B: one sample [955M-IA-1] was collected within the commercial building and co-located with soil vapor sample 955M_SV-1; two samples were collected from the residential building: 955M_IA-2 was collected from the basement and co-located with soil vapor sample 955M_SV-2; sample 955M_IA3 was collected from the first floor. Tenen also collected one ambient air sample (AA-3) during the soil vapor and indoor air sampling event. Sample locations are shown on Figure 2.

Indoor Air and Ambient Air Sample Designations – April 2022

Sample Name	Sample Type	Sample Length	Sample Location
955M_IA-1	Indoor Air	8 hours	Boiler room of the commercial building
955M_IA-2	Indoor Air	24 hours	Basement of the residential building
955M_IA-3	Indoor Air	24 hours	First floor of the residential building
AA-3	Outdoor Air	24 hours	Southeastern corner of the Site

The heating systems in both the commercial and residential buildings at Offsite Property B were turned on at least 24 hours prior to sampling. The heating systems were operated to maintain normal indoor air temperatures (65°F to 75°F). The heating systems remained operational during and until indoor air sampling was completed.

Indoor and ambient air samples were collected within the breathing zone (approximately three to five feet above the floor) in accordance NYSDOH Soil Vapor Guidance protocols. Samples were collected in individually certified, clean 6-liter Summa canisters using eight-hour regulators (commercial space) or 24-hour regulators

August 18, 2022 BCP Site No. C360189

(residential spaces and ambient). Samples were collected at flow rates no greater than 0.2 liters per minute and analyzed for VOCs vis USEPA Method TO-15.

Field notes were maintained summarizing as detailed previously.

Sample Analysis

The samples were sent under chain-of-custody documentation to Alpha Analytical, Inc. (Alpha) in Westborough, MA. Alpha is certified by the NYSDOH Environmental Laboratory Approval Program (ELAP) as LABIDs 11627 and 11148. Soil vapor, indoor air and ambient air samples were analyzed for VOCs.

Analytical Results

Sub-slab soil vapor and co-located indoor air results were compared to the NYSDOH Soil Vapor Guidance Decision Matrices. In addition, indoor air samples were compared to the NYSDOH Air Guideline Values (AGVs).

Soil vapor and indoor air results are included in Table 1 and Figure 3. Laboratory deliverables are included in Attachment 1. A data usability summary report (DUSR) was prepared and is also included in Attachment 1. The analytical results are summarized below.

VOCs were not detected in exceedance of the NYSDOH AGVs in any indoor air samples. The cVOC PCE was detected in one sub-slab soil vapor sample and all three indoor air samples, with the highest concentrations occurring in the samples collected from the commercial building. PCE was detected at a concentration of 44 ug/m³ in 955M_SV-1 and at a maximum concentration of 4.8 ug/m³ in 955M_IA-1. In addition, the cVOC methylene chloride was detected in one sub-slab soil vapor sample and two indoor air samples and the cVOC carbon tetrachloride was detected in all three indoor air samples and the ambient air sample. Methylene chloride was detected at a concentration of 9.24 ug/m³ in 955M_SV-1 and at a maximum concentration of 4.59 ug/m³ in 955M_IA-1; methylene chloride is a common laboratory artifact. Carbon tetrachloride was detected at a maximum concentration of 0.893 ug/m³ in 955M_IA-3 and at a concentration of 0.535 ug/m³ in AA-3. Carbon tetrachloride was not detected in any sub-slab soil vapor samples.

PCE and methylene chloride are part of NYSDOH Matrix B and carbon tetrachloride is part of NYSDOH Matrix A. The concentrations of PCE, methylene chloride, and carbon tetrachloride in both co-located sub-slab soil vapor and indoor air samples were compared to their respective NYSDOH Decision Matrix (Matrix B for PCE and methylene chloride and Matrix A for carbon tetrachloride) and resulted in a 'No Further Action' Matrix Decision for all three analytes at both locations. All other cVOCs included in the NYSDOH Decision Matrices, including trichloroethene, cis-1,2-dichloroethene, 1,1,1-trichloroethane, 1,1-dichloroethene, and vinyl chloride, were not detected in any soil vapor or indoor air samples collected from Offsite Property B.

A variety of petroleum-related VOCs were detected at low concentrations in one or more soil vapor and indoor air samples. Benzene was detected in one indoor air sample; toluene was detected in one soil vapor sample and one indoor air sample; and, 1,2,4-trimethylbenzene was detected in two indoor air samples. Benzene was detected at a concentration of 2.82 ug/m³ in 955M_IA-3; toluene was detected at a concentration of 4.9 ug/m³ in 955M_SV-1 and at a concentration of 2.23 ug/m³ in 955M_IA-3; and, 1,2,4-trimethylbenzene was detected at a maximum concentration of 1.43 ug/m³ in 955M_IA-2.

Elevated concentrations of acetone and ethanol were detected in all soil vapor and indoor air samples. Acetone was detected at a maximum concentration of 399 ug/m³ in 955M_SV-1 and at a maximum concentration of 144 in 955M_IA-3 ug/m³; and, ethanol was detected at a maximum concentration of 509 ug/m³ in 955M_SV-1 and at a maximum concentration of 3,470 ug/m³ in 955M IA-3. Acetone and ethanol are common laboratory artifacts.

Findings and Conclusions

The soil vapor and indoor air investigation indicated the following:

- Comparison of detected concentrations of PCE, methylene chloride, and carbon tetrachloride in sub-slab soil vapor samples and co-located indoor air samples to the applicable NYSDOH Decision Matrices resulted in a "No Further Action" matrix decision for all analytes at all sampling locations.
- VOCs were not detected in exceedance of NYSDOH AGVs in any indoor air samples.
- A variety of petroleum-related VOCs, including benzene, toluene, and 1,2,4-trimethylbenzene, were detected in soil vapor and indoor air at low concentrations.
- Acetone and ethanol were detected at elevated concentrations in all soil vapor and indoor air samples. Acetone and ethanol are common laboratory artifacts.
- Based upon comparison of the detected concentrations of chlorinated solvents in soil vapor and indoor air with the NYSDOH Decision Matrices, no further action is required to address soil vapor conditions at Offsite Property B.
- Based on the results of this SVI and the results of the RI, SRIs and Offsite Property A investigation, Tenen believes the Departments' have enough information to make a significant threat determination for the Site.

Please contact us if you need any additional information.

Sincerely,

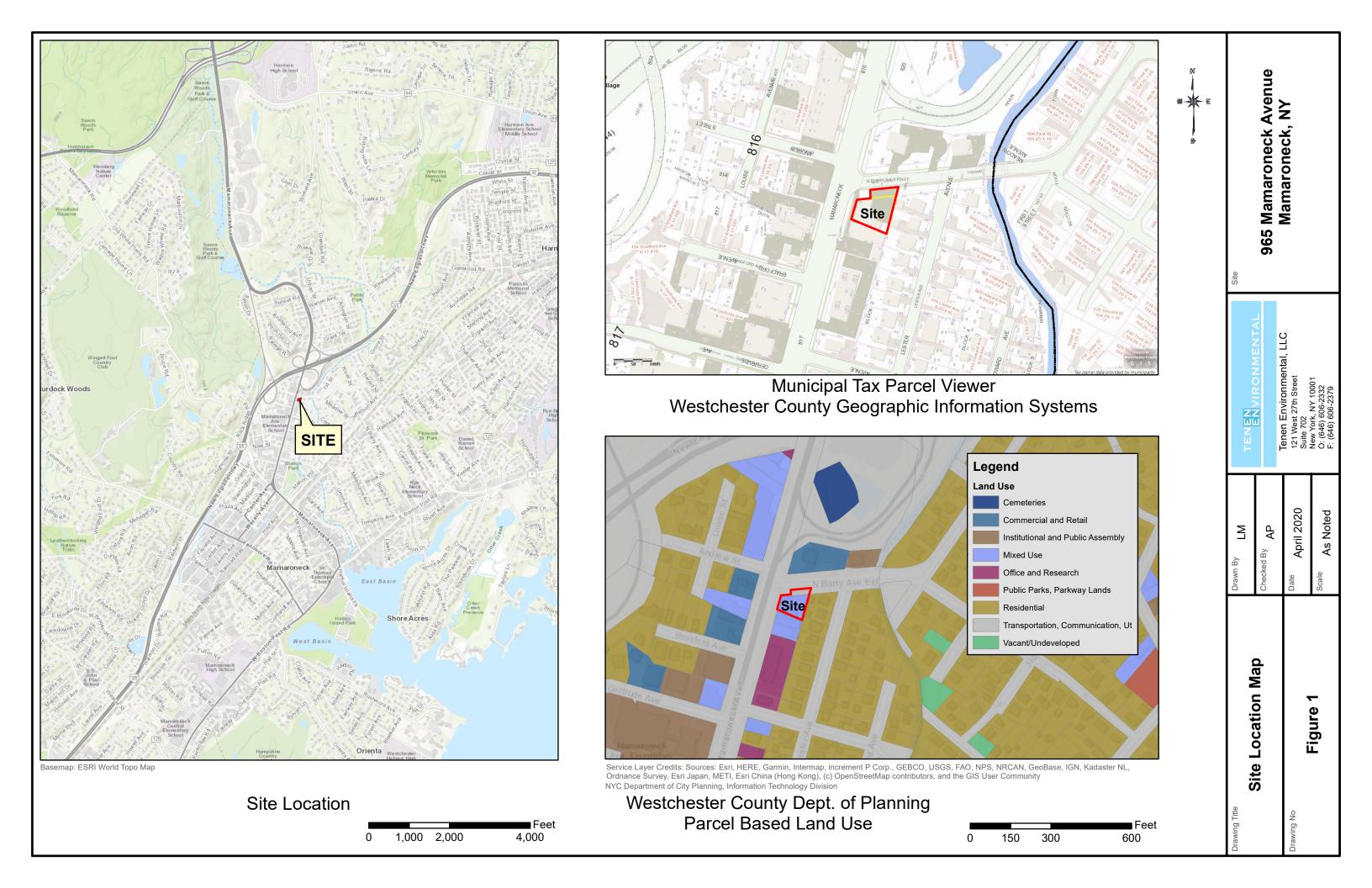
Tenen Environmental, LLC

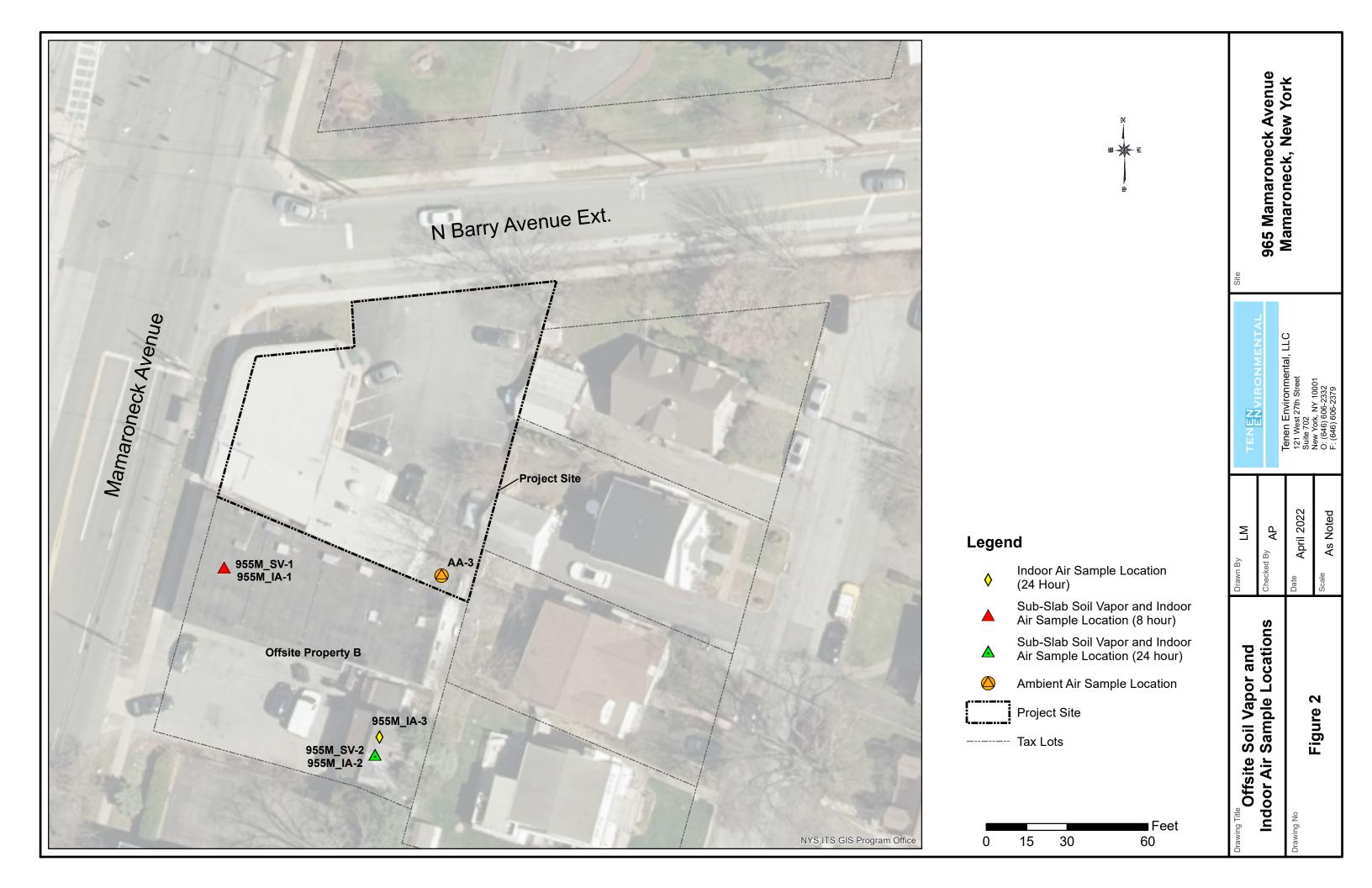
Alana Carroll, PG

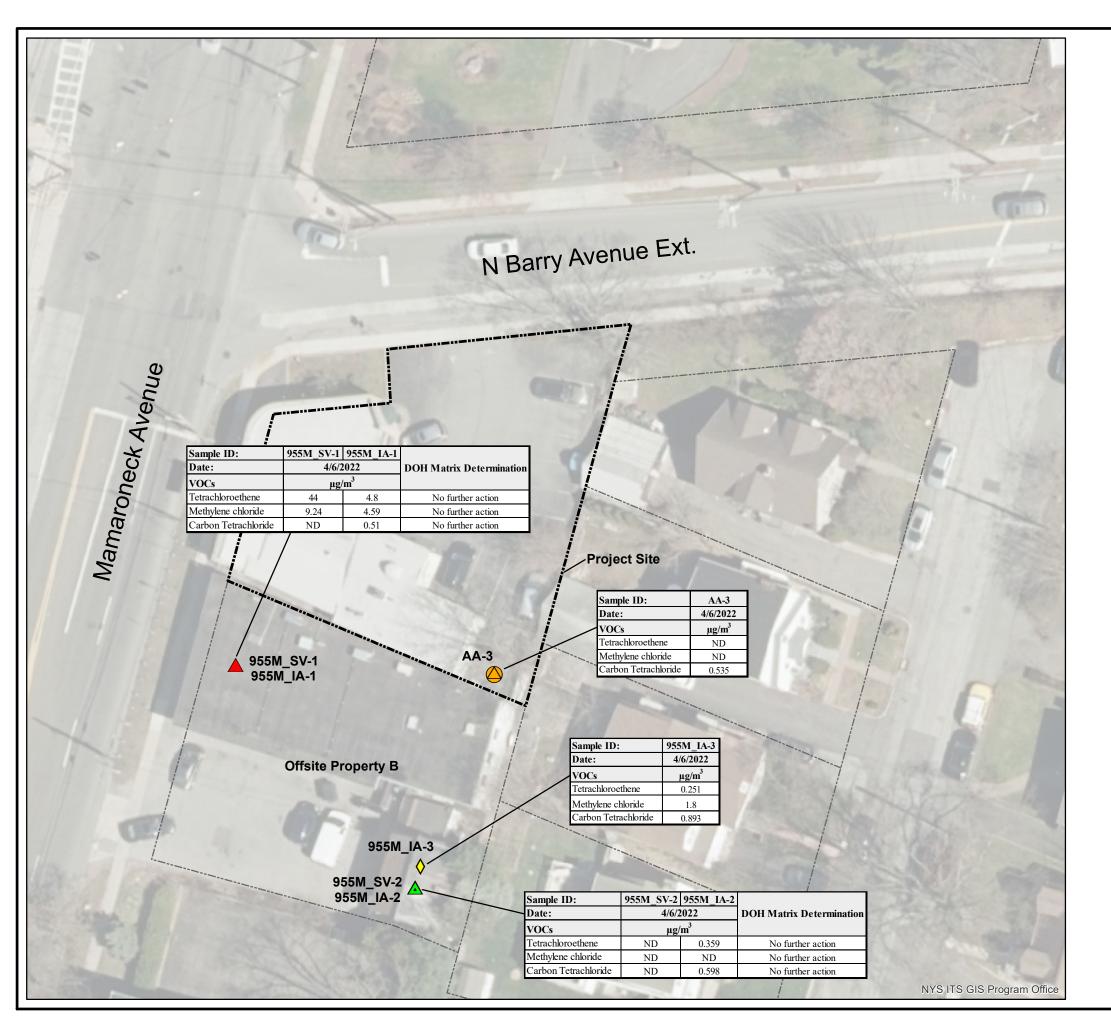
Senior Project Manager

Figure 1 Site Location

Figure 2 Offsite Soil Vapor and Indoor Air Sample Locations


Figure 3 CVOCs in Soil Vapor and Indoor Air – Offsite Property B


Table 1 Volatile Organic Compounds in Soil Vapor and Indoor Air – Offsite Property B


Laboratory Deliverables and Data Usability Summary Report Attachment 1

Attachment 2 Soil Vapor and Indoor Air Sampling Logs 965 Mamaroneck Avenue – Village of Mamaroneck, NY Soil Vapor and Indoor Air Investigation Letter Report

Figures

Analyte	NYSDOH
Analyte	AGV
VOCs	μg/m³
Tetrachloroethene	30
Methylene chloride	60
Carbon Tetrachloride	NS

Notes:

- 1. NYSDOH matrix determinations are described in the report narrative and the NYSDOH Soil Vapor Guidance, with May 2017 updates
- 2. NYSDOH AGV = New York State Department of Health Air Guideline Value, Table 3.1 in NYSDOH Soil Vapor Guidance, October 2006 with May 2017 updates 3. Only indoor air concentrations are compared to NYSDOH AGVs
- . ND = Not Detected
- 5. NS = No standard

Legend

- Indoor Air Sample Location (24 Hour)
 - Sub-Slab Soil Vapor and Indoor Air Sample Location (8 hour)
- Sub-Slab Soil Vapor and Indoor Air Sample Location (24 hour)

■ Feet

60

Ambient Air Sample Location

30

Project Site

----- Tax Lots

15

CVOCs in Offsite Soil Vapor and Indoor Air - Offfsite Property B	
--	--

 ${\mathbb Z}$

 AP

965 Mamaroneck Avenue Mamaroneck, New York

Tenen Environmental, LLC 121 West 27th Street Suite 702 New York, NY 10001

965 Mamaroneck Avenue – Village of Mamaroneck, NY Soil Vapor and Indoor Air Investigation Letter Report

Table

Table 1. Volatile Organic Compounds in Soil Vapor and Indoor Air Offsite Property B 965 Mamaroneck Avenue BCP Site No. C360189

LOCATION				955M SV-1	955M IA-1	955M IA-2	955M SV-2	955M IA-3	AA-3	
SAMPLING DATE	NYSDOH	NYSDOH		4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022	4/6/2022	
LAB SAMPLE ID	Matrix	AGV	Units	L2217981-01	L2217981-02	L2217981-03	L2217981-04	L2217981-05	L2218096-01	Matrix Action
				Qual	Qual	Qual	Qual	Qual	Qual	
Volatile Organic Compound	s									
Dichlorodifluoromethane	-	NS	ug/m3	ND	2.49	2.59	ND	2.6	2.65	
Chloromethane	-	NS	ug/m3	ND	1.19	0.76	ND	1.62	1.18	
Freon-114	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Vinyl chloride	C	NS	ug/m3	ND	ND	ND	ND	ND	ND	No further action
1,3-Butadiene	-	NS	ug/m3	ND	ND	ND	ND	0.633	ND	
Bromomethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Chloroethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Ethanol	-	NS	ug/m3					3470		
Ethanol	-	NS	ug/m3	509	31.7	63.5	366	2370 E	ND	
Vinyl bromide	-	NS NS	ug/m3	ND 399	ND 10.4	ND 25.9	ND 314	ND 144	ND 4.77	
Acetone Trichlorofluoromethane	-	NS NS	ug/m3	ND	10.4	1.27	ND	1.34	1.13	
	-	NS NS	ug/m3	914	4.35	5.75	932	1.34	ND	
Isopropanol 1,1-Dichloroethene	A	NS NS	ug/m3 ug/m3	ND	ND	ND	ND	ND	ND	No further action
Tertiary butyl Alcohol	A .	NS	ug/m3	16.1	ND	18	ND	104	ND	No further action
Methylene chloride	В	60	ug/m3	9.24	4.59	ND	ND	1.8	ND	No further action
3-Chloropropene	- Б	NS NS	ug/m3	9.24 ND	ND	ND	ND	ND	ND	. 10 Infiner action
Carbon disulfide	-	NS	ug/m3	4.83	ND	ND	ND	ND	ND	
Freon-113	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
trans-1,2-Dichloroethene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Methyl tert butyl ether	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
2-Butanone	-	NS	ug/m3	24.1	ND	ND	ND	3.69	ND	
cis-1,2-Dichloroethene	A	NS	ug/m3	ND	ND	ND	ND	ND	ND	No further action
Ethyl Acetate	-	NS	ug/m3	7.93	ND	ND	ND	5.84	ND	
Chloroform	-	NS	ug/m3	ND	ND	ND	ND	2.18	ND	
Tetrahydrofuran	-	NS	ug/m3	ND	ND	2.21	ND	ND	ND	
1,2-Dichloroethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
n-Hexane	-	NS	ug/m3	ND	ND	ND	24.3	ND	ND	
1,1,1-Trichloroethane	В	NS	ug/m3	ND	ND	ND	ND	ND	ND	No further action
Benzene	-	NS	ug/m3	ND	ND	ND	ND	2.82	ND	
Carbon tetrachloride	A	NS	ug/m3	ND	0.51	0.598	ND	0.893	0.535	No further action
Cyclohexane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,2-Dichloropropane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Bromodichloromethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,4-Dioxane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Trichloroethene	A	2	ug/m3	ND	ND	ND	ND	ND	ND	No further action
2,2,4-Trimethylpentane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Heptane	-	NS	ug/m3	ND	ND	ND	11.4	1.48	ND	
cis-1,3-Dichloropropene	-	NS NG	ug/m3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
4-Methyl-2-pentanone trans-1,3-Dichloropropene	-	NS NS	ug/m3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
1,1,2-Trichloroethane	-	NS NS	ug/m3 ug/m3	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	
Toluene	-	NS NS	ug/m3	4.9	ND ND	ND	ND	2.23	ND	
2-Hexanone	+	NS NS	ug/m3	ND	ND ND	ND	ND ND	ND	ND	
Dibromochloromethane	+ -	NS	ug/m3	ND ND	ND	ND	ND ND	ND	ND	
1,2-Dibromoethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Tetrachloroethene	В	30	ug/m3	44	4.8	0.359	ND	0.251	ND	No further action
Chlorobenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Ethylbenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
p/m-Xylene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Bromoform	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Styrene	-	NS	ug/m3	ND	ND	ND	ND	1.17	ND	
1,1,2,2-Tetrachloroethane	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
o-Xylene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
4-Ethyltoluene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,3,5-Trimethylbenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,2,4-Trimethylbenzene	-	NS	ug/m3	ND	ND	1.43	ND	1.01	ND	
Benzyl chloride	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,4-Dichlorobenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,2-Dichlorobenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
1,2,4-Trichlorobenzene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	
Hexachlorobutadiene	-	NS	ug/m3	ND	ND	ND	ND	ND	ND	

Notes:

NYSDOH AGVs = New York State Department of Health Air Guideline Values, Table 3.1 in NYSDOH Soil Vapor Guidance, October 2006 with May 2017 updates Only indoor air concentrations are compared to NYSDOH AGVs

ND = Not detected

NS = No standar

E = Concentration exceeds the calibration range of the instrument

965 Mamaroneck Avenue – Village of Mamaroneck, NY Soil Vapor and Indoor Air Investigation Letter Report

Attachment 1
Laboratory Deliverables and Data Usability Summary
Report

ANALYTICAL REPORT

Lab Number: L2217981

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Alana Carroll Phone: (646) 606-2332

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified Report Date: 04/20/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Number: Not Specified

Lab Number: L2217981 **Report Date:** 04/20/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2217981-01	955M_SV-1	SOIL_VAPOR	965 MAMARONECK AVE, MAMARONECK, NY 10543	04/06/22 16:14	04/07/22
L2217981-02	955M_IA-1	AIR	965 MAMARONECK AVE, MAMARONECK, NY 10543	04/06/22 16:21	04/07/22
L2217981-03	955M_IA-2	AIR	965 MAMARONECK AVE, MAMARONECK, NY 10543	04/07/22 10:18	04/07/22
L2217981-04	955M_SV-2	SOIL_VAPOR	965 MAMARONECK AVE, MAMARONECK, NY 10543	04/07/22 10:16	04/07/22
L2217981-05	955M_IA-3	AIR	965 MAMARONECK AVE, MAMARONECK, NY 10543	04/07/22 10:15	04/07/22

L2217981

Lab Number:

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified Report Date: 04/20/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Serial_No:04202216:48

Project Name: 965 MAMARONECK AVE Lab Number: L2217981

Project Number: Not Specified Report Date: 04/20/22

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 6, 2022. The canister certification results are provided as an addendum.

L2217981-05: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2217981-01D, -04D, and -05D: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature: Christopher J. Anderson

Title: Technical Director/Representative

-

Date: 04/20/22

AIR

04/06/22 16:14

Not Specified

04/07/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2217981-01 D

Client ID: 955M_SV-1

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/20/22 09:30

Analyst: TS

RL	MDL	Results	Б.			
		iveania	RL	MDL	Qualifier	Factor
0.667		ND	3.30			3.333
0.667		ND	1.38			3.333
0.667		ND	4.66			3.333
0.667		ND	1.71			3.333
0.667		ND	1.48			3.333
0.667		ND	2.59			3.333
0.667		ND	1.76			3.333
16.7		509	31.5			3.333
0.667		ND	2.92			3.333
3.33		399	7.91			3.333
0.667		ND	3.75			3.333
1.67		914	4.10			3.333
0.667		ND	2.64			3.333
1.67		16.1	5.06			3.333
1.67		9.24	5.80			3.333
0.667		ND	2.09			3.333
0.667		4.83	2.08			3.333
0.667		ND	5.11			3.333
0.667		ND	2.64			3.333
0.667		ND	2.70			3.333
0.667		ND	2.40			3.333
1.67		24.1	4.93			3.333
0.667		ND	2.64			3.333
	0.667 0.667 0.667 0.667 0.667 0.667 16.7 0.667 1.67 0.667 1.67 0.667 0.667 0.667 0.667 0.667 0.667 0.667 0.667	0.667 0.667 0.667 0.667 0.667 16.7 0.667 3.33 0.667 1.67 1.67 0.667 0.667 0.667 0.667 0.667 0.667 0.667 1.67	0.667 ND 0.667 ND 0.667 ND 0.667 ND 0.667 ND 16.7 509 0.667 ND 3.33 399 0.667 ND 1.67 914 0.667 ND 1.67 16.1 1.67 16.1 1.67 ND 0.667 ND 0.667 <td< td=""><td>0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 1.76 16.7 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 ND 3.75 1.67 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 5.11 0.667 ND 2.64 0.667 ND 2.70 0.667 ND 2.40 1.67 24.1 4.93</td><td>0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 2.59 0.667 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 ND 2.92 3.33 ND 3.75 1.67 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 16.1 5.06 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 5.11 0.667 ND 2.64 -</td><td>0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 2.59 0.667 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 399 7.91 0.667 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 2.11 0.667 ND 2.64 0.667 ND 2.64 0.667 ND 2.64 <td< td=""></td<></td></td<>	0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 1.76 16.7 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 ND 3.75 1.67 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 5.11 0.667 ND 2.64 0.667 ND 2.70 0.667 ND 2.40 1.67 24.1 4.93	0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 2.59 0.667 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 ND 2.92 3.33 ND 3.75 1.67 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 16.1 5.06 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 5.11 0.667 ND 2.64 -	0.667 ND 1.38 0.667 ND 4.66 0.667 ND 1.71 0.667 ND 1.48 0.667 ND 2.59 0.667 ND 1.76 16.7 509 31.5 0.667 ND 2.92 3.33 399 7.91 0.667 ND 3.75 1.67 914 4.10 0.667 ND 2.64 1.67 9.24 5.80 0.667 ND 2.09 0.667 ND 2.11 0.667 ND 2.64 0.667 ND 2.64 0.667 ND 2.64 <td< td=""></td<>

04/06/22 16:14

Not Specified

04/07/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified Lab Number: L2217981

Date Collected:

Date Received:

Field Prep:

Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2217981-01 D

Client ID: 955M_SV-1

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:		nnhV						
Danamatan		ppbV			ug/m3 RL	MDL		Dilution Factor
Parameter Volatile Organics in Air - Mans	Results	RL	MDL	Results	KL	MDL	Qualifier	
Ethyl Acetate	2.20	1.67		7.93	6.02			3.333
Chloroform	ND	0.667		ND	3.26			3.333
Tetrahydrofuran	ND	1.67		ND	4.93			3.333
1,2-Dichloroethane	ND	0.667		ND	2.70			3.333
n-Hexane	ND	0.667		ND	2.35			3.333
1,1,1-Trichloroethane	ND	0.667		ND	3.64			3.333
Benzene	ND	0.667		ND	2.13			3.333
Carbon tetrachloride	ND	0.667		ND	4.20			3.333
Cyclohexane	ND	0.667		ND	2.30			3.333
1,2-Dichloropropane	ND	0.667		ND	3.08			3.333
Bromodichloromethane	ND	0.667		ND	4.47			3.333
1,4-Dioxane	ND	0.667		ND	2.40			3.333
Trichloroethene	ND	0.667		ND	3.58			3.333
2,2,4-Trimethylpentane	ND	0.667		ND	3.12			3.333
Heptane	ND	0.667		ND	2.73			3.333
cis-1,3-Dichloropropene	ND	0.667		ND	3.03			3.333
4-Methyl-2-pentanone	ND	1.67		ND	6.84			3.333
trans-1,3-Dichloropropene	ND	0.667		ND	3.03			3.333
1,1,2-Trichloroethane	ND	0.667		ND	3.64			3.333
Toluene	1.30	0.667		4.90	2.51			3.333
2-Hexanone	ND	0.667		ND	2.73			3.333
Dibromochloromethane	ND	0.667		ND	5.68			3.333
1,2-Dibromoethane	ND	0.667		ND	5.13			3.333
Tetrachloroethene	6.49	0.667		44.0	4.52			3.333
Chlorobenzene	ND	0.667		ND	3.07			3.333
Ethylbenzene	ND	0.667		ND	2.90			3.333

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-01 D

Client ID: 955M_SV-1

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Date Collected:

Date Received:

04/06/22 16:14

Field Prep:

04/07/22 Not Specified

Sample Depth:

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab							
p/m-Xylene	ND	1.33		ND	5.78			3.333
Bromoform	ND	0.667		ND	6.90			3.333
Styrene	ND	0.667		ND	2.84			3.333
1,1,2,2-Tetrachloroethane	ND	0.667		ND	4.58			3.333
o-Xylene	ND	0.667		ND	2.90			3.333
4-Ethyltoluene	ND	0.667		ND	3.28			3.333
1,3,5-Trimethylbenzene	ND	0.667		ND	3.28			3.333
1,2,4-Trimethylbenzene	ND	0.667		ND	3.28			3.333
Benzyl chloride	ND	0.667		ND	3.45			3.333
1,3-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,4-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,2-Dichlorobenzene	ND	0.667		ND	4.01			3.333
1,2,4-Trichlorobenzene	ND	0.667		ND	4.95			3.333
Hexachlorobutadiene	ND	0.667		ND	7.11			3.333

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	92		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	95		60-140

Project Number: Not Specified

Lab Number:

Date Collected:

Date Received:

Field Prep:

L2217981

04/06/22 16:21

Not Specified

04/07/22

Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2217981-02

Client ID: 955M_IA-1

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/20/22 00:47

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.504	0.200		2.49	0.989			1
Chloromethane	0.575	0.200		1.19	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	16.8	5.00		31.7	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	4.39	1.00		10.4	2.38			1
Trichlorofluoromethane	0.213	0.200		1.20	1.12			1
Isopropanol	1.77	0.500		4.35	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	1.32	0.500		4.59	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

Date Collected:

Date Received:

Field Prep:

04/20/22

04/06/22 16:21

Not Specified

04/07/22

SAMPLE RESULTS

Lab ID: L2217981-02 Client ID: 955M_IA-1

Client ID: 955M_IA-1
Sample Location: 965 MAMAF

965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-02

Client ID: 955M_IA-1

965 MAMARONECK AVE, MAMARONECK,

NY 10543

Date Collected: 04

04/06/22 16:21

Date Received: Field Prep:

04/07/22 Not Specified

Sample Depth:

Sample Location:

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield L	.ab							
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	88		60-140
Bromochloromethane	94		60-140
chlorobenzene-d5	92		60-140

Project Number: Not Specified Lab Number:

Date Collected:

Date Received:

L2217981

04/06/22 16:21

Not Specified

04/07/22

Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2217981-02

955M_IA-1

Client ID: Sample Location:

965 MAMARONECK AVE, MAMARONECK,

Field Prep: NY 10543

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date:

48,TO-15-SIM 04/20/22 00:47

Analyst: TS

PpbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
ansfield Lab							
ND	0.020		ND	0.051			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.079			1
ND	0.020		ND	0.109			1
0.081	0.020		0.510	0.126			1
ND	0.020		ND	0.107			1
0.708	0.020		4.80	0.136			1
	ND N	Results RL ansfield Lab ND 0.020 ND 0.020	Results RL MDL ansfield Lab ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020 ND 0.020	Results RL MDL Results Annsfield Lab ND 0.020 ND ND 0.020 ND ND 0.020 ND ND 0.020 ND 0.081 0.020 ND ND 0.020 ND	Results RL MDL Results RL ansfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.081 0.020 ND 0.126 ND 0.020 ND 0.107	Results RL MDL Results RL MDL ansfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.109 ND 0.020 ND 0.126 ND 0.020 ND 0.107 ND 0.020 ND 0.107	Results RL MDL Results RL MDL Qualifier Annsfield Lab ND 0.020 ND 0.051 ND 0.020 ND 0.079 ND 0.020 ND 0.079 ND 0.020 ND 0.109 0.081 0.020 ND 0.126 ND 0.020 ND 0.107

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	87		60-140
bromochloromethane	94		60-140
chlorobenzene-d5	93		60-140

04/07/22 10:18

Not Specified

04/07/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2217981-03

Client ID: 955M_IA-2

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/20/22 01:27

Analyst: TS

PpbV			ug/m3				Dilution
Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
eld Lab							
0.524	0.200		2.59	0.989			1
0.368	0.200		0.760	0.413			1
ND	0.200		ND	1.40			1
ND	0.200		ND	0.442			1
ND	0.200		ND	0.777			1
ND	0.200		ND	0.528			1
33.7	5.00		63.5	9.42			1
ND	0.200		ND	0.874			1
10.9	1.00		25.9	2.38			1
0.226	0.200		1.27	1.12			1
2.34	0.500		5.75	1.23			1
5.95	0.500		18.0	1.52			1
ND	0.500		ND	1.74			1
ND	0.200		ND	0.626			1
ND	0.200		ND	0.623			1
ND	0.200		ND	1.53			1
ND	0.200		ND	0.793			1
ND	0.200		ND	0.809			1
ND	0.200		ND	0.721			1
ND	0.500		ND	1.47			1
ND	0.500		ND	1.80			1
ND	0.200		ND	0.977			1
0.750	0.500		2.21	1.47			1
	0.524 0.368 ND ND ND ND 33.7 ND 10.9 0.226 2.34 5.95 ND	0.524 0.200 0.368 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 10.9 1.00 0.226 0.200 2.34 0.500 ND 0.500 ND 0.200	0.524 0.200 0.368 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 ND 0.200 10.9 1.00 2.34 0.500 5.95 0.500 ND 0.200 ND 0.500 ND 0.500 ND 0.500 ND 0.500	O.524	0.524 0.200 2.59 0.989 0.368 0.200 0.760 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.200 ND 0.528 33.7 5.00 63.5 9.42 ND 0.200 ND 0.874 10.9 1.00 25.9 2.38 0.226 0.200 1.27 1.12 2.34 0.500 5.75 1.23 5.95 0.500 18.0 1.52 ND 0.200 ND 0.626 ND 0.200 ND 0.626 ND 0.200 ND 0.623 ND 0.200 ND 0.793 ND 0.200 ND 0.791 ND 0.500 ND 0.721 ND 0.500 ND 1.47 ND 0.500 ND 1.80 ND 0.500 ND 0.977	0.524 0.200 2.59 0.989 0.368 0.200 0.760 0.413 ND 0.200 ND 1.40 ND 0.200 ND 0.442 ND 0.200 ND 0.777 ND 0.528 ND 0.528 ND 0.528 ND 0.528 ND 0.874 ND 0.874 ND 0.200 ND 0.874 ND 0.200 1.27 1.12 2.34 0.500 1.27 1.12 2.34 0.500 18.0 1.52 ND 0.500 ND 0.626 ND 0.626 ND 0.200 ND 0.623 ND 0.200 ND 0.623 ND 0.200 ND 0.793 ND 0.500 ND 0.721 ND 0.500 ND 0.721 ND 0.500 ND 0.721 ND 0.500 ND 0.721 ND 0.500 ND 0.777 ND 0.777 ND 0.500 ND 0.777 ND 0.777 ND 0.777 ND 0.777	0.524

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

Date Collected:

Date Received:

Field Prep:

04/20/22

04/07/22 10:18

Not Specified

04/07/22

SAMPLE RESULTS

Lab ID: L2217981-03

Client ID: 955M_IA-2

965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Sample Location:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
1-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: Not Specified Lab Number:

L2217981

Report Date:

Date Collected:

Date Received:

04/20/22

04/07/22 10:18

Not Specified

04/07/22

SAMPLE RESULTS

Lab ID: L2217981-03 Client ID:

955M_IA-2

965 MAMARONECK AVE, MAMARONECK,

Field Prep:

NY 10543

Sample Depth:

Sample Location:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
1,2,4-Trimethylbenzene	0.290	0.200		1.43	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	82		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	88		60-140

Project Number: Not Specified Lab Number:

Date Collected:

Date Received:

L2217981

04/07/22 10:18

Not Specified

04/07/22

Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2217981-03

955M_IA-2

Client ID: Sample Location:

965 MAMARONECK AVE, MAMARONECK,

Field Prep:

NY 10543

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/20/22 01:27

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.095	0.020		0.598	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.053	0.020		0.359	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	81		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	87		60-140

04/07/22 10:16

Not Specified

04/07/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2217981-04 D

Client ID: 955M_SV-2

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Matrix: Soil_Vapor Anaytical Method: 48,TO-15 Analytical Date: 04/20/22 08:54

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	ND	2.20		ND	10.9			11
Chloromethane	ND	2.20		ND	4.54			11
Freon-114	ND	2.20		ND	15.4			11
Vinyl chloride	ND	2.20		ND	5.62			11
1,3-Butadiene	ND	2.20		ND	4.87			11
Bromomethane	ND	2.20		ND	8.54			11
Chloroethane	ND	2.20		ND	5.81			11
Ethanol	194	55.0		366	104			11
Vinyl bromide	ND	2.20		ND	9.62			11
Acetone	132	11.0		314	26.1			11
Trichlorofluoromethane	ND	2.20		ND	12.4			11
Isopropanol	379	5.50		932	13.5			11
1,1-Dichloroethene	ND	2.20		ND	8.72			11
Tertiary butyl Alcohol	ND	5.50		ND	16.7			11
Methylene chloride	ND	5.50		ND	19.1			11
3-Chloropropene	ND	2.20		ND	6.89			11
Carbon disulfide	ND	2.20		ND	6.85			11
Freon-113	ND	2.20		ND	16.9			11
trans-1,2-Dichloroethene	ND	2.20		ND	8.72			11
1,1-Dichloroethane	ND	2.20		ND	8.90			11
Methyl tert butyl ether	ND	2.20		ND	7.93			11
2-Butanone	ND	5.50		ND	16.2			11
cis-1,2-Dichloroethene	ND	2.20		ND	8.72			11

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-04 D

Client ID: 955M_SV-2

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Date Received: Field Prep:

Date Collected:

04/07/22 10:16

04/07/22 Not Specified

Sample Depth:

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
Ethyl Acetate	ND	5.50		ND	19.8			11
Chloroform	ND	2.20		ND	10.7			11
Tetrahydrofuran	ND	5.50		ND	16.2			11
1,2-Dichloroethane	ND	2.20		ND	8.90			11
n-Hexane	6.90	2.20		24.3	7.75			11
1,1,1-Trichloroethane	ND	2.20		ND	12.0			11
Benzene	ND	2.20		ND	7.03			11
Carbon tetrachloride	ND	2.20		ND	13.8			11
Cyclohexane	ND	2.20		ND	7.57			11
1,2-Dichloropropane	ND	2.20		ND	10.2			11
Bromodichloromethane	ND	2.20		ND	14.7			11
1,4-Dioxane	ND	2.20		ND	7.93			11
Γrichloroethene	ND	2.20		ND	11.8			11
2,2,4-Trimethylpentane	ND	2.20		ND	10.3			11
Heptane	2.79	2.20		11.4	9.02			11
cis-1,3-Dichloropropene	ND	2.20		ND	9.99			11
4-Methyl-2-pentanone	ND	5.50		ND	22.5			11
rans-1,3-Dichloropropene	ND	2.20		ND	9.99			11
1,1,2-Trichloroethane	ND	2.20		ND	12.0			11
Toluene	ND	2.20		ND	8.29			11
2-Hexanone	ND	2.20		ND	9.02			11
Dibromochloromethane	ND	2.20		ND	18.7			11
1,2-Dibromoethane	ND	2.20		ND	16.9			11
Tetrachloroethene	ND	2.20		ND	14.9			11
Chlorobenzene	ND	2.20		ND	10.1			11
Ethylbenzene	ND	2.20		ND	9.56			11

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-04 D

Client ID: 955M_SV-2

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Date Collected: 0

04/07/22 10:16

Date Received: Field Prep:

04/07/22 Not Specified

Sample Depth:

сапри ворин.		ppbV			ug/m3			Dilution
arameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
p/m-Xylene	ND	4.40		ND	19.1			11
Bromoform	ND	2.20		ND	22.7			11
Styrene	ND	2.20		ND	9.37			11
1,1,2,2-Tetrachloroethane	ND	2.20		ND	15.1			11
o-Xylene	ND	2.20		ND	9.56			11
4-Ethyltoluene	ND	2.20		ND	10.8			11
1,3,5-Trimethylbenzene	ND	2.20		ND	10.8			11
1,2,4-Trimethylbenzene	ND	2.20		ND	10.8			11
Benzyl chloride	ND	2.20		ND	11.4			11
1,3-Dichlorobenzene	ND	2.20		ND	13.2			11
1,4-Dichlorobenzene	ND	2.20		ND	13.2			11
1,2-Dichlorobenzene	ND	2.20		ND	13.2			11
1,2,4-Trichlorobenzene	ND	2.20		ND	16.3			11
Hexachlorobutadiene	ND	2.20		ND	23.5			11

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	83		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	88		60-140

04/07/22 10:15

Not Specified

04/07/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Date Collected:

Date Received:

Field Prep:

SAMPLE RESULTS

Lab ID: L2217981-05

Client ID: 955M_IA-3

Sample Location: 965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/20/22 02:11

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.525	0.200		2.60	0.989			1
Chloromethane	0.785	0.200		1.62	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	0.286	0.200		0.633	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	1260	5.00		2370	9.42		E	1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	60.6	1.00		144	2.38			1
Trichlorofluoromethane	0.238	0.200		1.34	1.12			1
Isopropanol	49.6	0.500		122	1.23			1
Tertiary butyl Alcohol	34.2	0.500		104	1.52			1
Methylene chloride	0.518	0.500		1.80	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	1.25	0.500		3.69	1.47			1
Ethyl Acetate	1.62	0.500		5.84	1.80			1
Chloroform	0.447	0.200		2.18	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Number: Not Specified Lab Number:

L2217981

Report Date:

Date Collected:

Date Received:

Field Prep:

04/20/22

04/07/22 10:15

Not Specified

04/07/22

SAMPLE RESULTS

Lab ID: L2217981-05 Client ID:

955M_IA-3

965 MAMARONECK AVE, MAMARONECK,

NY 10543

Sample Depth:

Sample Location:

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	0.884	0.200		2.82	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
leptane	0.360	0.200		1.48	0.820			1
is-1,3-Dichloropropene	ND	0.200		ND	0.908			1
-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	0.593	0.200		2.23	0.754			1
?-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
thylbenzene	ND	0.200		ND	0.869			1
n/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	0.275	0.200		1.17	0.852			1
,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
-Xylene	ND	0.200		ND	0.869			1
-Ethyltoluene	ND	0.200		ND	0.983			1
,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-05

Client ID: 955M_IA-3

965 MAMARONECK AVE, MAMARONECK,

NY 10543

Date Collected: 0

04/07/22 10:15

Date Received: Field Prep:

04/07/22 Not Specified

Sample Depth:

Sample Location:

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Man	sfield Lab							
1,2,4-Trimethylbenzene	0.205	0.200		1.01	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	86		60-140
Bromochloromethane	90		60-140
chlorobenzene-d5	90		60-140

Project Number: Not Specified Lab Number:

L2217981

Report Date:

Date Collected:

Date Received:

04/20/22

SAMPLE RESULTS

Lab ID: L2217981-05 Client ID:

955M_IA-3

Sample Location:

965 MAMARONECK AVE, MAMARONECK,

Field Prep:

04/07/22 10:15 04/07/22 Not Specified

NY 10543

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/20/22 02:11

Analyst: TS

	ppbV		ug/m3				Dilution	
Parameter	Results	Results RL MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SIM - Mai	nsfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.142	0.020		0.893	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	0.037	0.020		0.251	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	85		60-140
bromochloromethane	90		60-140
chlorobenzene-d5	90		60-140

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

SAMPLE RESULTS

Lab ID:

L2217981-05 D

Date Collected:

04/07/22 10:15

Client ID:

955M_IA-3

NY 10543

Date Received:

04/07/22

Sample Location:

965 MAMARONECK AVE, MAMARONECK,

Field Prep:

Not Specified

Sample Depth:

Matrix:

Air

Anaytical Method: Analytical Date: 48,TO-15 04/20/22 07:39

Analyst:

TS

	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	DL Results RL MI	MDL	Qualifier	Factor	
Volatile Organics in Air - Mansfield I	_ab							
Ethanol	1840	35.7		3470	67.3			7.143

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	77		60-140
Bromochloromethane	86		60-140
chlorobenzene-d5	76		60-140

Project Name: 965 MAMARONECK AVE **Lab Number:** L2217981

Project Number: Not Specified Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/19/22 16:32

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab for	or sample	e(s): 02-0	3,05 Batch:	WG162	8871-4		
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	ND	0.020		ND	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Project Name: 965 MAMARONECK AVE **Lab Number:** L2217981

Project Number: Not Specified Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfie	ld Lab for samp	le(s): 01-	05 Batch:	WG16288	883-4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

Project Name: 965 MAMARONECK AVE **Lab Number:** L2217981

Project Number: Not Specified Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab for samp	ole(s): 01-	-05 Batch	n: WG16288	83-4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: 965 MAMARONECK AVE **Lab Number:** L2217981

Project Number: Not Specified Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	l Lab for samp	ole(s): 01-	-05 Batch	n: WG16288	83-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number:

L2217981

Report Date:

04/20/22

Parameter	LCS %Recovery	Qual		CSD covery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield La	b Associated sa	ample(s):	02-03,05	Batch:	WG1628871	I-3				
Vinyl chloride	74			-		70-130	-		25	
1,1-Dichloroethene	86			-		70-130	-		25	
cis-1,2-Dichloroethene	70			-		70-130	-		25	
1,1,1-Trichloroethane	87			-		70-130	-		25	
Carbon tetrachloride	90			-		70-130	-		25	
Trichloroethene	80			-		70-130	-		25	
Tetrachloroethene	80			-		70-130	-		25	

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-05	Batch: WG162888	3-3				
Dichlorodifluoromethane	81		-		70-130	-		
Chloromethane	80		-		70-130	-		
Freon-114	80		-		70-130	-		
Vinyl chloride	78		-		70-130	-		
1,3-Butadiene	88		-		70-130	-		
Bromomethane	74		-		70-130	-		
Chloroethane	79		-		70-130	-		
Ethanol	119		-		40-160	-		
Vinyl bromide	88		-		70-130	-		
Acetone	103		-		40-160	-		
Trichlorofluoromethane	84		-		70-130	-		
Isopropanol	98		-		40-160	-		
1,1-Dichloroethene	95		-		70-130	-		
Tertiary butyl Alcohol	102		-		70-130	-		
Methylene chloride	114		-		70-130	-		
3-Chloropropene	107		-		70-130	-		
Carbon disulfide	118		-		70-130	-		
Freon-113	92		-		70-130	-		
trans-1,2-Dichloroethene	81		-		70-130	-		
1,1-Dichloroethane	80		-		70-130	-		
Methyl tert butyl ether	84		-		70-130	-		
2-Butanone	92		-		70-130	-		
cis-1,2-Dichloroethene	76		-		70-130	-		

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: L2217981

Report Date: 04/20/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-05	Batch: WG162888	3-3				
Ethyl Acetate	91		-		70-130	-		
Chloroform	85		-		70-130	-		
Tetrahydrofuran	87		-		70-130	-		
1,2-Dichloroethane	77		-		70-130	-		
n-Hexane	101		-		70-130	-		
1,1,1-Trichloroethane	91		-		70-130	-		
Benzene	87		-		70-130	-		
Carbon tetrachloride	96		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	89		-		70-130	-		
Bromodichloromethane	108		-		70-130	-		
1,4-Dioxane	96		-		70-130	-		
Trichloroethene	86		-		70-130	-		
2,2,4-Trimethylpentane	103		-		70-130	-		
Heptane	105		-		70-130	-		
cis-1,3-Dichloropropene	96		-		70-130	-		
4-Methyl-2-pentanone	107		-		70-130	-		
trans-1,3-Dichloropropene	83		-		70-130	-		
1,1,2-Trichloroethane	90		-		70-130	-		
Toluene	79		-		70-130	-		
2-Hexanone	101		-		70-130	-		
Dibromochloromethane	104		-		70-130	-		
1,2-Dibromoethane	88		-		70-130	-		

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Lab Number: Li

L2217981

Report Date:

04/20/22

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab	Associated sample(s):	01-05	Batch: WG162888	33-3				
Tetrachloroethene	83		-		70-130	-		
Chlorobenzene	87		-		70-130	-		
Ethylbenzene	82		-		70-130	-		
p/m-Xylene	84		-		70-130	-		
Bromoform	105		-		70-130	-		
Styrene	84		-		70-130	-		
1,1,2,2-Tetrachloroethane	93		-		70-130	-		
o-Xylene	88		-		70-130	-		
4-Ethyltoluene	94		-		70-130	-		
1,3,5-Trimethylbenzene	88		-		70-130	-		
1,2,4-Trimethylbenzene	92		-		70-130	-		
Benzyl chloride	108		-		70-130	-		
1,3-Dichlorobenzene	88		-		70-130	-		
1,4-Dichlorobenzene	86		-		70-130	-		
1,2-Dichlorobenzene	85		-		70-130	-		
1,2,4-Trichlorobenzene	79		-		70-130	-		
Hexachlorobutadiene	80		-		70-130	-		

965 MAMARONECK AVE L2217981

Project Number: Report Date: 04/20/22

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2217981-01	955M_SV-1	01285	Flow 5	04/06/22	382662		-	-	-	Pass	10.0	9.6	4
L2217981-01	955M_SV-1	3643	6.0L Can	04/06/22	382662	L2217100-01	Pass	-29.4	-8.1	-	-	-	-
L2217981-02	955M_IA-1	01044	Flow 5	04/06/22	382662		-	-	-	Pass	10.0	9.2	8
L2217981-02	955M_IA-1	1825	6.0L Can	04/06/22	382662	L2217100-01	Pass	-29.3	-8.4	-	-	-	-
L2217981-03	955M_IA-2	0630	Flow 5	04/06/22	382662		-	-	-	Pass	3.0	2.3	26
L2217981-03	955M_IA-2	3053	6.0L Can	04/06/22	382662	L2217100-03	Pass	-29.3	-9.3	-	-	-	-
L2217981-04	955M_SV-2	01369	Flow 5	04/06/22	382662		-	-	-	Pass	3.0	2.8	7
L2217981-04	955M_SV-2	2785	6.0L Can	04/06/22	382662	L2217100-01	Pass	-29.4	-10.5	-	-	-	-
L2217981-05	955M_IA-3	02219	Flow 5	04/06/22	382662		-	-	-	Pass	3.0	2.3	26
L2217981-05	955M_IA-3	3091	6.0L Can	04/06/22	382662	L2216233-05	Pass	-29.3	-13.2	-	-	-	-

Project Name:

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/30/22 21:21

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	6.22	5.00		8.15	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansf	ield Lab							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
rans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
/inyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
ylenes, total	ND	0.600		ND	0.869			1
is-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
etrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
ert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
,1,1-Trichloroethane	ND	0.200		ND	1.09			1
,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
ert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Frichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.	PpbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2216233

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Client ID: CAN 3091 SHELF 43

Sample Location:

Date Collected:

03/29/22 18:00

Date Received:

03/30/22

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	94		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	93		60-140

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

L2216233 CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location:

Project Number:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/30/22 21:21

Analyst: RY

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
o/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
sopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2216233

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-05

Date Collected: 03/29/22 18:00 Client ID: CAN 3091 SHELF 43 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	98		60-140
chlorobenzene-d5	92		60-140

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 04/04/22 21:48

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2217100

Not Specified

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location: Field Prep:

Затріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

Запре Верш.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.	PpbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2217100

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Client ID: CAN 1825 SHELF 36

Sample Location:

Date Collected:

04/01/22 18:00

Date Received:

04/04/22

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	93		60-140
Bromochloromethane	95		60-140
chlorobenzene-d5	94		60-140

L2217100

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/04/22 21:48

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	l - Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Frichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
rans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Date Collected: 04/01/22 18:00 Client ID: **CAN 1825 SHELF 36** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

, ,		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
1,2-Dichloropropane	ND	0.020		ND	0.092			1
Bromodichloromethane	ND	0.020		ND	0.134			1
1,4-Dioxane	ND	0.100		ND	0.360			1
Trichloroethene	ND	0.020		ND	0.107			1
cis-1,3-Dichloropropene	ND	0.020		ND	0.091			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.020		ND	0.091			1
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1
Toluene	ND	0.100		ND	0.377			1
Dibromochloromethane	ND	0.020		ND	0.170			1
1,2-Dibromoethane	ND	0.020		ND	0.154			1
Tetrachloroethene	ND	0.020		ND	0.136			1
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1
Chlorobenzene	ND	0.100		ND	0.461			1
Ethylbenzene	ND	0.020		ND	0.087			1
p/m-Xylene	ND	0.040		ND	0.174			1
Bromoform	ND	0.020		ND	0.207			1
Styrene	ND	0.020		ND	0.085			1
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1
o-Xylene	ND	0.020		ND	0.087			1
Isopropylbenzene	ND	0.200		ND	0.983			1
4-Ethyltoluene	ND	0.020		ND	0.098			1
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1
Benzyl chloride	ND	0.100		ND	0.518			1
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2217100

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-01

Client ID: CAN 1825 SHELF 36

Sample Location:

Date Collected:

04/01/22 18:00

Date Received:

04/04/22

Field Prep:

Not Specified

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	92		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 04/04/22 23:06

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfiel	d Lab							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	6.62	5.00		8.68	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

Запріє Беріп.		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
2-Butanone	ND	0.500		ND	1.47			1
Xylenes, total	ND	0.600		ND	0.869			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

Запіріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab								
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
1,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
1,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.	Vdqq			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2217100

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Client ID: CAN 3053 SHELF 38

Sample Location:

Date Collected:

04/01/22 18:00

Date Received:

04/04/22

Field Prep:

Not Specified

Sample Depth:

Parameter Results RL MDL Results RL MDL Qualifier Factor

Volatile Organics in Air - Mansfield Lab

Dilution
Results Qualifier Units RDL Factor

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	96		60-140
chlorobenzene-d5	92		60-140

Project Name: BATCH CANISTER CERTIFICATION Lab Number: L2217100

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 04/04/22 23:06

Analyst: TS

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2217100

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: **CAN 3053 SHELF 38** Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

Parameter Results RL MDL Results RL MDL Quality Volatile Organics in Air by SIM - Mansfield Lab ND 0.020 ND 0.092 ND 0.092 ND 0.092 ND 0.092 ND 0.134 ND 0.134 ND 0.134 ND 0.100 ND 0.360 ND 0.360 ND 0.360 ND 0.020 ND 0.107 ND 0.107 ND 0.091 ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1,2-Dichloropropane ND 0.020 ND 0.092 Bromodichloromethane ND 0.020 ND 0.134 1,4-Dioxane ND 0.100 ND 0.360 Trichloroethene ND 0.020 ND 0.107 cis-1,3-Dichloropropene ND 0.020 ND 0.091 4-Methyl-2-pentanone ND 0.500 ND 2.05	1 1 1 1
Bromodichloromethane ND 0.020 ND 0.134 1,4-Dioxane ND 0.100 ND 0.360 Trichloroethene ND 0.020 ND 0.107 cis-1,3-Dichloropropene ND 0.020 ND 0.091 4-Methyl-2-pentanone ND 0.500 ND 2.05	1 1 1 1
1,4-Dioxane ND 0.100 ND 0.360 Trichloroethene ND 0.020 ND 0.107 cis-1,3-Dichloropropene ND 0.020 ND 0.091 4-Methyl-2-pentanone ND 0.500 ND 2.05	1 1 1
Trichloroethene ND 0.020 ND 0.107 cis-1,3-Dichloropropene ND 0.020 ND 0.091 4-Methyl-2-pentanone ND 0.500 ND 2.05	1 1 1
cis-1,3-Dichloropropene ND 0.020 ND 0.091 4-Methyl-2-pentanone ND 0.500 ND 2.05	1
4-Methyl-2-pentanone ND 0.500 ND 2.05	1
trans-1,3-Dichloropropene ND 0.020 ND 0.091	1
1,1,2-Trichloroethane ND 0.020 ND 0.109	1
Toluene ND 0.100 ND 0.377	1
Dibromochloromethane ND 0.020 ND 0.170	1
1,2-Dibromoethane ND 0.020 ND 0.154	1
Tetrachloroethene ND 0.020 ND 0.136	1
1,1,1,2-Tetrachloroethane ND 0.020 ND 0.137	1
Chlorobenzene ND 0.100 ND 0.461	1
Ethylbenzene ND 0.020 ND 0.087	1
p/m-Xylene ND 0.040 ND 0.174	1
Bromoform ND 0.020 ND 0.207	1
Styrene ND 0.020 ND 0.085	1
1,1,2,2-Tetrachloroethane ND 0.020 ND 0.137	1
o-Xylene ND 0.020 ND 0.087	1
Isopropylbenzene ND 0.200 ND 0.983	1
4-Ethyltoluene ND 0.020 ND 0.098	1
1,3,5-Trimethybenzene ND 0.020 ND 0.098	1
1,2,4-Trimethylbenzene ND 0.020 ND 0.098	1
Benzyl chloride ND 0.100 ND 0.518	1
1,3-Dichlorobenzene ND 0.020 ND 0.120	1
1,4-Dichlorobenzene ND 0.020 ND 0.120	1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2217100

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2217100-03

Date Collected: 04/01/22 18:00 Client ID: CAN 3053 SHELF 38 Date Received: 04/04/22

Sample Location: Field Prep: Not Specified

, ,		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM -	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	94		60-140
bromochloromethane	97		60-140
chlorobenzene-d5	95		60-140

Lab Number: L2217981

Report Date: 04/20/22

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

NA Absent

Container Information				Initial	Final	Temp			Frozen	
	Container ID	Container Type	Cooler	рH	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
	L2217981-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30)
	L2217981-02A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30),TO15-SIM(30)
	L2217981-03A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)
	L2217981-04A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30)
	L2217981-05A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-SIM(30),TO15-LL(30)

Project Name:965 MAMARONECK AVELab Number:L2217981Project Number:Not SpecifiedReport Date:04/20/22

GLOSSARY

Acronyms

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable (DoD report formats only)

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case

estimate of the concentration.

EPA - Environmental Protection Agency.

LOS - Loboratory Control Sample A compile matrix free from the applying of interest and

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name:965 MAMARONECK AVELab Number:L2217981Project Number:Not SpecifiedReport Date:04/20/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A -Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:965 MAMARONECK AVELab Number:L2217981Project Number:Not SpecifiedReport Date:04/20/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:965 MAMARONECK AVELab Number:L2217981Project Number:Not SpecifiedReport Date:04/20/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:04202216:48

ID No.:17873 Revision 19

Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

											Seriai	_110.04202216	.40
Alpha	AIR A	NALYSIS	PAGE	OF	Date F	Rec'd in La	b: 4	181	22		ALPHA	Job#: L22	217981
320 Earbee Blud M	lansfield, MA 02048	Project Informa		44 44	Repo	ort Inform	ation - [Data De	liverab	les	Billing I	nformation	111132
	FAX: 508-822-3288	Project Name: 96	5 Mars 40	ale de a	□ FA	×					Same a	s Client info PO	#:
Client Information	on	Project Location: 44	5 Hawarene	it Ave		DEx		040	P				
Client: Touran	Ew uc	Project #:	amareneck,	NY 10543		Criteria Ch (Default base			n Indicated)	-		
Address: / \	Dath NX IN	Language Committee	1 0 1		Mary Company (1)	Other Form	nats:		, manuality	_	n.		
1000	UZZCh, NY, NY	Project Manager: ALPHA Quote #:	T. Carroll			MAIL (stand Iditional De		0.00			State/Fed	ory Requiremen	Res / Com
	The state of the s	Turn-Around Ti		100000	- 110000	rt to: (if differen	CATE				MYS	BUP	Near Com
Fax:	-606-2332	Turn-Around 11	me		A.154F-54		- man - capaci	- and a group of the same of t					
	ienew-env.com	X Standard □	RUSH jonly continued.	f pre-approved)	_						-	CONSTRUCTION OF	
	'enew-end.can Oteven-end.com	Data Davis	***								AN	IALYSIS	
	we been previously analyzed by Alph Specific Requirements/Cor		Time:									1/8///	
	Target Compound List:											01/10	
1 Toject-opecine	rarget Compound List.	_									1 100	apriarry	
	-	II Column	s Below	Must	Ве	Filled	d Ou	it			S SIM	\$ Merc	
ALPHA Lab ID (Lab Use Only)	Sample ID	CO End Date Start Time	LLECTION Initial	ial Final	Sample Matrix*	Sampler's	S Can Size	200	D - Flow ontroller	70.75	APH INDEPENTATION OF THE SURFACE GRASHS	Sample C	comments (i.e. Pl
_	AA-3	417/2 0818	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED	THE RESERVE OF THE PARTY OF THE	AA	HPC	6L		097				
17981-01	955M_3V-1	4/6/22 0910		396-9.65	SV								
	955M_IA-1	4/6/22 0915											
03	955M_IA-2												
04		417/22 0950											
	955 M _ SV-L	4/7/22 0952											
05	955M_IA-3	4/2/22 1000	1015 -29	12-1381	AA	HIX	663	181 0	2219	×			
	- No. 1-	20 200							- 1				
*SAMPLI	E MATRIX CODES	AA = Ambient Air (Indoo SV = Soil Vapor/Landfill Other = Please Specify	SECTION CO. DOTATION OF	in comme		c	ontainer	Type (15			completely.	clearly, legibly and Samples can not be
	No. 2	Relinquished By:		Date/Time	/	//Recei	ved By:			, Da	ate/Time:	clock will not	d turnaround time start until any amb
		Man	11 4	422 1050	1/10	4 for	100	941	4	bob	2 10	submitted are	esolved. All sample e subject to Alpha's
age 64 of 64	1200	dace.	112 4	7/22 12-	62	quet	erie	The	1	10	2 300	Terms and C See reverse	onditions.
orm No: 101-02 Rev: (25-	-Sep-15)	any lave	1/0/35	0510	1	1	SEP	VL,	18	101	0/80		

ANALYTICAL REPORT

Lab Number: L2218096

Client: Tenen Environmental, LLC

121 West 27th Street

Suite 702

New York City, NY 10001

ATTN: Alana Carroll Phone: (646) 606-2332

Project Name: 965 MAMARONECK AVENUE

Project Number: 965
Report Date: 04/20/22

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA030), NH NELAP (2062), CT (PH-0141), DoD (L2474), FL (E87814), IL (200081), LA (85084), ME (MA00030), MD (350), NJ (MA015), NY (11627), NC (685), OH (CL106), PA (68-02089), RI (LAO00299), TX (T104704419), VT (VT-0015), VA (460194), WA (C954), US Army Corps of Engineers, USDA (Permit #P330-17-00150), USFWS (Permit #206964).

320 Forbes Boulevard, Mansfield, MA 02048-1806 508-822-9300 (Fax) 508-822-3288 800-624-9220 - www.alphalab.com

Project Name: 965 MAMARONECK AVENUE

Project Number: 965

Lab Number:

L2218096

Report Date:

04/20/22

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2218096-01	AA-3	AIR	MAMARONECK, NY	04/07/22 11:16	04/07/22

Project Name: 965 MAMARONECK AVENUE Lab Number: L2218096

Project Number: 965 **Report Date:** 04/20/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name: 965 MAMARONECK AVENUE Lab Number: L2218096
Project Number: 965 Report Date: 04/20/22

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 6, 2022. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Christopher J. Anderson

Authorized Signature:

Title: Technical Director/Representative Date: 04/20/22

AIR

04/07/22 11:16

Not Specified

04/07/22

Lab Number:

Date Collected:

Date Received:

Field Prep:

Project Name: 965 MAMARONECK AVENUE

Project Number: 965 Report Date:

04/20/22

SAMPLE RESULTS

Lab ID: L2218096-01

Client ID: AA-3

Sample Location: MAMARONECK, NY

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15 Analytical Date: 04/19/22 18:19

Analyst: TS

		ppbV		ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mar	nsfield Lab							
Dichlorodifluoromethane	0.535	0.200		2.65	0.989			1
Chloromethane	0.572	0.200		1.18	0.413			1
Freon-114	ND	0.200		ND	1.40			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	2.01	1.00		4.77	2.38			1
Trichlorofluoromethane	0.201	0.200		1.13	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1

Project Name: 965 MAMARONECK AVENUE Lab Number:

Project Number: 965 Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2218096-01

Client ID: AA-3

Sample Location: MAMARONECK, NY

Date Collected: 04/07/22 11:16

Date Received: 04/07/22 Field Prep: Not Specified

			ug/m3		Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfi	eld Lab							
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Benzene	ND	0.200		ND	0.639			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
o/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1

Project Name: 965 MAMARONECK AVENUE Lab Number:

Project Number: 965 Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: L2218096-01

Client ID: AA-3

Sample Location: MAMARONECK, NY

Date Collected: 04/07/22 11:16

Date Received: 04/07/22 Field Prep: Not Specified

		ppbV				ug/m3			
Parameter	Results	Results RL MDL Res		Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air - Mar	nsfield Lab								
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1	
Benzyl chloride	ND	0.200		ND	1.04			1	
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1	
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1	
Hexachlorobutadiene	ND	0.200		ND	2.13			1	

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	85		60-140
Bromochloromethane	92		60-140
chlorobenzene-d5	87		60-140

Project Name: 965 MAMARONECK AVENUE Lab Number: L2218096

Project Number: 965 Report Date: 04/20/22

SAMPLE RESULTS

Lab ID: Date Collected: 04/07/22 11:16

Client ID: AA-3 Date Received: 04/07/22

Sample Location: MAMARONECK, NY Field Prep: Not Specified

Sample Depth:

Matrix: Air

Analytical Method: 48,TO-15-SIM Analytical Date: 04/19/22 18:19

Analyst: TS

		ug/m3				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM - I	Mansfield Lab							
Vinyl chloride	ND	0.020		ND	0.051			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Carbon tetrachloride	0.085	0.020		0.535	0.126			1
Trichloroethene	ND	0.020		ND	0.107			1
Tetrachloroethene	ND	0.020		ND	0.136			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-difluorobenzene	84		60-140
bromochloromethane	92		60-140
chlorobenzene-d5	87		60-140

Project Name: 965 MAMARONECK AVENUE **Lab Number:** L2218096

Project Number: 965 Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15-SIM Analytical Date: 04/19/22 16:32

		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor	
Volatile Organics in Air by SII	M - Mansfield Lab f	or sample	e(s): 01 E	Batch: WG1	628871-4				
Vinyl chloride	ND	0.020		ND	0.051			1	
1,1-Dichloroethene	ND	0.020		ND	0.079			1	
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1	
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1	
Carbon tetrachloride	ND	0.020		ND	0.126			1	
Trichloroethene	ND	0.020		ND	0.107			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	

Project Name: 965 MAMARONECK AVENUE **Lab Number:** L2218096

Project Number: 965 Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV			Dilution			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	Lab for samp	ole(s): 01	Batch:	WG1628883-	4			
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1

L2218096

Project Name: 965 MAMARONECK AVENUE Lab Number:

Project Number: 965 Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV				Dilution		
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield	d Lab for samp	ole(s): 01	Batch:	WG1628883-	4			
Tetrahydrofuran	ND	0.500		ND	1.47			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
Trichloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Heptane	ND	0.200		ND	0.820			1
cis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
4-Methyl-2-pentanone	ND	0.500		ND	2.05			1
trans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
1,1,2-Trichloroethane	ND	0.200		ND	1.09			1
Toluene	ND	0.200		ND	0.754			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
1,2-Dibromoethane	ND	0.200		ND	1.54			1
Tetrachloroethene	ND	0.200		ND	1.36			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
p/m-Xylene	ND	0.400		ND	1.74			1

Project Name: 965 MAMARONECK AVENUE **Lab Number:** L2218096

Project Number: 965 Report Date: 04/20/22

Method Blank Analysis Batch Quality Control

Analytical Method: 48,TO-15 Analytical Date: 04/19/22 15:54

		ppbV			ug/m3	_	Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mans	field Lab for samp	ole(s): 01	Batch:	WG1628883-	-4			
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1
o-Xylene	ND	0.200		ND	0.869			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Lab Control Sample Analysis Batch Quality Control

Project Name: 965 MAMARONECK AVENUE

Project Number: 965

Lab Number:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics in Air by SIM - Mansfield Lab	Associated sa	ample(s): 01	Batch: WG162	28871-3					
Vinyl chloride	74		-		70-130	-		25	
1,1-Dichloroethene	86		-		70-130	-		25	
cis-1,2-Dichloroethene	70		-		70-130	-		25	
1,1,1-Trichloroethane	87		-		70-130	-		25	
Carbon tetrachloride	90		-		70-130	-		25	
Trichloroethene	80		-		70-130	-		25	
Tetrachloroethene	80		-		70-130	-		25	

Lab Control Sample Analysis Batch Quality Control

Project Name: 965 MAMARONECK AVENUE

Project Number: 965

Lab Number: L2218096

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
/olatile Organics in Air - Mansfield Lab	Associated sample(s):	01 Batch	: WG1628883-3					
Dichlorodifluoromethane	81		-		70-130	-		
Chloromethane	80		-		70-130	-		
Freon-114	80		-		70-130	-		
Vinyl chloride	78		-		70-130	-		
1,3-Butadiene	88		-		70-130	-		
Bromomethane	74		-		70-130	-		
Chloroethane	79		-		70-130	-		
Ethanol	119		-		40-160	-		
Vinyl bromide	88		-		70-130	-		
Acetone	103		-		40-160	-		
Trichlorofluoromethane	84		-		70-130	-		
Isopropanol	98		-		40-160	-		
1,1-Dichloroethene	95		-		70-130	-		
Tertiary butyl Alcohol	102		-		70-130	-		
Methylene chloride	114		-		70-130	-		
3-Chloropropene	107		-		70-130	-		
Carbon disulfide	118		-		70-130	-		
Freon-113	92		-		70-130	-		
trans-1,2-Dichloroethene	81		-		70-130	-		
1,1-Dichloroethane	80		-		70-130	-		
Methyl tert butyl ether	84		-		70-130	-		
2-Butanone	92		-		70-130	-		
cis-1,2-Dichloroethene	76		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 965 MAMARONECK AVENUE

Project Number: 965

Lab Number: L2218096

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
Volatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	: 01 Batch	n: WG1628883-3					
Ethyl Acetate	91		-		70-130	-		
Chloroform	85		-		70-130	-		
Tetrahydrofuran	87		-		70-130	-		
1,2-Dichloroethane	77		-		70-130	-		
n-Hexane	101		-		70-130	-		
1,1,1-Trichloroethane	91		-		70-130	-		
Benzene	87		-		70-130	-		
Carbon tetrachloride	96		-		70-130	-		
Cyclohexane	99		-		70-130	-		
1,2-Dichloropropane	89		-		70-130	-		
Bromodichloromethane	108		-		70-130	-		
1,4-Dioxane	96		-		70-130	-		
Trichloroethene	86		-		70-130	-		
2,2,4-Trimethylpentane	103		-		70-130	-		
Heptane	105		-		70-130	-		
cis-1,3-Dichloropropene	96		-		70-130	-		
4-Methyl-2-pentanone	107		-		70-130	-		
trans-1,3-Dichloropropene	83		-		70-130	-		
1,1,2-Trichloroethane	90		-		70-130	-		
Toluene	79		-		70-130	-		
2-Hexanone	101		-		70-130	-		
Dibromochloromethane	104		-		70-130	-		
1,2-Dibromoethane	88		-		70-130	-		

Lab Control Sample Analysis Batch Quality Control

Project Name: 965 MAMARONECK AVENUE

Project Number: 965

Lab Number: L2218096

arameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
olatile Organics in Air - Mansfield Lab Asso	ociated sample(s)	01 Bat	ch: WG1628883-3					
Tetrachloroethene	83		-		70-130	-		
Chlorobenzene	87		-		70-130	-		
Ethylbenzene	82		-		70-130	-		
p/m-Xylene	84		-		70-130	-		
Bromoform	105		-		70-130	-		
Styrene	84		-		70-130	-		
1,1,2,2-Tetrachloroethane	93		-		70-130	-		
o-Xylene	88		-		70-130	-		
4-Ethyltoluene	94		-		70-130	-		
1,3,5-Trimethylbenzene	88		-		70-130	-		
1,2,4-Trimethylbenzene	92		-		70-130	-		
Benzyl chloride	108		-		70-130	-		
1,3-Dichlorobenzene	88		-		70-130	-		
1,4-Dichlorobenzene	86		-		70-130	-		
1,2-Dichlorobenzene	85		-		70-130	-		
1,2,4-Trichlorobenzene	79		-		70-130	-		
Hexachlorobutadiene	80		-		70-130	-		

965 MAMARONECK AVENUE L2218096

Project Number: 965 Report Date: 04/20/22

Canister and Flow Controller Information

Samplenum	Client ID	Media ID	Media Type	Date Prepared	Bottle Order	Cleaning Batch ID	Can Leak Check	Initial Pressure (in. Hg)	Pressure on Receipt (in. Hg)	Flow Controler Leak Chk	Flow Out mL/min	Flow In mL/min	% RPD
L2218096-01	AA-3	0097	Flow 5	04/06/22	382662		-	-	-	Pass	3.0	2.7	11
L2218096-01	AA-3	1821	6.0L Can	04/06/22	382662	L2216233-03	Pass	-29.5	-4.2	-	-	-	-

Project Name:

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air Anaytical Method: 48,TO-15 Analytical Date: 03/30/22 20:03

Analyst: RY

		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab	1							
Chlorodifluoromethane	ND	0.200		ND	0.707			1
Propylene	ND	0.500		ND	0.861			1
Propane	ND	0.500		ND	0.902			1
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.200		ND	1.40			1
Methanol	ND	5.00		ND	6.55			1
Vinyl chloride	ND	0.200		ND	0.511			1
1,3-Butadiene	ND	0.200		ND	0.442			1
Butane	ND	0.200		ND	0.475			1
Bromomethane	ND	0.200		ND	0.777			1
Chloroethane	ND	0.200		ND	0.528			1
Ethanol	ND	5.00		ND	9.42			1
Dichlorofluoromethane	ND	0.200		ND	0.842			1
Vinyl bromide	ND	0.200		ND	0.874			1
Acrolein	ND	0.500		ND	1.15			1
Acetone	ND	1.00		ND	2.38			1
Acetonitrile	ND	0.200		ND	0.336			1
Trichlorofluoromethane	ND	0.200		ND	1.12			1
Isopropanol	ND	0.500		ND	1.23			1
Acrylonitrile	ND	0.500		ND	1.09			1
Pentane	ND	0.200		ND	0.590			1
Ethyl ether	ND	0.200		ND	0.606			1
1,1-Dichloroethene	ND	0.200		ND	0.793			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Затріє Беріп.		ppbV			ug/m3			Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Tertiary butyl Alcohol	ND	0.500		ND	1.52			1
Methylene chloride	ND	0.500		ND	1.74			1
3-Chloropropene	ND	0.200		ND	0.626			1
Carbon disulfide	ND	0.200		ND	0.623			1
Freon-113	ND	0.200		ND	1.53			1
trans-1,2-Dichloroethene	ND	0.200		ND	0.793			1
1,1-Dichloroethane	ND	0.200		ND	0.809			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
Vinyl acetate	ND	1.00		ND	3.52			1
Xylenes, total	ND	0.600		ND	0.869			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.200		ND	0.793			1
Ethyl Acetate	ND	0.500		ND	1.80			1
Chloroform	ND	0.200		ND	0.977			1
Tetrahydrofuran	ND	0.500		ND	1.47			1
2,2-Dichloropropane	ND	0.200		ND	0.924			1
1,2-Dichloroethane	ND	0.200		ND	0.809			1
n-Hexane	ND	0.200		ND	0.705			1
Diisopropyl ether	ND	0.200		ND	0.836			1
tert-Butyl Ethyl Ether	ND	0.200		ND	0.836			1
1,2-Dichloroethene (total)	ND	1.00		ND	1.00			1
1,1,1-Trichloroethane	ND	0.200		ND	1.09			1
1,1-Dichloropropene	ND	0.200		ND	0.908			1
Benzene	ND	0.200		ND	0.639			1
Carbon tetrachloride	ND	0.200		ND	1.26			1
Cyclohexane	ND	0.200		ND	0.688			1
tert-Amyl Methyl Ether	ND	0.200		ND	0.836			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

	ppbV				ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield Lab)							
Dibromomethane	ND	0.200		ND	1.42			1
1,2-Dichloropropane	ND	0.200		ND	0.924			1
Bromodichloromethane	ND	0.200		ND	1.34			1
1,4-Dioxane	ND	0.200		ND	0.721			1
richloroethene	ND	0.200		ND	1.07			1
2,2,4-Trimethylpentane	ND	0.200		ND	0.934			1
Methyl Methacrylate	ND	0.500		ND	2.05			1
Heptane	ND	0.200		ND	0.820			1
sis-1,3-Dichloropropene	ND	0.200		ND	0.908			1
I-Methyl-2-pentanone	ND	0.500		ND	2.05			1
rans-1,3-Dichloropropene	ND	0.200		ND	0.908			1
,1,2-Trichloroethane	ND	0.200		ND	1.09			1
oluene	ND	0.200		ND	0.754			1
,3-Dichloropropane	ND	0.200		ND	0.924			1
2-Hexanone	ND	0.200		ND	0.820			1
Dibromochloromethane	ND	0.200		ND	1.70			1
,2-Dibromoethane	ND	0.200		ND	1.54			1
Butyl acetate	ND	0.500		ND	2.38			1
Octane	ND	0.200		ND	0.934			1
Tetrachloroethene	ND	0.200		ND	1.36			1
,1,1,2-Tetrachloroethane	ND	0.200		ND	1.37			1
Chlorobenzene	ND	0.200		ND	0.921			1
Ethylbenzene	ND	0.200		ND	0.869			1
/m-Xylene	ND	0.400		ND	1.74			1
Bromoform	ND	0.200		ND	2.07			1
Styrene	ND	0.200		ND	0.852			1
1,1,2,2-Tetrachloroethane	ND	0.200		ND	1.37			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Запріє Беріп.	ppbV			ug/m3				Dilution
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air - Mansfield La	b							
o-Xylene	ND	0.200		ND	0.869			1
1,2,3-Trichloropropane	ND	0.200		ND	1.21			1
Nonane	ND	0.200		ND	1.05			1
Isopropylbenzene	ND	0.200		ND	0.983			1
Bromobenzene	ND	0.200		ND	0.793			1
2-Chlorotoluene	ND	0.200		ND	1.04			1
n-Propylbenzene	ND	0.200		ND	0.983			1
4-Chlorotoluene	ND	0.200		ND	1.04			1
4-Ethyltoluene	ND	0.200		ND	0.983			1
1,3,5-Trimethylbenzene	ND	0.200		ND	0.983			1
tert-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trimethylbenzene	ND	0.200		ND	0.983			1
Decane	ND	0.200		ND	1.16			1
Benzyl chloride	ND	0.200		ND	1.04			1
1,3-Dichlorobenzene	ND	0.200		ND	1.20			1
1,4-Dichlorobenzene	ND	0.200		ND	1.20			1
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.200		ND	1.20			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2-Dibromo-3-chloropropane	ND	0.200		ND	1.93			1
Undecane	ND	0.200		ND	1.28			1
Dodecane	ND	0.200		ND	1.39			1
1,2,4-Trichlorobenzene	ND	0.200		ND	1.48			1
Naphthalene	ND	0.200		ND	1.05			1
1,2,3-Trichlorobenzene	ND	0.200		ND	1.48			1
Hexachlorobutadiene	ND	0.200		ND	2.13			1

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2216233

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: Client ID: CAN 1821 SHELF 41

Date Received: 03/30/22 Field Prep: Not Specified

03/29/22 18:00

Sample Location:

Sample Depth:

ppbV ug/m3 Dilution Factor RLResults RL MDL Qualifier **Parameter** Results MDL

Volatile Organics in Air - Mansfield Lab

Dilution **Factor** Results Qualifier Units RDL

Tentatively Identified Compounds

No Tentatively Identified Compounds

Internal Standard	% Recovery	Qualifier	Acceptance Criteria
1,4-Difluorobenzene	95		60-140
Bromochloromethane	97		60-140
chlorobenzene-d5	92		60-140

L2216233

Project Name: BATCH CANISTER CERTIFICATION Lab Number:

Project Number: CANISTER QC BAT Report Date: 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location:

Field Prep: Not Specified

Sample Depth:

Matrix: Air

Anaytical Method: 48,TO-15-SIM Analytical Date: 03/30/22 20:03

Analyst: RY

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
Dichlorodifluoromethane	ND	0.200		ND	0.989			1
Chloromethane	ND	0.200		ND	0.413			1
Freon-114	ND	0.050		ND	0.349			1
Vinyl chloride	ND	0.020		ND	0.051			1
1,3-Butadiene	ND	0.020		ND	0.044			1
Bromomethane	ND	0.020		ND	0.078			1
Chloroethane	ND	0.100		ND	0.264			1
Acrolein	ND	0.050		ND	0.115			1
Acetone	ND	1.00		ND	2.38			1
Trichlorofluoromethane	ND	0.050		ND	0.281			1
Acrylonitrile	ND	0.500		ND	1.09			1
1,1-Dichloroethene	ND	0.020		ND	0.079			1
Methylene chloride	ND	0.500		ND	1.74			1
Freon-113	ND	0.050		ND	0.383			1
trans-1,2-Dichloroethene	ND	0.020		ND	0.079			1
1,1-Dichloroethane	ND	0.020		ND	0.081			1
Methyl tert butyl ether	ND	0.200		ND	0.721			1
2-Butanone	ND	0.500		ND	1.47			1
cis-1,2-Dichloroethene	ND	0.020		ND	0.079			1
Chloroform	ND	0.020		ND	0.098			1
1,2-Dichloroethane	ND	0.020		ND	0.081			1
1,1,1-Trichloroethane	ND	0.020		ND	0.109			1
Benzene	ND	0.100		ND	0.319			1
Carbon tetrachloride	ND	0.020		ND	0.126			1

L2216233

Lab Number:

Project Name: BATCH CANISTER CERTIFICATION

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received: 03/30/22

Sample Location: Field Prep: Not Specified

Sample Depth:		ppbV				ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Dilution Factor	
Volatile Organics in Air by SIM	- Mansfield Lab								
1,2-Dichloropropane	ND	0.020		ND 0.092				1	
Bromodichloromethane	ND	0.020		ND	0.134			1	
1,4-Dioxane	ND	0.100		ND	0.360			1	
Trichloroethene	ND	0.020		ND	0.107			1	
cis-1,3-Dichloropropene	ND	0.020		ND	ND 0.091			1	
4-Methyl-2-pentanone	ND	0.500		ND 2.05				1	
rans-1,3-Dichloropropene	ND	0.020		ND	ND 0.091			1	
1,1,2-Trichloroethane	ND	0.020		ND	0.109			1	
Toluene	ND	0.100		ND	0.377			1	
Dibromochloromethane	ND	0.020		ND	0.170			1	
1,2-Dibromoethane	ND	0.020		ND	0.154			1	
Tetrachloroethene	ND	0.020		ND	0.136			1	
1,1,1,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
Chlorobenzene	ND	0.100		ND	0.461			1	
Ethylbenzene	ND	0.020		ND	0.087			1	
o/m-Xylene	ND	0.040		ND	0.174			1	
Bromoform	ND	0.020		ND	0.207			1	
Styrene	ND	0.020		ND	0.085			1	
1,1,2,2-Tetrachloroethane	ND	0.020		ND	0.137			1	
o-Xylene	ND	0.020		ND	0.087			1	
Isopropylbenzene	ND	0.200		ND	0.983			1	
4-Ethyltoluene	ND	0.020		ND	0.098			1	
1,3,5-Trimethybenzene	ND	0.020		ND	0.098			1	
1,2,4-Trimethylbenzene	ND	0.020		ND	0.098			1	
Benzyl chloride	ND	0.100		ND	0.518			1	
1,3-Dichlorobenzene	ND	0.020		ND	0.120			1	
1,4-Dichlorobenzene	ND	0.020		ND	0.120			1	

Project Name: Lab Number: **BATCH CANISTER CERTIFICATION** L2216233

Project Number: CANISTER QC BAT **Report Date:** 04/20/22

Air Canister Certification Results

Lab ID: L2216233-03

Date Collected: 03/29/22 18:00 Client ID: CAN 1821 SHELF 41 Date Received:

03/30/22 Sample Location: Field Prep: Not Specified

		ppbV			ug/m3		Dilution	
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	Factor
Volatile Organics in Air by SIM	- Mansfield Lab							
sec-Butylbenzene	ND	0.200		ND	1.10			1
p-Isopropyltoluene	ND	0.200		ND	1.10			1
1,2-Dichlorobenzene	ND	0.020		ND	0.120			1
n-Butylbenzene	ND	0.200		ND	1.10			1
1,2,4-Trichlorobenzene	ND	0.050		ND	0.371			1
Naphthalene	ND	0.050		ND	0.262			1
1,2,3-Trichlorobenzene	ND	0.050		ND	0.371			1
Hexachlorobutadiene	ND	0.050		ND	0.533			1

Internal Standard	% Recovery	Qualifier	Acceptance Criteria		
1,4-difluorobenzene	94		60-140		
bromochloromethane	97		60-140		
chlorobenzene-d5	92		60-140		

Lab Number: L2218096

Project Name: 965 MAMARONECK AVENUE Project Number: 965

Report Date: 04/20/22

Sample Receipt and Container Information

YES Were project specific reporting limits specified?

Cooler Information

Custody Seal Cooler

NA Absent

Container Information			Initial	Final	Temp			Frozen		
Container ID	Container Type	Cooler	рН	pН	deg C	Pres	Seal	Date/Time	Analysis(*)	
L2218096-01A	Canister - 6 Liter	NA	NA			Υ	Absent		TO15-LL(30).TO15-SIM(30)	

Project Name: Lab Number: 965 MAMARONECK AVENUE L2218096 **Report Date: Project Number:** 965 04/20/22

GLOSSARY

Acronyms

LOD

LOQ

MS

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments

from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

- Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

- Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats

MDI - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

> - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile

Organic TIC only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEO - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF

and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: Data Usability Report

Project Name: 965 MAMARONECK AVENUE Lab Number: L2218096
Project Number: 965
Report Date: 04/20/22

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

1

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benz(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA, this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte was detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- J Estimated value. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- **ND** Not detected at the reporting limit (RL) for the sample.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where

Report Format: Data Usability Report

Project Name:965 MAMARONECK AVENUELab Number:L2218096Project Number:965Report Date:04/20/22

Data Qualifiers

the identification is based on a mass spectral library search.

- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits.
 (Applicable to MassDEP DW Compliance samples only.)

Report Format: Data Usability Report

Project Name:965 MAMARONECK AVENUELab Number:L2218096Project Number:965Report Date:04/20/22

REFERENCES

Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air. Second Edition. EPA/625/R-96/010b, January 1999.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide
Department: Quality Assurance

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873

Revision 19 Published Date: 4/2/2021 1:14:23 PM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624/624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625/625.1: alpha-Terpineol

EPA 8260C/8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: lodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene;

4-Ethyltoluene.

EPA 8270D/8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility

SM 2540D: TSS

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kjeldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics.

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. **EPA 200.8:** Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. **EPA 245.1** Hg. **EPA 522, EPA 537.1.**

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Alau a		NALY	SIS	P	AGE	OF	Date R	ec'd in La	b: 4	18	122	_	A	LPH/	Job	#: L221	3096
320 Forbes Blvd, Man	CHAIN OF CUSTODY		Informat	tion	12 30		Repo	rt Inform	ation -	Data	Delivera	bles	E	illing	Inform	nation	100
TEL: 508-822-9300		Project N	ame: 969	Mama	onede	Avene	□ FAX	<					A	Same	as Clie	nt info PO#:	
Client Information	Carried to	Project Lo	ocation:	uamas	week. N	7	U AD		aakar								
Client: Tenen	Env.	Project #:		65		,	7 2	Criteria Che (Default base		latory Cri	iteria Indicat	ed)					
Address:		Project M		A. Can	all			Other Form AIL (stand		renort)			E	egula	tory F	Requirements	Report Limits
		ALPHA C	ALTERNATION AND	-1, C., .			_	ditional Del	liverable	1 -1 -1 -1				ate/Fe		Program	Res / Comm
Phone:		Turn-A	round Ti	me	3200	1835	Report	to: (if differen		t Manager)	į.			υys	В	LP	
Fax:							_					_	-				
Email: aplatt, aca	imile tenen-env.con	☐ Standa	rd [RUSH (anly	confirmed if pre-ay	oproved!)				_			-	^	NALY	/919	
Other Project Spe	been previously analyzed by Alph ecific Requirements/Con Farget Compound List:	nments:	3 :		Time:								//	7 7	9/	8///	
ALPHA Lab ID (Lab Use Only)	Sample ID	III Col	co	S Be	M		Sample	Sampler's	Can	ID	I D - Flow	70.75	70.15 SIM	Fixed Gase	Sufficies & Mercapy	/	1 # BIS
18096-01	PA -3	4/1/22	-	III b	-30.08		Matrix*	Initials	6 L	Can	Controlle	4	~	14/	11	Sample Con	nments (i.e. PID)
	/	((*())	0010	1110	70.00	0.11	ич	NYL	0 2	104	004		+				
		-		-							-	+	+		+++		
		-			-							\vdash	+		-		
												Ш					
												П					
												\Box					
													+				
*SAMPLE	MATRIX CODES	AA = Ambien SV = Soil Vap Other = Please	or/Landfill					С	ontaine	г Туре		Ö	+			completely. Sa	arly, legibly and mples can not be
age 33 of 33	عِلا	Relinguis	shed By:	44,	1 1	e/Time	Qu	Recei	ved By:	146		1/2/	Date/	1	315	guities are reso submitted are s	art until any ambi- ived. All samples ubject to Alpha's

DATA USABILITY SUMMARY REPORT (DUSR)

ORGANIC ANALYSIS

EPA Compendium Method TO-15
LOW LEVEL VOLATILES BY GC/MS
For Soil Vapor and Ambient Air Samples
Collected April 06, 2022, and April 07, 2022
From 965 Mamaroneck Avenue, Mamaroneck, New York
by Tenen Environmental

SAMPLE DELIVERY GROUP NUMBERs: L2217981 and L2218096 Alpha Analytical (ELAP #11148)

SUBMITTED TO:

Ms. Ashley Platt Tenen Environmental 121 West 27th Street, Suite 702 New York, NY 10001

April 24, 2022

PREPARED BY:

Lori A. Beyer/President L.A.B. Validation Corp. 14 West Point Drive East Northport, NY 11731

four a Beyon

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

965 Mamaroneck Avenue, Mamaroneck, New York; April 2022 Data Validation Report: Volatile Organics by EPA Method TO15

Table of Contents:

Introduction

Data Qualifier Definitions

Sample Receipt

- 1.0 Volatile Organics by GC/MS EPA Compendium Method TO-15
 - 1.1 Holding Time
 - 1.2 Surrogate Standards
 - 1.3 Matrix Spikes (MS), Matrix Spike Duplicates (MSD), Laboratory Duplicate, Field Duplicate Analysis
 - 1.4 Laboratory Control Sample
 - 1.5 Blank Contamination
 - 1.6 GC/MS Instrument Performance Check
 - 1.7 Initial and Continuing Calibrations
 - 1.8 Internal Standards
 - 1.9 Target Compound List Identification
 - 1.10 Tentatively Identified Compounds
 - 1.11 Compound Quantification and Reported Detection Limits
 - 1.12 Overall System Performance

APPENDICES:

- A. Chain of Custody Documents and Sample Receipt Checklist
- B. Case Narratives
- C. Data Summary Form Is with Qualifications

Introduction:

A validation was performed on soil vapor and ambient air samples for Volatile Organic analysis collected by Tenen Environmental and submitted to Alpha Analytical for subsequent analysis under chain of custody documentation. This report contains the laboratory and validation results for the field samples itemized below. The samples were collected on April 06, 2022, and April 07, 2022.

The samples were analyzed by Alpha Analytical utilizing EPA Method TO-15 and in accordance with NYSDEC Analytical Services Protocol (2005) and submitted under NYSDEC ASP Category B equivalent deliverable requirements for the associated analytical methodology employed. The analytical testing consisted of the TO-15 Compound List. Ambient Air samples were also analyzed by Selective Ion Monitoring (SIM) techniques for select chlorinated compounds to achieve NYSDOH Guidance Value reporting levels.

The data was evaluated in accordance with the USEPA Contract Laboratory Program National Functional Guidelines for Organic Data Review (Publication 9240.1-05), EPA SOP #HW31 (Revision 6-Updated September 2016) and in conjunction with the analytical methodology for which the samples were analyzed, where applicable and relevant.

The data validation report pertains to the following air samples:

Sample Identification	Laboratory	Sample Matrix	Collection Date
	Identification	(Air Type)	
955M SV-1	L2217981-01	Soil Vapor	04/06/2022
955 IA-1	L2217981-02	Indoor Air	04/06/2022
955M IA-2	L2217981-03	Indoor Air	04/07/2022
955M SV-2	L2217981-04	Soil Vapor	04/07/2022
955M_IA-3	L2217981-05	Indoor Air	04/07/2022
AA-3	L2218096-01	Ambient Air	04/07/2022

Data Qualifier Definitions:

The following definitions provide brief explanations of the qualifiers assigned to results in the data review process.

- U The analyte was analyzed for but was not detected above the reported sample quantitation limit.
- J The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
- J+ The result is an estimated quantity, but the result may be biased high.
- J- The result is an estimated quantity, but the result may be biased low.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- UJ The analyte was analyzed for but not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.
- Analyte concentration was obtained from diluted analysis.

Sample Receipt:

The Chain of Custody documents indicates that the air samples were received on the same day following completion of the sampling event via laboratory courier. Sample login notes and the chain of custody indicate that at the Validated Time of Sample Receipt (VTSR) at the laboratory no discrepancies were notated and therefore the integrity of the summa canister samples is assumed to be good.

Summa Canisters were leak tested prior to collection of each sample. Initial pressure gauge is recorded on the chain of custody and is required to be approximately 30 psi with zero air. Acceptable canister pressure was observed for these samples. All canisters pass the leak check requirements.

The data summary Form I's included in Appendix C includes all usable (qualified) and unusable (rejected) results for the samples identified above and summarize the detailed narrative section of the report. Data validation qualifications have been reported on the Form I's for ease of review and verification.

NOTE:

L.A.B. Validation Corp. believes it is appropriate to note that the data validation criteria utilized for data evaluation is different than the method requirements utilized by the laboratory. Qualified data does not necessarily mean that the laboratory was non-compliant in the analysis that was performed.

1.0 Volatile Organics by EPA Compendium Method TO-15

The following method criteria were reviewed: holding times, surrogate standards, LCS, Blanks, Laboratory Duplicate, Tunes, Calibrations, Internal Standards, Target Component Identification and Quantitation, Reported Quantitation Limits and Overall System Performance. The volatile results are valid and useable as noted on the data summary table in Appendix C and within the following text:

1.1 Holding Time

The amount of an analyte in a sample can change with time due to chemical instability, degradation, volatilization, etc. If the technical holding time is exceeded, the data may not be considered valid. Those analytes detected in the samples whose holding time has been exceeded will be qualified as estimates, "J". The non-detects (sample quantitation limits) are required to be flagged as estimated, "J", or unusable, "R", if the holding times are grossly exceeded.

Ambient Air samples were analyzed within the method and technical required holding times of thirty (30) days from sample collection for analysis. No qualifications were required based upon holding time criteria.

1.2 Surrogate Standards

All samples are spiked with surrogate compounds prior to sample analysis to evaluate overall laboratory performance and efficiency of the analytical technique. If the measure of surrogate concentrations is outside contract

specifications, qualifications are required to be applied to associated samples and analytes.

Samples were not spiked with surrogate standards. Method TO15 does not mandate the addition of surrogate standards.

1.3 Matrix Spikes (MS)/ Matrix Spike Duplicates (MSD)/Laboratory Duplicate /Field Duplicate Analysis

The MS/MSD data are generated to determine the long-term precision and accuracy of the analytical method in various matrices.

Matrix Spike/Matrix Spike Duplicate analysis was not performed on samples pertaining to this SDG. Batch Laboratory duplicate was provided in the lab report. Precision is acceptable and all detected analytes are below laboratory criteria of 25%. No qualifications are required based on laboratory duplicate analysis based on samples collected from a different site.

Field Duplicate analysis was not required for this sampling event. When performed, acceptable precision for air samples is 25%. The following criteria are utilized for Field/Lab Duplicate

analysis when performed:

Criteria	Detected Compounds	Non-Detected Compounds
The RPD is within the limits of 0 and 25%	No qualification	No qualification
The RPD >25%	J in the parent and duplicate samples	Not applicable
The RPD could not be calculated since the compound was only detected in either the parent of duplicate sample. However, the detected concentration was =2x the reporting limit</td <td>No qualification</td> <td>No qualification</td>	No qualification	No qualification
The RPD could not be calculated since the compound was only detected in either the parent or duplicate sample However, the detected concentration was >2x the reporting limit.	J in the parent and duplicate sample	UJ in the parent of duplicate sample

No qualifications to the data were applied based on MS/MSD/Laboratory Duplicate or Field Duplicate analysis.

1.4 Laboratory Control Sample

The LCS data for laboratory control samples (LCS) are generated to provide information on the accuracy of the analytical method and on the laboratory performance.

The following table summarizes the LCS criteria and the data qualification guidelines for all associated

field samples.

LCS	NOT QUALIFIED	J	R
% Recovery:			
Detects	70-130%	<70%,>130%	
Non-Detects	>/=130%	50-69%	<50%
Absolute RT of LCS			
Compounds:			
LCS Compounds in	+/-0 .33		>/=0.33
samples RT: (min)			

Acceptable LCS was analyzed pertaining to this sampling event. Recovery values for all spiked compounds was determined to be >70%-<130% for all analytes.

1.5 Blank Contamination

- The State of

Quality assurance (QA) blanks, i.e., method, trip and field blanks are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Trip blanks measure cross-contamination of samples during shipment. Field blanks measure cross-contamination of samples during field operations. Storage blanks measure cross-contamination during sample storage of the field samples and are not required for TO15 analysis. Canister blanks measure cross-contamination from the sampling media.

The following table was utilized to qualify target analyte results due to method blank contamination. The largest value from all the associated blanks is required to be utilized. The largest value from all the associated blanks is required to be utilized:

Blank Type	Blank Result	Sample Result	Action for Samples
Method, Storage,	Detects	Not Detected	No qualification required
field, Trip,	<crql*< td=""><td><crql*< td=""><td>Report CRQL value with a U</td></crql*<></td></crql*<>	<crql*< td=""><td>Report CRQL value with a U</td></crql*<>	Report CRQL value with a U
Instrument		>/= CRQL* and $<2x$	No qualification required
		the CRQL**	
	>CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>/=CRQL* and =</td <td>Report blank value for sample</td>	Report blank value for sample
		blank concentration	concentration with a U
		>/= CRQL* and >	No qualification required
		blank concentration	
	=CRQL*	= CRQL*</td <td>Report CRQL value with a U</td>	Report CRQL value with a U
		>CRQL*	No qualification required
	Gross	Detects	Report blank value for sample
	Contamination**		concentration with a U

^{*2}x the CRQL for methylene chloride, 2-butanone, and acetone.

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

The table below is utilized to qualify samples with target compound results also present in certification blanks:

Certification	Sample Result	Action for Sample
Contamination		
>/=detect limit	>5x certification	No qualification required
	contamination	
>/=detect limit	<detect limit<="" td=""><td>Detection limit "U"</td></detect>	Detection limit "U"
>/=detect limit	>/=detect limit and =</td <td>5x certification contamination "U"</td>	5x certification contamination "U"
	5x certification	
	contamination level	
<detect limit<="" td=""><td><!--=detection limit and</td--><td>No qualification</td></td></detect>	=detection limit and</td <td>No qualification</td>	No qualification
	>/= detection limit	

Below is a summary of the compounds in the sample and the associated qualifications that have been applied:

^{**4}x the CRQL for methylene chloride, 2-butanone, and acetone

^{***}Qualifications based on instrument blank results affect only the sample analyzed immediately after the sample that has target compounds that exceed the calibration range or non-target compounds that exceed 100 ug/L.

A) Method Blank Contamination:

Method and Canister blanks were determined to be free of any contamination.

*Acetone/Methylene Chloride and 2-Butanone are common laboratory contaminants. The end user should proceed with caution when making decisions based on the reported concentrations for these compounds since acetone and methylene chloride are solvents utilized in the organic extraction laboratory and could not be negated due to lack of presence in the corresponding blank.

B) Field Blank Contamination:

Field Blank analysis was not required.

C) Trip Blank Contamination:

Trip Blank analysis was not required.

1.6 GC/MS Instrument Performance Check

Tuning and performance criteria are established to ensure adequate mass resolution, proper identification of compounds and to some degree, sufficient instrument sensitivity. These criteria are not sample specific. Instrument performance is determined using standard materials. Therefore, these criteria should be met in all circumstances. The Tuning standard for volatile organics is Bromofluorobenzene (BFB).

Instrument performance was generated within acceptable limits and frequency (24 hours) for Bromofluorobenzene (BFB) for all analyses.

1.7 Initial and Continuing Calibrations

Satisfactory instrument calibration is established to ensure that the instrument can produce acceptable quantitative data. An initial calibration demonstrates that the instrument can give acceptable performance at the beginning of an experimental sequence.

The continuing calibration checks document that the instrument is giving satisfactory daily performance.

A) Response Factor GC/MS:

The response factor measures the instrument's response to specific chemical compounds. The response factor for all compounds must be >/= 0.05 in both initial and continuing calibrations. A value <0.05 indicates a serious detection and quantitation problem (poor sensitivity). Analytes detected in the sample will be qualified as estimated, "J". All non-detects for that compound in the corresponding samples will be rejected, "R".

The following compounds can be >0.01 without qualification:

2-Butanone

Carbon Disulfide

Chloroethane

Chloromethane

1,2-Dibromoethane

1,2-Dichloropropane

1,4-Dioxane

1,2-Dibromo-3-chloropropane

Methylene Chloride

Response factors for the target analytes reported were found to be within acceptable limits (>/=0.05) [or >/=0.01 for the 9 compounds above] and remaining analytes, for the initial and continuing calibrations.

B) Percent Relative Standard Deviation (%RSD) and Percent Difference (%D): Percent RSD is calculated from the initial calibration and is used to indicate the stability of the specific compound response factor over increasing concentrations. Percent D compares the response factor of the continuing calibration check to the mean response factor (RRF) from the initial calibration. Percent D is a measure of the instrument's daily performance. Percent RSD must be <30% and %D must be <30%. A value outside of these limits indicates potential detection and quantitation errors. For these reasons, all positive results are flagged as estimated, "J" and non-detects are flagged "UJ". If %RSD and %D grossly exceed QC criteria (>90%), non-detect data may be qualified, "R", unusable. Additionally, in cases where the %RSD is >30% and eliminating either the high or the low point of the curve does not restore the %RSD to less than or equal to 30% then positive results are qualified, "J". In cases where removal of either the low or high point restores the linearity, then only low or high-level results will be qualified, "J" in the portion of the curve where non-linearity exists. Acceptable ICV was analyzed.

Initial Calibrations: The initial calibrations provided and the %RSD was within acceptable limits (30%) and (40%) for poor responders for all requested target compounds. Initial calibration verification standard met QC requirements except for Tertiary Butyl Alcohol (31.3%). Results in all samples have been qualified, "J/UJ."

Continuing Calibrations: The continuing calibrations provided and the %D was within acceptable limits (30%) and (40%) for poor responders for all reported compounds except for Selective Ion Monitoring (SIM) calibration for cis-1,2-Dichloroethene (30.4%). Results in samples 955M IA-1, 955M IA-2, 955M IA-3, and AA-3 have been qualified, "UJ."

1.8 Internal Standards

Internal Standards (IS) performance criteria ensure that the GC/MS sensitivity and response are stable during every experimental run. The internal standard area count must not vary by more than a factor of 2 (-40% to +40%) from the associated continuing calibration standard. The retention time of the internal standard must not vary more than +/-20 seconds from the associated continuing calibration standard. If the area count is outside the (-40% to +40%) range of the associated standard, all positive results for compounds quantitated using that IS are qualified as estimated, "J", and all non-detects as "UJ", or "R" if there is a severe loss of sensitivity.

If an internal standard retention time varies by more than 20 seconds, professional judgment will be used to determine either partial or total rejection of the data for that sample fraction.

Internal Standard area responses met QC requirements for all analysis pertaining to this data set as compared to the continuing calibration.

1.9 Target Compound List Identification

TCL compounds are identified on the GC/MS by using the analyte's relative retention time (RRT) and by comparison to the ion spectra obtained from known standards. For the results to be a positive hit, the sample peak must be within =/-0.06RRT units of the standard compound and have an ion spectrum which has a ratio of the primary and secondary m/e intensities within 20% of that in the standard compound.

GC/MS spectra met the qualitative criteria for identification. Retention times were within required specifications.

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

1.10 Tentatively Identified Compounds (TICs)

TICs were not required for this project. When submitted, the identification must be considered tentative (both quantitative and qualitative) due to the lack of required compound specific response factors. Consequently, all concentrations should be considered estimated, "J" and because of the qualitative uncertainty should be qualified, "N" where an identification has been made.

TICs were not required with this data set. Sample chromatograms for 955M_SV-1, 955M_SV-2, and AA-3 demonstrate similar chromatographic patterns with late-eluting non-target presence.

1.11 Compound Quantification and Reported Detection Limits

GC/MS quantitative analysis are acceptable. Correct internal standards and response factors and air volumes were used to calculate final concentrations.

Sample results have been presented in ug/m3 as well as ppbv on the laboratory reporting forms. Ambient samples were initially analyzed undiluted at 250mls. 955M_IA_3 yielded Ethanol concentration above the high calibration limit. This sample was reanalyzed at 35mls (1:7.143 dilution). Initial results, qualified, "E" by the laboratory have been rejected, and the diluted value, qualified, "D" during the review to assist the end user to make decisions based on the diluted concentration within calibration range (3,470 ug/m3).

Ambient samples was a also analyzed by SIM (Selective Ion Monitoring) for select chlorinated compounds to achieve required NYSDOH action levels.

955M SV-1 and 955M SV-2 were analyzed at dilutions. Analysis is acceptable.

1.12 Overall System Performance

GC/MS analytical methodology was acceptable for this analysis. The data reported agrees with the raw data provided in the final reports. The laboratory provided complete data packages and reported all data using acceptable protocols and laboratory qualifiers as defined in the report package.

Reviewer's Signature Cou' O. Buy Date 04/24/2022

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

Appendix A
Chain of Custody Documents
And Sample Receipt Checklist

Client Teller End, Acres Manager M. COURT Project Information TEL SIDE SECRETOR FAX. SCHEZGES Client Information TEL SIDE SECRETOR FAX. SCHEZGES Client Information TEL SIDE SECRETOR FAX. SCHEZGES Project Location 465 House Cent. A. Chareful Manager M. M. M. M. Manager M.	Report Information - Data Deliverables Billing Information CI FAX Criteria Checker. Configurational Deliverables Configuration - Data Deliverables Criteria Checker. Configurational Checker. Configurational Deliverables Configurational Deli	ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS ANALYSIS Et al. 12 in From 6 and	62 824 11877 62 3623 01085 X 66 1855 01044 X 66 2268 0620 X 66 2268 02269 X 66 22081 01249 X	Container Type Completely, Samples can not b logged in and turneround time dock will not start until any and cheeved By:
CHAIN OF CUSTODY CHAIN OF CUSTODY Project Info FAX: 508-822-3288 Froject Name: FAX: 508-822-3288 Project Location FAX: 508-822-3288 Project Name: Project Location ALPHA Quote # ALPHA Quote #	Stron St	Time End Time Vacuum Matrix: Initials	1614 -2896-9.655V. 1624 -2896-9.655V. 1018 -3014-1067 AA. 1016 -3036-1249 S.V. 1017 -2036-1388 AA.	Date/Time
	STODY	been previously analyzed by Appta Date Due: been previously analyzed by Appta Date Due: been previously analyzed by Appta Date Due: acific Requirements/Comments: All Column Sample ID End Date Start	14.7 14.7 14.7 14.7 14.3	*

320 Forbes Bivd, Mansfield, MA 02048 TEL: 508-822-9300 FAX: 508-822-3288 Client Information	CHAIN OF CUSTODY	010	PAGE	4		Date Red	Date Rec'd in Lab: 4/8/22	h	8/2	2	APP	IA Jot	ALPHA JOB#: [221 3096	1308 i
nation	Project Name: 465 M	me: 465	Momentalecte		Admir	Report	Report Information - Data Deliverables	ion - Da	ta Delive	rables	B San	ig Infor	Billing Information Same as Client Info PO#	
	Project Location:	ation: M	Mamaraveel	, ~	1	DADEX								
Tenen Env.	Project #.	965	<u>ا</u>			5 =	(Default based on Regulatory Criteria Indicated)	on Regulator	y Criteria fedi	(paper				
	Project Manager		A. Canoll	3		DEMA	Other Formats: EMAIL (standard pdf report)	S: d pdf rep	out)		Regi	ulatory	Requirements	Regulatory Requirements/Report Limits
	ALPHA Quote #:					S Addit	M-Additional Deliverables:	erables:			State/Fed	Fed	Program	Res / Comm
	Turn-Ar	Turn-Around Time	ළා			Report	1	an Project ske	(Jedda)		ž		86	
Fax. Email: apostt, acamine town-em.con	☐ Standard		☐ RUSH (only conformed of pro	nethernal (formage	-							018 × 19 14 9	0.0.7	
These samples have been previously analyzed by Alpha	na Date Due:	10	.500	Time:								D	1110	
Uther Project Specific Requirements/Comments: Project-Specific Target Compound List: a	mments:											Of the Bridges	Ol Ag Ba	
	All Cott	Columns	L	Below Must	ust	Be F					WISSI	Sea & Mary Ball		
	End Date Start Time End Time Vacuum Vacuum	Start Time	End Time	Vacuum	Final	Sample Sampler's Matrix* Initials		Size	Can Controller	01	5/4	Suns	Sample	Comments (i.e. PID)
18096-01 PM-3	4/3/22	9190	9 111	-30.08-	-6.01	dud.	TON	119	thoo ngi	8				
								1		Ŧ				
									H					
									-					
						**************			-	F				
SAMPLE MATRIX CODES	AA = Ambient Air (Indoor/Outdoor) SV = Soil Vapor/Landfill Gas/SVE Other = Please Specify	Air (Indoor r/Landfill (Specify	Outdoor) as/SVE				8	Container Type	90.	S			Se par	it clearly, legibly and Samples can not be
	Refinguished By:	ned By:		Date/Time	Time	(Receiv	ed By:		i	Date/Time:		clock will not start un	
	2000 A	2	441	源	1831	J)	Land Contraction	3	77	KA A	200	315	10	submitted are subject to Apha's Terms and Conditions.

Sample Delivery Group Summary

Alpha Job Number: L2217981

Received Reviewer : 07-APR-2022 : Dylan Snook

Account Name

: Tenen Environmental, LLC

Project Number

Project Name

: 965 MAMARONECK AVE

Delivery Information

Samples Delivered By: Alpha Courier

Chain of Custody

: Present

Cooler Information

Seal/Seal# Cooler

Preservation

Temperature(°C) Additional Information

NA

Absent/

Condition Information

1) All samples on COC received?

YES

2) Extra samples received?

NO

3) Are there any sample container discrepancies?

NO

4) Are there any discrepancies between sample labels & COC?

L2217981-02: 955M_IA-1 vs. (Blank Client ID Label)

YES

5) Are samples in appropriate containers for requested analysis?

YES

6) Are samples properly preserved for requested analysis?

YES

7) Are samples within holding time for requested analysis?

YES

8) All sampling equipment returned?

YES

Volatile Organics/VPH

1) Reagent Water Vials Frozen by Client?

NA

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

Appendix B
Case Narratives

Project Name: 965 MAMARONECK AVE

Project Number: Not Specified

Case Narrative

Lab Number:

Report Date:

L2217981

04/20/22

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

965 MAMARONECK AVE

Project Number:

Not Specified

Lab Number:

L2217981

Report Date:

- विकास का क्षेत्रक के कि एक कुछ अपने का अपने क्षित्रक के अपने कि एक अपने कि एक अपने कि एक अपने कि एक अपने कि

04/20/22

THE STATE OF

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 6, 2022. The canister certification results are provided as an addendum.

L2217981-05: The sample was re-analyzed on dilution in order to quantitate the results within the calibration range. The result(s) should be considered estimated, and are qualified with an E flag, for any compound(s) that exceeded the calibration range in the initial analysis. The re-analysis was performed only for the compound(s) that exceeded the calibration range.

L2217981-01D, -04D, and -05D: The samples have elevated detection limits due to the dilution required by the elevated concentrations of target compounds in the samples.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J Enderson

Report Date: 04/20/22

Title: Technical Director/Representative

Project Name:

965 MAMARONECK AVENUE

Project Number:

965

Lab Number:

L2218096

Report Date:

04/20/22

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.

Project Name:

965 MAMARONECK AVENUE

Project Number:

965

Lab Number:

L2218096

Report Date:

THE RELL WAS ASSETTED AS

04/20/22

1 52 1

Case Narrative (continued)

Volatile Organics in Air

Canisters were released from the laboratory on April 6, 2022. The canister certification results are provided as an addendum.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Christoph J. Culmon

Report Date: 04/20/22

Title: Technical Director/Representative

L.A.B. Validation Corp. 14 West Point Drive, East Northport, N.Y. 11731

Appendix C
Data Summary Form I's
With Qualifications

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-01D

Date Collected : 04/06/22 16:14

Client ID

: 955M SV-1

Date Received

: 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed

: 04/20/22 09:30

10543

Dilution Factor

: 3.333

Sample Matrix Analytical Method: 48,TO-15

: SOIL_VAPOR

Analyst

; TS

Lab File ID Sample Amount

: R1532514 : 75.0 ml

Instrument ID

: AIRLAB15

GC Column : RTX-1

		ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
Dichlorodifluoromethane	ND	0.667	:510 :510	ND	3.30	5 5	U	
Chloromethane	ND	0.667	1 0(0)	ND	1.38		U	
Freon-114	ND	0.667		ND	4.66		U	
Vinyl chloride	ND	0.667	*	ND	1.71	3	U	
1,3-Butadiene	ND	0.667	1-11	ND II	1:48	: ## E	U	- 10 Å = 3
Bromomethane	ND	0.667		ND	2.59	186	U	
Chloroethane	ND	0.667		ND	1.76		U	
Ethanol	270	16.7	*	509	31.5	30		
Vinyl bromide	ND	0.667	100	ND	2.92	ंच्स	U	
Acetone	168	3.33	-	399	7.91			
Trichlorofluoromethane	ND	0.667	200	ND	3.75		U	
Isopropanol	372	1.67		914	4.10	-		
1,1-Dichloroethene	ND	0.667	(##)	ND	2.64	:==	U	
Tertiary butyl Alcohol	5.30	1.67		16.1	5.06	144	J	
Methylene chloride	2.66	1.67	120	9.24	5.80	744		
3-Chloropropene	ND	0.667		ND	2.09	· (##	U	***************************************
Carbon disulfide	1.55	0.667	(##)	4.83	2.08	:=:		
Freon-113	ND	0.667	-	ND	5.11	74=	U	
trans-1,2-Dichloroethene	ND	0.667	•	ND	2.64	(22)	U	
1,1-Dichloroethane	ND	0.667		ND	2.70		U	
Methyl tert butyl ether	ND	0.667	**	ND	2.40	: MH	U	
2-Butanone	8.18	1.67	-	24.1	4.93			
cis-1,2-Dichloroethene	ND	0.667		ND	2.64	120	υ	
Ethyl Acetate	2.20	1.67		7.93	6.02	- -		
	Parameter Dichlorodifluoromethane Chloromethane Freon-114 Vinyl chloride 1,3-Butadiene Bromomethane Chloroethane Ethanol Vinyl bromide Acetone Trichlorofluoromethane Isopropanol 1,1-Dichloroethene Tertiary butyl Alcohol Methylene chloride 3-Chloropropene Carbon disulfide Freon-113 trans-1,2-Dichloroethene 1,1-Dichloroethane Methyl tert butyl ether 2-Butanone cis-1,2-Dichloroethene	ParameterResultsDichlorodifluoromethaneNDChloromethaneNDFreon-114NDVinyl chlorideND1,3-ButadieneNDBromomethaneNDChloroethaneNDEthanol270Vinyl bromideNDAcetone168TrichlorofluoromethaneNDIsopropanol3721,1-DichloroetheneNDTertiary butyl Alcohol5.30Methylene chloride2.663-ChloropropeneNDCarbon disulfide1.55Freon-113NDtrans-1,2-DichloroetheneND1,1-DichloroethaneNDMethyl tert butyl etherND2-Butanone8.18cis-1,2-DichloroetheneND	Parameter Results RL Dichlorodifluoromethane ND 0.667 Chloromethane ND 0.667 Freon-114 ND 0.667 Vinyl chloride ND 0.667 Vinyl chloride ND 0.667 Bromomethane ND 0.667 Ethanol 270 16.7 Vinyl bromide ND 0.667 Acetone 168 3.33 Trichlorofluoromethane ND 0.667 Isopropanol 372 1.67 1,1-Dichloroethene ND 0.667 Tertiary butyl Alcohol 5.30 1.67 Methylene chloride 2.66 1.67 3-Chloropropene ND 0.667 Carbon disulfide 1.55 0.667 Freon-113 ND 0.667 trans-1,2-Dichloroethene ND 0.667 Methyl tert butyl ether ND 0.667 2-Butanone 8.18 1.67 cls-1,2-Dichloroethene	Parameter Results RL MDL Dichlorodifiluoromethane ND 0.667 Chloromethane ND 0.667 Freon-114 ND 0.667 Vinyl chloride ND 0.667 1,3-Butadiene ND 0.667 Bromomethane ND 0.667 Chloroethane ND 0.667 Ethanol 270 16.7 Vinyl bromide ND 0.667 Acetone 168 3.33 Trichlorofluoromethane ND 0.667 Isopropanol 372 1.67 1,1-Dichloroethene ND 0.667 Methylene chloride 2.66 1.67 3-Chloropropene ND 0.667 Carbon disulfide 1.55 0.667 Freon-113 ND 0.667 </td <td>Parameter Results RL MDL Results Dichlorodifluoromethane ND 0.667 ND Chloromethane ND 0.667 ND Freon-114 ND 0.667 ND Vinyl chloride ND 0.667 ND 1,3-Butadiene ND 0.667 ND Bromomethane ND 0.667 ND Chloroethane ND 0.667 ND Ethanol 270 16.7 509 Vinyl bromide ND 0.667 ND Acetone 168 3.33 399 Trichlorofluoromethane ND 0.667 ND Isopropanol 372 1.67 914 1,1-Dichloroethene ND 0.667 ND Tertlary butyl Alcohol 5.30 1.67 9.24 3-Ch</td> <td>Parameter Results RL MDL Results RL Dichlorodifiluoromethane ND 0.667 ND 3.30 Chloromethane ND 0.667 ND 1.38 Freon-114 ND 0.667 ND 4.66 Vinyl chloride ND 0.667 ND 1.71 1,3-Butadiene ND 0.667 ND 2.59 Chloroethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 2.59 Chloroethane ND 0.667 ND 1.76 Ethanol 270 16.7 509 31.5 Vinyl bromide ND 0.667 ND 2.92 Acetone 168 3.33 399 7.91 Trichlorofluoromethane ND 0.667 ND 2.64 Te</td> <td>Parameter Results RL MDL Results RL MDL Dichlorodifluoromethane ND 0.667 ND 3.30 Chloromethane ND 0.667 ND 1.38 Freon-114 ND 0.667 ND 4.66 Vinyl chloride ND 0.667 ND 1.71 1,3-Butadiene ND 0.667 ND 1.48 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 2.92 Chloropethane ND 0.667 ND 3.75 Itanal ND 0.667 ND<td> Parameter Parameter Parameter Results RL MDL Results RL MDL Results RL MDL Qualiffer </td></td>	Parameter Results RL MDL Results Dichlorodifluoromethane ND 0.667 ND Chloromethane ND 0.667 ND Freon-114 ND 0.667 ND Vinyl chloride ND 0.667 ND 1,3-Butadiene ND 0.667 ND Bromomethane ND 0.667 ND Chloroethane ND 0.667 ND Ethanol 270 16.7 509 Vinyl bromide ND 0.667 ND Acetone 168 3.33 399 Trichlorofluoromethane ND 0.667 ND Isopropanol 372 1.67 914 1,1-Dichloroethene ND 0.667 ND Tertlary butyl Alcohol 5.30 1.67 9.24 3-Ch	Parameter Results RL MDL Results RL Dichlorodifiluoromethane ND 0.667 ND 3.30 Chloromethane ND 0.667 ND 1.38 Freon-114 ND 0.667 ND 4.66 Vinyl chloride ND 0.667 ND 1.71 1,3-Butadiene ND 0.667 ND 2.59 Chloroethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 2.59 Chloroethane ND 0.667 ND 1.76 Ethanol 270 16.7 509 31.5 Vinyl bromide ND 0.667 ND 2.92 Acetone 168 3.33 399 7.91 Trichlorofluoromethane ND 0.667 ND 2.64 Te	Parameter Results RL MDL Results RL MDL Dichlorodifluoromethane ND 0.667 ND 3.30 Chloromethane ND 0.667 ND 1.38 Freon-114 ND 0.667 ND 4.66 Vinyl chloride ND 0.667 ND 1.71 1,3-Butadiene ND 0.667 ND 1.48 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 1.76 Bromomethane ND 0.667 ND 2.92 Chloropethane ND 0.667 ND 3.75 Itanal ND 0.667 ND <td> Parameter Parameter Parameter Results RL MDL Results RL MDL Results RL MDL Qualiffer </td>	Parameter Parameter Parameter Results RL MDL Results RL MDL Results RL MDL Qualiffer

ppbV

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-01D

Date Collected : 04/06/22 16:14

Client ID

: 955M SV-1

Date Received : 04/07/22

: RTX-1

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 09:30

GC Column

Sample Matrix

: SOIL_VAPOR

10543

Dilution Factor : 3.333 : TS

Analytical Method : 48,TO-15 Lab File ID

: R1532514

Analyst : AIRLAB15 Instrument ID

ug/m3

Sample Amount : 75.0 ml

			PPD.			ug/III0			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
67-66-3	Chloroform	ND	0.667	inni	ND	3.26	(41)	U	
109-99-9	Tetrahydrofuran	ND	1.67	(44)	ND	4.93	794	U	
107-06-2	1,2-Dichloroethane	ND	0.667	425	ND	2.70	7-2	U	
110-54-3	n-Hexane	ND	0.667	-	ND	2.35	.=5	U	
71-55-6	1,1,1-Trichioroethane	idD	0.667	380	" ND "	3.64		- P- U	1.42 . 4
71-43-2	Benzene	ND	0.667	**	ND	2.13		U	
56-23-5	Carbon tetrachloride	ND	0.667	42	ND	4.20	-	U	
110-82-7	Cyclohexane	ND	0.667	##V.	ND	2.30	-	U	
78-87-5	1,2-Dichloropropane	ND	0.667	78	ND	3.08	**	U	
75-27-4	Bromodichloromethane	ND	0.667	H#:	ND	4.47	-	U	11.00/11.00/00/
123-91-1	1,4-Dioxane	ND	0.667		ND	2.40	-	U	
79-01-6	Trichloroethene	ND	0.667	55 0.	ND	3.58		U	
540-84-1	2,2,4-Trlmethylpentane	ND	0.667	**	ND	3.12	**	U	
142-82-5	Heptane	ND	0.667	** **	ND	2.73	444	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.667		ND	3.03		U	
108-10-1	4-Methyl-2-pentanone	ND	1.67	**	ND	6.84	1777	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.667	**	ND	3.03	7 4 40	U	
79-00-5	1,1,2-Trichloroethane	ND	0.667	LIPS:	ND	3.64	3212	U	
108-88-3	Toluene	1.30	0.667		4.90	2.51	*		
591-78-6	2-Hexanone	ND	0.667	====	ND	2.73	100	U	
124-48-1	Dibromochloromethane	ND	0.667	())	ND	5.68	(**	U	
106-93-4	1,2-Dibromoethane	ND	0.667	243	ND	5.13	-	U	
127-18-4	Tetrachloroethene	6.49	0.667		44.0	4.52	-		
108-90-7	Chlorobenzene	ND	0.667	2500	ND	3.07	-	U	

Client

: Tenen Environmental, LLC

: L2217981

Project Name

: 965 MAMARONECK AVE

Lab Number

Lab ID

: L2217981-01D

Project Number :
Date Collected : 04/06/22 16:14
Date Received : 04/07/22

Client ID

: 955M_SV-1

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY

Date Analyzed

: 04/20/22 09:30

Sample Matrix

10543 : SOIL_VAPOR

Dilution Factor : 3.333

Analytical Method : 48,TO-15

: R1532514

Analyst : TS

Lab File ID Sample Amount : 75.0 ml

Instrument ID

: AIRLAB15 GC Column : RTX-1

			ppbV		1/2	ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
100-41-4	Ethylbenzene	ND	0.667	***	ND	2.90	##=	U	
179601-23-1	p/m-Xylene	ND	1.33	**	ND	5.78	**	U	
75-25-2	Bromoform	ND	0.667	***	ND	6.90		U	
100-42-5	Styrene	ND	0.667	₩.	ND	2.84	*	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.667	##5	'ND'	4.58		Sear U	es (36) (c
95-47-6	o-Xylene	ND	0.667	***	ND	2.90	1000	U	
622-96-8	4-Ethyltoluene	ND	0.667	***	ND	3.28	122	U	
108-67-8	1,3,5-Trimethylbenzene	ND	0.667		ND	3.28		U	***
95-63-6	1,2,4-Trimethylbenzene	ND	0.667	***	ND	3.28	155	U	
100-44-7	Benzyl chloride	ND	0.667		ND	3.45) **	U	
541-73-1	1,3-Dichlorobenzene	ND	0.667		ND	4.01	352	U	
106-46-7	1,4-Dichlorobenzene	ND	0.667	*	ND	4.01		U	
95-50-1	1,2-Dichlorobenzene	ND	0.667	***	ND	4.01	155	υ	
120-82-1	1,2,4-Trichlorobenzene	ND	0.667	440	ND	4.95	2 ++ 0	U	
87-68-3	Hexachlorobutadiene	ND	0.667	<i>a</i> =1	ND	7.11	146	U	

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-02

Date Collected

: 04/06/22 16:21

Client ID

: 955M_IA-1

Date Received

: 04/07/22

: 04/20/22 00:47

Sample Location

: 965 MAMARONECK AVE, MAMARONECK, NY 10543

Date Analyzed

Sample Matrix Analytical Method : 48,TO-15

: AIR

Dilution Factor Analyst

: TS

Lab File ID

: R1532503

Instrument ID

: AIRLAB15

GC Column ug/m3

: RTX-1

Sample Amount : 250 ml

оср.	0 / lill 0 di lil								
			ppbV		18	ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71 - 8	Dichlorodifluoromethane	0.504	0.200	***	2.49	0.989	-		
74-87-3	Chloromethane	0.575	0.200	120	1.19	0.413	=		
76-14-2	Freon-114	ND	0.200		ND	1.40	F	U	
106-99-0	1,3-Butadiene	ND	0.200		ND	0.442	(550)	U	
74-83-9	Bromonieiliane	п ИО	0.200	-	" ND ::=	··0.777	: **	3.0 U	30 mg
75-00-3	Chloroethane	ND	0.200		ND	0.528	194	U	
64-17-5	Ethanol	16.8	5.00		31.7	9.42			
593-60-2	Vinyl bromide	ND	0.200	-	ND	0.874	255	U	
67-64-1	Acetone	4.39	1.00	-	10.4	2.38	lee		
75-69-4	Trichlorofluoromethane	0.213	0.200		1.20	1.12			
67-63-0	Isopropanol	1.77	0.500	=	4.35	1.23) 64		
75-65-0	Tertiary butyl Alcohol	ND	0.500	**	ND	1.52	C##	-	UJ
75-09-2	Methylene chloride	1.32	0.500	200	4.59	1.74	:**		
107-05-1	3-Chloropropene	ND	0.200	-	ND	0.626		U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623		U	
76-13-1	Freon-113	ND	0.200	==	ND	1.53	5.77	U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200		ND	0.793	-	U	
75-34-3	1,1-Dichloroethane	ND	0.200	140	ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721) E	U	
78-93-3	2-Butanone	ND	0.500	-	ND	1.47	1 .55	U	
141-78-6	Ethyl Acetate	ND	0.500		ND	1.80	1344	U	
67-66-3	Chloroform	ND	0.200	=	ND	0.977	Call	U	
109-99-9	Tetrahydrofuran	ND	0.500	-	ND	1.47	1,000	U	
107-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	

Client

: Tenen Environmental, LLC

Lab Number : L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-02

Date Collected : 04/06/22 16:21

Client ID

: 955M_IA-1

Date Received : 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 00:47

10543

Sample Matrix Analytical Method : 48,TO-15

: AIR

Dilution Factor : 1 Analyst : TS

Lab File ID

: R1532503

Instrument ID

Sample Amount : 250 ml

: AIRLAB15 GC Column : RTX-1

	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
110-54-3	n-Hexane	ND	0.200		ND	0.705		U	
71-43-2	Benzene	ND	0.200	 :	ND	0.639	-	U	
110-82-7	Cyclohexane	ND	0.200	***	ND	0.688	37.	U	
78-87-5	1,2-Dichloropropane	ND	0.200		ND	0.924		U	
75-27-4	Bromodiciiloromethane	้า	0.200	West:	ND	1.34	**	¥200 = []	21 ~~ 1
123-91-1	1,4-Dioxane	ND	0.200		ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200	421	ND	0.934		U	
142-82-5	Heptane	ND	0.200	m-	ND	0.820	(50)	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200	***	ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500	**	ND	2.05		U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200	=	ND	0.908		U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09	155	U	
108-88-3	Toluene	ND	0.200	**:	ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200	22)	ND	0.820	1241	U	
124-48-1	Dibromochloromethane	ND	0.200	-	ND	1.70	٠	U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54	***	U	
108-90-7	Chlorobenzene	ND	0.200	••	ND	0.921	-	U	
100-41-4	Ethylbenzene	ND	0.200	228	ND	0.869	22	U	
179601-23-1	p/m-Xylene	ND	0.400		ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07	1881	U	
100-42-5	Styrene	ND	0.200	**:	ND	0.852	:HE:	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	220	ND	1.37	-	U	
95-47-6	o-Xylene	ND	0.200	-	ND	0.869	-	U	
622-96-8	4-Ethyltoluene	ND	0.200	128	ND	0.983		U	

Client

: Tenen Environmental, LLC

: L2217981

Project Name

: 965 MAMARONECK AVE

Lab Number

Lab ID

: L2217981-02

Project Number :

Date Collected : 04/06/22 16:21 Date Received : 04/07/22

Client ID

: 955M_IA-1

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 00:47

10543

Sample Matrix

: AIR

Dilution Factor : 1

Analyst ; TS

Analytical Method : 48,TO-15 Lab File ID

: R1532503 Sample Amount : 250 ml

Instrument ID : AIRLAB15

GC Column : RTX-1

	/ III O O I I I I I I I I I I I I I I I				40 00	CIIIIII I		/		
		94	ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier		
108-67-8	1,3,5-Trimethylbenzene	ND	0.200	:577	ND	0.983	255	U		
95-63-6	1,2,4-Trimethylbenzene	ND	0.200	(#H)	ND	0.983		U		
100-44-7	Benzyl chloride	ND	0.200	528	ND	1.04	742	U		
541-73-1	1,3-Dichlorobenzene	ND	0.200	E	ND	1.20	(-	U		
106-46-7	1,4-Dichiorobenzene	ND	0.200	276	ND	1.20		^(g) ⊕₩ U	3	4 = 14 = 12
95-50-1	1,2-Dichlorobenzene	ND	0.200	**	ND	1.20		U		
120-82-1	1,2,4-Trichlorobenzene	ND	0.200	-	ND	1.48		U		
87-68-3	Hexachlorobutadiene	ND	0.200	-	ND	2.13	G-	U		

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-02

Date Collected : 04/06/22 16:21 Date Received : 04/07/22

Client ID

: 955M_IA-1

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY

Date Analyzed : 04/20/22 00:47

Sample Matrix

10543 : AIR

Dilution Factor : 1

Analytical Method : 48,TO-15-SIM

Analyst

: TS : AIRLAB15

Lab File ID

: R1532503_EV2

Instrument ID

Sample Amount : 250 ml

GC Column : RTX-1

	ppbV			ug/m3			
Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
Vinyl chloride	ND	0.020	*** }	ND	0.051	1 51 1	U
1,1-Dichloroethene	ND	0.020	¥¥)	ND	0.079	5 41 8	U
cis-1,2-Dichloroethene	ND	0.020	-	ND	0.079	144	# (JJ
1,1,1-Trichloroethane	ND	0.020		ND	0.109	1885	U
Carbon tetrachloride	180.0	0.020	æ	0.510	0.126	* \ \	205 N
Trichloroethene	ND	0.020	44)	ND	0.107	144	U
Tetrachloroethene	0.708	0.020	44	4.80	0.136		
	Vinyl chloride 1,1-Dichloroethene cis-1,2-Dichloroethene 1,1,1-Trichloroethane Carbon tetrachloride Trichloroethene	Vinyl chloride ND 1,1-Dichloroethene ND cis-1,2-Dichloroethene ND 1,1,1-Trichloroethane ND Carbon tetrachloride 0.081 Trichloroethene ND	Parameter Results RL Vinyl chloride ND 0.020 1,1-Dichloroethene ND 0.020 cis-1,2-Dichloroethene ND 0.020 1,1,1-Trichloroethane ND 0.020 Carbon tetrachloride 0.081 0.020 Trichloroethene ND 0.020	Parameter Results RL MDL Vinyl chloride ND 0.020 1,1-Dichloroethene ND 0.020 cls-1,2-Dichloroethene ND 0.020 1,1,1-Trichloroethane ND 0.020 Carbon tetrachloride 0.087 0.020 Trichloroethene ND 0.020	Parameter Results RL MDL Results Vinyl chloride ND 0.020 ND 1,1-Dichloroethene ND 0.020 ND cis-1,2-Dichloroethene ND 0.020 ND 1,1,1-Trichloroethane ND 0.020 ND Carbon tetrachloride 0.087 0.020 ND Trichloroethene ND 0.020 ND	Parameter Results RL MDL Results RL Vinyl chloride ND 0.020 ND 0.051 1,1-Dichloroethene ND 0.020 ND 0.079 cis-1,2-Dichloroethene ND 0.020 ND 0.079 1,1,1-Trichloroethane ND 0.020 ND 0.109 Carbon tetrachloride 0.081 0.020 ND 0.126 Trichloroethene ND 0.020 ND 0.107	Parameter Results RL MDL Results RL MDL Vinyl chloride ND 0.020 ND 0.051 1,1-Dichloroethene ND 0.020 ND 0.079 cls-1,2-Dichloroethene ND 0.020 ND 0.079 1,1,1-Trichloroethane ND 0.020 ND 0.109 Carbon tetrachloride 0.081 0.020 ND 0.126 Trichloroethene ND 0.020 ND 0.107

Client : Tenen Environmental, LLC Lab Number : L2217981

Project Name : 965 MAMARONECK AVE Project Number :

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 01:27

10543

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1532504 Instrument ID : AIRLAB15
Sample Amount : 250 ml GC Column : RTX-1

ppbV ug/m3 CAS NO. Results MDL MDL **Parameter** RL Results RL Qualifier 75-71-8 Dichlorodifluoromethane 0.524 0.200 2.59 0.989 74-87-3 Chloromethane 0.368 0.200 0.760 0.413 76-14-2 Freon-114 ND 0.200 ND 1.40 106-99-0 1,3-Butadiene ND 0.200 0.442 U -ND -74-83-9 Bromomethane ND ····U 0.200 ND ... 0.777 75-00-3 Chloroethane ND 0.200 ND 0.528 U 64-17-5 Ethanol 33.7 5.00 63.5 9.42 593-60-2 Vinyl bromide ND 0.200 ND 0.874 U 67-64-1 Acetone 10.9 1.00 25.9 2.38 75-69-4 Trichlorofluoromethane 0.226 0.200 1.27 1.12 67-63-0 Isopropanol 2.34 0.500 1.23 5.75 75-65-0 Tertiary butyl Alcohol 5.95 0.500 18.0 1.52 75-09-2 Methylene chloride ND 0.500 ND 1.74 U 107-05-1 3-Chloropropene ND U 0.200 ND 0.626 75-15-0 Carbon disulfide ND 0.200 ND 0.623 U ** --76-13-1 Freon-113 ND 0.200 ND U 1.53 156-60-5 trans-1,2-Dichloroethene ND 0.200 ND 0.793 U 75-34-3 1,1-Dichloroethane ND 0.200 ND 0.809 U 1634-04-4 Methyl tert butyl ether ND U 0.200 ND 0.721 78-93-3 2-Butanone ND 0.500 ND 1.47 U 141-78-6 **Ethyl Acetate** ND 0.500 ND 1.80 U 67-66-3 Chloroform ND 0.200 ND 0.977 U 109-99-9 Tetrahydrofuran 0.750 0.500 2.21 1.47 107-06-2 1,2-Dichloroethane ND 0.200 0.809 ND U

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Date Collected : 04/07/22 10:18

Lab ID

: L2217981-03

Client ID

: 955M_IA-2

Date Received : 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY

Date Analyzed : 04/20/22 01:27

Sample Matrix

10543 : AIR

Dilution Factor : 1

Analytical Method : 48,TO-15

Analyst : TS

Lab File ID Sample Amount : 250 ml

: R1532504

Instrument ID : AIRLAB15 GC Column : RTX-1

	Parameter	ppbV			0	ug/m3			
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
110-54-3	n-Hexane	ND	0.200	**:	ND	0.705	***	U	
71-43-2	Benzene	ND	0.200	¥₹S	ND	0.639	:443	U	
110-82-7	Cyclohexane	ND	0.200	225	ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200	17-	ND	0.924	4.00	υ	
75-27-4	Bromodichloromethane	ND	0.206	**	ND-	1.34	**	8 ⁴⁰ U	ALTERNATI
123-91-1	1,4-Dioxane	ND	0.200	221	ND	0.721		U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200		ND	0.934	-	U	
142-82-5	Heptane	ND	0.200	55 5	ND	0.820	177.	U	
10061-01-5	cis-1,3-Dichloropropene	ND	0.200	**	ND	0.908		U	-
108-10-1	4-Methyl-2-pentanone	ND	0.500	92)	ND	2.05	144	U	
10061-02-6	trans-1,3-Dichloropropene	ND	0.200	#	ND	0.908	114	U	
79-00-5	1,1,2-Trichloroethane	ND	0.200	552	ND	1.09	155	U	
108-88-3	Toluene	ND	0.200	**	ND	0.754		U	
591-78-6	2-Hexanone	ND	0.200	42 3	ND	0.820	1240	U	
124-48-1	Dibromochloromethane	ND	0.200	<u> </u>	ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200		ND	1.54	155	U	
108-90-7	Chlorobenzene	ND	0.200	en:	ND	0.921	*	U	****
100-41-4	Ethylbenzene	ND	0.200	22.0	ND	0.869	1441	U	
179601-23-1	p/m-Xylene	ND	0.400	-	ND	1.74	**	U	
75-25-2	Bromoform	ND	0.200		ND	2.07	-	U	
100-42-5	Styrene	ND	0.200	****	ND	0.852	198)	U	
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	***	ND	1.37	S=12	U	
95-47-6	o-Xylene	ND	0.200		ND	0.869		U	
622-96-8	4-Ethyltoluene	ND	0.200	550	ND	0.983		U	

Client : Tenen Environmental, LLC Lab Number : L2217981

Project Name : 965 MAMARONECK AVE Project Number :

 Lab ID
 : L2217981-03
 Date Collected
 : 04/07/22 10:18

 Client ID
 : 955M_IA-2
 Date Received
 : 04/07/22

 Sample Location
 : 965 MAMARONECK AVE, MAMARONECK, NY
 Date Analyzed
 : 04/20/22 01:27

10543

Sample Matrix : AIR Dilution Factor : 1
Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1532504 Instrument ID : AIRLAB15
Sample Amount : 250 ml GC Column : RTX-1

			ppbV			ug/m3		<u></u>	
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
108-67-8	1,3,5-Trimethylbenzene	ND	0.200	(84)	ND	0.983	(111	U	
95-63-6	1,2,4-Trimethylbenzene	0.290	0.200		1.43	0.983	159		
100-44-7	Benzyl chloride	ND	0.200		ND	1.04		U	
541-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20	_ =	U	
106-46-7	1,4-Dichloroberizene	ND	0.200	(89)	ND to x	1:20	198	γ. U	y- **
95-50-1	1,2-Dichlorobenzene	ND	0.200	1445	ND	1.20	5 44	U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200	•	ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200	25	ND	2.13	-	U	

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-03

Date Collected : 04/07/22 10:18

Client ID

Date Received : 04/07/22

: 955M IA-2

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 01:27

Sample Matrix

: AIR

Dilution Factor

Analytical Method : 48,TO-15-SIM

Analyst

: TS

Lab File ID

: R1532504_EV2

Instrument ID

: AIRLAB15

Sample Amount : 250 ml

10543

GC Column

			ppbV		ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vinyl chloride	ND	0.020	***	ND	0.051	-	U	
75-35-4	1,1-Dichloroethene	ND	0.020	78	ND	0.079	i st i	U	
156-59-2	cis-1,2-Dlchloroethene	ND	0.020	(44)	ND	0.079	3 400)	w ().	T
71-55-6	1,1,1-Trichloroethane	ND	0.020	<u> 105</u>	ND	0.109	:30:	U	
56-23-5	Carbon tetrachloride	0.095	0.020		0.598	0.126	=	OF HOME	86 100
79-01-6	Trichloroethene	ND	0.020	#21	ND	0.107	-	U	
127-18-4	Tetrachloroethene	0.053	0.020	H= 1	0.359	0.136	-		

Client

: Tenen Environmental, LLC

Lab Number

Project Name

: 965 MAMARONECK AVE

: L2217981

Lab ID

: L2217981-04D

Project Number Date Collected

1 04/07/22 10:16

Client ID

: 955M SV-2

Date Received

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed

: 04/07/22 : 04/20/22 08:54

10543

Sample Matrix

: SOIL_VAPOR

Dilution Factor : 11 : TS Analyst

Analytical Method : 48,TO-15 Lab File ID

: R1532513

Instrument ID : AIRLAB15

S

GC Column : RTX-1

Sample	Amount	:	22.7	m
sample	Amount	:	22.7	m

Camp	no / uno ditt				40 0010	411114		V- I	
			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	ND	2.20	175 7	ND	10.9	550	U	
74-87-3	Chloromethane	ND	2.20	(Her	ND	4.54		U	
76-14-2	Freon-114	ND	2.20		ND	15.4	541	U	
75-01-4	Vinyl chlorlde	ND	2.20	**	ND	5.62	*	U	
156-99-0	1,3-Butaulene	ND	2.20	(85)	ND.	4:87	857	April U	John Scot
74-83-9	Bromomethane	ND	2.20	#8 1	ND	8.54	(-1	U	
75-00-3	Chloroethane	ND	2.20	441	ND	5.81	1744	U	
64-17-5	Ethanol	194	55.0		366	104			
593-60-2	VInyl bromide	ND	2.20	1997	ND	9.62		U	
67-64-1	Acetone	132	11.0	; :	314	26.1	100		
75-69-4	Trichlorofluoromethane	ND	2.20	H-	ND	12.4	(<u>11</u>	U	
67-63-0	Isopropanol	379	5.50	-	932	13.5	-		
75-35-4	1,1-Dichloroethene	ND	2.20	200	ND	8.72	3.97	U	
75-65-0	Tertiary butyl Alcohol	ND	5.50	9461	ND	16.7	:44	w U.	T
75-09-2	Methylene chloride	ND	5.50	54-	ND	19.1	25	U	
107-05-1	3-Chloropropene	ND	2.20		ND	6.89	**	U	
75-15-0	Carbon disulfide	ND	2.20	77.5	ND	6.85	197	U	
76-13-1	Freon-113	ND	2.20	WE(ND	16.9	-14	U	
156-60-5	trans-1,2-Dichloroethene	ND	2.20	**	ND	8.72	120	U	
75-34-3	1,1-Dichloroethane	ND	2.20	ff	ND	8.90	-	U	
1634-04-4	Methyl tert butyl ether	ND	2.20	853	ND	7.93		U	
78-93-3	2-Butanone	ND	5.50	WE:	ND	16.2		U	
156-59-2	cis-1,2-Dichloroethene	ND	2.20	W2 1	ND	8.72	222	U	
141-78-6	Ethyl Acetate	ND	5.50	77	ND	19.8		U	

Client : Tenen Environmental, LLC Lab Number : L2217981

Project Name : 965 MAMARONECK AVE Project Number

 Lab ID
 : L2217981-04D
 Date Collected
 : 04/07/22 10:16

 Client ID
 : 955M_SV-2
 Date Received
 : 04/07/22

 Sample Location
 : 965 MAMARONECK AVE, MAMARONECK, NY
 Date Analyzed
 : 04/20/22 08:54

10543

Sample Matrix : SOIL_VAPOR Dilution Factor : 11
Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1532513 Instrument ID : AIRLAB15 Sample Amount : 22.7 ml GC Column : RTX-1

ppbV ug/m3 CAS NO. Parameter Results RL MDL Results RL MDL Qualifier U 67-66-3 Chloroform ND 2.20 ND 10.7 U ND ND 109-99-9 Tetrahydrofuran 5.50 .. 16.2 107-06-2 ND 8.90 U 1,2-Dichloroethane ND 2.20 110-54-3 n-Hexane 6.90 2.20 24.3 7.75 71-55-6 1,1,1-Trichloroethane ND ND-" = 12.0 · U 2.20 71-43-2 Benzene ND 2,20 ND 7.03 U 56-23-5 Carbon tetrachloride ND ND 13.8 U 2.20 110-82-7 Cyclohexane ND 2.20 ND 7.57 U 78-87-5 1,2-Dichloropropane ND 2.20 ND 10.2 U 75-27-4 **Bromodichloromethane** ND 2.20 ND 14.7 U 123-91-1 1,4-Dioxane ND 2.20 --ND 7.93 ---U U 79-01-6 Trichloroethene ND 2.20 ND 11.8 ** 540-84-1 2,2,4-Trimethylpentane ND 2.20 --ND 10.3 ** U 142-82-5 2.79 2.20 11.4 9.02 10061-01-5 cis-1,3-Dichloropropene ND 2.20 ND 9.99 U U 108-10-1 4-Methyl-2-pentanone ND 5.50 ND 22.5 U 10061-02-6 trans-1,3-Dichloropropene ND ND 9.99 2.20 1,1,2-Trichloroethane ND 12.0 U 79-00-5 ND 2.20 108-88-3 **Toluene** ND 2.20 ND 8.29 U 591-78-6 2-Hexanone ND 9.02 U 2.20 124-48-1 Dibromochloromethane ND 2.20 ND 18.7 U 106-93-4 ND U 1,2-Dibromoethane 2.20 .. ND 16.9 .. U 127-18-4 ND ND Tetrachloroethene 2.20 14.9 U 108-90-7 Chlorobenzene ND 2.20 ND 10.1 **

Client : Tenen Environmental, LLC Lab Number : L2217981

Project Name : 965 MAMARONECK AVE Project Number ;

 Lab ID
 : L2217981-04D
 Date Collected
 : 04/07/22 10:16

 Client ID
 : 955M_SV-2
 Date Received
 : 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 08:54

10543

Sample Matrix : SOIL_VAPOR Dilution Factor : 11
Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1532513 Instrument ID : AIRLAB15
Sample Amount : 22.7 ml GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
100-41-4	Ethylbenzene	ND	2.20		ND	9.56		U	
179601-23-1	p/m-Xylene	ND	4.40	-	ND	19.1	***	U	
75-25-2	Bromoform	ND	2.20	344	ND	22.7	220	U	
100-42-5	Styrene	ND	2.20		ND	9.37		U	
79-34-6	1,1,2,2-l'etrachloroethane	ИD	2.20		NO	^{,5,} 15.1	125	u U	3300,00
95-47-6	o-Xylene	ND	2.20	·	ND	9.56		U	
622-96-8	4-Ethyltoluene	ND	2.20	(600)	ND	10.8	220	U	
108-67-8	1,3,5-Trimethylbenzene	ND	2.20	-	ND	10.8	-	U	
95-63-6	1,2,4-Trimethylbenzene	ND	2.20	(*** -1	ND	10.8		U	
100-44-7	Benzyl chloride	ND	2.20		ND	11.4		U	
541-73-1	1,3-Dichlorobenzene	ND	2.20	443	ND	13.2	199	U	
106-46-7	1,4-Dichlorobenzene	ND	2.20	110	ND	13.2		U	
95-50-1	1,2-Dichlorobenzene	ND	2.20	#E3	ND	13.2	S an	U	
120-82-1	1,2,4-Trichlorobenzene	ND	2.20	##C	ND	16.3		U	
87-68-3	Hexachlorobutadiene	ND	2.20	MET:	ND	23.5	:	U	n win

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-05

Date Collected : 04/07/22 10:15

Client ID

: 955M_IA-3

Date Received : 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY

Date Analyzed : 04/20/22 02:11

Sample Matrix

: AIR

Dilution Factor

Analytical Method : 48,TO-15

10543

Analyst

Lab File ID

: R1532505

Instrument ID

: TS : AIRLAB15

Sample Amount

: 250 ml

GC Column

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.525	0.200	960	2.60	0.989	**		
74-87-3	Chloromethane	0.785	0.200	45	1.62	0.413	1948		
76-14-2	Freon-114	ND	0.200		ND	1.40	*	U	
106-99-0	1,3-Butadiene	0.286	0.200	773	0.633	0.442	5.75		
74-83-9	Вromeihane	ND	0.200	***	· ND	· · · 0.777	*	THE U	5- 55e
75-00-3	Chloroethane	ND	0.200	449	ND	0.528	1	U	
64-17-5	Ethanol	1260	5.00		2370	9.42		ER	
593-60-2	Vinyl bromide	ND	0.200	5150	ND	0.874	:511:	U	
67-64-1	Acetone	60.6	1.00	**	144	2.38	····		
75-69-4	Trichlorofluoromethane	0.238	0.200	¥23	1.34	1.12	-		
67-63-0	Isopropanol	49.6	0.500		122	1.23	-		
75-65-0	Tertiary butyl Alcohol	34.2	0.500	575	104	1.52			
75-09-2	Methylene chloride	0.518	0.500	WW.	1.80	1.74	-H		
107-05-1	3-Chloropropene	ND	0.200	11	ND	0.626	-34	U	
75-15-0	Carbon disulfide	ND	0.200	**	ND	0.623		U	
76-13-1	Freon-113	ND	0.200	**	ND	1.53	-	U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200	-	ND	0.793	**	U	
75-34-3	1,1-Dichloroethane	ND	0.200	220	ND	0.809	-	U	=
1634-04-4	Methyl tert butyl ether	ND	0.200	=	ND	0.721	-	U	- 11
78-93-3	2-Butanone	1.25	0.500	#51	3.69	1.47	**		
141-78-6	Ethyl Acetate	1.62	0.500	990	5.84	1.80	-		
67-66-3	Chloroform	0.447	0.200		2.18	0.977	-		
109-99-9	Tetrahydrofuran	ND	0.500	##3	ND	1.47	-	U	
107-06-2	1,2-Dichloroethane	ND	0.200	***	ND	0.809	*	U	

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-05

Date Collected : 04/07/22 10:15

Client ID

: 955M_IA-3

Date Received : 04/07/22

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 02:11

Sample Matrix

10543 : AIR

Dilution Factor

Analytical Method : 48,TO-15 Lab File ID

Analyst Instrument ID : T\$: AIRLAB15

Sample Amount : 250 ml

: R1532505

GC Column

•	Parameter	ppbV			ug/m3				
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier	
110-54-3	n-Hexane	ND	0.200	-	ND	0.705	-	U	
71-43-2	Benzene	0.884	0.200		2.82	0.639			
110-82-7	Cyclohexane	ND	0.200		ND	0.688		U	
78-87-5	1,2-Dichloropropane	ND	0.200	HEA.	ND	0.924	5 58	U	
75-27-4	Bromodichloromethane	ND	0.200		ND*	1.34	38	······································	141 At 1
123-91-1	1,4-Dioxane	ND	0.200	***	ND	0.721	128	U	
540-84-1	2,2,4-Trimethylpentane	ND	0.200	 	ND	0.934		U	
142-82-5	Heptane	0.360	0.200	***	1.48	0.820	-		
10061-01-5	cis-1,3-Dichloropropene	ND	0.200	**	ND	0.908		U	
108-10-1	4-Methyl-2-pentanone	ND	0.500	4	ND	2.05	-	U	***************************************
10061-02-6	trans-1,3-Dichloropropene	ND	0.200	-	ND	0.908	-	U	
79-00-5	1,1,2-Trichloroethane	ND	0.200		ND	1.09		U	
108-88-3	Toluene	0.593	0.200	340)	2.23	0.754	744		
591-78-6	2-Hexanone	ND	0.200		ND	0.820	:45	U	
124-48-1	Dibromochloromethane	ND	0.200		ND	1.70		U	
106-93-4	1,2-Dibromoethane	ND	0.200	887	ND	1.54	100	U	
108-90-7	Chlorobenzene	ND	0.200	**	ND	0.921	(490)	U	
100-41-4	Ethylbenzene	ND	0.200	1721	ND	0.869		U	
179601-23-1	p/m-Xylene	ND	0.400	-	ND	1.74		U	
75-25-2	Bromoform	ND	0.200		ND	2.07	-	U	
100-42-5	Styrene	0.275	0.200	ne.	1.17	0.852	(44)		
79-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	227	ND	1.37		U	
95-47-6	o-Xylene	ND	0.200	777.	ND	0.869		U	
622 - 96-8	4-Ethyltoluene	ND	0.200		ND	0.983	**	U	

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-05

Date Collected : 04/07/22 10:15

Client ID

: 955M_IA-3

Date Received : 04/07/22

Sample Location

: 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 02:11

Sample Matrix

: AIR

Dilution Factor

: 1 : TS

Analytical Method : 48,TO-15 Lab File ID

: R1532505

10543

Analyst Instrument ID

: AIRLAB15

Sample Amount

: 250 ml

GC Column

				ppbV			ug/m3			
CAS NO.	Parameter		Results	RL	MDL	Results	RL	MDL	Qualifier	
108-67-8	1,3,5-Trimethylbenzene		ND	0.200	H=:	ND	0.983	1944	U	
95-63-6	1,2,4-Trimethylbenzene		0.205	0.200	22	1.01	0.983) <u></u>		
100-44-7	Benzyl chloride		ND	0.200		ND	1.04	180	U	
541-73-1	1,3-Dichlorobenzene		ND	0.200	(8.8)	ND	1.20	CHH.	U	
106-46-7	1,4-Dichlorobenzene	27	ЙЙ	0.200		ND 7/22	1:.20		ัช ง	2, 3
95-50-1	1,2-Dichlorobenzene		ND	0.200	¥6.	ND	1.20	=	U	
120-82-1	1,2,4-Trichlorobenzene		ND	0.200	-	ND	1.48	-	U	
87-68-3	Hexachlorobutadiene		ND	0.200		ND	2.13	- me	U	

Client : Tenen Environmental, LLC Lab Number : L2217981

Project Name : 965 MAMARONECK AVE Project Number :

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY Date Analyzed : 04/20/22 07:39

10543

Sample Matrix : AIR Dilution Factor : 7.143
Analytical Method : 48,TO-15 Analyst : TS

Lab File ID : R1532511 Instrument ID : AIRLAB15
Sample Amount : 35.0 ml GC Column : RTX-1

CAS NO. Parameter Results RL MDL Results RL MDL Qualifier

64-17-5 Ethanol 1840 35.7 -- 3470 67.3 -- D

SOT Y/OV/Y

Client

: Tenen Environmental, LLC

Lab Number

: L2217981

Project Name

: 965 MAMARONECK AVE

Project Number :

Lab ID

: L2217981-05

Date Collected : 04/07/22 10:15

Date Received : 04/07/22

Client ID

: 955M_IA-3

Sample Location : 965 MAMARONECK AVE, MAMARONECK, NY

10543

Date Analyzed : 04/20/22 02:11

Sample Matrix

: AIR

Dilution Factor

: 1

Analytical Method : 48,TO-15-SIM

Analyst

: TS : AIRLAB15

Lab File ID

: R1532505_EV2

Instrument ID

Sample Amount : 250 ml

GC Column : RTX-1

			ppbV			ug/m3			
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-01-4	Vlnyl chloride	ND	0.020	-	ND	0.051	5 44	U	
75-35-4	1,1-Dichloroethene	ND	0.020		ND	0.079	-	U	
156-59-2	cis-1,2-Dichloroethene	ND	0.020		ND	0.079		w (J.T	
71-55-6	1,1,1-Trichloroethane	ND	0.020		ND	0.109	**	U	
56-23-5	Carbon tetrachioride	0.142	0.020		0.893	0.126	-	(T) (40)	0 5
79-01-6	Trichloroethene	ND	0.020	-	ND	0.107		U	
127-18-4	Tetrachloroethene	0.037	0.020		0.251	0.136			

Client

: Tenen Environmental, LLC

Project Name

: 965 MAMARONECK AVENUE

Lab ID

: L2218096-01

Client ID

: AA-3

Sample Location : MAMARONECK, NY

Sample Matrix Analytical Method : 48,TO-15

: AIR

Lab File ID

: R1532493 Sample Amount : 250 ml

Lab Number

: L2218096

Project Number : 965

Date Collected : 04/07/22 11:16

Date Received : 04/07/22

Date Analyzed : 04/19/22 18:19

Dilution Factor : 1

Analyst : TS

Instrument ID GC Column

: AIRLAB15 : RTX-1

		ppbV			ug/m3				
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
75-71-8	Dichlorodifluoromethane	0.535	0.200	(84)	2.65	0.989	-		
74-87-3	Chloromethane	0.572	0.200		1,18	0.413	124		
76-14-2	Freon-114	ND	0.200	-	ND	1.40		U	
106-99-0	1,3-Butadiene	ND	0.200	. 151 2	ND	0.442	**	U	
74-83-9	Bromomethane	ND	0.200		ND	0.777	-	U	
75-00-3	Chloroethane	ND	0.200	U. Alessa.	ND	0.528	#4	U	
64-17-5	Ethanol	ND	5.00		ND	9.42	:==:	U	
593-60-2	Vinyl bromide	ND	0.200	***	ND	0.874		U	
67-64-1	Acetone	2.01	1.00	99 0	4.77	2.38	-	***	
75-69-4	Trichlorofluoromethane	0.201	0.200	447	1.13	1.12			
67-63-0	Isopropanol	ND	0.500	are.	ND	1.23	100	U	
75-65 - 0	Tertiary butyl Alcohol	ND	0.500	***	ND	1.52	1000	+ U.T	
75-09-2	Methylene chloride	ND	0.500	W-1	ND	1.74	HAR	U	
107-05-1	3-Chloropropene	ND	0.200	-	ND	0.626	*	U	
75-15-0	Carbon disulfide	ND	0.200		ND	0.623	-	U	
76-13-1	Freon-113	ND	0.200		ND	1.53	***	U	
156-60-5	trans-1,2-Dichloroethene	ND	0.200	443	ND	0.793		U	
75-34-3	1,1-Dichloroethane	ND	0.200	4	ND	0.809		U	
1634-04-4	Methyl tert butyl ether	ND	0.200		ND	0.721	-	U	
78-93-3	2-Butanone	ND	0.500	(00)	ND	1.47	**	U	
141-78-6	Ethyl Acetate	ND	0.500	5 44 5	ND	1.80		U	
67 - 66-3	Chloroform	ND	0.200	(ND	0.977		U	
09-99-9	Tetrahydrofuran	ND	0.500	S 19 7	ND	1.47	-	U	
07-06-2	1,2-Dichloroethane	ND	0.200		ND	0.809		U	
10-54-3	n-Hexane	ND	0.200		ND	0.705		U	
1-43-2	Benzene	ND	0.200	<u>.</u>	ND	0.639		U	

Client

: Tenen Environmental, LLC

Project Name

: 965 MAMARONECK AVENUE

Lab ID

: L2218096-01

Client ID

: AA-3

Sample Matrix

Sample Location : MAMARONECK, NY

Analytical Method: 48,TO-15

: AIR

Lab File ID

: R1532493

Sample Amount : 250 ml

Lab Number

: L2218096

Project Number : 965

Date Collected : 04/07/22 11:16
Date Received : 04/07/22

Date Analyzed : 04/19/22 18:19

Dilution Factor : 1

Analyst : TS

Instrument ID

: AIRLAB15

GC Column : RTX-1

	Parameter	ppbV				ug/m3		
CAS NO.		Results	RL	MDL	Results	RL	MDL	Qualifier
110-82-7	Cyclohexane	ND	0.200	**	ND	0.688	(86)	U
78-87-5	1,2-Dichloropropane	ND	0.200	-	ND	0.924		U
75-27-4	Bromodichloromethane	ND	0.200	 .	ND	1.34		U
123-91-1	1,4-Dioxane	ND	0.200	(**)	ND	0.721		U
540-84-1	2,2,4-Trimethylpentane	ND	0.200	*	ND	0.934	1446	U
142-82-5	Heptane	ND	0.200	-	ND	0.820		U
10061-01-5	cis-1,3-Dichloropropene	ND	0.200		ND	0.908		U
108-10-1	4-Methyl-2-pentanone	ND	0.500	ne.	ND	2.05	288	U
10061-02-6	trans-1,3-Dichloropropene	ND	0.200	***	ND	0.908	744	U
79-00-5	1,1,2-Trichloroethane	ND	0.200	14	ND	1.09	744	U
108-88-3	Toluene	ND	0.200		ND	0.754		U
91-78-6	2-Hexanone	ND	0.200		ND	0.820		U
124-48-1	Dibromochloromethane	ND	0.200	-	ND	1.70	(44)	U
106-93-4	1,2-Dibromoethane	ND	0.200	4	ND	1.54	9	U
108-90-7	Chlorobenzene	ND	0.200		ND	0.921	-	U
00-41-4	Ethylbenzene	ND	0.200	***	ND	0.869	***	U
79601-23-1	p/m-Xylene	ND	0.400	W-1	ND	1.74		U
75-25-2	Bromoform	ND	0.200		ND	2.07	-	U
00-42-5	Styrene	ND	0.200	75.	ND	0.852		U
9-34-5	1,1,2,2-Tetrachloroethane	ND	0.200	***	ND	1.37	100	U
5-47-6	o-Xylene	ND	0.200	-	ND	0.869		U
22-96-8	4-Ethyltoluene	ND	0.200	-	ND	0.983	-	U
08-67-8	1,3,5-Trimethylbenzene	ND	0.200	-	ND	0.983		U
5-63-6	1,2,4-Trimethylbenzene	ND	0.200	-	ND	0.983		U
00-44-7	Benzyl chloride	ND	0.200	144	ND	1.04	724	U
i41-73-1	1,3-Dichlorobenzene	ND	0.200		ND	1.20	=	U

Client : Tenen Environmental, LLC Lab Number
Project Name : 965 MAMARONECK AVENUE Project Number

Lab ID : L2218096-01

Client ID : AA-3

Sample Location : MAMARONECK, NY

Sample Matrix : AIR
Analytical Method : 48,TO-15
Lab File ID : R1532493
Sample Amount : 250 ml

Lab Number : L2218096

Project Number : 965 Date Collected : 04/07/22 11:16

Date Received : 04/07/22 Date Analyzed : 04/19/22 18:19

Dilution Factor : 1 Analyst : TS

Instrument ID : AIRLAB15 GC Column : RTX-1

CAS NO.				ug/m3					
	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier	
106-46-7	1,4-Dichlorobenzene	ND	0.200		ND	1.20	3 44	U	
95-50-1	1,2-Dichlorobenzene	ND	0.200	44.7	ND	1.20		U	
120-82-1	1,2,4-Trichlorobenzene	ND	0.200		ND	1.48		U	
87-68-3	Hexachlorobutadiene	ND	0.200	** :	ND	2.13	-	U	

Client

: Tenen Environmental, LLC

Project Name

: 965 MAMARONECK AVENUE

Lab ID

: L2218096-01

Client ID

: AA-3

Sample Location : MAMARONECK, NY

Sample Matrix

: AIR

Analytical Method : 48,TO-15-SIM

: R1532493_EV2

Lab File ID

Sample Amount : 250 ml

Lab Number

: L2218096

Project Number : 965

Date Collected : 04/07/22 11:16
Date Received : 04/07/22

Date Analyzed : 04/19/22 18:19

Dilution Factor : 1

Analyst

: TS

Instrument ID

: AIRLAB15

GC Column

: RTX-1

			ppbV		1	ug/m3		
CAS NO.	Parameter	Results	RL	MDL	Results	RL	MDL	Qualifier
75-01-4	Vinyl chlorlde	ND	0.020	Merci.	ND	0.051	*	U
75-35-4	1,1-Dichloroethene	ND	0.020	***	ND	0.079	22	U
156-59-2	cls-1,2-Dichloroethene	ND	0.020		ND	0.079	*	* UJ
71-55-6	1,1,1-Trichloroethane	ND	0.020	55 7	ND	0.109	:5R:	U
56-23-5	Carbon tetrachloride	0.085	0.020	**)	0.535	0.126	3 4 6	
79-01 - 6	Trichloroethene	ND	0.020	227	ND	0.107	3 4 8	U
127-18-4	Tetrachloroethene	ND	0.020	777.5	ND	0.136		U

for Alaria

965 Mamaroneck Avenue – Village of Mamaroneck, NY Soil Vapor and Indoor Air Investigation Letter Report

Attachment 2
Soil Vapor and Indoor Air Sampling Logs

TENENVIRONMENTAL											
Site: 965 Mamaroneck Avenue - Mamaroneck, NY											
Weather:					48	°F, Overcas	st/Rain				
Date:						4/6/202	2				
Observers:						H. Lau	I		I		
Sample ID	Sample Start Date	Sample Finish Date	He (ppm)	PID (ppm)	Can ID	Flow ID	Initial Time	Final Time	Initial Pressure (in-Hg)	Final Pressure (in-Hg)	
955M_SV-1	4/6/22	4/6/22	0	20.7	3603	01285	9:10	16:14	-28.96	-9.65	
955M_IA-1	4/6/22	4/6/22	N/A	N/A	1825	01044	9:15	16:21	-29.89	-9.75	
955M_SV-2	4/6/22	4/7/22	0	0	2785	01369	9:52	10:16	-30.36	-12.47	
955M_IA-2	4/6/22	4/7/22	N/A	N/A	3058	0630	9:50	10:18	-30.1	-10.67	
955M_IA-3	4/6/22	4/7/22	N/A	N/A	3081	02219	10:00	10:15	-29.72	-13.81	
AA-3	4/6/22	4/7/22	N/A	N/A	1821	0097	8:18	11:16	-30.08	-6.01	
	Notes ppm	: n: parts p	er millio	n			in-Hg:	inches m	ercury		