

Geotechnical Environmental Site Civil

959 Route 46E, Fl 3, Ste 300
Parsippany, NJ 07054
973.808.9050
www.sesi.org

2025 Periodic Review Report

December 29, 2023 to April 29, 2025

For:

130 Midland Avenue (C360195)130 Midland AvenuePort Chester, New York

Prepared for:

130 Midland Ave Owner LLC

SESI Project No:

12365C

Date:

November 2025

Table of Contents

LIST	OF ACR	RONYMS	i
1.0	INT	RODUCTION	1
1.1		SUMMARY	1
1.2	2	EFFECTIVENESS OF REMEDIAL PROGRAM	1
1.3	3	COMPLIANCE	2
1.4	ļ	RECOMMENDATIONS AND CONCLUSIONS	3
2.0	SIT	E OVERVIEW	3
2.1		SITE LOCATION AND DESCRIPTION	3
2.2	2	SITE HISTORY	3
	2.2.1	REMEDIAL INVESTIGATION (RI) CONDUCTED AT THE SITE	4
	2.2.2	DESCRIPTION OF REMEDIAL ACTIONS	6
	2.2.3	REMOVAL OF CONTAMINATED MATERIALS FROM THE SITE	7
	2.2.4	ON-SITE AND OFF-SITE TREATMENT SYSTEMS	8
	2.2.5	DESCRIPTION OF RESIDUAL CONTAMINATION	8
	2.2.6	MANAGEMENT OF RESIDUAL CONTAMINATION THROUGH	
	EN	GINEERING AND INSTITUTIONAL CONTROLS IN THE	
	EN'	VIRONMENTAL EASEMENT	10
3.0	REI	MEDY PERFORMANCE, EFFECTIVENESS, PROTECTIVENESS	10
3.1	CAP C	OVER SYSTEM	10
3.2	2 GROUI	NDWATER MONITORING	11
3.3	SUB-S	LAB SOIL VAPOR SAMPLING AND SVI EVALUATION	12
4.0	IC/E	EC PLAN COMPLIANCE	12
4.1		IC/EC REQUIREMENTS AND COMPLIANCE	12
4.2	2	IC/EC CERTIFICATION	15
5.0	МО	NITORING PLAN COMPLIANCE	15
6.0	OP	ERATION AND MAINTENANCE PLAN COMPLIANCE	16
7.0	CO	NCLUSIONS AND RECOMMENDATIONS	16

TABLES

TABLE 2.1	SUMMARY OF MATERIALS REMOVED FOR OFF-SITE DISPOSAL
TABLE 2.2	SUMMARY OF EXCEEDANCES IN SOIL
TABLE 3.1	SUMMARY OF GROUNDWATER ANALYTICAL DATA
TABLE 3.2	SUMMARY OF EXCEEDANCES IN GROUNDWATER
TABLE 5.1	MONITORING PROGRAM FREQUENCY

FIGURES

FIGURE 3.1 MONITORING WELL LOCATION PLAN

APPENDICES

APPENDIX A SITE MANAGEMENT PLAN FIGURES

APPENDIX B SITE INSPECTION CHECKLIST

APPENDIX C MONITORING WELL CONSTRUCTION LOGS

APPENDIX D WELL PURGING AND SAMPLING LOGS

APPENDIX E GROUNDWATER ANALYTICAL REPORT

APPENDIX F 2ND SOIL VAPOR INTRUSION MEMO (APRIL 2024)

APPENDIX G NYSDEC - IC & EC CERTIFICATION FORM

LIST OF ACRONYMS

Acronym	Definition
AWQS	Ambient Water Quality Standards
BCA	Brownfield Cleanup Agreement
ВСР	Brownfield Cleanup Program
bgs	Below ground surface
CCA	Chromated Copper Arsenate
coc	Contaminant of Concern
DER	Division of Environmental Remediation
DER-10	NYSDEC Technical Guidance for Site Investigation & Remediation
ECs	Engineering Controls
EE	Environmental Easement
Ics	Institutional Controls
MW	Monitoring Well
NYSDEC	New York State Department of Environmental Conservation
PAH	Polycyclic Aromatic Hydrocarbons
ppm	Parts per million
PRR	Periodic Review Report
RDWP	Remedial Design Work Plan
SCO	Soil Cleanup Objectives
SESI	SESI Consulting Engineers, PC
SMP	Site Management Plan
SVOCs	Semi-Volatile Organic Compounds
TOGS	Technical and Operations Guidance Series
VOCs	Volatile Organic Compounds

1.0 INTRODUCTION

1.1 **SUMMARY**

This is the Periodic Review Report (PRR) for the period December 29, 2023 to April 29, 2025. The PRR is required as an element of the remedial program at the 130 Midland Avenue property (hereinafter referred to as the "Site") under the New York State Brownfield Cleanup Program (BCP) administered by New York State Department of Environmental Conservation (NYSDEC). The Site was remediated in accordance with Brownfield Cleanup Agreement (BCA) Index # C360195-09-20, Site No. C360195, which was executed on December 22, 2020. The Site area is 6.195-acres. Engineering Controls (ECs) have been constructed on the Site to prevent exposure to the remaining residual contamination during Site use. An Environmental Easement (EE) granted to the NYSDEC, and recorded with the Westchester County Clerk, requires compliance with the Site Management Plan (SMP) dated December 2023 and all ECs and Institutional Controls (ICs) placed on the Site. The ICs place restrictions on Site use and mandate operation, maintenance, monitoring and reporting measures for all ECs and ICs. A Site Location Map is provided in Figure 1.1 of Appendix A. All SMP figures are included in Appendix A of this report.

The Site contains a newly-constructed (1) 76,000 square foot commercial building; associated parking areas; access roadways; and landscaped areas. The building is currently occupied by Floor & Décor, a large retail warehouse store.

This PRR reports the required inspection and monitoring activities that were conducted during the current reporting period. The installation, inspection, and monitoring were conducted to ensure compliance with all ECs and ICs required by the EE and as stated in the SMP as approved by the NYSDEC.

1.2 EFFECTIVENESS OF REMEDIAL PROGRAM

Residual contamination remains on the Site, which has been managed according to the requirements of the SMP to keep the Site safe for commercial and restricted residential uses.

The composite cover system (CCS) (described in Section 2.2.2) was inspected in June 3, 2024 remains intact on the Site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination.

The monitoring well network for wells MW-2, MW-3, and MW-4 were installed between May 14 and May 22, 2024. The annual sampling of the monitoring well network to determine the effectiveness of the natural degradation of the residual contaminants of concern was conducted on June 3, 2024. Based upon groundwater sampling as presented in section 3.2, VOCs, PFOA and PFOS were detected at concentrations exceeding the AWQS.

The soil vapor intrusion sampling and evaluations conducted in 2023 and 2024 have confirmed that VOC concentrations are within the "No Further Action" category on the NYSDOH decision matrices (May 2017 and February 2024). Therefore no further vapor intrusion sampling at the Floor and Décor building is needed.

The monitoring plan, as required in the SMP, is effective and protective of human health and the environment.

1.3 COMPLIANCE

SESI completed a site inspection on June 3, 2024 to verify the integrity of the ECs in accordance with the Inspection Checklist that is included in **Appendix B**.

The groundwater monitoring wells MW-2, MW-3, and MW-4 were sampled on June 3, 2024, and analyzed for VOCs and PFAS in accordance with the monitoring program in the SMP.

In order to confirm that soil vapor intrusion is not a concern, sub-slab vapor and indoor air sampling was conducted on March 28, 2024. As presented in Section 3.3, VOC detections were below the NYSDOH decision matrices, confirming no SVI condition beneath the Floor and Décor building.

1.4 RECOMMENDATIONS AND CONCLUSIONS

SESI has verified that the ECs and ICs developed for the Site are in compliance with the SMP. We recommend the following for the next reporting period:

- Cover System: Continued annual visual inspection of the cover system.
 Groundwater Monitoring: Continued annual groundwater monitoring.
- Discontinue soil vapor intrusion sampling beneath the Floor and Décor building.
 The sampling was conducted in 2023 and 2024 confirming that VOC
 concentrations are within the "No Further Action" category on the NYSDOH
 decision matrices (May 2017 and February 2024).

2.0 SITE OVERVIEW

2.1 SITE LOCATION AND DESCRIPTION

The site is located in Port Chester, Westchester County, New York and is identified as Section 142.53 Block 1 and Lot 5 on the Port Chester Tax Map (see SMP Figure 2.1). The site is an approximately 6.195-acre area and is bounded by a commercial development to the north and south, Midland Avenue to the east, beyond which are commercial shops and residences, and railroad tracks to the west, beyond which is a commercial strip mall. The boundaries of the site are shown on SMP Figure 1.2.

The Site is zoned CD-4 (General Urban Character District). The Site contains a newly-constructed 76,000 square foot commercial building; associated parking areas; access roadways; and landscaped areas. The building is currently occupied by Floor & Décor, a large retail warehouse store.

2.2 SITE HISTORY

Historic uses of the subject property include railroad car repair and painting from at least 1908 until at least 1942; bus repair and storage from at least 1934 until at least 1942; and nut and bolt manufacturing from at least 1950s until at least 1971. Two railroad spurs were present on the subject property from approximately 1919 to 1934. The spurs ran into the subject property from the northwest corner to the central portion of the property near the former buildings. In 1919 it indicates these tracks connected to a coal pile at the west side of the former building. Local street directories and municipal records document that the tenant space identified as 130 Midland Avenue was occupied

by a dry cleaners from 1983 until December 2018. Complete Site history can be found in the following documents.

- Phase I Investigation Report, dated May 2019, prepared by PM Environmental.
- Phase II Environmental Site Assessment, dated April 2029, prepared by PM Environmental.
- Subsurface Investigation Report, dated March 2020, prepared by HydroEnvironmental Solutions (HES).

2.2.1 REMEDIAL INVESTIGATION (RI) CONDUCTED AT THE SITE

Remedial Investigation activities at the site were conducted partially by HES and partially by SESI.

The HES RI activities included the following:

- Collection of a total of 43 soil samples from soil borings;
- Installation and sampling one (1) temporary groundwater well-point;
- Sampling of eight (8) overburden groundwater monitoring wells, now closed;
- Installation and sampling of nine (9) soil vapor points.

The SESI RI activities included the following:

- Installation and sampling of seven (7) soil-bedrock interface groundwater monitoring wells;
- Collection of seven (7) soil samples at the soil-bedrock interface during the bedrock monitoring well installations;
- Installation and sampling of three (3) bedrock monitoring wells with NYSDEC oversight.

Soil

Results of the HES and SES RI have identified metals and polyaromatic hydrocarbons on the Site at concentrations exceeding the CSCOs to 9 feet below ground surface (ft-bgs). Select volatile organic compounds (VOCs) (n-propylbenzene, 1,2,4-trimethylbenzene, acetone, and total xylenes), select pesticides (4,4'-DDT), and total polychlorinated biphenyls (PCBs) have been intermittently detected throughout the Site above the most restrictive Unrestricted Use Soil Cleanup Objectives (USCOs), but well

November 2025 SESI Project No. 12365C Page 5 of 17

below the applicable CSCOs. These exceedances are likely derived from the presence of historic fill.

Groundwater

RI sampling identified Petroleum hydrocarbon (PHC) compounds detected above the AWQS in overburden monitoring well MW-2. However, ground penetrating radar confirmed no existing underground storage tanks (USTs), thereby ruling out an abandoned UST as a continuing source for the PHC compounds in MW-2. Semi-volatile organic compounds (SVOCs) above AWQS were detected in one (1) overburden monitoring well located at the upgradient property boundary. Perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were detected at concentrations above the 10 ng/L Maximum Contaminant Level (MCL) in monitoring wells MW-1, MW-3, and MW-4. PFOA was detected at a concentration marginally above the 10 ng/L MCL in MW-6. PFOA and PFOS are ubiquitous substances and are not indicative of an ongoing source of contamination.

Initial sampling of the seven (7) soil-bedrock interface monitoring wells located beneath and adjacent to the existing building revealed PHC compounds including ethylbenzene, toluene, xylenes, and 1,2,4-trimethylbenzene, which were initially attributed to 100 years of commercial and industrial usage of the surrounding area; subsequently, two (2) of these soil-bedrock interface monitoring wells were sampled a second time, revealing no VOCs above the AWQS. Therefore, the PHC compounds initially detected in the soil-bedrock interface groundwater are not expected to be attributable to an on-site discharge or other Site-specific condition.

The additional three (3) bedrock monitoring wells located beneath and downgradient/down-dip of the existing building did not reveal VOCs at concentrations above the AWQS.

Groundwater exists in the soil overburden, the soil-bedrock interface, and the upper bedrock. During the RI, these three (3) saturated media were evaluated separately because there was a concern that constituents with a density greater than water could have been present, and thus the three (3) media could have been impacted differently;

however, this was not the case. Going forward, the groundwater in all three (3) media should be considered a single interconnected groundwater system, with the only difference in the three (3) media being the flow velocity due to differences in hydraulic conductivity. The Site groundwater has a flow gradient to the east-southeast.

Soil Vapor

During the RI, soil vapor samples indicated that PCE and TCE were detected in excess of the NYSDOH Matrices threshold values in sub-slab vapor (1,190 – 7,970 ug/m³ for PCE and 41.8 – 98.9 ug/m³ for TCE) and indoor air (295 ug/m³ for PCE and 0.995 ug/m³ for TCE) beneath a portion of the former building which housed the dry cleaner during a pre-BCP investigation. In addition soil vapor sampling conducted in the parking lot outside of the building footprint detected various VOCs at lower concentrations below the NYSDOH threshold values.

2.2.2 DESCRIPTION OF REMEDIAL ACTIONS

Remedial activities completed at the Site were conducted in accordance with the NYSDEC-approved RAWP for the 130 Midland BCP Site dated April 2023 and the Decision Document dated June 29, 2023.

The following is a summary of the Remedial Actions performed at the Site: Interim Remedial Measures:

- Demolition of existing Site building including asbestos abatement and removal of all demolition debris from the Site, and
- Excavation and off-site disposal of the upper 4-feet of soil from beneath the proposed footprint of the 76,000+ square foot (200+ ft x 380+ ft) rectangular shaped building (16,315 tons).

Remedial Action:

- Excavation and offsite disposal of contaminated soil from utility excavation areas down to depths ranging from 3 to 9 ft-bgs (11,411.96 tons).
- Approximately 250,000 gallons of groundwater and/or stormwater were removed, treated and discharged from the Site throughout the duration of the RA for dewatering purposes. This dewatering effort was required while removing the contaminated soil since groundwater was found at depths as shallow as 7.5 ft bgs during earlier investigations.

- Installation of a site-wide composite cap consisting of asphalt pavement, sidewalks, building foundation, and limited landscaped areas as an engineering control (EC).
- Installation of sub-slab ventilation piping and a vapor-sealing membrane underneath the newly-constructed Site building and conduct a vapor evaluation in the newly constructed building to determine if an engineering control for the vapor intrusion is required. It was determined that the sub-slab depressurization system (SSDS) does not need to be active, and therefore will not function as an EC based on the results of the soil vapor evaluation conducted for the building.

The long-term components of the remedy will include periodic inspections of the sitewide cap, and monitored natural attenuation of groundwater.

2.2.3 REMOVAL OF CONTAMINATED MATERIALS FROM THE SITE

As part of the IRM and Remedial Action, various contaminated materials were removed and disposed off-Site. The materials removed from the Site and their quantities are listed in **Table 2.1** below.

Table 2.1 All Material Removed from the Site

Date	Area	Description	Facility	Quantity
11/10/2022 to 12/20/2022	IRM Excavation Area	Excavated Soil	Bayshore Soil Management – Keasbey, NJ	16,315.15 Tons
12/1/2022 to 12/19/2022	IRM Excavation Area	Asphalt	Thalle Industries – Elmsford, NY	66 CY
10/27/2022 to 11/28/2022	IRM Excavation Area	Concrete	Thalle Industries – Elmsford, NY	762 CY
8/5/2022 to 10/5/2022	IRM Excavation Area	Asbestos- Containing Materials	Waste Management Fairless Hills Landfill – Morrisville, PA	791 CY
12/19/2022	IRM Excavation Area	Boulders	Metro Green – Mount Vernon, NY	78 CY
2/3/2023 to 10/31/2023	Utility Excavation Areas	Excavated Soil (contaminated)	Bayshore Soil Management – Keasbey, NJ	10,940.38 Tons

Date	Area	Description	Facility	Quantity	
2/3/2023 to 10/31/2023	Utility Excavation Areas	Excavated Soil (uncontaminated)	Bayshore Soil Management – Keasbey, NJ	5,638 Tons	
8/9/2023 to 8/19/2023	Utility Excavation Areas	Excavated Soil (contaminated)	Atlantic County Utilities Authority	471.58 Tons	
2/6/2022 to 2/8/2022	Utility Excavation Area	Storm Water	Clear Flo Technologies – Lindenhurst, NY	28,000 Gallons	
2/10/2022 to 10/10/2022	Utility Excavation Areas	Groundwater and Stormwater	Storm Sewer (via onsite treatment system)	250,000 Gallons (Est)	

2.2.4 ON-SITE AND OFF-SITE TREATMENT SYSTEMS

No long-term treatment systems were required to be installed as part of the Site remedy.

2.2.5 DESCRIPTION OF RESIDUAL CONTAMINATION

Soil

The Site has achieved a Track 4 remedy across the Site. Soils were excavated down to approximately 4 ft-bgs beneath the proposed building footprint. Eighteen (18) documentation end-point samples were collected at a minimum frequency of 1 per 5,000 ft² in each grid in accordance with Interim Remedial Measures Work Plan and analyzed for Target Compound List (TCL)/Target Analyte List(TAL)+30 and per- and polyfluoroalkyl substances (PFAS). End-point documentation samples identified CSCOs exceedances benzo(a)pyrene in nine (9) samples, barium in two (2) samples, cadmium in one (1) sample, and PCBs in one (1) sample. As a result, contamination remains from approximately 4 to 9 ft-bgs. **Table 2.2** below provides a summary of CSCO exceedances.

Table 2.2 –Summary of Exceedances in Soil

Client Sample ID:	NYSDEC CSCO	DS-3	DS-4	DS-6	DS-7	DS-8	DS-9	DS-12	DS-16	DS-17	DS-18
Date Sampled:	CSCO	11/18/2022	11/18/2022	11/18/2022	11/28/2022	11/18/2022	11/18/2022	11/28/2022	11/29/2022	11/29/2022	11/28/2022
Analyte (mg/kg)		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Benzo(a)pyrene	1	1.21	2.4	2.93	1.25	1.91	1.39	1.67	1.82	3.13	0.75
Barium	400	501	309	609	276	178	237	223	229	351	89.1
Cadmium	9.3	13.6 ^j	ND (2.2) ^j	ND (2.8) j	1.6 ^j	8.0 ^j	5.7 ^j	4.7 ^j	ND (3.0) j	ND (2.9) j	2.4
Aroclor 1254	1	0.127	0.304	0.168	0.291 ^g	0.143	0.0364 J	0.259 ^g	0.0442	0.15	4.12 ^g

SMP Figure 2.3 summarizes the results of all soil samples collected that exceed the Unrestricted Use SCOs and the CSCOs at the site after completion of the remedial action.

Groundwater

Eight (8) overburden monitoring wells were installed and sampled during the RI, and PHC compounds were detected above the AWQS in one well (MW-2). SVOCs above AWQS were detected in one (1) overburden monitoring well located at the upgradient property boundary. PFOS and PFOA were detected at concentrations above the 10 ng/L MCL in monitoring wells MW-1, MW-3, and MW-4. PFOA was detected at a concentration marginally above the 10 ng/L MCL in MW-6. PFOA and PFOS are ubiquitous substances and are not indicative of an ongoing source of contamination. SMP Figure 2.4 shows the results of all overburden groundwater samples that exceed the SCGs.

Groundwater samples collected from seven (7) bedrock interface monitoring wells installed during the next phase of the RI located beneath and adjacent to the existing building identified PHC related compounds including ethylbenzene, toluene, xylenes, and 1,2,4-trimethylbenzene. Subsequent sampling conducted in two (2) bedrock interface monitoring wells did not identify PHC VOCs above the AWQS. An additional three (3) bedrock monitoring wells located beneath and downgradient/down-dip of the existing building did not identify any VOCs at concentrations above the AWQS.

Soil Vapor

A soil vapor evaluation was conducted on the newly-constructed Site building on October 19, 2023. The evaluation was conducted in accordance with the Soil Vapor Intrusion Evaluation Work Plan, prepared by SESI and dated September 11, 2023, and approved by NYSDEC and NYSDOH on October 13, 2023. The purpose of the evaluation was to assess the potential for soil vapor intrusion and the effectiveness of the sub-slab depressurization system (SSDS), which was installed beneath the new building on the Site as required by the Decision Document.

A comparison of the October 2023 sub-slab vapor and indoor air results compared to the NYSDOH Decision Matrices for the eight (8) regulated compounds indicated that no further action is recommended to address human health exposures. Based on these findings, no further action is required to address soil vapor intrusion into the onsite building, and the SSDS piping that has been installed is functioning as intended and will not require active ventilation at this time. In accordance with the SMP one additional round of sub-slab and indoor air sampling was required be conducted during the heating season in 2024 to confirm the results. As discussed in section 3.3 below, the results of the second vapor sampling event confirmed no further action with regard to soil vapor intrusion is needed.

2.2.6 MANAGEMENT OF RESIDUAL CONTAMINATION THROUGH ENGINEERING AND INSTITUTIONAL CONTROLS IN THE ENVIRONMENTAL EASEMENT

A series of IC/ECs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the site to commercial or industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under the SMP. These ICs and ECs are more fully described in Section 4.

3.0 REMEDY PERFORMANCE, EFFECTIVENESS, PROTECTIVENESS

The goal of the SMP is to manage the residual contamination at the Site through implementation of ICs and ECs. At present, SESI is conducting monitoring/inspection of the ICs and ECs on the Site in accordance with the SMP dated December 2023. The overall Site remedy was designed to ensure that residual soil contamination that remains on Site beneath the Cap Cover System and to monitor groundwater for residual contamination.

3.1 CAP COVER SYSTEM

The composite cover system (CCS) (described in Section 2.2.2) was inspected on June 3, 2024 and remains intact on the Site. The cover system has been and will continue to be effective in preventing public exposure to the residual contamination.

3.2 GROUNDWATER MONITORING

In order to monitor the effectiveness of the contaminant removal and the Site natural attenuation, an on-Site monitoring well network (MW-2, MW-3, and PR-MW-4) was sampled on April 3, 2024. The monitoring well locations are depicted in Figure 1.3 of the SMP, presented in **Appendix A**.

Monitoring wells MW-2, MW-3, and MW-4 were installed in May 2024. The monitoring well construction logs are provided in **Appendix C**. The monitoring well network was sampled on June 3, 2024. Prior to sampling the wells were purged and sampled in accordance with USEPA low flow sampling procedures. The purge water was piped to a "flow cell," where groundwater parameters including pH, redox potential, specific conductance, dissolved oxygen, salinity and turbidity were measured. The monitoring well purge data is provided in **Appendix D**. **Table 3.1** provides the groundwater monitoring results of the April 3, 2025 sampling event. **Figure 3.1** shows the monitoring well location plan. The laboratory analytical data packages are provided in **Appendix E**.

Table 3.2 below presents a summary of exceedances in the groundwater. The VOC acetone was detected in monitoring well MW-2 at a concentration of 81 ug/L exceeding the NYSDEC TOGS effluent limitation of 50 ug/L. Perfluorooctanoic Acid (PFOA) was detected in monitoring wells MW-2, MW-3, and MW-4 at concentrations of 0.0328 ug/L, 0.0233 ug/L, and 0.0199 ug/L respectively exceeding the NYSDEC TOGS guidance value of 0.0067 ug/L. In addition Perfluorooctanesulfonic Acid (PFOS) was detected in monitoring wells MW-2, MW-3, and MW-4 at concentrations of 0.00575 ug/L, 0.0147 ug/L, and 0.00764 ug/L respectively exceeding the NYSDEC TOGS guidance value of 0.0027 ug/L.

Table 3.2: Summary of Exceedances in Groundwater

LOCATION		MW-2		MW-3		MW-4	
SAMPLING DATE		6/3/2024		6/3/2024		6/3/2024	
LAB SAMPLE ID		L2430635-02		L2430635-03		L2430635-04	
SAMPLETYPE	ug/l	WATER		WATER		WATER	
	NY-AWQS	Results	Q	Results	Q	Results	Q
Perfluorinated Alkyl Acids by EPA 163	33						
Perfluorooctanoic Acid (PFOA)	0.0067	0.0328		0.0233		0.0199	
Perfluorooctanesulfonic Acid (PFOS)	0.0027	0.00575		0.0147		0.00764	
Volatile Organics by GC/MS							
Acetone	50	81		5	U	5	U

November 2025 SESI Project No. 12365C Page 12 of 17

Notes:

Ug/L = Micrograms per Liter U = Compound not detected

Highlighted = Concentration Exceeds the TOGS GA Effluent Limitations

3.3 SUB-SLAB SOIL VAPOR SAMPLING AND SVI EVALUATION

SESI Consulting Engineers (SESI) completed a second Soil Vapor Evaluation at the 130 Midland Avenue BCP Site (BCP Site No. C360195) in accordance with the approved Soil Vapor Intrusion Evaluation Workplan (September 2023) and Site Management Plan (December 2023). The purpose of the evaluation was to make a final determination if an active sub-slab depressurization system (SSDS) will be required with a blower, or if the system continues to function adequately as a passive system. The previous evaluation conducted in October 2023 indicated no exceedances of the NYSDOH "Soil Vapor/Indoor Air Decision Matrices", dated May 2017, and no requirement for an active SSDS for the on-Site building.

Sub-slab vapor samples with co-located indoor air samples were collected on March 28, 2024, as well as one ambient/outdoor air sample. The soil vapor evaluation sample location plan is illustrated on the attached figure (SV-1). Sub-slab vapor samples were collected from pre-installed sub-slab vapor probes from polyethylene tubing leading from the probes to sub-slab sensor monitoring stations located in the rear of the building.

The results were compared to the NYSDOH "Soil Vapor/Indoor Air Decision Matrices", dated February 2024. Based on the evaluation of all regulated compounds to the Decision Matrices, no further action is required with respect to soil vapor intrusion at the Site. Therefore, an active SSDS is not required for the on-Site building. The results of the 2nd soil vapor intrusion evaluation were presented to NYSDEC in a memo prepared by SESI to NYSDEC dated April 25, 2024 (**Appendix F**)

4.0 IC/EC PLAN COMPLIANCE

4.1 IC/EC REQUIREMENTS AND COMPLIANCE

INSTITUTIONAL CONTROLS

A series of IC/ECs is required by the Decision Document to: (1) implement, maintain and monitor Engineering Control systems; (2) prevent future exposure to remaining

contamination; and, (3) limit the use and development of the site to commercial or industrial uses only. Adherence to these ICs on the site is required by the Environmental Easement and will be implemented under the SMP. ICs identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are shown on SMP Figure 1.2. These ICs are:

- The property may be used for: commercial and industrial use;
- All ECs must be operated and maintained as specified in this SMP;
- All ECs must be inspected at a frequency and in a manner defined in the SMP;
- The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Westchester County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- Access to the site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- The potential for vapor intrusion must be evaluated for any buildings developed in the area within the IC boundaries noted on SMP Figure 1.2, and any potential impacts that are identified must be monitored or mitigated;
- Vegetable gardens and farming on the site are prohibited; and

 An evaluation shall be performed to determine the need for further investigation and remediation should large scale redevelopment occur, if any of the existing structures are demolished, or if the subsurface is otherwise made accessible.

ENGINEERING CONTROLS

CAP COVER

Exposure to remaining contamination at the Site is prevented by a cover system placed over the Site. This cover system is composed of a minimum of 12 inches of clean soil/fill meeting CSCOs in the western portion of the Site, concrete building slabs, concrete covered sidewalks, and asphalt pavement as appropriate. SMP Figure 3.1 presents the location of the cover system and SMP Figure 3.2 details the applicable demarcation layers. The EWP provided in Appendix D of the SMP outlines the procedures required to be implemented in the event the cover system is breached, penetrated or temporarily removed. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan included in Section 4.0 of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP) and associated Community Air Monitoring Plan (CAMP) prepared for the site and provided in Appendix E of the SMP. Any breach of the site's cover system must be overseen by a Professional Engineer (PE) who is licensed and registered in New York State or a qualified person who directly reports to a PE who is licensed and registered in New York State.

GROUNDWATER MONITORING

Groundwater monitoring activities to assess natural attenuation will continue, as determined by the NYSDEC project manager in consultation with NYSDOH project manager, until residual groundwater concentrations are found to be consistently below ambient water quality standards, the site SCGs, or have become asymptotic at an acceptable level over an extended period. In the event that monitoring data indicates that monitoring for natural attenuation may no longer be required, a proposal to discontinue the monitoring will be submitted by the remedial party. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC project manager. If groundwater contaminant levels become asymptotic at a level that is not acceptable to the NYSDEC, additional source removal, treatment and/or control measures will be evaluated.

4.2 IC/EC CERTIFICATION

The NYSDEC Institutional and Engineering Controls Certification Form has been completed and is included in **Appendix G**.

5.0 MONITORING PLAN COMPLIANCE

Table 5.1: Monitoring Program Frequency

Monitoring Program	Frequency*	Matrix	Analysis
Cover System	Annually	Soil	Visual
Groundwater	Annually	Water	VOCs, PFAS

Monitoring Completed During Current Reporting Period

Monitoring wells were installed in May 2024. Inspection of the composite cover system was conducted on June 3, 2024. Monitoring wells MW-2, MW-3, and MW-4 were sampled on June 3, 2024. In addition, a second soil vapor intrusion sampling event was conducted March 28, 2024.

Comparison with Remedial Objectives

The remedial objectives for the composite cover system are being met. The cover system continues to be protective of human health and the environment for the intended restricted residential use of the property.

The cover system has been and will continue to be effective in preventing public exposure to the residual contamination left on Site beneath the cover system. The composite cover system inspection form is included with the Site Inspection Forms denoted as **Appendix B**.

During the annual monitoring well sampling event conducted on June 3, 2024 the VOC acetone was detected in monitoring well MW-2 at a concentration of 81 ug/L exceeding the NYSDEC TOGS effluent limitation of 50 ug/L. Perfluorooctanoic Acid (PFOA) was detected in monitoring wells MW-2, MW-3, and MW-4 at concentrations of 0.0328 ug/L,

0.0233 ug/L, and 0.0199 ug/L respectively exceeding the NYSDEC TOGS guidance value of 0.0067 ug/L. In addition Perfluorooctanesulfonic Acid (PFOS) was detected in monitoring wells MW-2, MW-3, and MW-4 at concentrations of 0.00575 ug/L, 0.0147 ug/L, and 0.00764 ug/L respectively exceeding the NYSDEC TOGS guidance value of 0.0027 ug/L.

The soil vapor intrusion sampling and evaluations conducted in 2023 and 2024 have confirmed that VOC concentrations are within the "No Further Action" category on the NYSDOH decision matrices (May 2017 and February 2024). Therefore no further vapor intrusion sampling at the Floor and Décor building is needed.

Monitoring Deficiencies

All aspects of the monitoring plan were in accordance with NYSDEC applicable regulations.

6.0 OPERATION AND MAINTENANCE PLAN COMPLIANCE

The Site remedy does not rely on any mechanical systems, such as sub-slab depressurization systems or air sparge/soil vapor extraction systems, to protect public health and the environment. Therefore, the operation and maintenance of such components is not applicable.

7.0 CONCLUSIONS AND RECOMMENDATIONS

Compliance with the SMP

All aspects of the SMP, including IC/EC and monitoring, have met the requirements. O&M is not required at this time for the site.

There are no new exposure pathways resulting in an unacceptable risk.

Performance and Effectiveness of the Remedy

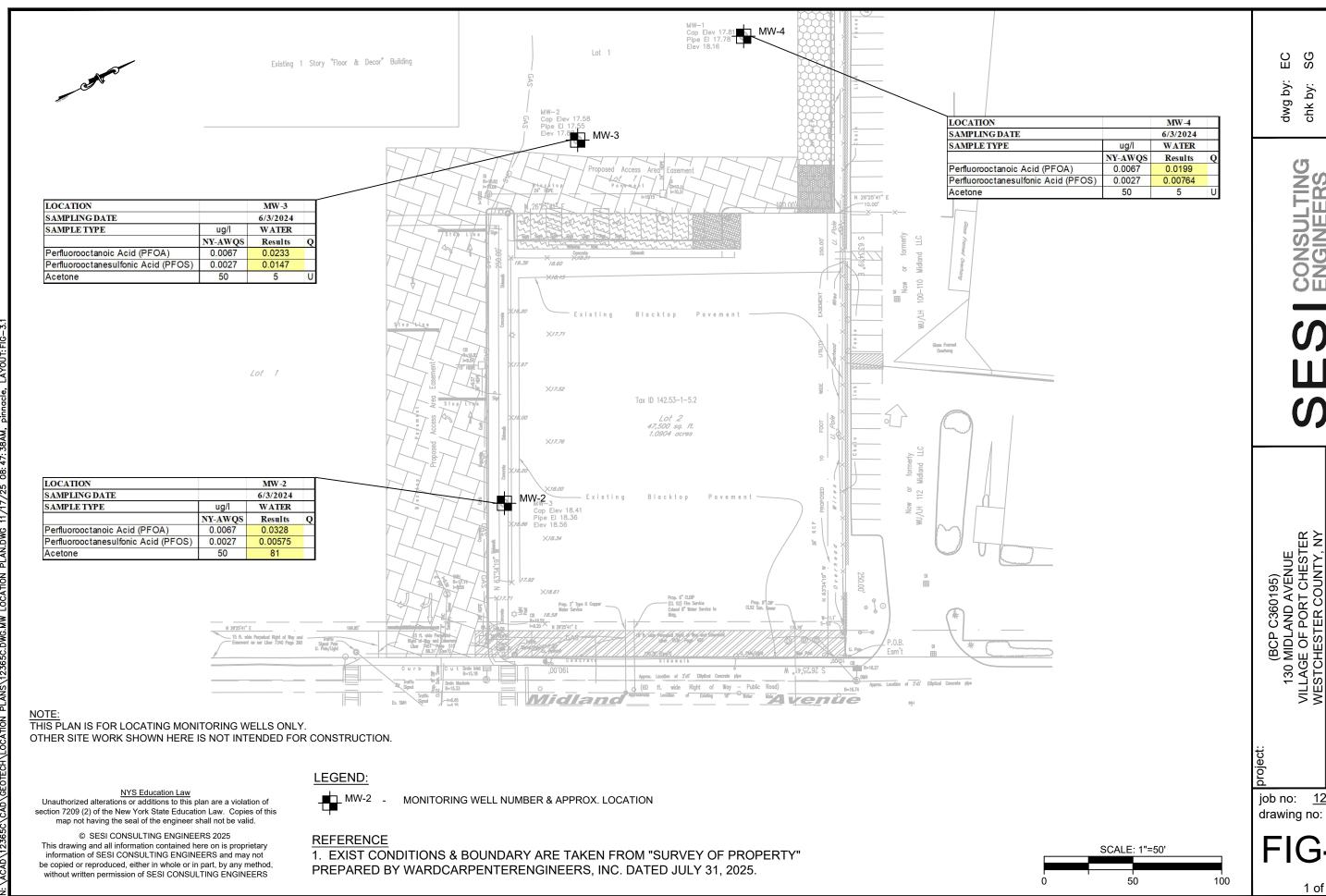
The cover system has been and will continue to be effective in preventing public exposure to the residual contamination left on Site beneath the cover system.

The sampling of the monitoring well network is determining the effectiveness of the Site's ability to naturally degrade the COCs in groundwater.

The proposed periodic monitoring plan for the cover system and groundwater is effective and protective of the previously approved overall Site remedy.

Future PRR Submittals

We do not recommend any changes to the frequency of the PRR submittal at this time because ICs and ECs remain in-place and are effective. The next PRR will be submitted in May 2026.


Conclusions and Recommendations

All aspects of the remedial program appear to be meeting the Site remedy design goal.

We recommend the following for the next reporting period:

- Cover System: Continued annual visual inspection of the cover system.
 Groundwater Monitoring: Continued annual groundwater monitoring.
- Discontinue soil vapor intrusion sampling at the Floor and Décor building. The sampling was conducted in 2023 and 2024 confirming that VOC concentrations are within the "No Further Action" category on the NYSDOH decision matrices (May 2017 and February 2024).

AS NOTED

date:

scale:

CONSULTING
ENGINEERS

| ENVIRONMENTAL | SITE CIVIL
OOR, PARSIPPANY, NJ 07054 PH: 973,808,9050 GEOTECHN

> PLAN LOCATION

WELL MONITORING

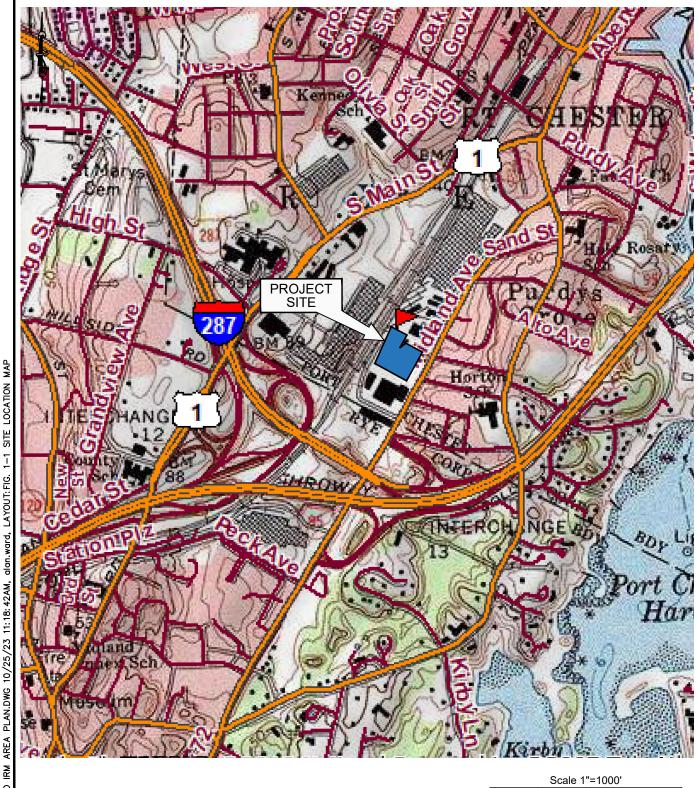

<u>12365</u>A

FIG-3.

1 of 1

Appendix A:

Site Management Plan Figures

REFERENCE:

INFORMATION CREATED FROM "TOPO" NATIONAL GEOGRAPHIC 2007 TELE ATLAS RE. 2007

130 MIDLAND AVENUE
PARCEL #142.53-1-5
PORT CHESTER, WESTCHESTER COUNTY,
NEW YORK, 10573
BCP SITE No. C360195

SITE LOCATION MAP

SESI CONSULTING ENGINEERS

GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL

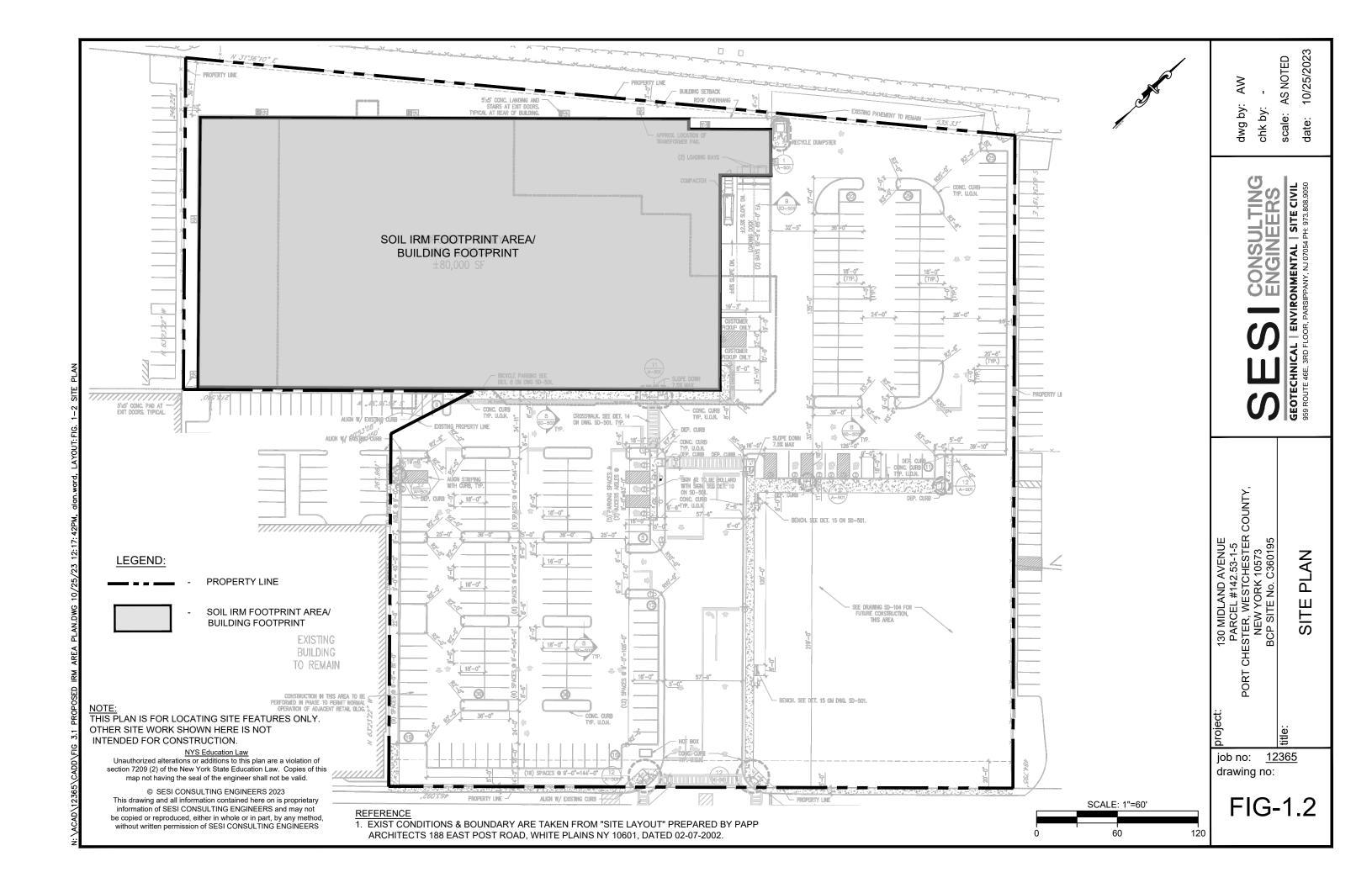
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050

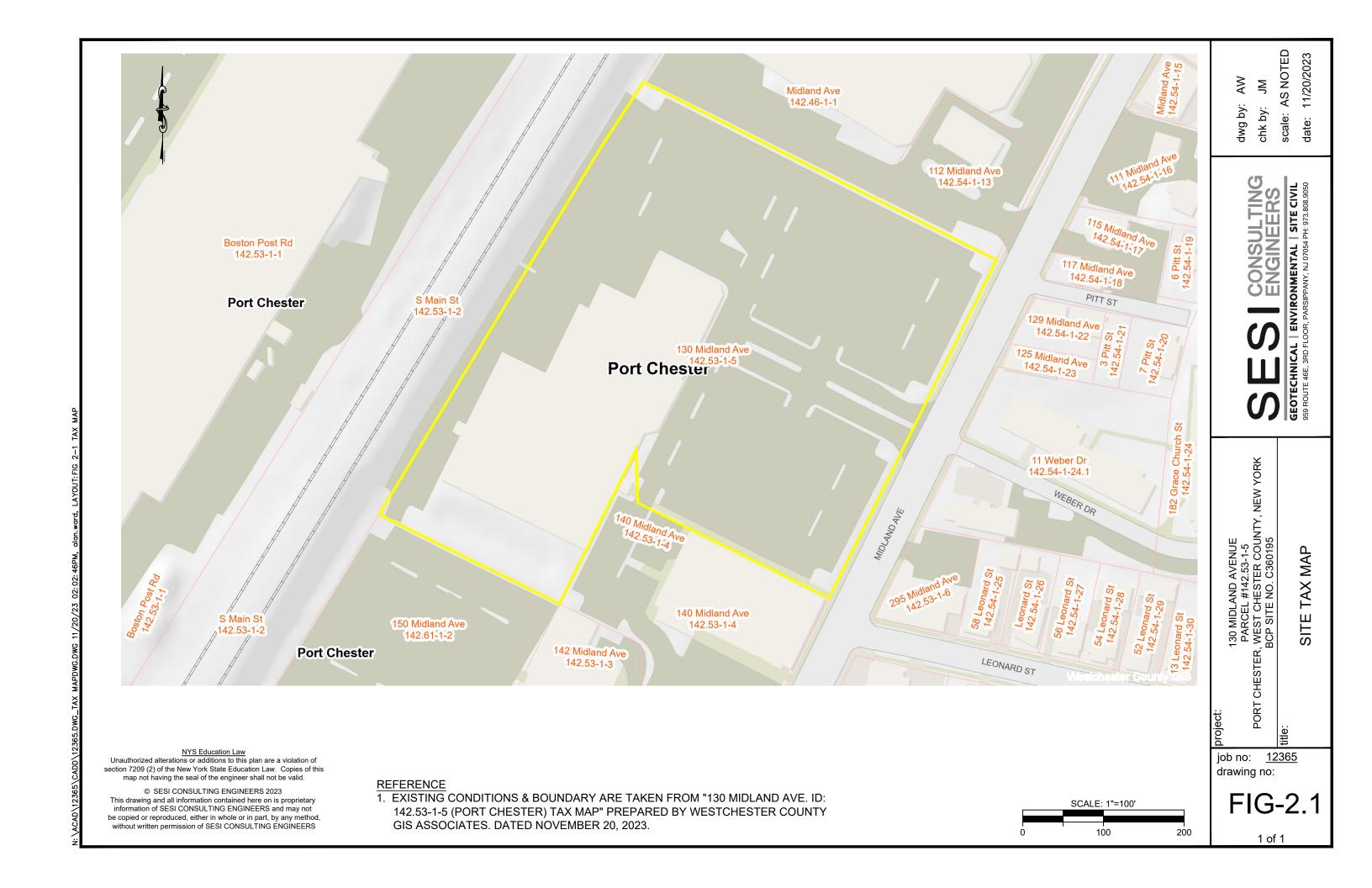
FIG 1.1

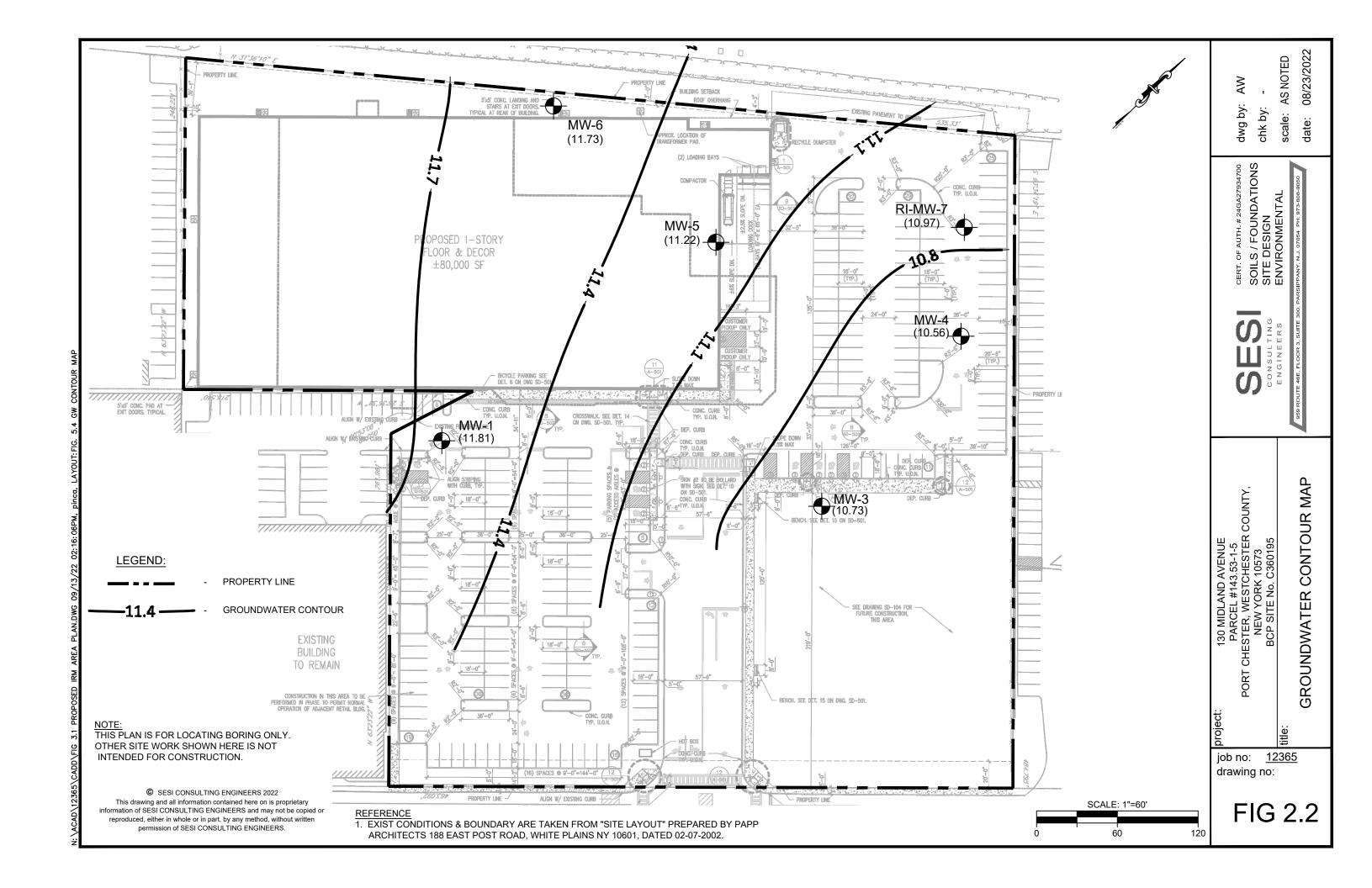
2000

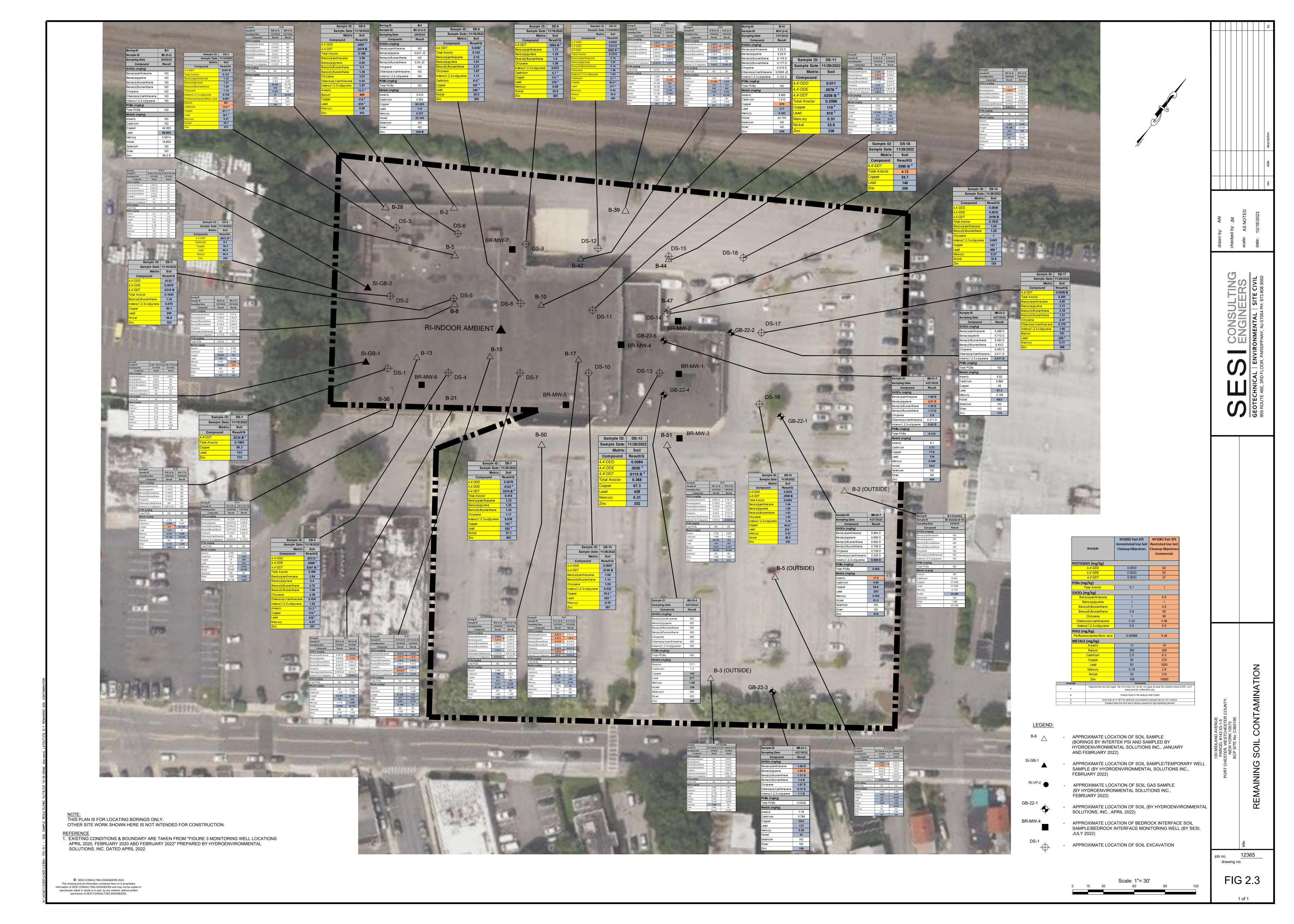
DRAWN BY: AW

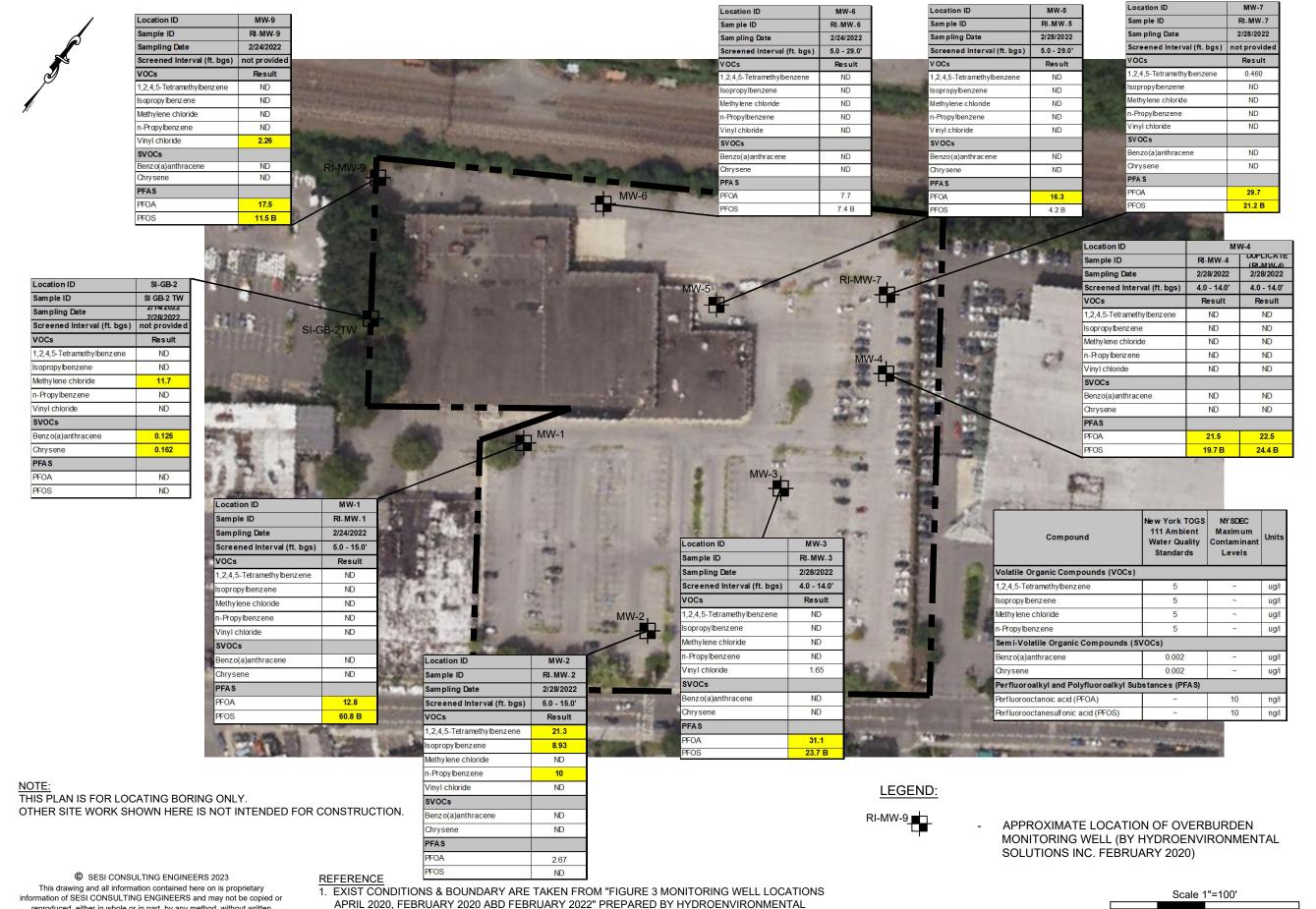
1000


CHECKED BY: --


SCALE: AS NOTED


DATE: 08/23/2022


JOB NO.: 12365


alan.ward, AREA PLAN.DWG 10/25/23 11:18:42AM, PROPOSED IRM N: \ACAD\12365\CADD\FIG 3.1

reproduced, either in whole or in part, by any method, without written

permission of SESI CONSULTING ENGINEERS.

SOLUTIONS, INC. DATED APRIL 2022.

NOTED AS by: date:

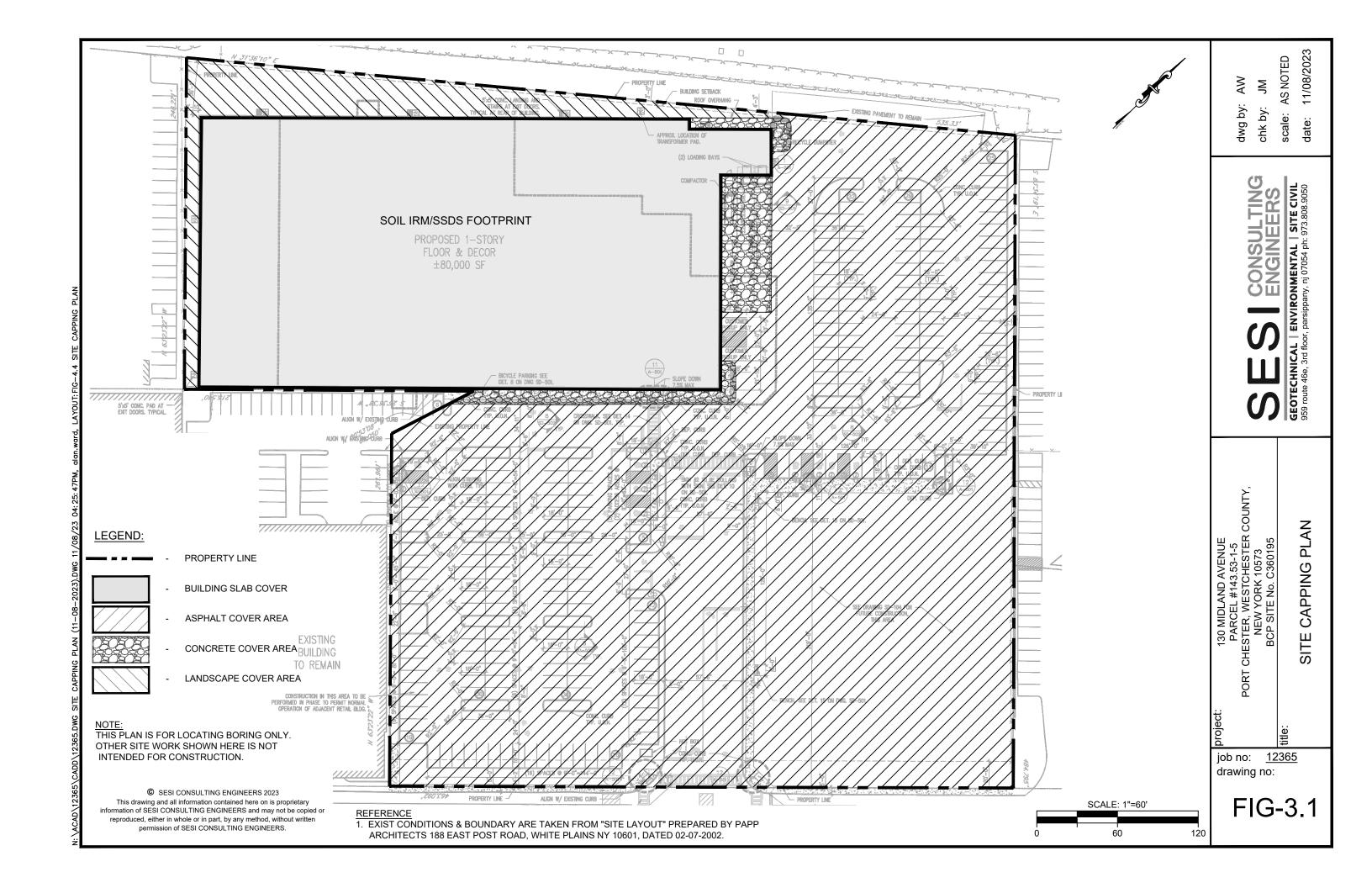
EC dwg by:

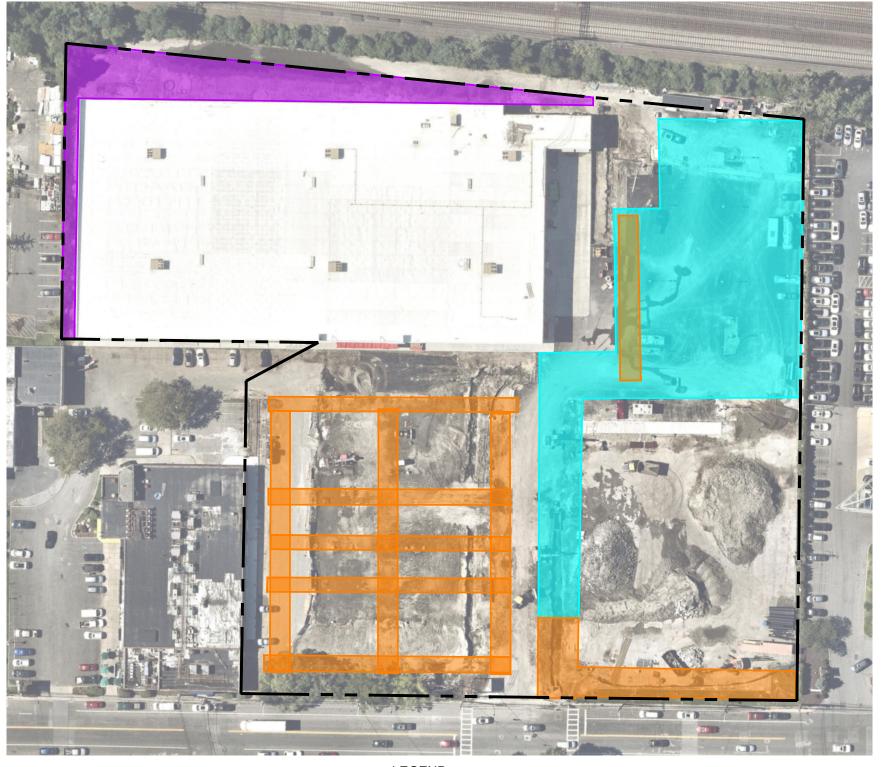
. | SITE CIVIL 4 PH: 973.808.9050 FRS

L | ENVIRONMENTAL FLOOR, PARSIPPANY, NJ 07054

130 MIDLAND AVENUE PARCEL #142.53-1-5 ESTER, WESTCHESTER C NEW YORK 10573 BCP SITE No. C360195 CHEST

GROUNDWATE


CONTAMINATION IN


MAINING

job no: <u>12365</u> drawing no:

FIG 2.4

1 OF 1

LEGEND:

- ORANGE SNOW FENCE INSTALLED BETWEEN IMPORTED RCA MATERIAL AND SUB-BASE/ASPHALT

- LANDSCAPE AREAS WITH ORANGE SNOW FENCE BELOW ONE FOOT OF TOPSOIL MEETING CSCO's

BLACK GEOTEXTILE FABRIC INSTALLED BETWEEN IMPORTED RCA MATERIAL AND SUB-BASE/ASPHALT

PROPERTY BOUNDARY

Scale 1"=80'
0 80 160

AS NOTED 11/07/2023

scale: date:

 $\overset{\mathsf{A}}{\vee}$

dwg by: chk by:

DEMARCATION PLAN

130 MIDLAND AVENUE
PARCEL #142.53-1-5
(T CHESTER, WESTCHESTER COUNTY,
NEW YORK 10573
BCP SITE No. C360195

job no: 12365 drawing no:

FIG-3.2

1 of 1

© SESI CONSULTING ENGINEERS 2023

This drawing and all information contained here on is proprietary information of SESI CONSULTING ENGINEERS and may not be copied or reproduced, either in whole or in part, by any method, without written permission of SESI CONSULTING ENGINEERS.

Appendix B:

Site Inspection Checklist

INSPECTION CHECKLIST

130 MIDLAND AVENUE SITE PORT CHESTER, NEW YORK NYSDEC BCP No. C360195

Inspection Date: 6.3.2024

SESI CONSULTING ENGINEERS

COMPOSITE COVER SYSTEM

-	Is the integrity of the cover system in tact?	Yes _X_ No
-	Do the maintenance records indicate any invasive subsurface work has been completed after the last inspection?	Yes NoX
-	Has any soil been removed or imported from the Site since the last inspection?	Yes No _X
-	If soil has been disposed off-Site or imported, has this been completed in accordance with the NYSDEC approved Soil Management Plan for the Site?	Yes No _X
-	If subsurface invasive work was undertaken, has the demarcation geotextile and the "clean soil cover" been restored?	Yes No _X
-	Did a Professional Engineer or a qualified environmental professional (approved by the NYSDEC) oversee the above work?	Yes <u>X</u> No
-	Was NYSDEC notified of disturbances to the "Clean Soil Cover"?	Yes No
-	List of all reported disturbances since last inspection:	
	NONE	
MONI	TORING WELL NETWORK	
-	Are all the on-Site monitoring wells accessible for annual compliance sampling (i.e., they are not covered by soil, dumpsters, etc.)?	Yes _X No
-	Is the integrity of the flush-mount/stickup manhole covers And associated concrete pads intact?	Yes <u>X</u> No
-	Are the monitoring wells locked and the locks functioning?	Yes <u>X</u> No

Monitoring Well Construction Logs

		PR∩I	IECT NAME:								MONITORING WELL	NO.		1W-2
SESI PROJECT LOCATION:			130 Midland Ave., Port Chester NY						JOB NO.			365B		
CONSULTING ENGINEERS		11100	EOT EOO/MON.								GROUND ELEVATION:			.0000
BORING BY: Coastal		DATE	STARTED		5/22/24 DEVELOPME			ODMEN	DIAGNIT DEDICE		~ 2 hours	INSIDE CASING DIAMETER (in)		2
					5/22/24		DEVELOPMENT PERIOD DEVELOPMENT METHOD				-	6		
INSPECTOR: J. Blind			COMPLETED								Direct Push/whale Pump	BOREHOLE DIAMETER (in)		
NJ DEP PERMIT NO.:		DATE	DEVELOPED	DEPTH	5/22/24		DEVEL	OPMEN	II RAI	E I		INITIAL WATER LEVEL (ft):		8.85
WELL CONSTRUCT		CTION		(ft)	Sam		Blows on Spoon			REC	SOIL DESCRIPTION AND STRATIFICATION			P.I.D
				0		0/6	6/12	12/18	18/24	(in)				+
Depth (feet below grade)					<u> </u>						-			-
op of Riser	0		Casing Type: Flush-Mount		_									
Ground Surface	0				_									
Гор of Sand Pack	3		Riser Pipe: 2" PVC											
Bottom of Riser	4.3		Top of Seal: Sealed to top	5									_	
Top of Screen	4.3		Grout Type: Bentonite											
											No spoils produce	ed, slight odor observed during purg	Э	
			Sand/Gravel											
			Pack Size: #2	10										
			Screen Size: 10 Slot								1		-	
	14.3													
Bottom of Screen				15	\vdash						-			-
Bottom of Boring	14.3			15										
											End o	f Boring +/- 15 feet BGS		+
					<u> </u>									
				20									_	
											1			
				25							1			
											1		-	
					\vdash		\vdash							
					\vdash									
						 				-				
					\vdash									_
				30	\vdash		$\vdash\vdash$			_			-	-
					<u> </u>									
					<u> </u>	<u> </u>								
					<u> </u>		Щ							
				35									_	
0 is reference														
Remarks						İ								
				40							1			

Approximate Change in Strata: _____ Inferred Change in Strata: _____

The subsurface information shown hereon was obtained for the design and estimating purposes for our client. It is made available to authorized users only that they may have access to the same information available to our client. It is presented in good faith, but it is not intended as a substitute for investigations, interpretations or judgment of such authorized users. Information on the logs should not be relied upon without the geotechnical engineers recommendations contained in the report from which these logs were extracted. Soil descriptions represent a field identification after D. M. Burmister unless otherwise noted.

CECI	PROJECT NAME:								MONITORING WELL	_ NO.	MV	V-3
SESI	PROJECT LOCATION:		130 M	idland A	Ave., Por	t Chest	er NY		JOB NO.		1236	65B
CONSULTING ENGINEERS									GROUND ELEVATION	DN:		
BORING BY: Coastal	DATE STARTED		5/1	4/24	DEVEL	OPME	NT PER	IOD	~ 2 hours	INSIDE CASING DIAMETER (in)		2
NSPECTOR: J. Blind	DATE COMPLETED		5/1	4/24	DEVEL	.OPME	NT MET	HOD	Direct Push/Whale Pump	BOREHOLE DIAMETER (in)		6
NJ DEP PERMIT NO.:	DATE DEVELOPED		5/1	4/24	DEVEL	OPME	NT RAT	E	# gpm	INITIAL WATER LEVEL (ft):		7.4
WELL	CONSTRUCTION	DEPTH (ft)	Sample		Blows o	n Spoor	n	REC	SOIL DESCR	RIPTION AND STRATIFICATION		P.I
	_	0	S	0/6	6/12	12/18	18/24	(in)				
Depth (feet below grade)												
Top of Riser 0	Casing Type: Flush-Mount											
Ground Surface 0												
op of Sand Pack 3	Riser Pipe: 2" PVC											
	Top of Seal: Sealed to top	5										
	Grout Type: Bentonite											
ottom of Riser 7.5												
op of Screen 7.5	Sand/Gravel								No or -9	L manalina adam abaama dalamia		
	Pack Size: #2	10							ino spoils producted	l, gasoline odors observed during purge		
	Screen Size: 10 Slot										_	1
		15										
		13									_	1
47.5			-									
ottom of Screen 17.5												-
ottom of Boring 17.5									End of	Boring +/- 17.5 feet BGS		-
		20		-							_	
				<u> </u>								<u></u>
		25									_	
		30										
				ĺ								
		35		t		l	l	l				
												\vdash
O io reference												
0 is reference				1	 							\vdash
<u>emarks</u>			-									\vdash
			-	1	-	 	 	 				\vdash
		40			1							1

Approximate Change in Strata: _____ Inferred Change in Strata: _____

The subsurface information shown hereon was obtained for the design and estimating purposes for our client. It is made available to authorized users only that they may have access to the same information available to our client. It is presented in good faith, but it is not intended as a substitute for investigations, interpretations or judgment of such authorized users. Information on the logs should not be relied upon without the geotechnical engineers recommendations contained in the report from which these logs were extracted. Soil descriptions represent a field identification after D. M. Burmister unless otherwise noted.

Page 1 of 1

FIGURE # Page 2 of 2

CECI	PROJECT NAME:								MONITORING WEL	L NO.	MW-	1-4
SESI	PROJECT LOCATION:		130 Mi	dland A	ve., Por	t Cheste	er NY		JOB NO.		1236	65B
CONSULTING ENGINEERS									GROUND ELEVATI	ON:		
BORING BY: Coastal	DATE STARTED		5/1	4/24	DEVEL	OPMEN	NT PER	IOD	~ 2 hours	INSIDE CASING DIAMETER (in)		2
NSPECTOR: J. Blind	DATE COMPLETED		5/1		DEVEL				Direct Push/ Whale Pump	BOREHOLE DIAMETER (in)		6
NJ DEP PERMIT NO.:	DATE DEVELOPED		5/1	4/24	DEVEL	.OPMEN	NT RATI		# gpm	INITIAL WATER LEVEL (ft):		7.3
WELL C	ONSTRUCTION	DEPTH (ft)	Sample	ı	Blows o	n Spoor	1	REC		RIPTION AND STRATIFICATION	·	P.I.
		0	0,	0/6	6/12	12/18	18/24	(in)				
Depth (feet below grade)									ı			
op of Riser 0	Casing Type: Flush-Mount											
Ground Surface 0												
op of Sand Pack 3	Riser Pipe: 2" PVC											
ottom of Riser 5	Top of Seal: Sealed to top	5										
op of Screen 5	Grout Type: Bentonite											
										No spoils produced		
	Sand/Gravel								•			
	Pack Size: #2	10										
	Screen Size: 10 Slot											
									ı			
ottom of Screen 15									,			
ottom of Boring 15		15							i			
Succession of Borning									End (of Boring +/- 15 feet BGS		
									End	or Borning 17 To recet BGG		
		20							•			
		20									_	
									ı			
			 									<u> </u>
			-						•			
		25	-								_	_
												<u> </u>
									•			<u> </u>
									,			
		30										
		35										
0 is reference									•			
		1						\vdash				
<u>emarks</u>												<u> </u>

Approximate Change in Strata: _____ Inferred Change in Strata: _____

The subsurface information shown hereon was obtained for the design and estimating purposes for our client. It is made available to authorized users only that they may have access to the same information available to our client. It is presented in good faith, but it is not intended as a substitute for investigations, interpretations or judgment of such authorized users. Information on the logs should not be relied upon without the geotechnical engineers recommendations contained in the report from which these logs were extracted. Soil descriptions represent a field identification after D. M. Burmister unless otherwise noted.

Well Purging and Sampling Logs

LOW-FLOW GROUNDWATER SAMPLING LOG

Location:	130 Midl	and		Job Number:	12365R	WELL I.D. : N	IW-2		
Personnel:	SWG			Date:	6/3/2024				
				PID:			SE		
Stickup? (Y/N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	0.25'	14.35		8.85	5.5	11.6	12.5		Peri
Turbidity at co	ollection (NTU):	270	(Less than	1 5 NTU is desirable)	Dupl	cate Collected	? Y/N		Sample (N)
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable	No Limit
Volume Purged	Time (actual Time)	ТЕМР.		Specific	Dissolved	ORP	Turbidity	DTW	Odors
(gallons)	5 minute Intervals	(Deg. C)	рН	Conductivity uS/cm	Oxygen (mg/L)	mV millivolts	NTUs	(feet)	Y/N
0	11:20	16.36	10.74	1580	0	-186	171	8.85	Υ
	11:25	15.97	9.54	1510	0	-185	170	8.9	Υ
	11:30	15.83	9.13	1470	0	-179	248	10.4	Υ
	11:35	15.79	9.17	1460	0	-181			Y
	11:40	15.91	8.67	1470	0	-167	390	10.5	Υ
	11:45	15.55	8.85	1490	0	-177	501	11.7	Υ
	11:50	15.44	8.90	1420	0	-173	301	12.0	Υ
3.75	11:55	15.59	8.87	1400	0	-179	290	12.1	Y
			W	 ell Condition Summa	l ary				
Cover: (Y)/ N		Bolts:(Ŷ) / N		Concrete Pad OK:(Y		Gripper: Y / N			
			Samı	ole Collection Inform		1		ļ	
Sample Time:	11:56	Appearance: Clo		Filtered Sample Tur			OTHER:		
establish stabilization. Notes/ Calculations:	n (slow drip) & turbidity <10 if possible. ing; 1"=0.041 gal. 2"= 0.163					prior to lab submittal.		Minimum 2	0 minute purge to
				ABSORBENT SOCK			-		
Sock Length (ft) =		Capacity	(Qt.) =		Present:	Y / N	Product Measu	red (Inches) :	
	llation Date:	ļ		Sock Cha	nged :	Y/N	1		
Sock Dept	h (Depth to sock mid p	oint):]		
							ļ		

LOW-FLOW GROUNDWATER SAMPLING LOG

Location:	130 Midla	and		Job Number:	12365R	WELL I.D. : N	IW-3		
Personnel:	SWG			Date:	6/3/2024				
				PID:			SE		
Stickup? Y/N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	0.33'	17.45		7.4'	10.05	12.4'	13		Peri
Turbidity at co	ollection (NTU):	29	(Less than	5 NTU is desirable)	Dupli	icate Collected	? Y/N	Filtered Y	Sample N
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable	No Limit
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg. C)	рН	Specific Conductivity uS/cm	Dissolved Oxygen (mg/L)	ORP mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
0	9:50	16.88	6.79	1720	0	-66	814	7.4	N
	9:55	16.06	6.84	1740	0	-75		7.6	N
	10:00	17.03	6.78	1830	0	-82	313	7.7	N
	10:05	17	6.77	1850	0	-85	422	7.7	N
	10:10	17.04	6.8	1850	0	-88	51.0	7.7	N
	10:15	17.02	6.81	1890	0	-74	54.3	7.7	N
Cover: Ý/ N		Bolts:(Ŷ) / N		ell Condition Summa	Y) N	Gripper: Y N			
		1	Samı	ole Collection Inform	ation		T		
Sample Time: Desired purge flow rate <100mL/min	10:21 (slow drip) & turbidity <10 if possible.			Filtered Sample Tur		s prior to lab submittal.	OTHER:	Minimum 2	0 minute purge to
establish stabilization. Notes/ Calculations:	ing; 1"=0.041 gal. 2"= 0.163								
Onale Lawrette (for		0		ABSORBENT SOCK		V/N	Product Measu	red (Inches)	
Sock Length (ft) =	Ustion Date:	Capacity	(પ્(ા.) =	Cook Oha	Present:	Y/N	Froduct Meast	irea (iricnes) :	
	llation Date: h (Depth to sock mid p	l point):		Sock Cha	ngea :	Y/N	1		
L							ı		

LOW-FLOW GROUNDWATER SAMPLING LOG

Location:	130 Midla	and		Job Number:	12365R	WELL I.D. : N	IW-4		
Personnel:	SWG			Date:	6/3/2024				
				PID:			SE		
Stickup? Y/N Distance ground to Stickup Rim/PVC	Distance From Rim to PVC	Total Depth of Well Rim/PVC	Depth to Product Rim/PVC	Depth to Water (Rim/PVC)	Standing Water Column (feet)	Middle of Saturated Zone (feet)	Depth to Sample Tube (feet)	TOV @ Well Head (ppmv)	Pump Peristaltic or Bladder
	0.4'	15.1		7.3'	7.8'	11.2	11.5		Peri
Turbidity at co	ollection (NTU):	71	(Less thar	n 5 NTU is desirable)	Dupl	icate Collected	? (Ý)N	Filtered Y	Sample N
Stabilization	n Parameters	+/- 0.5 deg C.	+/- 0.1 Unit	+/- 10 umhos/cm or within 3% if >300umho	1 ppm	+/- 10 mV	No Limit	<.3 feet drawdown desirable	No Limit
		ı		Specific	Dissolved	ORP	T		
Volume Purged (gallons)	Time (actual Time) 5 minute Intervals	TEMP. (Deg. C)	рН	Conductivity uS/cm	Oxygen (mg/L)	mV millivolts	Turbidity NTUs	DTW (feet)	Odors Y/N
0.2	8:40	17.64	6.48	1002	0	-83	199	7.3	N
	8:45	17.71	6.8	1005	0	-102	186	8.7	N
	8:50	17.44	6.75	1006	0	-100	150	9.2	N
	8:55	16.94	6.71	1007	0	-98	133	9.4	N
2	9:00	16.90	6.70	1006	0	-94	111	9.5	N
Cover: 🗹 N		Bolts:(Y) / N		ell Condition Summa Concrete Pad OK:()	() N	Gripper:(Y) N			
Sample Time:	9:01	Appearance: Mo	etly Claar	Filtered Sample Tur	·hidity:		OTHER:		
Desired purge flow rate <100mL/min establish stabilization. Notes/ Calculations:	1 (slow drip) & turbidity <10 if possible. ing; 1"=0.041 gal. 2"= 0.163	If turbidity > 10 collect filtere			collection of filtered samples	s prior to lab submittal.	OTHER.	Minimum 2	0 minute purge to
Sock Length (ft) =		Capacity	(Ot) =	ADSURBENT SUCK	Present:	Y/N	Product Measu	red (Inches) ·	
	lation Date:	Capacity	(હ્લા.) –	Sock Cha		Y/N	Judet meast	ii ca (iiiciies) .	
	h (Depth to sock mid p	point):		JOOK OHA		1 / 14	1		
- COOK DOPE	,						1		
L							ı		

Groundwater Analytical Report

ANALYTICAL REPORT

Lab Number: L2430635

Client: Soils Engineering Services, Inc.

959 Route 46E

Parsippany, NJ 07054

ATTN: Jeffrey Lamborn Phone: (973) 808-9050

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B Report Date: 06/17/24

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), CT (PH-0826), IL (200077), IN (C-MA-03), KY (KY98045), ME (MA00086), MD (348), NJ (MA935), NY (11148), NC (25700/666), OR (MA-1316), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #525-23-122-91930A1).

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

 Lab Number:
 L2430635

 Report Date:
 06/17/24

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L2430635-01	FIELD BLANK	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 11:10	06/03/24
L2430635-02	MW-2	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 11:56	06/03/24
L2430635-03	MW-3	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 10:21	06/03/24
L2430635-04	MW-4	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 09:01	06/03/24
L2430635-05	DUP-1	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 00:00	06/03/24
L2430635-06	TRIP BLANK	WATER	130 MIDLANDS AVE PORT CHESTER NY	06/03/24 00:00	06/03/24

Project Name:130 MIDLANDS AVE PORT CHESTERLab Number:L2430635Project Number:12365BReport Date:06/17/24

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively.

When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances, the specific failure is not narrated but noted in the associated QC Outlier Summary Report, located directly after the Case Narrative. QC information is also incorporated in the Data Usability Assessment table (Format 11) of our Data Merger tool, where it can be reviewed in conjunction with the sample result, associated regulatory criteria and any associated data usability implications.

Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

HOLD POLICY - For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Alpha Project Manager and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Project Management at 800-624-9220 with any questions.	

Project Name:130 MIDLANDS AVE PORT CHESTERLab Number:L2430635Project Number:12365BReport Date:06/17/24

Case Narrative (continued)

Report Submission

June 17, 2024: This final report includes the results of all requested analyses.

June 10, 2024: This is a preliminary report.

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

Perfluorinated Alkyl Acids by 1633

L2430635-02: Extracted Internal Standard recoveries were outside the acceptance criteria for individual analytes. Please refer to the surrogate section of the report for details.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 06/17/24

Melissa Sturgis Melissa Sturgis

ALPHA

ORGANICS

VOLATILES

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

L2430635-01

FIELD BLANK

130 MIDLANDS AVE PORT CHESTER NY

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 11:10

Lab Number:

Report Date:

Date Received: 06/03/24 Field Prep: Not Specified

Sample Location: Sample Depth:

Lab ID:

Client ID:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 13:47

Analyst: MAG

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - West	borough Lab						
Methylene chloride	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1	
Chloroform	ND		ug/l	2.5	0.70	1	
Carbon tetrachloride	ND		ug/l	0.50	0.13	1	
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1	
Dibromochloromethane	ND		ug/l	0.50	0.15	1	
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1	
Tetrachloroethene	ND		ug/l	0.50	0.18	1	
Chlorobenzene	ND		ug/l	2.5	0.70	1	
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1	
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1	
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1	
Bromodichloromethane	ND		ug/l	0.50	0.19	1	
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1	
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1	
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1	
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1	
Bromoform	ND		ug/l	2.0	0.65	1	
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1	
Benzene	ND		ug/l	0.50	0.16	1	
Toluene	ND		ug/l	2.5	0.70	1	
Ethylbenzene	ND		ug/l	2.5	0.70	1	
Chloromethane	ND		ug/l	2.5	0.70	1	
Bromomethane	ND		ug/l	2.5	0.70	1	
Vinyl chloride	ND		ug/l	1.0	0.07	1	
Chloroethane	ND		ug/l	2.5	0.70	1	
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1	
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1	

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-01 Date Collected: 06/03/24 11:10

Client ID: FIELD BLANK Date Received: 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab				
Trichloroethene	ND	ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1
Methyl tert butyl ether	ND	ug/l	2.5	0.17	1
p/m-Xylene	ND	ug/l	2.5	0.70	1
o-Xylene	ND	ug/l	2.5	0.70	1
Xylenes, Total	ND	ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1
Dibromomethane	ND	ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1
Acrylonitrile	ND	ug/l	5.0	1.5	1
Styrene	ND	ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1
Acetone	ND	ug/l	5.0	1.5	1
Carbon disulfide	ND	ug/l	5.0	1.0	1
2-Butanone	ND	ug/l	5.0	1.9	1
Vinyl acetate	ND	ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1
2-Hexanone	ND	ug/l	5.0	1.0	1
Bromochloromethane	ND	ug/l	2.5	0.70	1
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1
Bromobenzene	ND	ug/l	2.5	0.70	1
n-Butylbenzene	ND	ug/l	2.5	0.70	1
sec-Butylbenzene	ND	ug/l	2.5	0.70	1
tert-Butylbenzene	ND	ug/l	2.5	0.70	1
o-Chlorotoluene	ND	ug/l	2.5	0.70	1
p-Chlorotoluene	ND	ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1
Isopropylbenzene	ND	ug/l	2.5	0.70	1
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1
Naphthalene	ND	ug/l	2.5	0.70	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: Report Date: 12365B 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-01 Date Collected: 06/03/24 11:10

Client ID: Date Received: 06/03/24 FIELD BLANK Field Prep: Not Specified

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively	Identified	Compounds	
-------------	------------	-----------	--

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	99	70-130	
4-Bromofluorobenzene	97	70-130	
Dibromofluoromethane	101	70-130	

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 11:56

Lab Number:

Report Date:

Lab ID: L2430635-02

Client ID: MW-2 Date Received: 06/03/24 Field Prep: Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 14:12

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	stborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	0.34	J	ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.17	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-02 Date Collected: 06/03/24 11:56

Client ID: MW-2 Date Received: 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier U	nits	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - W	estborough Lab					
Trichloroethene	ND	u	g/l	0.50	0.18	1
1,2-Dichlorobenzene	ND	u	g/l	2.5	0.70	1
1,3-Dichlorobenzene	ND	u	g/l	2.5	0.70	1
1,4-Dichlorobenzene	ND	u	g/l	2.5	0.70	1
Methyl tert butyl ether	ND	u	g/l	2.5	0.17	1
p/m-Xylene	ND	u	g/l	2.5	0.70	1
o-Xylene	ND	u	g/l	2.5	0.70	1
Xylenes, Total	ND	u	g/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND	u	g/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND	u	g/l	2.5	0.70	1
Dibromomethane	ND	u	g/l	5.0	1.0	1
1,2,3-Trichloropropane	ND	u	g/l	2.5	0.70	1
Acrylonitrile	ND	u	g/l	5.0	1.5	1
Styrene	ND	u	g/l	2.5	0.70	1
Dichlorodifluoromethane	ND	u	g/l	5.0	1.0	1
Acetone	81	u	g/l	5.0	1.5	1
Carbon disulfide	ND	u	g/l	5.0	1.0	1
2-Butanone	12	u	g/l	5.0	1.9	1
Vinyl acetate	ND	u	g/l	5.0	1.0	1
4-Methyl-2-pentanone	ND	u	g/l	5.0	1.0	1
2-Hexanone	ND	u	g/l	5.0	1.0	1
Bromochloromethane	ND	u	g/l	2.5	0.70	1
2,2-Dichloropropane	ND	u	g/l	2.5	0.70	1
1,2-Dibromoethane	ND	u	g/l	2.0	0.65	1
1,3-Dichloropropane	ND	u	g/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND	u	g/l	2.5	0.70	1
Bromobenzene	ND	u	g/l	2.5	0.70	1
n-Butylbenzene	ND	u	g/l	2.5	0.70	1
sec-Butylbenzene	ND	u	g/l	2.5	0.70	1
tert-Butylbenzene	ND	u	g/l	2.5	0.70	1
o-Chlorotoluene	ND	u	g/l	2.5	0.70	1
p-Chlorotoluene	ND	u	g/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND	u	g/l	2.5	0.70	1
Hexachlorobutadiene	ND	u	g/l	2.5	0.70	1
Isopropylbenzene	ND	u	g/l	2.5	0.70	1
p-Isopropyltoluene	ND	u	g/l	2.5	0.70	1
Naphthalene	ND	u	g/l	2.5	0.70	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-02 Date Collected: 06/03/24 11:56

Client ID: MW-2 Date Received: 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westb	orough Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	1.1	J	ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	0.95	J	ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds				
Total TIC Compounds	39.5	J	ug/l	1
Dimethyl sulfide	1.48	NJ	ug/l	1
Unknown Aromatic	1.59	J	ug/l	1
Unknown Aromatic	10.2	J	ug/l	1
Unknown Aromatic	7.45	J	ug/l	1
Unknown Aromatic	1.95	J	ug/l	1
Unknown Aromatic	2.11	J	ug/l	1
Unknown Aromatic	1.83	J	ug/l	1
Unknown Aromatic	5.59	J	ug/l	1
Unknown	1.89	J	ug/l	1
Unknown	5.39	J	ug/l	1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	100	70-130	
Toluene-d8	101	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	99	70-130	

L2430635

06/17/24

06/03/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Lab Number:

Report Date:

Date Received:

Lab ID: L2430635-03 Date Collected: 06/03/24 10:21

Client ID: MW-3

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Matrix: Water
Analytical Method: 1,8260D
Analytical Date: 06/06/24 15:54

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	0.42	J	ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: Report Date: 12365B 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-03 Date Collected: 06/03/24 10:21

Client ID: Date Received: 06/03/24 MW-3

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - We	estborough Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.20	J	ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: Report Date: 12365B 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-03 Date Collected: 06/03/24 10:21

Client ID: Date Received: 06/03/24 MW-3

Sample Location: Field Prep: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - West	borough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
14 D' 11 O 1 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively	Identified	Compounds	
-------------	------------	-----------	--

No Tentatively Identified Compounds ND ug/l 1

Surrogate	% Recovery	Acceptance Qualifier Criteria	
1,2-Dichloroethane-d4	101	70-130	
Toluene-d8	100	70-130	
4-Bromofluorobenzene	98	70-130	
Dibromofluoromethane	99	70-130	

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 09:01

Lab Number:

Report Date:

Lab ID: L2430635-04

Client ID: Date Received: 06/03/24 MW-4 Field Prep: Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 14:38

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	n Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: Report Date: 12365B 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-04 Date Collected: 06/03/24 09:01

Client ID: Date Received: 06/03/24 MW-4

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.20	J	ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-04 Date Collected: 06/03/24 09:01

Client ID: MW-4 Date Received: 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

No Tentatively Identified Compounds

Dibromofluoromethane

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - Westboroug	h Lab						
n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane	ND		ug/l	250	61.	1	
p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
Ethyl ether	ND		ug/l	2.5	0.70	1	
trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Т	Tentatively Identified Compounds	

ND

Surrogate	% Recovery	Qualifier	Acceptance Criteria
1,2-Dichloroethane-d4	100		70-130
Toluene-d8	100		70-130
4-Bromofluorobenzene	98		70-130

ug/l

100

1

70-130

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 00:00

Lab Number:

Report Date:

Lab ID: L2430635-05

Client ID: Date Received: 06/03/24 DUP-1 Field Prep: Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 15:04

Analyst: MJV

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Wes	tborough Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-05 Date Collected: 06/03/24 00:00

Client ID: DUP-1 Date Received: 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westborough	Lab					
Trichloroethene	ND		ug/l	0.50	0.18	1
1,2-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,3-Dichlorobenzene	ND		ug/l	2.5	0.70	1
1,4-Dichlorobenzene	ND		ug/l	2.5	0.70	1
Methyl tert butyl ether	0.19	J	ug/l	2.5	0.17	1
p/m-Xylene	ND		ug/l	2.5	0.70	1
o-Xylene	ND		ug/l	2.5	0.70	1
Xylenes, Total	ND		ug/l	2.5	0.70	1
cis-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1
1,2-Dichloroethene, Total	ND		ug/l	2.5	0.70	1
Dibromomethane	ND		ug/l	5.0	1.0	1
1,2,3-Trichloropropane	ND		ug/l	2.5	0.70	1
Acrylonitrile	ND		ug/l	5.0	1.5	1
Styrene	ND		ug/l	2.5	0.70	1
Dichlorodifluoromethane	ND		ug/l	5.0	1.0	1
Acetone	ND		ug/l	5.0	1.5	1
Carbon disulfide	ND		ug/l	5.0	1.0	1
2-Butanone	ND		ug/l	5.0	1.9	1
Vinyl acetate	ND		ug/l	5.0	1.0	1
4-Methyl-2-pentanone	ND		ug/l	5.0	1.0	1
2-Hexanone	ND		ug/l	5.0	1.0	1
Bromochloromethane	ND		ug/l	2.5	0.70	1
2,2-Dichloropropane	ND		ug/l	2.5	0.70	1
1,2-Dibromoethane	ND		ug/l	2.0	0.65	1
1,3-Dichloropropane	ND		ug/l	2.5	0.70	1
1,1,1,2-Tetrachloroethane	ND		ug/l	2.5	0.70	1
Bromobenzene	ND		ug/l	2.5	0.70	1
n-Butylbenzene	ND		ug/l	2.5	0.70	1
sec-Butylbenzene	ND		ug/l	2.5	0.70	1
tert-Butylbenzene	ND		ug/l	2.5	0.70	1
o-Chlorotoluene	ND		ug/l	2.5	0.70	1
p-Chlorotoluene	ND		ug/l	2.5	0.70	1
1,2-Dibromo-3-chloropropane	ND		ug/l	2.5	0.70	1
Hexachlorobutadiene	ND		ug/l	2.5	0.70	1
Isopropylbenzene	ND		ug/l	2.5	0.70	1
p-Isopropyltoluene	ND		ug/l	2.5	0.70	1
Naphthalene	ND		ug/l	2.5	0.70	1

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number: L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-05 Date Collected: 06/03/24 00:00

Client ID: DUP-1 Date Received: 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

No Tentatively Identified Compounds

Dibromofluoromethane

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Fentatively Identified Compounds	

ND

Surrogate% RecoveryQualifierAcceptance Criteria1,2-Dichloroethane-d410170-130Toluene-d810070-1304-Bromofluorobenzene9770-130

ug/l

100

1

70-130

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Lab Number:

Report Date:

Lab ID: L2430635-06 Date Collected: 06/03/24 00:00

Client ID: Date Received: 06/03/24 TRIP BLANK 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Sample Location: Not Specified

Sample Depth:

Matrix: Water Analytical Method: 1,8260D Analytical Date: 06/06/24 15:29

Analyst: MJV

	Result	Qualifier	Units	RL	MDL	Dilution Factor
Volatile Organics by GC/MS - Westboroug	h Lab					
Methylene chloride	ND		ug/l	2.5	0.70	1
1,1-Dichloroethane	ND		ug/l	2.5	0.70	1
Chloroform	ND		ug/l	2.5	0.70	1
Carbon tetrachloride	ND		ug/l	0.50	0.13	1
1,2-Dichloropropane	ND		ug/l	1.0	0.14	1
Dibromochloromethane	ND		ug/l	0.50	0.15	1
1,1,2-Trichloroethane	ND		ug/l	1.5	0.50	1
Tetrachloroethene	ND		ug/l	0.50	0.18	1
Chlorobenzene	ND		ug/l	2.5	0.70	1
Trichlorofluoromethane	ND		ug/l	2.5	0.70	1
1,2-Dichloroethane	ND		ug/l	0.50	0.13	1
1,1,1-Trichloroethane	ND		ug/l	2.5	0.70	1
Bromodichloromethane	ND		ug/l	0.50	0.19	1
trans-1,3-Dichloropropene	ND		ug/l	0.50	0.16	1
cis-1,3-Dichloropropene	ND		ug/l	0.50	0.14	1
1,3-Dichloropropene, Total	ND		ug/l	0.50	0.14	1
1,1-Dichloropropene	ND		ug/l	2.5	0.70	1
Bromoform	ND		ug/l	2.0	0.65	1
1,1,2,2-Tetrachloroethane	ND		ug/l	0.50	0.17	1
Benzene	ND		ug/l	0.50	0.16	1
Toluene	ND		ug/l	2.5	0.70	1
Ethylbenzene	ND		ug/l	2.5	0.70	1
Chloromethane	ND		ug/l	2.5	0.70	1
Bromomethane	ND		ug/l	2.5	0.70	1
Vinyl chloride	ND		ug/l	1.0	0.07	1
Chloroethane	ND		ug/l	2.5	0.70	1
1,1-Dichloroethene	ND		ug/l	0.50	0.17	1
trans-1,2-Dichloroethene	ND		ug/l	2.5	0.70	1

06/17/24

Report Date:

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B

SAMPLE RESULTS

Lab ID: L2430635-06 Date Collected: 06/03/24 00:00

Client ID: TRIP BLANK Date Received: 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter	Result	Qualifier Units	RL	MDL	Dilution Factor	
Volatile Organics by GC/MS - V	Vestborough Lab					
Trichloroethene	ND	ug/l	0.50	0.18	1	
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70	1	
Methyl tert butyl ether	ND	ug/l	2.5	0.17	1	
p/m-Xylene	ND	ug/l	2.5	0.70	1	
o-Xylene	ND	ug/l	2.5	0.70	1	
Xylenes, Total	ND	ug/l	2.5	0.70	1	
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70	1	
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70	1	
Dibromomethane	ND	ug/l	5.0	1.0	1	
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70	1	
Acrylonitrile	ND	ug/l	5.0	1.5	1	
Styrene	ND	ug/l	2.5	0.70	1	
Dichlorodifluoromethane	ND	ug/l	5.0	1.0	1	
Acetone	ND	ug/l	5.0	1.5	1	
Carbon disulfide	ND	ug/l	5.0	1.0	1	
2-Butanone	ND	ug/l	5.0	1.9	1	
Vinyl acetate	ND	ug/l	5.0	1.0	1	
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0	1	
2-Hexanone	ND	ug/l	5.0	1.0	1	
Bromochloromethane	ND	ug/l	2.5	0.70	1	
2,2-Dichloropropane	ND	ug/l	2.5	0.70	1	
1,2-Dibromoethane	ND	ug/l	2.0	0.65	1	
1,3-Dichloropropane	ND	ug/l	2.5	0.70	1	
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70	1	
Bromobenzene	ND	ug/l	2.5	0.70	1	
n-Butylbenzene	ND	ug/l	2.5	0.70	1	
sec-Butylbenzene	ND	ug/l	2.5	0.70	1	
tert-Butylbenzene	ND	ug/l	2.5	0.70	1	
o-Chlorotoluene	ND	ug/l	2.5	0.70	1	
p-Chlorotoluene	ND	ug/l	2.5	0.70	1	
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70	1	
Hexachlorobutadiene	ND	ug/l	2.5	0.70	1	
Isopropylbenzene	ND	ug/l	2.5	0.70	1	
p-Isopropyltoluene	ND	ug/l	2.5	0.70	1	
Naphthalene	ND	ug/l	2.5	0.70	1	

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number: L2430635

Project Number: 12365B **Report Date:** 06/17/24

SAMPLE RESULTS

Lab ID: Date Collected: 06/03/24 00:00 L2430635-06

Date Received: Client ID: 06/03/24 TRIP BLANK

Sample Location: Field Prep: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

4-Bromofluorobenzene

Dibromofluoromethane

Volatile Organics by GC/MS - Westborough Lab n-Propylbenzene ND ug/l 2.5 0.70 1 1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1 trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
1,2,3-Trichlorobenzene ND ug/l 2.5 0.70 1 1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	Volatile Organics by GC/MS - Wes	tborough Lab						
1,2,4-Trichlorobenzene ND ug/l 2.5 0.70 1 1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	n-Propylbenzene	ND		ug/l	2.5	0.70	1	
1,3,5-Trimethylbenzene ND ug/l 2.5 0.70 1 1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,3-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,2,4-Trimethylbenzene ND ug/l 2.5 0.70 1 1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trichlorobenzene	ND		ug/l	2.5	0.70	1	
1,4-Dioxane ND ug/l 250 61. 1 p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,3,5-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Diethylbenzene ND ug/l 2.0 0.70 1 p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,2,4-Trimethylbenzene	ND		ug/l	2.5	0.70	1	
p-Ethyltoluene ND ug/l 2.0 0.70 1 1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	1,4-Dioxane	ND		ug/l	250	61.	1	
1,2,4,5-Tetramethylbenzene ND ug/l 2.0 0.54 1 Ethyl ether ND ug/l 2.5 0.70 1	p-Diethylbenzene	ND		ug/l	2.0	0.70	1	
Ethyl ether ND ug/l 2.5 0.70 1	p-Ethyltoluene	ND		ug/l	2.0	0.70	1	
	1,2,4,5-Tetramethylbenzene	ND		ug/l	2.0	0.54	1	
trans-1,4-Dichloro-2-butene ND ug/l 2.5 0.70 1	Ethyl ether	ND		ug/l	2.5	0.70	1	
	trans-1,4-Dichloro-2-butene	ND		ug/l	2.5	0.70	1	

Tentatively Identified Compounds		

ND

No Tentatively Identified Compounds ug/l Acceptance Surrogate % Recovery Qualifier Criteria 1,2-Dichloroethane-d4 101 70-130 Toluene-d8 100 70-130

97

100

1

70-130

70-130

L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number:

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:42

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1930631-5
Methylene chloride	ND	ug/l	2.5	0.70
1,1-Dichloroethane	ND	ug/l	2.5	0.70
Chloroform	ND	ug/l	2.5	0.70
Carbon tetrachloride	ND	ug/l	0.50	0.13
1,2-Dichloropropane	ND	ug/l	1.0	0.14
Dibromochloromethane	ND	ug/l	0.50	0.15
1,1,2-Trichloroethane	ND	ug/l	1.5	0.50
Tetrachloroethene	ND	ug/l	0.50	0.18
Chlorobenzene	ND	ug/l	2.5	0.70
Trichlorofluoromethane	ND	ug/l	2.5	0.70
1,2-Dichloroethane	ND	ug/l	0.50	0.13
1,1,1-Trichloroethane	ND	ug/l	2.5	0.70
Bromodichloromethane	ND	ug/l	0.50	0.19
trans-1,3-Dichloropropene	ND	ug/l	0.50	0.16
cis-1,3-Dichloropropene	ND	ug/l	0.50	0.14
1,3-Dichloropropene, Total	ND	ug/l	0.50	0.14
1,1-Dichloropropene	ND	ug/l	2.5	0.70
Bromoform	ND	ug/l	2.0	0.65
1,1,2,2-Tetrachloroethane	ND	ug/l	0.50	0.17
Benzene	ND	ug/l	0.50	0.16
Toluene	ND	ug/l	2.5	0.70
Ethylbenzene	ND	ug/l	2.5	0.70
Chloromethane	ND	ug/l	2.5	0.70
Bromomethane	ND	ug/l	2.5	0.70
Vinyl chloride	ND	ug/l	1.0	0.07
Chloroethane	ND	ug/l	2.5	0.70
1,1-Dichloroethene	ND	ug/l	0.50	0.17
trans-1,2-Dichloroethene	ND	ug/l	2.5	0.70
Trichloroethene	ND	ug/l	0.50	0.18

L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:**

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:42

Analyst: PID

arameter	Result	Qualifier Units	RL	MDL
olatile Organics by GC/MS	- Westborough Lab	for sample(s):	01-06 Batch:	WG1930631-5
1,2-Dichlorobenzene	ND	ug/l	2.5	0.70
1,3-Dichlorobenzene	ND	ug/l	2.5	0.70
1,4-Dichlorobenzene	ND	ug/l	2.5	0.70
Methyl tert butyl ether	ND	ug/l	2.5	0.17
p/m-Xylene	ND	ug/l	2.5	0.70
o-Xylene	ND	ug/l	2.5	0.70
Xylenes, Total	ND	ug/l	2.5	0.70
cis-1,2-Dichloroethene	ND	ug/l	2.5	0.70
1,2-Dichloroethene, Total	ND	ug/l	2.5	0.70
Dibromomethane	ND	ug/l	5.0	1.0
1,2,3-Trichloropropane	ND	ug/l	2.5	0.70
Acrylonitrile	ND	ug/l	5.0	1.5
Styrene	ND	ug/l	2.5	0.70
Dichlorodifluoromethane	ND	ug/l	5.0	1.0
Acetone	ND	ug/l	5.0	1.5
Carbon disulfide	ND	ug/l	5.0	1.0
2-Butanone	ND	ug/l	5.0	1.9
Vinyl acetate	ND	ug/l	5.0	1.0
4-Methyl-2-pentanone	ND	ug/l	5.0	1.0
2-Hexanone	ND	ug/l	5.0	1.0
Bromochloromethane	ND	ug/l	2.5	0.70
2,2-Dichloropropane	ND	ug/l	2.5	0.70
1,2-Dibromoethane	ND	ug/l	2.0	0.65
1,3-Dichloropropane	ND	ug/l	2.5	0.70
1,1,1,2-Tetrachloroethane	ND	ug/l	2.5	0.70
Bromobenzene	ND	ug/l	2.5	0.70
n-Butylbenzene	ND	ug/l	2.5	0.70
sec-Butylbenzene	ND	ug/l	2.5	0.70
tert-Butylbenzene	ND	ug/l	2.5	0.70

L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:**

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis

Batch Quality Control

1,8260D

06/06/24 08:42

Analytical Date: 06/0 Analyst: PID

Analytical Method:

arameter	Result C	Qualifier Units	RL	MDL
olatile Organics by GC/MS	· Westborough Lab fo	or sample(s): 01-06	Batch:	WG1930631-5
o-Chlorotoluene	ND	ug/l	2.5	0.70
p-Chlorotoluene	ND	ug/l	2.5	0.70
1,2-Dibromo-3-chloropropane	ND	ug/l	2.5	0.70
Hexachlorobutadiene	ND	ug/l	2.5	0.70
Isopropylbenzene	ND	ug/l	2.5	0.70
p-Isopropyltoluene	ND	ug/l	2.5	0.70
Naphthalene	ND	ug/l	2.5	0.70
n-Propylbenzene	ND	ug/l	2.5	0.70
1,2,3-Trichlorobenzene	ND	ug/l	2.5	0.70
1,2,4-Trichlorobenzene	ND	ug/l	2.5	0.70
1,3,5-Trimethylbenzene	ND	ug/l	2.5	0.70
1,2,4-Trimethylbenzene	ND	ug/l	2.5	0.70
1,4-Dioxane	ND	ug/l	250	61.
p-Diethylbenzene	ND	ug/l	2.0	0.70
p-Ethyltoluene	ND	ug/l	2.0	0.70
1,2,4,5-Tetramethylbenzene	ND	ug/l	2.0	0.54
Ethyl ether	ND	ug/l	2.5	0.70
trans-1,4-Dichloro-2-butene	ND	ug/l	2.5	0.70

Tentatively Identified Compounds

No Tentatively Identified Compounds

ND

ug/l

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 1,8260D Analytical Date: 06/06/24 08:42

Analyst: PID

Parameter Result Qualifier Units RL MDL

Volatile Organics by GC/MS - Westborough Lab for sample(s): 01-06 Batch: WG1930631-5

		Acceptance			
Surrogate	%Recovery	Qualifier	Criteria		
1,2-Dichloroethane-d4	98		70-130		
Toluene-d8	99		70-130		
4-Bromofluorobenzene	96		70-130		
Dibromofluoromethane	101		70-130		

Lab Control Sample Analysis Batch Quality Control

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2430635

Report Date: 06/17/24

Parameter	LCS %Recovery	Qual	LCSD %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
Volatile Organics by GC/MS - Westborough	Lab Associated	sample(s):	01-06 Batch: W	/G1930631-3 WG1930631-4		
Methylene chloride	92		94	70-130	2	20
1,1-Dichloroethane	94		96	70-130	2	20
Chloroform	94		97	70-130	3	20
Carbon tetrachloride	90		93	63-132	3	20
1,2-Dichloropropane	94		96	70-130	2	20
Dibromochloromethane	88		89	63-130	1	20
1,1,2-Trichloroethane	90		90	70-130	0	20
Tetrachloroethene	96		98	70-130	2	20
Chlorobenzene	97		98	75-130	1	20
Trichlorofluoromethane	94		94	62-150	0	20
1,2-Dichloroethane	91		93	70-130	2	20
1,1,1-Trichloroethane	94		96	67-130	2	20
Bromodichloromethane	90		92	67-130	2	20
trans-1,3-Dichloropropene	90		92	70-130	2	20
cis-1,3-Dichloropropene	91		93	70-130	2	20
1,1-Dichloropropene	92		94	70-130	2	20
Bromoform	80		82	54-136	2	20
1,1,2,2-Tetrachloroethane	83		88	67-130	6	20
Benzene	98		99	70-130	1	20
Toluene	94		96	70-130	2	20
Ethylbenzene	95		96	70-130	1	20
Chloromethane	93		94	64-130	1	20
Bromomethane	120		110	39-139	9	20

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2430635

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westbo	orough Lab Associated	sample(s):	01-06 Batch: V	VG1930631-3	WG1930631-4				
Vinyl chloride	95		96		55-140	1		20	
Chloroethane	110		110		55-138	0		20	
1,1-Dichloroethene	99		100		61-145	1		20	
trans-1,2-Dichloroethene	97		98		70-130	1		20	
Trichloroethene	90		93		70-130	3		20	
1,2-Dichlorobenzene	96		99		70-130	3		20	
1,3-Dichlorobenzene	97		100		70-130	3		20	
1,4-Dichlorobenzene	97		99		70-130	2		20	
Methyl tert butyl ether	84		89		63-130	6		20	
p/m-Xylene	95		95		70-130	0		20	
o-Xylene	95		100		70-130	5		20	
cis-1,2-Dichloroethene	97		99		70-130	2		20	
Dibromomethane	90		94		70-130	4		20	
1,2,3-Trichloropropane	82		86		64-130	5		20	
Acrylonitrile	78		83		70-130	6		20	
Styrene	95		95		70-130	0		20	
Dichlorodifluoromethane	85		86		36-147	1		20	
Acetone	72		79		58-148	9		20	
Carbon disulfide	100		100		51-130	0		20	
2-Butanone	77		78		63-138	1		20	
Vinyl acetate	100		100		70-130	0		20	
4-Methyl-2-pentanone	81		81		59-130	0		20	
2-Hexanone	80		84		57-130	5		20	

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2430635

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
olatile Organics by GC/MS - V	Vestborough Lab Associated	sample(s):	01-06 Batch: \	WG1930631-3	WG1930631-4				
Bromochloromethane	95		97		70-130	2		20	
2,2-Dichloropropane	98		98		63-133	0		20	
1,2-Dibromoethane	95		96		70-130	1		20	
1,3-Dichloropropane	92		94		70-130	2		20	
1,1,1,2-Tetrachloroethane	94		94		64-130	0		20	
Bromobenzene	95		98		70-130	3		20	
n-Butylbenzene	92		95		53-136	3		20	
sec-Butylbenzene	92		94		70-130	2		20	
tert-Butylbenzene	94		95		70-130	1		20	
o-Chlorotoluene	94		96		70-130	2		20	
p-Chlorotoluene	93		96		70-130	3		20	
1,2-Dibromo-3-chloropropane	78		83		41-144	6		20	
Hexachlorobutadiene	89		92		63-130	3		20	
Isopropylbenzene	94		95		70-130	1		20	
p-Isopropyltoluene	95		97		70-130	2		20	
Naphthalene	83		88		70-130	6		20	
n-Propylbenzene	95		96		69-130	1		20	
1,2,3-Trichlorobenzene	88		94		70-130	7		20	
1,2,4-Trichlorobenzene	91		97		70-130	6		20	
1,3,5-Trimethylbenzene	94		97		64-130	3		20	
1,2,4-Trimethylbenzene	95		97		70-130	2		20	
1,4-Dioxane	82		84		56-162	2		20	
p-Diethylbenzene	94		96		70-130	2		20	

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2430635

Parameter	LCS %Recovery	Qual	LC. %Rec		Qual	%Recovery Limits	RPD	Qual	RPD Limits	
Volatile Organics by GC/MS - Westborough La	ab Associated	sample(s):	01-06 B	atch:	WG1930631-3	WG1930631-4				
p-Ethyltoluene	94		9	97		70-130	3	1	20	
1,2,4,5-Tetramethylbenzene	88		9	90		70-130	2		20	
Ethyl ether	91		9	93		59-134	2		20	
trans-1,4-Dichloro-2-butene	80		8	32		70-130	2		20	

Surrogate	LCS %Recovery Qua	LCSD al %Recovery Qual	Acceptance Criteria
1,2-Dichloroethane-d4	99	99	70-130
Toluene-d8	100	99	70-130
4-Bromofluorobenzene	98	99	70-130
Dibromofluoromethane	98	98	70-130

SEMIVOLATILES

L2430635

06/17/24

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 11:10

Report Date:

Lab ID: L2430635-01

Date Received: Client ID: FIELD BLANK 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Extraction Method: EPA 1633 Matrix: Water **Extraction Date:** 06/14/24 05:52 Analytical Method: 144,1633

Analytical Date: 06/14/24 18:27

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 - I	Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	ND		ng/l	5.84	0.934	1
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	2.92	0.781	1
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.46	0.489	1
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.46	0.431	1
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.46	0.292	1
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.46	0.350	1
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.46	0.635	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	5.84	1.97	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.46	0.394	1
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.46	0.460	1
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.46	0.664	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.46	0.591	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	5.84	2.27	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.46	0.796	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.46	0.635	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.46	0.336	1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.46	0.394	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.46	0.788	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.46	0.672	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.46	0.548	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.46	0.387	1
PFOA/PFOS, Total	ND		ng/l	1.46	0.635	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: 12365B **Report Date:** 06/17/24

SAMPLE RESULTS

Lab ID: Date Collected: 06/03/24 11:10 L2430635-01

Date Received: Client ID: 06/03/24 FIELD BLANK 130 MIDLANDS AVE PORT CHESTER NY Sample Location: Field Prep: Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	65	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	69	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	68	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	62	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	64	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	62	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	61	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	70	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	57	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	65	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	57	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	76	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	69	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	65	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	59	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	78	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	61	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	48	20-150

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

SAMPLE RESULTS

06/03/24 11:56

Lab Number:

Report Date:

Lab ID: L2430635-02 Date Collected:

Date Received: Client ID: MW-2 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

06/14/24 18:39

Sample Depth:

Analytical Date:

Extraction Method: EPA 1633 Matrix: Water **Extraction Date:** 06/14/24 05:52 Analytical Method: 144,1633

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 - M	lansfield Lab					
Perfluorobutanoic Acid (PFBA)	18.3		ng/l	8.70	1.39	1
Perfluoropentanoic Acid (PFPeA)	18.1		ng/l	4.35	1.16	1
Perfluorobutanesulfonic Acid (PFBS)	6.24		ng/l	2.18	0.729	1
Perfluorohexanoic Acid (PFHxA)	18.3		ng/l	2.18	0.642	1
Perfluoroheptanoic Acid (PFHpA)	10.6		ng/l	2.18	0.435	1
Perfluorohexanesulfonic Acid (PFHxS)	4.71		ng/l	2.18	0.522	1
Perfluorooctanoic Acid (PFOA)	32.8		ng/l	2.18	0.946	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	ND		ng/l	8.70	2.94	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	2.18	0.587	1
Perfluorononanoic Acid (PFNA)	0.924	J	ng/l	2.18	0.685	1
Perfluorooctanesulfonic Acid (PFOS)	5.75		ng/l	2.18	0.990	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	2.18	0.881	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	8.70	3.38	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	2.18	1.18	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	2.18	0.946	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	2.18	0.500	1
Perfluorooctanesulfonamide (PFOSA)	0.783	JF	ng/l	2.18	0.587	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	2.18	1.17	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	2.18	1.00	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	2.18	0.816	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	2.18	0.576	1
PFOA/PFOS, Total	38.6		ng/l	2.18	0.946	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-02 Date Collected: 06/03/24 11:56

Client ID: MW-2 Date Received: 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Qualifier	Acceptance Criteria	
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	78		20-150	
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	60		20-150	
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	65		20-150	
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	72		20-150	
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	85		20-150	
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	62		20-150	
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	64		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	202	Q	20-150	
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	66		20-150	
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	67		20-150	
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	64		20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	143		20-150	
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	61		20-150	
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	55		20-150	
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	68		20-150	
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	59		20-150	
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	53		20-150	
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	38		20-150	

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number: L2430635

Project Number: 12365B Report Date: 06/17/24

CAMDIE DECILITE

SAMPLE RESULTS

Lab ID: L2430635-03 Date Collected: 06/03/24 10:21

Client ID: MW-3 Date Received: 06/03/24
Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Matrix: Water Extraction Method: EPA 1633
Analytical Method: 144,1633 Extraction Date: 06/14/24 05:52

Analytical Date: 06/14/24 19:26

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	
Perfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab						
Perfluorobutanoic Acid (PFBA)	8.53		ng/l	6.26	1.00	1	
Perfluoropentanoic Acid (PFPeA)	13.2		ng/l	3.13	0.837	1	
Perfluorobutanesulfonic Acid (PFBS)	3.95		ng/l	1.56	0.524	1	
Perfluorohexanoic Acid (PFHxA)	11.7		ng/l	1.56	0.461	1	
Perfluoroheptanoic Acid (PFHpA)	6.58		ng/l	1.56	0.313	1	
Perfluorohexanesulfonic Acid (PFHxS)	6.86		ng/l	1.56	0.375	1	
Perfluorooctanoic Acid (PFOA)	23.3		ng/l	1.56	0.680	1	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	2.42	J	ng/l	6.26	2.11	1	
Perfluoroheptanesulfonic Acid (PFHpS)	0.454	J	ng/l	1.56	0.422	1	
Perfluorononanoic Acid (PFNA)	1.30	J	ng/l	1.56	0.493	1	
Perfluorooctanesulfonic Acid (PFOS)	14.7		ng/l	1.56	0.712	1	
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.56	0.634	1	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	6.26	2.43	1	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.56	0.852	1	
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.56	0.680	1	
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.56	0.360	1	
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.56	0.422	1	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.56	0.845	1	
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.56	0.720	1	
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.56	0.587	1	
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.56	0.414	1	
PFOA/PFOS, Total	38.0		ng/l	1.56	0.680	1	

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: 12365B **Report Date:** 06/17/24

SAMPLE RESULTS

Lab ID: Date Collected: 06/03/24 10:21 L2430635-03

Date Received: Client ID: 06/03/24 MW-3 Sample Location: Field Prep: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	61	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	51	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	60	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	58	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	67	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	58	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	59	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	111	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	54	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	58	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	50	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	113	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	70	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	55	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	55	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	66	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	51	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	43	20-150

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

06/14/24 19:39

Project Number: 12365B

SAMPLE RESULTS

Date Collected: 06/03/24 09:01

Lab Number:

Report Date:

Lab ID: L2430635-04 Date Received: Client ID: MW-4 06/03/24

Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 1633 Matrix: Water **Extraction Date:** 06/14/24 05:52 Analytical Method: 144,1633

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 - N	lansfield Lab					
Perfluorobutanoic Acid (PFBA)	7.09		ng/l	6.14	0.982	1
Perfluoropentanoic Acid (PFPeA)	14.6		ng/l	3.07	0.821	1
Perfluorobutanesulfonic Acid (PFBS)	2.95		ng/l	1.53	0.514	1
Perfluorohexanoic Acid (PFHxA)	17.9		ng/l	1.53	0.452	1
Perfluoroheptanoic Acid (PFHpA)	7.49		ng/l	1.53	0.307	1
Perfluorohexanesulfonic Acid (PFHxS)	6.74		ng/l	1.53	0.368	1
Perfluorooctanoic Acid (PFOA)	19.9		ng/l	1.53	0.667	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	47.2		ng/l	6.14	2.07	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.53	0.414	1
Perfluorononanoic Acid (PFNA)	0.874	J	ng/l	1.53	0.483	1
Perfluorooctanesulfonic Acid (PFOS)	7.64		ng/l	1.53	0.698	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.53	0.621	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	6.14	2.38	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.53	0.836	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.53	0.667	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.53	0.353	1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.53	0.414	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.53	0.828	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.53	0.706	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.53	0.575	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.53	0.406	1
PFOA/PFOS, Total	27.5		ng/l	1.53	0.667	1

Project Name: 130 MIDLANDS AVE PORT CHESTER **Lab Number:** L2430635

Project Number: 12365B Report Date: 06/17/24

SAMPLE RESULTS

Lab ID: L2430635-04 Date Collected: 06/03/24 09:01

Client ID: MW-4 Date Received: 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Parameter Result Qualifier Units RL MDL Dilution Factor

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	80	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	72	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	81	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	80	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	84	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	78	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	74	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	114	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	70	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	75	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	67	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	121	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	75	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	64	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	63	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	69	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	62	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	58	20-150

L2430635

06/17/24

Project Name: 130 MIDLANDS AVE PORT CHESTER

06/14/24 19:52

Project Number: 12365B

SAMPLE RESULTS

06/03/24 00:00

Lab Number:

Report Date:

Lab ID: L2430635-05 Date Collected:

Date Received: Client ID: DUP-1 06/03/24 Sample Location: 130 MIDLANDS AVE PORT CHESTER NY Field Prep: Not Specified

Sample Depth:

Analytical Date:

Extraction Method: EPA 1633 Matrix: Water **Extraction Date:** 06/14/24 05:52 Analytical Method: 144,1633

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor
Perfluorinated Alkyl Acids by EPA 1633 -	Mansfield Lab					
Perfluorobutanoic Acid (PFBA)	6.72	J	ng/l	6.99	1.12	1
Perfluoropentanoic Acid (PFPeA)	13.4		ng/l	3.50	0.935	1
Perfluorobutanesulfonic Acid (PFBS)	2.48		ng/l	1.75	0.585	1
Perfluorohexanoic Acid (PFHxA)	13.8		ng/l	1.75	0.516	1
Perfluoroheptanoic Acid (PFHpA)	6.88		ng/l	1.75	0.350	1
Perfluorohexanesulfonic Acid (PFHxS)	6.78		ng/l	1.75	0.419	1
Perfluorooctanoic Acid (PFOA)	19.0		ng/l	1.75	0.760	1
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	26.9		ng/l	6.99	2.36	1
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.75	0.472	1
Perfluorononanoic Acid (PFNA)	0.821	J	ng/l	1.75	0.550	1
Perfluorooctanesulfonic Acid (PFOS)	7.33	F	ng/l	1.75	0.795	1
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.75	0.708	1
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	ND		ng/l	6.99	2.72	1
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	ND		ng/l	1.75	0.952	1
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.75	0.760	1
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.75	0.402	1
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.75	0.472	1
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.75	0.944	1
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.75	0.804	1
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.75	0.655	1
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.75	0.463	1
PFOA/PFOS, Total	26.3		ng/l	1.75	0.760	1

Project Name: Lab Number: 130 MIDLANDS AVE PORT CHESTER L2430635

Project Number: 12365B **Report Date:** 06/17/24

SAMPLE RESULTS

Lab ID: Date Collected: 06/03/24 00:00 L2430635-05

Date Received: Client ID: DUP-1 06/03/24

Sample Location: Field Prep: 130 MIDLANDS AVE PORT CHESTER NY Not Specified

Sample Depth:

Result Qualifier Units RL MDL **Dilution Factor** Parameter

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab

Surrogate	% Recovery	Acceptance Qualifier Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	75	20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	69	20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	76	20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	73	20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	74	20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	71	20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	69	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	90	20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	61	20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	69	20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	58	20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	101	20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	65	20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	58	20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	56	20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	71	20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	56	20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	55	20-150

L2430635

Lab Number:

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis Batch Quality Control

Analytical Method: 144,1633 Extraction Method: EPA 1633
Analytical Date: 06/14/24 15:41 Extraction Date: 06/14/24 05:52

Analyst: AC

Parameter	Result	Qualifier	Units	RL	MDL		
Perfluorinated Alkyl Acids by EPA 16	633 - Mansf	ield Lab fo	r sample(s):	01-05	Batch: WG1934249-1		
Perfluorobutanoic Acid (PFBA)	ND		ng/l	6.40	1.02		
Perfluoropentanoic Acid (PFPeA)	ND		ng/l	3.20	0.856		
Perfluorobutanesulfonic Acid (PFBS)	ND		ng/l	1.60	0.536		
Perfluorohexanoic Acid (PFHxA)	ND		ng/l	1.60	0.472		
Perfluoroheptanoic Acid (PFHpA)	ND		ng/l	1.60	0.320		
Perfluorohexanesulfonic Acid (PFHxS)	ND		ng/l	1.60	0.384		
Perfluorooctanoic Acid (PFOA)	ND		ng/l	1.60	0.696		
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	i ND		ng/l	6.40	2.16		
Perfluoroheptanesulfonic Acid (PFHpS)	ND		ng/l	1.60	0.432		
Perfluorononanoic Acid (PFNA)	ND		ng/l	1.60	0.504		
Perfluorooctanesulfonic Acid (PFOS)	ND		ng/l	1.60	0.728		
Perfluorodecanoic Acid (PFDA)	ND		ng/l	1.60	0.648		
1H,1H,2H,2H-Perfluorodecanesulfonic Aci (8:2FTS)	d ND		ng/l	6.40	2.49		
N-Methyl Perfluorooctanesulfonamidoaceti Acid (NMeFOSAA)	ic ND		ng/l	1.60	0.872		
Perfluoroundecanoic Acid (PFUnA)	ND		ng/l	1.60	0.696		
Perfluorodecanesulfonic Acid (PFDS)	ND		ng/l	1.60	0.368		
Perfluorooctanesulfonamide (PFOSA)	ND		ng/l	1.60	0.432		
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	ND		ng/l	1.60	0.864		
Perfluorododecanoic Acid (PFDoA)	ND		ng/l	1.60	0.736		
Perfluorotridecanoic Acid (PFTrDA)	ND		ng/l	1.60	0.600		
Perfluorotetradecanoic Acid (PFTeDA)	ND		ng/l	1.60	0.424		
PFOA/PFOS, Total	ND		ng/l	1.60	0.696		

L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number:

Project Number: 12365B Report Date: 06/17/24

Method Blank Analysis
Batch Quality Control

Analytical Method: 144,1633 Extraction Method: EPA 1633
Analytical Date: 06/14/24 15:41 Extraction Date: 06/14/24 05:52

Analyst: AC

Parameter Result Qualifier Units RL MDL

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab for sample(s): 01-05 Batch: WG1934249-1

Surrogate	%Recovery	Acceptance Qualifier Criteria	
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	74	20-150	
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	79	20-150	
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	73	20-150	
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	71	20-150	
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	75	20-150	
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	71	20-150	
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	70	20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	77	20-150	
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	71	20-150	
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	76	20-150	
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	63	20-150	
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	74	20-150	
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	73	20-150	
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	70	20-150	
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	68	20-150	
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	76	20-150	
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	71	20-150	
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	61	20-150	

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2

L2430635

Report Date:

06/17/24

	Low Level LCS	Low Level LCSD	%Reco	verv	RPD	
rameter	%Recovery	Qual %Recovery	Qual Limi	•	Qual Limits	
erfluorinated Alkyl Acids by EPA 1633 -	- Mansfield Lab Asso	ciated sample(s): 01-05 Ba	atch: WG1934249-2	LOW LEVEL		
Perfluorobutanoic Acid (PFBA)	111	-	40-15	0 -	30	
Perfluoropentanoic Acid (PFPeA)	114	-	40-15	0 -	30	
Perfluorobutanesulfonic Acid (PFBS)	109	-	40-15	0 -	30	
Perfluorohexanoic Acid (PFHxA)	120	-	40-15	0 -	30	
Perfluoroheptanoic Acid (PFHpA)	112	-	40-15	0 -	30	
Perfluorohexanesulfonic Acid (PFHxS)	115	-	40-15	0 -	30	
Perfluorooctanoic Acid (PFOA)	114	-	40-15	0 -	30	
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	125	-	40-15	0 -	30	
Perfluoroheptanesulfonic Acid (PFHpS)	112	-	40-15	0 -	30	
Perfluorononanoic Acid (PFNA)	110	-	40-15	0 -	30	
Perfluorooctanesulfonic Acid (PFOS)	119	-	40-15	0 -	30	
Perfluorodecanoic Acid (PFDA)	124	-	40-15	0 -	30	
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	124	-	40-15	0 -	30	
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	107	-	40-15	-	30	
Perfluoroundecanoic Acid (PFUnA)	100	•	40-15	0 -	30	
Perfluorodecanesulfonic Acid (PFDS)	104	-	40-15	0 -	30	
Perfluorooctanesulfonamide (PFOSA)	114	-	40-15	0 -	30	
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	109	-	40-15	0 -	30	
Perfluorododecanoic Acid (PFDoA)	112	-	40-15	0 -	30	
Perfluorotridecanoic Acid (PFTrDA)	105	-	40-15	0 -	30	
Perfluorotetradecanoic Acid (PFTeDA)	106	-	40-15	0 -	30	

Lab Control Sample Analysis

Project Name: 130 MIDLANDS AVE PORT CHESTER **Batch Quality Control**

Lab Number: L2430635

Project Number: 12365B

Parameter

Report Date: 06/17/24

Low Level Low Level

LCSD LCS %Recovery RPD %Recovery %Recovery Qual Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01-05 Batch: WG1934249-2 LOW LEVEL

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	84				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	85				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	83				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	77				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	78				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	77				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	78				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	81				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	79				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	78				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	70				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	83				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	75				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	76				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	66				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	76				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	70				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	58				20-150

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Lab Number: L2430635

rameter	LCS %Recovery	LCSD Qual %Recovery	%Recovery Qual Limits	RPD	RPD Qual Limits
erfluorinated Alkyl Acids by EPA 1633 - I	Mansfield Lab Asso	ciated sample(s): 01-05 Ba	atch: WG1934249-3		
Perfluorobutanoic Acid (PFBA)	94	-	40-150	-	30
Perfluoropentanoic Acid (PFPeA)	95	-	40-150	-	30
Perfluorobutanesulfonic Acid (PFBS)	92	-	40-150	-	30
Perfluorohexanoic Acid (PFHxA)	97	-	40-150	-	30
Perfluoroheptanoic Acid (PFHpA)	95	-	40-150	-	30
Perfluorohexanesulfonic Acid (PFHxS)	94	-	40-150	-	30
Perfluorooctanoic Acid (PFOA)	89	-	40-150	-	30
1H,1H,2H,2H-Perfluorooctanesulfonic Acid (6:2FTS)	101	-	40-150	-	30
Perfluoroheptanesulfonic Acid (PFHpS)	95	-	40-150	-	30
Perfluorononanoic Acid (PFNA)	93	-	40-150	-	30
Perfluorooctanesulfonic Acid (PFOS)	89	-	40-150	-	30
Perfluorodecanoic Acid (PFDA)	97	-	40-150	-	30
1H,1H,2H,2H-Perfluorodecanesulfonic Acid (8:2FTS)	97	-	40-150	-	30
N-Methyl Perfluorooctanesulfonamidoacetic Acid (NMeFOSAA)	90	-	40-150	-	30
Perfluoroundecanoic Acid (PFUnA)	87	-	40-150	-	30
Perfluorodecanesulfonic Acid (PFDS)	90	-	40-150	-	30
Perfluorooctanesulfonamide (PFOSA)	98	-	40-150	-	30
N-Ethyl Perfluorooctanesulfonamidoacetic Acid (NEtFOSAA)	89	-	40-150	-	30
Perfluorododecanoic Acid (PFDoA)	92	-	40-150	-	30
Perfluorotridecanoic Acid (PFTrDA)	91	-	40-150	-	30
Perfluorotetradecanoic Acid (PFTeDA)	90	-	40-150	-	30

Project Name: 130 MIDLANDS AVE PORT CHESTER

Lab Number:

L2430635

Project Number: 12365B

Report Date:

06/17/24

LCS LCSD %Recovery RPD Parameter %Recovery Qual %Recovery Qual Limits RPD Qual Limits

Perfluorinated Alkyl Acids by EPA 1633 - Mansfield Lab Associated sample(s): 01-05 Batch: WG1934249-3

Surrogate	LCS %Recovery	Qual	LCSD %Recovery	Qual	Acceptance Criteria
Perfluoro-n-[13C4]Butanoic Acid (13C4-PFBA)	85				20-150
Perfluoro-n-[13C5]Pentanoic Acid (13C5-PFPeA)	86				20-150
Perfluoro-1-[2,3,4-13C3]Butanesulfonic Acid (13C3-PFBS)	84				20-150
Perfluoro-n-[1,2,3,4,6-13C5]Hexanoic Acid (13C5-PFHxA)	79				20-150
Perfluoro-n-[1,2,3,4-13C4]Heptanoic Acid (13C4-PFHpA)	82				20-150
Perfluoro-1-[1,2,3-13C3]Hexanesulfonic Acid (13C3-PFHxS)	77				20-150
Perfluoro-n-[13C8]Octanoic Acid (13C8-PFOA)	79				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Octanesulfonic Acid (13C2-6:2FTS)	85				20-150
Perfluoro-n-[13C9]Nonanoic Acid (13C9-PFNA)	75				20-150
Perfluoro-1-[13C8]Octanesulfonic Acid (13C8-PFOS)	75				20-150
Perfluoro-n-[1,2,3,4,5,6-13C6]Decanoic Acid (13C6-PFDA)	66				20-150
1H,1H,2H,2H-Perfluoro-1-[1,2-13C2]Decanesulfonic Acid (13C2-8:2FTS)	85				20-150
N-Methyl-d3-perfluoro-1-octanesulfonamidoacetic Acid (D3-NMeFOSAA)	75				20-150
Perfluoro-n-[1,2,3,4,5,6,7-13C7]Undecanoic Acid (13C7-PFUnA)	72				20-150
Perfluoro-1-[13C8]Octanesulfonamide (13C8-PFOSA)	66				20-150
N-Ethyl-d5-perfluoro-1-octanesulfonamidoacetic Acid (D5-NEtFOSAA)	76				20-150
Perfluoro-n-[1,2-13C2]Dodecanoic Acid (13C2-PFDoA)	65				20-150
Perfluoro-n-[1,2-13C2]Tetradecanoic Acid (13C2-PFTeDA)	52				20-150

Serial_No:06172414:41 *Lab Number:* L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B Report Date: 06/17/24

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information

Cooler Custody Seal

A Absent B Absent

Container Info	ormation			Initial Final				Frozen		
Container ID	Container Type	Cooler	рН	pН	Temp deg C	Pres	Seal	Date/Time	Analysis(*)	
L2430635-01A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-01B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-01C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-01D	Plastic 500ml unpreserved	Α	NA		4.1	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-01E	Plastic 500ml unpreserved	Α	NA		4.1	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-02A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-02B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-02C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-02D	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-02E	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-02F	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-03A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-03B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-03C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-03D	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-03E	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-03F	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-04A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-04B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-04C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)	
L2430635-04D	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	
L2430635-04E	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)	

Lab Number: L2430635

Report Date: 06/17/24

Project Number: 12365B

Project Name:

130 MIDLANDS AVE PORT CHESTER

Container	Container Information		Initial	Final	Temp			Frozen	
Container	ID Container Type	Cooler	pН	рН	deg C	Pres	Seal	Date/Time	Analysis(*)
L2430635-04F	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)
L2430635-05A	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)
L2430635-05B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)
L2430635-05C	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)
L2430635-05D	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)
L2430635-05E	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)
L2430635-05F	Plastic 500ml unpreserved	В	NA		3.4	Υ	Absent		A2-NY-1633-DRAFT-21(28)
L2430635-06A	Vial HCI preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)
L2430635-06B	Vial HCl preserved	Α	NA		4.1	Υ	Absent		NYTCL-8260(14)

Serial_No:06172414:41 **Lab Number:** L2430635

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B Report Date: 06/17/24

PFAS PARAMETER SUMMARY

Parameter CAS Number Acronym PERFLUOROALKYL CARBOXYLIC ACIDS (PFCAs) Perfluorooctadecanoic Acid **PFODA** 16517-11-6 Perfluorohexadecanoic Acid **PFHxDA** 67905-19-5 Perfluorotetradecanoic Acid PFTA/PFTeDA 376-06-7 Perfluorotridecanoic Acid **PFTrDA** 72629-94-8 Perfluorododecanoic Acid PFD₀A 307-55-1 Perfluoroundecanoic Acid **PFUnA** 2058-94-8 Perfluorodecanoic Acid **PFDA** 335-76-2 Perfluorononanoic Acid **PFNA** 375-95-1 **PFOA** Perfluorooctanoic Acid 335-67-1 Perfluoroheptanoic Acid **PFHpA** 375-85-9 **PFHxA** Perfluorohexanoic Acid 307-24-4 Perfluoropentanoic Acid **PFPeA** 2706-90-3 Perfluorobutanoic Acid **PFBA** 375-22-4 PERFLUOROALKYL SULFONIC ACIDS (PFSAs) Perfluorododecanesulfonic Acid PFDoDS/PFDoS 79780-39-5 **PFDS** Perfluorodecanesulfonic Acid 335-77-3 Perfluorononanesulfonic Acid **PFNS** 68259-12-1 **PFOS** Perfluorooctanesulfonic Acid 1763-23-1 Perfluoroheptanesulfonic Acid **PFHpS** 375-92-8 Perfluorohexanesulfonic Acid **PFHxS** 355-46-4 Perfluoropentanesulfonic Acid **PFPeS** 2706-91-4 **PFBS** Perfluorobutanesulfonic Acid 375-73-5 **PFPrS** Perfluoropropanesulfonic Acid 423-41-6 **FLUOROTELOMERS** 1H.1H.2H.2H-Perfluorododecanesulfonic Acid 10:2FTS 120226-60-0 1H,1H,2H,2H-Perfluorodecanesulfonic Acid 8:2FTS 39108-34-4 1H,1H,2H,2H-Perfluorooctanesulfonic Acid 6:2FTS 27619-97-2 1H.1H.2H.2H-Perfluorohexanesulfonic Acid 4:2FTS 757124-72-4 PERFLUOROALKANE SULFONAMIDES (FASAs) Perfluorooctanesulfonamide FOSA/PFOSA 754-91-6 N-Ethyl Perfluorooctane Sulfonamide **NFtFOSA** 4151-50-2 N-Methyl Perfluorooctane Sulfonamide **NMeFOSA** 31506-32-8 PERFLUOROALKANE SULFONYL SUBSTANCES N-Ethyl Perfluorooctanesulfonamido Ethanol **NEtFOSE** 1691-99-2 N-Methyl Perfluorooctanesulfonamido Ethanol **NMeFOSE** 24448-09-7 N-Ethyl Perfluorooctanesulfonamidoacetic Acid **NFtFOSAA** 2991-50-6 N-Methyl Perfluorooctanesulfonamidoacetic Acid **NMeFOSAA** 2355-31-9 PER- and POLYFLUOROALKYL ETHER CARBOXYLIC ACIDS 2,3,3,3-Tetrafluoro-2-[1,1,2,2,3,3,3-Heptafluoropropoxy]-Propanoic Acid HFPO-DA 13252-13-6 4,8-Dioxa-3h-Perfluorononanoic Acid **ADONA** 919005-14-4 CHLORO-PERFLUOROALKYL SULFONIC ACIDS 11CI-PF3OUdS 11-Chloroeicosafluoro-3-Oxaundecane-1-Sulfonic Acid 763051-92-9 9-Chlorohexadecafluoro-3-Oxanone-1-Sulfonic Acid 9CI-PF3ONS 756426-58-1 PERFLUOROETHER SULFONIC ACIDS (PFESAs) Perfluoro(2-Ethoxyethane)Sulfonic Acid **PFEESA** 113507-82-7 PERFLUOROETHER/POLYETHER CARBOXYLIC ACIDS (PFPCAs) Perfluoro-3-Methoxypropanoic Acid **PFMPA** 377-73-1 Perfluoro-4-Methoxybutanoic Acid **PFMBA** 863090-89-5 Nonafluoro-3,6-Dioxaheptanoic Acid **NFDHA** 151772-58-6

Project Name: 130 MIDLANDS AVE PORT CHESTER

Project Number: 12365B

Serial_No:06172414:41 **Lab Number:** L2430 L2430635 Report Date: 06/17/24

PFAS PARAMETER SUMMARY

Parameter	Acronym	CAS Number
FLUOROTELOMER CARBOXYLIC ACIDS (FTCAs)		
3-Perfluoroheptyl Propanoic Acid	7:3FTCA	812-70-4
2H,2H,3H,3H-Perfluorooctanoic Acid	5:3FTCA	914637-49-3
3-Perfluoropropyl Propanoic Acid	3:3FTCA	356-02-5

Project Name: 130 MIDLANDS AVE PORT CHESTER Lab Number: L2430635

Project Number: 12365B Report Date: 06/17/24

GLOSSARY

Acronyms

EDL

LOQ

MS

RPD

DL - Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the limit of quantitation (LOQ). The DL includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of PAHs using Solid-Phase Microextraction (SPME).

EMPC - Estimated Maximum Possible Concentration: The concentration that results from the signal present at the retention time of an analyte when the ions meet all of the identification criteria except the ion abundance ratio criteria. An EMPC is a worst-case estimate of the concentration.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes.

LOD - Limit of Detection: This value represents the level to which a target analyte can reliably be detected for a specific analyte in a specific matrix by a specific method. The LOD includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

 - Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

Limit of Quantitation: The value at which an instrument can accurately measure an analyte at a specific concentration. The LOQ includes any adjustments from dilutions, concentrations or moisture content, where applicable. (DoD report formats only.)

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

 Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. For Method 332.0, the spike recovery is calculated using the native concentration, including estimated values.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

NR - No Results: Term is utilized when 'No Target Compounds Requested' is reported for the analysis of Volatile or Semivolatile Organic TIC only requests.

Organic Tic only requests.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

- Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TEF - Toxic Equivalency Factors: The values assigned to each dioxin and furan to evaluate their toxicity relative to 2,3,7,8-TCDD.

TEQ - Toxic Equivalent: The measure of a sample's toxicity derived by multiplying each dioxin and furan by its corresponding TEF and then summing the resulting values.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Report Format: DU Report with 'J' Qualifiers

Project Name:130 MIDLANDS AVE PORT CHESTERLab Number:L2430635Project Number:12365BReport Date:06/17/24

Footnotes

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Chlordane: The target compound Chlordane (CAS No. 57-74-9) is reported for GC ECD analyses. Per EPA,this compound "refers to a mixture of chlordane isomers, other chlorinated hydrocarbons and numerous other components." (Reference: USEPA Toxicological Review of Chlordane, In Support of Summary Information on the Integrated Risk Information System (IRIS), December 1997.)

Difference: With respect to Total Oxidizable Precursor (TOP) Assay analysis, the difference is defined as the Post-Treatment value minus the Pre-Treatment value.

Final pH: As it pertains to Sample Receipt & Container Information section of the report, Final pH reflects pH of container determined after adjustment at the laboratory, if applicable. If no adjustment required, value reflects Initial pH.

Frozen Date/Time: With respect to Volatile Organics in soil, Frozen Date/Time reflects the date/time at which associated Reagent Water-preserved vials were initially frozen. Note: If frozen date/time is beyond 48 hours from sample collection, value will be reflected in 'bold'.

Gasoline Range Organics (GRO): Gasoline Range Organics (GRO) results include all chromatographic peaks eluting from Methyl tert butyl ether through Naphthalene, with the exception of GRO analysis in support of State of Ohio programs, which includes all chromatographic peaks eluting from Hexane through Dodecane.

Initial pH: As it pertains to Sample Receipt & Container Information section of the report, Initial pH reflects pH of container determined upon receipt, if applicable.

PAH Total: With respect to Alkylated PAH analyses, the 'PAHs, Total' result is defined as the summation of results for all or a subset of the following compounds: Naphthalene, C1-C4 Naphthalenes, 2-Methylnaphthalene, 1-Methylnaphthalene, Biphenyl, Acenaphthylene, Acenaphthene, Fluorene, C1-C3 Fluorenes, Phenanthrene, C1-C4 Phenanthrenes/Anthracenes, Anthracene, Fluoranthene, Pyrene, C1-C4 Fluoranthenes/Pyrenes, Benza(a)anthracene, Chrysene, C1-C4 Chrysenes, Benzo(b)fluoranthene, Benzo(j)+(k)fluoranthene, Benzo(e)pyrene, Benzo(a)pyrene, Perylene, Indeno(1,2,3-cd)pyrene, Dibenz(ah)+(ac)anthracene, Benzo(g,h,i)perylene. If a 'Total' result is requested, the results of its individual components will also be reported.

PFAS Total: With respect to PFAS analyses, the 'PFAS, Total (5)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA and PFOS. In addition, the 'PFAS, Total (6)' result is defined as the summation of results for: PFHpA, PFHxS, PFOA, PFNA, PFDA and PFOS. For MassDEP DW compliance analysis only, the 'PFAS, Total (6)' result is defined as the summation of results at or above the RL. Note: If a 'Total' result is requested, the results of its individual components will also be reported.

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Data Qualifiers

- A Spectra identified as "Aldol Condensates" are byproducts of the extraction/concentration procedures when acetone is introduced in the process.
- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- F The ratio of quantifier ion response to qualifier ion response falls outside of the laboratory criteria. Results are considered to be an estimated maximum concentration.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit
 (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively

Report Format: DU Report with 'J' Qualifiers

Project Name:130 MIDLANDS AVE PORT CHESTERLab Number:L2430635Project Number:12365BReport Date:06/17/24

Data Qualifiers

Identified Compounds (TICs). For calculated parameters, this represents that one or more values used in the calculation were estimated.

- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.
- **NJ** Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- **RE** Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- The surrogate associated with this target analyte has a recovery outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)
- Z The batch matrix spike and/or duplicate associated with this target analyte has a recovery/RPD outside the QC acceptance limits. (Applicable to MassDEP DW Compliance samples only.)

Report Format: DU Report with 'J' Qualifiers

Project Name:130 MIDLANDS AVE PORT CHESTERLab Number:L2430635Project Number:12365BReport Date:06/17/24

REFERENCES

Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I - VI, 2018.

Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS. Draft EPA Method 1633, EPA Document 821-D-22-001, June 2022.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:06172414:41

ID No.:17873 Revision 21

Published Date: 04/17/2024 Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624.1: m/p-xylene, o-xylene, Naphthalene

EPA 625.1: alpha-Terpineol

EPA 8260D: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene; SCM: Iodomethane (methyl iodide), 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene. EPA 8270E: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine, alpha-Terpineol, Azobenzene; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

SM4500: NPW: Amenable Cyanide; SCM: Total Phosphorus, TKN, NO2, NO3.

Mansfield Facility SM 2540D: TSS.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Nonpotable Water: EPA RSK-175 Dissolved Gases

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Chloride, Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE,

EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B, SM4500NO2-B

EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH: Ammonia-N and Kieldahl-N, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, EPA 351.1, SM4500NO3-F, EPA 353.2: Nitrate-N, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D, EPA 300: Chloride, Sulfate, Nitrate. EPA 624.1: Volatile Halocarbons & Aromatics,

EPA 608.3: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625.1: SVOC (Acid/Base/Neutral Extractables).

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, EPA 1600, EPA 1603, SM9222D.

Mansfield Facility:

Drinking Water

EPA 200.7: Al, Ba, Cd, Cr, Cu, Fe, Mn, Ni, Na, Ag, Ca, Zn. EPA 200.8: Al, Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn. EPA 245.1 Hg. EPA 522, EPA 537.1.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Fe, Pb, Mn, Ni, K, Se, Ag, Na, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

Дена	NEW YORK CHAIN OF CUSTODY	Service Centers Mahwah, NJ 07430: 35 Whitne Albany, NY 12205: 14 Walker V Tonawanda, NY 14150: 275 Co	Vay	05	Pag	e /		Date Rec'd in Lab	61	4/2	4	ALPHA JOB# 135	
Westborough, MA 01581 8 Walkup Dr.	Mansfield, MA 02048 320 Forbes Blvd	Project Information	E-1311 20	3			Deliv	erables				Billing Information	
TEL: 508-898-9220 FAX: 508-898-9193	TEL: 508-822-9300 FAX: 508-822-3288	Project Name: (130)	Midland	s Ave.7	ort Ch	estur NY		ASP-A EQuIS (1 File	e) >	ASP-	B S (4 File)	Same as Client Info	
Client Information		Project # 12365 [3	-	ACCE.			Other					
	ESI	(Use Project name as P					Regu	latory Requir	ement		1818	Disposal Site Information	
	9 Rt. 46 ipporny NJ	Project Manager: 52 ALPHAQuote #:	tt r	ambou	7		NY TOGS NY Part 375 AWQ Standards NY CP-51					Please identify below location of applicable disposal facilities.	of
Phone: 973	108 9056	Turn-Around Time	AND DESCRIPTION OF THE PERSON NAMED IN	ED ROOM OF	CHECK	WHITE IN	V	NY Restricted	_	Other	-01	Disposal Facility:	
Fax:	000 1004	Standard	X	Due Date:			4	NY Unrestricte	-	1 outer		□ NJ □ NY	
	ses: org	Rush (only if pre approved		# of Days:			18	NYC Sewer Di				Other:	
- Godon	peen previously analyz		- total				ANA	LYSIS				Sample Filtration	T
	c requirements/comm							1		T			0
Please specify Metals	s or TAL.					20	9(1633	5				Done Lab to do Preservation Lab to do	a I B
ALPHA Lab ID			Coll	ection		Taxono sous	d					(Please Specify below)	t
(Lab Use Only)	Sa	ample ID	Date	Time	Sample Matrix	Sampler's Initials	14	13				Sample Specific Comments	-11
30635-01	Field B	lank	6/3/2024		Calal	SWG	X	X		+			5
-02	MW-2	1801115	Total de la	11.56	1	1000	X	x	\neg	1			6
-07	WM-3			10:21			X	X		1			6
-04	MM-H			9:01			X	K					6
-05	DUPH	,	V	_	V	1	×	X					6
-06	Trip B	lank	_	_		_		X					2
		9-1											H
Preservative Code: A = None B = HCl	Container Code P = Plastic A = Amber Glass	Westboro: Certification N			Co	ntainer Type	P	6				Please print clearly, legit and completely. Sample:	
$C = HNO_3$ $D = H_2SO_4$ E = NaOH	V = Vial G = Glass B = Bacteria Cup					Preservative	A	В				not be logged in and turnaround time clock wi	ill not
F = MeOH	OH C = Cube \(\sum_{\text{Relinquished By:}} \) Date/Time					T	Recei	ved Bÿ:		Date	Time	start until any ambiguitie resolved. BY EXECUTIN	
$G = NaHSO_4$ $H = Na_2S_2O_3$	O = Other E = Encore	Stana W.	3739an	H3 20	Shit		SSM		6-2	3-24	1722	THIS COC, THE CLIENT	T
K/E = Zn Ac/NaOH O = Other	D = BOD Bottle	SIMI	0	6-7-2	1 1824		7	2	6/3	-	8:55	TO BE BOUND BY ALPI	'HA'S
Earn No. 04 05 110 1	00.0-11.00403	-	111	6/3/40	1	1	_		WE	¥3_	2500	TERMS & CONDITIONS (See reverse side.)	٥,
Form No: 01-25 HC (rev. 3	30-Sept-2013)	1	- On	6/4	120				6	4124	0120	MERCHANDS TRANSPORT	

Appendix F:

Second Soil Vapor Intrusion Memo (April 2024)

MEMORANDUM

TO: Melissa Doroski, NYSDOH Gregory Rys, NYSDOH

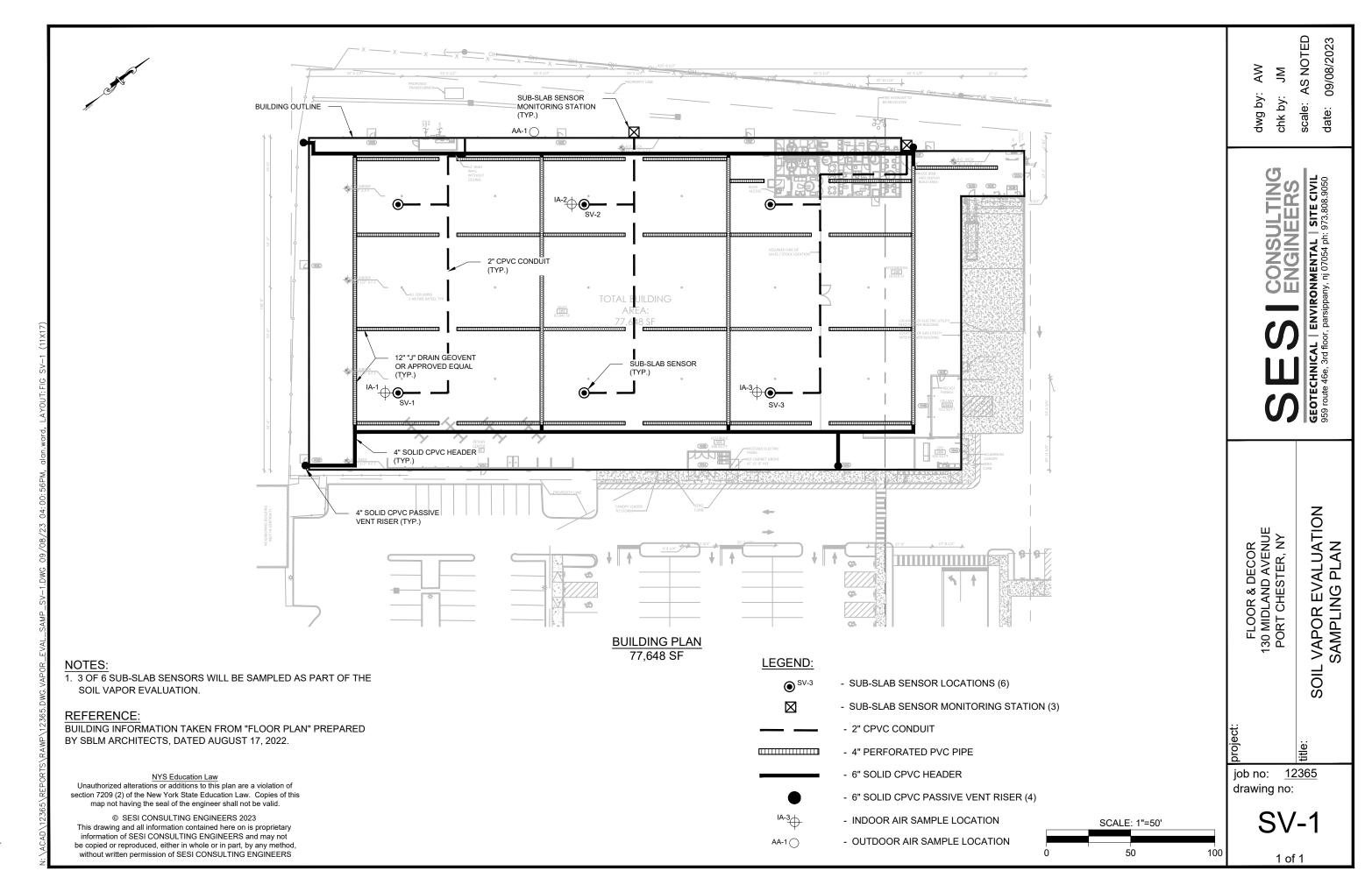
Mark Domaracki, NYSDEC

BCP Site No.: C360195 SESI Project No.: 12365B

FROM: Jesse Mausner, SESI

DATE: April 25, 2024

SUBJECT: 130 Midland Avenue - 2nd Soil Vapor Intrusion Evaluation Results


SESI Consulting Engineers (SESI) completed a second Soil Vapor Evaluation at the 130 Midland Avenue BCP Site (BCP Site No. C360195) in accordance with the approved Soil Vapor Intrusion Evaluation Workplan (September 2023) and Site Management Plan (December 2023). The purpose of the evaluation was to make a final determination if an active sub-slab depressurization system (SSDS) will be required with a blower, or if the system continues to function adequately as a passive system. The previous evaluation conducted in October 2023 indicated no exceedances of the NYSDOH "Soil Vapor/Indoor Air Decision Matrices", dated May 2017, and no requirement for an active SSDS for the on-Site building. The NYSDEC requested that the evaluation be repeated when the building's HVAC system was operational during the heating season.

Sub-slab vapor samples with co-located indoor air samples were collected on March 28, 2023, as well as one ambient/outdoor air sample. The soil vapor evaluation sample location plan is illustrated on the attached figure (SV-1). Sub-slab vapor samples were collected from pre-installed sub-slab vapor probes from polyethylene tubing leading from the probes to sub-slab sensor monitoring stations located in the rear of the building, as shown on the attached figure **SV-1**. No field adjustments of sample locations were required.

The results were compared to the NYSDOH "Soil Vapor/Indoor Air Decision Matrices", dated February 2024. Based on the evaluation of all regulated compounds to the Decision Matrices, no further action is required with respect to soil vapor intrusion at the Site. Therefore, an active SSDS is not required for the on-Site building. The vapor sample results summary table is included as **Table 1** (attached). The analytical laboratory report is included as **Attachment 1**.

Prior to sample collection, a pre-sampling building inspection and product inventory was completed in accordance with the NYSDOH Final Guidance for Evaluating Soil Vapor Intrusion in New York State (2006) with updates in order to identify and minimize conditions that may interfere with the testing. The building inventory form is included as **Attachment 2**.

These evaluation results will also be included in the Periodic Review Report (PRR).

rietary ne copied or ut written

Table 1 Soil Vapor Evaluation Sample Results 130 Midland Avenue, Port Chester, NY

Client Sample ID:		NYSDOH Indoor	NYSDOH Sub-	IA-1	IA-2	IA-3	AA-1	SV-1	SV-2	SV-3
Lab Sample ID:		Air Lower	slab Lower	JD85406-1	JD85406-2	JD85406-3	JD85406-4	JD85406-5	JD85406-6	JD85406-7
Date Sampled:		Threshhold	Threshhold	3/28/2024 Indoor Air	3/28/2024 Indoor Air	3/28/2024 Indoor Air	3/28/2024 Ambient Air	3/28/2024 Soil Vapor	3/28/2024 Soil Vapor	3/28/2024 Soil Vapor
Matrix:		Criteria	Criteria	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.	Comp.
MS Volatiles (TO-15) - ug/m3										
		_				_				
Acetone (2-Propanone)	ug/m3			48	46.3	22	5.2	6.7	ND (1.4)	20
1,3-Butadiene Benzene	ug/m3 ug/m3	2	60	ND (0.19)	ND (0.19) 0.99	ND (0.19) ND (0.077)	ND (0.19) 0.93	ND (0.75) ND (0.31)	ND (0.75) ND (0.31)	ND (0.75) ND (0.31)
Bromodichloromethane	ug/m3	2	00	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.80)	ND (0.80)	ND (0.80)
Bromoform	ug/m3			ND (0.73) ^a	ND (0.73) ^a	ND (0.73) ^a	ND (0.73) ^a	ND (2.9) b	ND (2.9) b	ND (2.9) b
Bromomethane	ug/m3			ND (0.27)	ND (0.27)	ND (0.27)	ND (0.27)	ND (1.1)	ND (1.1)	ND (1.1)
Bromoethene	ug/m3			ND (0.27)	ND (0.27)	ND (0.27)	ND (0.27)	ND (1.0)	ND (1.0)	ND (1.0)
Benzyl Chloride	ug/m3			ND (0.67)	ND (0.67)	ND (0.67)	ND (0.67)	ND (2.6)	ND (2.6)	ND (2.6)
Carbon disulfide	ug/m3			ND (0.14)	ND (0.14)	ND (0.14)	ND (0.14)	ND (0.56)	2.5	ND (0.56)
Chlorobenzene	ug/m3			ND (0.34)	ND (0.34)	ND (0.34)	ND (0.34)	ND (1.4)	ND (1.4)	ND (1.4)
Chloroethane Chloroform	ug/m3 ug/m3			ND (0.18) ND (0.18)	ND (0.18) ND (0.18)	ND (0.18) ND (0.18)	ND (0.18) ND (0.18)	ND (0.71) ND (0.73)	ND (0.71) 2.3 J	ND (0.71) ND (0.73)
Chloromethane	ug/m3			0.97	0.99	0.99	0.83	1.1 J	ND (0.74)	1.2 J
3-Chloropropene	ug/m3			ND (0.26)	ND (0.26)	ND (0.26)	ND (0.26)	ND (1.0)	ND (1.0)	ND (1.0)
2-Chlorotoluene	ug/m3			ND (0.37)	ND (0.37)	ND (0.37)	ND (0.37)	ND (1.5)	ND (1.5)	ND (1.5)
Carbon tetrachloride	ug/m3	0.2	6	ND (0.25)	ND (0.25)	ND (0.25)	ND (0.25)	ND (1.0)	ND (1.0)	ND (1.0)
Cyclohexane	ug/m3	2	60	1.2	1.2	ND (0.15)	ND (0.15)	ND (0.62)	ND (0.62)	ND (0.62)
1,1-Dichloroethane	ug/m3	0.0		ND (0.23)	ND (0.23)	ND (0.23)	ND (0.23)	ND (0.93)	ND (0.93)	ND (0.93)
1,1-Dichloroethylene	ug/m3	0.2	6	ND (0.23) ND (0.23)	ND (0.23)	ND (0.23) ND (0.23)	ND (0.23)	ND (0.95)	ND (0.95)	ND (0.95)
1,2-Dibromoethane (EDB) 1,2-Dichloroethane	ug/m3 ug/m3			ND (0.23) ND (0.28)	ND (0.23) ND (0.28)	ND (0.23) ND (0.28)	ND (0.23) ND (0.28)	ND (0.92) ND (1.1)	ND (0.92) ND (1.1)	ND (0.92) ND (1.1)
1.2-Dichloropropane	ug/m3			ND (0.28)	ND (0.28)	ND (0.29)	ND (0.29)	ND (1.1)	ND (1.1)	ND (1.1)
1,4-Dioxane	ug/m3			0.83	0.79	ND (0.43)	ND (0.43)	ND (1.7)	ND (1.7)	ND (1.7)
Dichlorodifluoromethane	ug/m3			1.5	1.5	1.5	1.6	ND (2.1)	23	ND (2.1)
Dibromochloromethane	ug/m3			ND (0.44)	ND (0.44)	ND (0.44)	ND (0.44)	ND (1.8) b	ND (1.8) b	ND (1.8) b
trans-1,2-Dichloroethylene	ug/m3			ND (0.11)	ND (0.11)	ND (0.11)	ND (0.11)	ND (0.44)	ND (0.44)	ND (0.44)
cis-1,2-Dichloroethylene	ug/m3	0.2	6	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.12)	ND (0.48)	ND (0.48)	ND (0.48)
cis-1,3-Dichloropropene	ug/m3			ND (0.28)	ND (0.28)	ND (0.28)	ND (0.28)	ND (1.1)	ND (1.1)	ND (1.1)
m-Dichlorobenzene	ug/m3			ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.96)	ND (0.96)	ND (0.96)
o-Dichlorobenzene	ug/m3			ND (0.41)	ND (0.41)	ND (0.41)	ND (0.41)	ND (1.7)	ND (1.7)	ND (1.7)
p-Dichlorobenzene	ug/m3			ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)	ND (1.9) ND (1.8)	ND (1.9) ND (1.8)	ND (1.9)
trans-1,3-Dichloropropene Ethanol	ug/m3 ug/m3			ND (0.45) 64.1	ND (0.45) 59	ND (0.45) 44.7	ND (0.45)	6.8	8.1	ND (1.8) 4.5
Ethylbenzene	ug/m3	2	60	2.6	2.6	ND (0.26)	0.48 J	ND (1.0)	3.1 J	ND (1.0)
Ethyl Acetate	ug/m3			16	18	ND (0.36)	15	22	6.5	6.1
4-Ethyltoluene	ug/m3			ND (0.47)	ND (0.47)	ND (0.47)	ND (0.47)	ND (1.9)	ND (1.9)	ND (1.9)
Freon 113	ug/m3			ND (0.24)	ND (0.24)	ND (0.24)	ND (0.24)	ND (0.92)	ND (0.92)	ND (0.92)
Freon 114	ug/m3			ND (0.35)	ND (0.35)	ND (0.35)	ND (0.35)	ND (1.4)	ND (1.4)	ND (1.4)
Heptane	ug/m3	6	200	1.4	1.4	ND (0.18)	0.66 J	ND (0.74)	ND (0.74)	ND (0.74)
Hexachlorobutadiene	ug/m3		000	ND (0.66)	ND (0.66)	ND (0.66)	ND (0.66)	ND (2.7)	ND (2.7)	ND (2.7)
Hexane	ug/m3 ug/m3	6	200	0.78 ND (0.61)	1.9 ND (0.61)	0.49 J ND (0.61)	1.1 ND (0.61)	ND (0.74) ND (2.4)	0.85 J 5.3	ND (0.74) ND (2.4)
2-Hexanone Isopropyl Alcohol	ug/m3			7.9	7.4	0.91	1.4	ND (2.4) ND (1.4)	5.3 ND (1.4)	ND (2.4) ND (1.4)
Methylene chloride	ug/m3	3	100	2.3	3.8	3.5	1.2	ND (0.76)	ND (0.76)	ND (0.76)
Methyl ethyl ketone	ug/m3	-		4.4	4.1	ND (0.32)	0.41 J	ND (1.3)	10	8
Methyl Isobutyl Ketone	ug/m3	<u></u>		0.49 J	0.45 J	ND (0.30)	ND (0.30)	ND (1.2)	ND (1.2)	ND (1.2)
Manual Table 2 1 1 5 11				NIP (0 ==:)	ND (0.55)	NB (0.55)	NIB (0.55)	NE (1 -	NB // =:	NB // F
Methyl Tert Butyl Ether	ug/m3			ND (0.29)	ND (0.29)	ND (0.29)	ND (0.29)	ND (1.2)	ND (1.2)	ND (1.2)
Methylmethacrylate Propylogo	ug/m3			2.8 ND (0.24)	2.9 ND (0.24)	ND (0.29) ND (0.24)	ND (0.29) ND (0.24)	ND (1.1) ND (0.98)	ND (1.1) 86.1	ND (1.1) ND (0.98)
Propylene Styrene	ug/m3 ug/m3	1	1	ND (0.24) 4.7	ND (0.24) 4.7	ND (0.24) ND (0.23)	ND (0.24) ND (0.23)	ND (0.98) ND (0.89)	86.1 29	ND (0.98) ND (0.89)
1,1,1-Trichloroethane	ug/m3	3	100	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.20)	ND (0.89)	ND (0.82)	ND (0.82)
1,1,2,2-Tetrachloroethane	ug/m3	i	1	ND (0.33)	ND (0.33)	ND (0.33)	ND (0.33)	ND (1.3)	ND (1.3)	ND (1.3)
1,1,2-Trichloroethane	ug/m3			ND (0.21)	ND (0.21)	ND (0.21)	ND (0.21)	ND (0.82)	ND (0.82)	ND (0.82)
1,2,4-Trichlorobenzene	ug/m3			ND (0.89)	ND (0.89)	ND (0.89)	ND (0.89)	ND (3.6)	ND (3.6)	ND (3.6)
1,2,4-Trimethylbenzene	ug/m3	2	60	0.79 J	0.84 J	ND (0.43)	ND (0.43)	ND (1.7)	ND (1.7)	ND (1.7)
1,3,5-Trimethylbenzene	ug/m3	2	60	ND (0.39)	ND (0.39)	ND (0.39)	ND (0.39)	ND (1.6)	ND (1.6)	ND (1.6)
2,2,4-Trimethylpentane	ug/m3	2	60	0.65 J	0.61 J	ND (0.19)	0.65 J	ND (0.75)	ND (0.75)	ND (0.75)
Tertiary Butyl Alcohol Tetrachloroethylene	ug/m3 ug/m3	3	100	1.8 0.35	1.6 0.35	ND (0.28) ND (0.095)	ND (0.28) 0.28	ND (1.1) ND (0.38)	ND (1.1) 18	ND (1.1) ND (0.38)
Tetrachioroethylene Tetrahydrofuran	ug/m3	3	100	0.56 J	0.53 J	ND (0.095) ND (0.27)	ND (0.27)	ND (0.38) ND (1.1)	12	336
Toluene	ug/m3	10	300	5.7	5.3	ND (0.21)	2.2	ND (1.1)	ND (0.87)	ND (0.87)
Trichloroethylene	ug/m3	0.2	6	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.10)	ND (0.41)	1.7	ND (0.41)
Trichlorofluoromethane	ug/m3	1		1.1	1.1	ND (0.84)	1.1	ND (3.5)	184	ND (3.5)
Vinyl chloride	ug/m3	0.2	6	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.18)	ND (0.72)	ND (0.72)	ND (0.72)
Vinyl Acetate	ug/m3			ND (0.39)	ND (0.39)	ND (0.39)	ND (0.39)	ND (1.6)	ND (1.6)	ND (1.6)
m,p-Xylene	ug/m3	6	200	6.5	6.5	ND (0.61)	1.4	ND (2.4)	3.5	ND (2.4)
o-Xylene	ug/m3	2	60	2.7	2.7	ND (0.33)	0.61 J	ND (1.3)	3.1 J	ND (1.3)
Xylenes (total)	ug/m3			9.2	9.2	ND (0.33)	2	ND (1.3)	6.6	ND (1.3)

Attachment 1 Lab Report

Dayton, NJ 04/24/24

The results set forth herein are provided by SGS North America Inc.

e-Hardcopy 2.0
Automated Report

SESI Consulting Engineers

130 Midland Avenue, Port Chester, NY

12365B

SGS Job Number: JD85406

Sampling Date: 03/28/24

Report to:

SESI Consulting Engineers

jam@sesi.org

ATTN: Jesse Mausner

Total number of pages in report: 37

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Program and/or state specific certification programs as applicable unless noted in the narrative, comments or footnotes.

David Chastain General Manager

Client Service contact: Kelly Ramos 732-329-0200 Certifications: NJ(12129),NY(10983),CA,CO,CT,FL,HI,IL,IN,KY,LA (120428),MA,MD,ME,MN,NC,NH,NV, AK (UST-103),AZ (AZ0786),PA(68-00408),RI,SC,TX (T104704234),UT,VA,WA,WV

This report shall not be reproduced, except in its entirety, without the written approval of SGS. Test results relate only to samples analyzed.

SGS North America Inc. • 2235 Route 130 • Dayton, NJ 08810 • tel: 732-329-0200 •

SGS

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	6
Section 4: Sample Results	12
4.1: JD85406-1: IA-1	13
4.2: JD85406-2: IA-2	16
4.3: JD85406-3: IA-3	19
4.4: JD85406-4: AA-1	22
4.5: JD85406-5: SV-1	25
4.6: JD85406-6: SV-2	28
4.7: JD85406-7: SV-3	31
Section 5: Misc. Forms	34
5.1: Chain of Custody	35
5.2: Summa Canister and Flow Controller Log	37

Sample Summary

Job No:

JD85406

SESI Consulting Engineers

130 Midland Avenue, Port Chester, NY Project No: 12365B

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
This report co		alts reported a Not detected			cted. The following app	plies:
JD85406-1	03/28/24	10:27 RR	03/28/24	AIR	Indoor Air Comp.	IA-1
JD85406-2	03/28/24	10:19 RR	03/28/24	AIR	Indoor Air Comp.	IA-2
JD85406-3	03/28/24	10:08 RR	03/28/24	AIR	Indoor Air Comp.	IA-3
JD85406-4	03/28/24	11:04 RR	03/28/24	AIR	Ambient Air Comp.	AA-1
JD85406-5	03/28/24	11:51 RR	03/28/24	AIR	Soil Vapor Comp.	SV-1
JD85406-6	03/28/24	11:28 RR	03/28/24	AIR	Soil Vapor Comp.	SV-2
JD85406-7	03/28/24	12:02 RR	03/28/24	AIR	Soil Vapor Comp.	SV-3

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: SESI Consulting Engineers Job No: JD85406

Site: 130 Midland Avenue, Port Chester, NY Report Date 4/8/2024 5:51:47 AM

On 03/28/2024, 7 sample(s), 0 Trip Blank(s), 0 Equip. Blank(s) and 0 Field Blank(s) were received at SGS North America Inc. (SGS) at a temperature of XXXXNO TEMPERATURE FOUNDXXXX °C. The samples were intact and properly preserved, unless noted below. An SGS Job Number of JD85406 was assigned to the project. The lab sample ID, client sample ID, and date of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

MS Volatiles By Method TO-15

Matrix: AIR Batch ID: V7W225

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD85272-1DUP were used as the QC samples indicated.
- The blank spike (BS) recovery(s) of Bromoform are outside control limits.
- JD85406-1 for Bromoform: This compound in blank spike is outside in house QC limits bias high.
- JD85406-2 for Bromoform: This compound in blank spike is outside in house QC limits bias high.
- JD85406-3 for Bromoform: This compound in blank spike is outside in house QC limits bias high.
- JD85406-4 for Bromoform: This compound in blank spike is outside in house QC limits bias high.
- V7W225-BS for Bromoform: High percent recovery and no associated positive reported in the QC batch.

Matrix: AIR Batch ID: V7W226

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JD85430-1DUP were used as the QC samples indicated.
- The blank spike (BS) recovery(s) of Bromoform, Dibromochloromethane are outside control limits.
- The duplicate RPD(s) for 2,2,4-Trimethylpentane, Ethylbenzene, Tetrahydrofuran are outside control limits for sample JD85430-1DUP. RPD acceptable due to low DUP and sample concentrations.
- V7W226-BS for Bromoform: High percent recovery and no associated positive reported in the QC batch.
- V7W226-BS for Dibromochloromethane: High percent recovery and no associated positive reported in the QC batch.
- JD85406-7 for Dibromochloromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD85406-5 for Bromoform: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD85406-5 for Dibromochloromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD85406-6 for Bromoform: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD85406-6 for Dibromochloromethane: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.
- JD85406-7 for Bromoform: Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

Monday, April 8, 2024 Page 1 of 2

SGS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting SGS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

SGS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by SGS indicated via signature on the report cover.

Monday, April 8, 2024

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
JD85406-1 IA-1					
Acetone (2-Propanone)	20.2	0.20	0.15	ppbv	TO-15
Benzene	0.32	0.20	0.024	ppbv	TO-15
Chloromethane	0.47	0.20	0.090	ppbv	TO-15
Cyclohexane	0.35	0.20	0.045	ppbv	TO-15
1,4-Dioxane	0.23	0.20	0.12	ppbv	TO-15
Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	TO-15
Ethanol	34.0	0.50	0.39	ppbv	TO-15
Ethylbenzene	0.59	0.20	0.061	ppbv	TO-15
Ethyl Acetate	4.4	0.20	0.10	ppbv	TO-15
Heptane	0.34	0.20	0.045	ppbv	TO-15
Hexane	0.22	0.20	0.052	ppbv	TO-15
Isopropyl Alcohol	3.2	0.20	0.14	ppbv	TO-15
Methylene chloride	0.65	0.20	0.056	ppbv	TO-15
Methyl ethyl ketone	1.5	0.20	0.11	ppbv	TO-15
Methyl Isobutyl Ketone	0.12 J	0.20	0.073	ppbv	TO-15
Methylmethacrylate	0.68	0.20	0.070	ppbv	TO-15
Styrene	1.1	0.20	0.053	ppbv	TO-15
1,2,4-Trimethylbenzene	0.16 J	0.20	0.087	ppbv	TO-15
2,2,4-Trimethylpentane	0.14 J	0.20	0.040	ppbv	TO-15
Tertiary Butyl Alcohol	0.58	0.20	0.093	ppbv	TO-15
Tetrachloroethylene	0.051	0.040	0.014	ppbv	TO-15
Tetrahydrofuran	0.19 J	0.20	0.090	ppbv	TO-15
Toluene	1.5	0.20	0.057	ppbv	TO-15
Trichlorofluoromethane	0.19	0.10	0.15	ppbv	TO-15
m,p-Xylene	1.5	0.20	0.14	ppbv	TO-15
o-Xylene	0.63	0.20	0.077	ppbv	TO-15
Xylenes (total)	2.1	0.20	0.077	ppbv	TO-15
Acetone (2-Propanone)	48.0	0.48	0.36	ug/m3	TO-15
Benzene	1.0	0.64	0.077	ug/m3	TO-15
Chloromethane	0.97	0.41	0.19	ug/m3	TO-15
Cyclohexane	1.2	0.69	0.15	ug/m3	TO-15
1,4-Dioxane	0.83	0.72	0.43	ug/m3	TO-15
Dichlorodifluoromethane	1.5	0.72	0.49	ug/m3	TO-15
Ethanol	64.1	0.94	0.73	ug/m3	TO-15
Ethylbenzene	2.6	0.87	0.75	ug/m3	TO-15
Ethyl Acetate	16	0.72	0.36	ug/m3	TO-15
Heptane	1.4	0.72	0.30	ug/m3	TO-15
Hexane	0.78	0.82	0.18	ug/m3	TO-15
Isopropyl Alcohol	7.9	0.70	0.18	ug/m3	TO-15
Methylene chloride	2.3	0.49	0.34	ug/m3	TO-15
Methyl ethyl ketone	4.4	0.69	0.19	ug/m3	TO-15
	4.4 0.49 J	0.39	0.32	-	TO-15
Methyl Isobutyl Ketone Methylmethearylete	0.49 J 2.8	0.82	0.30	ug/m3	TO-15 TO-15
Methylmethacrylate	4.0	0.02	0.29	ug/m3	10-13

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Styrono	4.7	0.85	0.23	ug/m3	TO-15
Styrene 1,2,4-Trimethylbenzene	0.79 J	0.83	0.23	-	TO-15
•	0.79 J 0.65 J	0.98	0.43	ug/m3	TO-15
2,2,4-Trimethylpentane	1.8	0.93	0.19	ug/m3	TO-15
Tertiary Butyl Alcohol	0.35	0.01	0.28	ug/m3	TO-15
Tetrachloroethylene Tetrahydrofuran	0.56 J	0.27		ug/m3	TO-15 TO-15
•			0.27	ug/m3	
Toluene	5.7 1.1	0.75	0.21	ug/m3	TO-15
Trichlorofluoromethane	6.5	0.56 0.87	0.84	ug/m3	TO-15 TO-15
m,p-Xylene			0.61	ug/m3	
o-Xylene	2.7	0.87	0.33	ug/m3	TO-15
Xylenes (total)	9.2	0.87	0.33	ug/m3	TO-15
JD85406-2 IA-2					
Acetone (2-Propanone)	19.5	0.20	0.15	ppbv	TO-15
Benzene	0.31	0.20	0.13	ppbv	TO-15
Chloromethane	0.48	0.20	0.024	ppbv	TO-15
	0.48	0.20	0.090		TO-15
Cyclohexane	0.34			ppbv	
1,4-Dioxane		0.20	0.12	ppbv	TO-15
Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	TO-15
Ethanol	31.3	0.50	0.39	ppbv	TO-15
Ethylbenzene	0.59	0.20	0.061	ppbv	TO-15
Ethyl Acetate	5.1	0.20	0.10	ppbv	TO-15
Heptane	0.33	0.20	0.045	ppbv	TO-15
Hexane	0.54	0.20	0.052	ppbv	TO-15
Isopropyl Alcohol	3.0	0.20	0.14	ppbv	TO-15
Methylene chloride	1.1	0.20	0.056	ppbv	TO-15
Methyl ethyl ketone	1.4	0.20	0.11	ppbv	TO-15
Methyl Isobutyl Ketone	0.11 J	0.20	0.073	ppbv	TO-15
Methylmethacrylate	0.70	0.20	0.070	ppbv	TO-15
Styrene	1.1	0.20	0.053	ppbv	TO-15
1,2,4-Trimethylbenzene	0.17 J	0.20	0.087	ppbv	TO-15
2,2,4-Trimethylpentane	0.13 J	0.20	0.040	ppbv	TO-15
Tertiary Butyl Alcohol	0.53	0.20	0.093	ppbv	TO-15
Tetrachloroethylene	0.051	0.040	0.014	ppbv	TO-15
Tetrahydrofuran	0.18 J	0.20	0.090	ppbv	TO-15
Toluene	1.4	0.20	0.057	ppbv	TO-15
Trichlorofluoromethane	0.19	0.10	0.15	ppbv	TO-15
m,p-Xylene	1.5	0.20	0.14	ppbv	TO-15
o-Xylene	0.62	0.20	0.077	ppbv	TO-15
Xylenes (total)	2.1	0.20	0.077	ppbv	TO-15
Acetone (2-Propanone)	46.3	0.48	0.36	ug/m3	TO-15
Benzene	0.99	0.64	0.077	ug/m3	TO-15
Chloromethane	0.99	0.41	0.19	ug/m3	TO-15
Cyclohexane	1.2	0.69	0.15	ug/m3	TO-15
-				-	

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,4-Dioxane	0.79	0.72	0.43	ug/m3	TO-15
Dichlorodifluoromethane	1.5	0.99	0.49	ug/m3	TO-15
Ethanol	59.0	0.94	0.73	ug/m3	TO-15
Ethylbenzene	2.6	0.87	0.26	ug/m3	TO-15
Ethyl Acetate	18	0.72	0.36	ug/m3	TO-15
Heptane	1.4	0.82	0.18	ug/m3	TO-15
Hexane	1.9	0.70	0.18	ug/m3	TO-15
Isopropyl Alcohol	7.4	0.49	0.34	ug/m3	TO-15
Methylene chloride	3.8	0.69	0.19	ug/m3	TO-15
Methyl ethyl ketone	4.1	0.59	0.32	ug/m3	TO-15
Methyl Isobutyl Ketone	0.45 J	0.82	0.30	ug/m3	TO-15
Methylmethacrylate	2.9	0.82	0.29	ug/m3	TO-15
Styrene	4.7	0.85	0.23	ug/m3	TO-15
1,2,4-Trimethylbenzene	0.84 J	0.98	0.43	ug/m3	TO-15
2,2,4-Trimethylpentane	0.61 J	0.93	0.19	ug/m3	TO-15
Tertiary Butyl Alcohol	1.6	0.61	0.28	ug/m3	TO-15
Tetrachloroethylene	0.35	0.27	0.095	ug/m3	TO-15
Tetrahydrofuran	0.53 J	0.59	0.27	ug/m3	TO-15
Toluene	5.3	0.75	0.21	ug/m3	TO-15
Trichlorofluoromethane	1.1	0.56	0.84	ug/m3	TO-15
m,p-Xylene	6.5	0.87	0.61	ug/m3	TO-15
o-Xylene	2.7	0.87	0.33	ug/m3	TO-15
Xylenes (total)	9.2	0.87	0.33	ug/m3	TO-15
JD85406-3 IA-3					
Acetone (2-Propanone)	9.2	0.20	0.15	ppbv	TO-15
Chloromethane	0.48	0.20	0.090	ppbv	TO-15
Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	TO-15
Ethanol	23.7	0.50	0.39	ppbv	TO-15
Hexane	0.14 J	0.20	0.052	ppbv	TO-15
Isopropyl Alcohol	0.37	0.20	0.14	ppbv	TO-15
Methylene chloride	1.0	0.20	0.056	ppbv	TO-15
Acetone (2-Propanone)	22	0.48	0.36	ug/m3	TO-15
Chloromethane	0.99	0.41	0.19	ug/m3	TO-15
Dichlorodifluoromethane	1.5	0.99	0.49	ug/m3	TO-15
Ethanol	44.7	0.94	0.73	ug/m3	TO-15
Hexane	0.49 J	0.70	0.18	ug/m3	TO-15
Isopropyl Alcohol	0.91	0.49	0.34	ug/m3	TO-15
Methylene chloride	3.5	0.69	0.19	ug/m3	TO-15
JD85406-4 AA-1					
Acetone (2-Propanone)	2.2	0.20	0.15	ppbv	TO-15
Benzene	0.29	0.20	0.024	ppbv	TO-15
				**	

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID	Result/ Qual	RL	MDL	Units	Method
Analyte	Quai	KL	MDL	Units	Method
Chloromethane	0.40	0.20	0.090	ppbv	TO-15
Dichlorodifluoromethane	0.32	0.20	0.10	ppbv	TO-15
Ethanol	3.2	0.50	0.39	ppbv	TO-15
Ethylbenzene	0.11 J	0.20	0.061	ppbv	TO-15
Ethyl Acetate	4.1	0.20	0.10	ppbv	TO-15
Heptane	0.16 J	0.20	0.045	ppbv	TO-15
Hexane	0.30	0.20	0.052	ppbv	TO-15
Isopropyl Alcohol	0.56	0.20	0.14	ppbv	TO-15
Methylene chloride	0.34	0.20	0.056	ppbv	TO-15
Methyl ethyl ketone	0.14 J	0.20	0.11	ppbv	TO-15
2,2,4-Trimethylpentane	0.14 J	0.20	0.040	ppbv	TO-15
Tetrachloroethylene	0.041	0.040	0.014	ppbv	TO-15
Toluene	0.58	0.20	0.057	ppbv	TO-15
Trichlorofluoromethane	0.19	0.10	0.15	ppbv	TO-15
m,p-Xylene	0.32	0.20	0.14	ppbv	TO-15
o-Xylene	0.14 J	0.20	0.077	ppbv	TO-15
Xylenes (total)	0.46	0.20	0.077	ppbv	TO-15
Acetone (2-Propanone)	5.2	0.48	0.36	ug/m3	TO-15
Benzene	0.93	0.64	0.077	ug/m3	TO-15
Chloromethane	0.83	0.41	0.19	ug/m3	TO-15
Dichlorodifluoromethane	1.6	0.99	0.49	ug/m3	TO-15
Ethanol	6.0	0.94	0.73	ug/m3	TO-15
Ethylbenzene	0.48 J	0.87	0.26	ug/m3	TO-15
Ethyl Acetate	15	0.72	0.36	ug/m3	TO-15
Heptane	0.66 J	0.82	0.18	ug/m3	TO-15
Hexane	1.1	0.70	0.18	ug/m3	TO-15
Isopropyl Alcohol	1.4	0.49	0.34	ug/m3	TO-15
Methylene chloride	1.2	0.69	0.19	ug/m3	TO-15
Methyl ethyl ketone	0.41 J	0.59	0.32	ug/m3	TO-15
2,2,4-Trimethylpentane	0.65 J	0.93	0.19	ug/m3	TO-15
Tetrachloroethylene	0.28	0.27	0.095	ug/m3	TO-15
Toluene	2.2	0.75	0.033	ug/m3	TO-15
Trichlorofluoromethane	1.1	0.75	0.84	ug/m3	TO-15
m,p-Xylene	1.4	0.30	0.61	ug/m3	TO-15
o-Xylene	0.61 J	0.87	0.33	ug/m3	TO-15
Xylenes (total)	2.0	0.87	0.33		TO-15
Aylenes (total)	2.0	0.07	0.55	ug/m3	10-13
JD85406-5 SV-1					
Acetone (2-Propanone)	2.8	0.80	0.58	ppbv	TO-15
Chloromethane	0.52 J	0.80	0.36	ppbv	TO-15
Ethanol	3.6	2.0	1.6	ppbv	TO-15
Ethyl Acetate	6.2	0.80	0.42	ppbv	TO-15
Acetone (2-Propanone)	6.7	1.9	1.4	ug/m3	TO-15
				-	
Chloromethane	1.1 J	1.7	0.74	ug/m3	TO-15

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Ethanol	6.8	3.8	3.0	ug/m3	TO-15
Ethyl Acetate	22	2.9	1.5	ug/m3	TO-15
JD85406-6 SV-2					
Carbon disulfide	0.81	0.80	0.18	ppbv	TO-15
Chloroform	0.48 J	0.80	0.15	ppbv	TO-15
Dichlorodifluoromethane	4.6	0.80	0.42	ppbv	TO-15
Ethanol	4.3	2.0	1.6	ppbv	TO-15
Ethylbenzene	0.71 J	0.80	0.24	ppbv	TO-15
Ethyl Acetate	1.8	0.80	0.42	ppbv	TO-15
Hexane	0.24 J	0.80	0.21	ppbv	TO-15
2-Hexanone	1.3	0.80	0.58	ppbv	TO-15
Methyl ethyl ketone	3.4	0.80	0.44	ppbv	TO-15
Propylene	50.1	2.0	0.57	ppbv	TO-15
Styrene	6.7	0.80	0.21	ppbv	TO-15
Tetrachloroethylene	2.7	0.16	0.056	ppbv	TO-15
Tetrahydrofuran	3.9	0.80	0.36	ppbv	TO-15
Trichloroethylene	0.31	0.16	0.076	ppbv	TO-15
Trichlorofluoromethane	32.7	0.40	0.62	ppbv	TO-15
m,p-Xylene	0.80	0.80	0.56	ppbv	TO-15
o-Xylene	0.71 J	0.80	0.31	ppbv	TO-15
Xylenes (total)	1.5	0.80	0.31	ppbv	TO-15
Carbon disulfide	2.5	2.5	0.56	ug/m3	TO-15
Chloroform	2.3 J	3.9	0.73	ug/m3	TO-15
Dichlorodifluoromethane	23	4.0	2.1	ug/m3	TO-15
Ethanol	8.1	3.8	3.0	ug/m3	TO-15
Ethylbenzene	3.1 J	3.5	1.0	ug/m3	TO-15
Ethyl Acetate	6.5	2.9	1.5	ug/m3	TO-15
Hexane	0.85 J	2.8	0.74	ug/m3	TO-15
2-Hexanone	5.3	3.3	2.4	ug/m3	TO-15
Methyl ethyl ketone	10	2.4	1.3	ug/m3	TO-15
Propylene	86.1	3.4	0.98	ug/m3	TO-15
Styrene	29	3.4	0.89	ug/m3	TO-15
Tetrachloroethylene	18	1.1	0.38	ug/m3	TO-15
Tetrahydrofuran	12	2.4	1.1	ug/m3	TO-15
Trichloroethylene	1.7	0.86	0.41	ug/m3	TO-15
Trichlorofluoromethane	184	2.2	3.5	ug/m3	TO-15
m,p-Xylene	3.5	3.5	2.4	ug/m3	TO-15
o-Xylene	3.1 J	3.5	1.3	ug/m3	TO-15
Xylenes (total)	6.6	3.5	1.3	ug/m3	TO-15
JD85406-7 SV-3					
Acetone (2-Propanone)	8.5	0.80	0.58	ppbv	TO-15

Account: SESI Consulting Engineers

Project: 130 Midland Avenue, Port Chester, NY

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
Chloromethane	0.59 J	0.80	0.36	ppbv	TO-15
Ethanol	2.4	2.0	1.6	ppbv	TO-15
Ethyl Acetate	1.7	0.80	0.42	ppbv	TO-15
Methyl ethyl ketone	2.7	0.80	0.44	ppbv	TO-15
Tetrahydrofuran	114	0.80	0.36	ppbv	TO-15
Acetone (2-Propanone)	20	1.9	1.4	ug/m3	TO-15
Chloromethane	1.2 J	1.7	0.74	ug/m3	TO-15
Ethanol	4.5	3.8	3.0	ug/m3	TO-15
Ethyl Acetate	6.1	2.9	1.5	ug/m3	TO-15
Methyl ethyl ketone	8.0	2.4	1.3	ug/m3	TO-15
Tetrahydrofuran	336	2.4	1.1	ug/m3	TO-15

Dayton, NJ

Section 4

Sample Results	
Report of Analysis	

Client Sample ID: IA-1

Lab Sample ID:JD85406-1Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: M171Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 7W05940.D 1 04/04/24 01:19 TS n/a n/a V7W225

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	20.2	0.20	0.15	ppbv	48.0	0.48	0.36	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.084	ppbv	ND	0.44	0.19	ug/m3
71-43-2	78.11	Benzene	0.32	0.20	0.024	ppbv	1.0	0.64	0.077	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.030	ppbv	ND	0.67	0.20	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.040	0.071	ppbv	ND	0.41	0.73	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.069	ppbv	ND	0.78	0.27	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.061	ppbv	ND	0.87	0.27	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.13	ppbv	ND	1.0	0.67	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.045	ppbv	ND	0.62	0.14	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.074	ppbv	ND	0.92	0.34	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.068	ppbv	ND	0.53	0.18	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.037	ppbv	ND	0.98	0.18	ug/m3
74-87-3	50.49	Chloromethane	0.47	0.20	0.090	1.1	0.97	0.41	0.19	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.083	ppbv	ND	0.63	0.26	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.072		ND	1.0	0.37	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.040	ppbv	ND	0.25	0.25	ug/m3
110-82-7	84.16	Cyclohexane	0.35	0.20	0.045	ppbv	1.2	0.69	0.15	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.057	ppbv	ND	0.81	0.23	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.059		ND	0.16	0.23	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.030		ND	0.77	0.23	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.070	1 1	ND	0.81	0.28	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.062	ppbv	ND	0.92	0.29	ug/m3
123-91-1	88.12	1,4-Dioxane	0.23	0.20	0.12	ppbv	0.83	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	1.5	0.99	0.49	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.052	ppbv	ND	0.85	0.44	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.028	ppbv	ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.030	1.1	ND	0.16	0.12	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.062		ND	0.91	0.28	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.040		ND	0.60	0.24	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.069	ppbv	ND	0.24	0.41	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.079	ppbv	ND	0.60	0.47	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.10	ppbv	ND	0.91	0.45	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Percent Solids:

n/a

Client Sample ID: IA-1

Lab Sample ID:JD85406-1Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: M171Date Received:03/28/24

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	34.0	0.50	0.39	ppbv		64.1	0.94	0.73	ug/m3
100-41-4	106.2	Ethylbenzene	0.59	0.20	0.061	ppbv		2.6	0.87	0.26	ug/m3
141-78-6	88	Ethyl Acetate	4.4	0.20	0.10	ppbv		16	0.72	0.36	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.20	0.095	ppbv		ND	0.98	0.47	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.031	ppbv		ND	0.77	0.24	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.050	ppbv		ND	0.70	0.35	ug/m3
142-82-5	100.2	Heptane	0.34	0.20	0.045	ppbv		1.4	0.82	0.18	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.062	ppbv		ND	0.96	0.66	ug/m3
110-54-3	86.18	Hexane	0.22	0.20	0.052	ppbv		0.78	0.70	0.18	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.15	ppbv		ND	0.82	0.61	ug/m3
67-63-0	60.1	Isopropyl Alcohol	3.2	0.20	0.14	ppbv		7.9	0.49	0.34	ug/m3
75-09-2	84.94	Methylene chloride	0.65	0.20	0.056	ppbv		2.3	0.69	0.19	ug/m3
78-93-3	72.11	Methyl ethyl ketone	1.5	0.20	0.11	ppbv		4.4	0.59	0.32	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	0.12	0.20	0.073	ppbv	J	0.49	0.82	0.30	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.080	ppbv		ND	0.72	0.29	ug/m3
80-62-6	100.12	Methylmethacrylate	0.68	0.20	0.070	ppbv		2.8	0.82	0.29	ug/m3
115-07-1	42	Propylene	ND	0.50	0.14	ppbv		ND	0.86	0.24	ug/m3
100-42-5	104.1	Styrene	1.1	0.20	0.053	ppbv		4.7	0.85	0.23	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.037	ppbv		ND	0.55	0.20	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.048	ppbv		ND	0.69	0.33	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.038	ppbv		ND	0.55	0.21	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.12	ppbv		ND	0.74	0.89	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.16	0.20	0.087	ppbv	J	0.79	0.98	0.43	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.080	ppbv		ND	0.98	0.39	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.14	0.20	0.040	ppbv	J	0.65	0.93	0.19	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.58	0.20	0.093	ppbv		1.8	0.61	0.28	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.051	0.040	0.014	ppbv		0.35	0.27	0.095	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.19	0.20	0.090	ppbv	J	0.56	0.59	0.27	ug/m3
108-88-3	92.14	Toluene	1.5	0.20	0.057	ppbv		5.7	0.75	0.21	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv		ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.19	0.10	0.15	ppbv		1.1	0.56	0.84	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.069	ppbv		ND	0.10	0.18	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.11	ppbv		ND	0.70	0.39	ug/m3
	106.2	m,p-Xylene	1.5	0.20	0.14	ppbv		6.5	0.87	0.61	ug/m3
95-47-6	106.2	o-Xylene	0.63	0.20	0.077	ppbv		2.7	0.87	0.33	ug/m3
1330-20-7	106.2	Xylenes (total)	2.1	0.20	0.077	ppbv		9.2	0.87	0.33	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 93% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: IA-1

Lab Sample ID: JD85406-1 **Date Sampled:** 03/28/24 Matrix: AIR - Indoor Air Comp. Summa ID: M171 **Date Received:** 03/28/24 **Percent Solids:** n/a

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MWCompound Result RLMDL Units Q Result RLMDL Units

(a) This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: IA-2

Lab Sample ID:JD85406-2Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A631Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 7W05939.D 1 04/04/24 00:38 TS n/a n/a V7W225

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	19.5	0.20	0.15	ppbv	46.3	0.48	0.36	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.084	ppbv	ND	0.44	0.19	ug/m3
71-43-2	78.11	Benzene	0.31	0.20	0.024	ppbv	0.99	0.64	0.077	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.030	ppbv	ND	0.67	0.20	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.040	0.071	ppbv	ND	0.41	0.73	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.069	ppbv	ND	0.78	0.27	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.061	ppbv	ND	0.87	0.27	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.13	ppbv	ND	1.0	0.67	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.045	ppbv	ND	0.62	0.14	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.074	ppbv	ND	0.92	0.34	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.068	ppbv	ND	0.53	0.18	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.037	ppbv	ND	0.98	0.18	ug/m3
74-87-3	50.49	Chloromethane	0.48	0.20	0.090	ppbv	0.99	0.41	0.19	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.083	ppbv	ND	0.63	0.26	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.072	ppbv	ND	1.0	0.37	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.040	ppbv	ND	0.25	0.25	ug/m3
110-82-7	84.16	Cyclohexane	0.34	0.20	0.045	ppbv	1.2	0.69	0.15	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.057	ppbv	ND	0.81	0.23	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.059	ppbv	ND	0.16	0.23	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.030	ppbv	ND	0.77	0.23	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.070	ppbv	ND	0.81	0.28	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.062	ppbv	ND	0.92	0.29	ug/m3
123-91-1	88.12	1,4-Dioxane	0.22	0.20	0.12	ppbv	0.79	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	1.5	0.99	0.49	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.052	ppbv	ND	0.85	0.44	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.028	ppbv	ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.030	ppbv	ND	0.16	0.12	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.062	ppbv	ND	0.91	0.28	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.040	ppbv	ND	0.60	0.24	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.069	ppbv	ND	0.24	0.41	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.079	ppbv	ND	0.60	0.47	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.10	ppbv	ND	0.91	0.45	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Percent Solids:

n/a

Client Sample ID: IA-2

Lab Sample ID:JD85406-2Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A631Date Received:03/28/24

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	31.3	0.50	0.39	ppbv		59.0	0.94	0.73	ug/m3
100-41-4	106.2	Ethylbenzene	0.59	0.20	0.061	ppbv		2.6	0.87	0.26	ug/m3
141-78-6	88	Ethyl Acetate	5.1	0.20	0.10	ppbv		18	0.72	0.36	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.20	0.095	ppbv		ND	0.98	0.47	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.031	ppbv		ND	0.77	0.24	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.050	ppbv		ND	0.70	0.35	ug/m3
142-82-5	100.2	Heptane	0.33	0.20	0.045	ppbv		1.4	0.82	0.18	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.062	ppbv		ND	0.96	0.66	ug/m3
110-54-3	86.18	Hexane	0.54	0.20	0.052	ppbv		1.9	0.70	0.18	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.15	ppbv		ND	0.82	0.61	ug/m3
67-63-0	60.1	Isopropyl Alcohol	3.0	0.20	0.14	ppbv		7.4	0.49	0.34	ug/m3
75-09-2	84.94	Methylene chloride	1.1	0.20	0.056	ppbv		3.8	0.69	0.19	ug/m3
78-93-3	72.11	Methyl ethyl ketone	1.4	0.20	0.11	ppbv		4.1	0.59	0.32	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	0.11	0.20	0.073	ppbv	J	0.45	0.82	0.30	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.080	ppbv		ND	0.72	0.29	ug/m3
80-62-6	100.12	Methylmethacrylate	0.70	0.20	0.070	ppbv		2.9	0.82	0.29	ug/m3
115-07-1	42	Propylene	ND	0.50	0.14	ppbv		ND	0.86	0.24	ug/m3
100-42-5	104.1	Styrene	1.1	0.20	0.053	ppbv		4.7	0.85	0.23	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.037	ppbv		ND	0.55	0.20	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.048	ppbv		ND	0.69	0.33	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.038	ppbv		ND	0.55	0.21	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.12	ppbv		ND	0.74	0.89	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	0.17	0.20	0.087	ppbv	J	0.84	0.98	0.43	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.20	0.080	ppbv		ND	0.98	0.39	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.13	0.20	0.040	ppbv	J	0.61	0.93	0.19	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	0.53	0.20	0.093	ppbv		1.6	0.61	0.28	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.051	0.040	0.014	ppbv		0.35	0.27	0.095	ug/m3
109-99-9	72.11	Tetrahydrofuran	0.18	0.20	0.090	ppbv	J	0.53	0.59	0.27	ug/m3
108-88-3	92.14	Toluene	1.4	0.20	0.057	ppbv		5.3	0.75	0.21	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv		ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.19	0.10	0.15	ppbv		1.1	0.56	0.84	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.069	ppbv		ND	0.10	0.18	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.11	ppbv		ND	0.70	0.39	ug/m3
	106.2	m,p-Xylene	1.5	0.20	0.14	ppbv		6.5	0.87	0.61	ug/m3
95-47-6	106.2	o-Xylene	0.62	0.20	0.077	ppbv		2.7	0.87	0.33	ug/m3
1330-20-7	106.2	Xylenes (total)	2.1	0.20	0.077	ppbv		9.2	0.87	0.33	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 93% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: IA-2

Lab Sample ID:JD85406-2Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A631Date Received:03/28/24

Method: TO-15 Percent Solids:

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

n/a

Client Sample ID: IA-3

Lab Sample ID:JD85406-3Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A1177Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

Run #1 7W05941.D DF Analyzed By Prep Date Prep Batch Analytical Batch V7W225

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	9.2	0.20	0.15	ppbv	22	0.48	0.36	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.084	ppbv	ND	0.44	0.19	ug/m3
71-43-2	78.11	Benzene	ND	0.20	0.024	ppbv	ND	0.64	0.077	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.030	ppbv	ND	0.67	0.20	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.040	0.071	ppbv	ND	0.41	0.73	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.069	ppbv	ND	0.78	0.27	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.061	ppbv	ND	0.87	0.27	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.13	ppbv	ND	1.0	0.67	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.045	ppbv	ND	0.62	0.14	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.074	ppbv	ND	0.92	0.34	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.068	ppbv	ND	0.53	0.18	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.037	ppbv	ND	0.98	0.18	ug/m3
74-87-3	50.49	Chloromethane	0.48	0.20	0.090	ppbv	0.99	0.41	0.19	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.083	ppbv	ND	0.63	0.26	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.072	ppbv	ND	1.0	0.37	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.040		ND	0.25	0.25	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.045	ppbv	ND	0.69	0.15	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.057	ppbv	ND	0.81	0.23	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.059	ppbv	ND	0.16	0.23	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.030	ppbv	ND	0.77	0.23	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.070	ppbv	ND	0.81	0.28	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.062	ppbv	ND	0.92	0.29	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.31	0.20	0.10	ppbv	1.5	0.99	0.49	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.052	ppbv	ND	0.85	0.44	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.028	ppbv	ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.030	ppbv	ND	0.16	0.12	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.062	ppbv	ND	0.91	0.28	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.040	ppbv	ND	0.60	0.24	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.069	ppbv	ND	0.24	0.41	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.079	ppbv	ND	0.60	0.47	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.10	ppbv	ND	0.91	0.45	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Percent Solids:

n/a

Client Sample ID: IA-3

Lab Sample ID:JD85406-3Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A1177Date Received:03/28/24

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	23.7	0.50	0.39	ppbv	44.7	0.94	0.73	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.20	0.061	ppbv	ND	0.87	0.26	ug/m3
141-78-6	88	Ethyl Acetate	ND	0.20	0.10	ppbv	ND	0.72	0.36	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.20	0.095	ppbv	ND	0.98	0.47	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.031	ppbv	ND	0.77	0.24	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.050	ppbv	ND	0.70	0.35	ug/m3
142-82-5	100.2	Heptane	ND	0.20	0.045	ppbv	ND	0.82	0.18	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.062	ppbv	ND	0.96	0.66	ug/m3
110-54-3	86.18	Hexane	0.14	0.20	0.052	ppbv J	0.49	0.70	0.18	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.15	ppbv	ND	0.82	0.61	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.37	0.20	0.14	ppbv	0.91	0.49	0.34	ug/m3
75-09-2	84.94	Methylene chloride	1.0	0.20	0.056	ppbv	3.5	0.69	0.19	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.20	0.11	ppbv	ND	0.59	0.32	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.073	ppbv	ND	0.82	0.30	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.080	ppbv	ND	0.72	0.29	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.070	ppbv	ND	0.82	0.29	ug/m3
115-07-1	42	Propylene	ND	0.50	0.14	ppbv	ND	0.86	0.24	ug/m3
100-42-5	104.1	Styrene	ND	0.20	0.053	ppbv	ND	0.85	0.23	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.037	ppbv	ND	0.55	0.20	ug/m3
79-34-5		1,1,2,2-Tetrachloroethane	ND	0.10	0.048	ppbv	ND	0.69	0.33	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.038	ppbv	ND	0.55	0.21	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.12	ppbv	ND	0.74	0.89	ug/m3
95-63-6		1,2,4-Trimethylbenzene	ND	0.20	0.087	* *	ND	0.98	0.43	ug/m3
108-67-8		1,3,5-Trimethylbenzene	ND	0.20	0.080		ND	0.98	0.39	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.20	0.040		ND	0.93	0.19	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	0.093		ND	0.61	0.28	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.040	0.014		ND	0.27	0.095	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.090		ND	0.59	0.27	ug/m3
108-88-3	92.14	Toluene	ND	0.20	0.057		ND	0.75	0.21	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	* *	ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.10	0.15	ppbv	ND	0.56	0.84	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.069	ppbv	ND	0.10	0.18	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.11	ppbv	ND	0.70	0.39	ug/m3
07.47.6	106.2	m,p-Xylene	ND	0.20	0.14	ppbv	ND	0.87	0.61	ug/m3
95-47-6	106.2	o-Xylene	ND	0.20	0.077	ppbv	ND	0.87	0.33	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	0.20	0.077	ppbv	ND	0.87	0.33	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 92% 65-128%

ND = Not detected MDL = Method Detection Limit J = Indicates
RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: IA-3

Lab Sample ID:JD85406-3Date Sampled:03/28/24Matrix:AIR - Indoor Air Comp.Summa ID: A1177Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

Client Sample ID: AA-1 Lab Sample ID: JD85406-4

Date Sampled: 03/28/24 Matrix: AIR - Ambient Air Comp. Summa ID: M121 **Date Received:** 03/28/24 Percent Solids: n/a

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 7W05942.D 1 04/04/24 02:40 TS n/a n/a V7W225

Run #2

Initial Volume

Run #1 400 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	2.2	0.20	0.15	ppbv	5.2	0.48	0.36	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.20	0.084	ppbv	ND	0.44	0.19	ug/m3
71-43-2	78.11	Benzene	0.29	0.20	0.024	ppbv	0.93	0.64	0.077	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.10	0.030	ppbv	ND	0.67	0.20	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.040	0.071	ppbv	ND	0.41	0.73	ug/m3
74-83-9	94.94	Bromomethane	ND	0.20	0.069	ppbv	ND	0.78	0.27	ug/m3
593-60-2	106.9	Bromoethene	ND	0.20	0.061	ppbv	ND	0.87	0.27	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.20	0.13	ppbv	ND	1.0	0.67	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.20	0.045	ppbv	ND	0.62	0.14	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.20	0.074	ppbv	ND	0.92	0.34	ug/m3
75-00-3	64.52	Chloroethane	ND	0.20	0.068	ppbv	ND	0.53	0.18	ug/m3
67-66-3	119.4	Chloroform	ND	0.20	0.037	ppbv	ND	0.98	0.18	ug/m3
74-87-3	50.49	Chloromethane	0.40	0.20	0.090	ppbv	0.83	0.41	0.19	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.20	0.083	ppbv	ND	0.63	0.26	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.20	0.072	ppbv	ND	1.0	0.37	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.040	0.040	ppbv	ND	0.25	0.25	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.20	0.045	ppbv	ND	0.69	0.15	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.20	0.057	ppbv	ND	0.81	0.23	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.040	0.059	ppbv	ND	0.16	0.23	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.10	0.030	ppbv	ND	0.77	0.23	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.20	0.070	ppbv	ND	0.81	0.28	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.20	0.062	ppbv	ND	0.92	0.29	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.20	0.12	ppbv	ND	0.72	0.43	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	0.32	0.20	0.10	ppbv	1.6	0.99	0.49	ug/m3
124-48-1	208.3	Dibromochloromethane	ND	0.10	0.052	ppbv	ND	0.85	0.44	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.20	0.028	ppbv	ND	0.79	0.11	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.040	0.030	ppbv	ND	0.16	0.12	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.20	0.062	ppbv	ND	0.91	0.28	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.10	0.040	ppbv	ND	0.60	0.24	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.040	0.069	ppbv	ND	0.24	0.41	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.10	0.079	ppbv	ND	0.60	0.47	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.20	0.10	ppbv	ND	0.91	0.45	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: AA-1 Lab Sample ID: JD85406-4

Date Sampled: 03/28/24 Matrix: Date Received: 03/28/24 AIR - Ambient Air Comp. Summa ID: M121 Percent Solids: n/a

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	3.2	0.50	0.39	ppbv		6.0	0.94	0.73	ug/m3
100-41-4	106.2	Ethylbenzene	0.11	0.20	0.061	ppbv	J	0.48	0.87	0.26	ug/m3
141-78-6	88	Ethyl Acetate	4.1	0.20	0.10	ppbv		15	0.72	0.36	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.20	0.095	ppbv		ND	0.98	0.47	ug/m3
76-13-1	187.4	Freon 113	ND	0.10	0.031	ppbv		ND	0.77	0.24	ug/m3
76-14-2	170.9	Freon 114	ND	0.10	0.050			ND	0.70	0.35	ug/m3
142-82-5	100.2	Heptane	0.16	0.20	0.045	ppbv	J	0.66	0.82	0.18	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.090	0.062	ppbv		ND	0.96	0.66	ug/m3
110-54-3	86.18	Hexane	0.30	0.20	0.052	ppbv		1.1	0.70	0.18	ug/m3
591-78-6	100	2-Hexanone	ND	0.20	0.15	ppbv		ND	0.82	0.61	ug/m3
67-63-0	60.1	Isopropyl Alcohol	0.56	0.20	0.14	ppbv		1.4	0.49	0.34	ug/m3
75-09-2	84.94	Methylene chloride	0.34	0.20	0.056	ppbv		1.2	0.69	0.19	ug/m3
78-93-3	72.11	Methyl ethyl ketone	0.14	0.20	0.11	ppbv	J	0.41	0.59	0.32	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.20	0.073	ppbv		ND	0.82	0.30	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.20	0.080	ppbv		ND	0.72	0.29	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.20	0.070	ppbv		ND	0.82	0.29	ug/m3
115-07-1	42	Propylene	ND	0.50	0.14	ppbv		ND	0.86	0.24	ug/m3
100-42-5	104.1	Styrene	ND	0.20	0.053	ppbv		ND	0.85	0.23	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.10	0.037	ppbv		ND	0.55	0.20	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.10	0.048	ppbv		ND	0.69	0.33	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.10	0.038	ppbv		ND	0.55	0.21	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.10	0.12	ppbv		ND	0.74	0.89	ug/m3
95-63-6		1,2,4-Trimethylbenzene	ND	0.20	0.087	ppbv		ND	0.98	0.43	ug/m3
108-67-8		1,3,5-Trimethylbenzene	ND	0.20	0.080			ND	0.98	0.39	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	0.14	0.20	0.040	ppbv	J	0.65	0.93	0.19	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.20	0.093	ppbv		ND	0.61	0.28	ug/m3
127-18-4	165.8	Tetrachloroethylene	0.041	0.040	0.014			0.28	0.27	0.095	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.20	0.090			ND	0.59	0.27	ug/m3
108-88-3	92.14	Toluene	0.58	0.20	0.057	ppbv		2.2	0.75	0.21	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.040	0.019	ppbv		ND	0.21	0.10	ug/m3
75-69-4	137.4	Trichlorofluoromethane	0.19	0.10	0.15	ppbv		1.1	0.56	0.84	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.040	0.069	ppbv		ND	0.10	0.18	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.20	0.11	ppbv		ND	0.70	0.39	ug/m3
	106.2	m,p-Xylene	0.32	0.20	0.14	ppbv	_	1.4	0.87	0.61	ug/m3
95-47-6	106.2	o-Xylene	0.14	0.20	0.077	ppbv	J	0.61	0.87	0.33	ug/m3
1330-20-7	106.2	Xylenes (total)	0.46	0.20	0.077	ppbv		2.0	0.87	0.33	ug/m3

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 92% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

n/a

Client Sample ID: AA-1

Lab Sample ID: JD85406-4 **Date Sampled:** 03/28/24 Matrix: AIR - Ambient Air Comp. Summa ID: M121 **Date Received:** 03/28/24 **Percent Solids:**

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MWCompound Result RLMDL Units Q Result RLMDL Units

(a) This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 3

4

Report of Analysis

Client Sample ID: SV-1

Lab Sample ID:JD85406-5Date Sampled:03/28/24Matrix:AIR - Soil Vapor Comp.Summa ID: A1860Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 7W05955.D 1 04/04/24 13:06 TS n/a n/a V7W226

Run #2

Initial Volume

Run #1 100 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	2.8	0.80	0.58	ppbv	6.7	1.9	1.4	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.80	0.34	ppbv	ND	1.8	0.75	ug/m3
71-43-2	78.11	Benzene	ND	0.80	0.096	ppbv	ND	2.6	0.31	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.40	0.12	ppbv	ND	2.7	0.80	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.16	0.28	ppbv	ND	1.7	2.9	ug/m3
74-83-9	94.94	Bromomethane	ND	0.80	0.28	ppbv	ND	3.1	1.1	ug/m3
593-60-2	106.9	Bromoethene	ND	0.80	0.24	ppbv	ND	3.5	1.0	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.80	0.50	ppbv	ND	4.1	2.6	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.80	0.18	ppbv	ND	2.5	0.56	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.80	0.30	ppbv	ND	3.7	1.4	ug/m3
75-00-3	64.52	Chloroethane	ND	0.80	0.27	ppbv	ND	2.1	0.71	ug/m3
67-66-3	119.4	Chloroform	ND	0.80	0.15	ppbv	ND	3.9	0.73	ug/m3
74-87-3	50.49	Chloromethane	0.52	0.80	0.36	ppbv J	1.1	1.7	0.74	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.80	0.33	ppbv	ND	2.5	1.0	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.80	0.29	ppbv	ND	4.1	1.5	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.16	0.16	ppbv	ND	1.0	1.0	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.80	0.18	ppbv	ND	2.8	0.62	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.80	0.23	ppbv	ND	3.2	0.93	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.16	0.24	ppbv	ND	0.63	0.95	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.40	0.12	ppbv	ND	3.1	0.92	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.80	0.28	ppbv	ND	3.2	1.1	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.80	0.25	ppbv	ND	3.7	1.2	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.80	0.47	ppbv	ND	2.9	1.7	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	0.80	0.42	ppbv	ND	4.0	2.1	ug/m3
124-48-1	208.3	Dibromochloromethane ^a	ND	0.40	0.21	ppbv	ND	3.4	1.8	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv	ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.16	0.12	ppbv	ND	0.63	0.48	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.80	0.25	ppbv	ND	3.6	1.1	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.40	0.16	ppbv	ND	2.4	0.96	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.16	0.28	ppbv	ND	0.96	1.7	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.40	0.32	ppbv	ND	2.4	1.9	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.80	0.40	ppbv	ND	3.6	1.8	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Percent Solids:

n/a

Client Sample ID: SV-1

Lab Sample ID:JD85406-5Date Sampled:03/28/24Matrix:AIR - Soil Vapor Comp.Summa ID: A1860Date Received:03/28/24

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	3.6	2.0	1.6	ppbv	6.8	3.8	3.0	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.80	0.24	ppbv	ND	3.5	1.0	ug/m3
141-78-6	88	Ethyl Acetate	6.2	0.80	0.42	ppbv	22	2.9	1.5	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.80	0.38	ppbv	ND	3.9	1.9	ug/m3
76-13-1	187.4	Freon 113	ND	0.40	0.12	ppbv	ND	3.1	0.92	ug/m3
76-14-2	170.9	Freon 114	ND	0.40	0.20	ppbv	ND	2.8	1.4	ug/m3
142-82-5	100.2	Heptane	ND	0.80	0.18	ppbv	ND	3.3	0.74	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.36	0.25	ppbv	ND	3.8	2.7	ug/m3
110-54-3	86.18	Hexane	ND	0.80	0.21	ppbv	ND	2.8	0.74	ug/m3
591-78-6	100	2-Hexanone	ND	0.80	0.58	ppbv	ND	3.3	2.4	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	0.80	0.56	ppbv	ND	2.0	1.4	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.80	0.22	ppbv	ND	2.8	0.76	ug/m3
78-93-3	72.11	Methyl ethyl ketone	ND	0.80	0.44	ppbv	ND	2.4	1.3	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.80	0.29	ppbv	ND	3.3	1.2	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.80	0.32	ppbv	ND	2.9	1.2	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.80	0.28	ppbv	ND	3.3	1.1	ug/m3
115-07-1	42	Propylene	ND	2.0	0.57	ppbv	ND	3.4	0.98	ug/m3
100-42-5	104.1	Styrene	ND	0.80	0.21	ppbv	ND	3.4	0.89	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.40	0.15	ppbv	ND	2.2	0.82	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.40	0.19	ppbv	ND	2.7	1.3	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.40	0.15	ppbv	ND	2.2	0.82	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.40	0.48	ppbv	ND	3.0	3.6	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	ND	0.80	0.35	ppbv	ND	3.9	1.7	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.80	0.32	ppbv	ND	3.9	1.6	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.80	0.16	ppbv	ND	3.7	0.75	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.80	0.37	ppbv	ND	2.4	1.1	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.16	0.056	ppbv	ND	1.1	0.38	ug/m3
109-99-9	72.11	Tetrahydrofuran	ND	0.80	0.36	ppbv	ND	2.4	1.1	ug/m3
108-88-3	92.14	Toluene	ND	0.80	0.23	ppbv	ND	3.0	0.87	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.16	0.076	ppbv	ND	0.86	0.41	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.40	0.62	ppbv	ND	2.2	3.5	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.16	0.28	ppbv	ND	0.41	0.72	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.80	0.45	ppbv	ND	2.8	1.6	ug/m3
	106.2	m,p-Xylene	ND	0.80	0.56	ppbv	ND	3.5	2.4	ug/m3
95-47-6	106.2	o-Xylene	ND	0.80	0.31	ppbv	ND	3.5	1.3	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	0.80	0.31	ppbv	ND	3.5	1.3	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 93% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: SV-1

Lab Sample ID: JD85406-5 **Date Sampled:** 03/28/24 Matrix: AIR - Soil Vapor Comp. Summa ID: A1860 **Date Received:** 03/28/24 Method: TO-15

130 Midland Avenue, Port Chester, NY **Project:**

Percent Solids: n/a

VOA TO15 List

CAS No. MWCompound Result RLMDL Units Q Result RLMDL Units

(a) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: SV-2

Lab Sample ID: JD85406-6 **Date Sampled:** 03/28/24 Matrix: AIR - Soil Vapor Comp. Summa ID: A2009 **Date Received:** 03/28/24 Percent Solids: n/a

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

DF **Prep Date Analytical Batch** File ID Analyzed By **Prep Batch** Run #1 7W05956.D 1 04/04/24 13:42 TS n/a n/a V7W226

Run #2

Initial Volume

Run #1 100 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	ND	0.80	0.58	ppbv		ND	1.9	1.4	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.80	0.34	ppbv		ND	1.8	0.75	ug/m3
71-43-2	78.11	Benzene	ND	0.80	0.096	ppbv		ND	2.6	0.31	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.40	0.12	ppbv		ND	2.7	0.80	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.16	0.28	ppbv		ND	1.7	2.9	ug/m3
74-83-9	94.94	Bromomethane	ND	0.80	0.28	ppbv		ND	3.1	1.1	ug/m3
593-60-2	106.9	Bromoethene	ND	0.80	0.24	ppbv		ND	3.5	1.0	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.80	0.50	ppbv		ND	4.1	2.6	ug/m3
75-15-0	76.14	Carbon disulfide	0.81	0.80	0.18	ppbv		2.5	2.5	0.56	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.80	0.30	ppbv		ND	3.7	1.4	ug/m3
75-00-3	64.52	Chloroethane	ND	0.80	0.27	ppbv		ND	2.1	0.71	ug/m3
67-66-3	119.4	Chloroform	0.48	0.80	0.15	ppbv	J	2.3	3.9	0.73	ug/m3
74-87-3	50.49	Chloromethane	ND	0.80	0.36	ppbv		ND	1.7	0.74	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.80	0.33	ppbv		ND	2.5	1.0	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.80	0.29	ppbv		ND	4.1	1.5	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.16	0.16	ppbv		ND	1.0	1.0	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.80	0.18	ppbv		ND	2.8	0.62	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.80	0.23	ppbv		ND	3.2	0.93	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.16	0.24	ppbv		ND	0.63	0.95	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.40	0.12	ppbv		ND	3.1	0.92	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.80	0.28	ppbv		ND	3.2	1.1	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.80	0.25	ppbv		ND	3.7	1.2	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.80	0.47	ppbv		ND	2.9	1.7	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	4.6	0.80	0.42	ppbv		23	4.0	2.1	ug/m3
124-48-1	208.3	Dibromochloromethane ^a	ND	0.40	0.21	ppbv		ND	3.4	1.8	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv		ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.16	0.12	ppbv		ND	0.63	0.48	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.80	0.25	ppbv		ND	3.6	1.1	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.40	0.16	ppbv		ND	2.4	0.96	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.16	0.28	ppbv		ND	0.96	1.7	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.40	0.32	ppbv		ND	2.4	1.9	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.80	0.40	ppbv		ND	3.6	1.8	ug/m3

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

n/a

Report of Analysis

Client Sample ID: SV-2

Lab Sample ID: JD85406-6 **Date Sampled:** 03/28/24 Matrix: Date Received: 03/28/24 AIR - Soil Vapor Comp. Summa ID: A2009

Method: TO-15 Percent Solids:

130 Midland Avenue, Port Chester, NY **Project:**

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	4.3	2.0	1.6	ppbv		8.1	3.8	3.0	ug/m3
100-41-4	106.2	Ethylbenzene	0.71	0.80	0.24	ppbv	J	3.1	3.5	1.0	ug/m3
141-78-6	88	Ethyl Acetate	1.8	0.80	0.42	ppbv		6.5	2.9	1.5	ug/m3
622-96-8	120.19	4-Ethyltoluene	ND	0.80	0.38	ppbv		ND	3.9	1.9	ug/m3
76-13-1	187.4	Freon 113	ND	0.40	0.12	ppbv		ND	3.1	0.92	ug/m3
76-14-2	170.9	Freon 114	ND	0.40	0.20	ppbv		ND	2.8	1.4	ug/m3
142-82-5	100.2	Heptane	ND	0.80	0.18	ppbv		ND	3.3	0.74	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.36	0.25	ppbv		ND	3.8	2.7	ug/m3
110-54-3	86.18	Hexane	0.24	0.80	0.21	ppbv	J	0.85	2.8	0.74	ug/m3
591-78-6	100	2-Hexanone	1.3	0.80	0.58	ppbv		5.3	3.3	2.4	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	0.80	0.56	ppbv		ND	2.0	1.4	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.80	0.22	ppbv		ND	2.8	0.76	ug/m3
78-93-3	72.11	Methyl ethyl ketone	3.4	0.80	0.44	ppbv		10	2.4	1.3	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.80	0.29	ppbv		ND	3.3	1.2	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.80	0.32	ppbv		ND	2.9	1.2	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.80	0.28	ppbv		ND	3.3	1.1	ug/m3
115-07-1	42	Propylene	50.1	2.0	0.57	ppbv		86.1	3.4	0.98	ug/m3
100-42-5	104.1	Styrene	6.7	0.80	0.21	ppbv		29	3.4	0.89	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.40	0.15	ppbv		ND	2.2	0.82	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.40	0.19	ppbv		ND	2.7	1.3	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.40	0.15	ppbv		ND	2.2	0.82	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.40	0.48	ppbv		ND	3.0	3.6	ug/m3
95-63-6	120.19	1,2,4-Trimethylbenzene	ND	0.80	0.35	ppbv		ND	3.9	1.7	ug/m3
108-67-8	120.19	1,3,5-Trimethylbenzene	ND	0.80	0.32	ppbv		ND	3.9	1.6	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.80	0.16	ppbv		ND	3.7	0.75	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.80	0.37	ppbv		ND	2.4	1.1	ug/m3
127-18-4	165.8	Tetrachloroethylene	2.7	0.16	0.056	ppbv		18	1.1	0.38	ug/m3
109-99-9	72.11	Tetrahydrofuran	3.9	0.80	0.36	ppbv		12	2.4	1.1	ug/m3
108-88-3	92.14	Toluene	ND	0.80	0.23	ppbv		ND	3.0	0.87	ug/m3
79-01-6	131.4	Trichloroethylene	0.31	0.16	0.076	ppbv		1.7	0.86	0.41	ug/m3
75-69-4	137.4	Trichlorofluoromethane	32.7	0.40	0.62	ppbv		184	2.2	3.5	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.16	0.28	ppbv		ND	0.41	0.72	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.80	0.45	ppbv		ND	2.8	1.6	ug/m3
	106.2	m,p-Xylene	0.80	0.80	0.56	ppbv		3.5	3.5	2.4	ug/m3
95-47-6	106.2	o-Xylene	0.71	0.80	0.31	ppbv	J	3.1	3.5	1.3	ug/m3
1330-20-7	106.2	Xylenes (total)	1.5	0.80	0.31	ppbv		6.6	3.5	1.3	ug/m3

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 94% 65-128%

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: SV-2

 Lab Sample ID:
 JD85406-6
 Date Sampled:
 03/28/24

 Matrix:
 AIR - Soil Vapor Comp.
 Summa ID: A2009
 Date Received:
 03/28/24

 Method:
 TO-15
 Percent Solids:
 n/a

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 1 of 3

Report of Analysis

Client Sample ID: SV-3

Lab Sample ID:JD85406-7Date Sampled:03/28/24Matrix:AIR - Soil Vapor Comp.Summa ID: A1206Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #17W05957.D104/04/24 14:17 TSn/an/aV7W226

Run #2

Initial Volume

Run #1 100 ml

Run #2

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units	Q	Result	RL	MDL	Units
67-64-1	58.08	Acetone (2-Propanone)	8.5	0.80	0.58	ppbv		20	1.9	1.4	ug/m3
106-99-0	54.09	1,3-Butadiene	ND	0.80	0.34	ppbv		ND	1.8	0.75	ug/m3
71-43-2	78.11	Benzene	ND	0.80	0.096	ppbv		ND	2.6	0.31	ug/m3
75-27-4	163.8	Bromodichloromethane	ND	0.40	0.12	ppbv		ND	2.7	0.80	ug/m3
75-25-2	252.8	Bromoform ^a	ND	0.16	0.28	ppbv		ND	1.7	2.9	ug/m3
74-83-9	94.94	Bromomethane	ND	0.80	0.28	ppbv		ND	3.1	1.1	ug/m3
593-60-2	106.9	Bromoethene	ND	0.80	0.24	ppbv		ND	3.5	1.0	ug/m3
100-44-7	126	Benzyl Chloride	ND	0.80	0.50	ppbv		ND	4.1	2.6	ug/m3
75-15-0	76.14	Carbon disulfide	ND	0.80	0.18	ppbv		ND	2.5	0.56	ug/m3
108-90-7	112.6	Chlorobenzene	ND	0.80	0.30	ppbv		ND	3.7	1.4	ug/m3
75-00-3	64.52	Chloroethane	ND	0.80	0.27	ppbv		ND	2.1	0.71	ug/m3
67-66-3	119.4	Chloroform	ND	0.80	0.15	ppbv		ND	3.9	0.73	ug/m3
74-87-3	50.49	Chloromethane	0.59	0.80	0.36	ppbv	J	1.2	1.7	0.74	ug/m3
107-05-1	76.53	3-Chloropropene	ND	0.80	0.33	ppbv		ND	2.5	1.0	ug/m3
95-49-8	126.6	2-Chlorotoluene	ND	0.80	0.29	ppbv		ND	4.1	1.5	ug/m3
56-23-5	153.8	Carbon tetrachloride	ND	0.16	0.16	ppbv		ND	1.0	1.0	ug/m3
110-82-7	84.16	Cyclohexane	ND	0.80	0.18	ppbv		ND	2.8	0.62	ug/m3
75-34-3	98.96	1,1-Dichloroethane	ND	0.80	0.23	ppbv		ND	3.2	0.93	ug/m3
75-35-4	96.94	1,1-Dichloroethylene	ND	0.16	0.24	ppbv		ND	0.63	0.95	ug/m3
106-93-4	187.9	1,2-Dibromoethane (EDB)	ND	0.40	0.12	ppbv		ND	3.1	0.92	ug/m3
107-06-2	98.96	1,2-Dichloroethane	ND	0.80	0.28	ppbv		ND	3.2	1.1	ug/m3
78-87-5	113	1,2-Dichloropropane	ND	0.80	0.25	ppbv		ND	3.7	1.2	ug/m3
123-91-1	88.12	1,4-Dioxane	ND	0.80	0.47	ppbv		ND	2.9	1.7	ug/m3
75-71-8	120.9	Dichlorodifluoromethane	ND	0.80	0.42	ppbv		ND	4.0	2.1	ug/m3
124-48-1	208.3	Dibromochloromethane ^a	ND	0.40	0.21	ppbv		ND	3.4	1.8	ug/m3
156-60-5	96.94	trans-1,2-Dichloroethylene	ND	0.80	0.11	ppbv		ND	3.2	0.44	ug/m3
156-59-2	96.94	cis-1,2-Dichloroethylene	ND	0.16	0.12	ppbv		ND	0.63	0.48	ug/m3
10061-01-5	111	cis-1,3-Dichloropropene	ND	0.80	0.25	ppbv		ND	3.6	1.1	ug/m3
541-73-1	147	m-Dichlorobenzene	ND	0.40	0.16	ppbv		ND	2.4	0.96	ug/m3
95-50-1	147	o-Dichlorobenzene	ND	0.16	0.28	ppbv		ND	0.96	1.7	ug/m3
106-46-7	147	p-Dichlorobenzene	ND	0.40	0.32	ppbv		ND	2.4	1.9	ug/m3
10061-02-6	111	trans-1,3-Dichloropropene	ND	0.80	0.40	ppbv		ND	3.6	1.8	ug/m3

ND = Not detected MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Percent Solids:

n/a

4

Report of Analysis

Client Sample ID: SV-3

Lab Sample ID:JD85406-7Date Sampled:03/28/24Matrix:AIR - Soil Vapor Comp.Summa ID: A1206Date Received:03/28/24

Method: TO-15

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No.	MW	Compound	Result	RL	MDL	Units Q	Result	RL	MDL	Units
64-17-5	46.07	Ethanol	2.4	2.0	1.6	ppbv	4.5	3.8	3.0	ug/m3
100-41-4	106.2	Ethylbenzene	ND	0.80	0.24	ppbv	ND	3.5	1.0	ug/m3
141-78-6	88	Ethyl Acetate	1.7	0.80	0.42	ppbv	6.1	2.9	1.5	ug/m3
622-96-8	120.19		ND	0.80	0.38	ppbv	ND	3.9	1.9	ug/m3
76-13-1	187.4	Freon 113	ND	0.40	0.12	ppbv	ND	3.1	0.92	ug/m3
76-14-2	170.9	Freon 114	ND	0.40	0.20	ppbv	ND	2.8	1.4	ug/m3
142-82-5	100.2	Heptane	ND	0.80	0.18	ppbv	ND	3.3	0.74	ug/m3
87-68-3	260.8	Hexachlorobutadiene	ND	0.36	0.25	ppbv	ND	3.8	2.7	ug/m3
110-54-3	86.18	Hexane	ND	0.80	0.21	ppbv	ND	2.8	0.74	ug/m3
591-78-6	100	2-Hexanone	ND	0.80	0.58	ppbv	ND	3.3	2.4	ug/m3
67-63-0	60.1	Isopropyl Alcohol	ND	0.80	0.56	ppbv	ND	2.0	1.4	ug/m3
75-09-2	84.94	Methylene chloride	ND	0.80	0.22	ppbv	ND	2.8	0.76	ug/m3
78-93-3	72.11	Methyl ethyl ketone	2.7	0.80	0.44	ppbv	8.0	2.4	1.3	ug/m3
108-10-1	100.2	Methyl Isobutyl Ketone	ND	0.80	0.29	ppbv	ND	3.3	1.2	ug/m3
1634-04-4	88.15	Methyl Tert Butyl Ether	ND	0.80	0.32	ppbv	ND	2.9	1.2	ug/m3
80-62-6	100.12	Methylmethacrylate	ND	0.80	0.28	ppbv	ND	3.3	1.1	ug/m3
115-07-1	42	Propylene	ND	2.0	0.57	ppbv	ND	3.4	0.98	ug/m3
100-42-5	104.1	Styrene	ND	0.80	0.21	ppbv	ND	3.4	0.89	ug/m3
71-55-6	133.4	1,1,1-Trichloroethane	ND	0.40	0.15	ppbv	ND	2.2	0.82	ug/m3
79-34-5	167.85	1,1,2,2-Tetrachloroethane	ND	0.40	0.19	ppbv	ND	2.7	1.3	ug/m3
79-00-5	133.4	1,1,2-Trichloroethane	ND	0.40	0.15	ppbv	ND	2.2	0.82	ug/m3
120-82-1	181.5	1,2,4-Trichlorobenzene	ND	0.40	0.48	ppbv	ND	3.0	3.6	ug/m3
95-63-6		1,2,4-Trimethylbenzene	ND	0.80	0.35	ppbv	ND	3.9	1.7	ug/m3
108-67-8		1,3,5-Trimethylbenzene	ND	0.80	0.32	ppbv	ND	3.9	1.6	ug/m3
540-84-1	114.2	2,2,4-Trimethylpentane	ND	0.80	0.16	ppbv	ND	3.7	0.75	ug/m3
75-65-0	74.12	Tertiary Butyl Alcohol	ND	0.80	0.37	ppbv	ND	2.4	1.1	ug/m3
127-18-4	165.8	Tetrachloroethylene	ND	0.16	0.056	ppbv	ND	1.1	0.38	ug/m3
109-99-9	72.11	Tetrahydrofuran	114	0.80	0.36	ppbv	336	2.4	1.1	ug/m3
108-88-3	92.14	Toluene	ND	0.80	0.23	ppbv	ND	3.0	0.87	ug/m3
79-01-6	131.4	Trichloroethylene	ND	0.16	0.076	ppbv	ND	0.86	0.41	ug/m3
75-69-4	137.4	Trichlorofluoromethane	ND	0.40	0.62	ppbv	ND	2.2	3.5	ug/m3
75-01-4	62.5	Vinyl chloride	ND	0.16	0.28	ppbv	ND	0.41	0.72	ug/m3
108-05-4	86	Vinyl Acetate	ND	0.80	0.45	ppbv	ND	2.8	1.6	ug/m3
	106.2	m,p-Xylene	ND	0.80	0.56	ppbv	ND	3.5	2.4	ug/m3
95-47-6	106.2	o-Xylene	ND	0.80	0.31	ppbv	ND	3.5	1.3	ug/m3
1330-20-7	106.2	Xylenes (total)	ND	0.80	0.31	ppbv	ND	3.5	1.3	ug/m3

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

460-00-4 4-Bromofluorobenzene 94% 65-128%

ND = Not detected MDL = Method Detection Limit J = Indicates

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: SV-3

Lab Sample ID:JD85406-7Date Sampled:03/28/24Matrix:AIR - Soil Vapor Comp.Summa ID: A1206Date Received:03/28/24Method:TO-15Percent Solids:n/a

Project: 130 Midland Avenue, Port Chester, NY

VOA TO15 List

CAS No. MW Compound Result RL MDL Units Q Result RL MDL Units

(a) Associated CCV outside of control limits high, sample was ND. This compound in blank spike is outside in house QC limits bias high.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Misc. Forms

Dayton, NJ

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- Summa Canister and Flow Controller Log

SGS	SUM	MR	All	SGS	NIN OF (S North America II Route 130, Dayte TEL. 732-329- www.sgs.com/e	nc Dayton on, NJ 0881 0200			-	FED-EX Trac	5401 king#	O PA		OI der Soptro		1	9 7
Client / Reporting In	formation	a faith a stead		5.846.63		roject Inform	nation				Weather	Parameters		Jan 1980	Regi	uested A	nohua
Company Name ST				Project Nam						Temperature (Fahrenheit)		_		requ	Jesieu Al	naiys
Address				Street	36 MIDIA	ממ				Start: 800)	Maximum:	50		1 1	.	
City State				130	MICHAN	D	Por K	State	104	Stop 1300		Minimum			1 1	- 1	
Parsion na NT	2ip 070S	7.0		City						4300		Minimum:	43		1 1		
Project Contact E-mail				Project #	-choster		1/1	4_		Atmoshpheric	Pressure (incl				1		
JESSE Mausher JAIN	1a) Ses	I, or a		12:	365 B					Start: 800		Maximum:			1		
Phone # Fax # 973 Go9 2070 Sampler(s) Name(s)				Client Purch	ase Order#					Stop: 1300		Minimum:	29,9	S			
Samplet (3) Hama(3)										Other weather	comment:				1	- 1	1
	Air Type	Sam	pling Equipme	ent Info	in the second	Start Same	oling Inform	nation			Ston Sau	ing			1 2		
11			T			T			<u> </u>		Stop Sam	pling/Inforn	ation		I JI		
Lab Sample # Field ID / Point of Collection	Indoor (I) Soil Vap (SV) Ambient (A)	Canister Serial #	Canister Size 6L or 1L	Flow Controller Serial #	Date	Time (24hr clock)	Canister Pressure		Sampler		Time (24hr	Canister Pressure	Interior Temp	Sampler	12		
TA-1	I	MIH	6 L	fc673	3128/24		("Hg)	(F)	Init.	Date D	clock)	("Hg)	(F)	Init.	\vdash		上
9 TA-2	1		6L		312024	- 100	-30		RP	3/20/20		-10		Re	X		
	1	A631		fc651		945	-31				1019	- 50		1			
1,127		All77	62	f C993		935	-26				1008	-2.0		\top	\Box		\vdash
4 AA-1	A	M121		fc763		1635	-30				Nou	-4.0		\top	\vdash	\top	\vdash
5 SV-1	SV	A1860		fcqpq		1115	-28				1151	-11	$\overline{}$	+	+	+	⊢
6 SV-2	1	A2009		fc1072		louh	-29				+++	-	\dashv	+	+		<u> </u>
7 SV-3							-29				1128	-4		1,	-44-		<u>_</u>
		A1206		fcr41	V	1136	-29				1202	-5		Ÿ	$ \Psi $		
														ł	T		
															\neg	\top	
									$\neg \neg$			 	\rightarrow	\dashv	+	+-	\vdash
Europround Time (Business days		78,300				Data Delive	able informe	tion				Comments /	Remarks	NOT EXPLORATE		March v. 1990	
Standard - 15 Days SCSI STANDARD 10 Day 5 Day	(4 1A1) Approved By:				All NJDEP To Comm A	O-15 is Mar	ndatory Full	T1			etial	Assessn	ent 4	19en			
3 Day 2 Day	Date:				Comm B Reduced T2 Full T1						Labe	al Verificati	on		۰		
100	Date:		_		Full T1 Other:	\simeq			-					_		-	-
Other	Sample	K-MITTERS CONT.	ann i Stant Francisco		DKQP reporting					Sample inve	ntory is verif	fied upon rec	eipt in the	e Laborat	ory		
Relinquished by Laboratory: Date fime:			140/24	2 30 1	eci (igus sample	Relinquished E		scruding	courier de	Date Time:							

15 3 Dinne Min Imp Se 100

Form:SM088-03D (revised 2-12-18)

JD85406: Chain of Custody

http://www.sgs.com/en/terms-and-conditions

Page 1 of 2

SGS Sample Receipt Summary

Job Number:	JD85406 Clien	t: SESI CONSULTING	Project: 130 MIDLAND AVENUE, PORT CHESTER,			
Date / Time Received:	3/28/2024 7:16:00 PM	Delivery Method:	SGS	Airbill #'s:		
Cooler Temps (Raw Me	ŕ					
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification 3. Cooler media: 4. No. Coolers:	Y or N N/A N/A	tes/Time OK	1. Sample labels 2. Container labe	iner label / COC agree: ity - Condition within HT: accounted for:	Y or V Y Or Y Or Intact	N
Quality Control Preser 1. Trip Blank present / coc 2. Trip Blank listed on CO 3. Samples preserved pro 4. VOCs headspace free:	oler:		Analysis requ Bottles receiv Sufficient volu	red for unspecified tests ume recvd for analysis: instructions clear:		N N/A
Test Strip Lot #s:	pH 1-12: 231619	pH 12	2+:203117A	Other: (Specify)		
Comments SM089-03 Rev. Date 12/7/17						

JD85406: Chain of Custody

Page 2 of 2

5.2

Summa Canister and Flow Controller Log

Job Number: JD85406

Account: SESINJPB SESI Consulting Engineers **Project:** 130 Midland Avenue, Port Chester, NY

Received: 03/28/24

SUMMA CANISTERS													
Shipping	3						Receiving						
Summa		Vac	Date		SCC	SCC	Sample	Date		Vac	Pres	Final	Dil
ID	L	'' Hg	Out	By	Batch	FileID	Number	In	By	'' Hg	psig	psig	Fact
M171	6	29.5	03/26/24	BK	CP12714	43W85888.D	JD85406-1	03/29/24	JT		0		1
A631	6	29	03/26/24	BK	CP12714	43W85888.D	JD85406-2	03/29/24	JT	3			1
A1177	6	29.5	03/26/24	BK	CP12714	43W85888.D	JD85406-3	03/29/24	JT	3			1
M121	6	29.5	03/26/24	BK	CP12712	28W05344.D	JD85406-4	03/29/24	JT		0		1
A1860	6	29.5	03/26/24	BK	CP12714	43W85888.D	JD85406-5	03/29/24	JT	4.5			1
A2009	6	29.5	03/26/24	BK	CP12714	43W85888.D	JD85406-6	03/29/24	JT	2			1
A1206	6	29.5	03/26/24	BK	CP12714	43W85888.D	JD85406-7	03/29/24	JT		0		1

FLOW CONTROLLERS / OTHER									
Shipping	g				Receivin	g			
Flow	Date		cc/	Time	Date		cc/	Flow	
Crtl ID	Out	By	min	hrs.	In	By	min	RPD	Equipment Type
FC651	03/26/24	ML	167	.5	03/31/24	ML	168	0.6	Flow Controller
FC673	03/26/24	ML	165	.5	03/31/24	ML	167	1.2	Flow Controller
FC763	03/26/24	ML	166	.5	03/31/24	ML	167	0.6	Flow Controller
FC909	03/26/24	ML	168	.5	03/31/24	ML	167	0.6	Flow Controller
FC993	03/26/24	ML	166	.5	03/31/24	ML	167	0.6	Flow Controller
FC1022	03/26/24	ML	165	.5	03/31/24	ML	167	1.2	Flow Controller
FC1241	03/26/24	ML	165	.5	03/31/24	ML	167	1.2	Flow Controller

SGS Bottle Order(s):

BW-031924-97

Prep Date Room Temp(F) Bar Pres 'Hg 03/26/24 70 29.92

Attachment 2 **Questionnaire**

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

This form must be completed for each residence involved in the
2/28/24 N830-400 M
Preparer's Name Rounce Reynose Date/Time Prepared 3/28/24 N830-900 MM SEST Phone No. 9735188775
Se (7 Phone No. 9733188775
Sub-stan & Ambiert / Indoor Mr SAMPE
Purpose of Investigation Sub-Slaß & Ambient / Indoor Mr Sampb Collection
1. OCCUPANT:
Last Name: Prov and delor First Name: MICAH SALVESKEY & JENA CROOK + decor Man
Last Name: Crow and delor First Name: MICAH SALVESKEY
Last Ivaline. Flore delle color Alle
Address: 130 molland partchester, Ny
County: Westchester and
Office Phone: MICAH (843) 300 600
Number of Occupants/persons at this location Not Age of Occupants 18 +
Number of Occupants/persons at this location 101 Age of George
NIST CUSTOMECSIS LOPPORS
2. OWNER OR LANDLORD: (Check if same as occupant)
Interviewed: Y/N
Last Name: Leahey First Name: Revin
Last Name: Instrume.
Address: 168B Fruing the Port Chester
County: Westehester County
County
Home Phone: N/A Office Phone: 646 873 5660
The state of the property of
3. BUILDING CHARACTERISTICS
Type of Building: (Circle appropriate response)
Residential School Commercial/Multi-use
Industrial Church Other:

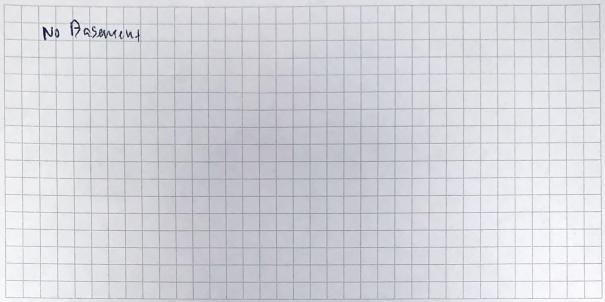
in the property is residential	al, type? (Circle appro	opriate respons	e)	
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home		ıİ	
If multiple units, how man	y? <u>N/A</u>			
If the property is commerce	ial, type?			
Business Type(s)	our & Decor	(Flooring S.	ture)	
Does it include residence	es (i.e., multi-use)?	Y (N)	If yes, how many?	V/A
Other characteristics:				
Number of floors	_ F	Building age_^	J Gew months, No	zw Construction
Is the building insulated	?∯/N H	How air tight?	Fight/ Average / Not 7	Гight
4. AIRFLOW Use air current tubes or tr Airflow between floors			terns and qualitatively	/ describe:
Airflow near source UAWAY d	from or A	hr; flow	toward o	ntrances / Enits
Outdoor air infiltration Air Lea Emergency doc For ton OT builds Infiltration into air ducts				lexits,
Ardis Ar	ducts pres	ient on Co	eilins	

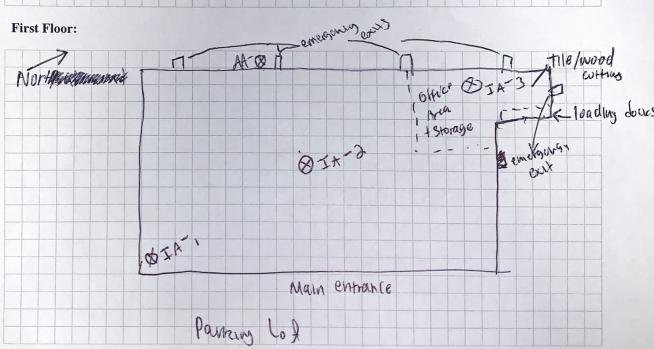
5. BA	SEMENT AND	CONSTRUCTION	CHARACTERISTICS	(Circle all that apply)
-------	------------	--------------	-----------------	-------------------------

a. Above grade construction	on: wood frame	concrete	stone	brick					
b. Basement type:	full	crawlspace	slab	other No B	<u>allmut</u>				
c. Basement floor:	concrete	dirt	stone	other NOB	<u>e</u>				
d. Basement floor:	uncovered	covered	covered with	Nove	_				
e. Concrete floor:	unsealed	sealed	sealed with	7 UNKnowy	_fo Staff				
f. Foundation walls:	poured	block	stone	other MA	_				
g. Foundation walls:	unsealed	sealed	sealed with	Maria	_				
h. The basement is:	wet	damp	dry	moldy 🗥	2 Basement				
i. The basement is:	finished	unfinished	partially finish	moldy \(\lambda_0 \)	Rasement				
j. Sump present?	YN								
k. Water in sump?	Y /N/ not applicabl	e NO	Sump prese	end					
Basement/Lowest level depth	below grade:	(feet)							
Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)									
, 1	The state of the s	Ommittee Size (C.	g., cracks, utility	ports, urains)					
utility lines? So					7				
	enjor /Drains,	No	enalks on						
6. HEATING, VENTING an	enjor /Orains,	NO	that apply)	CAP.					
utility lines? S	enjor /Orains,	NO NING (Circle all	that apply)	CAP.					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters	ad AIR CONDITION Heat pump Stream radia	NING (Circle all ircle all that appears that appears that are the state of the stat	that apply) ply – note primar water baseboard iant floor	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard	ad AIR CONDITION d in this building: (c) Heat pump Stream radia Wood stove	NING (Circle all ircle all that appears that appears that are the state of the stat	that apply) ply – note primar water baseboard	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used	ad AIR CONDITION Heat pump Stream radia Wood stove	NING (Circle all ircle all that apparents of the Radion Radion Out	that apply) ply – note primar water baseboard iant floor door wood boiler	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	ad AIR CONDITION d in this building: (c) Heat pump Stream radia Wood stove	NING (Circle all ircle all that apparents of the Radion Radion Out	that apply) ply – note primar water baseboard iant floor door wood boiler osene	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric Wood	d AIR CONDITION d in this building: (c) Heat pump Stream radia Wood stove is: Fuel Oil Propane Coal	NING (Circle all ircle all that apparties all that apparties and the Rad Out	that apply) ply – note primar water baseboard iant floor door wood boiler osene	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric	d AIR CONDITION d in this building: (c) Heat pump Stream radia Wood stove is: Fuel Oil Propane Coal	NING (Circle all ircle all that apparties all that apparties and the Rad Out	that apply) ply – note primar water baseboard iant floor door wood boiler osene	<i>у</i>)					
6. HEATING, VENTING and Type of heating system(s) used Hot air circulation Space Heaters Electric baseboard The primary type of fuel used Natural Gas Electric Wood	d AIR CONDITION d in this building: (c) Heat pump Stream radia Wood stove is: Fuel Oil Propane Coal d by: Qlecty Ca	NING (Circle all ircle all that apparts that apparts that apparts the second country of	that apply) ply – note primar water baseboard iant floor door wood boiler osene	<i>у</i>)					

Are there air distribution ducts present?	
Describe the supply and cold air return ductwork, and its of there is a cold air return and the tightness of duct joints. It diagram.	
Sout that Aviding Is new construction.	ow Smeething Corroburated by
tack that Aviding Is new construction.	
7. OCCUPANCY	Λ. Λ
	sionally Seldom Almost Never No Basement
Level General Use of Each Floor (e.g., familyroo	om, bedroom, laundry, workshop, storage)
Basement	
1st Floor fooring Re In / Com	mericial use
2 nd Floor	
3 rd Floor	
4 th Floor	
8. FACTORS THAT MAY INFLUENCE INDOOR AIR (QUALITY
a. Is there an attached garage?	Y /N
b. Does the garage have a separate heating unit?	Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)	Y/N/PA Please specify twoliff & loading bay
d. Has the building ever had a fire?	Y / 🕅 When?
e. Is a kerosene or unvented gas space heater present?	Y / Where?
f. Is there a workshop or hobby/craft area?	M/N Where & Type? NE by Management outer (wood Cutting?)
g. Is there smoking in the building?	Y / How frequently?
h. Have cleaning products been used recently?	Y/D When & Type? Prior Axternson, Channes Sup

i. Have cosmetic products been used recently?

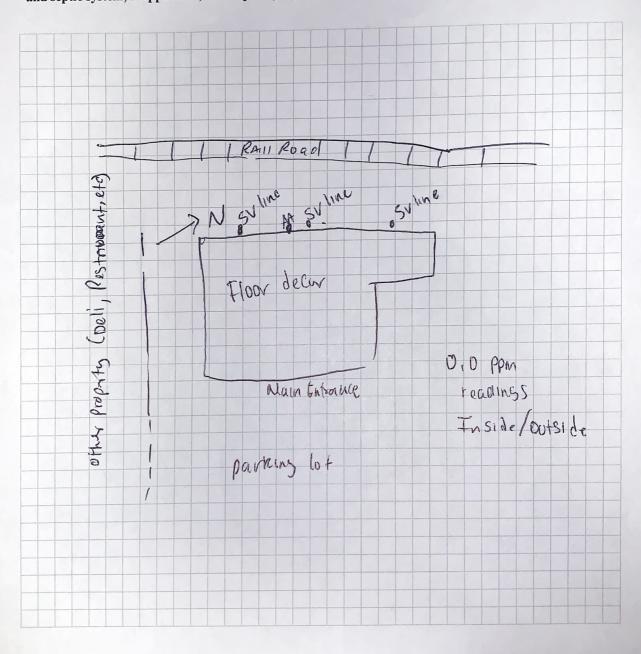

Y / When & Type? __


j. Has painting/staining been done in the last 6 months?	Y/W	Where &	When? No paint a	curding to MILLIAD
k. Is there new carpet, drapes or other textiles?	Y (N)	Where &	When?	
l. Have air fresheners been used recently?	Y/8	When & T	ype?	
m. Is there a kitchen exhaust fan?	Y (N)	If yes, who	ere vented?	
n. Is there a bathroom exhaust fan?	Ø) N	If yes, who	ere vented? 00+66-f	taulity /hulding
o. Is there a clothes dryer?	Y/0		vented outside? Y /	
p. Has there been a pesticide application?	Y / 🔯	When & T	ype?	_
Are there odors in the building? If yes, please describe:	Y /(N)			
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y / 🔇 uto body	shop, painti	ng, fuel oil delivery	,
If yes, what types of solvents are used?				
If yes, are their clothes washed at work?	Y/N			
Do any of the building occupants regularly use or work at a response)	dry-clea	ning service	e? (Circle appropriat	e
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service		No Unknown	Elikey No, bu were No+ asked	HAH Staff JUSH MICAH/J
Is there a radon mitigation system for the building/structure Is the system active or passive? Active/Passive	? Y/N	Date of Ins	tallation: <u>SUMBY</u>	8023 (\$ S50S
9. WATER AND SEWAGE				
Water Supply: Public Water Drilled Well Driven	Well	Dug Well	Other:	
Sewage Disposal: Public Sewer Septic Tank Leach	Field	Dry Well	Other:	-
10. RELOCATION INFORMATION (for oil spill residential	l emerge	ncy)		
a. Provide reasons why relocation is recommended:		_		
b. Residents choose to: remain in home relocate to friend	nds/famil	y relo	ocate to hotel/motel	
c. Responsibility for costs associated with reimbursement	explain	ed? Y/	N —	
d. Relocation package provided and explained to resident	ts?	Υ/	N	

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:



12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13	PRODUCT	INVENTORY	FORM
	PRUIDIU		T. CALL

	11 . Dat	4	
Make & Model of field instrument used:	Mini RAG	3000	

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition*	Chemical Ingredients	Field Instrument Reading (units)	Photo ** Y/N
Janitors	91ASS Chediring Supply Floor Cleaner Gabulos Bathroom Scenled Sopp	1x 1+1b	U		Oppm unopened	
Cross	Floor Cleaner Galulos	17+16	V	Sodium Do Decyl Benzene Sulf	priate impere	
Bathoom	Bathroom Scenled Sopp	Ixoist	, U	Sodrum Do Decyl Benzene Sulf	oppm unopened	V
. 01.						
			-			
4						

^{*} Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

^{**} Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

			Site Details		Box 1	
Sit	e No.	C360195	200 20000			
Sit	e Name 13	0 Midland Avenue				
Cit Co	e Address: y/Town: Po unty: Westch e Acreage:	hester	Zip Code: 10573			
Re	porting Perio	od: December 29, 2023	to April 29, 2025			
					YES	NO
1.	Is the infor	mation above correct?			Χ	
	If NO, inclu	ude handwritten above or	on a separate sheet.			
2.		or all of the site property mendment during this Re	been sold, subdivided, merged, or under porting Period?	gone a		X
3.		been any change of use CRR 375-1.11(d))?	at the site during this Reporting Period			
4.		federal, state, and/or loca e property during this Re	al permits (e.g., building, discharge) been porting Period?	issued		X
			s 2 thru 4, include documentation or e eviously submitted with this certification			
5.	Is the site of	currently undergoing dev	elopment?			Χ
					Box 2	
					YES	NO
6.		ent site use consistent wi al and Industrial	th the use(s) listed below?		Χ	
7.	Are all ICs	in place and functioning	as designed?	X		
	IF TI		QUESTION 6 OR 7 IS NO, sign and date HE REST OF THIS FORM. Otherwise cor		and	
A	Corrective M	leasures Work Plan mus	t be submitted along with this form to a	dress tl	nese iss	ues.
 Sig	gnature of Ow	vner, Remedial Party or De	esignated Representative	Date	<u>-</u>	

		Box 2	A		
		YES	NO		
8.	Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?		Χ		
	If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.				
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)	Χ			
	If you answered NO to question 9, the Periodic Review Report must include an updated Qualitative Exposure Assessment based on the new assumptions.				
SITE NO. C360195		Box 3			
	Description of Institutional Controls				

Parcel Owner Institutional Control

142.53-1-5.1

130 Midland Ave Owner LLC

Ground Water Use Restriction Soil Management Plan Landuse Restriction Monitoring Plan Site Management Plan IC/EC Plan

The institutional controls present at the Controlled Property (130 Midland Avenue BCP C360195 Site) are as follows:

- 1. Track 4 Commercial, and Industrial Uses are allowed. The Controlled property may not be used for a higher use, such as unrestricted or restricted residential use, and the engineering controls may not be extinguished without NYSDEC approval and amending or discontinuing the approved 2023 Site Management Plan (SMP) and the executed 2023 environmental easement.
- 2. All future soil disturbance activities below the 1-foot cover, including building renovation/expansion, subgrade utility line repair/relocation, and new construction are conducted in accordance with the approved SMP, and the Excavation Work Plan (EWP). In areas where utilities will be installed for redevelopment, one foot of clean soil will be placed above utility excavations with a demarcation layer placed over top, before a hardscape site cover (asphalt) is installed.
- 3. The use of the groundwater underlying the Site is prohibited without treatment rendering it safe for potable or process use, without necessary water quality treatment as determined by the NYSDOH or Westchester County DOH.
- 4. An evaluation of the potential for soil vapor intrusion for any buildings developed or reoccupied on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion.
- 5. A certification, every year, must be made to the NYSDEC indicating that the requirements of the SMP have been met and denote areas where deficiencies have occurred, if any. A Site Management Report, including any required inspection or sampling documentation and certifications, shall be submitted by the Owner to NYSDEC by May 29th following the calendar reporting years, along with the Certification, signed and certified by the Owner, and certifying that the engineering controls (e.g., active SSDS, site cover) are in place and functioning correctly, or noting any deficiencies and including a corrective action plan for these deficiencies to be corrected. The Owner will also certify that NYSDEC is allowed access to the Site to inspect the engineering controls.

142.53-1-5.2

120 Midland Owner LLC

Ground Water Use Restriction Soil Management Plan Monitoring Plan Site Management Plan IC/EC Plan

Landuse Restriction

The institutional controls present at the Controlled Property (130 Midland Avenue BCP C360195 Site) are as follows:

- 1. Track 4 Commercial, and Industrial Uses are allowed. The Controlled property may not be used for a higher use, such as unrestricted or restricted residential use, and the engineering controls may not be extinguished without NYSDEC approval and amending or discontinuing the approved 2023 Site Management Plan (SMP) and the executed 2023 environmental easement.
- 2. All future soil disturbance activities below the 1-foot cover, including building renovation/expansion, subgrade utility line repair/relocation, and new construction are conducted in accordance with the approved SMP, and the Excavation Work Plan (EWP). In areas where utilities will be installed for redevelopment, one foot of clean soil will be placed above utility excavations with a demarcation layer placed over top, before a

hardscape site cover (asphalt) is installed.

- 3. The use of the groundwater underlying the Site is prohibited without treatment rendering it safe for potable or process use, without necessary water quality treatment as determined by the NYSDOH or Westchester County DOH.
- 4. An evaluation of the potential for soil vapor intrusion for any buildings developed or reoccupied on the site, including provision for implementing actions recommended to address exposures related to soil vapor intrusion.
- 5. A certification, every year, must be made to the NYSDEC indicating that the requirements of the SMP have been met and denote areas where deficiencies have occurred, if any. A Site Management Report, including any required inspection or sampling documentation and certifications, shall be submitted by the Owner to NYSDEC by May 29th following the calendar reporting years, along with the Certification, signed and certified by the Owner, and certifying that the engineering controls (e.g., active SSDS, site cover) are in place and functioning correctly, or noting any deficiencies and including a corrective action plan for these deficiencies to be corrected. The Owner will also certify that NYSDEC is allowed access to the Site to inspect the engineering controls.

Box 4

Description of Engineering Controls

<u>Parcel</u>

Engineering Control

142.53-1-5.1

Cover System Vapor Mitigation Monitoring Wells

The engineering controls installed at the Controlled Property (130 Midland Avenue BCP C360195 Site) are as follows:

- 1. A passive vapor mitigation system will be operated, maintained, monitored as required by the approved SMP, where subgrade parking is not present. Inspections and reporting will be performed in a manner specified in the approved SMP. An evaluation for soil vapor will be conducted on areas designated in the SMP.
- 2. A site cover system, of at least 1-foot, or NYSDEC-approved barrier layer consisting of concrete slabs under building structures, concrete or asphalt pavement in walkways and driving surfaces and clean soil cover in vegetated areas will be maintained as required by the approved SMP. Inspections and reporting will be performed in a manner specified in the approved SMP.
- 3. Any soil underlying within the Controlled Property, must remain covered with a NYSDEC-approved barrier layer consisting of concrete slabs under building structures, concrete or asphalt pavement in walkways and driving surfaces and clean soil cover in vegetated areas on the Controlled Property, which must be inspected, certified and maintained as required in the NYSDEC-approved SMP, and handled as described in the EWP.
- 4. Periodic monitoring of groundwater from monitoring wells specified in the SMP.

142.53-1-5.2

Monitoring Wells Cover System Vapor Mitigation

The engineering controls installed at the Controlled Property (130 Midland Avenue BCP C360195 Site) are as follows:

- 1. A passive vapor mitigation system will be operated, maintained, monitored as required by the approved SMP, where subgrade parking is not present. Inspections and reporting will be performed in a manner specified in the approved SMP. An evaluation for soil vapor will be conducted on areas designated in the SMP.
- 2. A site cover system, of at least 1-foot, or NYSDEC-approved barrier layer consisting of concrete slabs under building structures, concrete or asphalt pavement in walkways and driving surfaces and clean soil cover in vegetated areas will be maintained as required by the approved SMP. Inspections and reporting will be performed in a manner specified in the approved SMP.

Parcel Engineering Control				
3. Any soil underlying within the Controlled Property, must remain covered with a NYSDEC-approved barrier layer consisting of concrete slabs under building structures, concrete or asphalt pavement in walkways and driving surfaces and clean soil cover in vegetated areas on the Controlled Property, which must be inspected, certified and maintained as required in the NYSDEC-approved SMP, and handled as described in the EWP.				
4. Periodic monitoring of groundwater from monitoring wells specified in the SMP.				
		Box 5		
Periodic Review Report (PRR) Certification Statements				
1. I certify by checking "YES" below that:				
 a) the Periodic Review report and all attachments were prepared under the direction reviewed by, the party making the Engineering Control certification; 	ı of, a	and		
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted			
YE	S	NO		
X				
2. For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	e			
(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Departr	nent;	;		
(b) nothing has occurred that would impair the ability of such Control, to protect public health and the environment;				
(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;				
(d) nothing has occurred that would constitute a violation or failure to comply with th Site Management Plan for this Control; and	е			
(e) if a financial assurance mechanism is required by the oversight document for the mechanism remains valid and sufficient for its intended purpose established in the do				
YE	S	NO		
X				
IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				

A Corrective Measures Work Plan must be submitted along with this form to address these issues.

Date

Signature of Owner, Remedial Party or Designated Representative

IC CERTIFICATIONS SITE NO. C360195

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

	at 8751 185 Ave	Brooklyn My 11214,
print name	print business ad	dress
am certifying as Owner		(Owner or Remedial Party)
for the Site named in the Site Details	Section of this form.	
		11/4/25
Signature of Owner, Remedial Party,	or Designated Representative	Date
Rendering Certification		

EC CERTIFICATIONS

Box 7

Qualified Environmental Professional Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Steven Gustems at	959 Route 46, Pa	rsippany, NJ	,
print name	print busine	ess address	
ım certifying as a Qualified Environmental Pı	rofessional for the	Owner	
, ,	_	(Owner or Rem	nedial Party)
At Duster			11/14/2025
Signature of Qualified Environmental Profess	sional. for St	amp	Date
ne Owner or Remedial Party, Rendering Ce		equired for PE)	