
Appendix H:

Weekly Reports

Principals:

May 9, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE

Franz W. Laki, PE

Fuad Dahan, PhD, PE, LSRP

John M. Nederfield, PE

Justin M. Protasiewicz, PE

Michael St. Pierre, PE

Re: Weekly Report #1 – April 28th to May 2nd, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the "Volunteer"), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the "Site"). This progress report is for the week of April 28th to May 2nd, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from April 28th to May 1st, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities. During the reporting week, SESI deployed CAMP air monitoring stations at upwind and downwind locations. Ground intrusive and soil handling activities were not performed at the site on May 2nd, 2025, therefore SESI was not on-site.
- Site activities during this reporting week include the following:
 - On April 28th, 2025, the concrete and asphalt surfaces were removed and stockpiled at the Site. An approximately ten (10) foot wide by up to two (2) feet deep portion of soil along the northern Site boundary was excavated and stockpiled at the Site to accommodate future support of excavation (SOE) installation. Soil erosion and sediment controls were established.

- On April 29th, 2025, Site clearing continued and a retaining wall was demolished in the western and southern portions of the Site.
- On April 30th, 2025, excavation in the northeastern portion of the Site was performed to accommodate a future construction entrance and a berm was constructed on the eastern portion of the Site.
- On May 1st, 2025, a construction entrance was installed at the northeastern portion of the Site. Additionally, 121.75 tons of 2" clean stone were imported for future use as a tracking pad. Approval for use of the 2" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on April 29, 2025, which was approved by NYSDEC.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No exceedances were recorded on April 28th or 29th. On April 30th, three (3) particulate exceedances were observed, however, were immediately mitigated using water to suppress the dust. On May 1st, one (1) particulate exceedance was observed, however, was immediately mitigated using water to suppress the dust.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period except for the updated Remedial Action Schedule as follows:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025

Remedial Action Schedule	
Activity	Date
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

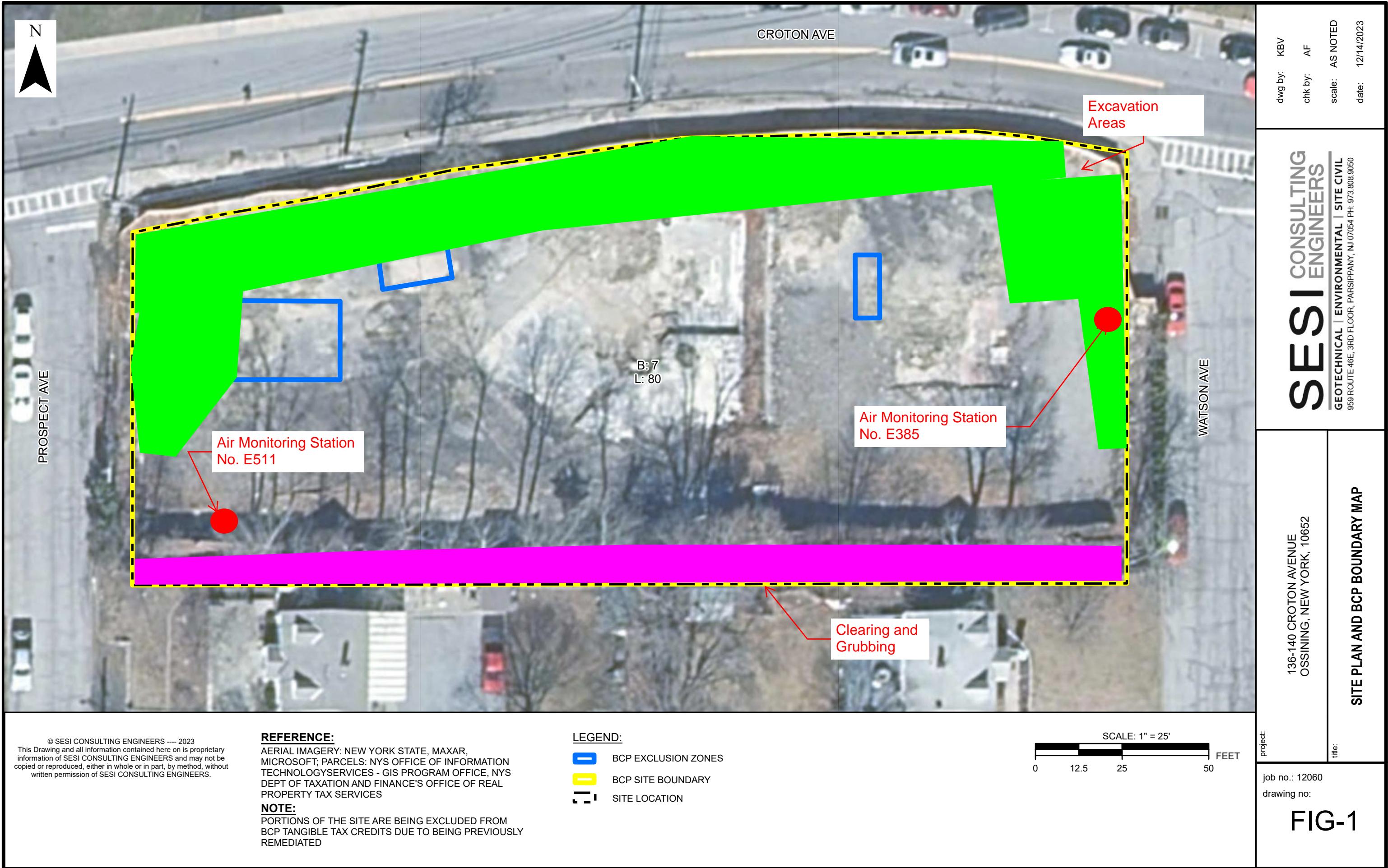
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- Soil excavation and off-site disposal.
- SOE installation.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE
Project Engineer

Attachments:

Figure 1

Photolog

FIGURES

PHOTOLOG

Photo 1: Demolished concrete stockpile.



Photo 2: Erosion control installed on stormwater inlet.

Photo 3: Air monitoring station in the southeastern portion of the Site.

Photo 4: Construction of the construction entrance.

Principals:

May 16, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #2 – May 5th to 9th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the "Volunteer"), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the "Site"). This progress report is for the week of May 5th to 9th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from May 5th to 9th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed CAMP air monitoring stations at upwind and downwind locations.
- Site activities during this reporting week include the following:
 - On May 5, 2025, eight (8) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA), four (4) truckloads of soil were exported to HCQ, and five (5) truckloads of building material/construction debris were exported to Middle Smithfield Materials (MSM). The eight (8) truckloads of soil exported to MCUA were generated from

the Brownfield Cleanup Program (BCP) remediation areas which will receive BCP tax credits.

- On May 6, 2025, ten (10) truckloads of soil were exported to MCUA, and five (5) truckloads of building material/construction debris were exported to EE-MSM. Eight (8) of the ten (10) truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits.
- On May 7, 2025, five (5) truckloads of soil were exported to MCUA, and eleven (11) truckloads of building material/construction debris were exported to EE-MSM. No soil exported on this day was generated from the BCP remediation areas. Additionally, 49.24 tons of 2" clean stone were imported for use as a tracking pad. Approval for use of the 2" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on April 29, 2025, which was approved by NYSDEC. Additionally, a subsurface grease trap was encountered, and two (2) vibration monitors were installed by Tectonic at the southern boundary of the Site.
- On May 8, 2025, SOE installation commenced, fourteen (14) truckloads of soil were exported to HGQ, and five (5) truckloads of soil were exported to MCUA. No soil exported on this day was generated from the BCP remediation areas. Excavation was performed in the southern portion of the Site to approximately three (3) feet below ground surface outside of the BCP remediation areas.
- On May 9, 2025, SOE installation continued. Excavation continued in the southern portion of the Site to approximately three (3) feet below ground surface.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- An exceedance of the VOC action levels was observed at approximately 10:54AM on May 5, 2025. Work was halted, odor suppressants were deployed, and soil stockpiles were covered. Once the VOC concentrations were reduced to below CAMP action levels, work was resumed with continued odor suppression.
- Multiple exceedances of the particulate action levels were observed on May 8, 2025, resulting from the SOE pile installation. The drill rig exhaust was rerouted, and water was applied to mitigate the particulate exceedances. These mitigation measures were approved by the NYSDEC field inspector.
- An exceedance of the particulate action level was observed at approximately 10:10AM on May 9, 2025, resulting from the SOE pile installation adjacent to the CAMP station. The exceedance was mitigated in less than five (5) minutes. The air monitoring stations were turned off and placed in the field office at 11:30AM due to the heavy rainfall in consultation with NYSDEC.
- No exceedances were recorded on May 6th or 7th, 2025.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

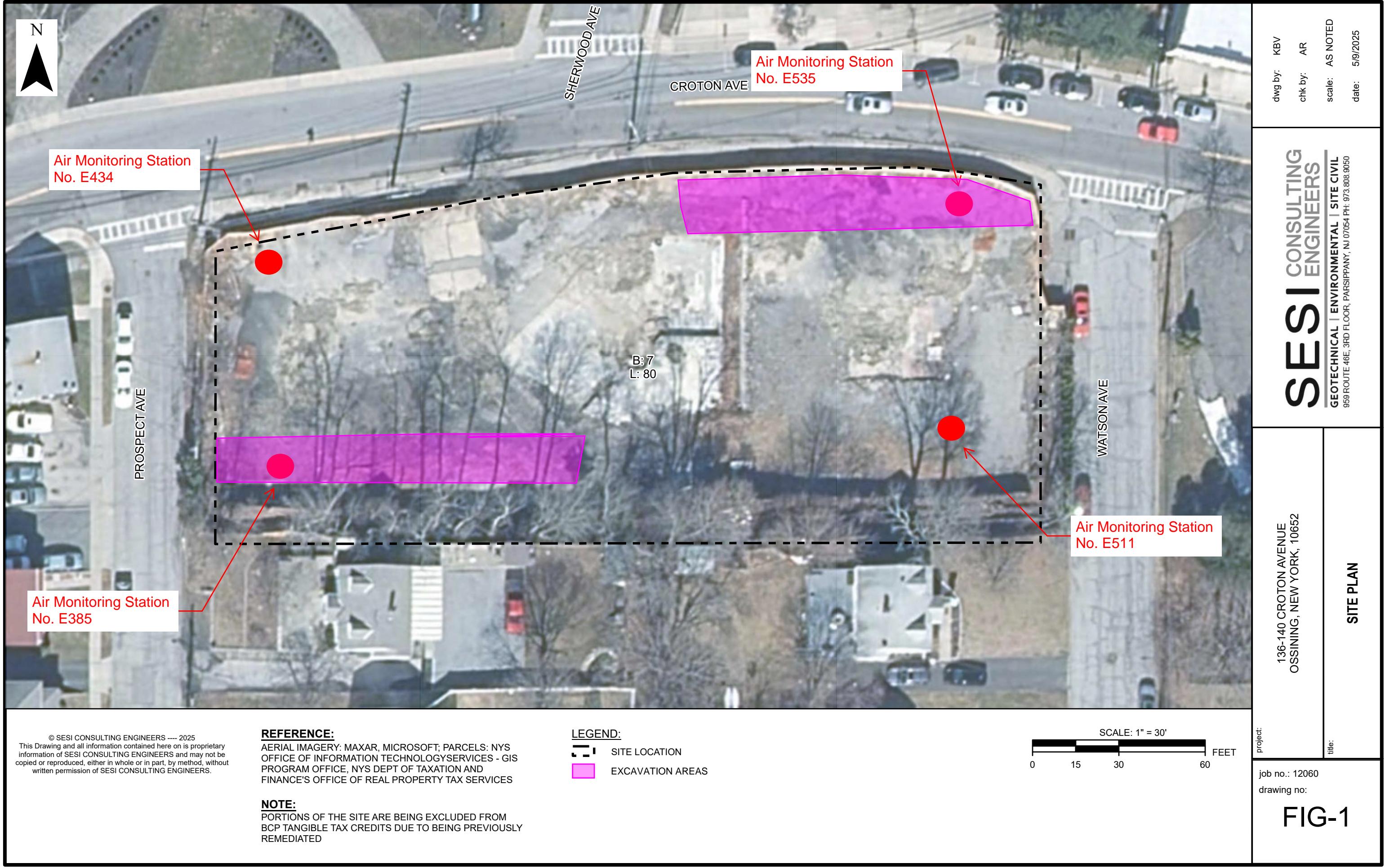
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE
Project Engineer

Attachments:

Figure 1

Photolog

FIGURES

PHOTOLOG

Photo 1: Material export.

Photo 2: Subsurface grease trap.

Photo 3: Air monitoring station in the southeastern portion of the Site.

Photo 4: Vibration monitors.

Photo 5: SOE installation.

Photo 6: Additional excavation in the southern portion of the Site.

Principals:

May 23, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #3 – May 12th to 16th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the "Volunteer"), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the "Site"). This progress report is for the week of May 12th to 16th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from May 12th to 16th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed CAMP air monitoring stations at upwind and downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from May 12th to May 16th, 2025.
 - On May 12, 2025, excavation continued in the center and southeastern portions of the Site to approximately three (3) feet below ground surface outside of the BCP remediation areas.

- On May 13, 2025, nineteen (19) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA), and twenty (20) truckloads of soil were exported to HGQ. All truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits. During excavation activities, one (1) underground storage tank (UST) was discovered in the southern portion of the Site. The contents of the UST and any surrounding standing water were drummed for eventual off-site disposal. Potentially impacted soil surrounding the UST was stockpiled on and covered by polyurethane sheeting.
- On May 14, 2025, nine (9) truckloads of soil were exported to MCUA, and thirty-two (32) truckloads of soil were exported to HGQ. All truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits.
- On May 15, 2025, excavation continued in the southeastern portion of the Site to approximately three (3) feet below ground surface outside of the BCP remediation areas. Eight (8) truckloads of soil were exported to MCUA, three (3) truckloads of rock were exported to EE-MSM, and thirteen (13) truckloads of soil were exported to HCQ. No soil exported on this day was generated from the BCP remediation areas.
- On May 16, 2025, thirty-six (36) truckloads of soil were exported to MCUA, sixty-five (65) truckloads of soil were exported to HGQ, and 8 truckloads of construction debris were exported to EE-MSM. All truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits. Luzon Environmental (Luzon) mobilized to the Site to pump the contents of the UST from the drums to a vacuum truck for offsite disposal. Luzon removed the UST from the ground and staged it on competent polyurethane sheeting. Following UST removal, SESI collected two (2) centerline soil samples (UST-1 and UST-2) along with QA/QC samples in accordance with DER-10. The excavation area measured 10' (L) x 3.75' (W) x 5.5' (D).

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- Multiple exceedances of the particulate action levels were observed on May 12th, 13th, 14th, and 16th, 2025, resulting from the SOE pile installation. The drill rig exhaust was rerouted, and water was applied to mitigate the particulate exceedances. These mitigation measures were approved by the NYSDEC field inspector.
- No exceedances were recorded on May 15th, 2025.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period. SESI collected two (2) centerline soil samples (UST-1 and UST-2) following UST removal on May 16, 2025. The samples were collected and analyzed in accordance with DER-10 for Target Compound List (TCL) / CP-51 volatile organic compounds (VOCs) and TCL/CP-51 semi-volatile organic compounds (SVOCs). The analytical results are currently pending and will be summarized in the next weekly report.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

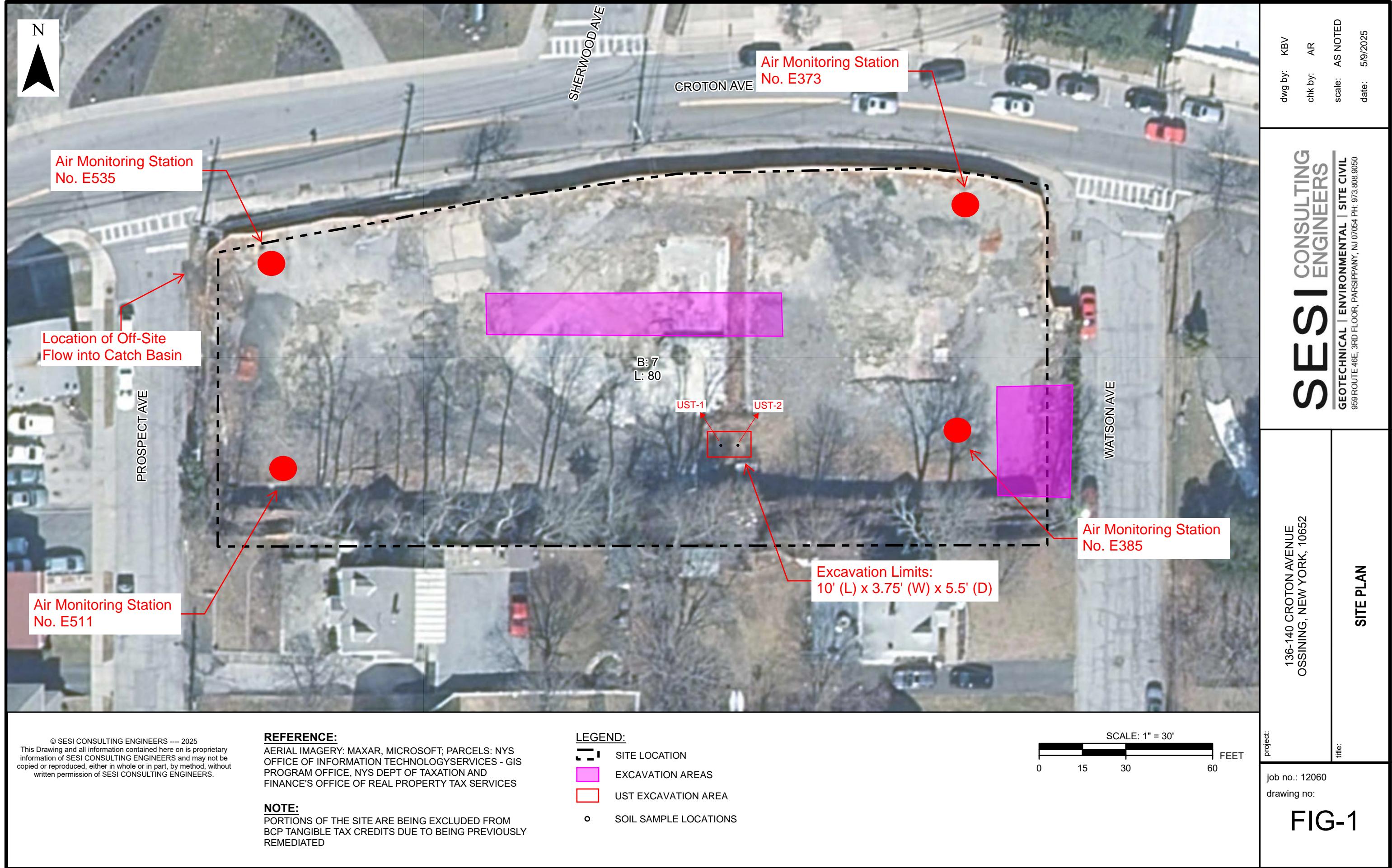
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: SOE Installation.

Photo 2: Additional Soil Excavation in the Center and Southeastern Portions of the Site.

Photo 3: Air Monitoring Station in the Northwestern Portion of the Site.

Photo 4: Soil Export.

Photo 5: Uncovered Underground Storage Tank (UST).

Photo 6: Removal of UST.

Principals:

May 30, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #4 – May 19th to 23rd, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of May 19th to 23rd, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from May 19th to 23rd, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed air monitoring stations at upwind and downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from May 19th to May 23rd, 2025.
 - On May 19th, 2025, 25.02 tons of ¾" clean stone were imported for use as a tracking pad. Approval for use of the ¾" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on April 29, 2025, which was approved by NYSDEC.

- On May 20th, 2025, Luzon Environmental (Luzon) mobilized to the Site to clean and dispose of the underground storage tank (UST) identified in the southern portion of the Site during excavation activities on May 13, 2025.
- On May 21st, 2025, one (1) 8,000-gallon frac tank and one (1) 20,000-gallon frac tank were delivered to facilitate stormwater management at the Site. Additionally, the village groundbreaking ceremony was conducted on this day.
- Between May 21st and 23rd, 2025, the contractor pumped stormwater collected in the northwest corner of the Site into the frac tanks.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average on May 19th, 20th, 21st, 22nd, or 23rd. The cause of any instantaneous exceedances can be attributed to the use of air during drilling operations.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period. SESI collected two (2) centerline soil samples (UST-1 and UST-2) following UST removal on May 16, 2025. The analytical results are currently pending and will be summarized in the next weekly report.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

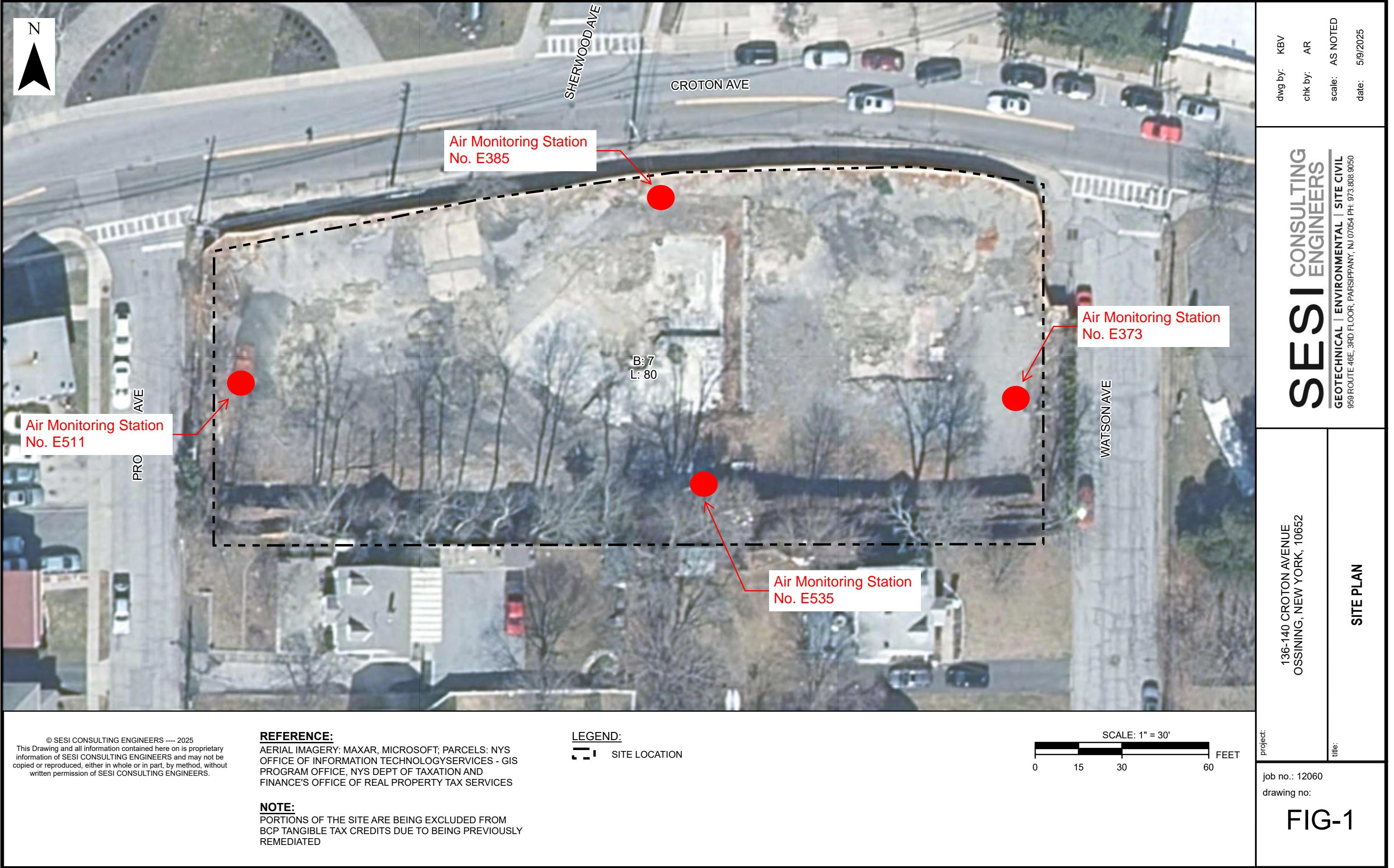
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: SOE Installation.

Photo 2: $\frac{3}{4}$ " Clean Stone Delivery.

Photo 3: Air Monitoring Station in the Northern Portion of the Site.

Photo 4: Cleaning and Offsite Disposal of Underground Storage Tank (UST).

Photo 5: Stormwater Management Frac Tanks in the Southwestern Corner of the Site.

Photo 6: Stormwater Removal from the Northwestern Corner of the Site.

Principals:

June 6, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #5 – May 27th to 31st, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of May 27th to 31st, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from May 27th to 31st, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed 4 air monitoring stations at 2 upwind and 2 downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from May 27th to May 31st, 2025.
 - Excavation continued in the western portion of the Site from May 27th to May 31st, 2025.
 - During excavation activities on May 28th, 2025, one (1) underground storage tank (UST-2) of unknown size and contents was discovered in the western portion of the Site. The UST was covered with polyurethane sheeting and scheduled for removal during the week of June 9th, 2025.

- On May 30th, 2025, twenty-one (21) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA). All truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits. During excavation activities, one (1) underground storage tank (UST-3) was discovered in the northern portion of the Site. The UST was covered with polyurethane sheeting and scheduled for removal during the week of June 9th, 2025.
- On May 31st, 2025, the contractor pumped stormwater collected in the northwest corner of the Site into the frac tanks.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average on May 27th, 28th, 29th, 30th, or 31st. The cause of any instantaneous exceedances can be attributed to the use of air during drilling operations.
- On May 28th, 2025, data was manually downloaded from the CAMP station located on the eastern portion of the Site due to a transmittal failure.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period. SESI collected two (2) centerline soil samples (UST-1 and UST-2) following UST-1 removal on May 16th, 2025. Xylene was detected above its NYSDEC Unrestricted Soil Cleanup Objective (USCO) in one of the post-removal samples (UST-2). Therefore, further remedial actions including excavation and post-excavation soil sampling in accordance with DER-10 are warranted and will be summarized in the next weekly report.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

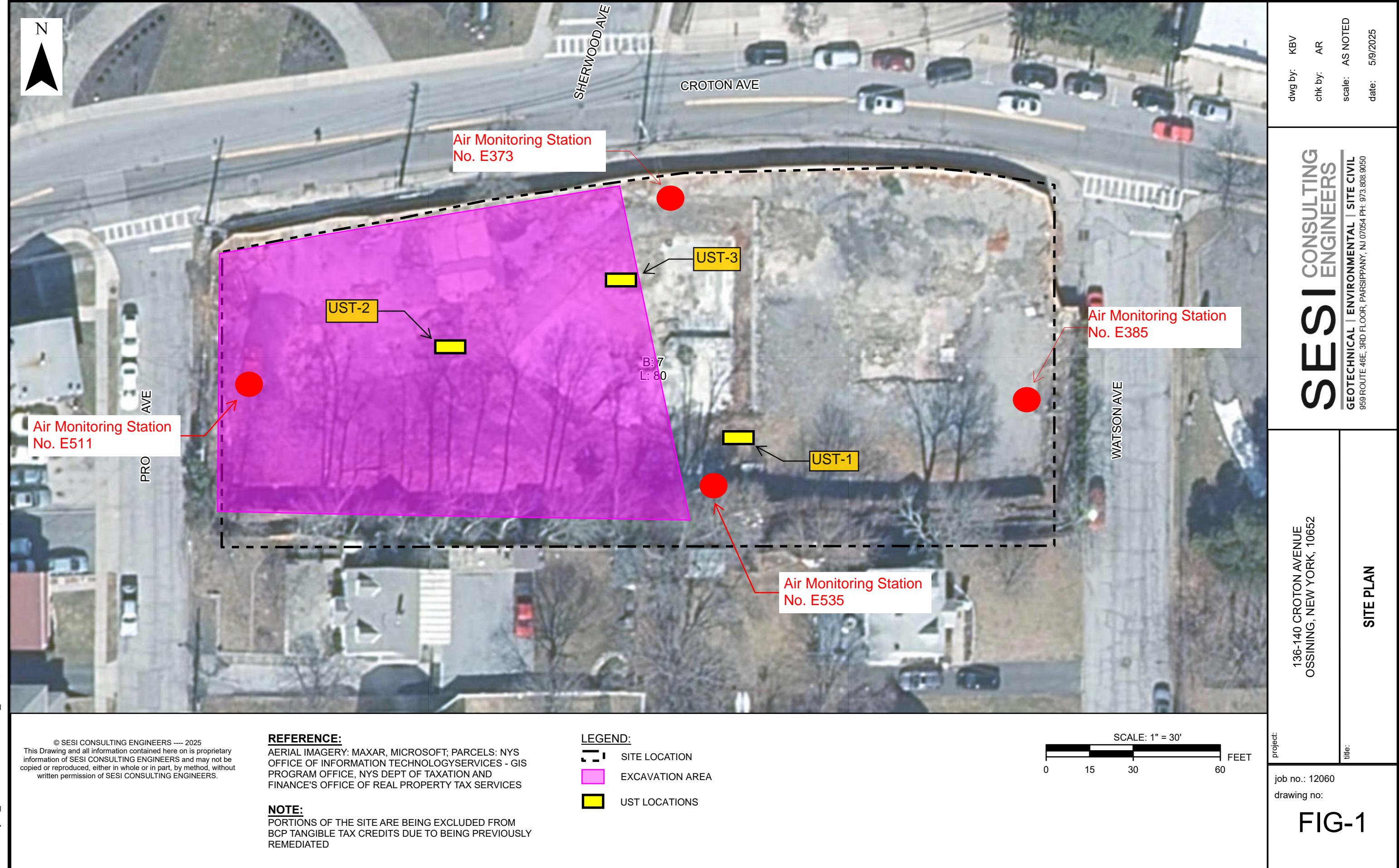
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Fuad Dahan, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: SOE Installation.

Photo 2: Soil Excavation in the Western Portion of the Site.

Photo 3: Air Monitoring Station in the Northern Portion of the Site.

Photo 4: Uncovered Underground Storage Tank (UST-2) in the Western Portion of the Site.

Photo 5: Uncovered Underground Storage Tank (UST-3) in the Northern Portion of the Site.

Photo 6: Stormwater Removal from the Northwestern Corner of the Site.

Principals:

June 13, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #6 – June 2nd to 6th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of June 2nd to 7th, 2025

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from June 2nd to 7th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from June 3rd to 7th, 2025.
 - Excavation continued in various locations of the Site from June 2nd to 7th, 2025.
 - On June 2nd, 2025, twenty-seven (27) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA). All truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits.
 - On June 3rd, 2025, fourteen (14) truckloads of soil were exported to MCUA, and one (1) truckload of construction debris was exported to Richmond Recycling. The fourteen (14)

truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits. Luzon Environmental Services (Luzon) removed the contents of UST-2 and UST-3 via vacuum truck for offsite disposal. Luzon removed the USTs from the ground, staged them on competent polyurethane sheeting, and began cleaning them.

- On June 4th, 2025, fourteen (14) truckloads of soil were exported to MCUA, and five (5) truckloads of soil were exported to HGQ. The fourteen (14) truckloads of soil export to MCUA were generated from the BCP remediation areas which will receive BCP tax credits. Luzon completed the cleaning of UST-2 and UST-3.
- On June 5th, 2025, sixteen (16) truckloads of soil were exported to HGQ. SESI collected two (2) centerline soil samples (UST2-B1 and UST2-B2) from beneath UST-2 and two (2) centerline soil samples (UST3-B1 and UST3-B2) from beneath UST-3 along with QA/QC samples in accordance with DER-10.
- On June 6th, 2025, fifty-five (55) truckloads of soil were exported to HGQ.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average on June 2nd, 3rd, or 4th, 2025. The cause of any instantaneous exceedances can be attributed to the use of air during drilling operations.
- A limited amount of particulate exceedances were recorded over a 15-minute average on June 5th to 6th, 2025. On June 6th, 2025, the particulate concentrations in the downwind AMS were recorded greater than 0.150 mcg/m³ above background at the end of the workday. Dust suppression techniques were deployed and ultimately the work was terminated for the day. The exceedances on June 6th, 2025 were observed in the side-wind monitors, not the downwind monitor.
- From June 4th to 7th, 2025, external battery issues were encountered at the CAMP station located on the eastern portion of the Site, resulting in skewed readings. The CAMP provider was contacted, and a replacement battery was scheduled for delivery on June 9th, 2025.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period. SESI collected two (2) centerline soil samples (UST2-B1 and UST2-B2) from beneath UST-2 and two (2) centerline soil samples (UST3-B1 and UST3-B2) from beneath UST-3 on June 5th, 2025. The samples were collected and analyzed in accordance with DER-10 for Target Compound List (TCL) / CP-51 volatile organic compounds (VOCs)

and TCL/CP-51 semi-volatile organic compounds (SVOCs). No exceedances of NYSDEC Soil Cleanup Objectives (SCOs) were identified.

Xylene was detected above its NYSDEC Unrestricted Soil Cleanup Objective (USCO) in one of the post-removal samples (UST-2) collected beneath UST-1 on May 16th, 2025. Therefore, further remedial actions including excavation and post-excavation soil sampling in accordance with DER-10 are warranted and will be summarized in the next weekly report.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

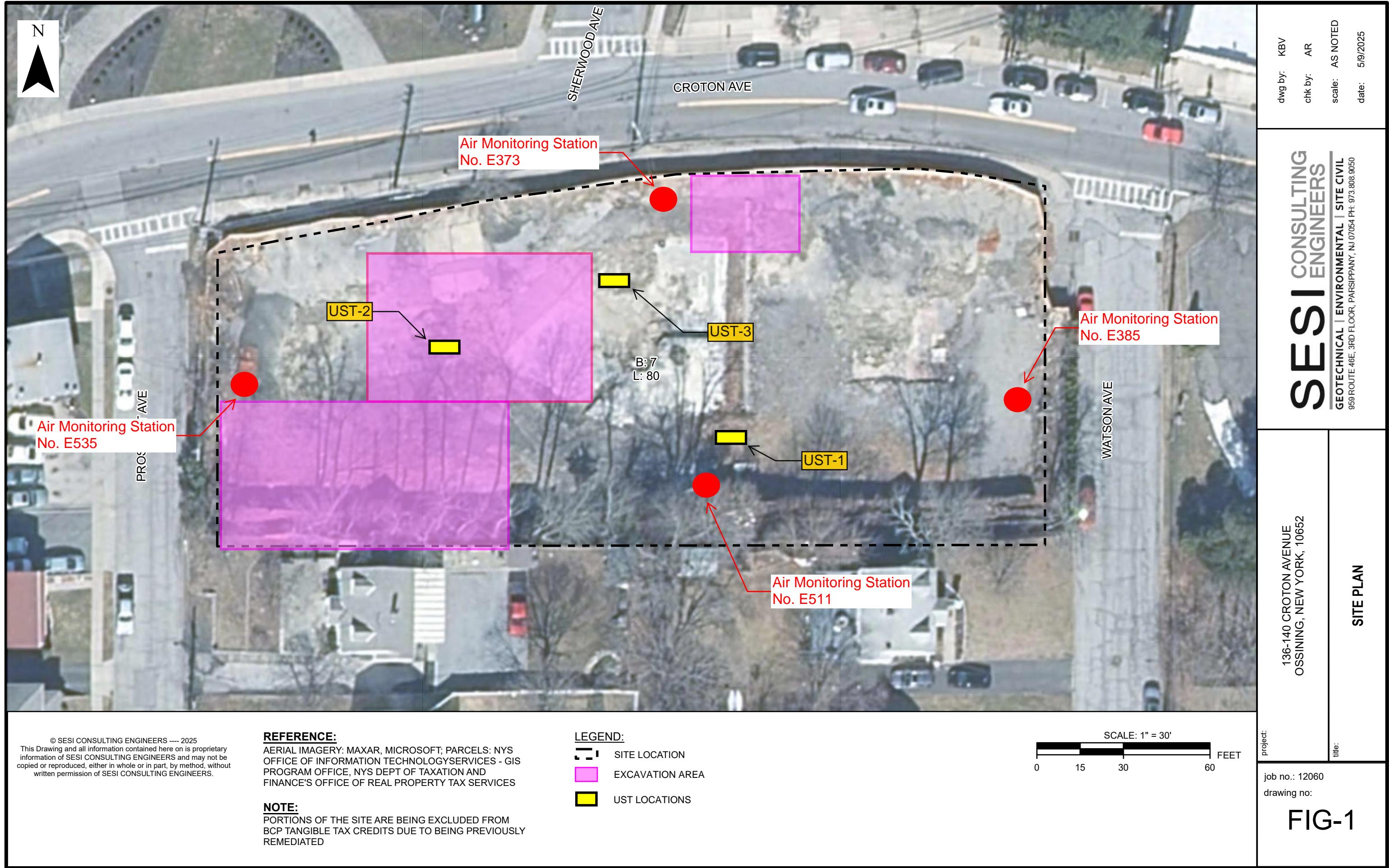
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: Removal of USTs.

Photo 2: Soil excavation in various locations of the Site.

Photo 3: Air Monitoring Station in the Southern Portion of the Site.

Photo 4: Soil Export.

Principals:

June 20, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #7 – June 9th to 14th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of June 9th to 14th, 2025

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from June 9th to 14th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from June 9th to 14th, 2025.
 - Excavation continued in various locations of the Site from June 9th to 14th, 2025.
 - On June 9, 2025, eleven (11) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA). All truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits. Additionally, 25.36 tons of 2"-4" clean stone were imported for use as a tracking pad. Approval for use of the 2"-4" clean stone was previously

requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on April 29, 2025, which was approved by NYSDEC.

- On June 10, 2025, four (4) truckloads of approximately 6,000-gallons each of captured stormwater were exported to Clean Water of New York in Staten Island, NY.
- On June 12, 2025, twenty-one (21) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA). All truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average on June 9th, 10th, 12th, 13th or 14th, 2025.
- A limited amount of particulate exceedances were recorded over a 15-minute average on June 11, 2025. The particulate concentrations in the side-wind AMS were recorded greater than 0.150 mcg/m³ above background at the end of the workday. Dust suppression techniques were deployed and ultimately the work was terminated for the day.
- One of the upwind air monitoring stations failed due to a power delivery issue and could not be operated on June 10th and 14th, 2025.
- The downwind air monitoring station was operating correctly; however, the modem was having an issue transmitting the data to the online database on June 12, 2025. SESI checked the data values manually every 15 minutes at this station. No particulate or VOC exceedances were recorded over a 15-minute average on this day.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

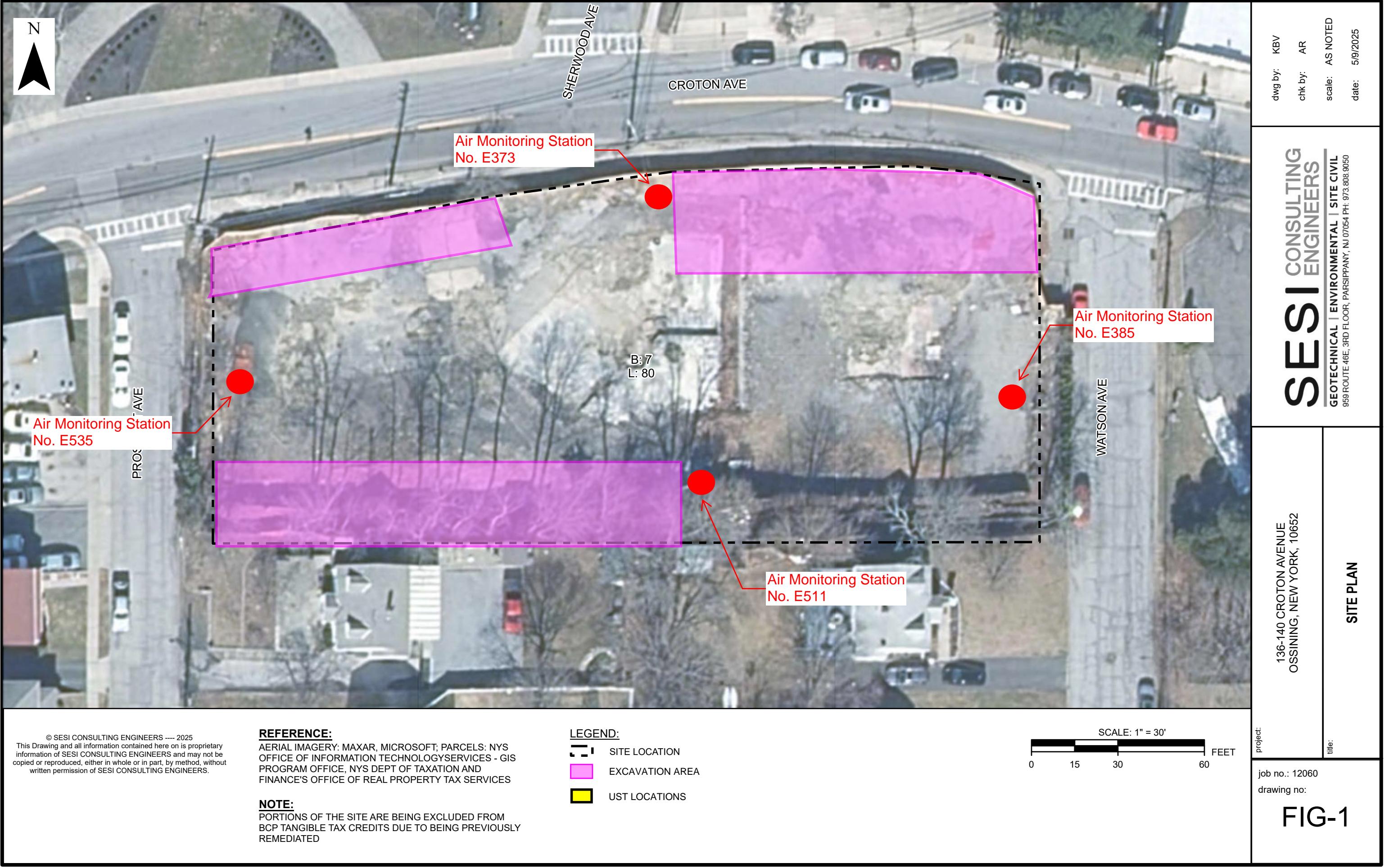
- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC

A handwritten signature in blue ink, appearing to read "ANTHONY RAPOSO".


Anthony Raposo, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: Drilling pile in northeastern portion of the site.

Photo 2: Support of excavation installation.

Photo 3: Air Monitoring Station in the Southern Portion of the Site.

Photo 4: Soil Export.

Principals:

June 27, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #8 – June 16th to 21st, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of June 16th to 21st, 2025

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from June 16th to 18th, 20th and 21st, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. Additionally, due to the Juneteenth holiday, work was not performed on June 19, 2025; therefore, SESI was not on-site. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from June 16th to 18th, 20th and 21st, 2025.
 - Excavation continued in various locations of the Site from June 16th to 18th, 20th and 21st, 2025.
 - On June 16, 2025, one (1) post-excavation soil sample was collected from the base and each sidewall of the remedial excavation in the area of post-closure soil sample UST-2

which was collected following the removal of underground storage tank (UST) UST-1. The remedial excavation was required due to the xylene concentration detected above its NYSDEC Unrestricted Soil Cleanup Objective (USCO) in soil sample UST-2.

- On June 17, 2025, thirty-one (31) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA). All truckloads of soil were generated from the BCP remediation areas which will receive BCP tax credits.
- On June 18, 2025, the dewatering treatment system was installed at the Site and a treated effluent sample was collected and submitted for analysis of the Westchester County wastewater discharge permit-required analytes. Additionally, 25.31 tons of 2"-4" clean stone were imported for use as a tracking pad. Approval for use of the 2"-4" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on April 29, 2025, which was approved by NYSDEC.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average on June 16th, 17th, 18th, 20th and 21st, 2025.
- A limited number of particulate concentrations greater than 0.150 mcg/m³ were recorded over a 15-minute average at the upwind air monitoring station on June 16th and 17th, 2025, due to SOE drilling operations. Dust suppression techniques were deployed and the concentrations returned to below the action level.
- One of the upwind air monitoring stations was operating correctly; however, the modem was having an issue transmitting the data to the online database on June 17th, 18th, 20th and 21st, 2025. SESI checked the data values manually every 15 minutes at this station. No particulate or VOC exceedances were recorded over a 15-minute average on these days.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period.

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

On June 16, 2025, one (1) post-excavation soil sample was collected from the base and each sidewall of the remedial excavation in the area of post-closure soil sample UST-2 which was collected following the removal of UST-1. The remedial excavation was required due to the xylene concentration detected above its NYSDEC Unrestricted Soil Cleanup Objective (USCO) in soil sample UST-2. A total of five (5) post-excavation soil samples, along with QA/QC samples, were submitted for analysis of volatile organic

compounds (VOCs). VOCs were not detected at concentrations exceeding NYSDEC USCOs in the post-excavation soil samples.

A treated effluent sample was collected and submitted for analysis of the Westchester County wastewater discharge permit-required analytes on June 18, 2025.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

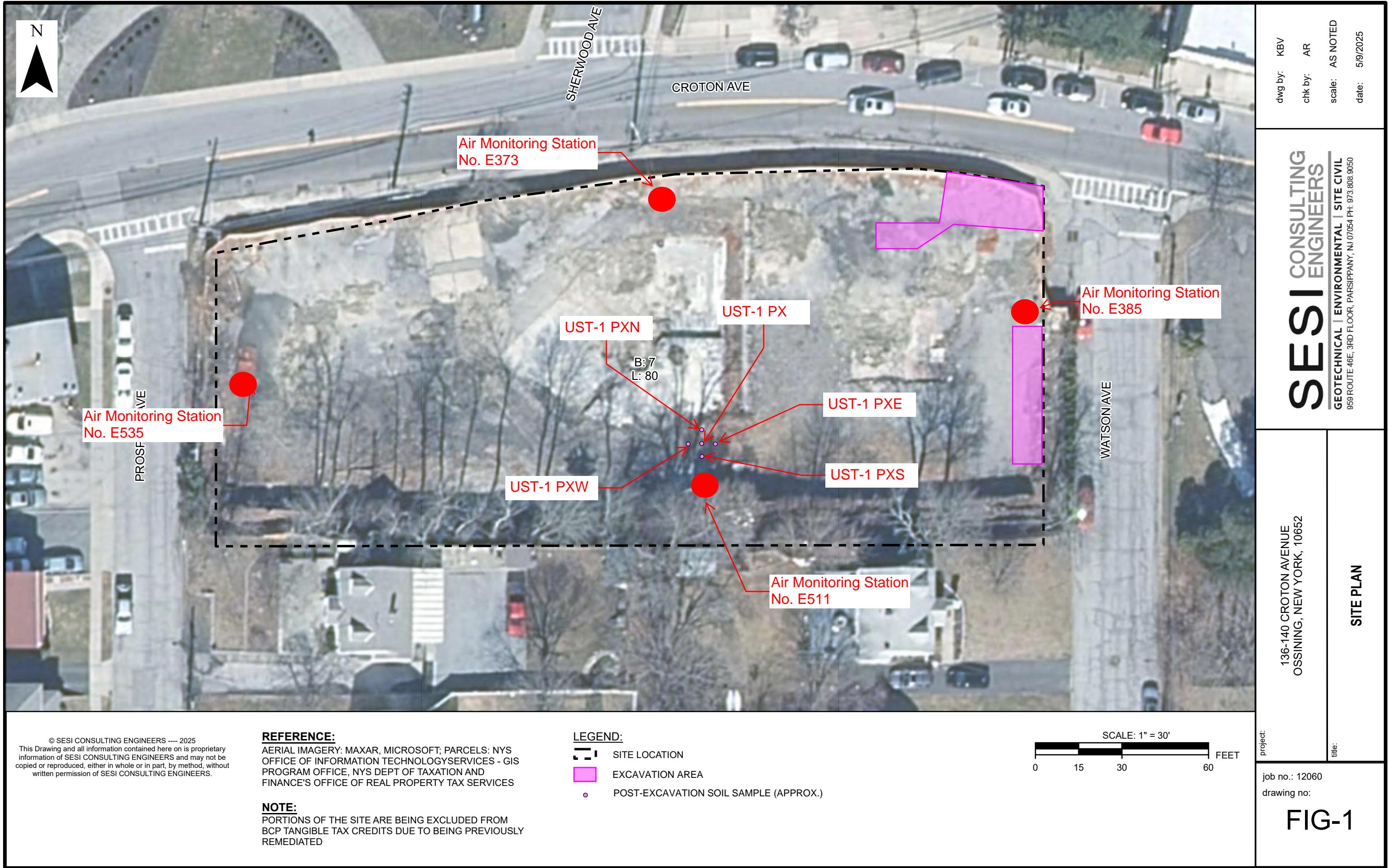
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: Drilling pile in southern portion of the site.

Photo 2: Support of excavation installation.

Photo 3: Air Monitoring Station in the Northern Portion of the Site.

Photo 4: Soil Export.

Principals:

July 2, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #9 – June 23rd to 28th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of June 23rd to 28th, 2025

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from June 23rd to 28th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from June 23rd to 28th, 2025.
 - Excavation for SOE installation continued in various locations of the Site from June 23rd to 28th, 2025.
 - On June 27, 2025, four (4) truckloads totaling approximately 24,400-gallons of captured stormwater were exported Clean Water of New York in Staten Island, NY.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average at the downwind air monitoring stations during this reporting period other than a VOC spike observed when one unit was powered on likely due to a moisture issue on June 28, 2025. No on-site work was occurring during this exceedance which was resolved prior to the start of any earthwork.
- One of the air monitoring stations was operating correctly; however, the modem was having an issue transmitting the data to the online database on June 25th, 2025. The air monitoring station with the issue was downwind on June 25, 2025 and the issues occurred for approximately 30 minutes. SESI checked the data values manually every 15 minutes at this station. No particulate or VOC exceedances were recorded over a 15-minute average on these days.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

- There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

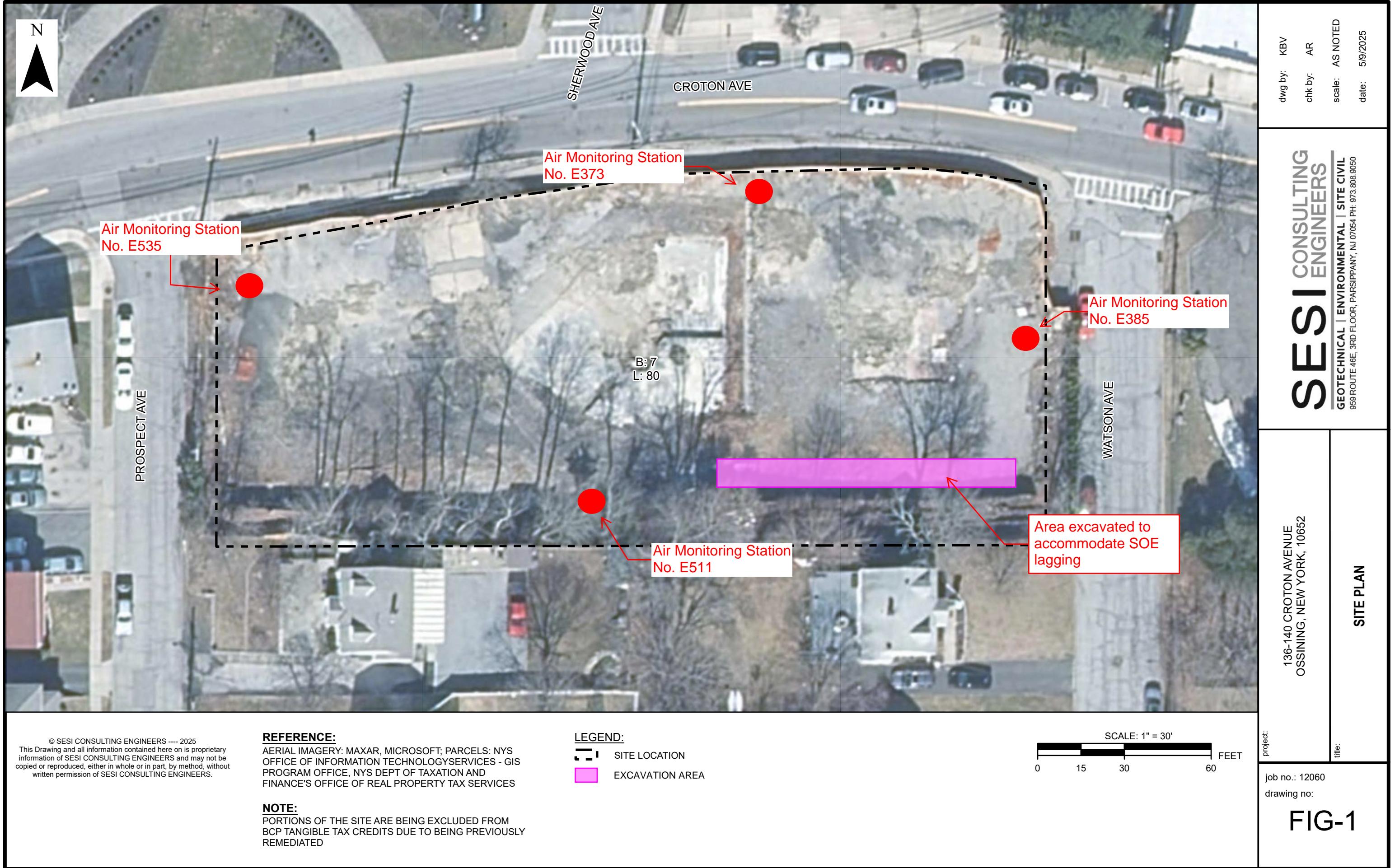
3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil and captured groundwater for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,


SESI CONSULTING ENGINEERS, DPC

Anthony Raposo, PE, LSRP
Project Engineer

Attachments:
Figures
Photolog

FIGURES

PHOTOLOG

Photo 1: Vacuum truck for removal of captured stormwater.

Photo 2: Support of excavation installation.

Photo 3: Air monitoring station in the northwestern portion of the Site.

Photo 4: Support of excavation installation.

Principals:

July 8, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #10 – June 30th to July 3rd, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of June 30th to July 3rd, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from June 30 to July 3, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. Due to the Independence Day holiday, work was not performed on July 4, 2025; therefore, SESI was not on-site. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations
- Site activities during this reporting week include the following:
 - SOE installation was performed from June 30 to July 3, 2025.
 - Excavation for SOE installation continued in various locations of the Site from June 30th to July 3, 2025.
 - On June 30, 2025, four (4) truckloads totaling approximately 26,800-gallons of captured stormwater were exported Clean Water of New York in Staten Island, NY.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average at the downwind air monitoring stations during this reporting period.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period. However, one (1) soil sample was collected from the base of the excavation in Grid B-8 at a depth of 13.0 to 13.5 feet below ground surface and analyzed for Target Compound List plus 30 / Target Analyte List (TCL+30/TAL), per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane, for geotechnical considerations. The analytical results are pending.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

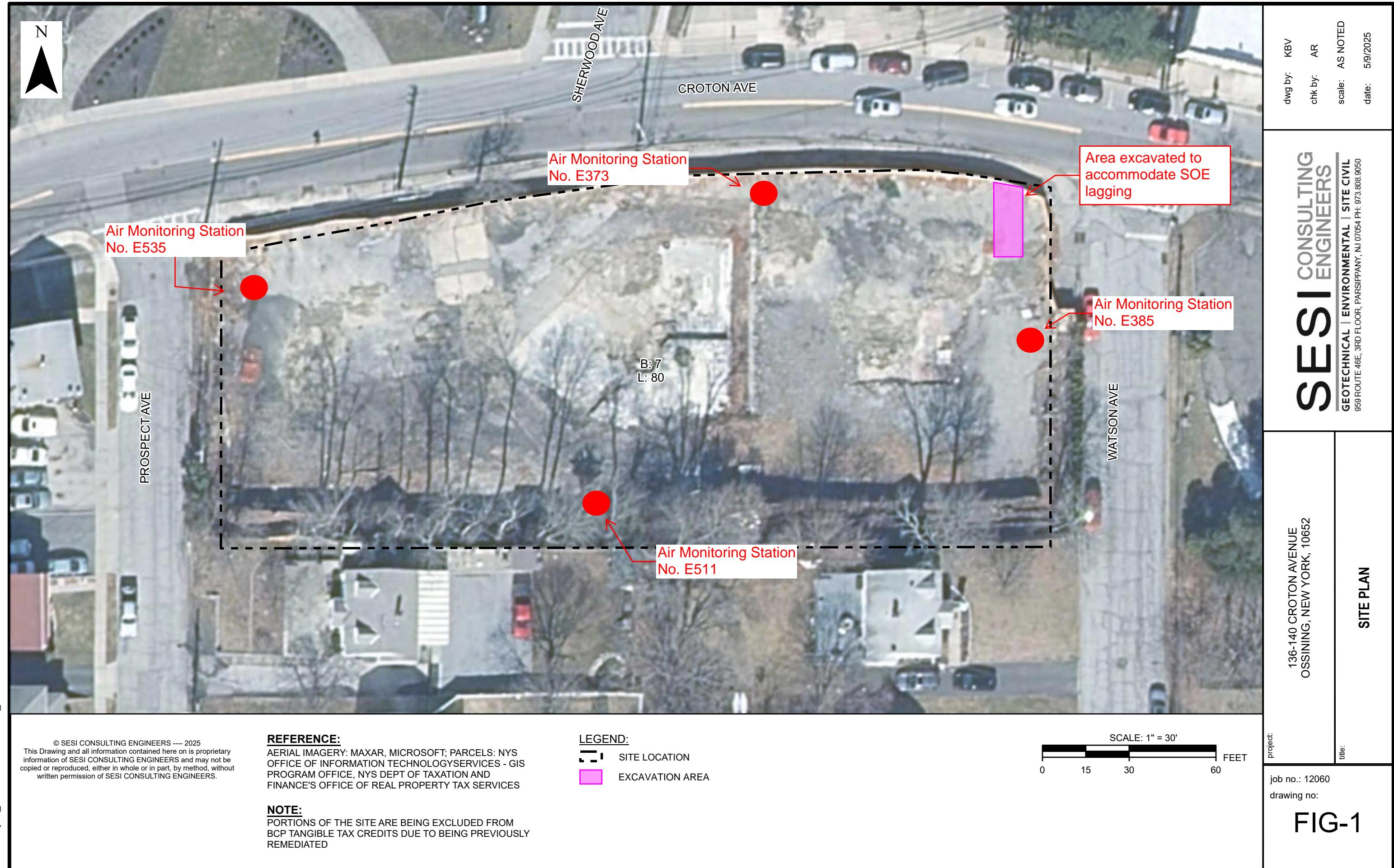
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil and captured groundwater for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: Excavation for soil remediation in northern portion of the Site.

Photo 2: Support of excavation installation.

Photo 3: Air monitoring station in the northwestern portion of the Site.

Photo 4: Site conditions facing north.

Principals:

July 15, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #11 – July 7th to 12rd, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of July 7th to 12th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from July 7th to 12th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations
- Site activities during this reporting week include the following:
 - SOE installation was performed from July 7th to 12th, 2025.
 - Excavation for SOE installation continued in various locations of the Site from July 7th to 12th, 2025.
 - On July 8, 2025, the temporary connection from the dewatering system to the sanitary sewer situated on Croton Avenue was installed. Captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- No particulate or volatile organic compound (VOC) exceedances were recorded over a 15-minute average at the downwind air monitoring stations during this reporting period.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

Analytical results for the soil sample collected from the base of the excavation in Grid B-8 at a depth of 13.0 to 13.5 feet below ground surface and analyzed for Target Compound List plus 30 / Target Analyte List (TCL+30/TAL), per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane, were received. Iron was detected at a concentration greater than its New York State Department of Environmental

Conservation (NYSDEC) Residential Soil Cleanup Objective (RSCO) in the soil sample. No VOCs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, PFAS, or 1,4-dioxane were detected at concentrations greater than the NYSDEC Unrestricted Use Soil Cleanup Objectives (USCOs) in the soil sample.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

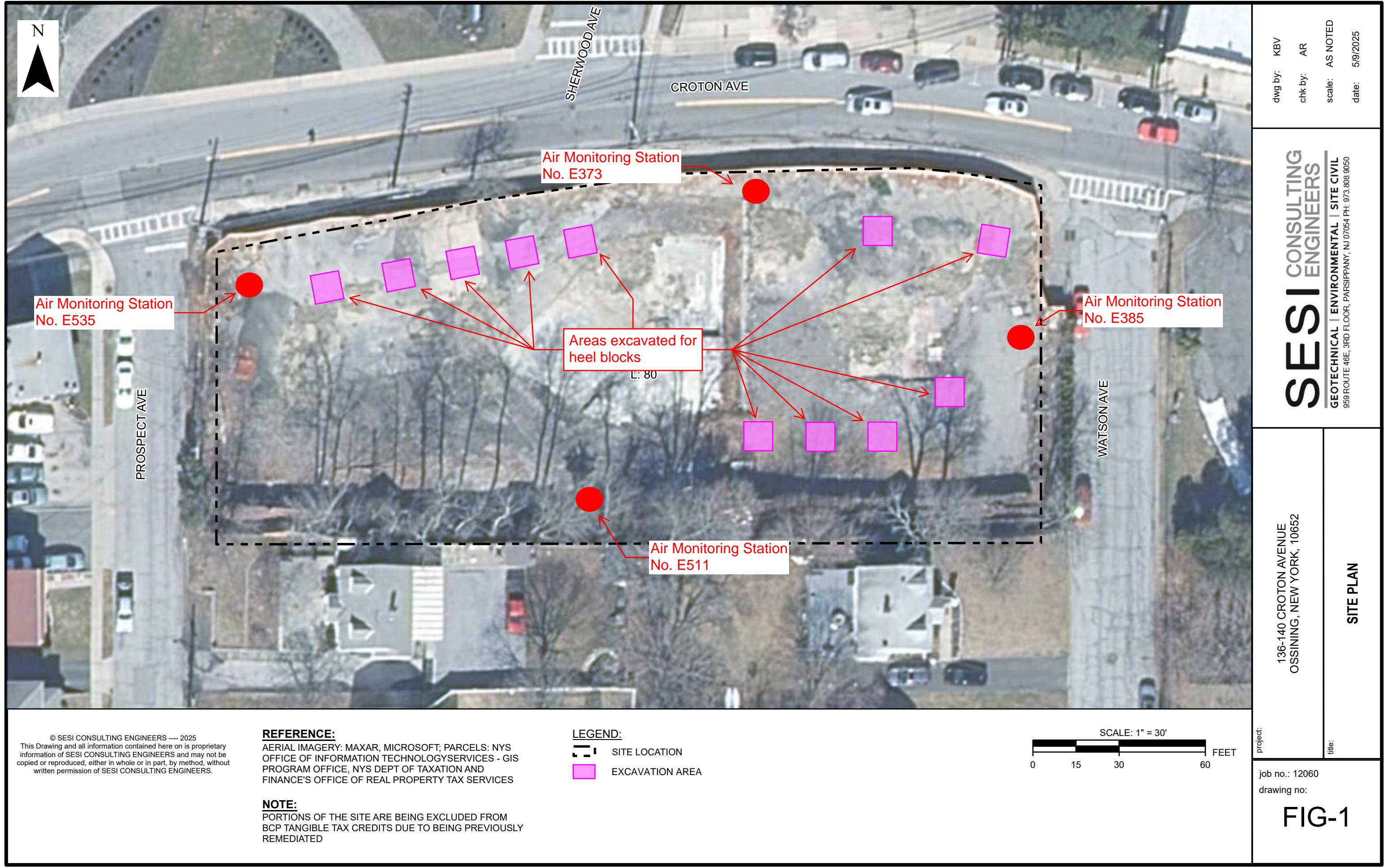
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil and captured groundwater for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE, LSRP
Project Engineer

Attachments:

Figures

Photolog

FIGURES

PHOTOLOG

Photo 1: Dewatering system discharge point to sanitary sewer on Croton Avenue prior to pavement restoration.

Photo 2: Support of excavation installation.

Photo 3: Air monitoring station in the northwestern portion of the Site.

Photo 4: Flow totalizer on dewatering system effluent piping.

Principals:

July 22, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #12 – July 14th to 19th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of July 14th to 19th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from July 14th to 19th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from July 14th to 19th, 2025.
 - Excavation for SOE installation continued in various locations of the Site from July 14th to 19th, 2025.
 - Captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25.
 - On July 15th, 2025, ten (10) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA), and eleven (11) truckloads of soil were exported to HGQ. All

truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits.

- On July 16th, 2025, sixteen (16) truckloads of soil were exported to MCUA, and sixteen (16) truckloads of soil were exported to HGQ. All truckloads of soil exported to MCUA were generated from the BCP remediation areas which will receive BCP tax credits.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- On July 15th, 2025, one volatile organic compound (VOC) exceedance was recorded over a 15-minute average at air monitoring station No. E385 during this reporting period. The exceedance can be attributed to moisture accumulating within the air monitoring station as a result of high humidity. The exceedance was mitigated as the air monitoring station dried out during Site operations.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025

Remedial Action Schedule	
Activity	Date
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

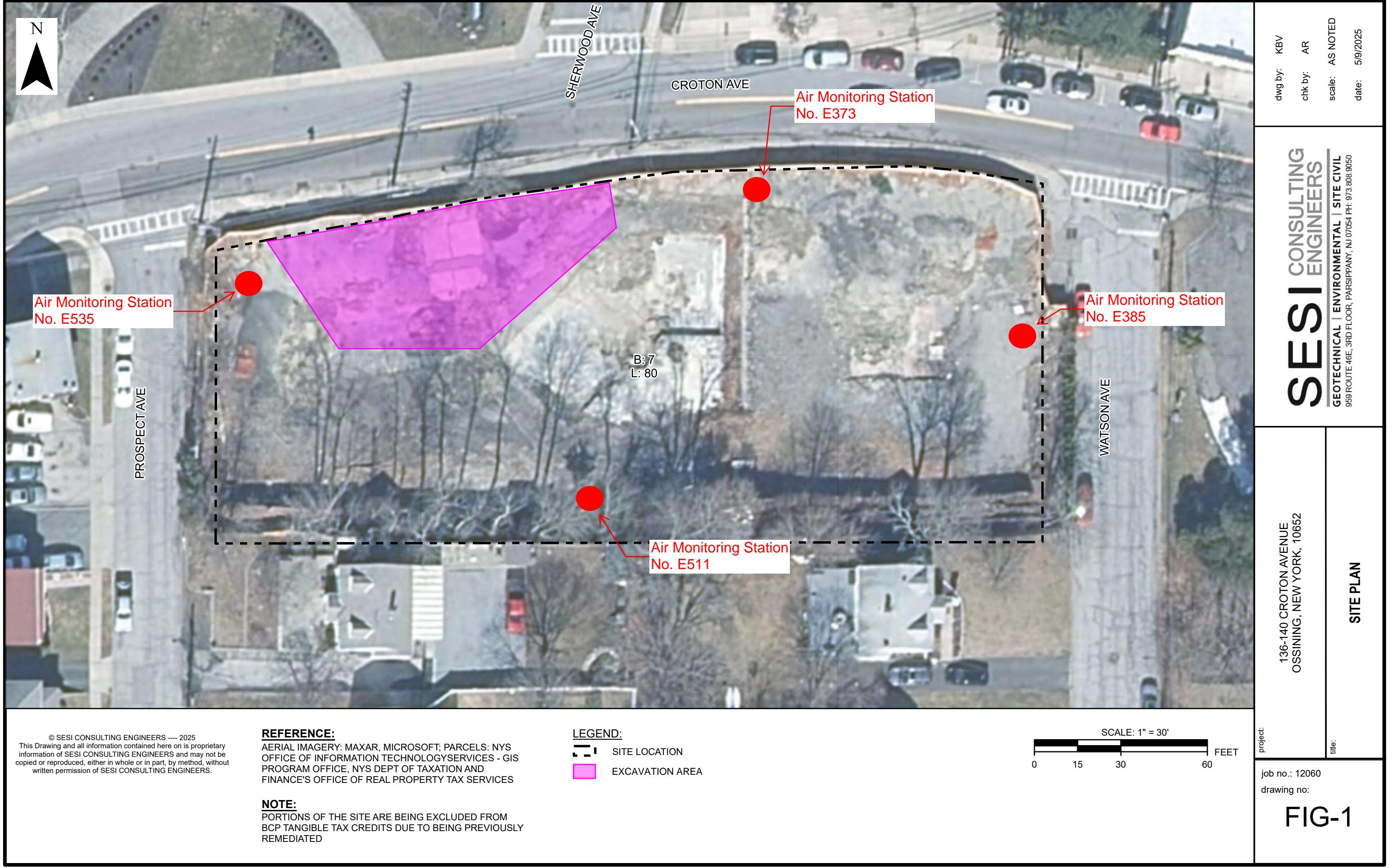
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil and captured groundwater for off-Site disposal.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC



Fuad Dahan, PE, LSRP
Project Engineer

Attachments:

Figure
Photolog

FIGURE

PHOTOLOG



Photo 1: Support of Excavation Installation.

Photo 2: Soil Export Operations.

Photo 3: Soil Excavation Operations.

Photo 4: Soil Excavation Operations.

Principals:

July 29, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #13 – July 21st to 26th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of July 21st to 26th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from July 21st to 26th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - SOE installation was performed from July 21st to 26th, 2025.
 - Excavation for SOE installation continued on the eastern portion of the Site from July 21st to 26th, 2025.
 - Captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25.
 - On July 24th, 2025, four (4) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA), and twenty (20) truckloads of soil were exported to HGQ. All

soil exported on this day was generated from the BCP remediation areas which will receive BCP tax credits.

- On July 25th, 2025, eleven (11) truckloads of soil were exported to MCUA, and nineteen (19) truckloads of soil were exported to HGQ. All soil exported on this day was generated from the BCP remediation areas which will receive BCP tax credits.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- On July 21, 2025, one of the air monitoring stations was operating correctly; however, the modem was having an issue transmitting the data to the online database. The air monitoring station with the issue was sidewind. SESI checked the data values manually every 15 minutes at this station. No particulate or VOC exceedances were recorded over a 15-minute average on these days.
- An exceedance over 5 parts per million (ppm) was observed for volatile organic compounds (VOCs) on July 23, 2025, from approximately 0840 to 0910 at the downwind CAMP location. The exceedance was due to a buildup of moisture in the photoionization detector (PID) at the beginning of the workday.
- Particulate exceedances were recorded on July 26, 2025, due to malfunctioning equipment. After the particulate meter was cleaned, the particulate levels returned to below the action level. The exceedances occurred when ground intrusive work was not being performed in the area surrounding the air monitoring station and no dust was being generated.
- No exceedances of CAMP action levels were noted on July 21, 22, 24, and 25, 2025.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025

Remedial Action Schedule	
Activity	Date
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

- A total of fifteen (15) post-excavation soil samples including EP-A2, EP-A3, EP-A6, EP-A7, EP-A8, EP-A9, EP-A10, EP-B2, EP-B3, EP-B7, EP-B8, EP-B9, EP-B10, EP-B11, EP-C2, and EP-C8 were collected from the base of the remedial excavation in Grids A2, A3, A6, A7, A8, A9, A10, B2, B3, B7, B8, B9, B10, B11, C2, and C8 on July 22nd, 23rd, and 24th, 2025.
 - All samples were analyzed for Target Compound List plus 30 / Target Analyte List (TCL+30/TAL), per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane. The analytical results are pending.

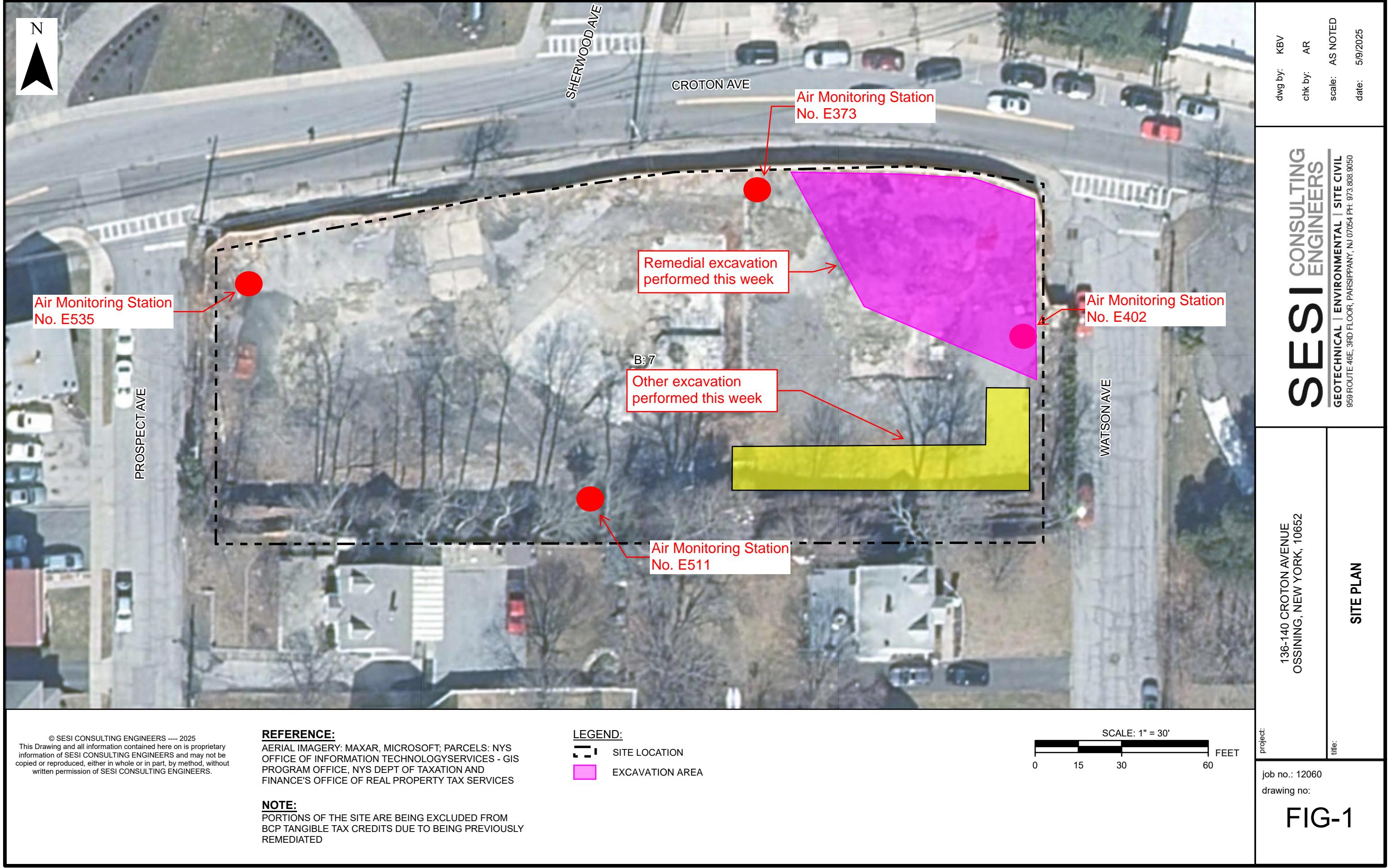
3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

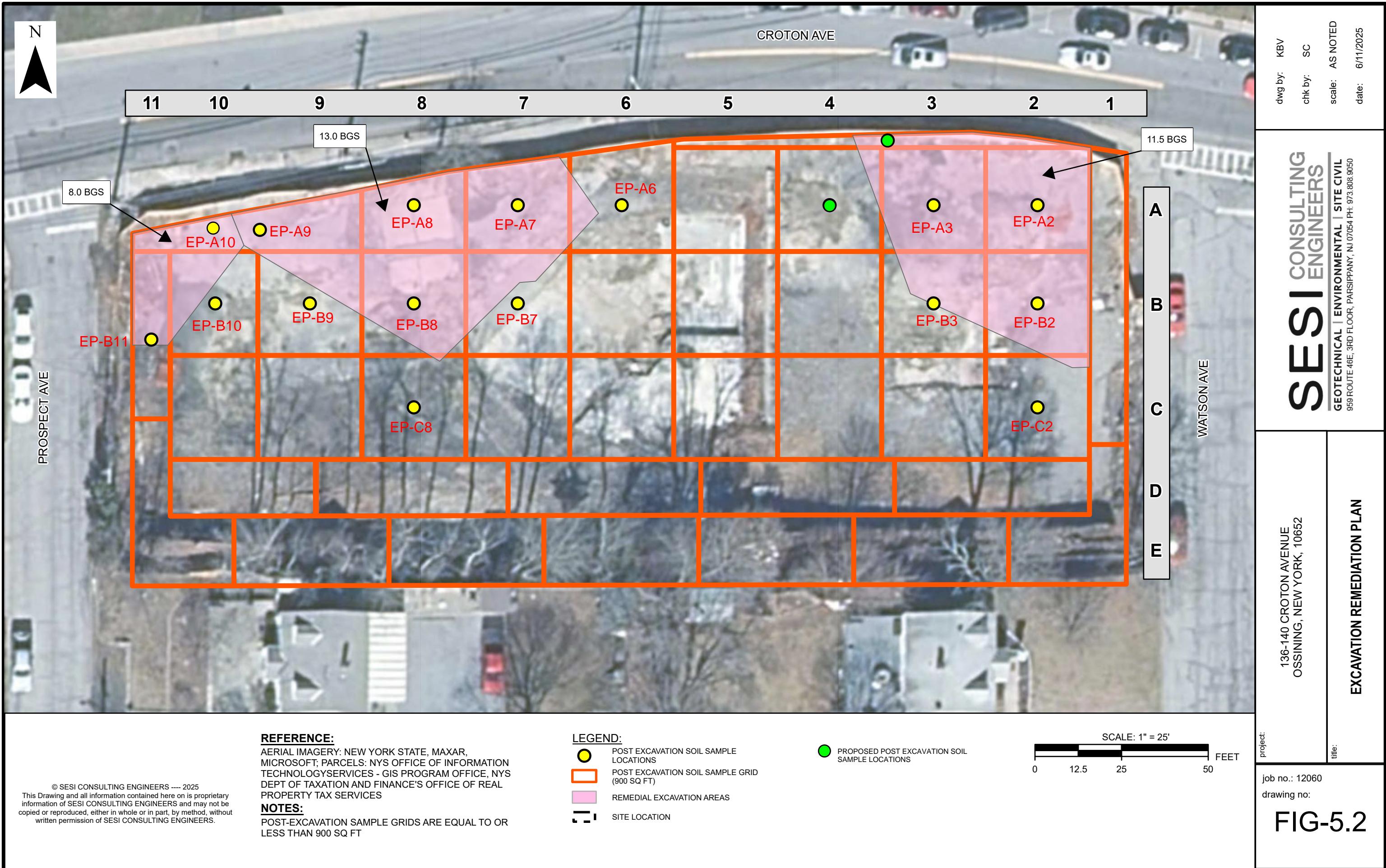
SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- SOE installation.
- Export of soil.
- Treating and discharging of stormwater.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,


SESI CONSULTING ENGINEERS, DPC



Anthony Raposo, PE, LSRP
Project Engineer

Attachments:
Figures
Photolog

FIGURES

PHOTOLOG

Photo 1: Remedial excavation in the northeastern portion of the Site.

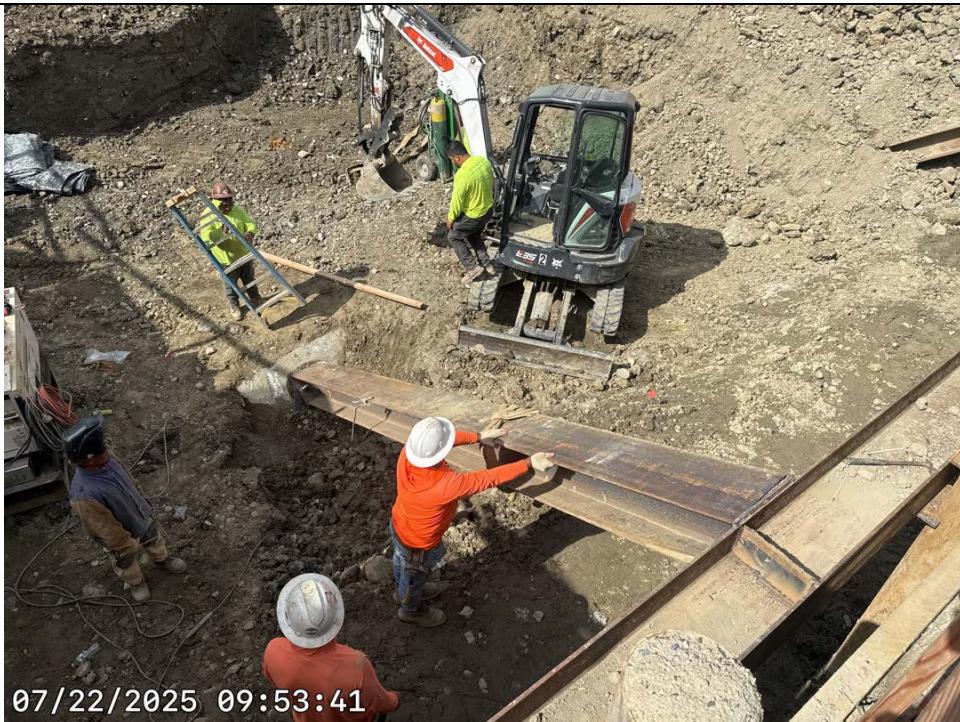


Photo 2: Waler installation for SOE.

Photo 3: Soil export operations.

Photo 4: Dewatering system totalizer.

Principals:

August 5, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #14 – July 28th to August 1st, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of July 28th to August 1st, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from July 28th to August 1st, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - Excavation for SOE installation continued on the south side of the Site on July 28th, 2025.
 - On July 28th, 2025, nine (9) truckloads of soil were exported to Middlesex County Utilities Authority Landfill (MCUA), and twenty eight (28) truckloads of soil were exported to HGQ. All truckloads of soil exported on this day were generated from the BCP remediation areas which will receive BCP tax credits.

- On July 29th, 2025, twenty (20) truckloads of soil were exported to HGQ. All truckloads of soil exported on this day were generated from the BCP remediation areas which will receive BCP tax credits.
- SOE installation was performed on July 30th, 2025.
- The post-excavation endpoint soil samples were surveyed on July 31st, 2025.
- Captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25.
- The draft Site Management Plan for the site was submitted to NYSDEC.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- On July 28th and July 29th, 2025, two (2) volatile organic compound (VOC) exceedances were recorded over a 15-minute average. These exceedances were due to moisture early in the morning. The NYSDEC representative has observed this in the past and is aware that this occurs. In all these cases the VOC levels drop to acceptable levels as the PID continues to operate.
- On July 29th and July 30th, 2025, two (2) particulate exceedances were recorded over a 15-minute average. Both exceedances were due to excavations/earthwork being performed nearby to the CAMP monitor recording the exceedance. Sprinklers and hoses were used to spray water for dust suppression until particulate concentrations returned to acceptable levels.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025

Remedial Action Schedule	
Activity	Date
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

- Two (2) post-excavation endpoint soil samples including EP-A3.5 and EP-A4 were collected from the base of the remedial excavation in the Grid above row A (designated A3.5) and Grid A4, respectively, on July 28th, 2025.
 - All samples were analyzed for Target Compound List plus 30 / Target Analyte List (TCL+30/TAL), per- and polyfluoroalkyl substances (PFAS), and 1,4-dioxane. The analytical results are pending.
- The results for the first fifteen (15) post-excavation soil samples including EP-A2, EP-A3, EP-A6, EP-A7, EP-A8, EP-A9, EP-A10, EP-B2, EP-B3, EP-B7, EP-B8, EP-B9, EP-B10, EP-B11, EP-C2, and EP-C8 collected from the base of the remedial excavation in Grids A2, A3, A6, A7, A8, A9, A10, B2, B3, B7, B8, B9, B10, B11, C2, and C8, respectively were received. The samples were analyzed for TCL+30/TAL, PFAS, and 1,4-dioxane.
 - Iron was detected at concentrations exceeding NYSDEC CP-51 Residential Supplemental Soil Cleanup Objectives in the soil samples. However, iron is not a site contaminant of concern and is not included in 6 NYCRR Table 375-6.8(a), therefore, further remediation of the iron concentrations is not required.
 - VOCs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), pesticides, metals, PFAS, and 1,4-dioxane were not detected at concentrations exceeding NYSDEC Part 375 Soil Cleanup Objectives (SCOs). Therefore, further remediation of soil in these grids is not required.

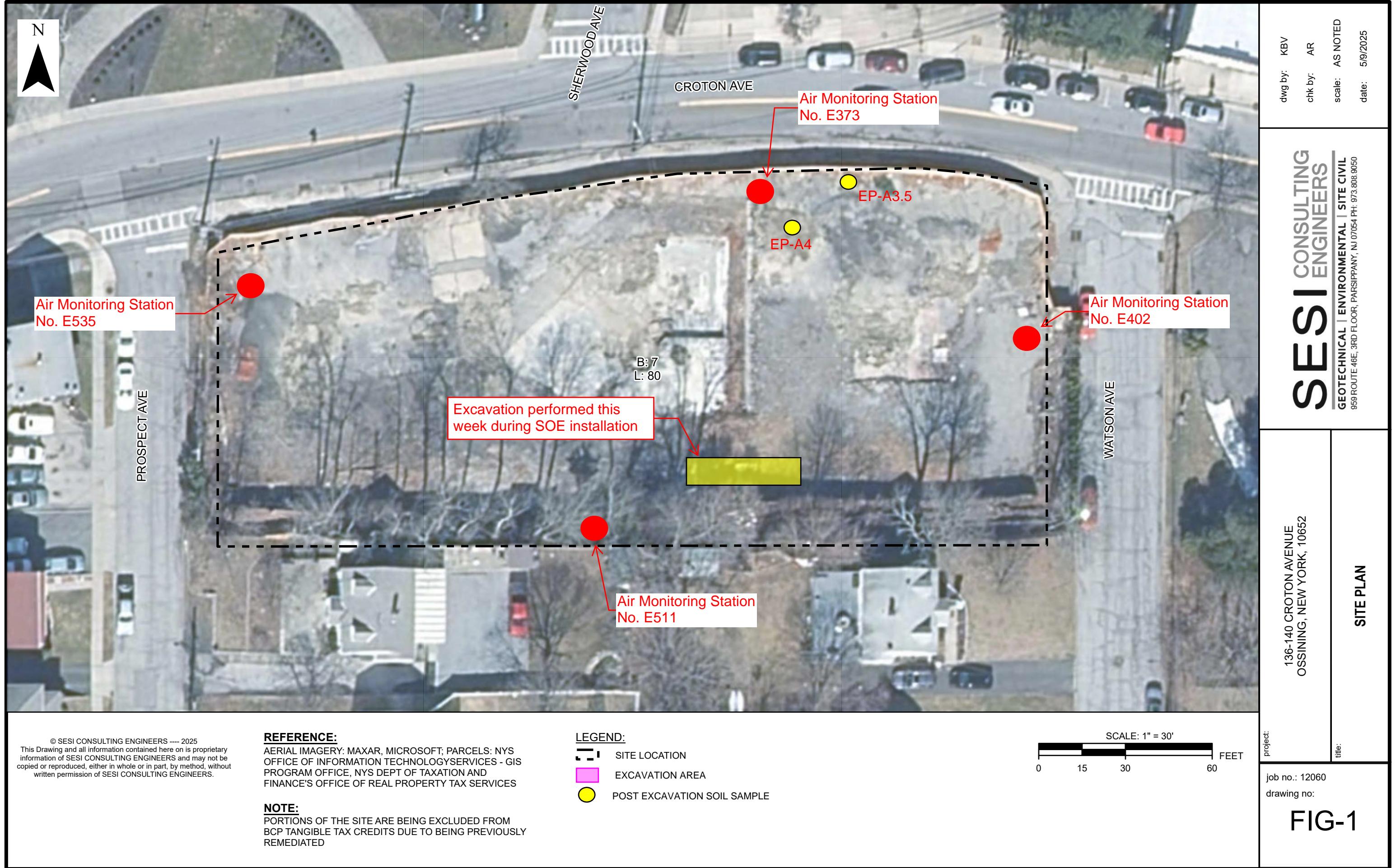
3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- Treating and discharging of stormwater.
- Soil Export.
- Structural Backfill.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,


SESI CONSULTING ENGINEERS, DPC

Anthony Raposo, PE
Project Manager

Attachments:
Figures
Photolog

FIGURES

PHOTOLOG

Photo 1: Soil export operations.

Photo 2: Soil export operations.

Photo 3: SOE lagging installation.

Photo 4: Soil Stockpiling

Principals:

August 14, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #15 – August 4th to August 8th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of August 4th to August 8th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from August 4th to August 8th, 2025, of this reporting week to conduct and implement the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as support of excavation (SOE) installation activities. During the reporting week, SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations
- Site activities during this reporting week include the following:
 - Excavation for footing installation and footing subgrade inspections performed from August 4th to 8th, 2025.
 - Captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25.
 - On August 5, 2025, 25 tons of #2 ¾" stone were imported for use as structural backfill for beneath the footings from Thalle Industries Inc. Fishkill Quarry. Approval for use of the 2"-

4" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on August 4, 2025, which was approved by NYSDEC.

- On August 6, 2025, 49 tons of #2 3/4" stone were imported for use as structural backfill for beneath the footings from Thalle Industries Inc. Fishkill Quarry. Approval for use of the 2"-4" clean stone was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on August 4, 2025, which was approved by NYSDEC.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- On August 4th and 5th, 2025, two volatile organic compound (VOC) exceedances were recorded over a 15-minute average. These exceedances were due to moisture early in the morning. The NYSDEC representative has observed this in the past and is aware that this occurs. In all these cases the VOC levels drop to acceptable levels as the PID continues to operate.
- On August 4th, 5th, and 6th, 2025, three (3) dust exceedances were recorded over a 15-minute average. The exceedances were due to excavation being performed nearby to the CAMP monitor recording the exceedance. Sprinklers and hoses were used to spray water for dust suppression until particulate concentrations returned to acceptable levels.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period other than that the Environmental Easement is outstanding. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025

Remedial Action Schedule	
Activity	Date
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Community air monitoring in accordance with the approved CAMP during soil movement.
- Treating and discharging of stormwater.
- Structural Backfill.
- Footing subgrades.
- Groundwater treatment.

If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC

Anthony Raposo, PE
Project Manager

Attachments:

Figures

Photolog

FIGURES

© SESI CONSULTING ENGINEERS --- 2025
This Drawing and all information contained here on is proprietary
information of SESI CONSULTING ENGINEERS and may not be
copied or reproduced, either in whole or in part, by method, without
written permission of SESI CONSULTING ENGINEERS.

REFERENCE:

AERIAL IMAGERY: MAXAR, MICROSOFT; PARCELS: NYS
OFFICE OF INFORMATION TECHNOLOGY SERVICES - GIS
PROGRAM OFFICE, NYS DEPT OF TAXATION AND
FINANCE'S OFFICE OF REAL PROPERTY TAX SERVICES

NOTE:

PORTIONS OF THE SITE ARE BEING EXCLUDED FROM
BCP TANGIBLE TAX CREDITS DUE TO BEING PREVIOUSLY
REMEDIATED

LEGEND:

- SITE LOCATION
- EXCAVATION AREA

project:
job no.: 12060
drawing no:

FIG-1

SESI CONSULTING
ENGINEERS
GEOTECHNICAL | ENVIRONMENTAL | SITE CIVIL
959 ROUTE 46E, 3RD FLOOR, PARSIPPANY, NJ 07054 PH: 973.808.9050

dwg by: KBV
chk by: AR
scale: AS NOTED
date: 5/9/2025

PHOTOLOG

Photo 1: Site conditions facing north.

Photo 2: Footing Excavation.

Photo 3: Stone placement for footings.

Photo 4: Flow totalizer

Principals:

August 19, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #16 – August 11th to 15th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of August 11th to 15th, 2025.

○ **SUMMARY OF PROJECT ACTIVITIES: Remedial Action**

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from August 11th to 15th, 2025, of this reporting week to perform construction observations.
- On August 11th and 12th, 2025, SESI implemented the Community Air Monitoring Plan (CAMP) during soil intrusive activities such as fill placements and excavations. SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations. Following the successful removal of all impacted soil from the site, the CAMP was discontinued on August 12, 2025.
- Site activities during this reporting week include the following:
 - Fill placement and compaction occurred from August 11th to 15th, 2025.
 - No captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25 this week.

- The following is a summary of all imported materials on-site this week. All material was imported from Thalle Industries Inc. Fishkill Quarry for use as structural backfill for the excavation in the northern portion of the Site. Approval for use of the New York State Department of Transportation (NYSDOT) Item 203.07 Granular Fill was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on August 4, 2025, which was approved by NYSDEC

Date	Quantity (tons)
August 11, 2025	76.17
August 12, 2025	247.24
August 13, 2025	171.42
August 14, 2025	433.61
August 15, 2025	639.79

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

- On August 11, 2025, one particulate exceedance over a 15-minute average was observed in the northern sidewind particulate monitor. Sprinklers and hoses were immediately deployed spraying water to suppress the dust until the concentrations were reduced below action limits. Additionally, the downwind particulate monitor would occasionally read a value of -99 ug/m³ due to issues with the external battery.
- On August 12, 2025, one particulate exceedance over a 15-minute average was observed in the northern sidewind particulate monitor. Sprinklers and hoses were immediately deployed spraying water to suppress the dust until the concentrations were reduced below action limits. There was also one volatile organic compound (VOC) exceedance recorded over a 15-minute average due to moisture early in the morning. The NYSDEC representative has observed this in the past and is aware that this occurs. Additionally, the upwind particulate monitor would occasionally read a value of -99 ug/m³ due to issues with the external battery.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period other than that the Environmental Easement is outstanding. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023

Remedial Action Schedule	
Activity	Date
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Treating and discharging of stormwater.
- Structural backfill.
- Footing subgrades.
- Groundwater treatment.

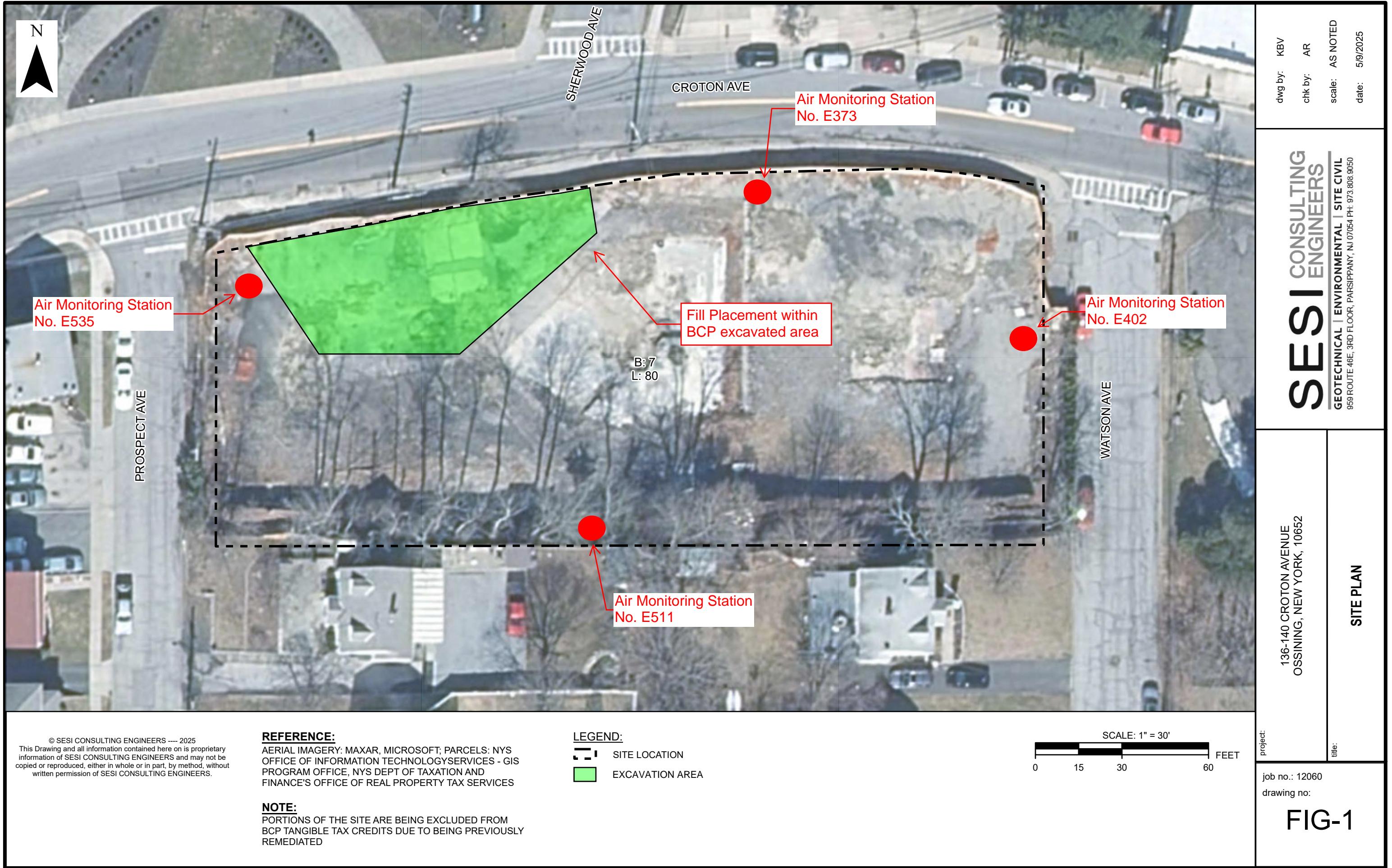
If you have any questions, please feel free to call me at (973) 808-9050.

Sincerely,

SESI CONSULTING ENGINEERS, DPC

Anthony Raposo, PE
Project Manager

Attachments:


Figures
Photolog

959 Route 46E Fl. 3 Ste.300
Parsippany, NJ 07054

info@sesi.org
www.sesi.org

phone 973.808.9050
fax 973.808.9099

FIGURES

PHOTOLOG

Photo 1: Backfill and compaction

Photo 2: Backfill and compaction

Photo 3: Backfill and compaction

Photo 4: Backfill and compaction

Principals:

August 29, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #17 – August 18th to August 23rd, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of August 18th to August 23rd, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-site from August 18th to 23rd, 2025, of this reporting week to perform construction observations.
- On August 22nd and 23rd, 2025, SESI implemented the Community Air Monitoring Plan (CAMP) during monitoring well installation activities. SESI deployed four (4) air monitoring stations generally at two (2) upwind and two (2) downwind locations.
- Site activities during this reporting week include the following:
 - Fill placement and compaction occurred from August 18th to 23rd, 2025.
 - On August 22nd and 23rd, 2025, damaged monitoring wells MW-RI-01, MW-RI-02, MW-RI-03, and MW-RI-06 were reinstalled in the same manner that they were initially constructed. Additionally, a vertical delineation monitoring well, MW-RI-01D, was installed to approximately 60 feet below ground surface adjacent to MW-RI-01.

- No captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25 this week.
- The following is a summary of all imported materials on-site this week. All material was imported from Thalle Industries Inc. Fishkill Quarry for use as structural backfill for the excavation in the northern portion of the Site. Approval of the use of the New York State Department of Transportation (NYSDOT) Item 203.07 Granular Fill was previously requested via the Request to Import/Reuse Fill or Soil form prepared by SESI on August 4, 2025, which was approved by NYSDEC

Date	Quantity
August 18 th 2025	394.91 tons
August 19 th 2025	282.62 tons
August 20 th 2025	446.17 tons
August 21 st 2025	352.55 tons

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

No exceedances of the volatile organic compound (VOC) or dust particulate action levels were observed during this reporting period.

Daily air monitoring data is provided in the following OneDrive folder link: [Daily Air Monitoring Reports](#)

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period other than that the Environmental Easement is outstanding. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025

Remedial Action Schedule	
Activity	Date
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

No endpoint soil samples were collected during this reporting period.

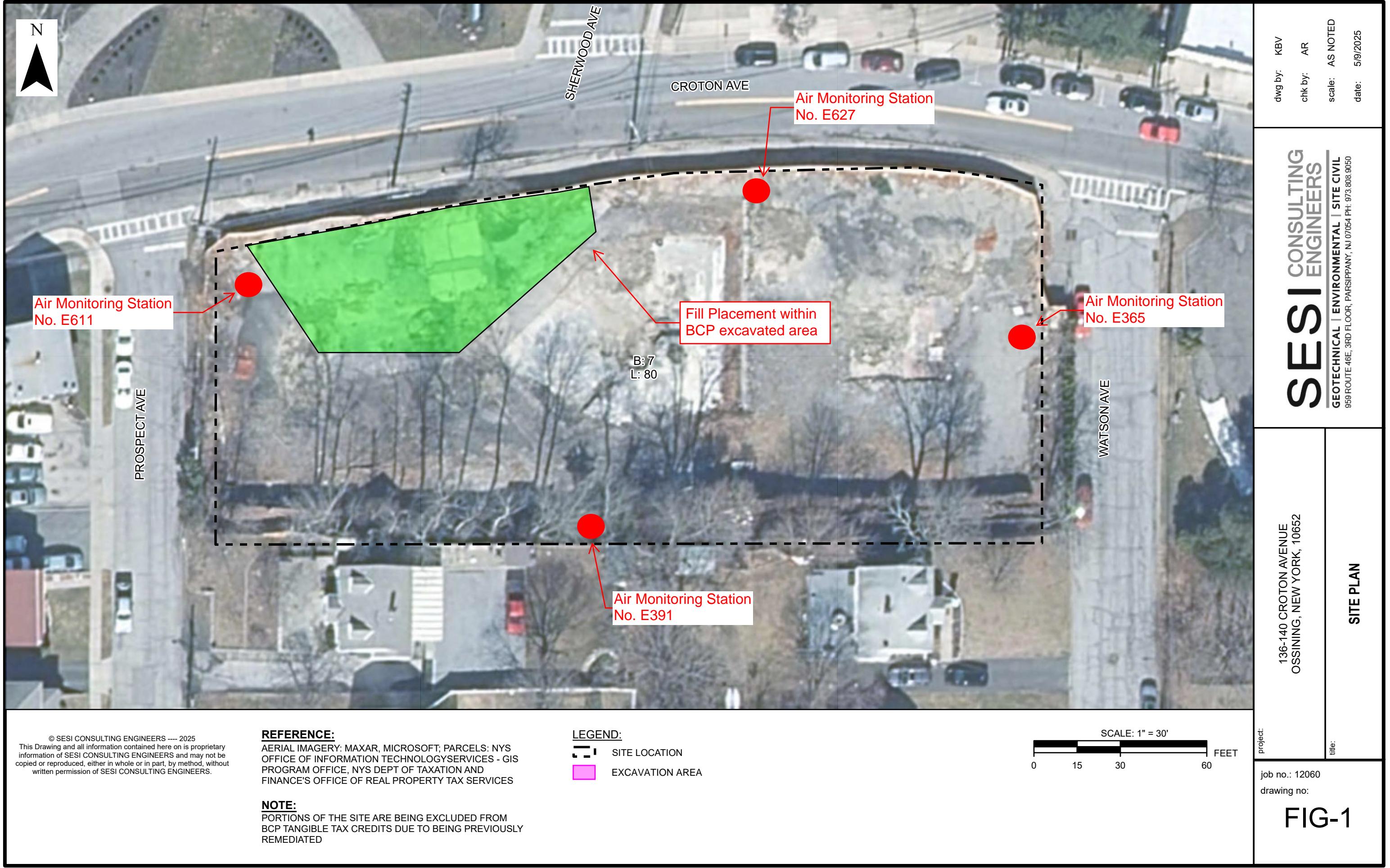
3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Treating and discharging of stormwater.
- Structural backfill.
- Footing subgrades.

Sincerely,

SESI CONSULTING ENGINEERS, DPC



Anthony Raposo, PE
Project Manager

Attachments:

Figures
Photolog

FIGURES

PHOTOLOG

Photo 1: Structural fill import

Photo 2: Structural fill import

Photo 3: Structural fill import

Photo 4: Monitoring Well Installation

Principals:

September 8, 2025

via email: michael.squire@dec.ny.gov

Mr. Michael Squire
Assistant Engineer
NYSDEC
625 Broadway
Albany, New York 12233

Anthony Castillo, PE
Franz W. Laki, PE
Fuad Dahan, PhD, PE, LSRP
John M. Nederfield, PE
Justin M. Protasiewicz, PE
Michael St. Pierre, PE

Re: Weekly Report #18 – August 25th to 29th, 2025
Sun Valley Nursery Filling Station
BCP Site # C360207
Ossining, New York

Dear Mr. Squire:

On behalf of our Client, 136-140 Croton Avenue LLC c/o MacQuesten Development LLC (the “Volunteer”), SESI Consulting Engineers (SESI) is pleased to submit a weekly progress report for the Sun Valley Nursery Filling Station Site (herein referred to as the “Site”). This progress report is for the week of August 25th to 29th, 2025.

1. SUMMARY OF PROJECT ACTIVITIES: Remedial Action

A. TASKS PERFORMED DURING CURRENT REPORTING PERIOD

SESI, as the Environmental Engineering Consultant for the project, performed or coordinated the performance of the following tasks:

- SESI was on-Site from August 25th to 29th, 2025, of this reporting week to perform construction observations. Site activities during this reporting week include the following:
 - Footing subgrade inspections occurred from August 25th to 29th, 2025.
 - On August 27, 2025, SESI collected baseline groundwater samples from five (5) monitoring wells (RI-MW-01, RI-MW-01D, RI-MW-02, RI-MW-03, and RI-MW-06).
 - Fill placement and compaction occurred on August 29th, 2025.
 - No captured stormwater was treated and discharged in accordance with Westchester County Department of Environmental Facilities Permit No. 520-25 this week. The treating and discharge of stormwater was terminated on August 28th, 2025.

The locations of the field activities are depicted in **Figure 1**.

B. EXCEEDANCES OF CAMP ACTION LEVELS

Implementation of the CAMP was not required or performed during this reporting period.

C. CHANGES OR DEVIATIONS FROM ORIGINAL PLANS

There were no changes or deviations from the approved Remedial Action Work Plan (December 2023 [Revised October 2024]) during this reporting period other than that the Environmental Easement is outstanding. Please find the Remedial Action Schedule below:

Remedial Action Schedule	
Activity	Date
RIR submission	November 2023
RAWP Submission	December 2023
Start of RAWP Public Comment period	July 2024
NYSDEC approves RAWP and issues decision document	October 2024
Start of remedial work (SOE, soil removal, etc.)	April 2025
Completion of Soil Excavation	August 2025
Submission of Environmental Easement	June 2025
Submission of SMP	August 2025
Draft FER, submit FER to NYSDEC	October 2025
Certificate of Completion	November 2025

2. SAMPLING ACTIVITIES AND ANALYTICAL RESULTS

- No endpoint soil samples were collected during this reporting period.
- On August 27, 2025, SESI collected baseline groundwater samples from five (5) monitoring wells (RI-MW-01, RI-MW-01D, RI-MW-02, RI-MW-03, and RI-MW-06) which were installed during the previous week. The groundwater samples collected from monitoring wells RI-MW-01, RI-MW-02, RI-MW-03, and RI-MW-06 were analyzed for volatile organic compounds (VOCs) by EPA Method 8260D and semi-volatile organic compounds (SVOCs) by EPA Method 8270E. The groundwater sample collected from RI-MW-01D was analyzed for petroleum hydrocarbon (PHC) VOCs by EPA Method 8260D. The results of the groundwater sampling event are summarized below:
 - The VOC chloroform was detected at concentrations exceeding its NYSDEC Technical and Operational Guidance Series (TOGS) Ambient Water Quality Standards

and Guidance Values (AWQS) in the groundwater samples collected from monitoring wells RI-MW-02, RI-MW-03, and RI-MW-06.

- The polycyclic aromatic hydrocarbons (PAHs) acenaphthene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, and indeno(1,2,3-cd)pyrene were detected at concentrations exceeding NYSDEC TOGS AWQS in the groundwater samples collected from monitoring wells RI-MW-01 and RI-MW-03.

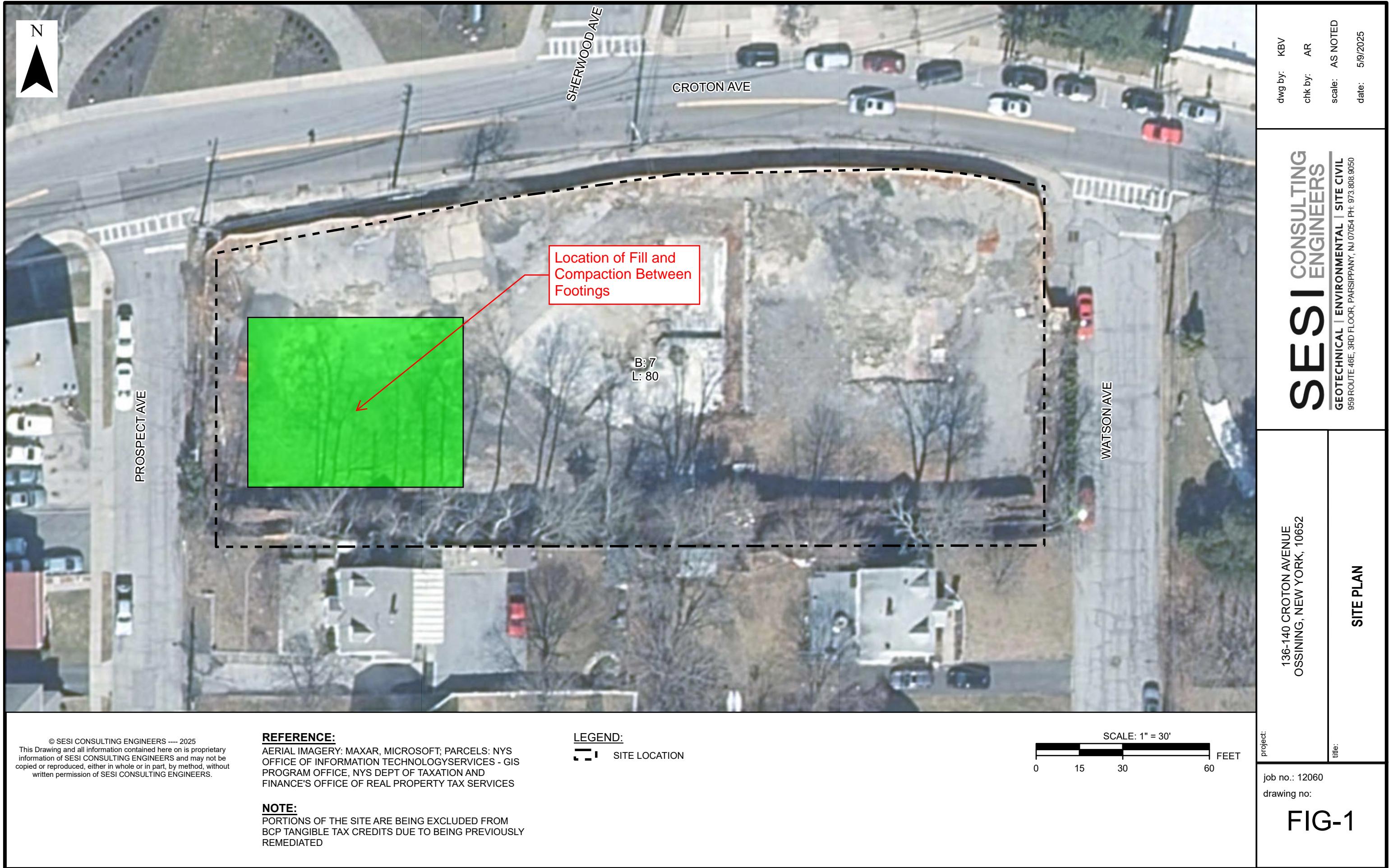
3. ANTICIPATED TASKS FOR NEXT REPORTING PERIOD

SESI anticipates performing the following tasks in the next daily reporting period:

- Structural backfill.
- Footing subgrades.
- Groundwater treatment.

Sincerely,

SESI CONSULTING ENGINEERS, DPC


Anthony Raposo, PE
Project Engineer

Attachments:

Figure

Photolog

FIGURE

PHOTOLOG

Photo 1: Footing Subgrade

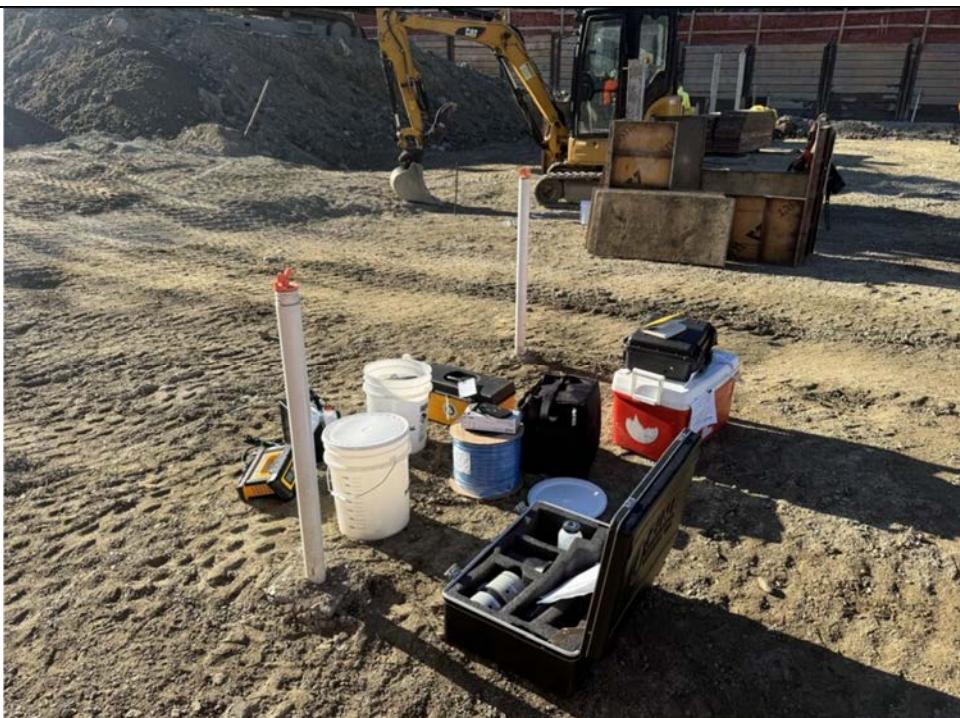


Photo 2: Groundwater Sampling

Photo 3: Footing Subgrade

Photo 4: Fill and Compaction

Appendix I:

Site Photo Log

Photo 1: View of Site Clearing

Photo 2: View of Retaining Wall on Southern Portion of Site

Photo 3: View of Soil Erosion and Sediment Controls – Installation of Storm Drain Inlet Protection

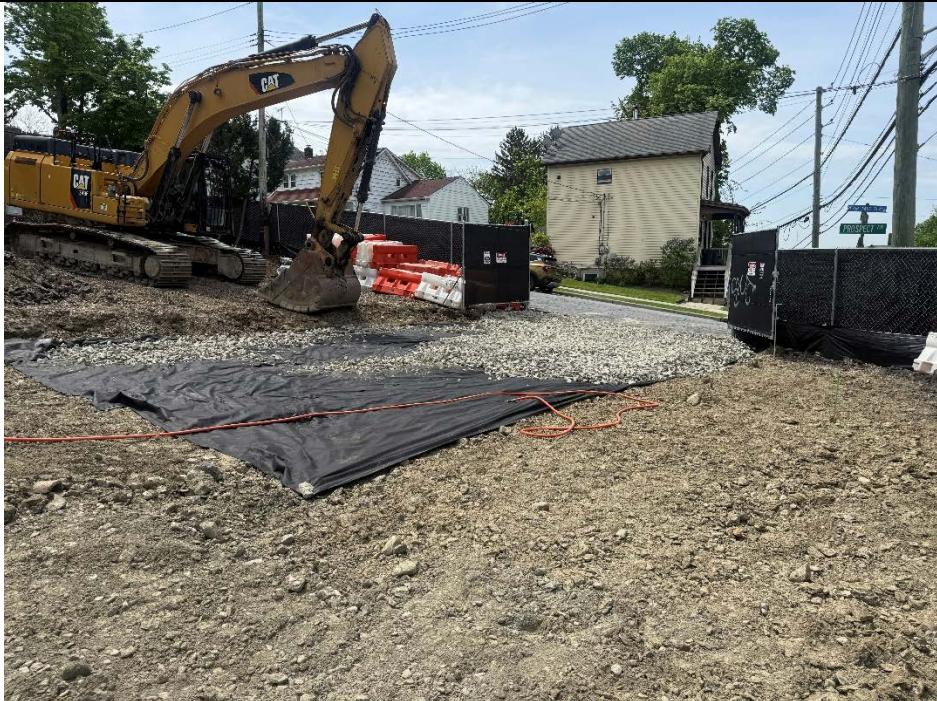


Photo 4: View of Soil Erosion and Sediment Controls – Installation of Construction Entrance

Photo 5: View of Soil Export

Photo 6: View of Soil Excavation

Photo 7: View of Support of Excavation Installation

Photo 8: View of Air Monitoring Station

Photo 9: View of UST-1 Encountered and Removed

Photo 10: View of UST-2 and UST-3 Encountered and Removed

Photo 11: View of Stormwater Management Frac Tanks in the Southwestern Corner of the Site.

Photo 12: View of Dewatering System Discharge Point to Sanitary Sewer on Croton Avenue.

Photo 13: View of Soil Excavation and Footing Excavation.

Photo 14: View of Backfill and Compaction.

Photo 15: View of Structural Fill Import.

Photo 16: View of Monitoring Well Installation and Groundwater Sampling.

Photo 17: View of Monitoring Well Installation and Groundwater Sampling.

Photo 18: Vapor Barrier Sealed with Tape at Penetrations and Seams.

Photo 19: 2" XPS (R-10) Slab on Grade Insulation.

Crescent Manor

136-140 Croton Ave, Ossining, NY 10562

BCP #C360207

Cell Approval Table – 4/30/2025

Facilities	NJ Res	Elevated	
Cells:	HGQ	MCUA	BSM
COMP_A1(0-7)	✓ *	✓	✓ *
COMP_A1(7-14)	✓ *	✓	✓
COMP_A1(14-20)	✓	✓	-
COMP_A2(0-7)	✓ *	✓	✓
COMP_A2(7-19)	✓	✓	-
COMP_A3(0-7)	✓	-	-
COMP_A3(7-14)	✓	-	-
COMP_A3(14-25)	✓	-	-
COMP_B2(0-7)	-	✓	✓ *
COMP_B2(7-14)	-	✓	✓
COMP_B2(14-21)	✓	✓	-
COMP_B3(0-7)	✓	-	-
COMP_B3(7-15)	✓	-	-
COMP_C2(0-7)	✓ *	✓	✓
COMP_C2(7-17)	✓	✓	-
COMP_C3(0-9)	✓	-	-
COMP_D1(0-7)	✓ *	✓	✓
COMP_D1(7-15)	✓ *	✓	✓
COMP_D2(0-7)	✓	-	-
COMP_D2(7-17)	✓	-	-
COMP_D3(0-7)	✓	-	-
COMP_E2(0-7)	✓	-	-
COMP_E2(7-14)	✓	-	-
COMP_E3(0-6)	✓	-	-
COMP_F2(0-7)	✓ *	✓	✓
COMP_F2(7-15)	✓ *	✓	✓
COMP_F3(0-10)	✓	-	-

✓ = Approved & Targeted

✓ = Approved for backup

The asterisk (*) denotes partial approval.

- Please refer to the MMP for further detail -

Crescent Manor

136-140 Croton Ave, Ossining, NY 10562

BCP #C360207

Cell Approval Table – 6/16/2025

Facilities	NJ Res	Elevated	
	HGQ	MCUA	BSM
Cells:			
COMP_A1(0-7)	✓ *	✓	✓ *
COMP_A1(7-14)	✓ *	✓	✓
COMP_A1(14-20)	✓	✓	-
COMP_A2(0-7)	✓ *	✓	✓
COMP_A2(7-19)	✓	✓	-
COMP_A3(0-7)	✓	✓	-
COMP_A3(7-14)	✓	-	-
COMP_A3(14-25)	✓	-	-
COMP_B2(0-7)	-	✓	✓ *
COMP_B2(7-14)	-	✓	✓
COMP_B2(14-21)	✓	✓	-
COMP_B3(0-7)	✓	✓	-
COMP_B3(7-15)	✓	-	-
COMP_C2(0-7)	✓ *	✓	✓
COMP_C2(7-17)	✓	✓	-
COMP_C3(0-9)	✓	✓	-
COMP_D1(0-7)	✓ *	✓	✓
COMP_D1(7-15)	✓ *	✓	✓
COMP_D2(0-7)	✓	✓	-
COMP_D2(7-17)	✓	-	-
COMP_D3(0-7)	✓	✓	-
COMP_E2(0-7)	✓	✓	-
COMP_E2(7-14)	✓	✓	-
COMP_E3(0-6)	✓	✓	-
COMP_F2(0-7)	✓ *	✓	✓
COMP_F2(7-15)	✓ *	✓	✓
COMP_F3(0-10)	✓	✓	-

✓ = Approved & Targeted

✓ = Approved for backup

The asterisk (*) denotes partial approval.

- Please refer to the MMP for further detail -

75 Crows Mill Road
Keasbey, New Jersey 08832
Phone: (732) 738-6000 • Fax: (732) 738-9150
www.bayshorerecycling.com

April 23, 2025

Chris Yeates
136-140 Croton Avenue LLC, c/o MacQuesten Development LLC
438 5th Ave, Ste 100
Pelham, NY 10803

**RE: Crescent Manor Project
136-140 Croton Avenue
Ossining, NY 10562**

Dear Mr. Yeates,

Bayshore Soil Management LLC (BSM) has reviewed the provided analytical results for soil being generated at the Crescent Manor Project located in Ossining, NY. Based on our review of the representative waste characterization data provided in Alpha Analytical reports: L2354250, L2354976, L2353853, L2353480, samples COMP_A1(0-7), COMP_A1(7-14), COMP_A2(0-7), COMP_B2(0-7), COMP_B2(7-14), COMP_C2(0-7), COMP_D1(0-7), COMP_D1(7-15), COMP_F2(0-7) and COMP_F2(7-15) and the associated sample for VOCs, BSM has identified that appear to meet our acceptance criteria for Petroleum Contaminated Soils. Materials represented by sample SB-22_2.0-2.5 are excluded from the approval due to the elevated Arsenic concentrations. The review was based on the submitted generator waste profile, project information, analytical testing results stemming from site remedial investigation work, and the following documents:

- Phase I Environmental Site Assessment (ESA), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
- Phase II Subsurface Investigation Report (SIR), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
- Phase II Environmental Site Assessment (ESA), dated November 19th, 2021 prepared by SESI Consulting Engineers
- Remedial Investigation Work Plan (RIWP), dated August 19th 2022 prepared by SESI Consulting Engineers
- Interim Remedial Measures Workplan (IRMWP), dated December 12th 2022, prepared by SESI Consulting Engineers
- Waste Class (WC) Analytical Reports #L2353060, #L2353480, #L2353853, #L2354250, #L2354976, dated September 19th, 20th, 21st, 22nd, 26th 2023 prepared by Alpha Analytical
- Remedial Action Workplan (RAWP), dated October 1st 2024, prepared by SESI Consulting Engineers
- Remedial Investigation Report (RIR), dated October 2nd 2024, prepared by SESI Consulting Engineers

Bayshore Soil Management, LLC can only accept non-hazardous soil. Based on the provided analytical data and site information, these non-regulated soils would be acceptable under the guidelines of our operating permits, with the above-noted exclusion.

The application has been approved under **BSM#2725-0338**. The provided dataset will support the estimated 12,000 tons, with BSM inbound collection of samples for GRO and EPH to satisfy the facility 1 per 600-ton requirement. Should you have any questions or require further information, please feel free to contact us at 732.738.6000.

Kind Regards,

Bryan Nesi
Senior Manager
Environmental Compliance & Systems

MIDDLESEX COUNTY UTILITIES AUTHORITY

MAIN OFFICES:

2571 MAIN STREET • P.O. BOX 159 • SAYREVILLE, NJ 08872-0159
(732) 721-3800 FAX: (732) 721-0206

MIDDLESEX COUNTY LANDFILL OFFICE:

53 EDGEBORO ROAD • EAST BRUNSWICK, NJ 08816-1636
(732) 246-4313 FAX: (732) 246-8846

June 11, 2025

REPLY TO:
 SAYREVILLE
 EAST BRUNSWICK

Chris Yeates
136-140 Croton Avenue LLC, c/o MacQuesten Development LLC
438 5th Ave, Ste 100
Pelham, NY 10803

Re: Soil Reuse Program
Crescent Manor
AKA Sun Valley Nursery Filling Station Site
136-140 Croton Avenue
Ossining, New York 10562
NYSDEC Site No. C360207

Approval #2 Volume: 7,000 Tons

Dear Ms. Koperczak:

After review of the analytical data submitted for the above referenced project, we find the samples listed in Table 1 suitable for use as cover material at the Middlesex County Landfill.

This material will be dry and free of debris and deposited in areas as directed by landfill personnel. Material will not be accepted when it is raining.

This material will be deposited in areas as directed by landfill personnel. Based upon the volume and the scheduling developed, this approval granted is non-transferable.

Failure to follow these instructions will result in the rejection of loads.

Please be advised that the MCUA reserves the right to terminate acceptance of this material.

Should you not concur with the terms set forth, please contact this office at the above number.

Sincerely,

Brian T. Murray
Brian T. Murray
General Superintendent
Middlesex County Landfill

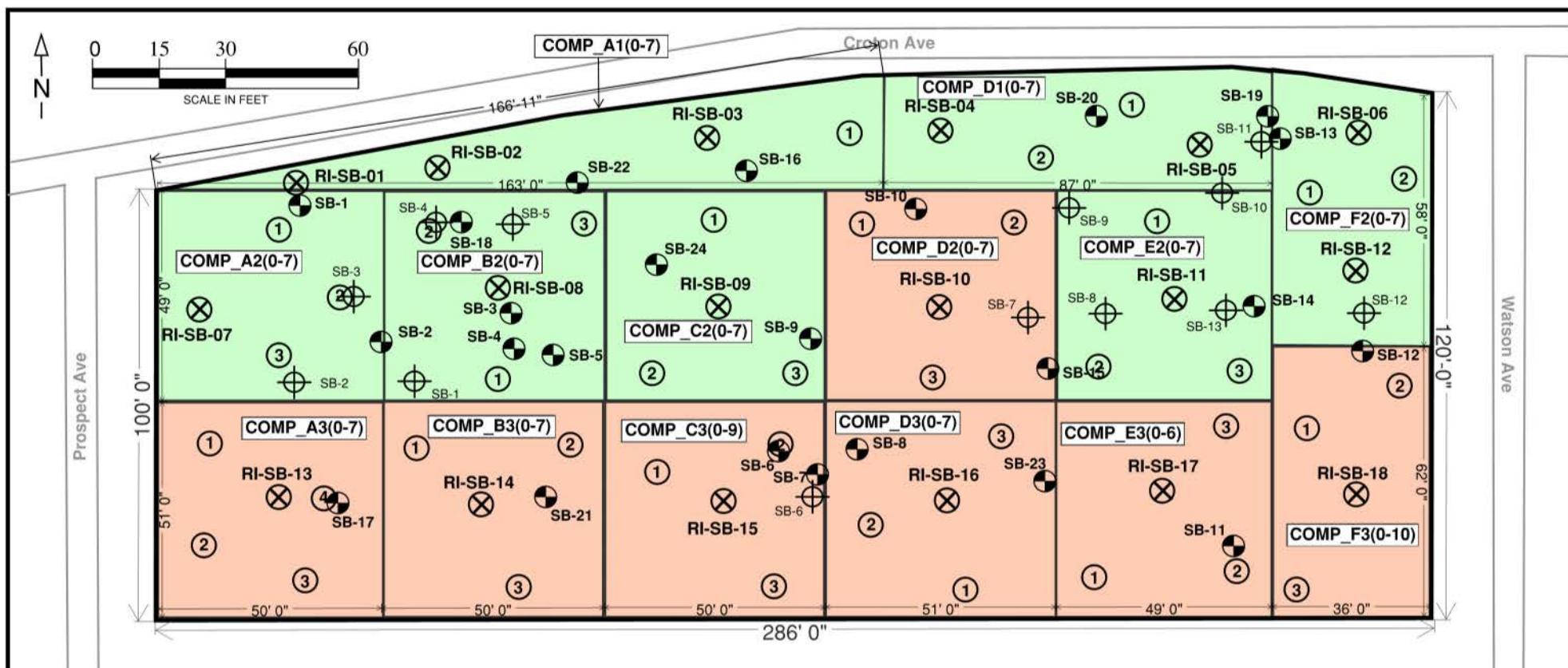

Attachments: 1. Table 1 – New Proposed Cells for Middlesex County Landfill Approval
2. New Proposed Material Maps – Tier 1 Shallow, Tier 2 Mid, Tier 3 Deep (Rev 05/14/2025)
3. New Waste Classification Summary Table - Alpha Laboratories Analytical Data Reports:
- L2353060
- L2353480
- L2353853
4. Environmental Documents List

TABLE 1

Project Name: Crescent Manor

Address: 136-140 Croton Ave, Ossining, NY 10562

#	Date	Lab ID	Composite Sample ID	Approval Status
1	9/15/2023	L2354250-01	COMP_A1(0-7)	Previously Approved
2	9/15/2023	L2354250-03	COMP_A1(7-14)	Previously Approved
3	9/15/2023	L2354250-05	COMP_A1(14-20)	Previously Approved
4	9/15/2023	L2354250-07	COMP_A2(0-7)	Previously Approved
5	9/15/2023	L2354250-09	COMP_A2(7-19)	Previously Approved
6	9/19/2023	L2354976-01	COMP_B2(0-7)	Previously Approved
7	9/19/2023	L2354976-03	COMP_B2(7-14)	Previously Approved
8	9/19/2023	L2354976-05	COMP_B2(14-21)	Previously Approved
9	9/14/2023	L2353853-03	COMP_C2(0-7)	Previously Approved
10	9/14/2023	L2353853-07	COMP_C2(7-17)	Previously Approved
11	9/14/2023	L2353853-01	COMP_D1(0-7)	Previously Approved
12	9/14/2023	L2353853-05	COMP_D1(7-15)	Previously Approved
13	9/19/2023	L2354976-07	COMP_E2(0-7)	Previously Approved
14	9/19/2023	L2354976-09	COMP_E2(7-14)	Previously Approved
15	9/13/2023	L2353480-07	COMP_F2(0-7)	Previously Approved
16	9/13/2023	L2353480-09	COMP_F2(7-15)	Previously Approved
17	9/14/2023	L2353853-09	COMP_D2(0-7)	Proposed
18	9/12/2023	L2353060-01	COMP_A3(0-7)	Proposed
19	9/12/2023	L2353060-07	COMP_B3(0-7)	Proposed
20	9/12/2023	L2353060-09	COMP_C3(0-9)	Proposed
21	9/13/2023	L2353480-01	COMP_D3(0-7)	Proposed
22	9/13/2023	L2353480-03	COMP_E3(0-6)	Proposed
23	9/13/2023	L2353480-05	COMP_F3(0-10)	Proposed

Proposed Material Map

5/14/2025

Crescent Manor
136-140 Croton Ave, Ossining NY, 10562

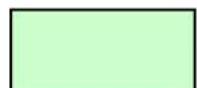
Tier 1 - Shallow

Legend:

- Site Boundary

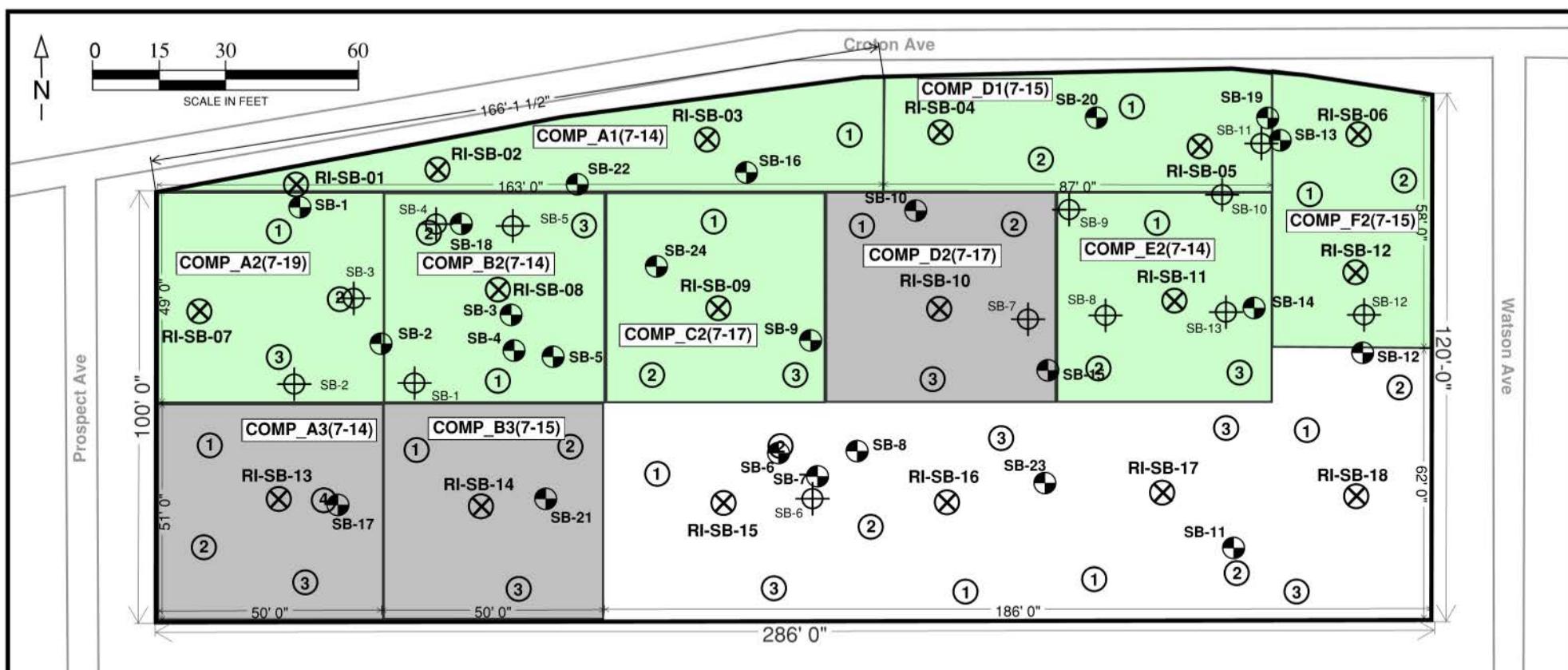
- WC Grid

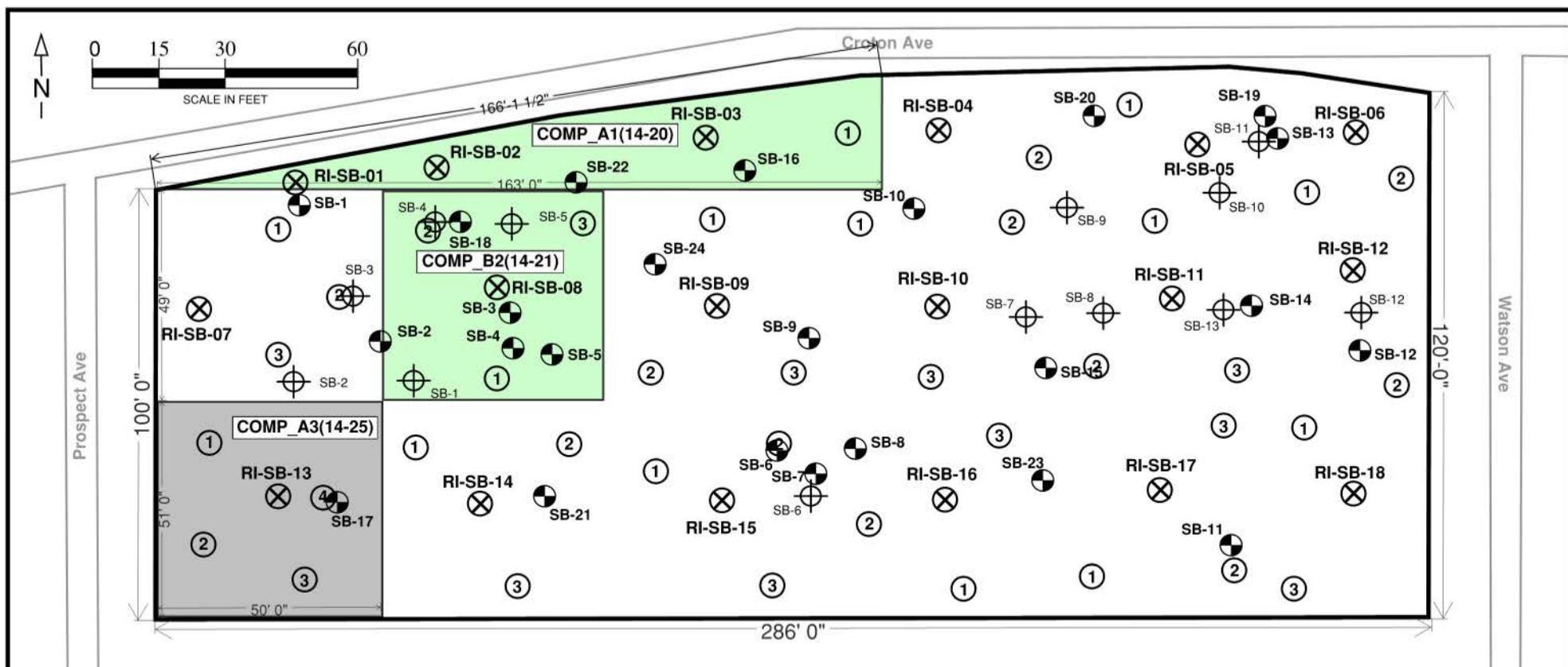
- 2017 BERKSHIRE INVESTIGATION


- 2021 SESI PHASE II ESA

- 2023 SESI RI Boring Location

- 2023 WC Composite Location


Previously Approved



Newly Proposed

Not Proposed

Proposed Material Map

5/14/2025

Crescent Manor
136-140 Croton Ave, Ossining NY, 10562

Tier 3 - Deep

Legend:

	Previously Approved
	Newly Proposed
	Not Proposed

- Site Boundary
- WC Grid
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- 2023 WC Composite Location

SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
LAB ID:	L2353853-09	L2353853-12	L2353060-01	L2353060-02	L2353060-07	L2353060-12	L2353060-09
COLLECTION DATE:	9/14/23	9/14/2023	9/12/23	9/12/2023	9/12/23	9/12/2023	9/12/23
SAMPLE DEPTH:							
SAMPLE MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
NJ-NRID-SR	NJ-RID-SRS						
ANALYTE	(mg/kg)	(mg/kg)	Conc	Conc	Conc	Conc	Conc
VOLATILE ORGANICS BY EPA 5035							
1,1,1,2-Tetrachloroethane			-	ND	-	ND	-
1,1,1-Trichloroethane		160000	-	ND	-	ND	-
1,1,2,2-Tetrachloroethane	18	3.5	-	ND	-	ND	-
1,1,2-Trichloroethane	64	12	-	ND	-	ND	-
1,1-Dichloroethane	640	120	-	ND	-	ND	-
1,1-Dichloroethene	180	11	-	ND	-	ND	-
1,1-Dichloropropene			-	ND	-	ND	-
1,2,3-Trichlorobenzene			-	ND	-	ND	-
1,2,3-Trichloropropane			-	ND	-	ND	-
1,2,4,5-Tetramethylbenzene			-	ND	-	ND	-
1,2,4-Trichlorobenzene	13000	780	-	ND	-	ND	-
1,2,4-Trimethylbenzene	13000	780	-	ND	-	ND	-
1,2-Dibromo-3-chloropropane	4.5	0.87	-	ND	-	ND	-
1,2-Dibromoethane	1.8	0.35	-	ND	-	ND	-
1,2-Dichlorobenzene	110000	6700	-	ND	-	ND	-
1,2-Dichloroethane	30	5.8	-	ND	-	ND	-
1,2-Dichloroethene, Total			-	ND	-	ND	-
1,2-Dichloropropene	98	19	-	ND	-	ND	-
1,3,5-Trimethylbenzene			-	ND	-	ND	-
1,3-Dichlorobenzene	110000	6700	-	ND	-	ND	-
1,3-Dichloropropane			-	ND	-	ND	-
1,3-Dichloropropene, Total			-	ND	-	ND	-
1,4-Dichlorobenzene	13000	780	-	ND	-	ND	-
1,4-Dioxane	36	7	-	ND	-	ND	-
2,2-Dichloropropane			-	ND	-	ND	-
2-Butanone	780000	47000	-	ND	-	ND	-
2-Hexanone	6500	390	-	ND	-	ND	-
4-Methyl-2-pentanone			-	ND	-	ND	-
Acetone		70000	-	0.0097	-	ND	-
Acrylonitrile			-	ND	-	ND	-
Benzene	16	3	-	ND	-	ND	-
Bromobenzene			-	ND	-	ND	-

		SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
Bromochloromethane			-	ND	-	ND	-	ND	-
Bromodichloromethane	59	11	-	ND	-	ND	-	ND	-
Bromoform	460	88	-	ND	-	ND	-	ND	-
Bromomethane	1800	110	-	ND	-	ND	-	ND	-
Carbon disulfide			-	ND	-	ND	-	ND	-
Carbon tetrachloride	40	7.6	-	ND	-	ND	-	ND	-
Chlorobenzene	8400	510	-	ND	-	ND	-	ND	-
Chloroethane			-	ND	-	ND	-	ND	-
Chloroform	13000	780	-	ND	-	ND	-	ND	-
Chloromethane			-	ND	-	ND	-	ND	-
cis-1,2-Dichloroethene	13000	780	-	ND	-	ND	-	ND	-
cis-1,3-Dichloropropene	36	7	-	ND	-	ND	-	ND	-
Dibromochloromethane	43	8.3	-	ND	-	ND	-	ND	-
Dibromomethane			-	ND	-	ND	-	ND	-
Dichlorodifluoromethane	260000	16000	-	ND	-	ND	-	ND	-
Ethyl ether			-	ND	-	ND	-	ND	-
Ethylbenzene	130000	7800	-	ND	-	ND	-	ND	-
Hexachlorobutadiene	47	8.9	-	ND	-	ND	-	ND	-
Isopropylbenzene	130000	7800	-	ND	-	ND	-	ND	-
Methyl tert butyl ether	13000	780	-	0.00046	-	ND	-	ND	-
Methylene chloride	260	50	-	ND	-	ND	-	ND	-
n-Butylbenzene			-	ND	-	ND	-	ND	-
n-Propylbenzene			-	ND	-	ND	-	ND	-
Naphthalene	34000	2500	-	ND	-	ND	-	ND	-
o-Chlorotoluene			-	ND	-	ND	-	ND	-
o-Xylene	190000	12000	-	ND	-	ND	-	ND	-
p-Chlorotoluene			-	ND	-	ND	-	ND	-
p-Diethylbenzene			-	ND	-	ND	-	ND	-
p-Ethyltoluene			-	ND	-	ND	-	ND	-
p-Isopropyltoluene			-	ND	-	ND	-	ND	-
p/m-Xylene	190000	12000	-	ND	-	ND	-	ND	-
sec-Butylbenzene			-	ND	-	ND	-	ND	-
Styrene	260000	16000	-	ND	-	ND	-	ND	-
tert-Butylbenzene			-	ND	-	ND	-	ND	-
Tetrachloroethene	1700	330	-	ND	-	ND	-	ND	-
Toluene	100000	6300	-	ND	-	ND	-	ND	-
trans-1,2-Dichloroethene	22000	1300	-	ND	-	ND	-	ND	-
trans-1,3-Dichloropropene	36	7	-	ND	-	ND	-	ND	-
trans-1,4-Dichloro-2-butene			-	ND	-	ND	-	ND	-
Trichloroethene	79	15	-	ND	-	ND	-	ND	-
Trichlorofluoromethane	390000	23000	-	ND	-	ND	-	ND	-

		SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
Vinyl acetate			-	ND	-	ND	-	ND	-
Vinyl chloride	5	0.97	-	ND	-	ND	-	ND	-
Xylenes, Total	190000	12000	-	ND	-	ND	-	ND	-
Total VOCs			-	0.01016	-	-	-	-	-
SEMOVOLATILE ORGANICS BY GC/MS									
1,2,4,5-Tetrachlorobenzene	390	23	ND	-	ND	-	ND	-	ND
1,2,4-Trichlorobenzene	13000	780	ND	-	ND	-	ND	-	ND
1,2-Dichlorobenzene	110000	6700	ND	-	ND	-	ND	-	ND
1,3-Dichlorobenzene	110000	6700	ND	-	ND	-	ND	-	ND
1,4-Dichlorobenzene	13000	780	ND	-	ND	-	ND	-	ND
1,4-Dioxane	36	7	ND	-	ND	-	ND	-	ND
2,4,5-Trichlorophenol	91000	6300	ND	-	ND	-	ND	-	ND
2,4,6-Trichlorophenol	230	49	ND	-	ND	-	ND	-	ND
2,4-Dichlorophenol	2700	190	ND	-	ND	-	ND	-	ND
2,4-Dimethylphenol	18000	1300	ND	-	ND	-	ND	-	ND
2,4-Dinitrophenol	1800	130	ND	-	ND	-	ND	-	ND
2,4-Dinitrotoluene	3.8	0.8	ND	-	ND	-	ND	-	ND
2,6-Dinitrotoluene	3.8	0.8	ND	-	ND	-	ND	-	ND
2-Chloronaphthalene	67000	4800	ND	-	ND	-	ND	-	ND
2-Chlorophenol	6500	390	ND	-	ND	-	ND	-	ND
2-Methylnaphthalene	3300	240	ND	-	ND	-	ND	-	ND
2-Methylphenol	4600	320	ND	-	ND	-	ND	-	ND
2-Nitroaniline			ND	-	ND	-	ND	-	ND
2-Nitrophenol			ND	-	ND	-	ND	-	ND
3,3'-Dichlorobenzidine	5.7	1.2	ND	-	ND	-	ND	-	ND
3-Methylphenol/4-Methylphenol	9100	630	ND	-	ND	-	ND	-	ND
3-Nitroaniline			ND	-	ND	-	ND	-	ND
4,6-Dinitro-o-cresol			ND	-	ND	-	ND	-	ND
4-Bromophenyl phenyl ether			ND	-	ND	-	ND	-	ND
4-Chloroaniline	13	2.7	ND	-	ND	-	ND	-	ND
4-Chlorophenyl phenyl ether			ND	-	ND	-	ND	-	ND
4-Nitroaniline	130	27	ND	-	ND	-	ND	-	ND
4-Nitrophenol			ND	-	ND	-	ND	-	ND
Acenaphthene	50000	3600	ND	-	ND	-	ND	-	ND
Acenaphthylene			ND	-	ND	-	ND	-	ND
Acetophenone	130000	7800	ND	-	ND	-	ND	-	ND
Anthracene	250000	18000	ND	-	ND	-	ND	-	ND
Benzo(a)anthracene	23	5.1	ND	-	ND	-	ND	-	0.078
Benzo(a)pyrene	2.3	0.51	ND	-	ND	-	ND	-	0.081
Benzo(b)fluoranthene	23	5.1	ND	-	ND	-	ND	-	0.097

		SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
Benzo(ghi)perylene			ND	-	ND	-	ND	-	0.042
Benzo(k)fluoranthene	230	51	ND	-	ND	-	ND	-	0.035
Benzoic Acid			ND	-	ND	-	ND	-	ND
Benzyl Alcohol			ND	-	ND	-	ND	-	ND
Biphenyl	450	87	ND	-	ND	-	ND	-	ND
Bis(2-chloroethoxy)methane	2700	190	ND	-	ND	-	ND	-	ND
Bis(2-chloroethyl)ether	3.3	0.63	ND	-	ND	-	ND	-	ND
Bis(2-chloroisopropyl)ether	52000	3100	ND	-	ND	-	ND	-	ND
Bis(2-ethylhexyl)phthalate	180	39	ND	-	ND	-	ND	-	ND
Butyl benzyl phthalate	1300	290	ND	-	ND	-	ND	-	ND
Carbazole			ND	-	ND	-	ND	-	ND
Chrysene	2300	510	ND	-	ND	-	ND	-	0.075
Di-n-butylphthalate	91000	6300	ND	-	ND	-	ND	-	ND
Di-n-octylphthalate	9100	630	ND	-	ND	-	ND	-	ND
Dibenzo(a,h)anthracene	2.3	0.51	ND	-	ND	-	ND	-	ND
Dibenzofuran			ND	-	ND	-	ND	-	ND
Diethyl phthalate	730000	51000	ND	-	ND	-	ND	-	ND
Dimethyl phthalate			ND	-	ND	-	ND	-	ND
Fluoranthene	33000	2400	ND	-	ND	-	ND	-	0.16
Fluorene	33000	2400	ND	-	ND	-	ND	-	ND
Hexachlorobenzene	2.3	0.43	ND	-	ND	-	ND	-	ND
Hexachlorobutadiene	47	8.9	ND	-	ND	-	ND	-	ND
Hexachlorocyclopentadiene	7800	470	ND	-	ND	-	ND	-	ND
Hexachloroethane	91	17	ND	-	ND	-	ND	-	ND
Indeno(1,2,3-cd)pyrene	23	5.1	ND	-	ND	-	ND	-	0.048
Isophorone	2700	570	ND	-	ND	-	ND	-	ND
n-Nitrosodi-n-propylamine	0.36	0.17	ND	-	ND	-	ND	-	ND
Naphthalene	34000	2500	ND	-	ND	-	ND	-	ND
NDPA/DPA	520	110	ND	-	ND	-	ND	-	ND
Nitrobenzene	2600	160	ND	-	ND	-	ND	-	ND
p-Chloro-m-cresol			ND	-	ND	-	ND	-	ND
Pentachlorophenol	4.4	1	ND	-	ND	-	ND	-	ND
Phenanthrene			ND	-	ND	-	ND	-	0.094
Phenol	270000	19000	ND	-	ND	-	ND	-	ND
Pyrene	25000	1800	ND	-	ND	-	ND	-	0.13
Total SVOCs			-	-	-	-	-	-	0.84
CHLORINATED HERBICIDES BY GC									
2,4,5-T			ND	-	ND	-	ND	-	ND
2,4,5-TP (Silvex)			ND	-	ND	-	ND	-	ND
2,4-D			ND	-	ND	-	ND	-	ND
ORGANOCHLORINE PESTICIDES BY GC									

	SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
4,4'-DDD	11	2.3	ND	-	ND	-	ND	-
4,4'-DDE	11	2	ND	-	ND	-	ND	0.000569
4,4'-DDT	9.5	1.9	ND	-	ND	-	ND	-
Aldrin	0.21	0.041	ND	-	ND	-	ND	-
Alpha-BHC	0.41	0.086	ND	-	ND	-	ND	-
Beta-BHC	1.4	0.3	ND	-	ND	-	ND	-
Chlordane	1.4	0.27	ND	-	ND	-	ND	-
cis-Chlordane	1.4	0.27	ND	-	ND	-	ND	-
Delta-BHC			ND	-	ND	-	ND	-
Dieldrin	0.16	0.034	ND	-	ND	-	ND	-
Endosulfan I	7800	470	ND	-	ND	-	ND	-
Endosulfan II	7800	470	ND	-	ND	-	ND	-
Endosulfan sulfate			ND	-	ND	-	ND	-
Endrin	270	19	ND	-	ND	-	ND	-
Endrin aldehyde			ND	-	ND	-	ND	-
Endrin ketone			ND	-	ND	-	ND	-
Heptachlor	0.81	0.15	ND	-	ND	-	ND	-
Heptachlor epoxide	0.4	0.076	ND	-	ND	-	ND	-
Lindane	2.8	0.57	ND	-	ND	-	ND	-
Methoxychlor	4600	320	ND	-	ND	-	ND	-
Toxaphene	2.3	0.49	ND	-	ND	-	ND	-
trans-Chlordane	1.4	0.27	ND	-	ND	-	ND	-
POLYCHLORINATED BIPHENYLS BY GC								
Aroclor 1016	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1221	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1232	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1242	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1248	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1254	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1260	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1262	1.1	0.25	ND	-	ND	-	ND	-
Aroclor 1268	1.1	0.25	ND	-	ND	-	ND	-
PCBs, Total	1.1	0.25	ND	-	ND	-	ND	-
NJ EXTRACTABLE PETROLEUM HYDROCARBONS (TOTAL)								
Total EPH	75000	5300	ND	-	ND	-	ND	-
TCLP METALS BY EPA 1311								
Arsenic, TCLP			0.0322	-	ND	-	ND	-
Barium, TCLP			0.755	-	0.593	-	0.779	-
Cadmium, TCLP			ND	-	ND	-	ND	-
Chromium, TCLP			ND	-	ND	-	ND	-
Lead, TCLP			ND	-	ND	-	ND	-

	SAMPLE ID:	COMP_D2(0-7)	GRAB_D2(2.5-3)	COMP_A3(0-7)	GRAB_A3(2-2.5)	COMP_B3(0-7)	GRAB_B3(4.5-5)	COMP_C3(0-9)
Mercury, TCLP		ND	-	ND	-	ND	-	ND
Selenium, TCLP		ND	-	ND	-	ND	-	ND
Silver, TCLP		ND	-	ND	-	ND	-	ND
TOTAL METALS								
Aluminum, Total	78000	10300	-	9690	-	9060	-	11600
Antimony, Total	520	31	ND	-	0.642	-	0.543	-
Arsenic, Total	19	19	1.11	-	1.92	-	1.5	-
Barium, Total	260000	16000	118	-	118	-	109	-
Beryllium, Total	2600	160	0.55	-	0.109	-	0.131	-
Cadmium, Total	1100	71	0.101	-	ND	-	ND	-
Calcium, Total			7900	-	5020	-	8040	-
Chromium, Total			18.6	-	19.1	-	17	-
Cobalt, Total	390	23	6.55	-	8.57	-	7.73	-
Copper, Total	52000	3100	14.4	-	14.9	-	14.4	-
Iron, Total			17400	-	18000	-	17000	-
Lead, Total	800	400	5.42	-	4.9	-	5.01	-
Magnesium, Total			6500	-	5720	-	6090	-
Manganese, Total	31000	1900	193	-	232	-	236	-
Mercury, Total	390	23	ND	-	ND	-	ND	-
Nickel, Total	26000	1600	14	-	15.6	-	14.9	-
Potassium, Total			5190	-	4680	-	4620	-
Selenium, Total	6500	390	ND	-	ND	-	ND	-
Silver, Total	6500	390	ND	-	ND	-	ND	-
Sodium, Total			94.8	-	111	-	96.4	-
Thallium, Total			1.46	-	1.16	-	1.1	-
Vanadium, Total	6500	390	25.9	-	24.7	-	22.6	-
Zinc, Total	390000	23000	40.8	-	46	-	42	-
GENERAL CHEMISTRY								
Chromium, Hexavalent			0.364	-	ND	-	ND	-
Cyanide, Reactive			ND	-	ND	-	ND	-
Cyanide, Total	780	47	ND	-	ND	-	ND	-
Paint Filter Liquid			Negative	-	Negative	-	Negative	-
pH (H)			8.97	-	8.67	-	8.42	-
Solids, Total			90.7	91	91.6	91.6	93.2	89.5
Sulfide, Reactive			ND	-	ND	-	ND	-
IGNITABILITY OF SOLIDS								
Ignitability			NI	-	NI	-	NI	-

GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
L2353060-10	L2353480-01	L2353480-02	L2353480-03	L2353480-04	L2353480-05	L2353480-06
9/12/2023	9/13/23	9/13/2023	9/13/23	9/13/2023	9/13/23	9/13/2023

	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
ANALYTE	Conc	Conc	Conc	Conc	Conc	Conc	Conc
VOLATILE ORGANICS BY EPA 5035							
1,1,1,2-Tetrachloroethane	ND	-	ND	-	ND	-	ND
1,1,1-Trichloroethane	ND	-	ND	-	ND	-	ND
1,1,2,2-Tetrachloroethane	ND	-	ND	-	ND	-	ND
1,1,2-Trichloroethane	ND	-	ND	-	ND	-	ND
1,1-Dichloroethane	ND	-	ND	-	ND	-	ND
1,1-Dichloroethene	ND	-	ND	-	ND	-	ND
1,1-Dichloropropene	ND	-	ND	-	ND	-	ND
1,2,3-Trichlorobenzene	ND	-	ND	-	ND	-	ND
1,2,3-Trichloropropane	ND	-	ND	-	ND	-	ND
1,2,4,5-Tetramethylbenzene	ND	-	ND	-	ND	-	ND
1,2,4-Trichlorobenzene	ND	-	ND	-	ND	-	ND
1,2,4-Trimethylbenzene	ND	-	ND	-	ND	-	ND
1,2-Dibromo-3-chloropropane	ND	-	ND	-	ND	-	ND
1,2-Dibromoethane	ND	-	ND	-	ND	-	ND
1,2-Dichlorobenzene	ND	-	ND	-	ND	-	ND
1,2-Dichloroethane	ND	-	ND	-	ND	-	ND
1,2-Dichloroethene, Total	ND	-	ND	-	ND	-	ND
1,2-Dichloropropene	ND	-	ND	-	ND	-	ND
1,3,5-Trimethylbenzene	ND	-	ND	-	ND	-	ND
1,3-Dichlorobenzene	ND	-	ND	-	ND	-	ND
1,3-Dichloropropane	ND	-	ND	-	ND	-	ND
1,3-Dichloropropene, Total	ND	-	ND	-	ND	-	ND
1,4-Dichlorobenzene	ND	-	ND	-	ND	-	ND
1,4-Dioxane	ND	-	ND	-	ND	-	ND
2,2-Dichloropropane	ND	-	ND	-	ND	-	ND
2-Butanone	ND	-	ND	-	0.0027	-	ND
2-Hexanone	ND	-	ND	-	ND	-	ND
4-Methyl-2-pentanone	ND	-	ND	-	ND	-	ND
Acetone	0.0081	-	0.0062	-	0.0058	-	ND
Acrylonitrile	ND	-	ND	-	ND	-	ND
Benzene	ND	-	ND	-	ND	-	ND
Bromobenzene	ND	-	ND	-	ND	-	ND

	GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
Bromochloromethane	ND	-	ND	-	ND	-	ND
Bromodichloromethane	ND	-	ND	-	ND	-	ND
Bromoform	ND	-	ND	-	ND	-	ND
Bromomethane	ND	-	ND	-	ND	-	ND
Carbon disulfide	ND	-	ND	-	ND	-	ND
Carbon tetrachloride	ND	-	ND	-	ND	-	ND
Chlorobenzene	ND	-	ND	-	ND	-	ND
Chloroethane	ND	-	ND	-	ND	-	ND
Chloroform	ND	-	ND	-	ND	-	ND
Chloromethane	ND	-	ND	-	ND	-	ND
cis-1,2-Dichloroethene	ND	-	ND	-	ND	-	ND
cis-1,3-Dichloropropene	ND	-	ND	-	ND	-	ND
Dibromochloromethane	ND	-	ND	-	ND	-	ND
Dibromomethane	ND	-	ND	-	ND	-	ND
Dichlorodifluoromethane	ND	-	ND	-	ND	-	ND
Ethyl ether	ND	-	ND	-	ND	-	ND
Ethylbenzene	ND	-	ND	-	ND	-	ND
Hexachlorobutadiene	ND	-	ND	-	ND	-	ND
Isopropylbenzene	ND	-	ND	-	ND	-	ND
Methyl tert butyl ether	ND	-	ND	-	ND	-	ND
Methylene chloride	ND	-	ND	-	ND	-	ND
n-Butylbenzene	ND	-	ND	-	ND	-	ND
n-Propylbenzene	ND	-	ND	-	ND	-	ND
Naphthalene	ND	-	ND	-	ND	-	ND
o-Chlorotoluene	ND	-	ND	-	ND	-	ND
o-Xylene	ND	-	ND	-	ND	-	ND
p-Chlorotoluene	ND	-	ND	-	ND	-	ND
p-Diethylbenzene	ND	-	ND	-	ND	-	ND
p-Ethyltoluene	ND	-	ND	-	ND	-	ND
p-Isopropyltoluene	ND	-	ND	-	ND	-	ND
p/m-Xylene	ND	-	ND	-	ND	-	ND
sec-Butylbenzene	ND	-	ND	-	ND	-	ND
Styrene	ND	-	ND	-	ND	-	ND
tert-Butylbenzene	ND	-	ND	-	ND	-	ND
Tetrachloroethene	ND	-	ND	-	ND	-	ND
Toluene	ND	-	ND	-	ND	-	ND
trans-1,2-Dichloroethene	ND	-	ND	-	ND	-	ND
trans-1,3-Dichloropropene	ND	-	ND	-	ND	-	ND
trans-1,4-Dichloro-2-butene	ND	-	ND	-	ND	-	ND
Trichloroethene	ND	-	ND	-	ND	-	ND
Trichlorofluoromethane	ND	-	ND	-	ND	-	ND

	GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
Vinyl acetate	ND	-	ND	-	ND	-	ND
Vinyl chloride	ND	-	ND	-	ND	-	ND
Xylenes, Total	ND	-	ND	-	ND	-	ND
Total VOCs	0.0081	-	0.0062	-	0.0085	-	-
SEMIVOLATILE ORGANICS BY GC/MS							
1,2,4,5-Tetrachlorobenzene	-	ND	-	ND	-	ND	-
1,2,4-Trichlorobenzene	-	ND	-	ND	-	ND	-
1,2-Dichlorobenzene	-	ND	-	ND	-	ND	-
1,3-Dichlorobenzene	-	ND	-	ND	-	ND	-
1,4-Dichlorobenzene	-	ND	-	ND	-	ND	-
1,4-Dioxane	-	ND	-	ND	-	ND	-
2,4,5-Trichlorophenol	-	ND	-	ND	-	ND	-
2,4,6-Trichlorophenol	-	ND	-	ND	-	ND	-
2,4-Dichlorophenol	-	ND	-	ND	-	ND	-
2,4-Dimethylphenol	-	ND	-	ND	-	ND	-
2,4-Dinitrophenol	-	ND	-	ND	-	ND	-
2,4-Dinitrotoluene	-	ND	-	ND	-	ND	-
2,6-Dinitrotoluene	-	ND	-	ND	-	ND	-
2-Chloronaphthalene	-	ND	-	ND	-	ND	-
2-Chlorophenol	-	ND	-	ND	-	ND	-
2-Methylnaphthalene	-	ND	-	ND	-	ND	-
2-Methylphenol	-	ND	-	ND	-	ND	-
2-Nitroaniline	-	ND	-	ND	-	ND	-
2-Nitrophenol	-	ND	-	ND	-	ND	-
3,3'-Dichlorobenzidine	-	ND	-	ND	-	ND	-
3-Methylphenol/4-Methylphenol	-	ND	-	ND	-	ND	-
3-Nitroaniline	-	ND	-	ND	-	ND	-
4,6-Dinitro-o-cresol	-	ND	-	ND	-	ND	-
4-Bromophenyl phenyl ether	-	ND	-	ND	-	ND	-
4-Chloroaniline	-	ND	-	ND	-	ND	-
4-Chlorophenyl phenyl ether	-	ND	-	ND	-	ND	-
4-Nitroaniline	-	ND	-	ND	-	ND	-
4-Nitrophenol	-	ND	-	ND	-	ND	-
Acenaphthene	-	ND	-	ND	-	ND	-
Acenaphthylene	-	ND	-	ND	-	ND	-
Acetophenone	-	ND	-	ND	-	ND	-
Anthracene	-	ND	-	ND	-	ND	-
Benzo(a)anthracene	-	ND	-	ND	-	ND	-
Benzo(a)pyrene	-	ND	-	ND	-	ND	-
Benzo(b)fluoranthene	-	ND	-	ND	-	ND	-

	GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
Benzo(ghi)perylene	-	ND	-	ND	-	ND	-
Benzo(k)fluoranthene	-	ND	-	ND	-	ND	-
Benzoic Acid	-	ND	-	ND	-	ND	-
Benzyl Alcohol	-	ND	-	ND	-	ND	-
Biphenyl	-	ND	-	ND	-	ND	-
Bis(2-chloroethoxy)methane	-	ND	-	ND	-	ND	-
Bis(2-chloroethyl)ether	-	ND	-	ND	-	ND	-
Bis(2-chloroisopropyl)ether	-	ND	-	ND	-	ND	-
Bis(2-ethylhexyl)phthalate	-	ND	-	ND	-	ND	-
Butyl benzyl phthalate	-	ND	-	ND	-	ND	-
Carbazole	-	ND	-	ND	-	ND	-
Chrysene	-	ND	-	ND	-	ND	-
Di-n-butylphthalate	-	ND	-	ND	-	ND	-
Di-n-octylphthalate	-	ND	-	ND	-	ND	-
Dibenzo(a,h)anthracene	-	ND	-	ND	-	ND	-
Dibenzofuran	-	ND	-	ND	-	ND	-
Diethyl phthalate	-	ND	-	ND	-	ND	-
Dimethyl phthalate	-	ND	-	ND	-	ND	-
Fluoranthene	-	ND	-	ND	-	ND	-
Fluorene	-	ND	-	ND	-	ND	-
Hexachlorobenzene	-	ND	-	ND	-	ND	-
Hexachlorobutadiene	-	ND	-	ND	-	ND	-
Hexachlorocyclopentadiene	-	ND	-	ND	-	ND	-
Hexachloroethane	-	ND	-	ND	-	ND	-
Indeno(1,2,3-cd)pyrene	-	ND	-	ND	-	ND	-
Isophorone	-	ND	-	ND	-	ND	-
n-Nitrosodi-n-propylamine	-	ND	-	ND	-	ND	-
Naphthalene	-	ND	-	ND	-	ND	-
NDPA/DPA	-	ND	-	ND	-	ND	-
Nitrobenzene	-	ND	-	ND	-	ND	-
p-Chloro-m-cresol	-	ND	-	ND	-	ND	-
Pentachlorophenol	-	ND	-	ND	-	ND	-
Phenanthrene	-	ND	-	ND	-	ND	-
Phenol	-	ND	-	ND	-	ND	-
Pyrene	-	ND	-	ND	-	ND	-
Total SVOCs	-	-	-	-	-	-	-
CHLORINATED HERBICIDES BY GC							
2,4,5-T	-	ND	-	ND	-	ND	-
2,4,5-TP (Silvex)	-	ND	-	ND	-	ND	-
2,4-D	-	ND	-	ND	-	ND	-
ORGANOCHLORINE PESTICIDES BY GC							

	GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
4,4'-DDD	-	ND	-	ND	-	ND	-
4,4'-DDE	-	ND	-	ND	-	ND	-
4,4'-DDT	-	ND	-	ND	-	ND	-
Aldrin	-	ND	-	ND	-	ND	-
Alpha-BHC	-	ND	-	ND	-	ND	-
Beta-BHC	-	ND	-	ND	-	ND	-
Chlordane	-	ND	-	ND	-	ND	-
cis-Chlordane	-	ND	-	ND	-	ND	-
Delta-BHC	-	ND	-	ND	-	ND	-
Dieldrin	-	ND	-	ND	-	ND	-
Endosulfan I	-	ND	-	ND	-	ND	-
Endosulfan II	-	ND	-	ND	-	ND	-
Endosulfan sulfate	-	ND	-	ND	-	ND	-
Endrin	-	ND	-	ND	-	ND	-
Endrin aldehyde	-	ND	-	ND	-	ND	-
Endrin ketone	-	ND	-	ND	-	ND	-
Heptachlor	-	ND	-	ND	-	ND	-
Heptachlor epoxide	-	ND	-	ND	-	ND	-
Lindane	-	ND	-	ND	-	ND	-
Methoxychlor	-	ND	-	ND	-	ND	-
Toxaphene	-	ND	-	ND	-	ND	-
trans-Chlordane	-	ND	-	ND	-	ND	-
POLYCHLORINATED BIPHENYLS BY GC							
Aroclor 1016	-	ND	-	ND	-	ND	-
Aroclor 1221	-	ND	-	ND	-	ND	-
Aroclor 1232	-	ND	-	ND	-	ND	-
Aroclor 1242	-	ND	-	ND	-	ND	-
Aroclor 1248	-	ND	-	ND	-	ND	-
Aroclor 1254	-	ND	-	ND	-	ND	-
Aroclor 1260	-	ND	-	ND	-	ND	-
Aroclor 1262	-	ND	-	ND	-	ND	-
Aroclor 1268	-	ND	-	ND	-	ND	-
PCBs, Total	-	ND	-	ND	-	ND	-
NJ EXTRACTABLE PETROLEUM HYDROCARBONS (TOTAL)							
Total EPH	-	ND	-	ND	-	ND	-
TCLP METALS BY EPA 1311							
Arsenic, TCLP	-	0.0222	-	ND	-	ND	-
Barium, TCLP	-	1	-	0.673	-	0.588	-
Cadmium, TCLP	-	ND	-	ND	-	ND	-
Chromium, TCLP	-	ND	-	ND	-	ND	-
Lead, TCLP	-	ND	-	ND	-	ND	-

	GRAB_C3(2-2.5)	COMP_D3(0-7)	GRAB_D3(5.5-6)	COMP_E3(0-6)	GRAB_E3(3.5-4)	COMP_F3(0-10)	GRAB_F3(4.5-5)
Mercury, TCLP	-	ND	-	ND		ND	
Selenium, TCLP	-	ND	-	ND		ND	
Silver, TCLP	-	ND	-	ND		ND	
TOTAL METALS							
Aluminum, Total	-	11400	-	8060	-	7180	-
Antimony, Total	-	ND	-	ND	-	ND	-
Arsenic, Total	-	1.37	-	1.42	-	1.1	-
Barium, Total	-	133	-	85.9	-	74.3	-
Beryllium, Total	-	0.746	-	0.549	-	0.516	-
Cadmium, Total	-	0.127	-	ND	-	ND	-
Calcium, Total	-	10000	-	15100	-	6210	-
Chromium, Total	-	20.5	-	14.6	-	12.6	-
Cobalt, Total	-	10	-	6.74	-	6.41	-
Copper, Total	-	15.7	-	15.4	-	11.7	-
Iron, Total	-	20300	-	15600	-	13400	-
Lead, Total	-	4.66	-	5.9	-	7.04	-
Magnesium, Total	-	7910	-	10400	-	4940	-
Manganese, Total	-	262	-	190	-	183	-
Mercury, Total	-	ND	-	ND	-	ND	-
Nickel, Total	-	16.5	-	13	-	10.6	-
Potassium, Total	-	5330	-	3560	-	3120	-
Selenium, Total	-	ND	-	ND	-	ND	-
Silver, Total	-	ND	-	ND	-	ND	-
Sodium, Total	-	120	-	90.1	-	110	-
Thallium, Total	-	0.319	-	0.306	-	ND	-
Vanadium, Total	-	28.2	-	20	-	17.1	-
Zinc, Total	-	45.7	-	35.8	-	35.6	-
GENERAL CHEMISTRY							
Chromium, Hexavalent	-	0.462	-	ND		ND	
Cyanide, Reactive	-	ND	-	ND		ND	
Cyanide, Total	-	ND	-	ND	-	ND	-
Paint Filter Liquid	-	Negative	-	Negative		Negative	
pH (H)	-	8.64	-	8.57		8.68	
Solids, Total	92.3	84.5	84.5	90.8	90.8	93.3	93.3
Sulfide, Reactive	-	ND	-	ND		ND	
IGNITABILITY OF SOLIDS							
Ignitability	-	NI	-	NI		NI	

Project Name: Crescent Manor

Address: 136-140 Croton Ave, Ossining, NY

NYSDEC BCP Site No. C360207.

Environmental Documents List

1. Phase I Environmental Site Assessment (ESA), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
2. Phase II Subsurface Investigation Report (SIR), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
3. Phase II Environmental Site Assessment (ESA), dated November 19th, 2021 prepared by SESI Consulting Engineers
4. Remedial Investigation Work Plan (RIWP), dated August 19th 2022 prepared by SESI Consulting Engineers
5. Interim Remedial Measures Workplan (IRMWP), dated December 12th 2022, prepared by SESI Consulting Engineers
6. Waste Class (WC) Analytical Reports #L2353060, #L2353480, #L2353853, #L2354250, #L2354976, dated September 19th, 20th, 21st, 22nd, 26th 2023 prepared by Alpha Analytical
7. Remedial Action Workplan (RAWP), dated October 1st 2025, prepared by SESI Consulting Engineers
8. Remedial Investigation Report (RIR), dated October 2nd 2025, prepared by SESI Consulting Engineers

MIDDLESEX COUNTY UTILITIES AUTHORITY

MAIN OFFICES:

2571 MAIN STREET • P.O. BOX 159 • SAYREVILLE, NJ 08872-0159
(732) 721-3800 FAX: (732) 721-0206

MIDDLESEX COUNTY LANDFILL OFFICE:

53 EDGEBORO ROAD • EAST BRUNSWICK, NJ 08816-1636
(732) 246-4313 FAX: (732) 246-8846

REPLY TO:

SAYREVILLE
 EAST BRUNSWICK

April 25, 2025

Chris Yeates
136-140 Croton Avenue LLC, c/o MacQuesten Development LLC
438 5th Ave, Ste 100
Pelham, NY 10803

Re: Soil Reuse Program
Crescent Manor
AKA Sun Valley Nursery Filling Station Site
136-140 Croton Avenue
Ossining, New York 10562
NYSDEC Site No. C360207

Approval Volume: 12,000 Tons

Dear Mr. Yeates,

After review of the analytical data submitted for the above referenced project, we find the samples listed in Table 1 suitable for use as cover material at the Middlesex County Landfill.

This material will be dry and free of debris and deposited in areas as directed by landfill personnel. Material will not be accepted when it is raining.

This material will be deposited in areas as directed by landfill personnel. Based upon the volume and the scheduling developed, this approval granted is non-transferable.

Failure to follow these instructions will result in the rejection of loads.

Please be advised that the MCUA reserves the right to terminate acceptance of this material.

Should you not concur with the terms set forth, please contact this office at the above number.

Sincerely,

Brian T. Murray
Brian T. Murray
General Superintendent
Middlesex County Landfill

Attachments:

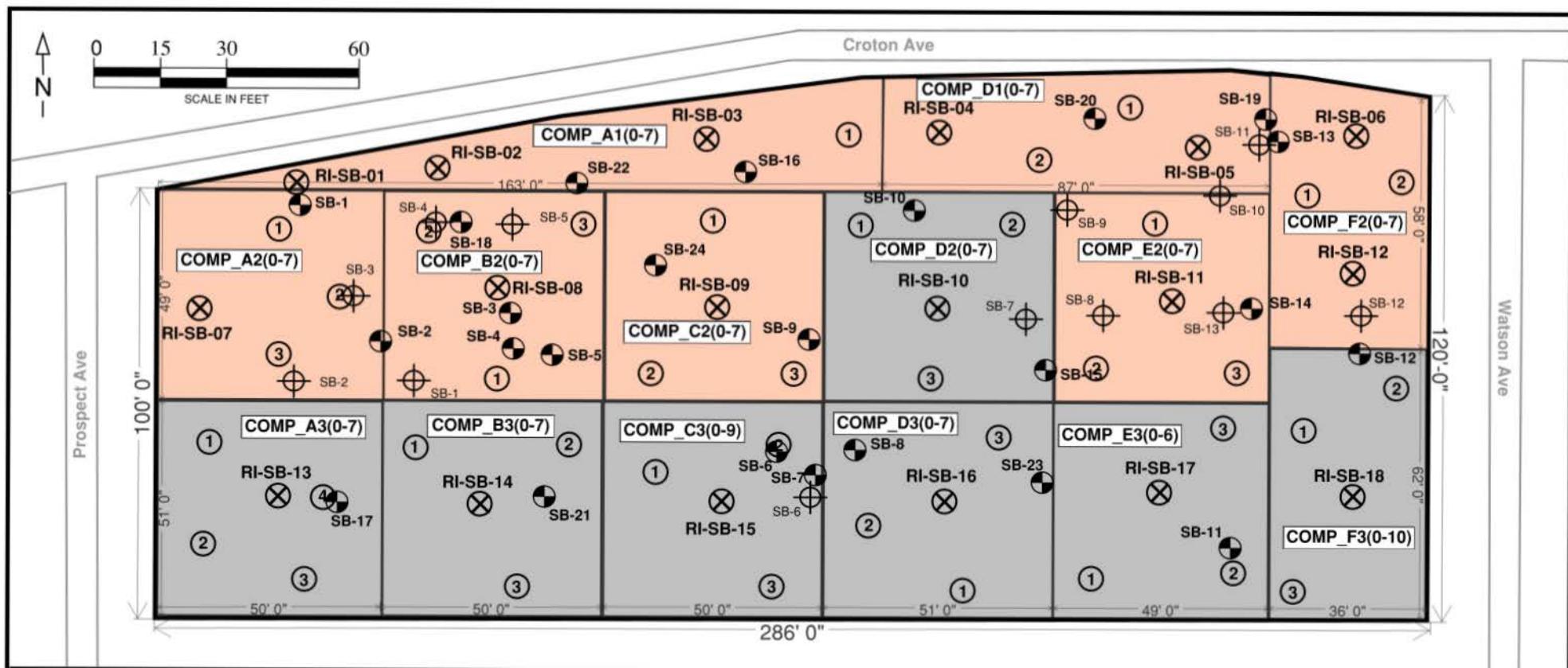

1. Table 1 - Samples List
2. Proposed Material Maps – Tier 1 Shallow, Tier 2 Mid, Tier 3 Deep (04/21/2025)
3. Waste Classification Summary Table for Alpha Laboratories Analytical Data Reports:
 - L2354250
 - L2354976
 - L2353853
 - L2354976
 - L2353480
4. Environmental Documents List

TABLE 1

Project Name: Crescent Manor

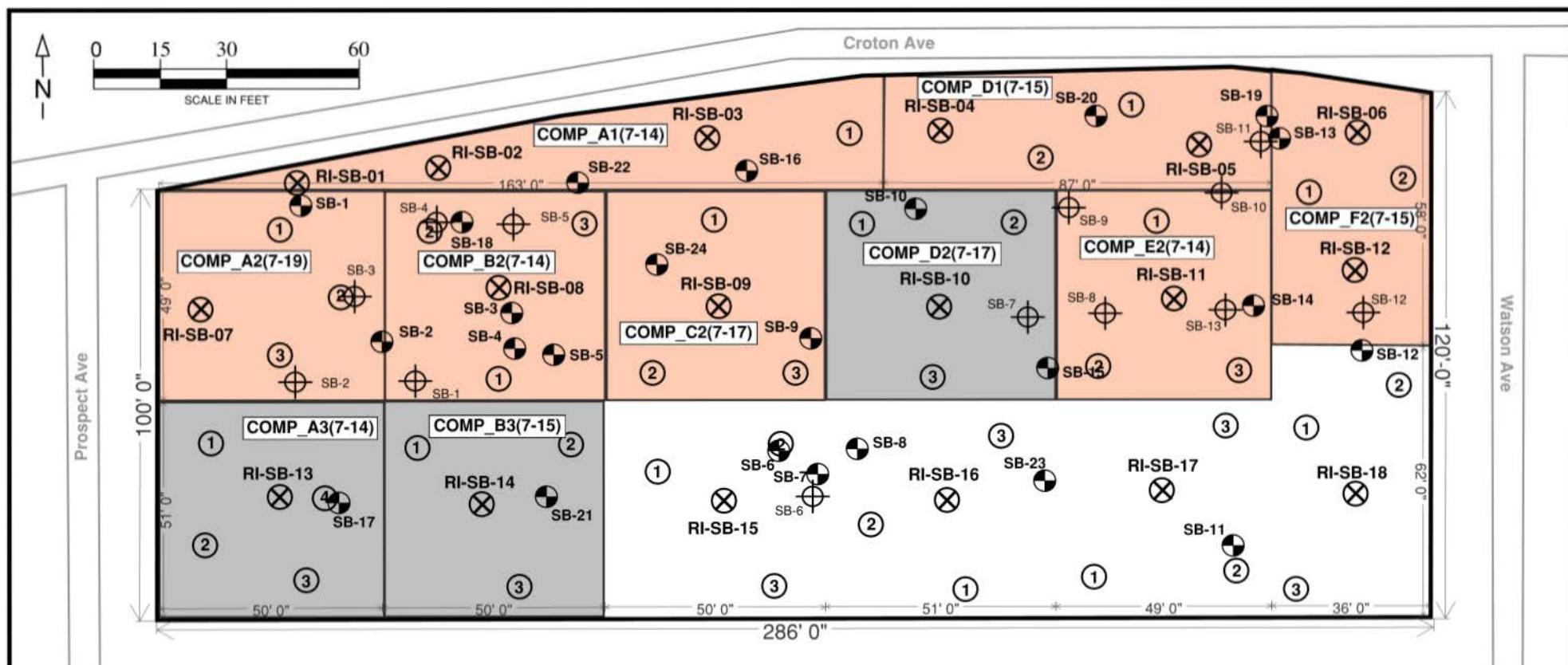
Address: 136-140 Croton Ave, Ossining, NY 10562

#	Date	Lab ID	Composite Sample ID
1	9/15/2023	L2354250-01	COMP_A1(0-7)
2	9/15/2023	L2354250-03	COMP_A1(7-14)
3	9/15/2023	L2354250-05	COMP_A1(14-20)
4	9/15/2023	L2354250-07	COMP_A2(0-7)
5	9/15/2023	L2354250-09	COMP_A2(7-19)
6	9/19/2023	L2354976-01	COMP_B2(0-7)
7	9/19/2023	L2354976-03	COMP_B2(7-14)
8	9/19/2023	L2354976-05	COMP_B2(14-21)
9	9/14/2023	L2353853-03	COMP_C2(0-7)
10	9/14/2023	L2353853-07	COMP_C2(7-17)
11	9/14/2023	L2353853-01	COMP_D1(0-7)
12	9/14/2023	L2353853-05	COMP_D1(7-15)
13	9/19/2023	L2354976-07	COMP_E2(0-7)
14	9/19/2023	L2354976-09	COMP_E2(7-14)
15	9/13/2023	L2353480-07	COMP_F2(0-7)
16	9/13/2023	L2353480-09	COMP_F2(7-15)

Proposed Material Map

4/21/2025

Crescent Manor
136-140 Ossining NY, 10562


Tier 1 - Shallow

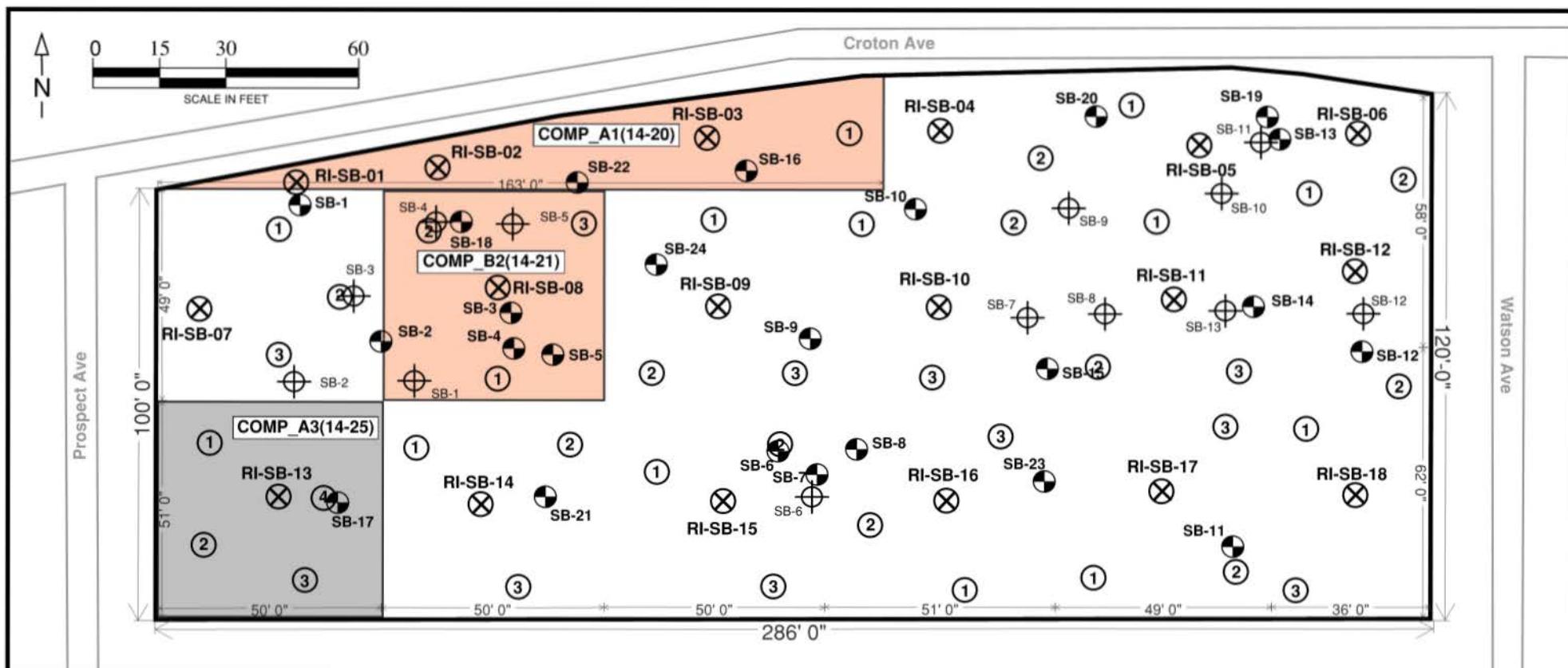
Legend:

- Site Boundary
- WC Grid
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- ① - 2023 WC Composite Location

Proposed

Not Proposed

Proposed Material Map


4/21/2025

Crescent Manor
136-140 Ossining NY, 10562

Tier 2 - Mid

Legend:

	- Site Boundary		Proposed
	- WC Grid		Not Proposed
	- 2017 BERKSHIRE INVESTIGATION		
	- 2021 SESI PHASE II ESA		
	- 2023 SESI RI Boring Location		
	- 2023 WC Composite Location		

Proposed Material Map

4/21/2025

Crescent Manor
136-140 Ossining NY, 10562

Tier 3 - Deep

Legend:

	- Site Boundary		Proposed
	- WC Grid		Not Proposed
	- 2017 BERKSHIRE INVESTIGATION		
	- 2021 SESI PHASE II ESA		
	- 2023 SESI RI Boring Location		
	- 2023 WC Composite Location		

SAMPLE ID: LAB ID: COLLECTION DATE: SAMPLE DEPTH: SAMPLE MATRIX:	COMP_A1(0-7)	GRAB_A1(0.5-1)	COMP_A1(7-14)	GRAB_A1(7-7.5)	COMP_A1(14-20)	GRAB_A1(17-17.5)	COMP_A2(0-7)	GRAB_A2(5.0-5.5)	COMP_A2(7-19)	GRAB_A2(15-15.5)	COMP_B2(0-7)
	L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01
	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/15/2023	9/19/2023
	SOIL										
	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
ANALYTE	NJ-NRID-SRS	NJ-RID-SRS									
	(mg/kg)	(mg/kg)	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
VOLATILE ORGANICS BY EPA 5035											
1,1,1,2-Tetrachloroethane			-	ND	-	ND	-	ND	-	ND	-
1,1,1-Trichloroethane		160000	-	ND	-	ND	-	ND	-	ND	-
1,1,2,2-Tetrachloroethane	18	3.5	-	ND	-	ND	-	ND	-	ND	-
1,1,2-Trichloroethane	64	12	-	ND	-	ND	-	ND	-	ND	-
1,1-Dichloroethane	640	120	-	ND	-	ND	-	ND	-	ND	-
1,1-Dichloroethene	180	11	-	ND	-	ND	-	ND	-	ND	-
1,1-Dichloropropene			-	ND	-	ND	-	ND	-	ND	-
1,2,3-Trichlorobenzene			-	ND	-	ND	-	ND	-	ND	-
1,2,3-Trichloropropane			-	ND	-	ND	-	ND	-	ND	-
1,2,4,5-Tetramethylbenzene			-	0.45	-	0.0081	-	ND	-	ND	-
1,2,4-Trichlorobenzene	13000	780	-	ND	-	ND	-	ND	-	ND	-
1,2,4-Trimethylbenzene	13000	780	-	0.078	-	0.051	-	ND	-	ND	-
1,2-Dibromo-3-chloropropane	4.5	0.87	-	ND	-	ND	-	ND	-	ND	-
1,2-Dibromoethane	1.8	0.35	-	ND	-	ND	-	ND	-	ND	-
1,2-Dichlorobenzene	110000	6700	-	ND	-	ND	-	ND	-	ND	-
1,2-Dichloroethane	30	5.8	-	ND	-	ND	-	ND	-	ND	-
1,2-Dichloroethene, Total			-	ND	-	ND	-	ND	-	ND	-
1,2-Dichloropropene	98	19	-	ND	-	ND	-	ND	-	ND	-
1,3,5-Trimethylbenzene			-	0.028	-	0.015	-	ND	-	ND	-
1,3-Dichlorobenzene	110000	6700	-	ND	-	ND	-	ND	-	ND	-
1,3-Dichloropropane			-	ND	-	ND	-	ND	-	ND	-
1,3-Dichloropropene, Total			-	ND	-	ND	-	ND	-	ND	-
1,4-Dichlorobenzene	13000	780	-	ND	-	ND	-	ND	-	ND	-
1,4-Dioxane	36	7	-	ND	-	ND	-	ND	-	ND	-
2,2-Dichloropropane			-	ND	-	ND	-	ND	-	ND	-
2-Butanone	780000	47000	-	ND	-	0.018	-	ND	-	ND	0.0024
2-Hexanone	6500	390	-	ND	-	ND	-	ND	-	ND	-
4-Methyl-2-pentanone			-	ND	-	0.0017	-	ND	-	ND	-
Acetone		70000	-	0.058	-	0.013	-	0.006	-	ND	0.012
Acrylonitrile			-	ND	-	ND	-	ND	-	ND	-
Benzene	16	3	-	0.0042	-	0.0016	-	ND	-	ND	-
Bromobenzene			-	ND	-	ND	-	ND	-	ND	-

LAB ID:		L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01
Bromochloromethane			-	ND								
Bromodichloromethane	59	11	-	ND								
Bromoform	460	88	-	ND								
Bromomethane	1800	110	-	ND								
Carbon disulfide			-	ND								
Carbon tetrachloride	40	7.6	-	ND								
Chlorobenzene	8400	510	-	ND								
Chloroethane			-	ND								
Chloroform	13000	780	-	ND								
Chloromethane			-	ND								
cis-1,2-Dichloroethene	13000	780	-	ND								
cis-1,3-Dichloropropene	36	7	-	ND								
Dibromochloromethane	43	8.3	-	ND								
Dibromomethane			-	ND								
Dichlorodifluoromethane	260000	16000	-	ND								
Ethyl ether			-	ND								
Ethylbenzene	130000	7800	-	0.18	-	0.013	-	ND	-	ND	-	ND
Hexachlorobutadiene	47	8.9	-	ND								
Isopropylbenzene	130000	7800	-	0.1	-	0.0033	-	ND	-	ND	-	ND
Methyl tert butyl ether	13000	780	-	ND								
Methylene chloride	260	50	-	ND								
n-Butylbenzene			-	0.12	-	0.0046	-	ND	-	ND	-	ND
n-Propylbenzene			-	0.41	-	0.011	-	ND	-	ND	-	ND
Naphthalene	34000	2500	-	0.58	-	0.0084	-	ND	-	ND	-	ND
o-Chlorotoluene			-	ND								
o-Xylene	190000	12000	-	0.0013	-	0.021	-	ND	-	ND	-	ND
p-Chlorotoluene			-	ND								
p-Diethylbenzene			-	0.14	-	0.027	-	ND	-	ND	-	ND
p-Ethyltoluene			-	0.061	-	0.048	-	ND	-	ND	-	ND
p-Isopropyltoluene			-	0.0044	-	0.00094	-	ND	-	ND	-	ND
p/m-Xylene	190000	12000	-	0.01	-	0.046	-	ND	-	ND	-	ND
sec-Butylbenzene			-	0.064	-	0.002	-	ND	-	ND	-	ND
Styrene	260000	16000	-	ND								
tert-Butylbenzene			-	0.00079	-	ND	-	ND	-	ND	-	ND
Tetrachloroethene	1700	330	-	ND								
Toluene	100000	6300	-	0.0015	-	0.0052	-	0.00062	-	ND	-	0.00078
trans-1,2-Dichloroethene	22000	1300	-	ND								
trans-1,3-Dichloropropene	36	7	-	ND								
trans-1,4-Dichloro-2-butene			-	ND								
Trichloroethene	79	15	-	ND								
Trichlorofluoromethane	390000	23000	-	ND								

LAB ID:		L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01
Vinyl acetate			-	ND								
Vinyl chloride	5	0.97	-	ND								
Xylenes, Total	190000	12000	-	0.011	-	0.067	-	ND	-	ND	-	ND
Total VOCs			-	2.29119	-	0.29884	-	0.00662	-	-	-	0.01518
SEMIVOLATILE ORGANICS BY GC/MS												
1,2,4,5-Tetrachlorobenzene	390	23	ND	-								
1,2,4-Trichlorobenzene	13000	780	ND	-								
1,2-Dichlorobenzene	110000	6700	ND	-								
1,3-Dichlorobenzene	110000	6700	ND	-								
1,4-Dichlorobenzene	13000	780	ND	-								
1,4-Dioxane	36	7	ND	-								
2,4,5-Trichlorophenol	91000	6300	ND	-								
2,4,6-Trichlorophenol	230	49	ND	-								
2,4-Dichlorophenol	2700	190	ND	-								
2,4-Dimethylphenol	18000	1300	ND	-								
2,4-Dinitrophenol	1800	130	ND	-								
2,4-Dinitrotoluene	3.8	0.8	ND	-								
2,6-Dinitrotoluene	3.8	0.8	ND	-								
2-Chloronaphthalene	67000	4800	ND	-								
2-Chlorophenol	6500	390	ND	-								
2-Methylnaphthalene	3300	240	0.034	-	0.032	-	ND	-	ND	-	ND	-
2-Methylphenol	4600	320	ND	-								
2-Nitroaniline			ND	-								
2-Nitrophenol			ND	-								
3,3'-Dichlorobenzidine	5.7	1.2	ND	-								
3-Methylphenol/4-Methylphenol	9100	630	ND	-								
3-Nitroaniline			ND	-								
4,6-Dinitro-o-cresol			ND	-								
4-Bromophenyl phenyl ether			ND	-								
4-Chloroaniline	13	2.7	ND	-								
4-Chlorophenyl phenyl ether			ND	-								
4-Nitroaniline	130	27	ND	-								
4-Nitrophenol			ND	-								
Acenaphthene	50000	3600	ND	-								
Acenaphthylene			ND	-								
Acetophenone	130000	7800	ND	-								
Anthracene	250000	18000	ND	-								
Benzo(a)anthracene	23	5.1	ND	-								
Benzo(a)pyrene	2.3	0.51	ND	-								
Benzo(b)fluoranthene	23	5.1	ND	-								
Benzo(ghi)perylene			ND	-								

LAB ID:	L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01
Benzo(k)fluoranthene	230	51	ND	-	ND	-	ND	-	ND	-	ND
Benzoic Acid			ND	-	ND	-	ND	-	ND	-	ND
Benzyl Alcohol			ND	-	ND	-	ND	-	ND	-	ND
Biphenyl	450	87	ND	-	ND	-	ND	-	ND	-	ND
Bis(2-chloroethoxy)methane	2700	190	ND	-	ND	-	ND	-	ND	-	ND
Bis(2-chloroethyl)ether	3.3	0.63	ND	-	ND	-	ND	-	ND	-	ND
Bis(2-chloroisopropyl)ether	52000	3100	ND	-	ND	-	ND	-	ND	-	ND
Bis(2-ethylhexyl)phthalate	180	39	ND	-	ND	-	ND	-	0.081	-	ND
Butyl benzyl phthalate	1300	290	ND	-	ND	-	ND	-	ND	-	ND
Carbazole			ND	-	ND	-	ND	-	ND	-	ND
Chrysene	2300	510	ND	-	ND	-	ND	-	ND	-	ND
Di-n-butylphthalate	91000	6300	ND	-	ND	-	ND	-	ND	-	ND
Di-n-octylphthalate	9100	630	ND	-	ND	-	ND	-	ND	-	ND
Dibenzo(a,h)anthracene	2.3	0.51	ND	-	ND	-	ND	-	ND	-	ND
Dibenzofuran			ND	-	ND	-	ND	-	ND	-	ND
Diethyl phthalate	730000	51000	ND	-	ND	-	ND	-	ND	-	ND
Dimethyl phthalate			ND	-	ND	-	ND	-	ND	-	ND
Fluoranthene	33000	2400	ND	-	ND	-	ND	-	ND	-	ND
Fluorene	33000	2400	ND	-	ND	-	ND	-	ND	-	ND
Hexachlorobenzene	2.3	0.43	ND	-	ND	-	ND	-	ND	-	ND
Hexachlorobutadiene	47	8.9	ND	-	ND	-	ND	-	ND	-	ND
Hexachlorocyclopentadiene	7800	470	ND	-	ND	-	ND	-	ND	-	ND
Hexachloroethane	91	17	ND	-	ND	-	ND	-	ND	-	ND
Indeno(1,2,3-cd)pyrene	23	5.1	ND	-	ND	-	ND	-	ND	-	ND
Isophorone	2700	570	ND	-	ND	-	ND	-	ND	-	ND
n-Nitrosodi-n-propylamine	0.36	0.17	ND	-	ND	-	ND	-	ND	-	ND
Naphthalene	34000	2500	0.047	-	0.024	-	ND	-	ND	-	0.024
NDPA/DPA	520	110	ND	-	ND	-	ND	-	ND	-	ND
Nitrobenzene	2600	160	ND	-	ND	-	ND	-	ND	-	ND
p-Chloro-m-cresol			ND	-	ND	-	ND	-	ND	-	ND
Pentachlorophenol	4.4	1	ND	-	ND	-	ND	-	ND	-	ND
Phenanthrene			ND	-	ND	-	ND	-	ND	-	ND
Phenol	270000	19000	ND	-	ND	-	ND	-	ND	-	ND
Pyrene	25000	1800	ND	-	ND	-	ND	-	ND	-	ND
Total SVOCs			0.081	-	0.056	-	-	-	0.081	-	-
CHLORINATED HERBICIDES BY GC											
2,4,5-T			ND	-	ND	-	ND	-	ND	-	ND
2,4,5-TP (Silvex)			ND	-	ND	-	ND	-	ND	-	ND
2,4-D			ND	-	ND	-	ND	-	ND	-	ND
ORGANOCHLORINE PESTICIDES BY GC											
4,4'-DDD	11	2.3	ND	-	ND	-	ND	-	ND	-	0.00116

LAB ID:	L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01
4,4'-DDE	11	2	ND	-	ND	-	ND	-	ND	-	0.000445
4,4'-DDT	9.5	1.9	ND	-	ND	-	ND	-	ND	-	ND
Aldrin	0.21	0.041	ND	-	ND	-	ND	-	ND	-	ND
Alpha-BHC	0.41	0.086	ND	-	ND	-	ND	-	ND	-	ND
Beta-BHC	1.4	0.3	ND	-	ND	-	ND	-	ND	-	ND
Chlordane	1.4	0.27	ND	-	ND	-	ND	-	ND	-	0.0243
cis-Chlordane	1.4	0.27	ND	-	ND	-	ND	-	ND	-	0.00283
Delta-BHC			ND	-	ND	-	ND	-	ND	-	ND
Dieldrin	0.16	0.034	ND	-	ND	-	ND	-	ND	-	ND
Endosulfan I	7800	470	ND	-	ND	-	ND	-	ND	-	ND
Endosulfan II	7800	470	ND	-	ND	-	ND	-	ND	-	ND
Endosulfan sulfate			ND	-	ND	-	ND	-	ND	-	ND
Endrin	270	19	ND	-	ND	-	ND	-	ND	-	ND
Endrin aldehyde			ND	-	ND	-	ND	-	ND	-	ND
Endrin ketone			ND	-	ND	-	ND	-	ND	-	ND
Heptachlor	0.81	0.15	ND	-	ND	-	ND	-	ND	-	ND
Heptachlor epoxide	0.4	0.076	ND	-	ND	-	ND	-	ND	-	ND
Lindane	2.8	0.57	ND	-	ND	-	ND	-	ND	-	ND
Methoxychlor	4600	320	ND	-	ND	-	ND	-	ND	-	ND
Toxaphene	2.3	0.49	ND	-	ND	-	ND	-	ND	-	ND
trans-Chlordane	1.4	0.27	ND	-	ND	-	ND	-	ND	-	0.00158
POLYCHLORINATED BIPHENYLS BY GC											
Aroclor 1016	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1221	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1232	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1242	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1248	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1254	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1260	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1262	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
Aroclor 1268	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
PCBs, Total	1.1	0.25	ND	-	ND	-	ND	-	ND	-	ND
NJ EXTRACTABLE PETROLEUM HYDROCARBONS (TOTAL)											
Total EPH	75000	5300	ND	-	ND	-	ND	-	ND	-	64.9
TCLP METALS BY EPA 1311											
Arsenic, TCLP			ND	-	ND	-	ND	-	ND	-	ND
Barium, TCLP			0.862	-	0.864	-	0.747	-	0.657	-	0.74
Cadmium, TCLP			ND	-	ND	-	ND	-	ND	-	ND
Chromium, TCLP			0.0254	-	ND	-	ND	-	ND	-	ND
Lead, TCLP			ND	-	ND	-	ND	-	ND	-	ND
Mercury, TCLP			ND	-	ND	-	ND	-	ND	-	ND

LAB ID:		L2354250-01	L2354250-02	L2354250-03	L2354250-04	L2354250-05	L2354250-06	L2354250-07	L2354250-08	L2354250-09	L2354250-10	L2354976-01	
Selenium, TCLP		ND	-	ND									
Silver, TCLP		ND	-	ND									
TOTAL METALS													
Aluminum, Total		78000	12500	-	11700	-	11100	-	9350	-	10900	-	10400
Antimony, Total	520	31	ND	-	ND								
Arsenic, Total	19	19	1.7	-	1.44	-	1.31	-	1.41	-	1.22	-	5.36
Barium, Total	260000	16000	162	-	151	-	153	-	126	-	148	-	130
Beryllium, Total	2600	160	0.336	-	0.324	-	0.315	-	0.268	-	0.315	-	0.427
Cadmium, Total	1100	71	ND	-	ND								
Calcium, Total			6600	-	7960	-	8630	-	6170	-	7950	-	5060
Chromium, Total			32.3	-	21.4	-	20	-	17.5	-	20.8	-	19.8
Cobalt, Total	390	23	8.69	-	8.51	-	7.8	-	6.57	-	7.34	-	6.72
Copper, Total	52000	3100	19.4	-	22.6	-	14.7	-	12.8	-	14.1	-	15
Iron, Total			22500	-	22500	-	19600	-	17000	-	19000	-	16200
Lead, Total	800	400	6.79	-	5.2	-	5.84	-	4.71	-	5.49	-	19.2
Magnesium, Total			8230	-	7760	-	7290	-	6180	-	6860	-	5990
Manganese, Total	31000	1900	281	-	239	-	243	-	204	-	320	-	228
Mercury, Total	390	23	ND	-	ND								
Nickel, Total	26000	1600	18	-	16.8	-	15.2	-	12.7	-	14.2	-	14
Potassium, Total			6690	-	6360	-	6190	-	5270	-	6130	-	4720
Selenium, Total	6500	390	ND	-	0.274	-	ND	-	ND	-	ND	-	0.553
Silver, Total	6500	390	ND	-	ND								
Sodium, Total			229	-	201	-	199	-	158	-	161	-	230
Thallium, Total			6.05	-	5.56	-	5.32	-	4.54	-	4.94	-	1.33
Vanadium, Total	6500	390	34.1	-	30.3	-	28.3	-	24.9	-	27.4	-	27.5
Zinc, Total	390000	23000	50.7	-	45.5	-	43.7	-	38.8	-	42.8	-	48.1
GENERAL CHEMISTRY													
Chromium, Hexavalent			0.19	-	ND	-	0.193	-	ND	-	ND	-	ND
Cyanide, Reactive			ND	-	ND								
Cyanide, Total	780	47	ND	-	ND								
Paint Filter Liquid			Negative	-	Negative								
pH (H)			8.43	-	8.46	-	8.33	-	8.5	-	8.37	-	8.36
Solids, Total			94.6	94.6	94.4	94.4	93.2	93.2	91.6	91.6	91	91	85.5
Sulfide, Reactive			ND	-	ND								
IGNITABILITY OF SOLIDS													
Ignitability			NI	-	NI								

SAMPLE ID:	GRAB_B2(4.5-5)	COMP_B2(7-14)	GRAB_B2(7.5-8)	COMP_B2(14-21)	GRAB_B2(15.5-16)	COMP_C2(0-7)	GRAB_C2(3-3.5)	COMP_C2(7-17)	GRAB_C2(12.5-13)	COMP_D1(0-7)	GRAB_D1(6.5-7)	COMP_D1(7-15)	GRAB_D1(10.5-11)
LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
COLLECTION DATE:	9/19/2023	9/19/2023	9/19/2023	9/19/2023	9/19/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023	9/14/2023
SAMPLE DEPTH:													
SAMPLE MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
ANALYTE	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
VOLATILE ORGANICS BY EPA 5035													
1,1,1,2-Tetrachloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1,1-Trichloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1,2,2-Tetrachloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1,2-Trichloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1-Dichloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1-Dichloroethene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,1-Dichloropropene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2,3-Trichlorobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2,3-Trichloropropane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2,4,5-Tetramethylbenzene	ND	-	0.0002	-	ND	-	0.00032	-	ND	-	0.068	-	ND
1,2,4-Trichlorobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2,4-Trimethylbenzene	ND	-	ND	-	ND	-	0.0014	-	ND	-	0.012	-	ND
1,2-Dibromo-3-chloropropane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2-Dibromoethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2-Dichloroethane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2-Dichloroethene, Total	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,2-Dichloropropene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,3,5-Trimethylbenzene	ND	-	ND	-	ND	-	0.00048	-	ND	-	0.0049	-	ND
1,3-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,3-Dichloropropane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,3-Dichloropropene, Total	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,4-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
1,4-Dioxane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
2,2-Dichloropropane	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
2-Butanone	ND	-	0.0023	-	ND	-	ND	-	ND	-	ND	-	ND
2-Hexanone	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
4-Methyl-2-pentanone	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
Acetone	ND	-	0.023	-	0.011	-	ND	-	0.0082	-	0.024	-	ND
Acrylonitrile	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND
Benzene	ND	-	0.00053	-	ND	-	ND	-	ND	-	0.00046	-	ND
Bromobenzene	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	ND

LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
Bromochloromethane	ND	-	ND										
Bromodichloromethane	ND	-	ND										
Bromoform	ND	-	ND										
Bromomethane	ND	-	ND										
Carbon disulfide	ND	-	ND										
Carbon tetrachloride	ND	-	ND										
Chlorobenzene	ND	-	ND										
Chloroethane	ND	-	ND										
Chloroform	ND	-	ND										
Chloromethane	ND	-	ND										
cis-1,2-Dichloroethene	ND	-	ND										
cis-1,3-Dichloropropene	ND	-	ND										
Dibromochloromethane	ND	-	ND										
Dibromomethane	ND	-	ND										
Dichlorodifluoromethane	ND	-	ND										
Ethyl ether	ND	-	ND										
Ethylbenzene	ND	-	ND	-	ND	-	0.0007	-	ND	-	0.064	-	ND
Hexachlorobutadiene	ND	-	ND										
Isopropylbenzene	ND	-	ND	-	ND	-	0.00012	-	ND	-	0.035	-	ND
Methyl tert butyl ether	ND	-	ND										
Methylene chloride	ND	-	ND										
n-Butylbenzene	ND	-	0.036	-	ND								
n-Propylbenzene	ND	-	0.00021	-	ND	-	0.00029	-	ND	-	0.096	-	ND
Naphthalene	ND	-	0.04	-	ND								
o-Chlorotoluene	ND	-	ND										
o-Xylene	ND	-	ND	-	ND	-	0.00083	-	ND	-	0.0011	-	ND
p-Chlorotoluene	ND	-	ND										
p-Diethylbenzene	ND	-	ND	-	ND	-	0.00064	-	ND	-	0.02	-	ND
p-Ethyltoluene	ND	-	ND	-	ND	-	0.00098	-	ND	-	0.01	-	ND
p-Isopropyltoluene	ND	-	0.0026	-	ND								
p/m-Xylene	ND	-	ND	-	ND	-	0.0011	-	ND	-	0.0079	-	ND
sec-Butylbenzene	ND	-	0.023	-	ND								
Styrene	ND	-	ND										
tert-Butylbenzene	ND	-	0.00041	-	ND								
Tetrachloroethene	ND	-	ND										
Toluene	ND	-	ND										
trans-1,2-Dichloroethene	ND	-	ND										
trans-1,3-Dichloropropene	ND	-	ND										
trans-1,4-Dichloro-2-butene	ND	-	ND										
Trichloroethene	ND	-	ND										
Trichlorofluoromethane	ND	-	ND										

LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
Vinyl acetate	ND	-	ND										
Vinyl chloride	ND	-	ND										
Xylenes, Total	ND	-	ND	-	ND	-	0.0019	-	ND	-	0.009	-	ND
Total VOCs	-	-	0.02624	-	0.011	-	0.00686	-	0.0082	-	0.44537	-	-
SEMIVOLATILE ORGANICS BY GC/MS													
1,2,4,5-Tetrachlorobenzene	-	ND	-										
1,2,4-Trichlorobenzene	-	ND	-										
1,2-Dichlorobenzene	-	ND	-										
1,3-Dichlorobenzene	-	ND	-										
1,4-Dichlorobenzene	-	ND	-										
1,4-Dioxane	-	ND	-										
2,4,5-Trichlorophenol	-	ND	-										
2,4,6-Trichlorophenol	-	ND	-										
2,4-Dichlorophenol	-	ND	-										
2,4-Dimethylphenol	-	ND	-										
2,4-Dinitrophenol	-	ND	-										
2,4-Dinitrotoluene	-	ND	-										
2,6-Dinitrotoluene	-	ND	-										
2-Chloronaphthalene	-	ND	-										
2-Chlorophenol	-	ND	-										
2-Methylnaphthalene	-	ND	-	ND	-	0.029	-	ND	-	ND	-	ND	-
2-Methylphenol	-	ND	-										
2-Nitroaniline	-	ND	-										
2-Nitrophenol	-	ND	-										
3,3'-Dichlorobenzidine	-	ND	-										
3-Methylphenol/4-Methylphenol	-	ND	-										
3-Nitroaniline	-	ND	-										
4,6-Dinitro-o-cresol	-	ND	-										
4-Bromophenyl phenyl ether	-	ND	-										
4-Chloroaniline	-	ND	-										
4-Chlorophenyl phenyl ether	-	ND	-										
4-Nitroaniline	-	ND	-										
4-Nitrophenol	-	ND	-										
Acenaphthene	-	ND	-	ND	-	0.21	-	ND	-	ND	-	ND	-
Acenaphthylene	-	ND	-										
Acetophenone	-	ND	-										
Anthracene	-	ND	-	ND	-	0.22	-	ND	-	ND	-	ND	-
Benzo(a)anthracene	-	ND	-	ND	-	0.3	-	ND	-	ND	-	ND	-
Benzo(a)pyrene	-	ND	-	ND	-	0.35	-	ND	-	ND	-	ND	-
Benzo(b)fluoranthene	-	ND	-	ND	-	0.39	-	ND	-	ND	-	ND	-
Benzo(ghi)perylene	-	ND	-	ND	-	0.17	-	ND	-	ND	-	ND	-

LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
Benzo(k)fluoranthene	-	ND	-	ND	-	0.13	-	ND	-	ND	-	ND	-
Benzoic Acid	-	ND	-										
Benzyl Alcohol	-	ND	-										
Biphenyl	-	ND	-										
Bis(2-chloroethoxy)methane	-	ND	-										
Bis(2-chloroethyl)ether	-	ND	-										
Bis(2-chloroisopropyl)ether	-	ND	-										
Bis(2-ethylhexyl)phthalate	-	ND	-										
Butyl benzyl phthalate	-	ND	-										
Carbazole	-	ND	-	ND	-	0.12	-	ND	-	ND	-	ND	-
Chrysene	-	ND	-	ND	-	0.3	-	ND	-	ND	-	ND	-
Di-n-butylphthalate	-	ND	-										
Di-n-octylphthalate	-	ND	-										
Dibenz(a,h)anthracene	-	ND	-	ND	-	0.039	-	ND	-	ND	-	ND	-
Dibenzofuran	-	ND	-	ND	-	0.086	-	ND	-	ND	-	ND	-
Diethyl phthalate	-	ND	-										
Dimethyl phthalate	-	ND	-										
Fluoranthene	-	ND	-	ND	-	0.71	-	ND	-	ND	-	ND	-
Fluorene	-	ND	-	ND	-	0.14	-	ND	-	ND	-	ND	-
Hexachlorobenzene	-	ND	-										
Hexachlorobutadiene	-	ND	-										
Hexachlorocyclopentadiene	-	ND	-										
Hexachloroethane	-	ND	-										
Indeno(1,2,3-cd)pyrene	-	ND	-	ND	-	0.19	-	ND	-	ND	-	ND	-
Isophorone	-	ND	-										
n-Nitrosodi-n-propylamine	-	ND	-										
Naphthalene	-	ND	-	ND	-	0.088	-	ND	-	ND	-	ND	-
NDPA/DPA	-	ND	-										
Nitrobenzene	-	ND	-										
p-Chloro-m-cresol	-	ND	-										
Pentachlorophenol	-	ND	-										
Phenanthrene	-	ND	-	ND	-	0.73	-	ND	-	ND	-	ND	-
Phenol	-	ND	-										
Pyrene	-	ND	-	ND	-	0.59	-	ND	-	ND	-	ND	-
Total SVOCs	-	-	-	-	-	4.792	-	-	-	-	-	-	-
CHLORINATED HERBICIDES BY GC													
2,4,5-T	-	ND	-										
2,4,5-TP (Silvex)	-	ND	-										
2,4-D	-	ND	-										
ORGANOCHLORINE PESTICIDES BY GC													
4,4'-DDD	-	ND	-										

LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
4,4'-DDE	-	ND	-										
4,4'-DDT	-	ND	-										
Aldrin	-	ND	-										
Alpha-BHC	-	ND	-										
Beta-BHC	-	ND	-	ND	-	0.000786	-	ND	-	ND	-	ND	-
Chlordane	-	ND	-										
cis-Chlordane	-	ND	-										
Delta-BHC	-	ND	-										
Die�din	-	ND	-										
Endosulfan I	-	ND	-										
Endosulfan II	-	ND	-										
Endosulfan sulfate	-	ND	-										
Endrin	-	ND	-										
Endrin aldehyde	-	ND	-										
Endrin ketone	-	ND	-										
Heptachlor	-	ND	-										
Heptachlor epoxide	-	ND	-										
Lindane	-	ND	-										
Methoxychlor	-	ND	-										
Toxaphene	-	ND	-										
trans-Chlordane	-	ND	-										
POLYCHLORINATED BIPHENYLS BY GC													
Aroclor 1016	-	ND	-										
Aroclor 1221	-	ND	-										
Aroclor 1232	-	ND	-										
Aroclor 1242	-	ND	-										
Aroclor 1248	-	ND	-										
Aroclor 1254	-	ND	-										
Aroclor 1260	-	ND	-										
Aroclor 1262	-	ND	-										
Aroclor 1268	-	ND	-										
PCBs, Total	-	ND	-										
NJ EXTRACTABLE PETROLEUM HYDROCARBONS (TOTAL)													
Total EPH	-	ND	-	ND	-	75.8	-	ND	-	ND	-	29.7	-
TCLP METALS BY EPA 1311													
Arsenic, TCLP	-	ND	-	ND	-	0.0233	-	0.0382	-	0.0293	-	0.0259	-
Barium, TCLP	-	0.895	-	0.975	-	0.917	-	0.887	-	0.73	-	0.863	-
Cadmium, TCLP	-	ND	-										
Chromium, TCLP	-	ND	-										
Lead, TCLP	-	ND	-										
Mercury, TCLP	-	ND	-										

LAB ID:	L2354976-02	L2354976-03	L2354976-04	L2354976-05	L2354976-06	L2353853-03	L2353853-04	L2353853-07	L2353853-08	L2353853-01	L2353853-02	L2353853-05	L2353853-06
Selenium, TCLP	-	ND	-										
Silver, TCLP	-	ND	-										
TOTAL METALS													
Aluminum, Total	-	10800	-	12100	-	11000	-	12200	-	12200	-	13400	-
Antimony, Total	-	ND	-	ND	-	0.38	-	ND	-	ND	-	ND	-
Arsenic, Total	-	1.63	-	1.71	-	1.89	-	1.06	-	1.68	-	1.17	-
Barium, Total	-	136	-	144	-	129	-	150	-	133	-	161	-
Beryllium, Total	-	0.456	-	0.592	-	0.573	-	0.619	-	0.671	-	0.682	-
Cadmium, Total	-	ND	-	ND	-	0.166	-	0.115	-	0.14	-	0.13	-
Calcium, Total	-	7490	-	6350	-	16100	-	13400	-	3920	-	8130	-
Chromium, Total	-	21	-	21.2	-	20.2	-	22.3	-	23.2	-	24.5	-
Cobalt, Total	-	7.29	-	9.31	-	7.75	-	7.94	-	8.44	-	8.06	-
Copper, Total	-	19.2	-	21.1	-	19.4	-	18	-	18.4	-	19.5	-
Iron, Total	-	16700	-	18000	-	18600	-	20600	-	19500	-	21600	-
Lead, Total	-	5.54	-	5.32	-	6.22	-	6.22	-	8.52	-	7.33	-
Magnesium, Total	-	7440	-	7120	-	8050	-	11300	-	6350	-	8000	-
Manganese, Total	-	228	-	230	-	297	-	255	-	324	-	213	-
Mercury, Total	-	ND	-										
Nickel, Total	-	14.9	-	15.5	-	15.7	-	15.6	-	17.3	-	17.5	-
Potassium, Total	-	5420	-	6030	-	5090	-	6500	-	5560	-	6990	-
Selenium, Total	-	0.251	-	ND	-	ND	-	0.376	-	0.231	-	0.299	-
Silver, Total	-	ND	-										
Sodium, Total	-	134	-	132	-	150	-	118	-	282	-	168	-
Thallium, Total	-	1.65	-	1.7	-	1.61	-	2.01	-	2.07	-	2.06	-
Vanadium, Total	-	29.3	-	31	-	26.8	-	30.4	-	31.6	-	33.8	-
Zinc, Total	-	49.1	-	45.2	-	42.1	-	46.2	-	49.1	-	54.7	-
GENERAL CHEMISTRY													
Chromium, Hexavalent	-	0.204	-	ND	-	0.258	-	0.382	-	0.296	-	0.258	-
Cyanide, Reactive	-	ND	-										
Cyanide, Total	-	ND	-										
Paint Filter Liquid	-	Positive	-	Negative	-								
pH (H)	-	8.39	-	8.68	-	10.9	-	8.94	-	8.92	-	8.81	-
Solids, Total	85.5	88.3	88.3	90	90	89.1	89.1	91.6	91.6	91.1	91.1	92.9	92.9
Sulfide, Reactive	-	ND	-										
IGNITABILITY OF SOLIDS													
Ignitability	-	NI	-										

SAMPLE ID:	COMP_E2(0-7)	GRAB_E2(3.5-4)	COMP_E2(7-14)	GRAB_E2(7.5-8)	COMP_F2(0-7)	GRAB_F2(4.5-5)	COMP_F2(7-15)	GRAB_F2(10-10.5)
LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
COLLECTION DATE:	9/19/2023	9/19/2023	9/19/2023	9/19/2023	9/13/2023	9/13/2023	9/13/2023	9/13/2023
SAMPLE DEPTH:								
SAMPLE MATRIX:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
ANALYTE	Conc	Conc	Conc	Conc	Conc	Conc	Conc	Conc
VOLATILE ORGANICS BY EPA 5035								
1,1,1,2-Tetrachloroethane	-	ND	-	ND	-	ND	-	ND
1,1,1-Trichloroethane	-	ND	-	ND	-	ND	-	ND
1,1,2,2-Tetrachloroethane	-	ND	-	ND	-	ND	-	ND
1,1,2-Trichloroethane	-	ND	-	ND	-	ND	-	ND
1,1-Dichloroethane	-	ND	-	ND	-	ND	-	ND
1,1-Dichloroethene	-	ND	-	ND	-	ND	-	ND
1,1-Dichloropropene	-	ND	-	ND	-	ND	-	ND
1,2,3-Trichlorobenzene	-	ND	-	ND	-	ND	-	ND
1,2,3-Trichloropropane	-	ND	-	ND	-	ND	-	ND
1,2,4,5-Tetramethylbenzene	-	ND	-	ND	-	ND	-	ND
1,2,4-Trichlorobenzene	-	ND	-	ND	-	ND	-	ND
1,2,4-Trimethylbenzene	-	ND	-	ND	-	ND	-	ND
1,2-Dibromo-3-chloropropane	-	ND	-	ND	-	ND	-	ND
1,2-Dibromoethane	-	ND	-	ND	-	ND	-	ND
1,2-Dichlorobenzene	-	ND	-	ND	-	ND	-	ND
1,2-Dichloroethane	-	ND	-	ND	-	ND	-	ND
1,2-Dichloroethene, Total	-	ND	-	ND	-	ND	-	ND
1,2-Dichloropropane	-	ND	-	ND	-	ND	-	ND
1,3,5-Trimethylbenzene	-	ND	-	ND	-	ND	-	ND
1,3-Dichlorobenzene	-	ND	-	ND	-	ND	-	ND
1,3-Dichloropropane	-	ND	-	ND	-	ND	-	ND
1,3-Dichloropropene, Total	-	ND	-	ND	-	ND	-	ND
1,4-Dichlorobenzene	-	ND	-	ND	-	ND	-	ND
1,4-Dioxane	-	ND	-	ND	-	ND	-	ND
2,2-Dichloropropane	-	ND	-	ND	-	ND	-	ND
2-Butanone	-	ND	-	ND	-	ND	-	ND
2-Hexanone	-	ND	-	ND	-	ND	-	ND
4-Methyl-2-pentanone	-	ND	-	ND	-	ND	-	ND
Acetone	-	ND	-	ND	-	ND	-	ND
Acrylonitrile	-	ND	-	ND	-	ND	-	ND
Benzene	-	ND	-	ND	-	ND	-	ND
Bromobenzene	-	ND	-	ND	-	ND	-	ND

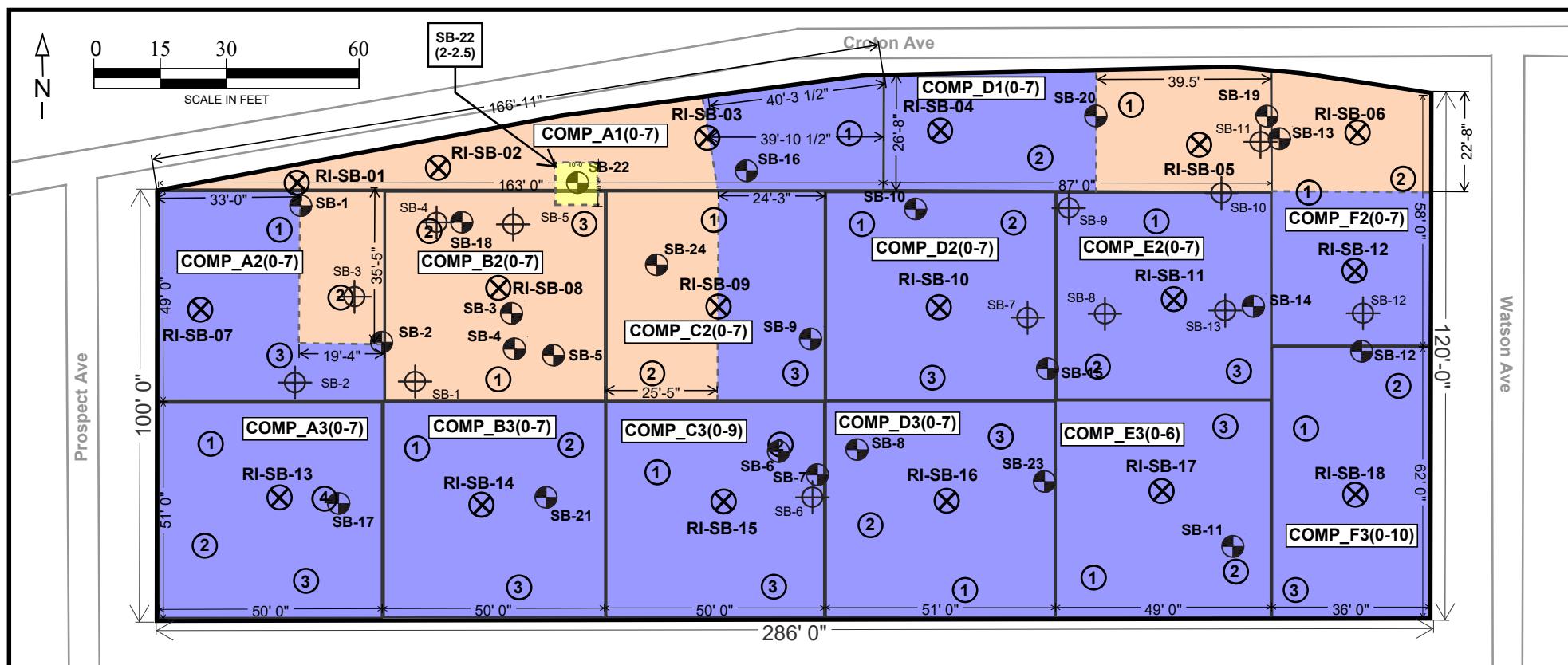
LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
Bromochloromethane	-	ND	-	ND	-	ND	-	ND
Bromodichloromethane	-	ND	-	ND	-	ND	-	ND
Bromoform	-	ND	-	ND	-	ND	-	ND
Bromomethane	-	ND	-	ND	-	ND	-	ND
Carbon disulfide	-	ND	-	ND	-	ND	-	ND
Carbon tetrachloride	-	ND	-	ND	-	ND	-	ND
Chlorobenzene	-	ND	-	ND	-	ND	-	ND
Chloroethane	-	ND	-	ND	-	ND	-	ND
Chloroform	-	ND	-	ND	-	ND	-	ND
Chloromethane	-	ND	-	ND	-	ND	-	ND
cis-1,2-Dichloroethene	-	ND	-	ND	-	ND	-	ND
cis-1,3-Dichloropropene	-	ND	-	ND	-	ND	-	ND
Dibromochloromethane	-	ND	-	ND	-	ND	-	ND
Dibromomethane	-	ND	-	ND	-	ND	-	ND
Dichlorodifluoromethane	-	ND	-	ND	-	ND	-	ND
Ethyl ether	-	ND	-	ND	-	ND	-	ND
Ethylbenzene	-	ND	-	ND	-	ND	-	ND
Hexachlorobutadiene	-	ND	-	ND	-	ND	-	ND
Isopropylbenzene	-	ND	-	ND	-	ND	-	ND
Methyl tert butyl ether	-	ND	-	ND	-	ND	-	ND
Methylene chloride	-	ND	-	ND	-	ND	-	ND
n-Butylbenzene	-	ND	-	ND	-	ND	-	ND
n-Propylbenzene	-	ND	-	ND	-	ND	-	ND
Naphthalene	-	ND	-	ND	-	ND	-	ND
o-Chlorotoluene	-	ND	-	ND	-	ND	-	ND
o-Xylene	-	ND	-	ND	-	ND	-	ND
p-Chlorotoluene	-	ND	-	ND	-	ND	-	ND
p-Diethylbenzene	-	ND	-	ND	-	ND	-	ND
p-Ethyltoluene	-	ND	-	ND	-	ND	-	ND
p-Isopropyltoluene	-	ND	-	ND	-	ND	-	ND
p/m-Xylene	-	ND	-	ND	-	ND	-	ND
sec-Butylbenzene	-	ND	-	ND	-	ND	-	ND
Styrene	-	ND	-	ND	-	ND	-	ND
tert-Butylbenzene	-	ND	-	ND	-	ND	-	ND
Tetrachloroethene	-	ND	-	ND	-	ND	-	ND
Toluene	-	ND	-	ND	-	ND	-	ND
trans-1,2-Dichloroethene	-	ND	-	ND	-	ND	-	ND
trans-1,3-Dichloropropene	-	ND	-	ND	-	ND	-	ND
trans-1,4-Dichloro-2-butene	-	ND	-	ND	-	ND	-	ND
Trichloroethene	-	ND	-	ND	-	ND	-	ND
Trichlorofluoromethane	-	ND	-	ND	-	ND	-	ND

LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
Vinyl acetate	-	ND	-	ND	-	ND	-	ND
Vinyl chloride	-	ND	-	ND	-	ND	-	ND
Xylenes, Total	-	ND	-	ND	-	ND	-	ND
Total VOCs	-	-	-	-	-	-	-	-
SEMIVOLATILE ORGANICS BY GC/MS								
1,2,4,5-Tetrachlorobenzene	ND	-	ND	-	ND	-	ND	-
1,2,4-Trichlorobenzene	ND	-	ND	-	ND	-	ND	-
1,2-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-
1,3-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-
1,4-Dichlorobenzene	ND	-	ND	-	ND	-	ND	-
1,4-Dioxane	ND	-	ND	-	ND	-	ND	-
2,4,5-Trichlorophenol	ND	-	ND	-	ND	-	ND	-
2,4,6-Trichlorophenol	ND	-	ND	-	ND	-	ND	-
2,4-Dichlorophenol	ND	-	ND	-	ND	-	ND	-
2,4-Dimethylphenol	ND	-	ND	-	ND	-	ND	-
2,4-Dinitrophenol	ND	-	ND	-	ND	-	ND	-
2,4-Dinitrotoluene	ND	-	ND	-	ND	-	ND	-
2,6-Dinitrotoluene	ND	-	ND	-	ND	-	ND	-
2-Chloronaphthalene	ND	-	ND	-	ND	-	ND	-
2-Chlorophenol	ND	-	ND	-	ND	-	ND	-
2-Methylnaphthalene	ND	-	ND	-	0.027	-	ND	-
2-Methylphenol	ND	-	ND	-	ND	-	ND	-
2-Nitroaniline	ND	-	ND	-	ND	-	ND	-
2-Nitrophenol	ND	-	ND	-	ND	-	ND	-
3,3'-Dichlorobenzidine	ND	-	ND	-	ND	-	ND	-
3-Methylphenol/4-Methylphenol	ND	-	ND	-	ND	-	ND	-
3-Nitroaniline	ND	-	ND	-	ND	-	ND	-
4,6-Dinitro-o-cresol	ND	-	ND	-	ND	-	ND	-
4-Bromophenyl phenyl ether	ND	-	ND	-	ND	-	ND	-
4-Chloroaniline	ND	-	ND	-	ND	-	ND	-
4-Chlorophenyl phenyl ether	ND	-	ND	-	ND	-	ND	-
4-Nitroaniline	ND	-	ND	-	ND	-	ND	-
4-Nitrophenol	ND	-	ND	-	ND	-	ND	-
Acenaphthene	ND	-	ND	-	ND	-	ND	-
Acenaphthylene	ND	-	ND	-	ND	-	ND	-
Acetophenone	ND	-	ND	-	ND	-	ND	-
Anthracene	ND	-	ND	-	ND	-	ND	-
Benzo(a)anthracene	ND	-	ND	-	ND	-	ND	-
Benzo(a)pyrene	ND	-	ND	-	ND	-	ND	-
Benzo(b)fluoranthene	ND	-	ND	-	ND	-	ND	-
Benzo(ghi)perylene	ND	-	ND	-	ND	-	ND	-

LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
Benzo(k)fluoranthene	ND	-	ND	-	ND	-	ND	-
Benzoic Acid	ND	-	ND	-	ND	-	ND	-
Benzyl Alcohol	ND	-	ND	-	ND	-	ND	-
Biphenyl	ND	-	ND	-	ND	-	ND	-
Bis(2-chloroethoxy)methane	ND	-	ND	-	ND	-	ND	-
Bis(2-chloroethyl)ether	ND	-	ND	-	ND	-	ND	-
Bis(2-chloroisopropyl)ether	ND	-	ND	-	ND	-	ND	-
Bis(2-ethylhexyl)phthalate	ND	-	ND	-	ND	-	ND	-
Butyl benzyl phthalate	ND	-	ND	-	ND	-	ND	-
Carbazole	ND	-	ND	-	ND	-	ND	-
Chrysene	ND	-	ND	-	ND	-	ND	-
Di-n-butylphthalate	ND	-	ND	-	ND	-	ND	-
Di-n-octylphthalate	ND	-	ND	-	ND	-	ND	-
Dibenz(a,h)anthracene	ND	-	ND	-	ND	-	ND	-
Dibenzofuran	ND	-	ND	-	ND	-	ND	-
Diethyl phthalate	ND	-	ND	-	ND	-	ND	-
Dimethyl phthalate	ND	-	ND	-	ND	-	ND	-
Fluoranthene	ND	-	ND	-	ND	-	ND	-
Fluorene	ND	-	ND	-	ND	-	ND	-
Hexachlorobenzene	ND	-	ND	-	ND	-	ND	-
Hexachlorobutadiene	ND	-	ND	-	ND	-	ND	-
Hexachlorocyclopentadiene	ND	-	ND	-	ND	-	ND	-
Hexachloroethane	ND	-	ND	-	ND	-	ND	-
Indeno(1,2,3-cd)pyrene	ND	-	ND	-	ND	-	ND	-
Isophorone	ND	-	ND	-	ND	-	ND	-
n-Nitrosodi-n-propylamine	ND	-	ND	-	ND	-	ND	-
Naphthalene	ND	-	ND	-	ND	-	ND	-
NDPA/DPA	ND	-	ND	-	ND	-	ND	-
Nitrobenzene	ND	-	ND	-	ND	-	ND	-
p-Chloro-m-cresol	ND	-	ND	-	ND	-	ND	-
Pentachlorophenol	ND	-	ND	-	ND	-	ND	-
Phenanthrene	ND	-	ND	-	ND	-	ND	-
Phenol	ND	-	ND	-	ND	-	ND	-
Pyrene	ND	-	ND	-	ND	-	ND	-
Total SVOCs	-	-	-	-	0.027	-	-	-
CHLORINATED HERBICIDES BY GC								
2,4,5-T	ND							
2,4,5-TP (Silvex)	ND							
2,4-D	ND							
ORGANOCHLORINE PESTICIDES BY GC								
4,4'-DDD	ND	-	ND	-	ND	-	ND	-

LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
4,4'-DDE	ND	-	ND	-	ND	-	ND	-
4,4'-DDT	ND	-	ND	-	ND	-	ND	-
Aldrin	ND	-	ND	-	ND	-	ND	-
Alpha-BHC	ND	-	ND	-	ND	-	ND	-
Beta-BHC	ND	-	ND	-	ND	-	ND	-
Chlordane	ND	-	ND	-	ND	-	ND	-
cis-Chlordane	ND	-	ND	-	ND	-	ND	-
Delta-BHC	ND	-	ND	-	ND	-	ND	-
Dieldrin	ND	-	ND	-	ND	-	ND	-
Endosulfan I	ND	-	ND	-	ND	-	ND	-
Endosulfan II	ND	-	ND	-	ND	-	ND	-
Endosulfan sulfate	ND	-	ND	-	ND	-	ND	-
Endrin	ND	-	ND	-	ND	-	ND	-
Endrin aldehyde	ND	-	ND	-	ND	-	ND	-
Endrin ketone	ND	-	ND	-	ND	-	ND	-
Heptachlor	ND	-	ND	-	ND	-	ND	-
Heptachlor epoxide	ND	-	ND	-	ND	-	ND	-
Lindane	ND	-	ND	-	ND	-	ND	-
Methoxychlor	ND	-	ND	-	ND	-	ND	-
Toxaphene	ND	-	ND	-	ND	-	ND	-
trans-Chlordane	ND	-	ND	-	ND	-	ND	-
POLYCHLORINATED BIPHENYLS BY GC								
Aroclor 1016	ND	-	ND	-	ND	-	ND	-
Aroclor 1221	ND	-	ND	-	ND	-	ND	-
Aroclor 1232	ND	-	ND	-	ND	-	ND	-
Aroclor 1242	ND	-	ND	-	ND	-	ND	-
Aroclor 1248	ND	-	ND	-	ND	-	ND	-
Aroclor 1254	ND	-	ND	-	ND	-	ND	-
Aroclor 1260	ND	-	ND	-	ND	-	ND	-
Aroclor 1262	ND	-	ND	-	ND	-	ND	-
Aroclor 1268	ND	-	ND	-	ND	-	ND	-
PCBs, Total	ND	-	ND	-	ND	-	ND	-
NJ EXTRACTABLE PETROLEUM HYDROCARBONS (TOTAL)								
Total EPH	30.5		ND		ND		ND	
TCLP METALS BY EPA 1311								
Arsenic, TCLP	ND		ND		ND		ND	
Barium, TCLP	0.811		0.931		0.658		0.929	
Cadmium, TCLP	ND		ND		ND		ND	
Chromium, TCLP	ND		ND		ND		ND	
Lead, TCLP	ND		ND		ND		ND	
Mercury, TCLP	ND		ND		ND		ND	

LAB ID:	L2354976-07	L2354976-08	L2354976-09	L2354976-10	L2353480-07	L2353480-08	L2353480-09	L2353480-10
Selenium, TCLP	ND		ND		ND		ND	
Silver, TCLP	ND		ND		ND		ND	
TOTAL METALS								
Aluminum, Total	11200	-	13200	-	14300	-	11200	-
Antimony, Total	ND	-	ND	-	ND	-	ND	-
Arsenic, Total	2.64	-	2.25	-	0.76	-	1.36	-
Barium, Total	123	-	155	-	142	-	133	-
Beryllium, Total	0.478	-	0.618	-	0.904	-	0.737	-
Cadmium, Total	ND	-	ND	-	ND	-	ND	-
Calcium, Total	7660	-	10200	-	6130	-	3230	-
Chromium, Total	22.2	-	23.3	-	28.6	-	20.2	-
Cobalt, Total	7.41	-	8.48	-	12.8	-	10	-
Copper, Total	18.1	-	22.9	-	18.7	-	18.9	-
Iron, Total	17200	-	20000	-	26300	-	21100	-
Lead, Total	10.1	-	7.49	-	7.63	-	5.27	-
Magnesium, Total	7120	-	8460	-	10100	-	5800	-
Manganese, Total	276	-	214	-	387	-	294	-
Mercury, Total	ND	-	ND	-	ND	-	ND	-
Nickel, Total	17	-	16.7	-	22.2	-	18	-
Potassium, Total	5170	-	6500	-	7310	-	5100	-
Selenium, Total	0.514	-	0.254	-	ND	-	ND	-
Silver, Total	ND	-	ND	-	ND	-	ND	-
Sodium, Total	115	-	134	-	320	-	176	-
Thallium, Total	1.72	-	1.71	-	0.506	-	0.31	-
Vanadium, Total	30.1	-	33.4	-	40.1	-	27.2	-
Zinc, Total	56.8	-	53.5	-	63.9	-	48.9	-
GENERAL CHEMISTRY								
Chromium, Hexavalent	ND		ND		0.182		0.246	
Cyanide, Reactive	ND		ND		ND		ND	
Cyanide, Total	ND	-	ND	-	ND	-	ND	-
Paint Filter Liquid	Negative		Positive		Negative		Negative	
pH (H)	8.5		8.77		8.75		8.65	
Solids, Total	89	89	89.2	89.2	93.2	93.2	93.3	93.3
Sulfide, Reactive	ND		ND		ND		ND	
IGNITABILITY OF SOLIDS								
Ignitability	NI		NI		NI		NI	


Project Name: Crescent Manor

Address: 136-140 Croton Ave, Ossining, NY

NYSDEC BCP Site No. C360207.

Environmental Documents List

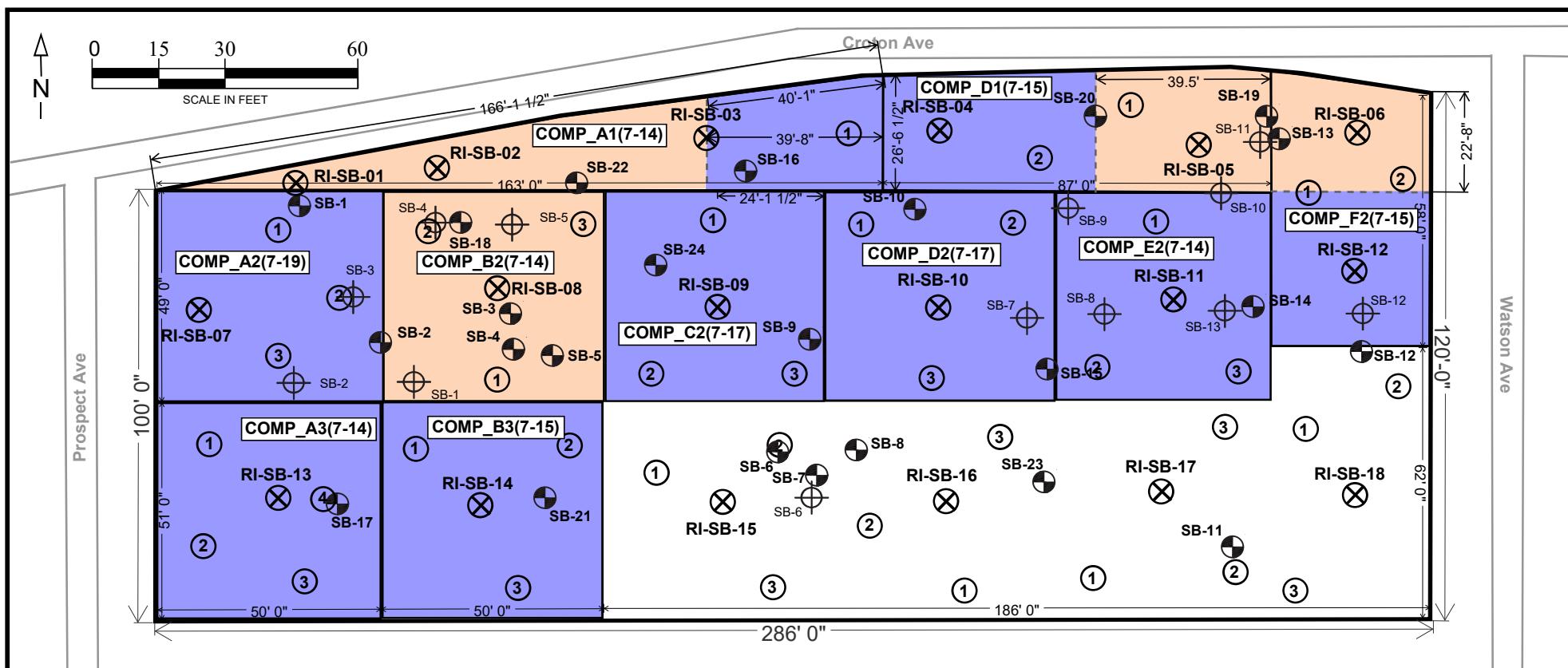
1. Phase I Environmental Site Assessment (ESA), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
2. Phase II Subsurface Investigation Report (SIR), dated November 30th, 2017 prepared by Berkshire Environmental Services & Technology, LLC
3. Phase II Environmental Site Assessment (ESA), dated November 19th, 2021 prepared by SESI Consulting Engineers
4. Remedial Investigation Work Plan (RIWP), dated August 19th 2022 prepared by SESI Consulting Engineers
5. Interim Remedial Measures Workplan (IRMWP), dated December 12th 2022, prepared by SESI Consulting Engineers
6. Waste Class (WC) Analytical Reports #L2353060, #L2353480, #L2353853, #L2354250, #L2354976, dated September 19th, 20th, 21st, 22nd, 26th 2023 prepared by Alpha Analytical
7. Remedial Action Workplan (RAWP), dated October 1st 2024, prepared by SESI Consulting Engineers
8. Remedial Investigation Report (RIR), dated October 2nd 2024, prepared by SESI Consulting Engineers

Crescent Manor

136-140 Croton Ave, Ossining NY, 10562

Material Management Plan (MMP)

Tier 1 - Shallow

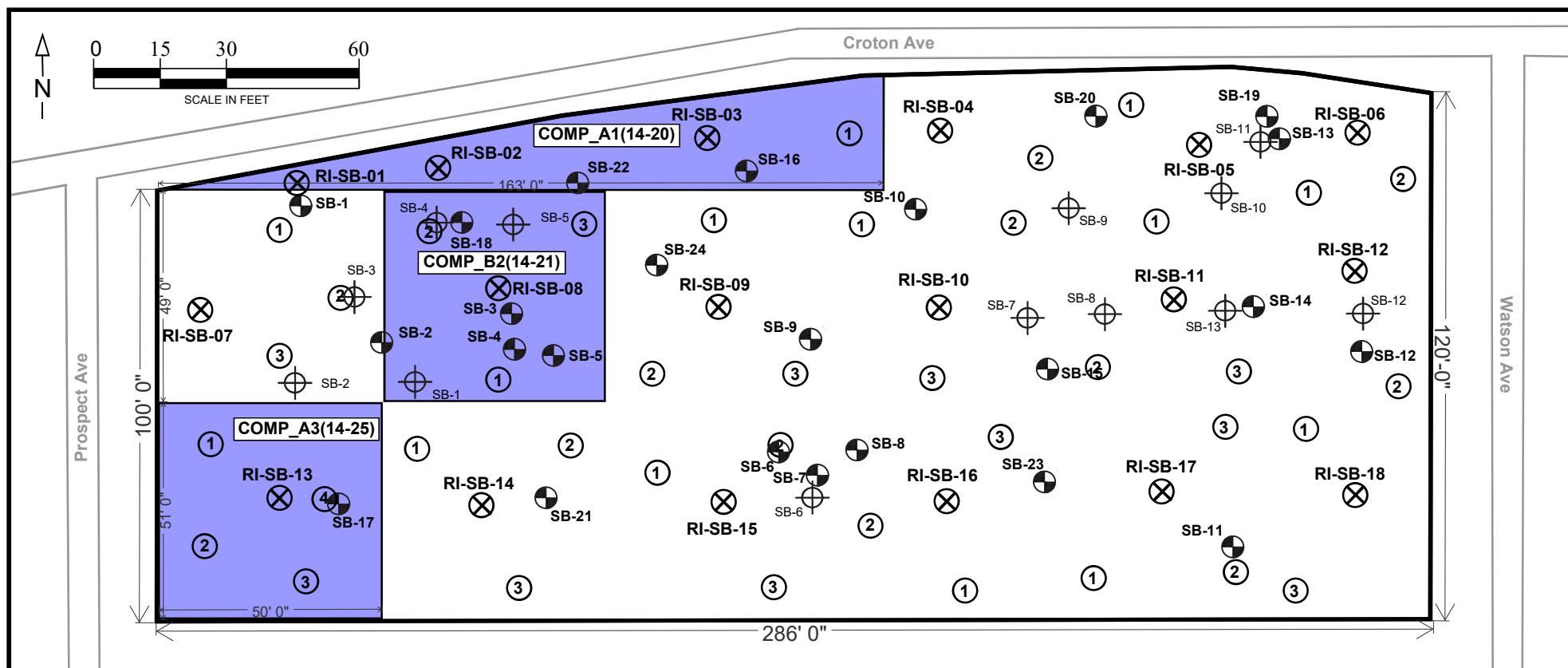

4/30/2025

Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- 2023 WC Composite Location

Targeted Facilities:

- - NJ Res (HGQ)
- Elevated
 - - MCUA & BSM
 - - MCUA *Only*



Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- 2023 WC Composite Location

Targeted Facilities:

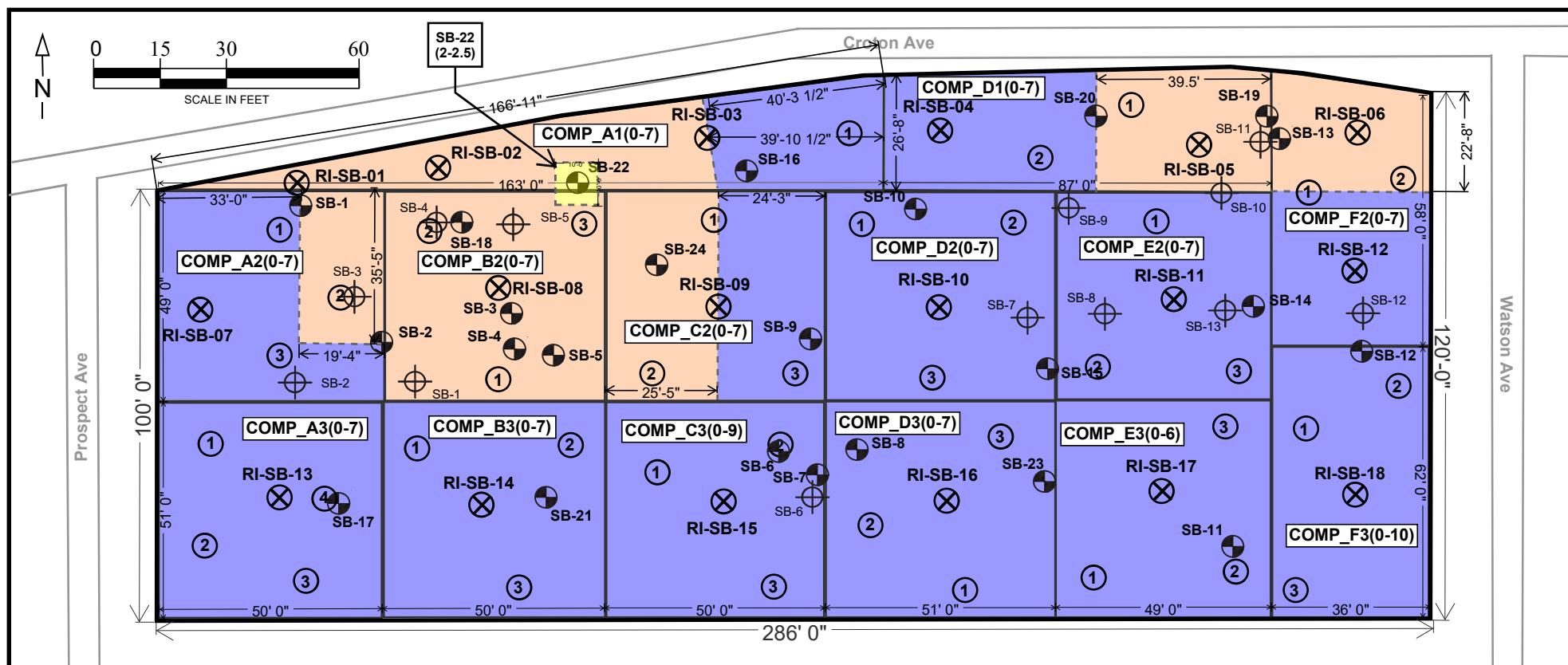
- NJ Res (HGQ)
- MCUA & BSM
- MCUA Only

Crescent Manor

136-140 Croton Ave, Ossining NY, 10562

Material Management Plan (MMP)

4/30/2025

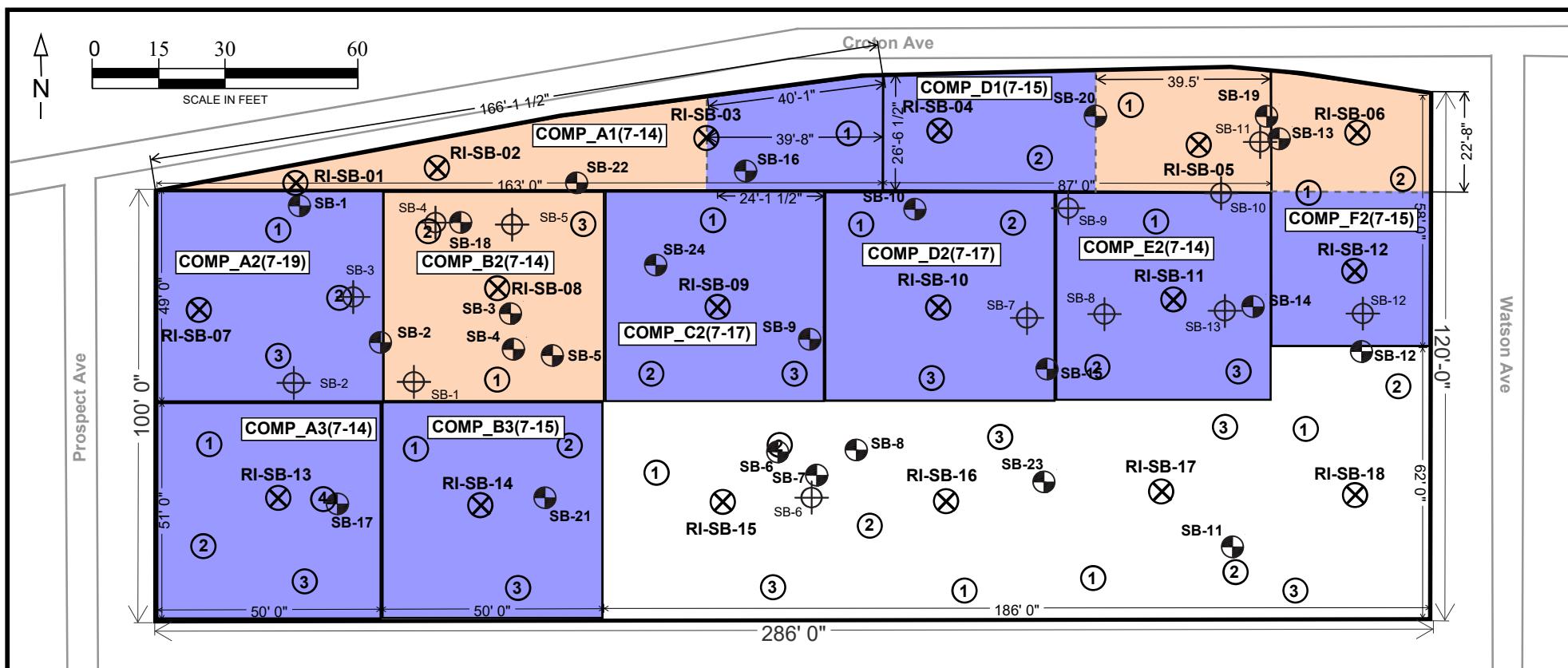

Tier 3 - Deep

Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- 2023 WC Composite Location

Targeted Facilities:

- - NJ Res (HGQ)
- Elevated
- - MCUA & BSM
- - MCUA *Only*


EARTH EFFICIENT
Crescent Manor
136-140 Croton Ave, Ossining NY, 10562
Material Management Plan (MMP)
Tier 1 - Shallow
6/16/2025

Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- (1) - 2023 WC Composite Location

Targeted Facilities:

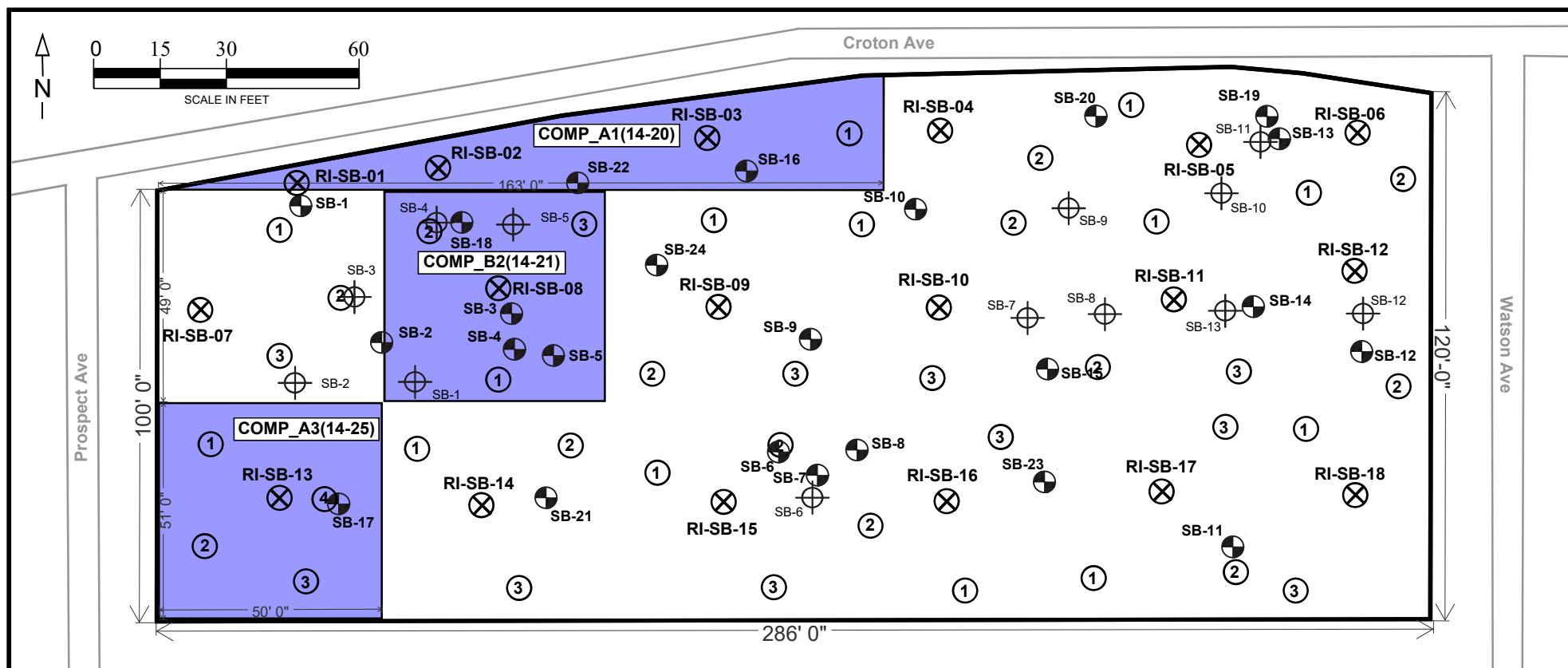
- NJ Res (HGQ)
- Elevated
- MCUA & BSM
- MCUA Only

EARTH EFFICIENT

Crescent Manor
136-140 Croton Ave, Ossining NY, 10562

Material Management Plan (MMP)
Tier 2 - Intermediate

6/16/2025


Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- ① - 2023 WC Composite Location

Targeted Facilities:

- NJ Res (HGQ)
- MCUA & BSM
- MCUA Only

Elevated

Crescent Manor

136-140 Croton Ave, Ossining NY, 10562

Material Management Plan (MMP)

6/16/2025

Tier 3 - Deep

Legend:

- Site Boundary
- WC Grid
- Buffer Zone
- 2017 BERKSHIRE INVESTIGATION
- 2021 SESI PHASE II ESA
- 2023 SESI RI Boring Location
- 2023 WC Composite Location

Targeted Facilities:

The legend consists of three colored squares with corresponding labels: a blue square for 'NJ Res (HGQ)', an orange square for 'MCUA & BSM', and a yellow square for 'MCUA Only'.

Chris Yeates
136-140 Croton Avenue LLC,
c/o MacQuesten Development LLC
438 5th Ave, Ste 100
Pelham, NY 10803

April 30th, 2025

Re: Approval Code: **HGQ007-25**
Crescent Manor (AKA Sun Valley Nursery Filling Station Site)
136-140 Croton Ave
Ossining NY, 10562
NYSDEC BCP Site No.: C360207
11,000 cubic yards (16,500 tons)

Dear Mr. Yeates,

EarthEfficient (EE) has received the environmental documentation associated with the donor source material submitted for acceptance at the HGQ facility located at 426 US-46, Belvidere, NJ 07823 (Blocks 63 & 64 / Lots 9 & 6). HGQ operates in accordance with Upper Delaware SCD Soil Erosion & Sediment Control Plan (SESC) Facility #22058-17012 and N.J.S.A. P.L.2019, c.397 / 13:1E-127.1 ("the Act"), and its associated supplemental guidelines. Together, these regulations and guidelines serve as the primary legislation for regulating soil and fill recycling services in New Jersey and define 'Non-Restricted Soil and Fill Recyclable Material.'

EE provides professional third-party environmental oversight for HGQ to ensure regulatory compliance. EE reviews and evaluates all provided documentation associated with the proposed donor source material for beneficial use pursuant to the facility-specific plans in addition to all applicable local, state and federal regulations, as outlined in the Material Acceptance Plan (MAP).

Acceptable Import Material includes Non-Restricted Soil and Fill Recyclable Materials defined as non-putrescible, non-water soluble, non-decomposable, inert aggregate substitute, including rock, soil, broken or crushed brick, block, concrete, glass and/or clay or ceramic products, or any combination thereof, generated from land clearing, excavation, demolition, or redevelopment activities that are excluded from the definition of Solid Waste under N.J.A.C. 7:26-1.6(a)6. Acceptable Import Material must not contain concentrations of one or more contaminants exceeding the Residential or Non-Residential Soil Remediation Standards for the soil ingestion-dermal and soil inhalation exposure pathways, whichever is more stringent, as set forth at N.J.A.C. 7:26D.

EE has reviewed the following supporting documentation provided by MacQuesten Development LLC:

- Phase I Environmental Site Assessment (ESA) prepared by Berkshire Environmental Services & Technology, LLC, dated November 30, 2017
- Phase II Subsurface Investigation Report (SIR) prepared by Berkshire Environmental Services & Technology, LLC, dated November 30, 2017
- Phase II Environmental Site Assessment (ESA) prepared by SESI Consulting Engineers, dated November 19, 2021
- Remedial Investigation Work Plan (RIWP) prepared by SESI Consulting Engineers, dated August 19, 2022
- Interim Remedial Measures Workplan (IRMWP) prepared by SESI Consulting Engineers, dated December 12, 2022
- Waste Class (WC) Analytical Reports #L2353060, #L2353480, #L2353853, #L2354250, #L2354976 prepared by Alpha Analytical, dated September 19, 20, 21, 22, 26, 2023
- Remedial Action Workplan (RAWP) prepared by SESI Consulting Engineers, dated October 1, 2024
- Remedial Investigation Report (RIR) prepared by SESI Consulting Engineers, dated October 2, 2024
- Material Acceptance Application Form executed by MacQuesten Construction Management LLC, dated April 17, 2025

Based on the review of the supporting documentation, the subject material represented by the following twenty-five (25) Composite and associated VOC Grab samples is suitable for acceptance:

<u>Composite Samples:</u>			
1	COMP_A1(0-7) *	14	COMP_C3(0-9)
2	COMP_A1(7-14) *	15	COMP_D1(0-7) *
3	COMP_A1(14-20)	16	COMP_D1(7-15) *
4	COMP_A2(0-7) *	17	COMP_D2(0-7)
5	COMP_A2(7-19)	18	COMP_D2(7-17)
6	COMP_A3(0-7)	19	COMP_D3(0-7)
7	COMP_A3(7-14)	20	COMP_E2(0-7)
8	COMP_A3(14-25)	21	COMP_E2(7-14)
9	COMP_B2(14-21)	22	COMP_E3(0-6)
10	COMP_B3(0-7)	23	COMP_F2(0-7) *
11	COMP_B3(7-15)	24	COMP_F2(7-15) *
12	COMP_C2(0-7) *	25	COMP_F3(0-10)
13	COMP_C2(7-17)		

Please note that the asterisks (*) denote cells with non-approved material within them. These non-approved buffer zones must be segregated and shipped elsewhere.

The sampling of the subject material was performed in accordance with the NJDEP Guidance, including the N.J.A.C. 7:26E-2 Technical Requirements and the Field Sampling Procedures Manual (FSPM).

The Acceptable Import Material shall be approved under approval code No. **HGQ007-25**.

Please note that any material received that does not meet the physical, visual or olfactory acceptance criteria and specifications will be rejected and returned to the site of origin. All associated transportation fees and facility handling costs that may be accrued due to non-acceptance and diversion of such material will be the responsibility of the client. HGQ holds both the generator and client responsible for providing accurate information in relation to the source material. Additional QA/QC analysis may be performed at the facility's discretion.

The following non-analytical factors will apply:

Types of Acceptable Import Material:	Material Size Limitation:	Moisture Content Limitation:	Treated & Untreated Wood Limitation:	Coal/Ash/Slag /Cinder Limitation:	Types of Unacceptable Import Material:
Fill Material excluded from the definition of Solid Waste under N.J.A.C. 7:26 1.6(a)6.	12"	No Free-Standing Liquid	<1%	0%	MSW, Malodorous Material, Deleterious Material, Industrial or Hazardous Waste

Based on the provided information, the 11,000 cubic yards of Acceptable Import Material is approved for ongoing quarry reclamation of the HGQ facility.

Should you have any questions or comments, please feel free to call (631) 209-4245.

Sincerely,

Ethan Szerlip, LEED GA
Facility Compliance Manager
EarthEfficient LLC
✉ ethan@earthefficient.com
📞 (631) 209-4245

(03/24)

NOTIFICATION OF FILL TRANSFER FOR REUSE**OFFICIAL USE ONLY****DATE RECEIVED**

GENERATOR NUMBER**DESTINATION NUMBER****STAFF INITIALS**

6 NYCRR Part 360.13 requires notification to the Department for the transfer of excavated material for use as fill in the following cases:

- At least five days in advance of transfers of Fill Types 2, 3, 4 and 5 (generated in, imported to, or relocated within the City of New York).
- At least five days in advance of transfers of Fill Type 4 and Fill Type 5 anywhere in the State of New York.

Note this form need only be submitted **once** per generator per destination site, i.e., for the **first** planned load greater than 10 cubic yards transferred from site of excavation directly to a site of reuse. Notification to the Department is **not** required when the destination is a facility authorized under 6 NYCRR Part 361-5; however, the facility may request information required by this form as part of its waste control plan.

1. Generating Site Location and Contact**Project Name:**

**Location of
Generating
Site:**

Street Address**City/Town**

County**Zip Code****Contact:**

Last**First****M.I.****Office Phone:**

() _____**Mobile Phone:**

() _____**E-mail**

**Company
Name:**

**Company
Address:**

Street Address

City**State****Zip****2. Fill Generated at Remediation Sites**

a. Is the fill generated from a site being remediated pursuant to a program administered by the Department or EPA?

Yes No

b. If Yes to question 2a, do you have approval from the Department or EPA to reuse this material at the proposed destination?

Yes No

If No to question 2b, contact the Department prior to transferring fill to the destination site.

NOTIFICATION OF FILL TRANSFER FOR REUSE

3. Generating Site Information

a. Overall quantity of fill this project will generate _____ Cubic yards

b. Indicate fill classifications found on the site:
 Fill Type 2 Fill Type 3 Fill Type 4 Fill Type 5 Other

c. Quantity of fill covered under this notification _____ Cubic yards

d. Indicate fill classifications proposed to be reused under this notification:
Fill Type 2 Fill Type 3 Fill Type 4 Fill Type 5 Other

e. Have other notifications for this project been submitted to the Department? Yes No
If yes, indicate destination region(s). _____

f. Will additional notifications be sent in the future? Yes No

g. Estimated start date and end date of overall project:
(Start Date) _____ (End Date) _____

h. Estimated start and end date of fill transfer for reuse under this notification:
(Start Date) _____ (End Date) _____

4. Fill Physical Characteristics

Describe Fill

Provide a description of the fill, including estimated composition by percent volume of soil, rock, concrete, brick, ash, cinders, slag, etc.). If more space is needed, attach an additional sheet.

5. Qualified Environmental Professional

Contact:

Last _____ First _____ M.I. _____

Office Phone: () _____ Mobile Phone: () _____

E-mail: _____

Company Name: _____

Company Address: _____

Street Address _____

City _____ State _____ Zip _____

NOTIFICATION OF FILL TRANSFER FOR REUSE

6. Destination Site Location and Contact

Project Name:	<hr/>		
Location of Destination Site:	<i>Street Address</i>	<i>City/Town</i>	
	<i>County</i>		<i>Zip Code</i>
Contact:	<i>Last</i>	<i>First</i>	<i>M.I.</i>
Phone:	() _____	Mobile Phone:	() _____
E-mail:	<hr/>		
Company Name:	<hr/>		
Company Address:	<i>Street Address</i>	<i>City</i>	<i>State</i>
			<i>Zip</i>

7. Destination Site Information

a. Quantity of fill required for this project?	<hr/>	Cubic Yards		
b. Type(s) of fill to be used (check all that apply):	 			
Fill Type 2	Fill Type 3	Fill Type 4	Fill Type 5	<input checked="" type="checkbox"/> Other
c. For Fill Types 4 and 5, has a local building permit or other municipal authorization been issued for this project that includes need for fill?			<input type="checkbox"/> Yes	No
d. Are additional fill transfer notifications to be submitted for this project?			<input type="checkbox"/> Yes	No
e. Describe the area(s) on the site where this fill is to be used:				

Please note that both the generator and the receiver of the fill must retain records of fill quantities, with analytical data, for a minimum of three years after fill is removed or received, as applicable. To demonstrate compliance with applicable requirements of this notification, a log of all loads of fill and corresponding tracking documents should be maintained as part of these records. The Department reserves the right to inspect any site of generation or placement of fill.

Transfer of fill that originates in the City of New York, or Fill Types 4 or 5 generated outside of New York City, is also subject to Waste Transporter requirements in 6 NYCRR Part 364.

NOTIFICATION OF FILL TRANSFER FOR REUSE

8. Certification by Qualified Environmental Professional

I certify, under penalty of law that the data and other information provided in this notification have been prepared under my direction and supervision in compliance with the system designed to ensure that qualified personnel properly and accurately gather and evaluate this information. I am aware that any false statement I make in this notification is punishable pursuant to Section 71-2703(2) of the Environmental Conservation Law and Section 210.45 of the Penal Law.

Name: _____

Last Name *First Name* *M.I.*

Signature:

Date

License Information:

Number *State*

Professional: Engineer Geologist Other (see 6 NYCRR 360.2(b)(225))

(Engineer or Geologist seal above)

In the event the Qualified Environmental Professional identified in Item 5 above is not a Professional Engineer or Geologist licensed in New York State, the QEP's basis for credential must be attached to this form.

All notifications must be sent to the Regional Office of the Department in which the destination is located (see <http://www.dec.ny.gov/about/558.html>).

Pursuant to 6 NYCRR Subdivision 360.13(c), all notifications must be made on forms and in a manner acceptable to the Department. Before submitting this notification, please ensure this form is complete and all supporting documentation is formatted in a manner acceptable to the Department as recommended in the checklist below.

- Completed Form.** All fields of the application are complete, including the certification.
- Analytical Data Comparison.** Analytical data is compared with the following, for the respective fill type for the receiving site, and exceedances clearly identified as follows (see also 6 NYCRR Part 360.13(f)):
 - Fill Type 2: protection of groundwater and residential soil cleanup objectives found in 6 NYCRR Part 375, Section 375-6.8.
 - Fill Type 3: Same as Fill Type 2.
 - Fill Type 4: In addition to Fill Type 2 requirements, benzo(a) pyrene equivalent (except in Nassau and Suffolk Counties)
 - Fill Type 5: In addition to restricted use requirements, commercial soil cleanup objectives for metals found in 6 NYCRR Part 375, Section 375-6.8.

Summary Table - Recommended Formatting. Summary tables are attached that show standards and analytes on the left; sample IDs, depths and locations on the top; and detection limits are indicated for those constituents that are listed as 'non-detects'. The summary table should list all analytes. All data for the generating site should be provided, even for material not to be transferred, as part of this notification.

(03/24)

NOTIFICATION OF FILL TRANSFER FOR REUSE

OFFICIAL USE ONLY	6 NYCRR Part 360.13 requires notification to the Department for the transfer of excavated material for use as fill in the following cases:
DATE RECEIVED	
GENERATOR NUMBER	
DESTINATION NUMBER	
STAFF INITIALS	
<p>Note this form need only be submitted once per generator per destination site, i.e., for the first planned load greater than 10 cubic yards transferred from site of excavation directly to a site of reuse. Notification to the Department is not required when the destination is a facility authorized under 6 NYCRR Part 361-5; however, the facility may request information required by this form as part of its waste control plan.</p>	

1. Generating Site Location and Contact

Project Name:	Crescent Manor (AKA Sun Valley Nursery Filling Station Site)		
Location of Generating Site:	136-140 Croton Ave	Ossining	
	Street Address	City/Town	
	Westchester County	10562	
	County	Zip Code	
Contact:	Digaetano	Mike	
	Last	First	M.I.
Office Phone:	(631) 209-4245	Mobile Phone:	(718) 702-3574
E-mail	info@earthefficient.com		
Company Name:	EarthEfficient LLC		
Company Address:	30 West Main Street		
	Street Address		
	Riverhead	NY	11901
	City	State	Zip

2. Fill Generated at Remediation Sites

- a. Is the fill generated from a site being remediated pursuant to a program administered by the Department or EPA? Yes No

- b. If Yes to question 2a, do you have approval from the Department or EPA to reuse this material at the proposed destination? Yes No
If No to question 2b, contact the Department prior to transferring fill to the destination site.

NOTIFICATION OF FILL TRANSFER FOR REUSE

3. Generating Site Information

a. Overall quantity of fill this project will generate 13,000 Cubic yards

b. Indicate fill classifications found on the site:
 Fill Type 2 Fill Type 3 Fill Type 4 Fill Type 5 Other

c. Quantity of fill covered under this notification 6,666 Cubic yards

d. Indicate fill classifications proposed to be reused under this notification:
 Fill Type 2 Fill Type 3 Fill Type 4 Fill Type 5 Other

e. Have other notifications for this project been submitted to the Department? Yes No
If yes, indicate destination region(s). _____

f. Will additional notifications be sent in the future? Yes No

g. Estimated start date and end date of overall project: May 2025
(Start Date) October 2025
(End Date)

h. Estimated start and end date of fill transfer for reuse under this notification: July 2025
(Start Date) October 2025
(End Date)

4. Fill Physical Characteristics

Describe Fill

coarse to fine sands with varying amounts of coarse to fine gravel, silts and clays

Provide a description of the fill, including estimated composition by percent volume of soil, rock, concrete, brick, ash, cinders, slag, etc.). If more space is needed, attach an additional sheet.

5. Qualified Environmental Professional

Contact:	Raposo	Anthony	
	Last	First	M.I.
Office Phone:	(973) 808-9050	Mobile Phone:	(973) 518-3278
E-mail:	anthony.raposo@sesi.org		
Company Name:	SESI Consulting Engineers		
Company Address:	959 Route 46E, Floor 3, Suite 300		
	Street Address		
	Parsippany, NJ 07054		
	City	State	Zip

NOTIFICATION OF FILL TRANSFER FOR REUSE

6. Destination Site Location and Contact

Project Name:	Debby Lane (Lot #6 - Pheasant Run Subdivision)		
Location of Destination Site:	Debby Lane	Pawling	
Street Address			
Dutchess	12564		
County	Zip Code		
Contact:	Cervino	James	
Last	First	M.I.	
Phone:	(917) 620-5287	Mobile Phone:	() _____
E-mail:	jamescervino@gmail.com		
Company Name:	Restoration & Conservation Advisement LLC		
Company Address:	243 Hillcrest Lane		
Street Address			
Oyster Bay	NY	11771	
City	State	Zip	

7. Destination Site Information

a. **Quantity of fill required for this project?** 6,666 **Cubic Yards**

b. **Type(s) of fill to be used (check all that apply):**

Fill Type 2 Fill Type 3 Fill Type 4 Fill Type 5 Other

c. **For Fill Types 4 and 5, has a local building permit or other municipal authorization been issued for this project that includes need for fill?** Yes No

d. **Are additional fill transfer notifications to be submitted for this project?** Yes No

e. **Describe the area(s) on the site where this fill is to be used:**

For use as cover soil and backfill material.

Please note that both the generator and the receiver of the fill must retain records of fill quantities, with analytical data, for a minimum of three years after fill is removed or received, as applicable. To demonstrate compliance with applicable requirements of this notification, a log of all loads of fill and corresponding tracking documents should be maintained as part of these records. The Department reserves the right to inspect any site of generation or placement of fill.

Transfer of fill that originates in the City of New York, or Fill Types 4 or 5 generated outside of New York City, is also subject to Waste Transporter requirements in 6 NYCRR Part 364.

NOTIFICATION OF FILL TRANSFER FOR REUSE

8. Certification by Qualified Environmental Professional

I certify, under penalty of law that the data and other information provided in this notification have been prepared under my direction and supervision in compliance with the system designed to ensure that qualified personnel properly and accurately gather and evaluate this information. I am aware that any false statement I make in this notification is punishable pursuant to Section 71-2703(2) of the Environmental Conservation Law and Section 210.45 of the Penal Law.

Name:	Raposo	Anthony	
	Last Name	First Name	M.I.
Signature:			
	7/17/2025		
License Information:	105387	NY	
	Number	State	
Profession:	<input checked="" type="checkbox"/> Engineer <input type="checkbox"/> Geologist <input type="checkbox"/> Other (see 6 NYCRR 360.2(b)(225))		

(Engineer or Geologist seal above)

In the event the Qualified Environmental Professional identified in Item 5 above is not a Professional Engineer or Geologist licensed in New York State, the QEP's basis for credential must be attached to this form.

All notifications must be sent to the Regional Office of the Department in which the destination is located (see <http://www.dec.ny.gov/about/558.html>).

Pursuant to 6 NYCRR Subdivision 360.13(c), all notifications must be made on forms and in a manner acceptable to the Department. Before submitting this notification, please ensure this form is complete and all supporting documentation is formatted in a manner acceptable to the Department as recommended in the checklist below.

- Completed Form.** All fields of the application are complete, including the certification.
- Analytical Data Comparison.** Analytical data is compared with the following, for the respective fill type for the receiving site, and exceedances clearly identified as follows (see also 6 NYCRR Part 360.13(f)):
 - Fill Type 2: protection of groundwater and residential soil cleanup objectives found in 6 NYCRR Part 375, Section 375-6.8.
 - Fill Type 3: Same as Fill Type 2.
 - Fill Type 4: In addition to Fill Type 2 requirements, benzo(a) pyrene equivalent (except in Nassau and Suffolk Counties)
 - Fill Type 5: In addition to restricted use requirements, commercial soil cleanup objectives for metals found in 6 NYCRR Part 375, Section 375-6.8.
- Summary Table - Recommended Formatting.** Summary tables are attached that show standards and analytes on the left; sample IDs, depths and locations on the top; and detection limits are indicated for those constituents that are listed as 'non-detects'. The summary table should list all analytes. All data for the generating site should be provided, even for material not to be transferred, as part of this notification.

Anthony Raposo, PE, LSRP

From: Squire, Michael H (DEC) <Michael.Squire@dec.ny.gov>
Sent: Tuesday, June 17, 2025 1:35 PM
To: Anthony Raposo, PE, LSRP
Cc: Fuad Dahan, PE, LSRP; Chris Yeates; Doug Verdi; Brendan Smith
Subject: RE: Sun Valley Nursery Filling Station | SESI Project 12060

CAUTION !! This E-Mail originated from outside the organization. Confirm it is from a legitimate E-Mail address. If uncertain - do not click links or open attachments unless you contact the sender and know the content is safe.

Anthony,

I find the use of this material acceptable, as no compounds exceeded unrestricted use SCOs in all discrete and composite samples. I'll save this email chain and the waste characterization package in our servers as a record.

Thanks,
Michael

From: Anthony Raposo, PE, LSRP <anthony.raposo@sesi.org>
Sent: Tuesday, 17 June, 2025 11:01
To: Squire, Michael H (DEC) <Michael.Squire@dec.ny.gov>
Cc: fd@sesi.org; Chris Yeates <c_yeates@macquesten.com>; Doug Verdi <doug@verdiconstruction.com>; Brendan Smith <brendan@verdibuilds.com>
Subject: RE: Sun Valley Nursery Filling Station | SESI Project 12060

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Michael,

Following up on this. The lab data can be found in this link: [12060_Waste Characterization](#)

Thank you,

Anthony

Anthony Raposo, PE, LSRP

Project Engineer

anthony.raposo@sesi.org

862-392-0112

973-518-3278

959 Route 46E Floor 3, Suite 300,
Parsippany, NJ 07054

This electronic mail transmission is privileged and confidential and is intended only for the review of the party to whom it is addressed. If you have received this transmission in error, please immediately return it to the sender. Any use, distribution, or forwarding of this e-mail is strictly prohibited. SESI Consulting Engineers will not be responsible for any loss or damage arising in any way from the use of this email. Although this e-mail and any attachments are believed to be free of any virus or other defect that might affect any computer system into which it is received and opened it is the responsibility of the recipient to ensure that it is safe for use.

From: Anthony Raposo, PE, LSRP

Sent: Thursday, June 12, 2025 5:18 PM

To: Squire, Michael H (DEC) <Michael.Squire@dec.ny.gov>

Cc: Fuad Dahan, PE, LSRP <fd@sesi.org>; Chris Yeates <c_yeates@macquesten.com>; Doug Verdi <doug@verdiconstruction.com>; Brendan Smith <brendan@verdibuilds.com>

Subject: RE: Sun Valley Nursery Filling Station | SESI Project 12060

Michael,

10,000 tons. Yes, there were discrete samples. The samples were not analyzed for PFAS.

Thank you,

Anthony

From: Squire, Michael H (DEC) <Michael.Squire@dec.ny.gov>

Sent: Thursday, June 12, 2025 2:01 PM

To: Anthony Raposo, PE, LSRP <anthony.raposo@sesi.org>

Cc: Fuad Dahan, PE, LSRP <fd@sesi.org>; Chris Yeates <c_yeates@macquesten.com>; Doug Verdi <doug@verdiconstruction.com>; Brendan Smith <brendan@verdibuilds.com>

Subject: RE: Sun Valley Nursery Filling Station | SESI Project 12060

CAUTION !! This E-Mail originated from outside the organization. Confirm it is from a legitimate E-Mail address. If uncertain - do not click links or open attachments unless you contact the sender and know the content is safe.

How much material is planned to be exported to the Debby Lane property, and were there discrete samples? I'll need the results for the 17 composite samples and enough discrete samples to meet DER-10 Table 5.4(e)10 requirements, and analyzed for the standard set of compounds in addition to VOCs, so SVOCs, metals, pesticides, PCBs, and PFAS.

Thanks,
Michael

From: Anthony Raposo, PE, LSRP <anthony.raposo@sesi.org>

Sent: Wednesday, 11 June, 2025 17:55

To: Squire, Michael H (DEC) <Michael.Squire@dec.ny.gov>
Cc: fd@sesi.org; Chris Yeates <c_yeates@macquesten.com>; Doug Verdi <doug@verdiconstruction.com>; Brendan Smith <brendan@verdibuilds.com>
Subject: Sun Valley Nursery Filling Station | SESI Project 12060

ATTENTION: This email came from an external source. Do not open attachments or click on links from unknown senders or unexpected emails.

Michael,

Please find attached letter from Restoration & Conservation Advisement LLC regarding the import of soil from the Sun Valley Nursery Filling Station site. The receiving facility would be using the material for residential uses. Please let me know if you find this acceptable.

Thank you,

Anthony

Anthony Raposo, PE, LSRP

Project Engineer

 anthony.raposo@sesi.org

 862-392-0112

 973-518-3278

 959 Route 46E Floor 3, Suite 300,
Parsippany, NJ 07054

This electronic mail transmission is privileged and confidential and is intended only for the review of the party to whom it is addressed. If you have received this transmission in error, please immediately return it to the sender. Any use, distribution, or forwarding of this e-mail is strictly prohibited. SESI Consulting Engineers will not be responsible for any loss or damage arising in any way from the use of this email. Although this e-mail and any attachments are believed to be free of any virus or other defect that might affect any computer system into which it is received and opened it is the responsibility of the recipient to ensure that it is safe for use.

Restoration & Conservation Advisement LLC

QEP; Dr. James M. Cervino
OSHA HAZMAT CERTIFIED
BIC# -505037
917-620-5287

Chris Yeates
136-140 Croton Avenue LLC,
c/o MacQuesten Development LLC
438 5th Ave, Ste 100
Pelham, NY 10803

May 22-2025

Re: **Debby Lane Acceptance Letter**
Crescent Manor (AKA Sun Valley Nursery Filling Station Site)
136-140 Croton Ave
Ossining NY, 10562
NYSDEC BCP Site No.: C360207
Approved Quantity: 6,666 cubic yards (10,000 tons)

Dear Mr. Yeates,

The Debby Lane (Lot #6 – Pheasant Run Subdivision) project, located in Pawling, Dutchess County, NY, requires the importation of clean fill to support site development, including construction of a new residence, driveway, sanitary sewer disposal system (SSDS), well, and on-site material storage.

The Debby Lane site operates under a Town of Pawling Environmental Permit, Building Permit, Erosion and Sediment Control Plan, and NYSDEC SPDES General Permit. As the fill will be used in a residential context (non-agricultural), all imported material must meet Fill Type 1 (F1) or Fill Type 2 (F2) criteria in accordance with 6 NYCRR NYSDEC Part 360 Table 2, and must satisfy the lower of the Soil Cleanup Objectives (SCOs) for Residential Use or Protection of Groundwater as per 6 NYCRR Part 375-6.8(b).

Restoration & Conservation Advisement Group LLC has been contracted to provide independent third-party environmental oversight on behalf of the site owners, John & Melissa Buckner. We have received the environmental documentation associated with the proposed donor source material.

The following supporting documentation has been reviewed:

- Phase I Environmental Site Assessment (ESA) prepared by Berkshire Environmental Services & Technology, LLC, dated November 30, 2017
- Phase II Subsurface Investigation Report (SIR) prepared by Berkshire Environmental Services & Technology, LLC, dated November 30, 2017
- Phase II Environmental Site Assessment (ESA) prepared by SESI Consulting Engineers, dated November 19, 2021

- Remedial Investigation Work Plan (RIWP) prepared by SESI Consulting Engineers, dated August 19, 2022
- Interim Remedial Measures Workplan (IRMWP) prepared by SESI Consulting Engineers, dated December 12, 2022
- Waste Class (WC) Analytical Reports #L2353060, #L2353480, #L2353853, #L2354250, #L2354976 prepared by Alpha Analytical, dated September 19, 20, 21, 22, 26, 2023
- Remedial Action Workplan (RAWP) prepared by SESI Consulting Engineers, dated October 1, 2025
- Remedial Investigation Report (RIR) prepared by SESI Consulting Engineers, dated October 2, 2025

Based on the review of the supporting documentation, the subject material represented by the following seventeen (17) composite samples and their associated VOC grab samples are deemed suitable for import:

Composite Samples:			
1	COMP_A1(14-20)	10	COMP_C2(7-17)
2	COMP_A2(0-7)	11	COMP_C3(0-9)
3	COMP_A2(7-19)	12	COMP_D2(0-7)
4	COMP_A3(0-7)	13	COMP_D2(7-17)
5	COMP_A3(7-14)	14	COMP_D3(0-7)
6	COMP_A3(14-25)	15	COMP_E2(7-14)
7	COMP_B3(0-7)	16	COMP_E3(0-6)
8	COMP_B3(7-15)	17	COMP_F3(0-10)
9	COMP_C2(0-7)		

Any material received that deviates from the characteristics represented in the documentation will be rejected and returned to the point of origin. The generator will be responsible for all associated transportation and handling costs.

Based on this review, 10,000 tons of clean fill is approved for import to the Debby Lane site.

If you have any questions or need further information, please don't hesitate to contact me.

Sincerely,

Signature Owner: John Becker
 Print Owner: John Becker
 Phone # Owner: 845-372-1612

Signature Consultant

James M Cervino

Dr. James M Cervino: 917-620-5287

3249 Richmond Terrace
P.O. Box 030312
Staten Island, NY 10303-0312
Telephone (718) 981-4600
Fax (718) 816-4518
www.cwofny.com

PROFILE APPROVAL

May 30, 2025

INNOVATIVE RECYCLING TECH, INC
690 N. Queens Avenue
Lindenhurst, NY 11757
Attn: Lisa Baldwin

Generator:

MACQUESTON DEVELOPMENT, LLC
136-140 Croton Ave
136-140 Croton Avenue
Ossining, NY 10562

Name of waste: Oily Water

The approval number for this waste stream is: **47-826**

The above referenced waste stream has been approved based on information provided by you on the Generator's Waste Profile Sheet. The waste characteristics must meet all parameters as indicated on the waste profile form. Clean Water reserves the right to reject shipments arriving at the facility due to treatability, physical or chemical characteristics.

Clean Water of New York, Inc. is a fully permitted and insured NYS DEC and USCG approved facility with the authorization and capacity to accept this material.

Please use the approval code on all documentation accompanying the loads.

Please call the facility to schedule a delivery of the material.

Sincerely,

Ralph Duca
President
Clean Water of New York, Inc.

PERMIT
Under the Environmental Conservation Law (ECL)

Permittee and Facility Information

Permit Issued To:

CLEAN WATER OF NEW YORK INC
3249 RICHMOND TER
PO BOX 030312
STATEN ISLAND, NY 10303-0312
(718) 981-4600

Facility:

CLEAN WATER OF NEW YORK WASTE OIL
REPROCESSING AND STORAGE FACILITY
3249 RICHMOND TER
STATEN ISLAND, NY 10303-0312

Facility Location: in RICHMOND COUNTY **Village:** Staten Island

Facility Principal Reference Point: NYTM-E: 570.505 NYTM-N: 4499.215

Latitude: 40°38'26.8" Longitude: 74°09'58.3"

Project Location: 3249 Richmond Terrace, Staten Island, NY 10303-0312

Authorized Activity: Operation of a waste oil reprocessing and storage facility with the following throughput limits:

- 1) Reprocessed recovered fuel oil: 9,000,000 gallons per year;
- 2) Tank bottom sludge and treatment residuals: 1,000 cubic yards per year; and
- 3) Effluent discharges from treatment of tank-cleaning and other oily wastewaters: 250 gallons per minute.

Permit Authorizations

Solid Waste Management - Under Article 27, Title 7

Permit ID 2-6401-00065/00003

Renewal

Effective Date: 5/23/2023

Expiration Date: 5/22/2028

NYSDEC Approval

By acceptance of this permit, the permittee agrees that the permit is contingent upon strict compliance with the ECL, all applicable regulations, and all conditions included as part of this permit.

Permit Administrator: STEPHEN A WATTS, Regional Permit Administrator

Address: NYSDEC Region 2 Headquarters
47-40 21st St
Long Island City, NY 11101 -5401

Authorized Signature:

Date 05/23/2023

Stephen A Watts III

Digitally signed by Stephen A
Watts III
Date: 2023.05.25 13:09:29 -04'00'

Permit Components

SOLID WASTE MANAGEMENT PERMIT CONDITIONS

GENERAL CONDITIONS, APPLY TO ALL AUTHORIZED PERMITS

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

SOLID WASTE MANAGEMENT PERMIT CONDITIONS

1. Applicable DEC Regulations All work and activities authorized by this permit shall comply with all of the applicable provisions of 6 NYCRR Part 360 (Solid Waste Management Regulations) and 6NYCRR Subpart 374-2 (Standards for the Management of Used Oil). By acceptance of this permit, the Permittee agrees that this permit is contingent upon strict compliance with the ECL, all applicable regulations, and the General Conditions and Special Conditions included herein.

2. Conformance With Plans All activities authorized by this permit must be in strict conformance with the permit application, plans and materials prepared by D&B Engineers and Architects consulting engineers for Clean Water of NY, Inc. on the dates as specified in permit condition "Conformance with Plans - Addenda".

3. Conformance with Plans - Addenda In addition to plans referenced in the Condition titled "Conformance with Plans," the activities authorized by this permit must be in strict conformance with the following approved plans and/or submissions made as part of the permit application:

Clean Water of NY Oil Reprocessing and Storage Facility Staten Island, New York
Application For Renewal of 6 NYCRR Part 360 Permit to Operate, dated as revised December 2022, including:

- a. Clean Water of New York, Integrated Contingency Plan, dated July 2022.
- b. Clean Water of New York Vessel Response Plan Tank Barges, dated as Revised July 2022

However, if any portion of such documents conflict with any permit provision, that contrary portion shall not supersede the permit provision.

4. Minor Permit Modifications (Facility Alterations not Requiring Permit Modifications)

a. Except as provided in subparagraph (b) and (c) of this Special Condition, any proposed change, including but not limited to one that would: (i) affect the hours of facility operation; or (ii) increase the volume(s) or vary the type(s) of any waste accepted at the facility; or (iii) increase the parking or queuing of vehicles associated with the subject facility; or (iv) increase the physical extent of the facility; or (v) increase the transportation, noise, odor, dust, or other impact of the facility, requires prior written authorization from the Department in the form of a new permit or modification of the existing permit. No such change is to be initiated unless and until first obtaining such permit or permit modification.

- b. Any proposal for a change that would be a minor alteration of the facility's physical plant or its operation may be submitted to the Department in accordance with the procedure in 3c. below. All proposals are subject to Department approval before their initiation.
- c. No less than 30 days before the Permittee's proposed initiation of any minor physical or operational change(s) to the subject facility, the Permittee must provide written notice, in duplicate, to the Regional Solid Materials Engineer (the DEC Engineer) and the Regional Permit Administrator. Such notice must include the following: (i) a revised facility site plan, process flow diagram, or other detailed drawing(s), as appropriate, specifically illustrating such change(s) and (ii) a letter which (a) details such change(s); (b) amends the Permittee's Engineering Report or other material, as appropriate; and (c) identifies the Permittee's proposed date to initiate such change(s). The Permittee must not initiate any such change(s) prior to obtaining written approval from the Department. notwithstanding the foregoing, the Department reserves the right to deny or modify the Permittee's requested change or to require that it be subjected to a full permit application or permit modification process.

5. Financial Assurance For the duration of this active permit, the Permittee must maintain a surety bond or letter of credit for \$1,000,000.00, acceptable to the Department (NYSDEC) in accordance with 6NYCRR § 360-22, as periodically amended by the Permittee at the direction of the Department. This surety bond or letter of credit for the amount and form determined acceptable to the Department must be executed and submitted to the Regional Materials Management Engineer within forty-five (45) days of this permit issuance date.

As per Part 373-2.8(d)(2)(iii) and (3)(iii), the acceptable financial instrument ultimately shall be held in a standby trust account. The standby trust account must be maintained for the duration of this permit. Therefore, the Permittee shall, also within forty-five (45) days of this permit issuance date, submit an acceptable and executed Standby Trust Agreement to the Regional Materials Management Engineer.

6. Solid Waste Disposal Except as specified below, the Permittee must send solid waste only to the solid waste disposal facilities identified in the document(s) cited in Special Condition Conformance with Plans - Addenda, above.

Each such disposal facility must have the state permit required to dispose of solid waste. Within 10 days following the issuance of a new, renewed, or modified state permit required to operate any such disposal facility, the Permittee must submit to the DEC Engineer, in duplicate, a complete copy of the renewal or extension of such permit. If the Permittee fails to submit such copy, or if, for any reason, any such disposal facility loses any governmental authorization required for its operation (including but not limited to failure to renew permit, permit suspension, permit revocation, facility closure, cessation of operations, or facility abandonment), the Permittee must immediately cease sending solid waste to such facility, and must notify the DEC Engineer of such cessation and the reason(s) for same.

For each additional disposal facility, to which the Permittee seeks to send solid waste, the Permittee must submit the following data to the DEC Engineer: (a) a complete copy of each state authorization required to operate the disposal facility and (b) a letter from the operator of the disposal facility stating the amount of solid waste it would accept from the Permittee, and any conditions it places on such acceptance. Each such additional disposal facility must be approved by the DEC Engineer in writing. For each disposal facility, to which the Permittee seeks to stop sending solid waste, the Permittee must submit written notification to the DEC Engineer.

7. Monitor Provision

- a. The Permittee must fund the environmental monitoring services performed by the Department related to the operation of the subject facility. These monitoring services and associated requirements include, but are not limited to inspections, compliance monitoring, enforcement, preparation for and attendance at meetings, preparation and analysis of documents, and the equipment and supplies used to support these monitoring services.
- b. Funds necessary to support the subject monitoring services must be provided to the Department by the Permittee on an annual basis. The sum to be provided must be based on the cost of the Department's annual environmental monitoring services of the subject facility, and is subject to annual revision. Said annual payments must be made by the Permittee as long as the subject facility is being constructed or operated under the terms of this permit, or until the monitoring requirement no longer exists, whichever comes first.
- c. The Permittee shall be billed for the subject environmental monitoring services annually, each fiscal year, beginning on April 1. If this permit is effective subsequent to April 1, the Permittee may be billed for an amount sufficient to meet the anticipated cost of monitoring the subject facility through the end of the current fiscal year.
- d. The Department may revise the subject required payment on an annual basis to include all of the Department's costs associated with monitoring services. The annual revision may take into account such factors as inflation, salary increases, changes in operating hours and procedures, and an increase or decrease in the amount of monitoring necessary. Upon written request by the Permittee, the Department shall provide the Permittee with a written explanation of the basis for any such revision. If such a revision is required, the Department will notify the Permittee of the pending revision no less than 60 days in advance of the effective date of the revision.
- e. Prior to making its annual payment, the Permittee will receive, and have an opportunity to review, an annual work plan of the monitoring services that the Department will undertake during the following year.
- f. Payments must be in advance of the period in which they will be expended, and must be made within 30 days of receiving a bill from the Department. Payments shall be addressed to: NYS DEC, Bureau of Revenue Accounting (10th Floor), 625 Broadway, Albany, NY 12233-5012, Attn: Bureau Chief of Revenue Accounting.
- g. Failure to make the required payments shall be a violation of this Permit. The State reserves all rights to take appropriate action to enforce the above-described payment provisions.

8. Allowable Waste Materials Permittee may accept the following wastes delivered by barge, truck and drums.

Category A – Oil/Water mixture and its residue from the cleaning, by the Butterworth method, of virgin oil tank barges.

Category B – The bilge/ballast water and oil mixtures, as well as the residue of such, from ships or vessels.

Category D – Non-hazardous; used engine lubricating oil, contaminated fuel oil, lube/hydraulic oil, transmission fluid, gear oil, non-PCB dielectric fluid, emulsified cutting oil, non-emulsified cutting oil, distressed oil, tank bottoms – fuel oil, tank bottoms – other, vegetable oil from industrial sources, mineral oil from industrial sources, water contaminated with oil, tar and asphalt originating from the vessel/tank cleaning operations and synthetic lube oils and castor oil.

Category E – Under this category, permittee may accept nonhazardous oil-soaked debris. If this material is directly related to Category A, B, or D material that is being delivered to the facility and the same waste has undergone pre-qualification analysis, additional testing is not required. In other cases pre-qualification analysis testing consisting of total halogens, RCRA metals (arsenic, cadmium, chromium, lead) must be conducted prior to the acceptance of the material. In addition, if the waste shipment originates from a utility, it must be screened for PCBs. Category E waste must be sent to any of the department approved disposal facilities. A record of how the hazardous waste determinations were made and who made them must be maintained for at least seven (7) years at the facility office.

Before any of the waste Categories A, B or D may be accepted, permittee must have a representative sample tested by the Clor-D-Tect Kit Test for total halogens. The same sample must also be tested by the Pensky-Martens Closed Cup Tester, Materials Standard D-93-79 or D-93-80, for flash point. Each separate chamber of every multi-compartmented truck must be sampled, tested and analyzed separately. All strata of a vertical column within each tank or compartment must be sampled into a container using a coliwasa or other acceptable method in accordance with 6 NYCRR Part 370.1 (e): Samples obtained from each compartment or tank must not be mixed for the purposes of determining total halogens and flash point. Mixing of samples is allowed if they are obtained from a single truck or vessel and will be used in the 5% independent analysis as specified below, unless screening tests indicate that one or more compartments has halogens in excess of 1,000 ppm or a flash point less than 100 deg F. If the level of halogens is found to be in excess of 1,000 ppm, the waste must not be accepted, and permittee must follow the procedures for unauthorized material. Permittee may choose to rebut the presumption of hazardous waste by following the procedures described in 6 NYCRR Part 374.2. If the flash point is below 100°F, the load must be rejected by permittee. In the event permittee or employees of permittee have knowledge that a waste oil load or a portion of a waste oil load originates from a utility, such load must be pre-screened for hazardous concentrations of PCBs before it may be accepted into the facility. Copies of said pre-screening test results must be maintained at the facility as part of permittee's operational records.

Because the screening or analysis for halogens for Category A, B, and D wastes will not be routinely conducted by an independent testing laboratory licensed by New York State (ELAP lab) and found acceptable by DEC, random samples must be taken, and tests made, on a minimum of five (5) percent of all incoming loads. The frequency of such testing must be as follows:

SAMPLING & TESTING OF INCOMING LOADS BY A DEPARTMENT ACCEPTABLE LABORATORY (ELAP)

	Total Halogens	Flash Point	TCLP Metals	PCBs
CATEGORY A	5%	5%	—	—
CATEGORY B	5%	5%	—	—
CATEGORY D	5%	5%	5% As, Pb, Cd, Cr	5%

Aside from the allowable solid waste materials described in Category A, B, D and E, permittee is strictly prohibited from accepting, storing, and processing any other types of solid waste.

9. Record Keeping Permittee must maintain and have available for inspection at all times an operating record of incoming and outgoing loads of used oil and all other waste materials. This record must, at a minimum, include the name and addresses of each originating facility, vessel, and vessel owner, date of shipment, quantity shipped, and pre-screening test results. Copies of all invoices and manifests must be, maintained at the facility by permittee for a minimum of seven (7) years. In addition, records of inspections by DEC or any other government agency, and records of spills or other emergencies, and remedial actions taken, must be maintained by permittee at the facility office.

Permittee must maintain a log for each sludge storage drum at the facility recording the time and date of the filling of each drum with sludge. Permittee must also record the time, date, hauler, quantity, and final disposal facility of the sludge in each drum or other container when it is hauled away from the facility.

10. Oil Tank Sludge Sampling At least twice per year, random samples must be taken by permittee of sludge intended for disposal. Such sludge shall be tested by an independent testing laboratory licensed by New York State and acceptable to DEC for hazardous waste characteristics and the results sent to the DEC Region 2 Solid Materials Engineer. Such laboratory must be ELAP certified.

11. Unauthorized Waste

- a. If, during the course of performing the screening tests or analyses, the permittee finds that an inbound load is unacceptable due to findings of less than 100°F flashpoint, greater than 1,000 ppm total halogens, greater than 2 ppm PCB's, or if the load is determined to be a characteristic hazardous waste, then the permittee must make a record of that incident including, at a minimum, the time and date of the incident, the screening test results, the quantity of material, location of material, and how the responsible party stated it would properly dispose of the unacceptable material.
- b. If, unauthorized material is received at the facility the Permittee shall, within 72-hours of receipt, contact the Regional Solid Materials Engineer with a notice (including but not limited to email) detailing (a) the date and time such unauthorized waste was discovered, (b) where and how such waste is secured, (c) the amount of such waste, (d) the identification of such waste (if known), (e) if applicable why such waste cannot be so removed from the facility within the 72-hour deadline, and (f) when and how such waste shall be so removed from the facility.

12. Rebuttal Process If the level of total halogens is found to be in excess of 1,000 ppm, the waste may be accepted by permittee only as stipulated in NYCRR 374-2.2(a)(2)(i)(b) and the permittee receives notification from DEC that the analytical results indicate the waste is not considered to be hazardous.

13. Waste Unloading Locations Acceptable waste which is delivered by truck may only be off-loaded at the Storage Warehouse or Load/Unload areas as outlined in the facility's site plan (Figure 2-3) of the Engineering Report cited in Special Condition Conformance with Plans - Addenda above.

14. Loading and Unloading Operations The Storage Warehouse or Load/Unload areas as shown on the facility's site plan, Figure 2-3, of the Engineering Report cited in permit condition Conformance with Plans - Addenda, above, must be continuously inspected by permittee. If any liquids are found in the Storage Warehouse or Load/Unload areas, caused by either rain or spillage, they must be collected, and the Storage Warehouse or Load/Unload areas cleaned during the same day such liquid is observed. Permittee must either dispose of the material recovered from the Storage Warehouse or Load/Unload areas or put such material into the facility's processing system for treatment. Permittee must keep at least ten (10) bags of absorbent within close proximity of these areas.

15. Marketing of Recovered Used Oil The Permittee's outgoing reprocessed used fuel oil must be determined to be on-specification as per 374-2.2(b) before it can be marketed as on-specification used fuel oil. Otherwise, permittee may only market its reprocessed oil as off-specification oil to duly authorized industrial users.

16. Sludge Storage Any sludge removed from waste oil tanks/barges, must be stored in sealed drums or the leak proof dumpster placed at the Load/ Unload area or in the storage warehouse as outlined in the facility's site plan (Figure 2-3) of the Engineering Report cited in permit condition Conformance with Plans - Addenda above. No more than sixty (60) cubic yards of such sludge may be stored at the facility at any time. Within ninety (90) days of its placement in the storage warehouse area, sludge must be shipped to one or more of the pre-approved disposal facilities.

17. Best Management Practices The permittee shall employ the industry's most current Best Management Practices for conducting operations at the facility, and must get approval from the Department whenever any new procedure is to be adopted.

18. TSCA Used oil containing any quantifiable level of PCB's may be subject to the requirements of 40 CFR 761.20(e).

19. PCB Sampling of Cargo Hold Tanks PCB Sampling of Cargo Hold Tanks Prior to emptying into on-site storage vessels the contents of each cargo hold tank are to be analyzed for PCB's. The contents of each cargo hold tank will only be transferred for further processing and blending, if the PCB content is less than 2 ppm.

20. Identifying Originating Sources Permittee shall identify the originating sources, of each truck load, that is brought to the facility before unloading for processing.

21. Submission Requirements Unless otherwise accepted by the DEC Engineer, the Permittee's submission to the Department must conform to 6 NYCRR Part 360.6(a) and to the following requirements. Each submission must comprise a "hard copy" and a digital version. In addition, the hard copy must be accompanied by an electronic version of the document in a searchable PDF format. Engineering Reports should include a sleeve containing a searchable PDF copy of the report and related documents on a CD/USB.

The CD/USB must contain a searchable PDF file for each separately bound volume of the report, each large-format drawing, and any cover letter. For those documents prepared by a professional engineer, appropriate portions of the document must display the engineer's seal and signature (e.g., the report's cover and the report's large-format drawings). The engineer's seal and signature must be reflected on the applicable searchable PDF files located on the CD/USB. In addition, each searchable PDF file on the CD/USB should be named to reflect its content (e.g., "Facility Name" Engineering Report, "Site Plan" Drawing No 1, Cover Letter, etc.).

22. Separate Submission Renewal applications shall be submitted separately from permit modification applications. The Permittee must submit a renewal application at least 180 days before permit expiration for Solid Waste Management Facilities.

23. Facility Operator Change The Permittee must not change facility operator unless and until the Permittee: (a) submits a request to the Department; (b) submits any additional information requested by the Department as it pertains to the proposed new operator; and (c) receives the Department's written approval of such change.

24. Emergency Event Notification In the case of each of the following events: (i) a fatality or injury on-site; (ii) a fire, explosion, or other significant event which affects facility operation; (iii) the activation of the facility's alarm system; or (iv) an unscheduled closure of the subject facility exceeding 24 hours, the Permittee must take the following steps, as appropriate. The Permittee must, within one hour following such event, send the DEC Engineer a telephone message (at 718-482-4996) and an e-mail message (to r2dmm@dec.ny.gov) with the following information:

(a) the name and address of the facility where the event occurred; (b) the date, time, and nature of the event; and (c) the name and phone number of a facility staff person the Department can contact regarding such event.

Regardless of the time of the event, before noon on the first business day following the event, the Permittee must, in addition, e-mail a statement to the DEC Engineer with the following information: (a) the name and address of the facility where the event occurred, (b) the date, time, and specific location of the event; (c) the circumstances leading up to the event, (d) an adequately detailed description of the subject event; (e) an explanation of how the event was handled; (f) an explanation of the steps that the Permittee shall take to avoid and/or better handle such an event; and (g) the name and phone number of a facility staff person the Department can contact regarding such event.

25. Control Site Access Access to and use of the facility shall be controlled by fencing, gates, and signs. A sign posted at all access points shall state the hours of operation and the types of waste accepted by the facility.

26. Compliance with Other Regulatory Requirements The Permittee is responsible for obtaining any other permits, approvals, lands, easements, and rights-of-way that may be required for the subject work. The Permittee and its independent contractors, employees, agents, and assigns must comply with all applicable local, State, and federal statutory, regulatory, and legal requirements.

27. NYC Waterfront Revitalization Program If not otherwise certified in accordance with Title 19, Part 600.4 (c) of the New York Code of Rules and Regulations, the Department hereby certifies that the action described and approved in this permit, if located within the Coastal Zone, is consistent to the maximum extent practicable with the policies and purposes of the New York City Waterfront Revitalization Program.

28. Wetland Protection All necessary precautions must be taken to preclude contamination of any wetland or waterway by suspended solids, sediments, fuels, solvents, lubricants, epoxy coatings, paints, concrete, leachate, or any other environmentally deleterious materials associated with the project. The use of creosote-treated lumber to construct or maintain the physical plant of the subject facility is prohibited.

GENERAL CONDITIONS - Apply to ALL Authorized Permits:

1. Facility Inspection by The Department The permitted site or facility, including relevant records, is subject to inspection at reasonable hours and intervals by an authorized representative of the Department of Environmental Conservation (the Department) to determine whether the permittee is complying with this permit and the ECL. Such representative may order the work suspended pursuant to ECL 71-0301 and SAPA 401(3).

The permittee shall provide a person to accompany the Department's representative during an inspection to the permit area when requested by the Department.

A copy of this permit, including all referenced maps, drawings and special conditions, must be available for inspection by the Department at all times at the project site or facility. Failure to produce a copy of the permit upon request by a Department representative is a violation of this permit.

2. Relationship of this Permit to Other Department Orders and Determinations Unless expressly provided for by the Department, issuance of this permit does not modify, supersede or rescind any order or determination previously issued by the Department or any of the terms, conditions or requirements contained in such order or determination.

3. Applications For Permit Renewals, Modifications or Transfers The permittee must submit a separate written application to the Department for permit renewal, modification or transfer of this permit. Such application must include any forms or supplemental information the Department requires. Any renewal, modification or transfer granted by the Department must be in writing. Submission of applications for permit renewal, modification or transfer are to be submitted to:

Regional Permit Administrator
NYSDEC Region 2 Headquarters
47-40 21st St
Long Island City, NY 11101-5401

4. Submission of Renewal Application The permittee must submit a renewal application at least 180 days before permit expiration for the following permit authorizations: Solid Waste Management.

5. Permit Modifications, Suspensions and Revocations by the Department The Department reserves the right to exercise all available authority to modify, suspend or revoke this permit. The grounds for modification, suspension or revocation include:

- a. materially false or inaccurate statements in the permit application or supporting papers;
- b. failure by the permittee to comply with any terms or conditions of the permit;
- c. exceeding the scope of the project as described in the permit application;
- d. newly discovered material information or a material change in environmental conditions, relevant technology or applicable law or regulations since the issuance of the existing permit;

- e. noncompliance with previously issued permit conditions, orders of the commissioner, any provisions of the Environmental Conservation Law or regulations of the Department related to the permitted activity.

6. Permit Transfer Permits are transferrable unless specifically prohibited by statute, regulation or another permit condition. Applications for permit transfer should be submitted prior to actual transfer of ownership.

NOTIFICATION OF OTHER PERMITTEE OBLIGATIONS

Item A: Permittee Accepts Legal Responsibility and Agrees to Indemnification

The permittee, excepting state or federal agencies, expressly agrees to indemnify and hold harmless the Department of Environmental Conservation of the State of New York, its representatives, employees, and agents ("DEC") for all claims, suits, actions, and damages, to the extent attributable to the permittee's acts or omissions in connection with the permittee's undertaking of activities in connection with, or operation and maintenance of, the facility or facilities authorized by the permit whether in compliance or not in compliance with the terms and conditions of the permit. This indemnification does not extend to any claims, suits, actions, or damages to the extent attributable to DEC's own negligent or intentional acts or omissions, or to any claims, suits, or actions naming the DEC and arising under Article 78 of the New York Civil Practice Laws and Rules or any citizen suit or civil rights provision under federal or state laws.

Item B: Permittee's Contractors to Comply with Permit

The permittee is responsible for informing its independent contractors, employees, agents and assigns of their responsibility to comply with this permit, including all special conditions while acting as the permittee's agent with respect to the permitted activities, and such persons shall be subject to the same sanctions for violations of the Environmental Conservation Law as those prescribed for the permittee.

Item C: Permittee Responsible for Obtaining Other Required Permits

The permittee is responsible for obtaining any other permits, approvals, lands, easements and rights-of-way that may be required to carry out the activities that are authorized by this permit.

Item D: No Right to Trespass or Interfere with Riparian Rights

This permit does not convey to the permittee any right to trespass upon the lands or interfere with the riparian rights of others in order to perform the permitted work nor does it authorize the impairment of any rights, title, or interest in real or personal property held or vested in a person not a party to the permit.

Generators Waste Profile Sheet

Internal Use Only

Approval # _____

Generator Information

Company	MacQuesten Development, LLC		
Address	438 Fifth Avenue, Suite 100		
City	Pelham		
State	NY	Zip/Postal Code	10803
Contact	Chris Yeates		
Phone Number	(203)505-9697		
Site Name			
Site Address	136-140 Croton Avenue-Ossining, NY 10562		
Site Contact			
Cell Phone			

Invoice Information

Company	Innovative Recycling Technologies, Inc.		
Address	690 N. Queens Avenue		
City	Lindenhurst		
State	NY	Zip/Postal Code	11757
Contact	John Ewen		
Phone Number	(631)225-3044		
Fax Number	(631)225-3056		
Email	jewen@irtwaste.com		
PO #			
JOB #			

Waste Information

 Name of Waste **Oily Water**

 Process Generating Waste **From remediation and construction excavation**

Chararistics	Physical State	Layers	Flash Point	Corrosivity (pH)
Color Clear	Solid <input type="checkbox"/>	Single Phase <input checked="" type="checkbox"/>	<100 F <input type="checkbox"/>	3-5 <input type="checkbox"/> 5-7 <input checked="" type="checkbox"/>
Odor None	Liquid <input checked="" type="checkbox"/>	Bi-Layered <input type="checkbox"/>	100 F-140 F <input type="checkbox"/>	7-9 <input checked="" type="checkbox"/> 9-12 <input type="checkbox"/>
Halogens 0	Sludge <input type="checkbox"/>	Multi-Layered <input type="checkbox"/>	> 140 F <input checked="" type="checkbox"/>	
Sulfur % 0	Powder <input type="checkbox"/>	Emulsified <input type="checkbox"/>		Actual
Chemical Composition			Transporters	
% Water 99	1 William J. Lauer			
% Oil 1	2			
% Solids 0	3			

 Was waste generated from a regulated CERCLA/Super Fund Site? YES NO

 Did load originate at a utility? YES NO

(If this load originates at a utility, you must send in PCB analysis. Max PCB concentration must be less 2 ppm.)

 Does this waste contain greater than 2 ppm PCB's or are PCB's derived from a source greater than 2 ppm? YES NO

 Does this waste contain greater than 1000 ppm total HOC (Halogenated Organic Compounds)? YES NO

Manifest Information

 Proper Shipping Name **Oily Water Non-DOT Regulated Material**

 Anticipated Volume/Units **20,000 gal** Frequency Daily Weekly Monthly Yearly One Time

 Method of Shipment Bulk Liquid Drum Other _____

Generator Certification

I hereby certify that all information submitted in this and all attached documents is true and accurate, based on my inquiry of those individuals immediately responsible for obtaining this information. I believe that the submitted information is true and complete to the best of my knowledge and that all suspected hazards have been disclosed. I am aware that there are significant penalties for submitting false information including the possibility of fine and imprisonment for knowing violations.

 Signature Name & Title: **CHRIS YEATES XPM** Date: **5/29/25**